1 | //====- SHA256.cpp - SHA256 implementation ---*- C++ -* ======// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /* |
9 | * The SHA-256 Secure Hash Standard was published by NIST in 2002. |
10 | * |
11 | * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf |
12 | * |
13 | * The implementation is based on nacl's sha256 implementation [0] and LLVM's |
14 | * pre-exsiting SHA1 code [1]. |
15 | * |
16 | * [0] https://hyperelliptic.org/nacl/nacl-20110221.tar.bz2 (public domain |
17 | * code) |
18 | * [1] llvm/lib/Support/SHA1.{h,cpp} |
19 | */ |
20 | //===----------------------------------------------------------------------===// |
21 | |
22 | #include "llvm/Support/SHA256.h" |
23 | #include "llvm/ADT/ArrayRef.h" |
24 | #include "llvm/ADT/StringRef.h" |
25 | #include "llvm/Support/Endian.h" |
26 | #include "llvm/Support/SwapByteOrder.h" |
27 | #include <string.h> |
28 | |
29 | namespace llvm { |
30 | |
31 | #define SHR(x, c) ((x) >> (c)) |
32 | #define ROTR(x, n) (((x) >> n) | ((x) << (32 - (n)))) |
33 | |
34 | #define CH(x, y, z) (((x) & (y)) ^ (~(x) & (z))) |
35 | #define MAJ(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
36 | |
37 | #define SIGMA_0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) |
38 | #define SIGMA_1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) |
39 | |
40 | #define SIGMA_2(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10)) |
41 | #define SIGMA_3(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3)) |
42 | |
43 | #define F_EXPAND(A, B, C, D, E, F, G, H, M1, M2, M3, M4, k) \ |
44 | do { \ |
45 | H += SIGMA_1(E) + CH(E, F, G) + M1 + k; \ |
46 | D += H; \ |
47 | H += SIGMA_0(A) + MAJ(A, B, C); \ |
48 | M1 += SIGMA_2(M2) + M3 + SIGMA_3(M4); \ |
49 | } while (0); |
50 | |
51 | void SHA256::init() { |
52 | InternalState.State[0] = 0x6A09E667; |
53 | InternalState.State[1] = 0xBB67AE85; |
54 | InternalState.State[2] = 0x3C6EF372; |
55 | InternalState.State[3] = 0xA54FF53A; |
56 | InternalState.State[4] = 0x510E527F; |
57 | InternalState.State[5] = 0x9B05688C; |
58 | InternalState.State[6] = 0x1F83D9AB; |
59 | InternalState.State[7] = 0x5BE0CD19; |
60 | InternalState.ByteCount = 0; |
61 | InternalState.BufferOffset = 0; |
62 | } |
63 | |
64 | void SHA256::hashBlock() { |
65 | uint32_t A = InternalState.State[0]; |
66 | uint32_t B = InternalState.State[1]; |
67 | uint32_t C = InternalState.State[2]; |
68 | uint32_t D = InternalState.State[3]; |
69 | uint32_t E = InternalState.State[4]; |
70 | uint32_t F = InternalState.State[5]; |
71 | uint32_t G = InternalState.State[6]; |
72 | uint32_t H = InternalState.State[7]; |
73 | |
74 | uint32_t W00 = InternalState.Buffer.L[0]; |
75 | uint32_t W01 = InternalState.Buffer.L[1]; |
76 | uint32_t W02 = InternalState.Buffer.L[2]; |
77 | uint32_t W03 = InternalState.Buffer.L[3]; |
78 | uint32_t W04 = InternalState.Buffer.L[4]; |
79 | uint32_t W05 = InternalState.Buffer.L[5]; |
80 | uint32_t W06 = InternalState.Buffer.L[6]; |
81 | uint32_t W07 = InternalState.Buffer.L[7]; |
82 | uint32_t W08 = InternalState.Buffer.L[8]; |
83 | uint32_t W09 = InternalState.Buffer.L[9]; |
84 | uint32_t W10 = InternalState.Buffer.L[10]; |
85 | uint32_t W11 = InternalState.Buffer.L[11]; |
86 | uint32_t W12 = InternalState.Buffer.L[12]; |
87 | uint32_t W13 = InternalState.Buffer.L[13]; |
88 | uint32_t W14 = InternalState.Buffer.L[14]; |
89 | uint32_t W15 = InternalState.Buffer.L[15]; |
90 | |
91 | F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0x428A2F98); |
92 | F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0x71374491); |
93 | F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0xB5C0FBCF); |
94 | F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0xE9B5DBA5); |
95 | F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x3956C25B); |
96 | F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x59F111F1); |
97 | F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x923F82A4); |
98 | F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0xAB1C5ED5); |
99 | F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0xD807AA98); |
100 | F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0x12835B01); |
101 | F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0x243185BE); |
102 | F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0x550C7DC3); |
103 | F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0x72BE5D74); |
104 | F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0x80DEB1FE); |
105 | F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0x9BDC06A7); |
106 | F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0xC19BF174); |
107 | |
108 | F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0xE49B69C1); |
109 | F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0xEFBE4786); |
110 | F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0x0FC19DC6); |
111 | F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0x240CA1CC); |
112 | F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x2DE92C6F); |
113 | F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x4A7484AA); |
114 | F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x5CB0A9DC); |
115 | F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0x76F988DA); |
116 | F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0x983E5152); |
117 | F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0xA831C66D); |
118 | F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0xB00327C8); |
119 | F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0xBF597FC7); |
120 | F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0xC6E00BF3); |
121 | F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0xD5A79147); |
122 | F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0x06CA6351); |
123 | F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0x14292967); |
124 | |
125 | F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0x27B70A85); |
126 | F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0x2E1B2138); |
127 | F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0x4D2C6DFC); |
128 | F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0x53380D13); |
129 | F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x650A7354); |
130 | F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x766A0ABB); |
131 | F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x81C2C92E); |
132 | F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0x92722C85); |
133 | F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0xA2BFE8A1); |
134 | F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0xA81A664B); |
135 | F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0xC24B8B70); |
136 | F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0xC76C51A3); |
137 | F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0xD192E819); |
138 | F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0xD6990624); |
139 | F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0xF40E3585); |
140 | F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0x106AA070); |
141 | |
142 | F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0x19A4C116); |
143 | F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0x1E376C08); |
144 | F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0x2748774C); |
145 | F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0x34B0BCB5); |
146 | F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x391C0CB3); |
147 | F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x4ED8AA4A); |
148 | F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x5B9CCA4F); |
149 | F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0x682E6FF3); |
150 | F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0x748F82EE); |
151 | F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0x78A5636F); |
152 | F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0x84C87814); |
153 | F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0x8CC70208); |
154 | F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0x90BEFFFA); |
155 | F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0xA4506CEB); |
156 | F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0xBEF9A3F7); |
157 | F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0xC67178F2); |
158 | |
159 | InternalState.State[0] += A; |
160 | InternalState.State[1] += B; |
161 | InternalState.State[2] += C; |
162 | InternalState.State[3] += D; |
163 | InternalState.State[4] += E; |
164 | InternalState.State[5] += F; |
165 | InternalState.State[6] += G; |
166 | InternalState.State[7] += H; |
167 | } |
168 | |
169 | void SHA256::addUncounted(uint8_t Data) { |
170 | if constexpr (sys::IsBigEndianHost) |
171 | InternalState.Buffer.C[InternalState.BufferOffset] = Data; |
172 | else |
173 | InternalState.Buffer.C[InternalState.BufferOffset ^ 3] = Data; |
174 | |
175 | InternalState.BufferOffset++; |
176 | if (InternalState.BufferOffset == BLOCK_LENGTH) { |
177 | hashBlock(); |
178 | InternalState.BufferOffset = 0; |
179 | } |
180 | } |
181 | |
182 | void SHA256::writebyte(uint8_t Data) { |
183 | ++InternalState.ByteCount; |
184 | addUncounted(Data); |
185 | } |
186 | |
187 | void SHA256::update(ArrayRef<uint8_t> Data) { |
188 | InternalState.ByteCount += Data.size(); |
189 | |
190 | // Finish the current block. |
191 | if (InternalState.BufferOffset > 0) { |
192 | const size_t Remainder = std::min<size_t>( |
193 | a: Data.size(), b: BLOCK_LENGTH - InternalState.BufferOffset); |
194 | for (size_t I = 0; I < Remainder; ++I) |
195 | addUncounted(Data: Data[I]); |
196 | Data = Data.drop_front(N: Remainder); |
197 | } |
198 | |
199 | // Fast buffer filling for large inputs. |
200 | while (Data.size() >= BLOCK_LENGTH) { |
201 | assert(InternalState.BufferOffset == 0); |
202 | static_assert(BLOCK_LENGTH % 4 == 0); |
203 | constexpr size_t BLOCK_LENGTH_32 = BLOCK_LENGTH / 4; |
204 | for (size_t I = 0; I < BLOCK_LENGTH_32; ++I) |
205 | InternalState.Buffer.L[I] = support::endian::read32be(P: &Data[I * 4]); |
206 | hashBlock(); |
207 | Data = Data.drop_front(N: BLOCK_LENGTH); |
208 | } |
209 | |
210 | // Finish the remainder. |
211 | for (uint8_t C : Data) |
212 | addUncounted(Data: C); |
213 | } |
214 | |
215 | void SHA256::update(StringRef Str) { |
216 | update( |
217 | Data: ArrayRef<uint8_t>((uint8_t *)const_cast<char *>(Str.data()), Str.size())); |
218 | } |
219 | |
220 | void SHA256::pad() { |
221 | // Implement SHA-2 padding (fips180-2 5.1.1) |
222 | |
223 | // Pad with 0x80 followed by 0x00 until the end of the block |
224 | addUncounted(Data: 0x80); |
225 | while (InternalState.BufferOffset != 56) |
226 | addUncounted(Data: 0x00); |
227 | |
228 | uint64_t len = InternalState.ByteCount << 3; // bit size |
229 | |
230 | // Append length in the last 8 bytes big edian encoded |
231 | addUncounted(Data: len >> 56); |
232 | addUncounted(Data: len >> 48); |
233 | addUncounted(Data: len >> 40); |
234 | addUncounted(Data: len >> 32); |
235 | addUncounted(Data: len >> 24); |
236 | addUncounted(Data: len >> 16); |
237 | addUncounted(Data: len >> 8); |
238 | addUncounted(Data: len); |
239 | } |
240 | |
241 | void SHA256::final(std::array<uint32_t, HASH_LENGTH / 4> &HashResult) { |
242 | // Pad to complete the last block |
243 | pad(); |
244 | |
245 | if constexpr (sys::IsBigEndianHost) { |
246 | // Just copy the current state |
247 | for (int i = 0; i < 8; i++) { |
248 | HashResult[i] = InternalState.State[i]; |
249 | } |
250 | } else { |
251 | // Swap byte order back |
252 | for (int i = 0; i < 8; i++) { |
253 | HashResult[i] = llvm::byteswap(V: InternalState.State[i]); |
254 | } |
255 | } |
256 | } |
257 | |
258 | std::array<uint8_t, 32> SHA256::final() { |
259 | union { |
260 | std::array<uint32_t, HASH_LENGTH / 4> HashResult; |
261 | std::array<uint8_t, HASH_LENGTH> ReturnResult; |
262 | }; |
263 | static_assert(sizeof(HashResult) == sizeof(ReturnResult)); |
264 | final(HashResult&: HashResult); |
265 | return ReturnResult; |
266 | } |
267 | |
268 | std::array<uint8_t, 32> SHA256::result() { |
269 | auto StateToRestore = InternalState; |
270 | |
271 | auto Hash = final(); |
272 | |
273 | // Restore the state |
274 | InternalState = StateToRestore; |
275 | |
276 | // Return pointer to hash (32 characters) |
277 | return Hash; |
278 | } |
279 | |
280 | std::array<uint8_t, 32> SHA256::hash(ArrayRef<uint8_t> Data) { |
281 | SHA256 Hash; |
282 | Hash.update(Data); |
283 | return Hash.final(); |
284 | } |
285 | |
286 | } // namespace llvm |
287 | |