1 | //==- lib/Support/ScaledNumber.cpp - Support for scaled numbers -*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Implementation of some scaled number algorithms. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "llvm/Support/ScaledNumber.h" |
14 | #include "llvm/ADT/APFloat.h" |
15 | #include "llvm/ADT/ArrayRef.h" |
16 | #include "llvm/Support/Debug.h" |
17 | #include "llvm/Support/raw_ostream.h" |
18 | |
19 | using namespace llvm; |
20 | using namespace llvm::ScaledNumbers; |
21 | |
22 | std::pair<uint64_t, int16_t> ScaledNumbers::multiply64(uint64_t LHS, |
23 | uint64_t RHS) { |
24 | // Separate into two 32-bit digits (U.L). |
25 | auto getU = [](uint64_t N) { return N >> 32; }; |
26 | auto getL = [](uint64_t N) { return N & UINT32_MAX; }; |
27 | uint64_t UL = getU(LHS), LL = getL(LHS), UR = getU(RHS), LR = getL(RHS); |
28 | |
29 | // Compute cross products. |
30 | uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR; |
31 | |
32 | // Sum into two 64-bit digits. |
33 | uint64_t Upper = P1, Lower = P4; |
34 | auto addWithCarry = [&](uint64_t N) { |
35 | uint64_t NewLower = Lower + (getL(N) << 32); |
36 | Upper += getU(N) + (NewLower < Lower); |
37 | Lower = NewLower; |
38 | }; |
39 | addWithCarry(P2); |
40 | addWithCarry(P3); |
41 | |
42 | // Check whether the upper digit is empty. |
43 | if (!Upper) |
44 | return std::make_pair(x&: Lower, y: 0); |
45 | |
46 | // Shift as little as possible to maximize precision. |
47 | unsigned LeadingZeros = llvm::countl_zero(Val: Upper); |
48 | int Shift = 64 - LeadingZeros; |
49 | if (LeadingZeros) |
50 | Upper = Upper << LeadingZeros | Lower >> Shift; |
51 | return getRounded(Digits: Upper, Scale: Shift, |
52 | ShouldRound: Shift && (Lower & UINT64_C(1) << (Shift - 1))); |
53 | } |
54 | |
55 | static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); } |
56 | |
57 | std::pair<uint32_t, int16_t> ScaledNumbers::divide32(uint32_t Dividend, |
58 | uint32_t Divisor) { |
59 | assert(Dividend && "expected non-zero dividend" ); |
60 | assert(Divisor && "expected non-zero divisor" ); |
61 | |
62 | // Use 64-bit math and canonicalize the dividend to gain precision. |
63 | uint64_t Dividend64 = Dividend; |
64 | int Shift = 0; |
65 | if (int Zeros = llvm::countl_zero(Val: Dividend64)) { |
66 | Shift -= Zeros; |
67 | Dividend64 <<= Zeros; |
68 | } |
69 | uint64_t Quotient = Dividend64 / Divisor; |
70 | uint64_t Remainder = Dividend64 % Divisor; |
71 | |
72 | // If Quotient needs to be shifted, leave the rounding to getAdjusted(). |
73 | if (Quotient > UINT32_MAX) |
74 | return getAdjusted<uint32_t>(Digits: Quotient, Scale: Shift); |
75 | |
76 | // Round based on the value of the next bit. |
77 | return getRounded<uint32_t>(Digits: Quotient, Scale: Shift, ShouldRound: Remainder >= getHalf(N: Divisor)); |
78 | } |
79 | |
80 | std::pair<uint64_t, int16_t> ScaledNumbers::divide64(uint64_t Dividend, |
81 | uint64_t Divisor) { |
82 | assert(Dividend && "expected non-zero dividend" ); |
83 | assert(Divisor && "expected non-zero divisor" ); |
84 | |
85 | // Minimize size of divisor. |
86 | int Shift = 0; |
87 | if (int Zeros = llvm::countr_zero(Val: Divisor)) { |
88 | Shift -= Zeros; |
89 | Divisor >>= Zeros; |
90 | } |
91 | |
92 | // Check for powers of two. |
93 | if (Divisor == 1) |
94 | return std::make_pair(x&: Dividend, y&: Shift); |
95 | |
96 | // Maximize size of dividend. |
97 | if (int Zeros = llvm::countl_zero(Val: Dividend)) { |
98 | Shift -= Zeros; |
99 | Dividend <<= Zeros; |
100 | } |
101 | |
102 | // Start with the result of a divide. |
103 | uint64_t Quotient = Dividend / Divisor; |
104 | Dividend %= Divisor; |
105 | |
106 | // Continue building the quotient with long division. |
107 | while (!(Quotient >> 63) && Dividend) { |
108 | // Shift Dividend and check for overflow. |
109 | bool IsOverflow = Dividend >> 63; |
110 | Dividend <<= 1; |
111 | --Shift; |
112 | |
113 | // Get the next bit of Quotient. |
114 | Quotient <<= 1; |
115 | if (IsOverflow || Divisor <= Dividend) { |
116 | Quotient |= 1; |
117 | Dividend -= Divisor; |
118 | } |
119 | } |
120 | |
121 | return getRounded(Digits: Quotient, Scale: Shift, ShouldRound: Dividend >= getHalf(N: Divisor)); |
122 | } |
123 | |
124 | int ScaledNumbers::compareImpl(uint64_t L, uint64_t R, int ScaleDiff) { |
125 | assert(ScaleDiff >= 0 && "wrong argument order" ); |
126 | assert(ScaleDiff < 64 && "numbers too far apart" ); |
127 | |
128 | uint64_t L_adjusted = L >> ScaleDiff; |
129 | if (L_adjusted < R) |
130 | return -1; |
131 | if (L_adjusted > R) |
132 | return 1; |
133 | |
134 | return L > L_adjusted << ScaleDiff ? 1 : 0; |
135 | } |
136 | |
137 | static void appendDigit(std::string &Str, unsigned D) { |
138 | assert(D < 10); |
139 | Str += '0' + D % 10; |
140 | } |
141 | |
142 | static void appendNumber(std::string &Str, uint64_t N) { |
143 | while (N) { |
144 | appendDigit(Str, D: N % 10); |
145 | N /= 10; |
146 | } |
147 | } |
148 | |
149 | static bool doesRoundUp(char Digit) { |
150 | switch (Digit) { |
151 | case '5': |
152 | case '6': |
153 | case '7': |
154 | case '8': |
155 | case '9': |
156 | return true; |
157 | default: |
158 | return false; |
159 | } |
160 | } |
161 | |
162 | static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) { |
163 | assert(E >= ScaledNumbers::MinScale); |
164 | assert(E <= ScaledNumbers::MaxScale); |
165 | |
166 | // Find a new E, but don't let it increase past MaxScale. |
167 | int LeadingZeros = ScaledNumberBase::countLeadingZeros64(N: D); |
168 | int NewE = std::min(a: ScaledNumbers::MaxScale, b: E + 63 - LeadingZeros); |
169 | int Shift = 63 - (NewE - E); |
170 | assert(Shift <= LeadingZeros); |
171 | assert(Shift == LeadingZeros || NewE == ScaledNumbers::MaxScale); |
172 | assert(Shift >= 0 && Shift < 64 && "undefined behavior" ); |
173 | D <<= Shift; |
174 | E = NewE; |
175 | |
176 | // Check for a denormal. |
177 | unsigned AdjustedE = E + 16383; |
178 | if (!(D >> 63)) { |
179 | assert(E == ScaledNumbers::MaxScale); |
180 | AdjustedE = 0; |
181 | } |
182 | |
183 | // Build the float and print it. |
184 | uint64_t RawBits[2] = {D, AdjustedE}; |
185 | APFloat Float(APFloat::x87DoubleExtended(), APInt(80, RawBits)); |
186 | SmallVector<char, 24> Chars; |
187 | Float.toString(Str&: Chars, FormatPrecision: Precision, FormatMaxPadding: 0); |
188 | return std::string(Chars.begin(), Chars.end()); |
189 | } |
190 | |
191 | static std::string stripTrailingZeros(const std::string &Float) { |
192 | size_t NonZero = Float.find_last_not_of(c: '0'); |
193 | assert(NonZero != std::string::npos && "no . in floating point string" ); |
194 | |
195 | if (Float[NonZero] == '.') |
196 | ++NonZero; |
197 | |
198 | return Float.substr(pos: 0, n: NonZero + 1); |
199 | } |
200 | |
201 | std::string ScaledNumberBase::toString(uint64_t D, int16_t E, int Width, |
202 | unsigned Precision) { |
203 | if (!D) |
204 | return "0.0" ; |
205 | |
206 | // Canonicalize exponent and digits. |
207 | uint64_t Above0 = 0; |
208 | uint64_t Below0 = 0; |
209 | uint64_t = 0; |
210 | int = 0; |
211 | if (E == 0) { |
212 | Above0 = D; |
213 | } else if (E > 0) { |
214 | if (int Shift = std::min(a: int16_t(countLeadingZeros64(N: D)), b: E)) { |
215 | D <<= Shift; |
216 | E -= Shift; |
217 | |
218 | if (!E) |
219 | Above0 = D; |
220 | } |
221 | } else if (E > -64) { |
222 | Above0 = D >> -E; |
223 | Below0 = D << (64 + E); |
224 | } else if (E == -64) { |
225 | // Special case: shift by 64 bits is undefined behavior. |
226 | Below0 = D; |
227 | } else if (E > -120) { |
228 | Below0 = D >> (-E - 64); |
229 | Extra = D << (128 + E); |
230 | ExtraShift = -64 - E; |
231 | } |
232 | |
233 | // Fall back on APFloat for very small and very large numbers. |
234 | if (!Above0 && !Below0) |
235 | return toStringAPFloat(D, E, Precision); |
236 | |
237 | // Append the digits before the decimal. |
238 | std::string Str; |
239 | size_t DigitsOut = 0; |
240 | if (Above0) { |
241 | appendNumber(Str, N: Above0); |
242 | DigitsOut = Str.size(); |
243 | } else |
244 | appendDigit(Str, D: 0); |
245 | std::reverse(first: Str.begin(), last: Str.end()); |
246 | |
247 | // Return early if there's nothing after the decimal. |
248 | if (!Below0) |
249 | return Str + ".0" ; |
250 | |
251 | // Append the decimal and beyond. |
252 | Str += '.'; |
253 | uint64_t Error = UINT64_C(1) << (64 - Width); |
254 | |
255 | // We need to shift Below0 to the right to make space for calculating |
256 | // digits. Save the precision we're losing in Extra. |
257 | Extra = (Below0 & 0xf) << 56 | (Extra >> 8); |
258 | Below0 >>= 4; |
259 | size_t SinceDot = 0; |
260 | size_t AfterDot = Str.size(); |
261 | do { |
262 | if (ExtraShift) { |
263 | --ExtraShift; |
264 | Error *= 5; |
265 | } else |
266 | Error *= 10; |
267 | |
268 | Below0 *= 10; |
269 | Extra *= 10; |
270 | Below0 += (Extra >> 60); |
271 | Extra = Extra & (UINT64_MAX >> 4); |
272 | appendDigit(Str, D: Below0 >> 60); |
273 | Below0 = Below0 & (UINT64_MAX >> 4); |
274 | if (DigitsOut || Str.back() != '0') |
275 | ++DigitsOut; |
276 | ++SinceDot; |
277 | } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 && |
278 | (!Precision || DigitsOut <= Precision || SinceDot < 2)); |
279 | |
280 | // Return early for maximum precision. |
281 | if (!Precision || DigitsOut <= Precision) |
282 | return stripTrailingZeros(Float: Str); |
283 | |
284 | // Find where to truncate. |
285 | size_t Truncate = |
286 | std::max(a: Str.size() - (DigitsOut - Precision), b: AfterDot + 1); |
287 | |
288 | // Check if there's anything to truncate. |
289 | if (Truncate >= Str.size()) |
290 | return stripTrailingZeros(Float: Str); |
291 | |
292 | bool Carry = doesRoundUp(Digit: Str[Truncate]); |
293 | if (!Carry) |
294 | return stripTrailingZeros(Float: Str.substr(pos: 0, n: Truncate)); |
295 | |
296 | // Round with the first truncated digit. |
297 | for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend(); |
298 | I != E; ++I) { |
299 | if (*I == '.') |
300 | continue; |
301 | if (*I == '9') { |
302 | *I = '0'; |
303 | continue; |
304 | } |
305 | |
306 | ++*I; |
307 | Carry = false; |
308 | break; |
309 | } |
310 | |
311 | // Add "1" in front if we still need to carry. |
312 | return stripTrailingZeros(Float: std::string(Carry, '1') + Str.substr(pos: 0, n: Truncate)); |
313 | } |
314 | |
315 | raw_ostream &ScaledNumberBase::print(raw_ostream &OS, uint64_t D, int16_t E, |
316 | int Width, unsigned Precision) { |
317 | return OS << toString(D, E, Width, Precision); |
318 | } |
319 | |
320 | void ScaledNumberBase::dump(uint64_t D, int16_t E, int Width) { |
321 | print(OS&: dbgs(), D, E, Width, Precision: 0) << "[" << Width << ":" << D << "*2^" << E |
322 | << "]" ; |
323 | } |
324 | |