1 | //===-- StringRef.cpp - Lightweight String References ---------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "llvm/ADT/StringRef.h" |
10 | #include "llvm/ADT/APFloat.h" |
11 | #include "llvm/ADT/APInt.h" |
12 | #include "llvm/ADT/Hashing.h" |
13 | #include "llvm/ADT/StringExtras.h" |
14 | #include "llvm/ADT/edit_distance.h" |
15 | #include "llvm/Support/Error.h" |
16 | #include <bitset> |
17 | |
18 | using namespace llvm; |
19 | |
20 | // MSVC emits references to this into the translation units which reference it. |
21 | #ifndef _MSC_VER |
22 | constexpr size_t StringRef::npos; |
23 | #endif |
24 | |
25 | // strncasecmp() is not available on non-POSIX systems, so define an |
26 | // alternative function here. |
27 | static int ascii_strncasecmp(const char *LHS, const char *RHS, size_t Length) { |
28 | for (size_t I = 0; I < Length; ++I) { |
29 | unsigned char LHC = toLower(x: LHS[I]); |
30 | unsigned char RHC = toLower(x: RHS[I]); |
31 | if (LHC != RHC) |
32 | return LHC < RHC ? -1 : 1; |
33 | } |
34 | return 0; |
35 | } |
36 | |
37 | int StringRef::compare_insensitive(StringRef RHS) const { |
38 | if (int Res = ascii_strncasecmp(LHS: Data, RHS: RHS.Data, Length: std::min(a: Length, b: RHS.Length))) |
39 | return Res; |
40 | if (Length == RHS.Length) |
41 | return 0; |
42 | return Length < RHS.Length ? -1 : 1; |
43 | } |
44 | |
45 | bool StringRef::starts_with_insensitive(StringRef Prefix) const { |
46 | return Length >= Prefix.Length && |
47 | ascii_strncasecmp(LHS: Data, RHS: Prefix.Data, Length: Prefix.Length) == 0; |
48 | } |
49 | |
50 | bool StringRef::ends_with_insensitive(StringRef Suffix) const { |
51 | return Length >= Suffix.Length && |
52 | ascii_strncasecmp(LHS: end() - Suffix.Length, RHS: Suffix.Data, Length: Suffix.Length) == 0; |
53 | } |
54 | |
55 | size_t StringRef::find_insensitive(char C, size_t From) const { |
56 | char L = toLower(x: C); |
57 | return find_if(F: [L](char D) { return toLower(x: D) == L; }, From); |
58 | } |
59 | |
60 | /// compare_numeric - Compare strings, handle embedded numbers. |
61 | int StringRef::compare_numeric(StringRef RHS) const { |
62 | for (size_t I = 0, E = std::min(a: Length, b: RHS.Length); I != E; ++I) { |
63 | // Check for sequences of digits. |
64 | if (isDigit(C: Data[I]) && isDigit(C: RHS.Data[I])) { |
65 | // The longer sequence of numbers is considered larger. |
66 | // This doesn't really handle prefixed zeros well. |
67 | size_t J; |
68 | for (J = I + 1; J != E + 1; ++J) { |
69 | bool ld = J < Length && isDigit(C: Data[J]); |
70 | bool rd = J < RHS.Length && isDigit(C: RHS.Data[J]); |
71 | if (ld != rd) |
72 | return rd ? -1 : 1; |
73 | if (!rd) |
74 | break; |
75 | } |
76 | // The two number sequences have the same length (J-I), just memcmp them. |
77 | if (int Res = compareMemory(Lhs: Data + I, Rhs: RHS.Data + I, Length: J - I)) |
78 | return Res < 0 ? -1 : 1; |
79 | // Identical number sequences, continue search after the numbers. |
80 | I = J - 1; |
81 | continue; |
82 | } |
83 | if (Data[I] != RHS.Data[I]) |
84 | return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1; |
85 | } |
86 | if (Length == RHS.Length) |
87 | return 0; |
88 | return Length < RHS.Length ? -1 : 1; |
89 | } |
90 | |
91 | // Compute the edit distance between the two given strings. |
92 | unsigned StringRef::edit_distance(llvm::StringRef Other, |
93 | bool AllowReplacements, |
94 | unsigned MaxEditDistance) const { |
95 | return llvm::ComputeEditDistance(FromArray: ArrayRef(data(), size()), |
96 | ToArray: ArrayRef(Other.data(), Other.size()), |
97 | AllowReplacements, MaxEditDistance); |
98 | } |
99 | |
100 | unsigned llvm::StringRef::edit_distance_insensitive( |
101 | StringRef Other, bool AllowReplacements, unsigned MaxEditDistance) const { |
102 | return llvm::ComputeMappedEditDistance( |
103 | FromArray: ArrayRef(data(), size()), ToArray: ArrayRef(Other.data(), Other.size()), |
104 | Map: llvm::toLower, AllowReplacements, MaxEditDistance); |
105 | } |
106 | |
107 | //===----------------------------------------------------------------------===// |
108 | // String Operations |
109 | //===----------------------------------------------------------------------===// |
110 | |
111 | std::string StringRef::lower() const { |
112 | return std::string(map_iterator(I: begin(), F: toLower), |
113 | map_iterator(I: end(), F: toLower)); |
114 | } |
115 | |
116 | std::string StringRef::upper() const { |
117 | return std::string(map_iterator(I: begin(), F: toUpper), |
118 | map_iterator(I: end(), F: toUpper)); |
119 | } |
120 | |
121 | //===----------------------------------------------------------------------===// |
122 | // String Searching |
123 | //===----------------------------------------------------------------------===// |
124 | |
125 | |
126 | /// find - Search for the first string \arg Str in the string. |
127 | /// |
128 | /// \return - The index of the first occurrence of \arg Str, or npos if not |
129 | /// found. |
130 | size_t StringRef::find(StringRef Str, size_t From) const { |
131 | if (From > Length) |
132 | return npos; |
133 | |
134 | const char *Start = Data + From; |
135 | size_t Size = Length - From; |
136 | |
137 | const char *Needle = Str.data(); |
138 | size_t N = Str.size(); |
139 | if (N == 0) |
140 | return From; |
141 | if (Size < N) |
142 | return npos; |
143 | if (N == 1) { |
144 | const char *Ptr = (const char *)::memchr(s: Start, c: Needle[0], n: Size); |
145 | return Ptr == nullptr ? npos : Ptr - Data; |
146 | } |
147 | |
148 | const char *Stop = Start + (Size - N + 1); |
149 | |
150 | if (N == 2) { |
151 | // Provide a fast path for newline finding (CRLF case) in InclusionRewriter. |
152 | // Not the most optimized strategy, but getting memcmp inlined should be |
153 | // good enough. |
154 | do { |
155 | if (std::memcmp(s1: Start, s2: Needle, n: 2) == 0) |
156 | return Start - Data; |
157 | ++Start; |
158 | } while (Start < Stop); |
159 | return npos; |
160 | } |
161 | |
162 | // For short haystacks or unsupported needles fall back to the naive algorithm |
163 | if (Size < 16 || N > 255) { |
164 | do { |
165 | if (std::memcmp(s1: Start, s2: Needle, n: N) == 0) |
166 | return Start - Data; |
167 | ++Start; |
168 | } while (Start < Stop); |
169 | return npos; |
170 | } |
171 | |
172 | // Build the bad char heuristic table, with uint8_t to reduce cache thrashing. |
173 | uint8_t BadCharSkip[256]; |
174 | std::memset(s: BadCharSkip, c: N, n: 256); |
175 | for (unsigned i = 0; i != N-1; ++i) |
176 | BadCharSkip[(uint8_t)Str[i]] = N-1-i; |
177 | |
178 | do { |
179 | uint8_t Last = Start[N - 1]; |
180 | if (LLVM_UNLIKELY(Last == (uint8_t)Needle[N - 1])) |
181 | if (std::memcmp(s1: Start, s2: Needle, n: N - 1) == 0) |
182 | return Start - Data; |
183 | |
184 | // Otherwise skip the appropriate number of bytes. |
185 | Start += BadCharSkip[Last]; |
186 | } while (Start < Stop); |
187 | |
188 | return npos; |
189 | } |
190 | |
191 | size_t StringRef::find_insensitive(StringRef Str, size_t From) const { |
192 | StringRef This = substr(Start: From); |
193 | while (This.size() >= Str.size()) { |
194 | if (This.starts_with_insensitive(Prefix: Str)) |
195 | return From; |
196 | This = This.drop_front(); |
197 | ++From; |
198 | } |
199 | return npos; |
200 | } |
201 | |
202 | size_t StringRef::rfind_insensitive(char C, size_t From) const { |
203 | From = std::min(a: From, b: Length); |
204 | size_t i = From; |
205 | while (i != 0) { |
206 | --i; |
207 | if (toLower(x: Data[i]) == toLower(x: C)) |
208 | return i; |
209 | } |
210 | return npos; |
211 | } |
212 | |
213 | /// rfind - Search for the last string \arg Str in the string. |
214 | /// |
215 | /// \return - The index of the last occurrence of \arg Str, or npos if not |
216 | /// found. |
217 | size_t StringRef::rfind(StringRef Str) const { |
218 | return std::string_view(*this).rfind(str: Str); |
219 | } |
220 | |
221 | size_t StringRef::rfind_insensitive(StringRef Str) const { |
222 | size_t N = Str.size(); |
223 | if (N > Length) |
224 | return npos; |
225 | for (size_t i = Length - N + 1, e = 0; i != e;) { |
226 | --i; |
227 | if (substr(Start: i, N).equals_insensitive(RHS: Str)) |
228 | return i; |
229 | } |
230 | return npos; |
231 | } |
232 | |
233 | /// find_first_of - Find the first character in the string that is in \arg |
234 | /// Chars, or npos if not found. |
235 | /// |
236 | /// Note: O(size() + Chars.size()) |
237 | StringRef::size_type StringRef::find_first_of(StringRef Chars, |
238 | size_t From) const { |
239 | std::bitset<1 << CHAR_BIT> CharBits; |
240 | for (char C : Chars) |
241 | CharBits.set(position: (unsigned char)C); |
242 | |
243 | for (size_type i = std::min(a: From, b: Length), e = Length; i != e; ++i) |
244 | if (CharBits.test(position: (unsigned char)Data[i])) |
245 | return i; |
246 | return npos; |
247 | } |
248 | |
249 | /// find_first_not_of - Find the first character in the string that is not |
250 | /// \arg C or npos if not found. |
251 | StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const { |
252 | return std::string_view(*this).find_first_not_of(c: C, pos: From); |
253 | } |
254 | |
255 | /// find_first_not_of - Find the first character in the string that is not |
256 | /// in the string \arg Chars, or npos if not found. |
257 | /// |
258 | /// Note: O(size() + Chars.size()) |
259 | StringRef::size_type StringRef::find_first_not_of(StringRef Chars, |
260 | size_t From) const { |
261 | std::bitset<1 << CHAR_BIT> CharBits; |
262 | for (char C : Chars) |
263 | CharBits.set(position: (unsigned char)C); |
264 | |
265 | for (size_type i = std::min(a: From, b: Length), e = Length; i != e; ++i) |
266 | if (!CharBits.test(position: (unsigned char)Data[i])) |
267 | return i; |
268 | return npos; |
269 | } |
270 | |
271 | /// find_last_of - Find the last character in the string that is in \arg C, |
272 | /// or npos if not found. |
273 | /// |
274 | /// Note: O(size() + Chars.size()) |
275 | StringRef::size_type StringRef::find_last_of(StringRef Chars, |
276 | size_t From) const { |
277 | std::bitset<1 << CHAR_BIT> CharBits; |
278 | for (char C : Chars) |
279 | CharBits.set(position: (unsigned char)C); |
280 | |
281 | for (size_type i = std::min(a: From, b: Length) - 1, e = -1; i != e; --i) |
282 | if (CharBits.test(position: (unsigned char)Data[i])) |
283 | return i; |
284 | return npos; |
285 | } |
286 | |
287 | /// find_last_not_of - Find the last character in the string that is not |
288 | /// \arg C, or npos if not found. |
289 | StringRef::size_type StringRef::find_last_not_of(char C, size_t From) const { |
290 | for (size_type i = std::min(a: From, b: Length) - 1, e = -1; i != e; --i) |
291 | if (Data[i] != C) |
292 | return i; |
293 | return npos; |
294 | } |
295 | |
296 | /// find_last_not_of - Find the last character in the string that is not in |
297 | /// \arg Chars, or npos if not found. |
298 | /// |
299 | /// Note: O(size() + Chars.size()) |
300 | StringRef::size_type StringRef::find_last_not_of(StringRef Chars, |
301 | size_t From) const { |
302 | std::bitset<1 << CHAR_BIT> CharBits; |
303 | for (char C : Chars) |
304 | CharBits.set(position: (unsigned char)C); |
305 | |
306 | for (size_type i = std::min(a: From, b: Length) - 1, e = -1; i != e; --i) |
307 | if (!CharBits.test(position: (unsigned char)Data[i])) |
308 | return i; |
309 | return npos; |
310 | } |
311 | |
312 | void StringRef::split(SmallVectorImpl<StringRef> &A, |
313 | StringRef Separator, int MaxSplit, |
314 | bool KeepEmpty) const { |
315 | StringRef S = *this; |
316 | |
317 | // Count down from MaxSplit. When MaxSplit is -1, this will just split |
318 | // "forever". This doesn't support splitting more than 2^31 times |
319 | // intentionally; if we ever want that we can make MaxSplit a 64-bit integer |
320 | // but that seems unlikely to be useful. |
321 | while (MaxSplit-- != 0) { |
322 | size_t Idx = S.find(Str: Separator); |
323 | if (Idx == npos) |
324 | break; |
325 | |
326 | // Push this split. |
327 | if (KeepEmpty || Idx > 0) |
328 | A.push_back(Elt: S.slice(Start: 0, End: Idx)); |
329 | |
330 | // Jump forward. |
331 | S = S.slice(Start: Idx + Separator.size(), End: npos); |
332 | } |
333 | |
334 | // Push the tail. |
335 | if (KeepEmpty || !S.empty()) |
336 | A.push_back(Elt: S); |
337 | } |
338 | |
339 | void StringRef::split(SmallVectorImpl<StringRef> &A, char Separator, |
340 | int MaxSplit, bool KeepEmpty) const { |
341 | StringRef S = *this; |
342 | |
343 | // Count down from MaxSplit. When MaxSplit is -1, this will just split |
344 | // "forever". This doesn't support splitting more than 2^31 times |
345 | // intentionally; if we ever want that we can make MaxSplit a 64-bit integer |
346 | // but that seems unlikely to be useful. |
347 | while (MaxSplit-- != 0) { |
348 | size_t Idx = S.find(C: Separator); |
349 | if (Idx == npos) |
350 | break; |
351 | |
352 | // Push this split. |
353 | if (KeepEmpty || Idx > 0) |
354 | A.push_back(Elt: S.slice(Start: 0, End: Idx)); |
355 | |
356 | // Jump forward. |
357 | S = S.slice(Start: Idx + 1, End: npos); |
358 | } |
359 | |
360 | // Push the tail. |
361 | if (KeepEmpty || !S.empty()) |
362 | A.push_back(Elt: S); |
363 | } |
364 | |
365 | //===----------------------------------------------------------------------===// |
366 | // Helpful Algorithms |
367 | //===----------------------------------------------------------------------===// |
368 | |
369 | /// count - Return the number of non-overlapped occurrences of \arg Str in |
370 | /// the string. |
371 | size_t StringRef::count(StringRef Str) const { |
372 | size_t Count = 0; |
373 | size_t Pos = 0; |
374 | size_t N = Str.size(); |
375 | // TODO: For an empty `Str` we return 0 for legacy reasons. Consider changing |
376 | // this to `Length + 1` which is more in-line with the function |
377 | // description. |
378 | if (!N) |
379 | return 0; |
380 | while ((Pos = find(Str, From: Pos)) != npos) { |
381 | ++Count; |
382 | Pos += N; |
383 | } |
384 | return Count; |
385 | } |
386 | |
387 | static unsigned GetAutoSenseRadix(StringRef &Str) { |
388 | if (Str.empty()) |
389 | return 10; |
390 | |
391 | if (Str.consume_front_insensitive(Prefix: "0x" )) |
392 | return 16; |
393 | |
394 | if (Str.consume_front_insensitive(Prefix: "0b" )) |
395 | return 2; |
396 | |
397 | if (Str.consume_front(Prefix: "0o" )) |
398 | return 8; |
399 | |
400 | if (Str[0] == '0' && Str.size() > 1 && isDigit(C: Str[1])) { |
401 | Str = Str.substr(Start: 1); |
402 | return 8; |
403 | } |
404 | |
405 | return 10; |
406 | } |
407 | |
408 | bool llvm::consumeUnsignedInteger(StringRef &Str, unsigned Radix, |
409 | unsigned long long &Result) { |
410 | // Autosense radix if not specified. |
411 | if (Radix == 0) |
412 | Radix = GetAutoSenseRadix(Str); |
413 | |
414 | // Empty strings (after the radix autosense) are invalid. |
415 | if (Str.empty()) return true; |
416 | |
417 | // Parse all the bytes of the string given this radix. Watch for overflow. |
418 | StringRef Str2 = Str; |
419 | Result = 0; |
420 | while (!Str2.empty()) { |
421 | unsigned CharVal; |
422 | if (Str2[0] >= '0' && Str2[0] <= '9') |
423 | CharVal = Str2[0] - '0'; |
424 | else if (Str2[0] >= 'a' && Str2[0] <= 'z') |
425 | CharVal = Str2[0] - 'a' + 10; |
426 | else if (Str2[0] >= 'A' && Str2[0] <= 'Z') |
427 | CharVal = Str2[0] - 'A' + 10; |
428 | else |
429 | break; |
430 | |
431 | // If the parsed value is larger than the integer radix, we cannot |
432 | // consume any more characters. |
433 | if (CharVal >= Radix) |
434 | break; |
435 | |
436 | // Add in this character. |
437 | unsigned long long PrevResult = Result; |
438 | Result = Result * Radix + CharVal; |
439 | |
440 | // Check for overflow by shifting back and seeing if bits were lost. |
441 | if (Result / Radix < PrevResult) |
442 | return true; |
443 | |
444 | Str2 = Str2.substr(Start: 1); |
445 | } |
446 | |
447 | // We consider the operation a failure if no characters were consumed |
448 | // successfully. |
449 | if (Str.size() == Str2.size()) |
450 | return true; |
451 | |
452 | Str = Str2; |
453 | return false; |
454 | } |
455 | |
456 | bool llvm::consumeSignedInteger(StringRef &Str, unsigned Radix, |
457 | long long &Result) { |
458 | unsigned long long ULLVal; |
459 | |
460 | // Handle positive strings first. |
461 | if (!Str.starts_with(Prefix: "-" )) { |
462 | if (consumeUnsignedInteger(Str, Radix, Result&: ULLVal) || |
463 | // Check for value so large it overflows a signed value. |
464 | (long long)ULLVal < 0) |
465 | return true; |
466 | Result = ULLVal; |
467 | return false; |
468 | } |
469 | |
470 | // Get the positive part of the value. |
471 | StringRef Str2 = Str.drop_front(N: 1); |
472 | if (consumeUnsignedInteger(Str&: Str2, Radix, Result&: ULLVal) || |
473 | // Reject values so large they'd overflow as negative signed, but allow |
474 | // "-0". This negates the unsigned so that the negative isn't undefined |
475 | // on signed overflow. |
476 | (long long)-ULLVal > 0) |
477 | return true; |
478 | |
479 | Str = Str2; |
480 | Result = -ULLVal; |
481 | return false; |
482 | } |
483 | |
484 | /// GetAsUnsignedInteger - Workhorse method that converts a integer character |
485 | /// sequence of radix up to 36 to an unsigned long long value. |
486 | bool llvm::getAsUnsignedInteger(StringRef Str, unsigned Radix, |
487 | unsigned long long &Result) { |
488 | if (consumeUnsignedInteger(Str, Radix, Result)) |
489 | return true; |
490 | |
491 | // For getAsUnsignedInteger, we require the whole string to be consumed or |
492 | // else we consider it a failure. |
493 | return !Str.empty(); |
494 | } |
495 | |
496 | bool llvm::getAsSignedInteger(StringRef Str, unsigned Radix, |
497 | long long &Result) { |
498 | if (consumeSignedInteger(Str, Radix, Result)) |
499 | return true; |
500 | |
501 | // For getAsSignedInteger, we require the whole string to be consumed or else |
502 | // we consider it a failure. |
503 | return !Str.empty(); |
504 | } |
505 | |
506 | bool StringRef::consumeInteger(unsigned Radix, APInt &Result) { |
507 | StringRef Str = *this; |
508 | |
509 | // Autosense radix if not specified. |
510 | if (Radix == 0) |
511 | Radix = GetAutoSenseRadix(Str); |
512 | |
513 | assert(Radix > 1 && Radix <= 36); |
514 | |
515 | // Empty strings (after the radix autosense) are invalid. |
516 | if (Str.empty()) return true; |
517 | |
518 | // Skip leading zeroes. This can be a significant improvement if |
519 | // it means we don't need > 64 bits. |
520 | Str = Str.ltrim(Char: '0'); |
521 | |
522 | // If it was nothing but zeroes.... |
523 | if (Str.empty()) { |
524 | Result = APInt(64, 0); |
525 | *this = Str; |
526 | return false; |
527 | } |
528 | |
529 | // (Over-)estimate the required number of bits. |
530 | unsigned Log2Radix = 0; |
531 | while ((1U << Log2Radix) < Radix) Log2Radix++; |
532 | bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix); |
533 | |
534 | unsigned BitWidth = Log2Radix * Str.size(); |
535 | if (BitWidth < Result.getBitWidth()) |
536 | BitWidth = Result.getBitWidth(); // don't shrink the result |
537 | else if (BitWidth > Result.getBitWidth()) |
538 | Result = Result.zext(width: BitWidth); |
539 | |
540 | APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix |
541 | if (!IsPowerOf2Radix) { |
542 | // These must have the same bit-width as Result. |
543 | RadixAP = APInt(BitWidth, Radix); |
544 | CharAP = APInt(BitWidth, 0); |
545 | } |
546 | |
547 | // Parse all the bytes of the string given this radix. |
548 | Result = 0; |
549 | while (!Str.empty()) { |
550 | unsigned CharVal; |
551 | if (Str[0] >= '0' && Str[0] <= '9') |
552 | CharVal = Str[0]-'0'; |
553 | else if (Str[0] >= 'a' && Str[0] <= 'z') |
554 | CharVal = Str[0]-'a'+10; |
555 | else if (Str[0] >= 'A' && Str[0] <= 'Z') |
556 | CharVal = Str[0]-'A'+10; |
557 | else |
558 | break; |
559 | |
560 | // If the parsed value is larger than the integer radix, the string is |
561 | // invalid. |
562 | if (CharVal >= Radix) |
563 | break; |
564 | |
565 | // Add in this character. |
566 | if (IsPowerOf2Radix) { |
567 | Result <<= Log2Radix; |
568 | Result |= CharVal; |
569 | } else { |
570 | Result *= RadixAP; |
571 | CharAP = CharVal; |
572 | Result += CharAP; |
573 | } |
574 | |
575 | Str = Str.substr(Start: 1); |
576 | } |
577 | |
578 | // We consider the operation a failure if no characters were consumed |
579 | // successfully. |
580 | if (size() == Str.size()) |
581 | return true; |
582 | |
583 | *this = Str; |
584 | return false; |
585 | } |
586 | |
587 | bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const { |
588 | StringRef Str = *this; |
589 | if (Str.consumeInteger(Radix, Result)) |
590 | return true; |
591 | |
592 | // For getAsInteger, we require the whole string to be consumed or else we |
593 | // consider it a failure. |
594 | return !Str.empty(); |
595 | } |
596 | |
597 | bool StringRef::getAsDouble(double &Result, bool AllowInexact) const { |
598 | APFloat F(0.0); |
599 | auto StatusOrErr = F.convertFromString(*this, APFloat::rmNearestTiesToEven); |
600 | if (errorToBool(Err: StatusOrErr.takeError())) |
601 | return true; |
602 | |
603 | APFloat::opStatus Status = *StatusOrErr; |
604 | if (Status != APFloat::opOK) { |
605 | if (!AllowInexact || !(Status & APFloat::opInexact)) |
606 | return true; |
607 | } |
608 | |
609 | Result = F.convertToDouble(); |
610 | return false; |
611 | } |
612 | |
613 | // Implementation of StringRef hashing. |
614 | hash_code llvm::hash_value(StringRef S) { |
615 | return hash_combine_range(first: S.begin(), last: S.end()); |
616 | } |
617 | |
618 | unsigned DenseMapInfo<StringRef, void>::getHashValue(StringRef Val) { |
619 | assert(Val.data() != getEmptyKey().data() && |
620 | "Cannot hash the empty key!" ); |
621 | assert(Val.data() != getTombstoneKey().data() && |
622 | "Cannot hash the tombstone key!" ); |
623 | return (unsigned)(hash_value(S: Val)); |
624 | } |
625 | |