1 | //===- AArch64ExpandImm.h - AArch64 Immediate Expansion -------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the AArch64ExpandImm stuff. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "AArch64.h" |
14 | #include "AArch64ExpandImm.h" |
15 | #include "MCTargetDesc/AArch64AddressingModes.h" |
16 | |
17 | using namespace llvm; |
18 | using namespace llvm::AArch64_IMM; |
19 | |
20 | /// Helper function which extracts the specified 16-bit chunk from a |
21 | /// 64-bit value. |
22 | static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) { |
23 | assert(ChunkIdx < 4 && "Out of range chunk index specified!" ); |
24 | |
25 | return (Imm >> (ChunkIdx * 16)) & 0xFFFF; |
26 | } |
27 | |
28 | /// Check whether the given 16-bit chunk replicated to full 64-bit width |
29 | /// can be materialized with an ORR instruction. |
30 | static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) { |
31 | Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk; |
32 | |
33 | return AArch64_AM::processLogicalImmediate(Imm: Chunk, RegSize: 64, Encoding); |
34 | } |
35 | |
36 | /// Check for identical 16-bit chunks within the constant and if so |
37 | /// materialize them with a single ORR instruction. The remaining one or two |
38 | /// 16-bit chunks will be materialized with MOVK instructions. |
39 | /// |
40 | /// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order |
41 | /// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with |
42 | /// an ORR instruction. |
43 | static bool tryToreplicateChunks(uint64_t UImm, |
44 | SmallVectorImpl<ImmInsnModel> &Insn) { |
45 | using CountMap = DenseMap<uint64_t, unsigned>; |
46 | |
47 | CountMap Counts; |
48 | |
49 | // Scan the constant and count how often every chunk occurs. |
50 | for (unsigned Idx = 0; Idx < 4; ++Idx) |
51 | ++Counts[getChunk(Imm: UImm, ChunkIdx: Idx)]; |
52 | |
53 | // Traverse the chunks to find one which occurs more than once. |
54 | for (const auto &Chunk : Counts) { |
55 | const uint64_t ChunkVal = Chunk.first; |
56 | const unsigned Count = Chunk.second; |
57 | |
58 | uint64_t Encoding = 0; |
59 | |
60 | // We are looking for chunks which have two or three instances and can be |
61 | // materialized with an ORR instruction. |
62 | if ((Count != 2 && Count != 3) || !canUseOrr(Chunk: ChunkVal, Encoding)) |
63 | continue; |
64 | |
65 | const bool CountThree = Count == 3; |
66 | |
67 | Insn.push_back(Elt: { .Opcode: AArch64::ORRXri, .Op1: 0, .Op2: Encoding }); |
68 | |
69 | unsigned ShiftAmt = 0; |
70 | uint64_t Imm16 = 0; |
71 | // Find the first chunk not materialized with the ORR instruction. |
72 | for (; ShiftAmt < 64; ShiftAmt += 16) { |
73 | Imm16 = (UImm >> ShiftAmt) & 0xFFFF; |
74 | |
75 | if (Imm16 != ChunkVal) |
76 | break; |
77 | } |
78 | |
79 | // Create the first MOVK instruction. |
80 | Insn.push_back(Elt: { .Opcode: AArch64::MOVKXi, .Op1: Imm16, |
81 | .Op2: AArch64_AM::getShifterImm(ST: AArch64_AM::LSL, Imm: ShiftAmt) }); |
82 | |
83 | // In case we have three instances the whole constant is now materialized |
84 | // and we can exit. |
85 | if (CountThree) |
86 | return true; |
87 | |
88 | // Find the remaining chunk which needs to be materialized. |
89 | for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) { |
90 | Imm16 = (UImm >> ShiftAmt) & 0xFFFF; |
91 | |
92 | if (Imm16 != ChunkVal) |
93 | break; |
94 | } |
95 | Insn.push_back(Elt: { .Opcode: AArch64::MOVKXi, .Op1: Imm16, |
96 | .Op2: AArch64_AM::getShifterImm(ST: AArch64_AM::LSL, Imm: ShiftAmt) }); |
97 | return true; |
98 | } |
99 | |
100 | return false; |
101 | } |
102 | |
103 | /// Check whether this chunk matches the pattern '1...0...'. This pattern |
104 | /// starts a contiguous sequence of ones if we look at the bits from the LSB |
105 | /// towards the MSB. |
106 | static bool isStartChunk(uint64_t Chunk) { |
107 | if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max()) |
108 | return false; |
109 | |
110 | return isMask_64(Value: ~Chunk); |
111 | } |
112 | |
113 | /// Check whether this chunk matches the pattern '0...1...' This pattern |
114 | /// ends a contiguous sequence of ones if we look at the bits from the LSB |
115 | /// towards the MSB. |
116 | static bool isEndChunk(uint64_t Chunk) { |
117 | if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max()) |
118 | return false; |
119 | |
120 | return isMask_64(Value: Chunk); |
121 | } |
122 | |
123 | /// Clear or set all bits in the chunk at the given index. |
124 | static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) { |
125 | const uint64_t Mask = 0xFFFF; |
126 | |
127 | if (Clear) |
128 | // Clear chunk in the immediate. |
129 | Imm &= ~(Mask << (Idx * 16)); |
130 | else |
131 | // Set all bits in the immediate for the particular chunk. |
132 | Imm |= Mask << (Idx * 16); |
133 | |
134 | return Imm; |
135 | } |
136 | |
137 | /// Check whether the constant contains a sequence of contiguous ones, |
138 | /// which might be interrupted by one or two chunks. If so, materialize the |
139 | /// sequence of contiguous ones with an ORR instruction. |
140 | /// Materialize the chunks which are either interrupting the sequence or outside |
141 | /// of the sequence with a MOVK instruction. |
142 | /// |
143 | /// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk |
144 | /// which ends the sequence (0...1...). Then we are looking for constants which |
145 | /// contain at least one S and E chunk. |
146 | /// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|. |
147 | /// |
148 | /// We are also looking for constants like |S|A|B|E| where the contiguous |
149 | /// sequence of ones wraps around the MSB into the LSB. |
150 | static bool trySequenceOfOnes(uint64_t UImm, |
151 | SmallVectorImpl<ImmInsnModel> &Insn) { |
152 | const int NotSet = -1; |
153 | const uint64_t Mask = 0xFFFF; |
154 | |
155 | int StartIdx = NotSet; |
156 | int EndIdx = NotSet; |
157 | // Try to find the chunks which start/end a contiguous sequence of ones. |
158 | for (int Idx = 0; Idx < 4; ++Idx) { |
159 | int64_t Chunk = getChunk(Imm: UImm, ChunkIdx: Idx); |
160 | // Sign extend the 16-bit chunk to 64-bit. |
161 | Chunk = (Chunk << 48) >> 48; |
162 | |
163 | if (isStartChunk(Chunk)) |
164 | StartIdx = Idx; |
165 | else if (isEndChunk(Chunk)) |
166 | EndIdx = Idx; |
167 | } |
168 | |
169 | // Early exit in case we can't find a start/end chunk. |
170 | if (StartIdx == NotSet || EndIdx == NotSet) |
171 | return false; |
172 | |
173 | // Outside of the contiguous sequence of ones everything needs to be zero. |
174 | uint64_t Outside = 0; |
175 | // Chunks between the start and end chunk need to have all their bits set. |
176 | uint64_t Inside = Mask; |
177 | |
178 | // If our contiguous sequence of ones wraps around from the MSB into the LSB, |
179 | // just swap indices and pretend we are materializing a contiguous sequence |
180 | // of zeros surrounded by a contiguous sequence of ones. |
181 | if (StartIdx > EndIdx) { |
182 | std::swap(a&: StartIdx, b&: EndIdx); |
183 | std::swap(a&: Outside, b&: Inside); |
184 | } |
185 | |
186 | uint64_t OrrImm = UImm; |
187 | int FirstMovkIdx = NotSet; |
188 | int SecondMovkIdx = NotSet; |
189 | |
190 | // Find out which chunks we need to patch up to obtain a contiguous sequence |
191 | // of ones. |
192 | for (int Idx = 0; Idx < 4; ++Idx) { |
193 | const uint64_t Chunk = getChunk(Imm: UImm, ChunkIdx: Idx); |
194 | |
195 | // Check whether we are looking at a chunk which is not part of the |
196 | // contiguous sequence of ones. |
197 | if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) { |
198 | OrrImm = updateImm(Imm: OrrImm, Idx, Clear: Outside == 0); |
199 | |
200 | // Remember the index we need to patch. |
201 | if (FirstMovkIdx == NotSet) |
202 | FirstMovkIdx = Idx; |
203 | else |
204 | SecondMovkIdx = Idx; |
205 | |
206 | // Check whether we are looking a chunk which is part of the contiguous |
207 | // sequence of ones. |
208 | } else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) { |
209 | OrrImm = updateImm(Imm: OrrImm, Idx, Clear: Inside != Mask); |
210 | |
211 | // Remember the index we need to patch. |
212 | if (FirstMovkIdx == NotSet) |
213 | FirstMovkIdx = Idx; |
214 | else |
215 | SecondMovkIdx = Idx; |
216 | } |
217 | } |
218 | assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!" ); |
219 | |
220 | // Create the ORR-immediate instruction. |
221 | uint64_t Encoding = 0; |
222 | AArch64_AM::processLogicalImmediate(Imm: OrrImm, RegSize: 64, Encoding); |
223 | Insn.push_back(Elt: { .Opcode: AArch64::ORRXri, .Op1: 0, .Op2: Encoding }); |
224 | |
225 | const bool SingleMovk = SecondMovkIdx == NotSet; |
226 | Insn.push_back(Elt: { .Opcode: AArch64::MOVKXi, .Op1: getChunk(Imm: UImm, ChunkIdx: FirstMovkIdx), |
227 | .Op2: AArch64_AM::getShifterImm(ST: AArch64_AM::LSL, |
228 | Imm: FirstMovkIdx * 16) }); |
229 | |
230 | // Early exit in case we only need to emit a single MOVK instruction. |
231 | if (SingleMovk) |
232 | return true; |
233 | |
234 | // Create the second MOVK instruction. |
235 | Insn.push_back(Elt: { .Opcode: AArch64::MOVKXi, .Op1: getChunk(Imm: UImm, ChunkIdx: SecondMovkIdx), |
236 | .Op2: AArch64_AM::getShifterImm(ST: AArch64_AM::LSL, |
237 | Imm: SecondMovkIdx * 16) }); |
238 | |
239 | return true; |
240 | } |
241 | |
242 | static uint64_t GetRunOfOnesStartingAt(uint64_t V, uint64_t StartPosition) { |
243 | uint64_t NumOnes = llvm::countr_one(Value: V >> StartPosition); |
244 | |
245 | uint64_t UnshiftedOnes; |
246 | if (NumOnes == 64) { |
247 | UnshiftedOnes = ~0ULL; |
248 | } else { |
249 | UnshiftedOnes = (1ULL << NumOnes) - 1; |
250 | } |
251 | return UnshiftedOnes << StartPosition; |
252 | } |
253 | |
254 | static uint64_t MaximallyReplicateSubImmediate(uint64_t V, uint64_t Subset) { |
255 | uint64_t Result = Subset; |
256 | |
257 | // 64, 32, 16, 8, 4, 2 |
258 | for (uint64_t i = 0; i < 6; ++i) { |
259 | uint64_t Rotation = 1ULL << (6 - i); |
260 | uint64_t Closure = Result | llvm::rotl<uint64_t>(V: Result, R: Rotation); |
261 | if (Closure != (Closure & V)) { |
262 | break; |
263 | } |
264 | Result = Closure; |
265 | } |
266 | |
267 | return Result; |
268 | } |
269 | |
270 | // Find the logical immediate that covers the most bits in RemainingBits, |
271 | // allowing for additional bits to be set that were set in OriginalBits. |
272 | static uint64_t maximalLogicalImmWithin(uint64_t RemainingBits, |
273 | uint64_t OriginalBits) { |
274 | // Find the first set bit. |
275 | uint32_t Position = llvm::countr_zero(Val: RemainingBits); |
276 | |
277 | // Get the first run of set bits. |
278 | uint64_t FirstRun = GetRunOfOnesStartingAt(V: OriginalBits, StartPosition: Position); |
279 | |
280 | // Replicate the run as many times as possible, as long as the bits are set in |
281 | // RemainingBits. |
282 | uint64_t MaximalImm = MaximallyReplicateSubImmediate(V: OriginalBits, Subset: FirstRun); |
283 | |
284 | return MaximalImm; |
285 | } |
286 | |
287 | static std::optional<std::pair<uint64_t, uint64_t>> |
288 | decomposeIntoOrrOfLogicalImmediates(uint64_t UImm) { |
289 | if (UImm == 0 || ~UImm == 0) |
290 | return std::nullopt; |
291 | |
292 | // Make sure we don't have a run of ones split around the rotation boundary. |
293 | uint32_t InitialTrailingOnes = llvm::countr_one(Value: UImm); |
294 | uint64_t RotatedBits = llvm::rotr<uint64_t>(V: UImm, R: InitialTrailingOnes); |
295 | |
296 | // Find the largest logical immediate that fits within the full immediate. |
297 | uint64_t MaximalImm1 = maximalLogicalImmWithin(RemainingBits: RotatedBits, OriginalBits: RotatedBits); |
298 | |
299 | // Remove all bits that are set by this mask. |
300 | uint64_t RemainingBits = RotatedBits & ~MaximalImm1; |
301 | |
302 | // Find the largest logical immediate covering the remaining bits, allowing |
303 | // for additional bits to be set that were also set in the original immediate. |
304 | uint64_t MaximalImm2 = maximalLogicalImmWithin(RemainingBits, OriginalBits: RotatedBits); |
305 | |
306 | // If any bits still haven't been covered, then give up. |
307 | if (RemainingBits & ~MaximalImm2) |
308 | return std::nullopt; |
309 | |
310 | // Make sure to un-rotate the immediates. |
311 | return std::make_pair(x: rotl(V: MaximalImm1, R: InitialTrailingOnes), |
312 | y: rotl(V: MaximalImm2, R: InitialTrailingOnes)); |
313 | } |
314 | |
315 | // Attempt to expand an immediate as the ORR of a pair of logical immediates. |
316 | static bool tryOrrOfLogicalImmediates(uint64_t UImm, |
317 | SmallVectorImpl<ImmInsnModel> &Insn) { |
318 | auto MaybeDecomposition = decomposeIntoOrrOfLogicalImmediates(UImm); |
319 | if (MaybeDecomposition == std::nullopt) |
320 | return false; |
321 | uint64_t Imm1 = MaybeDecomposition->first; |
322 | uint64_t Imm2 = MaybeDecomposition->second; |
323 | |
324 | uint64_t Encoding1, Encoding2; |
325 | bool Imm1Success = AArch64_AM::processLogicalImmediate(Imm: Imm1, RegSize: 64, Encoding&: Encoding1); |
326 | bool Imm2Success = AArch64_AM::processLogicalImmediate(Imm: Imm2, RegSize: 64, Encoding&: Encoding2); |
327 | |
328 | if (Imm1Success && Imm2Success) { |
329 | // Create the ORR-immediate instructions. |
330 | Insn.push_back(Elt: {.Opcode: AArch64::ORRXri, .Op1: 0, .Op2: Encoding1}); |
331 | Insn.push_back(Elt: {.Opcode: AArch64::ORRXri, .Op1: 1, .Op2: Encoding2}); |
332 | return true; |
333 | } |
334 | |
335 | return false; |
336 | } |
337 | |
338 | // Attempt to expand an immediate as the AND of a pair of logical immediates. |
339 | // This is done by applying DeMorgan's law, under which logical immediates |
340 | // are closed. |
341 | static bool tryAndOfLogicalImmediates(uint64_t UImm, |
342 | SmallVectorImpl<ImmInsnModel> &Insn) { |
343 | // Apply DeMorgan's law to turn this into an ORR problem. |
344 | auto MaybeDecomposition = decomposeIntoOrrOfLogicalImmediates(UImm: ~UImm); |
345 | if (MaybeDecomposition == std::nullopt) |
346 | return false; |
347 | uint64_t Imm1 = MaybeDecomposition->first; |
348 | uint64_t Imm2 = MaybeDecomposition->second; |
349 | |
350 | uint64_t Encoding1, Encoding2; |
351 | bool Imm1Success = AArch64_AM::processLogicalImmediate(Imm: ~Imm1, RegSize: 64, Encoding&: Encoding1); |
352 | bool Imm2Success = AArch64_AM::processLogicalImmediate(Imm: ~Imm2, RegSize: 64, Encoding&: Encoding2); |
353 | |
354 | if (Imm1Success && Imm2Success) { |
355 | // Materialize Imm1, the LHS of the AND |
356 | Insn.push_back(Elt: {.Opcode: AArch64::ORRXri, .Op1: 0, .Op2: Encoding1}); |
357 | // AND Imm1 with Imm2 |
358 | Insn.push_back(Elt: {.Opcode: AArch64::ANDXri, .Op1: 1, .Op2: Encoding2}); |
359 | return true; |
360 | } |
361 | |
362 | return false; |
363 | } |
364 | |
365 | // Check whether the constant can be represented by exclusive-or of two 64-bit |
366 | // logical immediates. If so, materialize it with an ORR instruction followed |
367 | // by an EOR instruction. |
368 | // |
369 | // This encoding allows all remaining repeated byte patterns, and many repeated |
370 | // 16-bit values, to be encoded without needing four instructions. It can also |
371 | // represent some irregular bitmasks (although those would mostly only need |
372 | // three instructions otherwise). |
373 | static bool tryEorOfLogicalImmediates(uint64_t Imm, |
374 | SmallVectorImpl<ImmInsnModel> &Insn) { |
375 | // Determine the larger repetition size of the two possible logical |
376 | // immediates, by finding the repetition size of Imm. |
377 | unsigned BigSize = 64; |
378 | |
379 | do { |
380 | BigSize /= 2; |
381 | uint64_t Mask = (1ULL << BigSize) - 1; |
382 | |
383 | if ((Imm & Mask) != ((Imm >> BigSize) & Mask)) { |
384 | BigSize *= 2; |
385 | break; |
386 | } |
387 | } while (BigSize > 2); |
388 | |
389 | uint64_t BigMask = ((uint64_t)-1LL) >> (64 - BigSize); |
390 | |
391 | // Find the last bit of each run of ones, circularly. For runs which wrap |
392 | // around from bit 0 to bit 63, this is the bit before the most-significant |
393 | // zero, otherwise it is the least-significant bit in the run of ones. |
394 | uint64_t RunStarts = Imm & ~rotl<uint64_t>(V: Imm, R: 1); |
395 | |
396 | // Find the smaller repetition size of the two possible logical immediates by |
397 | // counting the number of runs of one-bits within the BigSize-bit value. Both |
398 | // sizes may be the same. The EOR may add one or subtract one from the |
399 | // power-of-two count that can be represented by a logical immediate, or it |
400 | // may be left unchanged. |
401 | int RunsPerBigChunk = popcount(Value: RunStarts & BigMask); |
402 | |
403 | static const int8_t BigToSmallSizeTable[32] = { |
404 | -1, -1, 0, 1, 2, 2, -1, 3, 3, 3, -1, -1, -1, -1, -1, 4, |
405 | 4, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 5, |
406 | }; |
407 | |
408 | int BigToSmallShift = BigToSmallSizeTable[RunsPerBigChunk]; |
409 | |
410 | // Early-exit if the big chunk couldn't be a power-of-two number of runs |
411 | // EORed with another single run. |
412 | if (BigToSmallShift == -1) |
413 | return false; |
414 | |
415 | unsigned SmallSize = BigSize >> BigToSmallShift; |
416 | |
417 | // 64-bit values with a bit set every (1 << index) bits. |
418 | static const uint64_t RepeatedOnesTable[] = { |
419 | 0xffffffffffffffff, 0x5555555555555555, 0x1111111111111111, |
420 | 0x0101010101010101, 0x0001000100010001, 0x0000000100000001, |
421 | 0x0000000000000001, |
422 | }; |
423 | |
424 | // This RepeatedOnesTable lookup is a faster implementation of the division |
425 | // 0xffffffffffffffff / ((1 << SmallSize) - 1), and can be thought of as |
426 | // dividing the 64-bit value into fields of width SmallSize, and placing a |
427 | // one in the least significant bit of each field. |
428 | uint64_t SmallOnes = RepeatedOnesTable[countr_zero(Val: SmallSize)]; |
429 | |
430 | // Now we try to find the number of ones in each of the smaller repetitions, |
431 | // by looking at runs of ones in Imm. This can take three attempts, as the |
432 | // EOR may have changed the length of the first two runs we find. |
433 | |
434 | // Rotate a run of ones so we can count the number of trailing set bits. |
435 | int Rotation = countr_zero(Val: RunStarts); |
436 | uint64_t RotatedImm = rotr<uint64_t>(V: Imm, R: Rotation); |
437 | for (int Attempt = 0; Attempt < 3; ++Attempt) { |
438 | unsigned RunLength = countr_one(Value: RotatedImm); |
439 | |
440 | // Construct candidate values BigImm and SmallImm, such that if these two |
441 | // values are encodable, we have a solution. (SmallImm is constructed to be |
442 | // encodable, but this isn't guaranteed when RunLength >= SmallSize) |
443 | uint64_t SmallImm = |
444 | rotl<uint64_t>(V: (SmallOnes << RunLength) - SmallOnes, R: Rotation); |
445 | uint64_t BigImm = Imm ^ SmallImm; |
446 | |
447 | uint64_t BigEncoding = 0; |
448 | uint64_t SmallEncoding = 0; |
449 | if (AArch64_AM::processLogicalImmediate(Imm: BigImm, RegSize: 64, Encoding&: BigEncoding) && |
450 | AArch64_AM::processLogicalImmediate(Imm: SmallImm, RegSize: 64, Encoding&: SmallEncoding)) { |
451 | Insn.push_back(Elt: {.Opcode: AArch64::ORRXri, .Op1: 0, .Op2: SmallEncoding}); |
452 | Insn.push_back(Elt: {.Opcode: AArch64::EORXri, .Op1: 1, .Op2: BigEncoding}); |
453 | return true; |
454 | } |
455 | |
456 | // Rotate to the next run of ones |
457 | Rotation += countr_zero(Val: rotr<uint64_t>(V: RunStarts, R: Rotation) & ~1); |
458 | RotatedImm = rotr<uint64_t>(V: Imm, R: Rotation); |
459 | } |
460 | |
461 | return false; |
462 | } |
463 | |
464 | /// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to a |
465 | /// MOVZ or MOVN of width BitSize followed by up to 3 MOVK instructions. |
466 | static inline void expandMOVImmSimple(uint64_t Imm, unsigned BitSize, |
467 | unsigned OneChunks, unsigned ZeroChunks, |
468 | SmallVectorImpl<ImmInsnModel> &Insn) { |
469 | const unsigned Mask = 0xFFFF; |
470 | |
471 | // Use a MOVZ or MOVN instruction to set the high bits, followed by one or |
472 | // more MOVK instructions to insert additional 16-bit portions into the |
473 | // lower bits. |
474 | bool isNeg = false; |
475 | |
476 | // Use MOVN to materialize the high bits if we have more all one chunks |
477 | // than all zero chunks. |
478 | if (OneChunks > ZeroChunks) { |
479 | isNeg = true; |
480 | Imm = ~Imm; |
481 | } |
482 | |
483 | unsigned FirstOpc; |
484 | if (BitSize == 32) { |
485 | Imm &= (1LL << 32) - 1; |
486 | FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi); |
487 | } else { |
488 | FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi); |
489 | } |
490 | unsigned Shift = 0; // LSL amount for high bits with MOVZ/MOVN |
491 | unsigned LastShift = 0; // LSL amount for last MOVK |
492 | if (Imm != 0) { |
493 | unsigned LZ = llvm::countl_zero(Val: Imm); |
494 | unsigned TZ = llvm::countr_zero(Val: Imm); |
495 | Shift = (TZ / 16) * 16; |
496 | LastShift = ((63 - LZ) / 16) * 16; |
497 | } |
498 | unsigned Imm16 = (Imm >> Shift) & Mask; |
499 | |
500 | Insn.push_back(Elt: { .Opcode: FirstOpc, .Op1: Imm16, |
501 | .Op2: AArch64_AM::getShifterImm(ST: AArch64_AM::LSL, Imm: Shift) }); |
502 | |
503 | if (Shift == LastShift) |
504 | return; |
505 | |
506 | // If a MOVN was used for the high bits of a negative value, flip the rest |
507 | // of the bits back for use with MOVK. |
508 | if (isNeg) |
509 | Imm = ~Imm; |
510 | |
511 | unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi); |
512 | while (Shift < LastShift) { |
513 | Shift += 16; |
514 | Imm16 = (Imm >> Shift) & Mask; |
515 | if (Imm16 == (isNeg ? Mask : 0)) |
516 | continue; // This 16-bit portion is already set correctly. |
517 | |
518 | Insn.push_back(Elt: { .Opcode: Opc, .Op1: Imm16, |
519 | .Op2: AArch64_AM::getShifterImm(ST: AArch64_AM::LSL, Imm: Shift) }); |
520 | } |
521 | |
522 | // Now, we get 16-bit divided Imm. If high and low bits are same in |
523 | // 32-bit, there is an opportunity to reduce instruction. |
524 | if (Insn.size() > 2 && (Imm >> 32) == (Imm & 0xffffffffULL)) { |
525 | for (int Size = Insn.size(); Size > 2; Size--) |
526 | Insn.pop_back(); |
527 | Insn.push_back(Elt: {.Opcode: AArch64::ORRXrs, .Op1: 0, .Op2: 32}); |
528 | } |
529 | } |
530 | |
531 | /// Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more |
532 | /// real move-immediate instructions to synthesize the immediate. |
533 | void AArch64_IMM::expandMOVImm(uint64_t Imm, unsigned BitSize, |
534 | SmallVectorImpl<ImmInsnModel> &Insn) { |
535 | const unsigned Mask = 0xFFFF; |
536 | |
537 | // Scan the immediate and count the number of 16-bit chunks which are either |
538 | // all ones or all zeros. |
539 | unsigned OneChunks = 0; |
540 | unsigned ZeroChunks = 0; |
541 | for (unsigned Shift = 0; Shift < BitSize; Shift += 16) { |
542 | const unsigned Chunk = (Imm >> Shift) & Mask; |
543 | if (Chunk == Mask) |
544 | OneChunks++; |
545 | else if (Chunk == 0) |
546 | ZeroChunks++; |
547 | } |
548 | |
549 | // Prefer MOVZ/MOVN over ORR because of the rules for the "mov" alias. |
550 | if ((BitSize / 16) - OneChunks <= 1 || (BitSize / 16) - ZeroChunks <= 1) { |
551 | expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn); |
552 | return; |
553 | } |
554 | |
555 | // Try a single ORR. |
556 | uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize); |
557 | uint64_t Encoding; |
558 | if (AArch64_AM::processLogicalImmediate(Imm: UImm, RegSize: BitSize, Encoding)) { |
559 | unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri); |
560 | Insn.push_back(Elt: { .Opcode: Opc, .Op1: 0, .Op2: Encoding }); |
561 | return; |
562 | } |
563 | |
564 | // One to up three instruction sequences. |
565 | // |
566 | // Prefer MOVZ/MOVN followed by MOVK; it's more readable, and possibly the |
567 | // fastest sequence with fast literal generation. |
568 | if (OneChunks >= (BitSize / 16) - 2 || ZeroChunks >= (BitSize / 16) - 2) { |
569 | expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn); |
570 | return; |
571 | } |
572 | |
573 | assert(BitSize == 64 && "All 32-bit immediates can be expanded with a" |
574 | "MOVZ/MOVK pair" ); |
575 | |
576 | // Try other two-instruction sequences. |
577 | |
578 | // 64-bit ORR followed by MOVK. |
579 | // We try to construct the ORR immediate in three different ways: either we |
580 | // zero out the chunk which will be replaced, we fill the chunk which will |
581 | // be replaced with ones, or we take the bit pattern from the other half of |
582 | // the 64-bit immediate. This is comprehensive because of the way ORR |
583 | // immediates are constructed. |
584 | for (unsigned Shift = 0; Shift < BitSize; Shift += 16) { |
585 | uint64_t ShiftedMask = (0xFFFFULL << Shift); |
586 | uint64_t ZeroChunk = UImm & ~ShiftedMask; |
587 | uint64_t OneChunk = UImm | ShiftedMask; |
588 | uint64_t RotatedImm = (UImm << 32) | (UImm >> 32); |
589 | uint64_t ReplicateChunk = ZeroChunk | (RotatedImm & ShiftedMask); |
590 | if (AArch64_AM::processLogicalImmediate(Imm: ZeroChunk, RegSize: BitSize, Encoding) || |
591 | AArch64_AM::processLogicalImmediate(Imm: OneChunk, RegSize: BitSize, Encoding) || |
592 | AArch64_AM::processLogicalImmediate(Imm: ReplicateChunk, RegSize: BitSize, |
593 | Encoding)) { |
594 | // Create the ORR-immediate instruction. |
595 | Insn.push_back(Elt: { .Opcode: AArch64::ORRXri, .Op1: 0, .Op2: Encoding }); |
596 | |
597 | // Create the MOVK instruction. |
598 | const unsigned Imm16 = getChunk(Imm: UImm, ChunkIdx: Shift / 16); |
599 | Insn.push_back(Elt: { .Opcode: AArch64::MOVKXi, .Op1: Imm16, |
600 | .Op2: AArch64_AM::getShifterImm(ST: AArch64_AM::LSL, Imm: Shift) }); |
601 | return; |
602 | } |
603 | } |
604 | |
605 | // Attempt to use a sequence of two ORR-immediate instructions. |
606 | if (tryOrrOfLogicalImmediates(UImm: Imm, Insn)) |
607 | return; |
608 | |
609 | // Attempt to use a sequence of ORR-immediate followed by AND-immediate. |
610 | if (tryAndOfLogicalImmediates(UImm: Imm, Insn)) |
611 | return; |
612 | |
613 | // Attempt to use a sequence of ORR-immediate followed by EOR-immediate. |
614 | if (tryEorOfLogicalImmediates(Imm: UImm, Insn)) |
615 | return; |
616 | |
617 | // FIXME: Add more two-instruction sequences. |
618 | |
619 | // Three instruction sequences. |
620 | // |
621 | // Prefer MOVZ/MOVN followed by two MOVK; it's more readable, and possibly |
622 | // the fastest sequence with fast literal generation. (If neither MOVK is |
623 | // part of a fast literal generation pair, it could be slower than the |
624 | // four-instruction sequence, but we won't worry about that for now.) |
625 | if (OneChunks || ZeroChunks) { |
626 | expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn); |
627 | return; |
628 | } |
629 | |
630 | // Check for identical 16-bit chunks within the constant and if so materialize |
631 | // them with a single ORR instruction. The remaining one or two 16-bit chunks |
632 | // will be materialized with MOVK instructions. |
633 | if (BitSize == 64 && tryToreplicateChunks(UImm, Insn)) |
634 | return; |
635 | |
636 | // Check whether the constant contains a sequence of contiguous ones, which |
637 | // might be interrupted by one or two chunks. If so, materialize the sequence |
638 | // of contiguous ones with an ORR instruction. Materialize the chunks which |
639 | // are either interrupting the sequence or outside of the sequence with a |
640 | // MOVK instruction. |
641 | if (BitSize == 64 && trySequenceOfOnes(UImm, Insn)) |
642 | return; |
643 | |
644 | // We found no possible two or three instruction sequence; use the general |
645 | // four-instruction sequence. |
646 | expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn); |
647 | } |
648 | |