1 | //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file |
10 | /// This pass does misc. AMDGPU optimizations on IR before instruction |
11 | /// selection. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "AMDGPU.h" |
16 | #include "AMDGPUTargetMachine.h" |
17 | #include "SIModeRegisterDefaults.h" |
18 | #include "llvm/Analysis/AssumptionCache.h" |
19 | #include "llvm/Analysis/ConstantFolding.h" |
20 | #include "llvm/Analysis/TargetLibraryInfo.h" |
21 | #include "llvm/Analysis/UniformityAnalysis.h" |
22 | #include "llvm/Analysis/ValueTracking.h" |
23 | #include "llvm/CodeGen/TargetPassConfig.h" |
24 | #include "llvm/IR/Dominators.h" |
25 | #include "llvm/IR/IRBuilder.h" |
26 | #include "llvm/IR/InstVisitor.h" |
27 | #include "llvm/IR/IntrinsicsAMDGPU.h" |
28 | #include "llvm/IR/PatternMatch.h" |
29 | #include "llvm/InitializePasses.h" |
30 | #include "llvm/Pass.h" |
31 | #include "llvm/Support/KnownBits.h" |
32 | #include "llvm/Transforms/Utils/IntegerDivision.h" |
33 | #include "llvm/Transforms/Utils/Local.h" |
34 | |
35 | #define DEBUG_TYPE "amdgpu-codegenprepare" |
36 | |
37 | using namespace llvm; |
38 | using namespace llvm::PatternMatch; |
39 | |
40 | namespace { |
41 | |
42 | static cl::opt<bool> WidenLoads( |
43 | "amdgpu-codegenprepare-widen-constant-loads" , |
44 | cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare" ), |
45 | cl::ReallyHidden, |
46 | cl::init(Val: false)); |
47 | |
48 | static cl::opt<bool> Widen16BitOps( |
49 | "amdgpu-codegenprepare-widen-16-bit-ops" , |
50 | cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare" ), |
51 | cl::ReallyHidden, |
52 | cl::init(Val: true)); |
53 | |
54 | static cl::opt<bool> |
55 | BreakLargePHIs("amdgpu-codegenprepare-break-large-phis" , |
56 | cl::desc("Break large PHI nodes for DAGISel" ), |
57 | cl::ReallyHidden, cl::init(Val: true)); |
58 | |
59 | static cl::opt<bool> |
60 | ForceBreakLargePHIs("amdgpu-codegenprepare-force-break-large-phis" , |
61 | cl::desc("For testing purposes, always break large " |
62 | "PHIs even if it isn't profitable." ), |
63 | cl::ReallyHidden, cl::init(Val: false)); |
64 | |
65 | static cl::opt<unsigned> BreakLargePHIsThreshold( |
66 | "amdgpu-codegenprepare-break-large-phis-threshold" , |
67 | cl::desc("Minimum type size in bits for breaking large PHI nodes" ), |
68 | cl::ReallyHidden, cl::init(Val: 32)); |
69 | |
70 | static cl::opt<bool> UseMul24Intrin( |
71 | "amdgpu-codegenprepare-mul24" , |
72 | cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare" ), |
73 | cl::ReallyHidden, |
74 | cl::init(Val: true)); |
75 | |
76 | // Legalize 64-bit division by using the generic IR expansion. |
77 | static cl::opt<bool> ExpandDiv64InIR( |
78 | "amdgpu-codegenprepare-expand-div64" , |
79 | cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare" ), |
80 | cl::ReallyHidden, |
81 | cl::init(Val: false)); |
82 | |
83 | // Leave all division operations as they are. This supersedes ExpandDiv64InIR |
84 | // and is used for testing the legalizer. |
85 | static cl::opt<bool> DisableIDivExpand( |
86 | "amdgpu-codegenprepare-disable-idiv-expansion" , |
87 | cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare" ), |
88 | cl::ReallyHidden, |
89 | cl::init(Val: false)); |
90 | |
91 | // Disable processing of fdiv so we can better test the backend implementations. |
92 | static cl::opt<bool> DisableFDivExpand( |
93 | "amdgpu-codegenprepare-disable-fdiv-expansion" , |
94 | cl::desc("Prevent expanding floating point division in AMDGPUCodeGenPrepare" ), |
95 | cl::ReallyHidden, |
96 | cl::init(Val: false)); |
97 | |
98 | class AMDGPUCodeGenPrepareImpl |
99 | : public InstVisitor<AMDGPUCodeGenPrepareImpl, bool> { |
100 | public: |
101 | const GCNSubtarget *ST = nullptr; |
102 | const AMDGPUTargetMachine *TM = nullptr; |
103 | const TargetLibraryInfo *TLInfo = nullptr; |
104 | AssumptionCache *AC = nullptr; |
105 | DominatorTree *DT = nullptr; |
106 | UniformityInfo *UA = nullptr; |
107 | Module *Mod = nullptr; |
108 | const DataLayout *DL = nullptr; |
109 | bool HasUnsafeFPMath = false; |
110 | bool HasFP32DenormalFlush = false; |
111 | bool FlowChanged = false; |
112 | mutable Function *SqrtF32 = nullptr; |
113 | mutable Function *LdexpF32 = nullptr; |
114 | |
115 | DenseMap<const PHINode *, bool> BreakPhiNodesCache; |
116 | |
117 | Function *getSqrtF32() const { |
118 | if (SqrtF32) |
119 | return SqrtF32; |
120 | |
121 | LLVMContext &Ctx = Mod->getContext(); |
122 | SqrtF32 = Intrinsic::getDeclaration(M: Mod, id: Intrinsic::amdgcn_sqrt, |
123 | Tys: {Type::getFloatTy(C&: Ctx)}); |
124 | return SqrtF32; |
125 | } |
126 | |
127 | Function *getLdexpF32() const { |
128 | if (LdexpF32) |
129 | return LdexpF32; |
130 | |
131 | LLVMContext &Ctx = Mod->getContext(); |
132 | LdexpF32 = Intrinsic::getDeclaration( |
133 | M: Mod, id: Intrinsic::ldexp, Tys: {Type::getFloatTy(C&: Ctx), Type::getInt32Ty(C&: Ctx)}); |
134 | return LdexpF32; |
135 | } |
136 | |
137 | bool canBreakPHINode(const PHINode &I); |
138 | |
139 | /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to |
140 | /// binary operation \p V. |
141 | /// |
142 | /// \returns Binary operation \p V. |
143 | /// \returns \p T's base element bit width. |
144 | unsigned getBaseElementBitWidth(const Type *T) const; |
145 | |
146 | /// \returns Equivalent 32 bit integer type for given type \p T. For example, |
147 | /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> |
148 | /// is returned. |
149 | Type *getI32Ty(IRBuilder<> &B, const Type *T) const; |
150 | |
151 | /// \returns True if binary operation \p I is a signed binary operation, false |
152 | /// otherwise. |
153 | bool isSigned(const BinaryOperator &I) const; |
154 | |
155 | /// \returns True if the condition of 'select' operation \p I comes from a |
156 | /// signed 'icmp' operation, false otherwise. |
157 | bool isSigned(const SelectInst &I) const; |
158 | |
159 | /// \returns True if type \p T needs to be promoted to 32 bit integer type, |
160 | /// false otherwise. |
161 | bool needsPromotionToI32(const Type *T) const; |
162 | |
163 | /// Return true if \p T is a legal scalar floating point type. |
164 | bool isLegalFloatingTy(const Type *T) const; |
165 | |
166 | /// Wrapper to pass all the arguments to computeKnownFPClass |
167 | KnownFPClass computeKnownFPClass(const Value *V, FPClassTest Interested, |
168 | const Instruction *CtxI) const { |
169 | return llvm::computeKnownFPClass(V, DL: *DL, InterestedClasses: Interested, Depth: 0, TLI: TLInfo, AC, CxtI: CtxI, |
170 | DT); |
171 | } |
172 | |
173 | bool canIgnoreDenormalInput(const Value *V, const Instruction *CtxI) const { |
174 | return HasFP32DenormalFlush || |
175 | computeKnownFPClass(V, Interested: fcSubnormal, CtxI).isKnownNeverSubnormal(); |
176 | } |
177 | |
178 | /// Promotes uniform binary operation \p I to equivalent 32 bit binary |
179 | /// operation. |
180 | /// |
181 | /// \details \p I's base element bit width must be greater than 1 and less |
182 | /// than or equal 16. Promotion is done by sign or zero extending operands to |
183 | /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and |
184 | /// truncating the result of 32 bit binary operation back to \p I's original |
185 | /// type. Division operation is not promoted. |
186 | /// |
187 | /// \returns True if \p I is promoted to equivalent 32 bit binary operation, |
188 | /// false otherwise. |
189 | bool promoteUniformOpToI32(BinaryOperator &I) const; |
190 | |
191 | /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. |
192 | /// |
193 | /// \details \p I's base element bit width must be greater than 1 and less |
194 | /// than or equal 16. Promotion is done by sign or zero extending operands to |
195 | /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. |
196 | /// |
197 | /// \returns True. |
198 | bool promoteUniformOpToI32(ICmpInst &I) const; |
199 | |
200 | /// Promotes uniform 'select' operation \p I to 32 bit 'select' |
201 | /// operation. |
202 | /// |
203 | /// \details \p I's base element bit width must be greater than 1 and less |
204 | /// than or equal 16. Promotion is done by sign or zero extending operands to |
205 | /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the |
206 | /// result of 32 bit 'select' operation back to \p I's original type. |
207 | /// |
208 | /// \returns True. |
209 | bool promoteUniformOpToI32(SelectInst &I) const; |
210 | |
211 | /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' |
212 | /// intrinsic. |
213 | /// |
214 | /// \details \p I's base element bit width must be greater than 1 and less |
215 | /// than or equal 16. Promotion is done by zero extending the operand to 32 |
216 | /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the |
217 | /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the |
218 | /// shift amount is 32 minus \p I's base element bit width), and truncating |
219 | /// the result of the shift operation back to \p I's original type. |
220 | /// |
221 | /// \returns True. |
222 | bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; |
223 | |
224 | /// \returns The minimum number of bits needed to store the value of \Op as an |
225 | /// unsigned integer. Truncating to this size and then zero-extending to |
226 | /// the original will not change the value. |
227 | unsigned numBitsUnsigned(Value *Op) const; |
228 | |
229 | /// \returns The minimum number of bits needed to store the value of \Op as a |
230 | /// signed integer. Truncating to this size and then sign-extending to |
231 | /// the original size will not change the value. |
232 | unsigned numBitsSigned(Value *Op) const; |
233 | |
234 | /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. |
235 | /// SelectionDAG has an issue where an and asserting the bits are known |
236 | bool replaceMulWithMul24(BinaryOperator &I) const; |
237 | |
238 | /// Perform same function as equivalently named function in DAGCombiner. Since |
239 | /// we expand some divisions here, we need to perform this before obscuring. |
240 | bool foldBinOpIntoSelect(BinaryOperator &I) const; |
241 | |
242 | bool divHasSpecialOptimization(BinaryOperator &I, |
243 | Value *Num, Value *Den) const; |
244 | int getDivNumBits(BinaryOperator &I, |
245 | Value *Num, Value *Den, |
246 | unsigned AtLeast, bool Signed) const; |
247 | |
248 | /// Expands 24 bit div or rem. |
249 | Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, |
250 | Value *Num, Value *Den, |
251 | bool IsDiv, bool IsSigned) const; |
252 | |
253 | Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, |
254 | Value *Num, Value *Den, unsigned NumBits, |
255 | bool IsDiv, bool IsSigned) const; |
256 | |
257 | /// Expands 32 bit div or rem. |
258 | Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, |
259 | Value *Num, Value *Den) const; |
260 | |
261 | Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, |
262 | Value *Num, Value *Den) const; |
263 | void expandDivRem64(BinaryOperator &I) const; |
264 | |
265 | /// Widen a scalar load. |
266 | /// |
267 | /// \details \p Widen scalar load for uniform, small type loads from constant |
268 | // memory / to a full 32-bits and then truncate the input to allow a scalar |
269 | // load instead of a vector load. |
270 | // |
271 | /// \returns True. |
272 | |
273 | bool canWidenScalarExtLoad(LoadInst &I) const; |
274 | |
275 | Value *matchFractPat(IntrinsicInst &I); |
276 | Value *applyFractPat(IRBuilder<> &Builder, Value *FractArg); |
277 | |
278 | bool canOptimizeWithRsq(const FPMathOperator *SqrtOp, FastMathFlags DivFMF, |
279 | FastMathFlags SqrtFMF) const; |
280 | |
281 | Value *optimizeWithRsq(IRBuilder<> &Builder, Value *Num, Value *Den, |
282 | FastMathFlags DivFMF, FastMathFlags SqrtFMF, |
283 | const Instruction *CtxI) const; |
284 | |
285 | Value *optimizeWithRcp(IRBuilder<> &Builder, Value *Num, Value *Den, |
286 | FastMathFlags FMF, const Instruction *CtxI) const; |
287 | Value *optimizeWithFDivFast(IRBuilder<> &Builder, Value *Num, Value *Den, |
288 | float ReqdAccuracy) const; |
289 | |
290 | Value *visitFDivElement(IRBuilder<> &Builder, Value *Num, Value *Den, |
291 | FastMathFlags DivFMF, FastMathFlags SqrtFMF, |
292 | Value *RsqOp, const Instruction *FDiv, |
293 | float ReqdAccuracy) const; |
294 | |
295 | std::pair<Value *, Value *> getFrexpResults(IRBuilder<> &Builder, |
296 | Value *Src) const; |
297 | |
298 | Value *emitRcpIEEE1ULP(IRBuilder<> &Builder, Value *Src, |
299 | bool IsNegative) const; |
300 | Value *emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, Value *RHS, |
301 | FastMathFlags FMF) const; |
302 | Value *emitSqrtIEEE2ULP(IRBuilder<> &Builder, Value *Src, |
303 | FastMathFlags FMF) const; |
304 | |
305 | public: |
306 | bool visitFDiv(BinaryOperator &I); |
307 | |
308 | bool visitInstruction(Instruction &I) { return false; } |
309 | bool visitBinaryOperator(BinaryOperator &I); |
310 | bool visitLoadInst(LoadInst &I); |
311 | bool visitICmpInst(ICmpInst &I); |
312 | bool visitSelectInst(SelectInst &I); |
313 | bool visitPHINode(PHINode &I); |
314 | bool visitAddrSpaceCastInst(AddrSpaceCastInst &I); |
315 | |
316 | bool visitIntrinsicInst(IntrinsicInst &I); |
317 | bool visitBitreverseIntrinsicInst(IntrinsicInst &I); |
318 | bool visitMinNum(IntrinsicInst &I); |
319 | bool visitSqrt(IntrinsicInst &I); |
320 | bool run(Function &F); |
321 | }; |
322 | |
323 | class AMDGPUCodeGenPrepare : public FunctionPass { |
324 | private: |
325 | AMDGPUCodeGenPrepareImpl Impl; |
326 | |
327 | public: |
328 | static char ID; |
329 | AMDGPUCodeGenPrepare() : FunctionPass(ID) { |
330 | initializeAMDGPUCodeGenPreparePass(*PassRegistry::getPassRegistry()); |
331 | } |
332 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
333 | AU.addRequired<AssumptionCacheTracker>(); |
334 | AU.addRequired<UniformityInfoWrapperPass>(); |
335 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
336 | |
337 | // FIXME: Division expansion needs to preserve the dominator tree. |
338 | if (!ExpandDiv64InIR) |
339 | AU.setPreservesAll(); |
340 | } |
341 | bool runOnFunction(Function &F) override; |
342 | bool doInitialization(Module &M) override; |
343 | StringRef getPassName() const override { return "AMDGPU IR optimizations" ; } |
344 | }; |
345 | |
346 | } // end anonymous namespace |
347 | |
348 | bool AMDGPUCodeGenPrepareImpl::run(Function &F) { |
349 | BreakPhiNodesCache.clear(); |
350 | bool MadeChange = false; |
351 | |
352 | Function::iterator NextBB; |
353 | for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) { |
354 | BasicBlock *BB = &*FI; |
355 | NextBB = std::next(x: FI); |
356 | |
357 | BasicBlock::iterator Next; |
358 | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; |
359 | I = Next) { |
360 | Next = std::next(x: I); |
361 | |
362 | MadeChange |= visit(I&: *I); |
363 | |
364 | if (Next != E) { // Control flow changed |
365 | BasicBlock *NextInstBB = Next->getParent(); |
366 | if (NextInstBB != BB) { |
367 | BB = NextInstBB; |
368 | E = BB->end(); |
369 | FE = F.end(); |
370 | } |
371 | } |
372 | } |
373 | } |
374 | return MadeChange; |
375 | } |
376 | |
377 | unsigned AMDGPUCodeGenPrepareImpl::getBaseElementBitWidth(const Type *T) const { |
378 | assert(needsPromotionToI32(T) && "T does not need promotion to i32" ); |
379 | |
380 | if (T->isIntegerTy()) |
381 | return T->getIntegerBitWidth(); |
382 | return cast<VectorType>(Val: T)->getElementType()->getIntegerBitWidth(); |
383 | } |
384 | |
385 | Type *AMDGPUCodeGenPrepareImpl::getI32Ty(IRBuilder<> &B, const Type *T) const { |
386 | assert(needsPromotionToI32(T) && "T does not need promotion to i32" ); |
387 | |
388 | if (T->isIntegerTy()) |
389 | return B.getInt32Ty(); |
390 | return FixedVectorType::get(ElementType: B.getInt32Ty(), FVTy: cast<FixedVectorType>(Val: T)); |
391 | } |
392 | |
393 | bool AMDGPUCodeGenPrepareImpl::isSigned(const BinaryOperator &I) const { |
394 | return I.getOpcode() == Instruction::AShr || |
395 | I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; |
396 | } |
397 | |
398 | bool AMDGPUCodeGenPrepareImpl::isSigned(const SelectInst &I) const { |
399 | return isa<ICmpInst>(Val: I.getOperand(i_nocapture: 0)) ? |
400 | cast<ICmpInst>(Val: I.getOperand(i_nocapture: 0))->isSigned() : false; |
401 | } |
402 | |
403 | bool AMDGPUCodeGenPrepareImpl::needsPromotionToI32(const Type *T) const { |
404 | if (!Widen16BitOps) |
405 | return false; |
406 | |
407 | const IntegerType *IntTy = dyn_cast<IntegerType>(Val: T); |
408 | if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) |
409 | return true; |
410 | |
411 | if (const VectorType *VT = dyn_cast<VectorType>(Val: T)) { |
412 | // TODO: The set of packed operations is more limited, so may want to |
413 | // promote some anyway. |
414 | if (ST->hasVOP3PInsts()) |
415 | return false; |
416 | |
417 | return needsPromotionToI32(T: VT->getElementType()); |
418 | } |
419 | |
420 | return false; |
421 | } |
422 | |
423 | bool AMDGPUCodeGenPrepareImpl::isLegalFloatingTy(const Type *Ty) const { |
424 | return Ty->isFloatTy() || Ty->isDoubleTy() || |
425 | (Ty->isHalfTy() && ST->has16BitInsts()); |
426 | } |
427 | |
428 | // Return true if the op promoted to i32 should have nsw set. |
429 | static bool promotedOpIsNSW(const Instruction &I) { |
430 | switch (I.getOpcode()) { |
431 | case Instruction::Shl: |
432 | case Instruction::Add: |
433 | case Instruction::Sub: |
434 | return true; |
435 | case Instruction::Mul: |
436 | return I.hasNoUnsignedWrap(); |
437 | default: |
438 | return false; |
439 | } |
440 | } |
441 | |
442 | // Return true if the op promoted to i32 should have nuw set. |
443 | static bool promotedOpIsNUW(const Instruction &I) { |
444 | switch (I.getOpcode()) { |
445 | case Instruction::Shl: |
446 | case Instruction::Add: |
447 | case Instruction::Mul: |
448 | return true; |
449 | case Instruction::Sub: |
450 | return I.hasNoUnsignedWrap(); |
451 | default: |
452 | return false; |
453 | } |
454 | } |
455 | |
456 | bool AMDGPUCodeGenPrepareImpl::canWidenScalarExtLoad(LoadInst &I) const { |
457 | Type *Ty = I.getType(); |
458 | const DataLayout &DL = Mod->getDataLayout(); |
459 | int TySize = DL.getTypeSizeInBits(Ty); |
460 | Align Alignment = DL.getValueOrABITypeAlignment(Alignment: I.getAlign(), Ty); |
461 | |
462 | return I.isSimple() && TySize < 32 && Alignment >= 4 && UA->isUniform(I: &I); |
463 | } |
464 | |
465 | bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(BinaryOperator &I) const { |
466 | assert(needsPromotionToI32(I.getType()) && |
467 | "I does not need promotion to i32" ); |
468 | |
469 | if (I.getOpcode() == Instruction::SDiv || |
470 | I.getOpcode() == Instruction::UDiv || |
471 | I.getOpcode() == Instruction::SRem || |
472 | I.getOpcode() == Instruction::URem) |
473 | return false; |
474 | |
475 | IRBuilder<> Builder(&I); |
476 | Builder.SetCurrentDebugLocation(I.getDebugLoc()); |
477 | |
478 | Type *I32Ty = getI32Ty(B&: Builder, T: I.getType()); |
479 | Value *ExtOp0 = nullptr; |
480 | Value *ExtOp1 = nullptr; |
481 | Value *ExtRes = nullptr; |
482 | Value *TruncRes = nullptr; |
483 | |
484 | if (isSigned(I)) { |
485 | ExtOp0 = Builder.CreateSExt(V: I.getOperand(i_nocapture: 0), DestTy: I32Ty); |
486 | ExtOp1 = Builder.CreateSExt(V: I.getOperand(i_nocapture: 1), DestTy: I32Ty); |
487 | } else { |
488 | ExtOp0 = Builder.CreateZExt(V: I.getOperand(i_nocapture: 0), DestTy: I32Ty); |
489 | ExtOp1 = Builder.CreateZExt(V: I.getOperand(i_nocapture: 1), DestTy: I32Ty); |
490 | } |
491 | |
492 | ExtRes = Builder.CreateBinOp(Opc: I.getOpcode(), LHS: ExtOp0, RHS: ExtOp1); |
493 | if (Instruction *Inst = dyn_cast<Instruction>(Val: ExtRes)) { |
494 | if (promotedOpIsNSW(I: cast<Instruction>(Val&: I))) |
495 | Inst->setHasNoSignedWrap(); |
496 | |
497 | if (promotedOpIsNUW(I: cast<Instruction>(Val&: I))) |
498 | Inst->setHasNoUnsignedWrap(); |
499 | |
500 | if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Val: &I)) |
501 | Inst->setIsExact(ExactOp->isExact()); |
502 | } |
503 | |
504 | TruncRes = Builder.CreateTrunc(V: ExtRes, DestTy: I.getType()); |
505 | |
506 | I.replaceAllUsesWith(V: TruncRes); |
507 | I.eraseFromParent(); |
508 | |
509 | return true; |
510 | } |
511 | |
512 | bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(ICmpInst &I) const { |
513 | assert(needsPromotionToI32(I.getOperand(0)->getType()) && |
514 | "I does not need promotion to i32" ); |
515 | |
516 | IRBuilder<> Builder(&I); |
517 | Builder.SetCurrentDebugLocation(I.getDebugLoc()); |
518 | |
519 | Type *I32Ty = getI32Ty(B&: Builder, T: I.getOperand(i_nocapture: 0)->getType()); |
520 | Value *ExtOp0 = nullptr; |
521 | Value *ExtOp1 = nullptr; |
522 | Value *NewICmp = nullptr; |
523 | |
524 | if (I.isSigned()) { |
525 | ExtOp0 = Builder.CreateSExt(V: I.getOperand(i_nocapture: 0), DestTy: I32Ty); |
526 | ExtOp1 = Builder.CreateSExt(V: I.getOperand(i_nocapture: 1), DestTy: I32Ty); |
527 | } else { |
528 | ExtOp0 = Builder.CreateZExt(V: I.getOperand(i_nocapture: 0), DestTy: I32Ty); |
529 | ExtOp1 = Builder.CreateZExt(V: I.getOperand(i_nocapture: 1), DestTy: I32Ty); |
530 | } |
531 | NewICmp = Builder.CreateICmp(P: I.getPredicate(), LHS: ExtOp0, RHS: ExtOp1); |
532 | |
533 | I.replaceAllUsesWith(V: NewICmp); |
534 | I.eraseFromParent(); |
535 | |
536 | return true; |
537 | } |
538 | |
539 | bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(SelectInst &I) const { |
540 | assert(needsPromotionToI32(I.getType()) && |
541 | "I does not need promotion to i32" ); |
542 | |
543 | IRBuilder<> Builder(&I); |
544 | Builder.SetCurrentDebugLocation(I.getDebugLoc()); |
545 | |
546 | Type *I32Ty = getI32Ty(B&: Builder, T: I.getType()); |
547 | Value *ExtOp1 = nullptr; |
548 | Value *ExtOp2 = nullptr; |
549 | Value *ExtRes = nullptr; |
550 | Value *TruncRes = nullptr; |
551 | |
552 | if (isSigned(I)) { |
553 | ExtOp1 = Builder.CreateSExt(V: I.getOperand(i_nocapture: 1), DestTy: I32Ty); |
554 | ExtOp2 = Builder.CreateSExt(V: I.getOperand(i_nocapture: 2), DestTy: I32Ty); |
555 | } else { |
556 | ExtOp1 = Builder.CreateZExt(V: I.getOperand(i_nocapture: 1), DestTy: I32Ty); |
557 | ExtOp2 = Builder.CreateZExt(V: I.getOperand(i_nocapture: 2), DestTy: I32Ty); |
558 | } |
559 | ExtRes = Builder.CreateSelect(C: I.getOperand(i_nocapture: 0), True: ExtOp1, False: ExtOp2); |
560 | TruncRes = Builder.CreateTrunc(V: ExtRes, DestTy: I.getType()); |
561 | |
562 | I.replaceAllUsesWith(V: TruncRes); |
563 | I.eraseFromParent(); |
564 | |
565 | return true; |
566 | } |
567 | |
568 | bool AMDGPUCodeGenPrepareImpl::promoteUniformBitreverseToI32( |
569 | IntrinsicInst &I) const { |
570 | assert(I.getIntrinsicID() == Intrinsic::bitreverse && |
571 | "I must be bitreverse intrinsic" ); |
572 | assert(needsPromotionToI32(I.getType()) && |
573 | "I does not need promotion to i32" ); |
574 | |
575 | IRBuilder<> Builder(&I); |
576 | Builder.SetCurrentDebugLocation(I.getDebugLoc()); |
577 | |
578 | Type *I32Ty = getI32Ty(B&: Builder, T: I.getType()); |
579 | Function *I32 = |
580 | Intrinsic::getDeclaration(M: Mod, id: Intrinsic::bitreverse, Tys: { I32Ty }); |
581 | Value *ExtOp = Builder.CreateZExt(V: I.getOperand(i_nocapture: 0), DestTy: I32Ty); |
582 | Value *ExtRes = Builder.CreateCall(Callee: I32, Args: { ExtOp }); |
583 | Value *LShrOp = |
584 | Builder.CreateLShr(LHS: ExtRes, RHS: 32 - getBaseElementBitWidth(T: I.getType())); |
585 | Value *TruncRes = |
586 | Builder.CreateTrunc(V: LShrOp, DestTy: I.getType()); |
587 | |
588 | I.replaceAllUsesWith(V: TruncRes); |
589 | I.eraseFromParent(); |
590 | |
591 | return true; |
592 | } |
593 | |
594 | unsigned AMDGPUCodeGenPrepareImpl::numBitsUnsigned(Value *Op) const { |
595 | return computeKnownBits(V: Op, DL: *DL, Depth: 0, AC).countMaxActiveBits(); |
596 | } |
597 | |
598 | unsigned AMDGPUCodeGenPrepareImpl::numBitsSigned(Value *Op) const { |
599 | return ComputeMaxSignificantBits(Op, DL: *DL, Depth: 0, AC); |
600 | } |
601 | |
602 | static void (IRBuilder<> &Builder, |
603 | SmallVectorImpl<Value *> &Values, Value *V) { |
604 | auto *VT = dyn_cast<FixedVectorType>(Val: V->getType()); |
605 | if (!VT) { |
606 | Values.push_back(Elt: V); |
607 | return; |
608 | } |
609 | |
610 | for (int I = 0, E = VT->getNumElements(); I != E; ++I) |
611 | Values.push_back(Elt: Builder.CreateExtractElement(Vec: V, Idx: I)); |
612 | } |
613 | |
614 | static Value *insertValues(IRBuilder<> &Builder, |
615 | Type *Ty, |
616 | SmallVectorImpl<Value *> &Values) { |
617 | if (!Ty->isVectorTy()) { |
618 | assert(Values.size() == 1); |
619 | return Values[0]; |
620 | } |
621 | |
622 | Value *NewVal = PoisonValue::get(T: Ty); |
623 | for (int I = 0, E = Values.size(); I != E; ++I) |
624 | NewVal = Builder.CreateInsertElement(Vec: NewVal, NewElt: Values[I], Idx: I); |
625 | |
626 | return NewVal; |
627 | } |
628 | |
629 | bool AMDGPUCodeGenPrepareImpl::replaceMulWithMul24(BinaryOperator &I) const { |
630 | if (I.getOpcode() != Instruction::Mul) |
631 | return false; |
632 | |
633 | Type *Ty = I.getType(); |
634 | unsigned Size = Ty->getScalarSizeInBits(); |
635 | if (Size <= 16 && ST->has16BitInsts()) |
636 | return false; |
637 | |
638 | // Prefer scalar if this could be s_mul_i32 |
639 | if (UA->isUniform(I: &I)) |
640 | return false; |
641 | |
642 | Value *LHS = I.getOperand(i_nocapture: 0); |
643 | Value *RHS = I.getOperand(i_nocapture: 1); |
644 | IRBuilder<> Builder(&I); |
645 | Builder.SetCurrentDebugLocation(I.getDebugLoc()); |
646 | |
647 | unsigned LHSBits = 0, RHSBits = 0; |
648 | bool IsSigned = false; |
649 | |
650 | if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(Op: LHS)) <= 24 && |
651 | (RHSBits = numBitsUnsigned(Op: RHS)) <= 24) { |
652 | IsSigned = false; |
653 | |
654 | } else if (ST->hasMulI24() && (LHSBits = numBitsSigned(Op: LHS)) <= 24 && |
655 | (RHSBits = numBitsSigned(Op: RHS)) <= 24) { |
656 | IsSigned = true; |
657 | |
658 | } else |
659 | return false; |
660 | |
661 | SmallVector<Value *, 4> LHSVals; |
662 | SmallVector<Value *, 4> RHSVals; |
663 | SmallVector<Value *, 4> ResultVals; |
664 | extractValues(Builder, Values&: LHSVals, V: LHS); |
665 | extractValues(Builder, Values&: RHSVals, V: RHS); |
666 | |
667 | IntegerType *I32Ty = Builder.getInt32Ty(); |
668 | IntegerType *IntrinTy = Size > 32 ? Builder.getInt64Ty() : I32Ty; |
669 | Type *DstTy = LHSVals[0]->getType(); |
670 | |
671 | for (int I = 0, E = LHSVals.size(); I != E; ++I) { |
672 | Value *LHS = IsSigned ? Builder.CreateSExtOrTrunc(V: LHSVals[I], DestTy: I32Ty) |
673 | : Builder.CreateZExtOrTrunc(V: LHSVals[I], DestTy: I32Ty); |
674 | Value *RHS = IsSigned ? Builder.CreateSExtOrTrunc(V: RHSVals[I], DestTy: I32Ty) |
675 | : Builder.CreateZExtOrTrunc(V: RHSVals[I], DestTy: I32Ty); |
676 | Intrinsic::ID ID = |
677 | IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24; |
678 | Value *Result = Builder.CreateIntrinsic(ID, Types: {IntrinTy}, Args: {LHS, RHS}); |
679 | Result = IsSigned ? Builder.CreateSExtOrTrunc(V: Result, DestTy: DstTy) |
680 | : Builder.CreateZExtOrTrunc(V: Result, DestTy: DstTy); |
681 | ResultVals.push_back(Elt: Result); |
682 | } |
683 | |
684 | Value *NewVal = insertValues(Builder, Ty, Values&: ResultVals); |
685 | NewVal->takeName(V: &I); |
686 | I.replaceAllUsesWith(V: NewVal); |
687 | I.eraseFromParent(); |
688 | |
689 | return true; |
690 | } |
691 | |
692 | // Find a select instruction, which may have been casted. This is mostly to deal |
693 | // with cases where i16 selects were promoted here to i32. |
694 | static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { |
695 | Cast = nullptr; |
696 | if (SelectInst *Sel = dyn_cast<SelectInst>(Val: V)) |
697 | return Sel; |
698 | |
699 | if ((Cast = dyn_cast<CastInst>(Val: V))) { |
700 | if (SelectInst *Sel = dyn_cast<SelectInst>(Val: Cast->getOperand(i_nocapture: 0))) |
701 | return Sel; |
702 | } |
703 | |
704 | return nullptr; |
705 | } |
706 | |
707 | bool AMDGPUCodeGenPrepareImpl::foldBinOpIntoSelect(BinaryOperator &BO) const { |
708 | // Don't do this unless the old select is going away. We want to eliminate the |
709 | // binary operator, not replace a binop with a select. |
710 | int SelOpNo = 0; |
711 | |
712 | CastInst *CastOp; |
713 | |
714 | // TODO: Should probably try to handle some cases with multiple |
715 | // users. Duplicating the select may be profitable for division. |
716 | SelectInst *Sel = findSelectThroughCast(V: BO.getOperand(i_nocapture: 0), Cast&: CastOp); |
717 | if (!Sel || !Sel->hasOneUse()) { |
718 | SelOpNo = 1; |
719 | Sel = findSelectThroughCast(V: BO.getOperand(i_nocapture: 1), Cast&: CastOp); |
720 | } |
721 | |
722 | if (!Sel || !Sel->hasOneUse()) |
723 | return false; |
724 | |
725 | Constant *CT = dyn_cast<Constant>(Val: Sel->getTrueValue()); |
726 | Constant *CF = dyn_cast<Constant>(Val: Sel->getFalseValue()); |
727 | Constant *CBO = dyn_cast<Constant>(Val: BO.getOperand(i_nocapture: SelOpNo ^ 1)); |
728 | if (!CBO || !CT || !CF) |
729 | return false; |
730 | |
731 | if (CastOp) { |
732 | if (!CastOp->hasOneUse()) |
733 | return false; |
734 | CT = ConstantFoldCastOperand(Opcode: CastOp->getOpcode(), C: CT, DestTy: BO.getType(), DL: *DL); |
735 | CF = ConstantFoldCastOperand(Opcode: CastOp->getOpcode(), C: CF, DestTy: BO.getType(), DL: *DL); |
736 | } |
737 | |
738 | // TODO: Handle special 0/-1 cases DAG combine does, although we only really |
739 | // need to handle divisions here. |
740 | Constant *FoldedT = SelOpNo ? |
741 | ConstantFoldBinaryOpOperands(Opcode: BO.getOpcode(), LHS: CBO, RHS: CT, DL: *DL) : |
742 | ConstantFoldBinaryOpOperands(Opcode: BO.getOpcode(), LHS: CT, RHS: CBO, DL: *DL); |
743 | if (!FoldedT || isa<ConstantExpr>(Val: FoldedT)) |
744 | return false; |
745 | |
746 | Constant *FoldedF = SelOpNo ? |
747 | ConstantFoldBinaryOpOperands(Opcode: BO.getOpcode(), LHS: CBO, RHS: CF, DL: *DL) : |
748 | ConstantFoldBinaryOpOperands(Opcode: BO.getOpcode(), LHS: CF, RHS: CBO, DL: *DL); |
749 | if (!FoldedF || isa<ConstantExpr>(Val: FoldedF)) |
750 | return false; |
751 | |
752 | IRBuilder<> Builder(&BO); |
753 | Builder.SetCurrentDebugLocation(BO.getDebugLoc()); |
754 | if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Val: &BO)) |
755 | Builder.setFastMathFlags(FPOp->getFastMathFlags()); |
756 | |
757 | Value *NewSelect = Builder.CreateSelect(C: Sel->getCondition(), |
758 | True: FoldedT, False: FoldedF); |
759 | NewSelect->takeName(V: &BO); |
760 | BO.replaceAllUsesWith(V: NewSelect); |
761 | BO.eraseFromParent(); |
762 | if (CastOp) |
763 | CastOp->eraseFromParent(); |
764 | Sel->eraseFromParent(); |
765 | return true; |
766 | } |
767 | |
768 | std::pair<Value *, Value *> |
769 | AMDGPUCodeGenPrepareImpl::getFrexpResults(IRBuilder<> &Builder, |
770 | Value *Src) const { |
771 | Type *Ty = Src->getType(); |
772 | Value *Frexp = Builder.CreateIntrinsic(ID: Intrinsic::frexp, |
773 | Types: {Ty, Builder.getInt32Ty()}, Args: Src); |
774 | Value *FrexpMant = Builder.CreateExtractValue(Agg: Frexp, Idxs: {0}); |
775 | |
776 | // Bypass the bug workaround for the exponent result since it doesn't matter. |
777 | // TODO: Does the bug workaround even really need to consider the exponent |
778 | // result? It's unspecified by the spec. |
779 | |
780 | Value *FrexpExp = |
781 | ST->hasFractBug() |
782 | ? Builder.CreateIntrinsic(ID: Intrinsic::amdgcn_frexp_exp, |
783 | Types: {Builder.getInt32Ty(), Ty}, Args: Src) |
784 | : Builder.CreateExtractValue(Agg: Frexp, Idxs: {1}); |
785 | return {FrexpMant, FrexpExp}; |
786 | } |
787 | |
788 | /// Emit an expansion of 1.0 / Src good for 1ulp that supports denormals. |
789 | Value *AMDGPUCodeGenPrepareImpl::emitRcpIEEE1ULP(IRBuilder<> &Builder, |
790 | Value *Src, |
791 | bool IsNegative) const { |
792 | // Same as for 1.0, but expand the sign out of the constant. |
793 | // -1.0 / x -> rcp (fneg x) |
794 | if (IsNegative) |
795 | Src = Builder.CreateFNeg(V: Src); |
796 | |
797 | // The rcp instruction doesn't support denormals, so scale the input |
798 | // out of the denormal range and convert at the end. |
799 | // |
800 | // Expand as 2^-n * (1.0 / (x * 2^n)) |
801 | |
802 | // TODO: Skip scaling if input is known never denormal and the input |
803 | // range won't underflow to denormal. The hard part is knowing the |
804 | // result. We need a range check, the result could be denormal for |
805 | // 0x1p+126 < den <= 0x1p+127. |
806 | auto [FrexpMant, FrexpExp] = getFrexpResults(Builder, Src); |
807 | Value *ScaleFactor = Builder.CreateNeg(V: FrexpExp); |
808 | Value *Rcp = Builder.CreateUnaryIntrinsic(ID: Intrinsic::amdgcn_rcp, V: FrexpMant); |
809 | return Builder.CreateCall(Callee: getLdexpF32(), Args: {Rcp, ScaleFactor}); |
810 | } |
811 | |
812 | /// Emit a 2ulp expansion for fdiv by using frexp for input scaling. |
813 | Value *AMDGPUCodeGenPrepareImpl::emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, |
814 | Value *RHS, |
815 | FastMathFlags FMF) const { |
816 | // If we have have to work around the fract/frexp bug, we're worse off than |
817 | // using the fdiv.fast expansion. The full safe expansion is faster if we have |
818 | // fast FMA. |
819 | if (HasFP32DenormalFlush && ST->hasFractBug() && !ST->hasFastFMAF32() && |
820 | (!FMF.noNaNs() || !FMF.noInfs())) |
821 | return nullptr; |
822 | |
823 | // We're scaling the LHS to avoid a denormal input, and scale the denominator |
824 | // to avoid large values underflowing the result. |
825 | auto [FrexpMantRHS, FrexpExpRHS] = getFrexpResults(Builder, Src: RHS); |
826 | |
827 | Value *Rcp = |
828 | Builder.CreateUnaryIntrinsic(ID: Intrinsic::amdgcn_rcp, V: FrexpMantRHS); |
829 | |
830 | auto [FrexpMantLHS, FrexpExpLHS] = getFrexpResults(Builder, Src: LHS); |
831 | Value *Mul = Builder.CreateFMul(L: FrexpMantLHS, R: Rcp); |
832 | |
833 | // We multiplied by 2^N/2^M, so we need to multiply by 2^(N-M) to scale the |
834 | // result. |
835 | Value *ExpDiff = Builder.CreateSub(LHS: FrexpExpLHS, RHS: FrexpExpRHS); |
836 | return Builder.CreateCall(Callee: getLdexpF32(), Args: {Mul, ExpDiff}); |
837 | } |
838 | |
839 | /// Emit a sqrt that handles denormals and is accurate to 2ulp. |
840 | Value *AMDGPUCodeGenPrepareImpl::emitSqrtIEEE2ULP(IRBuilder<> &Builder, |
841 | Value *Src, |
842 | FastMathFlags FMF) const { |
843 | Type *Ty = Src->getType(); |
844 | APFloat SmallestNormal = |
845 | APFloat::getSmallestNormalized(Sem: Ty->getFltSemantics()); |
846 | Value *NeedScale = |
847 | Builder.CreateFCmpOLT(LHS: Src, RHS: ConstantFP::get(Ty, V: SmallestNormal)); |
848 | |
849 | ConstantInt *Zero = Builder.getInt32(C: 0); |
850 | Value *InputScaleFactor = |
851 | Builder.CreateSelect(C: NeedScale, True: Builder.getInt32(C: 32), False: Zero); |
852 | |
853 | Value *Scaled = Builder.CreateCall(Callee: getLdexpF32(), Args: {Src, InputScaleFactor}); |
854 | |
855 | Value *Sqrt = Builder.CreateCall(Callee: getSqrtF32(), Args: Scaled); |
856 | |
857 | Value *OutputScaleFactor = |
858 | Builder.CreateSelect(C: NeedScale, True: Builder.getInt32(C: -16), False: Zero); |
859 | return Builder.CreateCall(Callee: getLdexpF32(), Args: {Sqrt, OutputScaleFactor}); |
860 | } |
861 | |
862 | /// Emit an expansion of 1.0 / sqrt(Src) good for 1ulp that supports denormals. |
863 | static Value *emitRsqIEEE1ULP(IRBuilder<> &Builder, Value *Src, |
864 | bool IsNegative) { |
865 | // bool need_scale = x < 0x1p-126f; |
866 | // float input_scale = need_scale ? 0x1.0p+24f : 1.0f; |
867 | // float output_scale = need_scale ? 0x1.0p+12f : 1.0f; |
868 | // rsq(x * input_scale) * output_scale; |
869 | |
870 | Type *Ty = Src->getType(); |
871 | APFloat SmallestNormal = |
872 | APFloat::getSmallestNormalized(Sem: Ty->getFltSemantics()); |
873 | Value *NeedScale = |
874 | Builder.CreateFCmpOLT(LHS: Src, RHS: ConstantFP::get(Ty, V: SmallestNormal)); |
875 | Constant *One = ConstantFP::get(Ty, V: 1.0); |
876 | Constant *InputScale = ConstantFP::get(Ty, V: 0x1.0p+24); |
877 | Constant *OutputScale = |
878 | ConstantFP::get(Ty, V: IsNegative ? -0x1.0p+12 : 0x1.0p+12); |
879 | |
880 | Value *InputScaleFactor = Builder.CreateSelect(C: NeedScale, True: InputScale, False: One); |
881 | |
882 | Value *ScaledInput = Builder.CreateFMul(L: Src, R: InputScaleFactor); |
883 | Value *Rsq = Builder.CreateUnaryIntrinsic(ID: Intrinsic::amdgcn_rsq, V: ScaledInput); |
884 | Value *OutputScaleFactor = Builder.CreateSelect( |
885 | C: NeedScale, True: OutputScale, False: IsNegative ? ConstantFP::get(Ty, V: -1.0) : One); |
886 | |
887 | return Builder.CreateFMul(L: Rsq, R: OutputScaleFactor); |
888 | } |
889 | |
890 | bool AMDGPUCodeGenPrepareImpl::canOptimizeWithRsq(const FPMathOperator *SqrtOp, |
891 | FastMathFlags DivFMF, |
892 | FastMathFlags SqrtFMF) const { |
893 | // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp. |
894 | if (!DivFMF.allowContract() || !SqrtFMF.allowContract()) |
895 | return false; |
896 | |
897 | // v_rsq_f32 gives 1ulp |
898 | return SqrtFMF.approxFunc() || HasUnsafeFPMath || |
899 | SqrtOp->getFPAccuracy() >= 1.0f; |
900 | } |
901 | |
902 | Value *AMDGPUCodeGenPrepareImpl::optimizeWithRsq( |
903 | IRBuilder<> &Builder, Value *Num, Value *Den, const FastMathFlags DivFMF, |
904 | const FastMathFlags SqrtFMF, const Instruction *CtxI) const { |
905 | // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp. |
906 | assert(DivFMF.allowContract() && SqrtFMF.allowContract()); |
907 | |
908 | // rsq_f16 is accurate to 0.51 ulp. |
909 | // rsq_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. |
910 | // rsq_f64 is never accurate. |
911 | const ConstantFP *CLHS = dyn_cast<ConstantFP>(Val: Num); |
912 | if (!CLHS) |
913 | return nullptr; |
914 | |
915 | assert(Den->getType()->isFloatTy()); |
916 | |
917 | bool IsNegative = false; |
918 | |
919 | // TODO: Handle other numerator values with arcp. |
920 | if (CLHS->isExactlyValue(V: 1.0) || (IsNegative = CLHS->isExactlyValue(V: -1.0))) { |
921 | // Add in the sqrt flags. |
922 | IRBuilder<>::FastMathFlagGuard Guard(Builder); |
923 | Builder.setFastMathFlags(DivFMF | SqrtFMF); |
924 | |
925 | if ((DivFMF.approxFunc() && SqrtFMF.approxFunc()) || HasUnsafeFPMath || |
926 | canIgnoreDenormalInput(V: Den, CtxI)) { |
927 | Value *Result = Builder.CreateUnaryIntrinsic(ID: Intrinsic::amdgcn_rsq, V: Den); |
928 | // -1.0 / sqrt(x) -> fneg(rsq(x)) |
929 | return IsNegative ? Builder.CreateFNeg(V: Result) : Result; |
930 | } |
931 | |
932 | return emitRsqIEEE1ULP(Builder, Src: Den, IsNegative); |
933 | } |
934 | |
935 | return nullptr; |
936 | } |
937 | |
938 | // Optimize fdiv with rcp: |
939 | // |
940 | // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is |
941 | // allowed with unsafe-fp-math or afn. |
942 | // |
943 | // a/b -> a*rcp(b) when arcp is allowed, and we only need provide ULP 1.0 |
944 | Value * |
945 | AMDGPUCodeGenPrepareImpl::optimizeWithRcp(IRBuilder<> &Builder, Value *Num, |
946 | Value *Den, FastMathFlags FMF, |
947 | const Instruction *CtxI) const { |
948 | // rcp_f16 is accurate to 0.51 ulp. |
949 | // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. |
950 | // rcp_f64 is never accurate. |
951 | assert(Den->getType()->isFloatTy()); |
952 | |
953 | if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Val: Num)) { |
954 | bool IsNegative = false; |
955 | if (CLHS->isExactlyValue(V: 1.0) || |
956 | (IsNegative = CLHS->isExactlyValue(V: -1.0))) { |
957 | Value *Src = Den; |
958 | |
959 | if (HasFP32DenormalFlush || FMF.approxFunc()) { |
960 | // -1.0 / x -> 1.0 / fneg(x) |
961 | if (IsNegative) |
962 | Src = Builder.CreateFNeg(V: Src); |
963 | |
964 | // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to |
965 | // the CI documentation has a worst case error of 1 ulp. |
966 | // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK |
967 | // to use it as long as we aren't trying to use denormals. |
968 | // |
969 | // v_rcp_f16 and v_rsq_f16 DO support denormals. |
970 | |
971 | // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't |
972 | // insert rsq intrinsic here. |
973 | |
974 | // 1.0 / x -> rcp(x) |
975 | return Builder.CreateUnaryIntrinsic(ID: Intrinsic::amdgcn_rcp, V: Src); |
976 | } |
977 | |
978 | // TODO: If the input isn't denormal, and we know the input exponent isn't |
979 | // big enough to introduce a denormal we can avoid the scaling. |
980 | return emitRcpIEEE1ULP(Builder, Src, IsNegative); |
981 | } |
982 | } |
983 | |
984 | if (FMF.allowReciprocal()) { |
985 | // x / y -> x * (1.0 / y) |
986 | |
987 | // TODO: Could avoid denormal scaling and use raw rcp if we knew the output |
988 | // will never underflow. |
989 | if (HasFP32DenormalFlush || FMF.approxFunc()) { |
990 | Value *Recip = Builder.CreateUnaryIntrinsic(ID: Intrinsic::amdgcn_rcp, V: Den); |
991 | return Builder.CreateFMul(L: Num, R: Recip); |
992 | } |
993 | |
994 | Value *Recip = emitRcpIEEE1ULP(Builder, Src: Den, IsNegative: false); |
995 | return Builder.CreateFMul(L: Num, R: Recip); |
996 | } |
997 | |
998 | return nullptr; |
999 | } |
1000 | |
1001 | // optimize with fdiv.fast: |
1002 | // |
1003 | // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. |
1004 | // |
1005 | // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. |
1006 | // |
1007 | // NOTE: optimizeWithRcp should be tried first because rcp is the preference. |
1008 | Value *AMDGPUCodeGenPrepareImpl::optimizeWithFDivFast( |
1009 | IRBuilder<> &Builder, Value *Num, Value *Den, float ReqdAccuracy) const { |
1010 | // fdiv.fast can achieve 2.5 ULP accuracy. |
1011 | if (ReqdAccuracy < 2.5f) |
1012 | return nullptr; |
1013 | |
1014 | // Only have fdiv.fast for f32. |
1015 | assert(Den->getType()->isFloatTy()); |
1016 | |
1017 | bool NumIsOne = false; |
1018 | if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Val: Num)) { |
1019 | if (CNum->isExactlyValue(V: +1.0) || CNum->isExactlyValue(V: -1.0)) |
1020 | NumIsOne = true; |
1021 | } |
1022 | |
1023 | // fdiv does not support denormals. But 1.0/x is always fine to use it. |
1024 | // |
1025 | // TODO: This works for any value with a specific known exponent range, don't |
1026 | // just limit to constant 1. |
1027 | if (!HasFP32DenormalFlush && !NumIsOne) |
1028 | return nullptr; |
1029 | |
1030 | return Builder.CreateIntrinsic(ID: Intrinsic::amdgcn_fdiv_fast, Types: {}, Args: {Num, Den}); |
1031 | } |
1032 | |
1033 | Value *AMDGPUCodeGenPrepareImpl::visitFDivElement( |
1034 | IRBuilder<> &Builder, Value *Num, Value *Den, FastMathFlags DivFMF, |
1035 | FastMathFlags SqrtFMF, Value *RsqOp, const Instruction *FDivInst, |
1036 | float ReqdDivAccuracy) const { |
1037 | if (RsqOp) { |
1038 | Value *Rsq = |
1039 | optimizeWithRsq(Builder, Num, Den: RsqOp, DivFMF, SqrtFMF, CtxI: FDivInst); |
1040 | if (Rsq) |
1041 | return Rsq; |
1042 | } |
1043 | |
1044 | Value *Rcp = optimizeWithRcp(Builder, Num, Den, FMF: DivFMF, CtxI: FDivInst); |
1045 | if (Rcp) |
1046 | return Rcp; |
1047 | |
1048 | // In the basic case fdiv_fast has the same instruction count as the frexp div |
1049 | // expansion. Slightly prefer fdiv_fast since it ends in an fmul that can |
1050 | // potentially be fused into a user. Also, materialization of the constants |
1051 | // can be reused for multiple instances. |
1052 | Value *FDivFast = optimizeWithFDivFast(Builder, Num, Den, ReqdAccuracy: ReqdDivAccuracy); |
1053 | if (FDivFast) |
1054 | return FDivFast; |
1055 | |
1056 | return emitFrexpDiv(Builder, LHS: Num, RHS: Den, FMF: DivFMF); |
1057 | } |
1058 | |
1059 | // Optimizations is performed based on fpmath, fast math flags as well as |
1060 | // denormals to optimize fdiv with either rcp or fdiv.fast. |
1061 | // |
1062 | // With rcp: |
1063 | // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is |
1064 | // allowed with unsafe-fp-math or afn. |
1065 | // |
1066 | // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. |
1067 | // |
1068 | // With fdiv.fast: |
1069 | // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. |
1070 | // |
1071 | // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. |
1072 | // |
1073 | // NOTE: rcp is the preference in cases that both are legal. |
1074 | bool AMDGPUCodeGenPrepareImpl::visitFDiv(BinaryOperator &FDiv) { |
1075 | if (DisableFDivExpand) |
1076 | return false; |
1077 | |
1078 | Type *Ty = FDiv.getType()->getScalarType(); |
1079 | if (!Ty->isFloatTy()) |
1080 | return false; |
1081 | |
1082 | // The f64 rcp/rsq approximations are pretty inaccurate. We can do an |
1083 | // expansion around them in codegen. f16 is good enough to always use. |
1084 | |
1085 | const FPMathOperator *FPOp = cast<const FPMathOperator>(Val: &FDiv); |
1086 | const FastMathFlags DivFMF = FPOp->getFastMathFlags(); |
1087 | const float ReqdAccuracy = FPOp->getFPAccuracy(); |
1088 | |
1089 | FastMathFlags SqrtFMF; |
1090 | |
1091 | Value *Num = FDiv.getOperand(i_nocapture: 0); |
1092 | Value *Den = FDiv.getOperand(i_nocapture: 1); |
1093 | |
1094 | Value *RsqOp = nullptr; |
1095 | auto *DenII = dyn_cast<IntrinsicInst>(Val: Den); |
1096 | if (DenII && DenII->getIntrinsicID() == Intrinsic::sqrt && |
1097 | DenII->hasOneUse()) { |
1098 | const auto *SqrtOp = cast<FPMathOperator>(Val: DenII); |
1099 | SqrtFMF = SqrtOp->getFastMathFlags(); |
1100 | if (canOptimizeWithRsq(SqrtOp, DivFMF, SqrtFMF)) |
1101 | RsqOp = SqrtOp->getOperand(i: 0); |
1102 | } |
1103 | |
1104 | // Inaccurate rcp is allowed with unsafe-fp-math or afn. |
1105 | // |
1106 | // Defer to codegen to handle this. |
1107 | // |
1108 | // TODO: Decide on an interpretation for interactions between afn + arcp + |
1109 | // !fpmath, and make it consistent between here and codegen. For now, defer |
1110 | // expansion of afn to codegen. The current interpretation is so aggressive we |
1111 | // don't need any pre-consideration here when we have better information. A |
1112 | // more conservative interpretation could use handling here. |
1113 | const bool AllowInaccurateRcp = HasUnsafeFPMath || DivFMF.approxFunc(); |
1114 | if (!RsqOp && AllowInaccurateRcp) |
1115 | return false; |
1116 | |
1117 | // Defer the correct implementations to codegen. |
1118 | if (ReqdAccuracy < 1.0f) |
1119 | return false; |
1120 | |
1121 | IRBuilder<> Builder(FDiv.getParent(), std::next(x: FDiv.getIterator())); |
1122 | Builder.setFastMathFlags(DivFMF); |
1123 | Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); |
1124 | |
1125 | SmallVector<Value *, 4> NumVals; |
1126 | SmallVector<Value *, 4> DenVals; |
1127 | SmallVector<Value *, 4> RsqDenVals; |
1128 | extractValues(Builder, Values&: NumVals, V: Num); |
1129 | extractValues(Builder, Values&: DenVals, V: Den); |
1130 | |
1131 | if (RsqOp) |
1132 | extractValues(Builder, Values&: RsqDenVals, V: RsqOp); |
1133 | |
1134 | SmallVector<Value *, 4> ResultVals(NumVals.size()); |
1135 | for (int I = 0, E = NumVals.size(); I != E; ++I) { |
1136 | Value *NumElt = NumVals[I]; |
1137 | Value *DenElt = DenVals[I]; |
1138 | Value *RsqDenElt = RsqOp ? RsqDenVals[I] : nullptr; |
1139 | |
1140 | Value *NewElt = |
1141 | visitFDivElement(Builder, Num: NumElt, Den: DenElt, DivFMF, SqrtFMF, RsqOp: RsqDenElt, |
1142 | FDivInst: cast<Instruction>(Val: FPOp), ReqdDivAccuracy: ReqdAccuracy); |
1143 | if (!NewElt) { |
1144 | // Keep the original, but scalarized. |
1145 | |
1146 | // This has the unfortunate side effect of sometimes scalarizing when |
1147 | // we're not going to do anything. |
1148 | NewElt = Builder.CreateFDiv(L: NumElt, R: DenElt); |
1149 | if (auto *NewEltInst = dyn_cast<Instruction>(Val: NewElt)) |
1150 | NewEltInst->copyMetadata(SrcInst: FDiv); |
1151 | } |
1152 | |
1153 | ResultVals[I] = NewElt; |
1154 | } |
1155 | |
1156 | Value *NewVal = insertValues(Builder, Ty: FDiv.getType(), Values&: ResultVals); |
1157 | |
1158 | if (NewVal) { |
1159 | FDiv.replaceAllUsesWith(V: NewVal); |
1160 | NewVal->takeName(V: &FDiv); |
1161 | RecursivelyDeleteTriviallyDeadInstructions(V: &FDiv, TLI: TLInfo); |
1162 | } |
1163 | |
1164 | return true; |
1165 | } |
1166 | |
1167 | static bool hasUnsafeFPMath(const Function &F) { |
1168 | Attribute Attr = F.getFnAttribute(Kind: "unsafe-fp-math" ); |
1169 | return Attr.getValueAsBool(); |
1170 | } |
1171 | |
1172 | static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, |
1173 | Value *LHS, Value *RHS) { |
1174 | Type *I32Ty = Builder.getInt32Ty(); |
1175 | Type *I64Ty = Builder.getInt64Ty(); |
1176 | |
1177 | Value *LHS_EXT64 = Builder.CreateZExt(V: LHS, DestTy: I64Ty); |
1178 | Value *RHS_EXT64 = Builder.CreateZExt(V: RHS, DestTy: I64Ty); |
1179 | Value *MUL64 = Builder.CreateMul(LHS: LHS_EXT64, RHS: RHS_EXT64); |
1180 | Value *Lo = Builder.CreateTrunc(V: MUL64, DestTy: I32Ty); |
1181 | Value *Hi = Builder.CreateLShr(LHS: MUL64, RHS: Builder.getInt64(C: 32)); |
1182 | Hi = Builder.CreateTrunc(V: Hi, DestTy: I32Ty); |
1183 | return std::pair(Lo, Hi); |
1184 | } |
1185 | |
1186 | static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { |
1187 | return getMul64(Builder, LHS, RHS).second; |
1188 | } |
1189 | |
1190 | /// Figure out how many bits are really needed for this division. \p AtLeast is |
1191 | /// an optimization hint to bypass the second ComputeNumSignBits call if we the |
1192 | /// first one is insufficient. Returns -1 on failure. |
1193 | int AMDGPUCodeGenPrepareImpl::getDivNumBits(BinaryOperator &I, Value *Num, |
1194 | Value *Den, unsigned AtLeast, |
1195 | bool IsSigned) const { |
1196 | const DataLayout &DL = Mod->getDataLayout(); |
1197 | unsigned LHSSignBits = ComputeNumSignBits(Op: Num, DL, Depth: 0, AC, CxtI: &I); |
1198 | if (LHSSignBits < AtLeast) |
1199 | return -1; |
1200 | |
1201 | unsigned RHSSignBits = ComputeNumSignBits(Op: Den, DL, Depth: 0, AC, CxtI: &I); |
1202 | if (RHSSignBits < AtLeast) |
1203 | return -1; |
1204 | |
1205 | unsigned SignBits = std::min(a: LHSSignBits, b: RHSSignBits); |
1206 | unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits; |
1207 | if (IsSigned) |
1208 | ++DivBits; |
1209 | return DivBits; |
1210 | } |
1211 | |
1212 | // The fractional part of a float is enough to accurately represent up to |
1213 | // a 24-bit signed integer. |
1214 | Value *AMDGPUCodeGenPrepareImpl::expandDivRem24(IRBuilder<> &Builder, |
1215 | BinaryOperator &I, Value *Num, |
1216 | Value *Den, bool IsDiv, |
1217 | bool IsSigned) const { |
1218 | unsigned SSBits = Num->getType()->getScalarSizeInBits(); |
1219 | // If Num bits <= 24, assume 0 signbits. |
1220 | unsigned AtLeast = (SSBits <= 24) ? 0 : (SSBits - 24 + IsSigned); |
1221 | int DivBits = getDivNumBits(I, Num, Den, AtLeast, IsSigned); |
1222 | if (DivBits == -1) |
1223 | return nullptr; |
1224 | return expandDivRem24Impl(Builder, I, Num, Den, NumBits: DivBits, IsDiv, IsSigned); |
1225 | } |
1226 | |
1227 | Value *AMDGPUCodeGenPrepareImpl::expandDivRem24Impl( |
1228 | IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den, |
1229 | unsigned DivBits, bool IsDiv, bool IsSigned) const { |
1230 | Type *I32Ty = Builder.getInt32Ty(); |
1231 | Num = Builder.CreateTrunc(V: Num, DestTy: I32Ty); |
1232 | Den = Builder.CreateTrunc(V: Den, DestTy: I32Ty); |
1233 | |
1234 | Type *F32Ty = Builder.getFloatTy(); |
1235 | ConstantInt *One = Builder.getInt32(C: 1); |
1236 | Value *JQ = One; |
1237 | |
1238 | if (IsSigned) { |
1239 | // char|short jq = ia ^ ib; |
1240 | JQ = Builder.CreateXor(LHS: Num, RHS: Den); |
1241 | |
1242 | // jq = jq >> (bitsize - 2) |
1243 | JQ = Builder.CreateAShr(LHS: JQ, RHS: Builder.getInt32(C: 30)); |
1244 | |
1245 | // jq = jq | 0x1 |
1246 | JQ = Builder.CreateOr(LHS: JQ, RHS: One); |
1247 | } |
1248 | |
1249 | // int ia = (int)LHS; |
1250 | Value *IA = Num; |
1251 | |
1252 | // int ib, (int)RHS; |
1253 | Value *IB = Den; |
1254 | |
1255 | // float fa = (float)ia; |
1256 | Value *FA = IsSigned ? Builder.CreateSIToFP(V: IA, DestTy: F32Ty) |
1257 | : Builder.CreateUIToFP(V: IA, DestTy: F32Ty); |
1258 | |
1259 | // float fb = (float)ib; |
1260 | Value *FB = IsSigned ? Builder.CreateSIToFP(V: IB,DestTy: F32Ty) |
1261 | : Builder.CreateUIToFP(V: IB,DestTy: F32Ty); |
1262 | |
1263 | Function *RcpDecl = Intrinsic::getDeclaration(M: Mod, id: Intrinsic::amdgcn_rcp, |
1264 | Tys: Builder.getFloatTy()); |
1265 | Value *RCP = Builder.CreateCall(Callee: RcpDecl, Args: { FB }); |
1266 | Value *FQM = Builder.CreateFMul(L: FA, R: RCP); |
1267 | |
1268 | // fq = trunc(fqm); |
1269 | CallInst *FQ = Builder.CreateUnaryIntrinsic(ID: Intrinsic::trunc, V: FQM); |
1270 | FQ->copyFastMathFlags(FMF: Builder.getFastMathFlags()); |
1271 | |
1272 | // float fqneg = -fq; |
1273 | Value *FQNeg = Builder.CreateFNeg(V: FQ); |
1274 | |
1275 | // float fr = mad(fqneg, fb, fa); |
1276 | auto FMAD = !ST->hasMadMacF32Insts() |
1277 | ? Intrinsic::fma |
1278 | : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz; |
1279 | Value *FR = Builder.CreateIntrinsic(ID: FMAD, |
1280 | Types: {FQNeg->getType()}, Args: {FQNeg, FB, FA}, FMFSource: FQ); |
1281 | |
1282 | // int iq = (int)fq; |
1283 | Value *IQ = IsSigned ? Builder.CreateFPToSI(V: FQ, DestTy: I32Ty) |
1284 | : Builder.CreateFPToUI(V: FQ, DestTy: I32Ty); |
1285 | |
1286 | // fr = fabs(fr); |
1287 | FR = Builder.CreateUnaryIntrinsic(ID: Intrinsic::fabs, V: FR, FMFSource: FQ); |
1288 | |
1289 | // fb = fabs(fb); |
1290 | FB = Builder.CreateUnaryIntrinsic(ID: Intrinsic::fabs, V: FB, FMFSource: FQ); |
1291 | |
1292 | // int cv = fr >= fb; |
1293 | Value *CV = Builder.CreateFCmpOGE(LHS: FR, RHS: FB); |
1294 | |
1295 | // jq = (cv ? jq : 0); |
1296 | JQ = Builder.CreateSelect(C: CV, True: JQ, False: Builder.getInt32(C: 0)); |
1297 | |
1298 | // dst = iq + jq; |
1299 | Value *Div = Builder.CreateAdd(LHS: IQ, RHS: JQ); |
1300 | |
1301 | Value *Res = Div; |
1302 | if (!IsDiv) { |
1303 | // Rem needs compensation, it's easier to recompute it |
1304 | Value *Rem = Builder.CreateMul(LHS: Div, RHS: Den); |
1305 | Res = Builder.CreateSub(LHS: Num, RHS: Rem); |
1306 | } |
1307 | |
1308 | if (DivBits != 0 && DivBits < 32) { |
1309 | // Extend in register from the number of bits this divide really is. |
1310 | if (IsSigned) { |
1311 | int InRegBits = 32 - DivBits; |
1312 | |
1313 | Res = Builder.CreateShl(LHS: Res, RHS: InRegBits); |
1314 | Res = Builder.CreateAShr(LHS: Res, RHS: InRegBits); |
1315 | } else { |
1316 | ConstantInt *TruncMask |
1317 | = Builder.getInt32(C: (UINT64_C(1) << DivBits) - 1); |
1318 | Res = Builder.CreateAnd(LHS: Res, RHS: TruncMask); |
1319 | } |
1320 | } |
1321 | |
1322 | return Res; |
1323 | } |
1324 | |
1325 | // Try to recognize special cases the DAG will emit special, better expansions |
1326 | // than the general expansion we do here. |
1327 | |
1328 | // TODO: It would be better to just directly handle those optimizations here. |
1329 | bool AMDGPUCodeGenPrepareImpl::divHasSpecialOptimization(BinaryOperator &I, |
1330 | Value *Num, |
1331 | Value *Den) const { |
1332 | if (Constant *C = dyn_cast<Constant>(Val: Den)) { |
1333 | // Arbitrary constants get a better expansion as long as a wider mulhi is |
1334 | // legal. |
1335 | if (C->getType()->getScalarSizeInBits() <= 32) |
1336 | return true; |
1337 | |
1338 | // TODO: Sdiv check for not exact for some reason. |
1339 | |
1340 | // If there's no wider mulhi, there's only a better expansion for powers of |
1341 | // two. |
1342 | // TODO: Should really know for each vector element. |
1343 | if (isKnownToBeAPowerOfTwo(V: C, DL: *DL, OrZero: true, Depth: 0, AC, CxtI: &I, DT)) |
1344 | return true; |
1345 | |
1346 | return false; |
1347 | } |
1348 | |
1349 | if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Val: Den)) { |
1350 | // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 |
1351 | if (BinOpDen->getOpcode() == Instruction::Shl && |
1352 | isa<Constant>(Val: BinOpDen->getOperand(i_nocapture: 0)) && |
1353 | isKnownToBeAPowerOfTwo(V: BinOpDen->getOperand(i_nocapture: 0), DL: *DL, OrZero: true, |
1354 | Depth: 0, AC, CxtI: &I, DT)) { |
1355 | return true; |
1356 | } |
1357 | } |
1358 | |
1359 | return false; |
1360 | } |
1361 | |
1362 | static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) { |
1363 | // Check whether the sign can be determined statically. |
1364 | KnownBits Known = computeKnownBits(V, DL: *DL); |
1365 | if (Known.isNegative()) |
1366 | return Constant::getAllOnesValue(Ty: V->getType()); |
1367 | if (Known.isNonNegative()) |
1368 | return Constant::getNullValue(Ty: V->getType()); |
1369 | return Builder.CreateAShr(LHS: V, RHS: Builder.getInt32(C: 31)); |
1370 | } |
1371 | |
1372 | Value *AMDGPUCodeGenPrepareImpl::expandDivRem32(IRBuilder<> &Builder, |
1373 | BinaryOperator &I, Value *X, |
1374 | Value *Y) const { |
1375 | Instruction::BinaryOps Opc = I.getOpcode(); |
1376 | assert(Opc == Instruction::URem || Opc == Instruction::UDiv || |
1377 | Opc == Instruction::SRem || Opc == Instruction::SDiv); |
1378 | |
1379 | FastMathFlags FMF; |
1380 | FMF.setFast(); |
1381 | Builder.setFastMathFlags(FMF); |
1382 | |
1383 | if (divHasSpecialOptimization(I, Num: X, Den: Y)) |
1384 | return nullptr; // Keep it for later optimization. |
1385 | |
1386 | bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; |
1387 | bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; |
1388 | |
1389 | Type *Ty = X->getType(); |
1390 | Type *I32Ty = Builder.getInt32Ty(); |
1391 | Type *F32Ty = Builder.getFloatTy(); |
1392 | |
1393 | if (Ty->getScalarSizeInBits() != 32) { |
1394 | if (IsSigned) { |
1395 | X = Builder.CreateSExtOrTrunc(V: X, DestTy: I32Ty); |
1396 | Y = Builder.CreateSExtOrTrunc(V: Y, DestTy: I32Ty); |
1397 | } else { |
1398 | X = Builder.CreateZExtOrTrunc(V: X, DestTy: I32Ty); |
1399 | Y = Builder.CreateZExtOrTrunc(V: Y, DestTy: I32Ty); |
1400 | } |
1401 | } |
1402 | |
1403 | if (Value *Res = expandDivRem24(Builder, I, Num: X, Den: Y, IsDiv, IsSigned)) { |
1404 | return IsSigned ? Builder.CreateSExtOrTrunc(V: Res, DestTy: Ty) : |
1405 | Builder.CreateZExtOrTrunc(V: Res, DestTy: Ty); |
1406 | } |
1407 | |
1408 | ConstantInt *Zero = Builder.getInt32(C: 0); |
1409 | ConstantInt *One = Builder.getInt32(C: 1); |
1410 | |
1411 | Value *Sign = nullptr; |
1412 | if (IsSigned) { |
1413 | Value *SignX = getSign32(V: X, Builder, DL); |
1414 | Value *SignY = getSign32(V: Y, Builder, DL); |
1415 | // Remainder sign is the same as LHS |
1416 | Sign = IsDiv ? Builder.CreateXor(LHS: SignX, RHS: SignY) : SignX; |
1417 | |
1418 | X = Builder.CreateAdd(LHS: X, RHS: SignX); |
1419 | Y = Builder.CreateAdd(LHS: Y, RHS: SignY); |
1420 | |
1421 | X = Builder.CreateXor(LHS: X, RHS: SignX); |
1422 | Y = Builder.CreateXor(LHS: Y, RHS: SignY); |
1423 | } |
1424 | |
1425 | // The algorithm here is based on ideas from "Software Integer Division", Tom |
1426 | // Rodeheffer, August 2008. |
1427 | // |
1428 | // unsigned udiv(unsigned x, unsigned y) { |
1429 | // // Initial estimate of inv(y). The constant is less than 2^32 to ensure |
1430 | // // that this is a lower bound on inv(y), even if some of the calculations |
1431 | // // round up. |
1432 | // unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y)); |
1433 | // |
1434 | // // One round of UNR (Unsigned integer Newton-Raphson) to improve z. |
1435 | // // Empirically this is guaranteed to give a "two-y" lower bound on |
1436 | // // inv(y). |
1437 | // z += umulh(z, -y * z); |
1438 | // |
1439 | // // Quotient/remainder estimate. |
1440 | // unsigned q = umulh(x, z); |
1441 | // unsigned r = x - q * y; |
1442 | // |
1443 | // // Two rounds of quotient/remainder refinement. |
1444 | // if (r >= y) { |
1445 | // ++q; |
1446 | // r -= y; |
1447 | // } |
1448 | // if (r >= y) { |
1449 | // ++q; |
1450 | // r -= y; |
1451 | // } |
1452 | // |
1453 | // return q; |
1454 | // } |
1455 | |
1456 | // Initial estimate of inv(y). |
1457 | Value *FloatY = Builder.CreateUIToFP(V: Y, DestTy: F32Ty); |
1458 | Function *Rcp = Intrinsic::getDeclaration(M: Mod, id: Intrinsic::amdgcn_rcp, Tys: F32Ty); |
1459 | Value *RcpY = Builder.CreateCall(Callee: Rcp, Args: {FloatY}); |
1460 | Constant *Scale = ConstantFP::get(Ty: F32Ty, V: llvm::bit_cast<float>(from: 0x4F7FFFFE)); |
1461 | Value *ScaledY = Builder.CreateFMul(L: RcpY, R: Scale); |
1462 | Value *Z = Builder.CreateFPToUI(V: ScaledY, DestTy: I32Ty); |
1463 | |
1464 | // One round of UNR. |
1465 | Value *NegY = Builder.CreateSub(LHS: Zero, RHS: Y); |
1466 | Value *NegYZ = Builder.CreateMul(LHS: NegY, RHS: Z); |
1467 | Z = Builder.CreateAdd(LHS: Z, RHS: getMulHu(Builder, LHS: Z, RHS: NegYZ)); |
1468 | |
1469 | // Quotient/remainder estimate. |
1470 | Value *Q = getMulHu(Builder, LHS: X, RHS: Z); |
1471 | Value *R = Builder.CreateSub(LHS: X, RHS: Builder.CreateMul(LHS: Q, RHS: Y)); |
1472 | |
1473 | // First quotient/remainder refinement. |
1474 | Value *Cond = Builder.CreateICmpUGE(LHS: R, RHS: Y); |
1475 | if (IsDiv) |
1476 | Q = Builder.CreateSelect(C: Cond, True: Builder.CreateAdd(LHS: Q, RHS: One), False: Q); |
1477 | R = Builder.CreateSelect(C: Cond, True: Builder.CreateSub(LHS: R, RHS: Y), False: R); |
1478 | |
1479 | // Second quotient/remainder refinement. |
1480 | Cond = Builder.CreateICmpUGE(LHS: R, RHS: Y); |
1481 | Value *Res; |
1482 | if (IsDiv) |
1483 | Res = Builder.CreateSelect(C: Cond, True: Builder.CreateAdd(LHS: Q, RHS: One), False: Q); |
1484 | else |
1485 | Res = Builder.CreateSelect(C: Cond, True: Builder.CreateSub(LHS: R, RHS: Y), False: R); |
1486 | |
1487 | if (IsSigned) { |
1488 | Res = Builder.CreateXor(LHS: Res, RHS: Sign); |
1489 | Res = Builder.CreateSub(LHS: Res, RHS: Sign); |
1490 | Res = Builder.CreateSExtOrTrunc(V: Res, DestTy: Ty); |
1491 | } else { |
1492 | Res = Builder.CreateZExtOrTrunc(V: Res, DestTy: Ty); |
1493 | } |
1494 | return Res; |
1495 | } |
1496 | |
1497 | Value *AMDGPUCodeGenPrepareImpl::shrinkDivRem64(IRBuilder<> &Builder, |
1498 | BinaryOperator &I, Value *Num, |
1499 | Value *Den) const { |
1500 | if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den)) |
1501 | return nullptr; // Keep it for later optimization. |
1502 | |
1503 | Instruction::BinaryOps Opc = I.getOpcode(); |
1504 | |
1505 | bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv; |
1506 | bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem; |
1507 | |
1508 | int NumDivBits = getDivNumBits(I, Num, Den, AtLeast: 32, IsSigned); |
1509 | if (NumDivBits == -1) |
1510 | return nullptr; |
1511 | |
1512 | Value *Narrowed = nullptr; |
1513 | if (NumDivBits <= 24) { |
1514 | Narrowed = expandDivRem24Impl(Builder, I, Num, Den, DivBits: NumDivBits, |
1515 | IsDiv, IsSigned); |
1516 | } else if (NumDivBits <= 32) { |
1517 | Narrowed = expandDivRem32(Builder, I, X: Num, Y: Den); |
1518 | } |
1519 | |
1520 | if (Narrowed) { |
1521 | return IsSigned ? Builder.CreateSExt(V: Narrowed, DestTy: Num->getType()) : |
1522 | Builder.CreateZExt(V: Narrowed, DestTy: Num->getType()); |
1523 | } |
1524 | |
1525 | return nullptr; |
1526 | } |
1527 | |
1528 | void AMDGPUCodeGenPrepareImpl::expandDivRem64(BinaryOperator &I) const { |
1529 | Instruction::BinaryOps Opc = I.getOpcode(); |
1530 | // Do the general expansion. |
1531 | if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) { |
1532 | expandDivisionUpTo64Bits(Div: &I); |
1533 | return; |
1534 | } |
1535 | |
1536 | if (Opc == Instruction::URem || Opc == Instruction::SRem) { |
1537 | expandRemainderUpTo64Bits(Rem: &I); |
1538 | return; |
1539 | } |
1540 | |
1541 | llvm_unreachable("not a division" ); |
1542 | } |
1543 | |
1544 | bool AMDGPUCodeGenPrepareImpl::visitBinaryOperator(BinaryOperator &I) { |
1545 | if (foldBinOpIntoSelect(BO&: I)) |
1546 | return true; |
1547 | |
1548 | if (ST->has16BitInsts() && needsPromotionToI32(T: I.getType()) && |
1549 | UA->isUniform(I: &I) && promoteUniformOpToI32(I)) |
1550 | return true; |
1551 | |
1552 | if (UseMul24Intrin && replaceMulWithMul24(I)) |
1553 | return true; |
1554 | |
1555 | bool Changed = false; |
1556 | Instruction::BinaryOps Opc = I.getOpcode(); |
1557 | Type *Ty = I.getType(); |
1558 | Value *NewDiv = nullptr; |
1559 | unsigned ScalarSize = Ty->getScalarSizeInBits(); |
1560 | |
1561 | SmallVector<BinaryOperator *, 8> Div64ToExpand; |
1562 | |
1563 | if ((Opc == Instruction::URem || Opc == Instruction::UDiv || |
1564 | Opc == Instruction::SRem || Opc == Instruction::SDiv) && |
1565 | ScalarSize <= 64 && |
1566 | !DisableIDivExpand) { |
1567 | Value *Num = I.getOperand(i_nocapture: 0); |
1568 | Value *Den = I.getOperand(i_nocapture: 1); |
1569 | IRBuilder<> Builder(&I); |
1570 | Builder.SetCurrentDebugLocation(I.getDebugLoc()); |
1571 | |
1572 | if (auto *VT = dyn_cast<FixedVectorType>(Val: Ty)) { |
1573 | NewDiv = PoisonValue::get(T: VT); |
1574 | |
1575 | for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { |
1576 | Value *NumEltN = Builder.CreateExtractElement(Vec: Num, Idx: N); |
1577 | Value *DenEltN = Builder.CreateExtractElement(Vec: Den, Idx: N); |
1578 | |
1579 | Value *NewElt; |
1580 | if (ScalarSize <= 32) { |
1581 | NewElt = expandDivRem32(Builder, I, X: NumEltN, Y: DenEltN); |
1582 | if (!NewElt) |
1583 | NewElt = Builder.CreateBinOp(Opc, LHS: NumEltN, RHS: DenEltN); |
1584 | } else { |
1585 | // See if this 64-bit division can be shrunk to 32/24-bits before |
1586 | // producing the general expansion. |
1587 | NewElt = shrinkDivRem64(Builder, I, Num: NumEltN, Den: DenEltN); |
1588 | if (!NewElt) { |
1589 | // The general 64-bit expansion introduces control flow and doesn't |
1590 | // return the new value. Just insert a scalar copy and defer |
1591 | // expanding it. |
1592 | NewElt = Builder.CreateBinOp(Opc, LHS: NumEltN, RHS: DenEltN); |
1593 | Div64ToExpand.push_back(Elt: cast<BinaryOperator>(Val: NewElt)); |
1594 | } |
1595 | } |
1596 | |
1597 | if (auto *NewEltI = dyn_cast<Instruction>(Val: NewElt)) |
1598 | NewEltI->copyIRFlags(V: &I); |
1599 | |
1600 | NewDiv = Builder.CreateInsertElement(Vec: NewDiv, NewElt, Idx: N); |
1601 | } |
1602 | } else { |
1603 | if (ScalarSize <= 32) |
1604 | NewDiv = expandDivRem32(Builder, I, X: Num, Y: Den); |
1605 | else { |
1606 | NewDiv = shrinkDivRem64(Builder, I, Num, Den); |
1607 | if (!NewDiv) |
1608 | Div64ToExpand.push_back(Elt: &I); |
1609 | } |
1610 | } |
1611 | |
1612 | if (NewDiv) { |
1613 | I.replaceAllUsesWith(V: NewDiv); |
1614 | I.eraseFromParent(); |
1615 | Changed = true; |
1616 | } |
1617 | } |
1618 | |
1619 | if (ExpandDiv64InIR) { |
1620 | // TODO: We get much worse code in specially handled constant cases. |
1621 | for (BinaryOperator *Div : Div64ToExpand) { |
1622 | expandDivRem64(I&: *Div); |
1623 | FlowChanged = true; |
1624 | Changed = true; |
1625 | } |
1626 | } |
1627 | |
1628 | return Changed; |
1629 | } |
1630 | |
1631 | bool AMDGPUCodeGenPrepareImpl::visitLoadInst(LoadInst &I) { |
1632 | if (!WidenLoads) |
1633 | return false; |
1634 | |
1635 | if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || |
1636 | I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && |
1637 | canWidenScalarExtLoad(I)) { |
1638 | IRBuilder<> Builder(&I); |
1639 | Builder.SetCurrentDebugLocation(I.getDebugLoc()); |
1640 | |
1641 | Type *I32Ty = Builder.getInt32Ty(); |
1642 | LoadInst *WidenLoad = Builder.CreateLoad(Ty: I32Ty, Ptr: I.getPointerOperand()); |
1643 | WidenLoad->copyMetadata(SrcInst: I); |
1644 | |
1645 | // If we have range metadata, we need to convert the type, and not make |
1646 | // assumptions about the high bits. |
1647 | if (auto *Range = WidenLoad->getMetadata(KindID: LLVMContext::MD_range)) { |
1648 | ConstantInt *Lower = |
1649 | mdconst::extract<ConstantInt>(MD: Range->getOperand(I: 0)); |
1650 | |
1651 | if (Lower->isNullValue()) { |
1652 | WidenLoad->setMetadata(KindID: LLVMContext::MD_range, Node: nullptr); |
1653 | } else { |
1654 | Metadata *LowAndHigh[] = { |
1655 | ConstantAsMetadata::get(C: ConstantInt::get(Ty: I32Ty, V: Lower->getValue().zext(width: 32))), |
1656 | // Don't make assumptions about the high bits. |
1657 | ConstantAsMetadata::get(C: ConstantInt::get(Ty: I32Ty, V: 0)) |
1658 | }; |
1659 | |
1660 | WidenLoad->setMetadata(KindID: LLVMContext::MD_range, |
1661 | Node: MDNode::get(Context&: Mod->getContext(), MDs: LowAndHigh)); |
1662 | } |
1663 | } |
1664 | |
1665 | int TySize = Mod->getDataLayout().getTypeSizeInBits(Ty: I.getType()); |
1666 | Type *IntNTy = Builder.getIntNTy(N: TySize); |
1667 | Value *ValTrunc = Builder.CreateTrunc(V: WidenLoad, DestTy: IntNTy); |
1668 | Value *ValOrig = Builder.CreateBitCast(V: ValTrunc, DestTy: I.getType()); |
1669 | I.replaceAllUsesWith(V: ValOrig); |
1670 | I.eraseFromParent(); |
1671 | return true; |
1672 | } |
1673 | |
1674 | return false; |
1675 | } |
1676 | |
1677 | bool AMDGPUCodeGenPrepareImpl::visitICmpInst(ICmpInst &I) { |
1678 | bool Changed = false; |
1679 | |
1680 | if (ST->has16BitInsts() && needsPromotionToI32(T: I.getOperand(i_nocapture: 0)->getType()) && |
1681 | UA->isUniform(I: &I)) |
1682 | Changed |= promoteUniformOpToI32(I); |
1683 | |
1684 | return Changed; |
1685 | } |
1686 | |
1687 | bool AMDGPUCodeGenPrepareImpl::visitSelectInst(SelectInst &I) { |
1688 | Value *Cond = I.getCondition(); |
1689 | Value *TrueVal = I.getTrueValue(); |
1690 | Value *FalseVal = I.getFalseValue(); |
1691 | Value *CmpVal; |
1692 | FCmpInst::Predicate Pred; |
1693 | |
1694 | if (ST->has16BitInsts() && needsPromotionToI32(T: I.getType())) { |
1695 | if (UA->isUniform(I: &I)) |
1696 | return promoteUniformOpToI32(I); |
1697 | return false; |
1698 | } |
1699 | |
1700 | // Match fract pattern with nan check. |
1701 | if (!match(V: Cond, P: m_FCmp(Pred, L: m_Value(V&: CmpVal), R: m_NonNaN()))) |
1702 | return false; |
1703 | |
1704 | FPMathOperator *FPOp = dyn_cast<FPMathOperator>(Val: &I); |
1705 | if (!FPOp) |
1706 | return false; |
1707 | |
1708 | IRBuilder<> Builder(&I); |
1709 | Builder.setFastMathFlags(FPOp->getFastMathFlags()); |
1710 | |
1711 | auto *IITrue = dyn_cast<IntrinsicInst>(Val: TrueVal); |
1712 | auto *IIFalse = dyn_cast<IntrinsicInst>(Val: FalseVal); |
1713 | |
1714 | Value *Fract = nullptr; |
1715 | if (Pred == FCmpInst::FCMP_UNO && TrueVal == CmpVal && IIFalse && |
1716 | CmpVal == matchFractPat(I&: *IIFalse)) { |
1717 | // isnan(x) ? x : fract(x) |
1718 | Fract = applyFractPat(Builder, FractArg: CmpVal); |
1719 | } else if (Pred == FCmpInst::FCMP_ORD && FalseVal == CmpVal && IITrue && |
1720 | CmpVal == matchFractPat(I&: *IITrue)) { |
1721 | // !isnan(x) ? fract(x) : x |
1722 | Fract = applyFractPat(Builder, FractArg: CmpVal); |
1723 | } else |
1724 | return false; |
1725 | |
1726 | Fract->takeName(V: &I); |
1727 | I.replaceAllUsesWith(V: Fract); |
1728 | RecursivelyDeleteTriviallyDeadInstructions(V: &I, TLI: TLInfo); |
1729 | return true; |
1730 | } |
1731 | |
1732 | static bool areInSameBB(const Value *A, const Value *B) { |
1733 | const auto *IA = dyn_cast<Instruction>(Val: A); |
1734 | const auto *IB = dyn_cast<Instruction>(Val: B); |
1735 | return IA && IB && IA->getParent() == IB->getParent(); |
1736 | } |
1737 | |
1738 | // Helper for breaking large PHIs that returns true when an extractelement on V |
1739 | // is likely to be folded away by the DAG combiner. |
1740 | static bool isInterestingPHIIncomingValue(const Value *V) { |
1741 | const auto *FVT = dyn_cast<FixedVectorType>(Val: V->getType()); |
1742 | if (!FVT) |
1743 | return false; |
1744 | |
1745 | const Value *CurVal = V; |
1746 | |
1747 | // Check for insertelements, keeping track of the elements covered. |
1748 | BitVector EltsCovered(FVT->getNumElements()); |
1749 | while (const auto *IE = dyn_cast<InsertElementInst>(Val: CurVal)) { |
1750 | const auto *Idx = dyn_cast<ConstantInt>(Val: IE->getOperand(i_nocapture: 2)); |
1751 | |
1752 | // Non constant index/out of bounds index -> folding is unlikely. |
1753 | // The latter is more of a sanity check because canonical IR should just |
1754 | // have replaced those with poison. |
1755 | if (!Idx || Idx->getZExtValue() >= FVT->getNumElements()) |
1756 | return false; |
1757 | |
1758 | const auto *VecSrc = IE->getOperand(i_nocapture: 0); |
1759 | |
1760 | // If the vector source is another instruction, it must be in the same basic |
1761 | // block. Otherwise, the DAGCombiner won't see the whole thing and is |
1762 | // unlikely to be able to do anything interesting here. |
1763 | if (isa<Instruction>(Val: VecSrc) && !areInSameBB(A: VecSrc, B: IE)) |
1764 | return false; |
1765 | |
1766 | CurVal = VecSrc; |
1767 | EltsCovered.set(Idx->getZExtValue()); |
1768 | |
1769 | // All elements covered. |
1770 | if (EltsCovered.all()) |
1771 | return true; |
1772 | } |
1773 | |
1774 | // We either didn't find a single insertelement, or the insertelement chain |
1775 | // ended before all elements were covered. Check for other interesting values. |
1776 | |
1777 | // Constants are always interesting because we can just constant fold the |
1778 | // extractelements. |
1779 | if (isa<Constant>(Val: CurVal)) |
1780 | return true; |
1781 | |
1782 | // shufflevector is likely to be profitable if either operand is a constant, |
1783 | // or if either source is in the same block. |
1784 | // This is because shufflevector is most often lowered as a series of |
1785 | // insert/extract elements anyway. |
1786 | if (const auto *SV = dyn_cast<ShuffleVectorInst>(Val: CurVal)) { |
1787 | return isa<Constant>(Val: SV->getOperand(i_nocapture: 1)) || |
1788 | areInSameBB(A: SV, B: SV->getOperand(i_nocapture: 0)) || |
1789 | areInSameBB(A: SV, B: SV->getOperand(i_nocapture: 1)); |
1790 | } |
1791 | |
1792 | return false; |
1793 | } |
1794 | |
1795 | static void collectPHINodes(const PHINode &I, |
1796 | SmallPtrSet<const PHINode *, 8> &SeenPHIs) { |
1797 | const auto [It, Inserted] = SeenPHIs.insert(Ptr: &I); |
1798 | if (!Inserted) |
1799 | return; |
1800 | |
1801 | for (const Value *Inc : I.incoming_values()) { |
1802 | if (const auto *PhiInc = dyn_cast<PHINode>(Val: Inc)) |
1803 | collectPHINodes(I: *PhiInc, SeenPHIs); |
1804 | } |
1805 | |
1806 | for (const User *U : I.users()) { |
1807 | if (const auto *PhiU = dyn_cast<PHINode>(Val: U)) |
1808 | collectPHINodes(I: *PhiU, SeenPHIs); |
1809 | } |
1810 | } |
1811 | |
1812 | bool AMDGPUCodeGenPrepareImpl::canBreakPHINode(const PHINode &I) { |
1813 | // Check in the cache first. |
1814 | if (const auto It = BreakPhiNodesCache.find(Val: &I); |
1815 | It != BreakPhiNodesCache.end()) |
1816 | return It->second; |
1817 | |
1818 | // We consider PHI nodes as part of "chains", so given a PHI node I, we |
1819 | // recursively consider all its users and incoming values that are also PHI |
1820 | // nodes. We then make a decision about all of those PHIs at once. Either they |
1821 | // all get broken up, or none of them do. That way, we avoid cases where a |
1822 | // single PHI is/is not broken and we end up reforming/exploding a vector |
1823 | // multiple times, or even worse, doing it in a loop. |
1824 | SmallPtrSet<const PHINode *, 8> WorkList; |
1825 | collectPHINodes(I, SeenPHIs&: WorkList); |
1826 | |
1827 | #ifndef NDEBUG |
1828 | // Check that none of the PHI nodes in the worklist are in the map. If some of |
1829 | // them are, it means we're not good enough at collecting related PHIs. |
1830 | for (const PHINode *WLP : WorkList) { |
1831 | assert(BreakPhiNodesCache.count(WLP) == 0); |
1832 | } |
1833 | #endif |
1834 | |
1835 | // To consider a PHI profitable to break, we need to see some interesting |
1836 | // incoming values. At least 2/3rd (rounded up) of all PHIs in the worklist |
1837 | // must have one to consider all PHIs breakable. |
1838 | // |
1839 | // This threshold has been determined through performance testing. |
1840 | // |
1841 | // Note that the computation below is equivalent to |
1842 | // |
1843 | // (unsigned)ceil((K / 3.0) * 2) |
1844 | // |
1845 | // It's simply written this way to avoid mixing integral/FP arithmetic. |
1846 | const auto Threshold = (alignTo(Value: WorkList.size() * 2, Align: 3) / 3); |
1847 | unsigned NumBreakablePHIs = 0; |
1848 | bool CanBreak = false; |
1849 | for (const PHINode *Cur : WorkList) { |
1850 | // Don't break PHIs that have no interesting incoming values. That is, where |
1851 | // there is no clear opportunity to fold the "extractelement" instructions |
1852 | // we would add. |
1853 | // |
1854 | // Note: IC does not run after this pass, so we're only interested in the |
1855 | // foldings that the DAG combiner can do. |
1856 | if (any_of(Range: Cur->incoming_values(), P: isInterestingPHIIncomingValue)) { |
1857 | if (++NumBreakablePHIs >= Threshold) { |
1858 | CanBreak = true; |
1859 | break; |
1860 | } |
1861 | } |
1862 | } |
1863 | |
1864 | for (const PHINode *Cur : WorkList) |
1865 | BreakPhiNodesCache[Cur] = CanBreak; |
1866 | |
1867 | return CanBreak; |
1868 | } |
1869 | |
1870 | /// Helper class for "break large PHIs" (visitPHINode). |
1871 | /// |
1872 | /// This represents a slice of a PHI's incoming value, which is made up of: |
1873 | /// - The type of the slice (Ty) |
1874 | /// - The index in the incoming value's vector where the slice starts (Idx) |
1875 | /// - The number of elements in the slice (NumElts). |
1876 | /// It also keeps track of the NewPHI node inserted for this particular slice. |
1877 | /// |
1878 | /// Slice examples: |
1879 | /// <4 x i64> -> Split into four i64 slices. |
1880 | /// -> [i64, 0, 1], [i64, 1, 1], [i64, 2, 1], [i64, 3, 1] |
1881 | /// <5 x i16> -> Split into 2 <2 x i16> slices + a i16 tail. |
1882 | /// -> [<2 x i16>, 0, 2], [<2 x i16>, 2, 2], [i16, 4, 1] |
1883 | class VectorSlice { |
1884 | public: |
1885 | VectorSlice(Type *Ty, unsigned Idx, unsigned NumElts) |
1886 | : Ty(Ty), Idx(Idx), NumElts(NumElts) {} |
1887 | |
1888 | Type *Ty = nullptr; |
1889 | unsigned Idx = 0; |
1890 | unsigned NumElts = 0; |
1891 | PHINode *NewPHI = nullptr; |
1892 | |
1893 | /// Slice \p Inc according to the information contained within this slice. |
1894 | /// This is cached, so if called multiple times for the same \p BB & \p Inc |
1895 | /// pair, it returns the same Sliced value as well. |
1896 | /// |
1897 | /// Note this *intentionally* does not return the same value for, say, |
1898 | /// [%bb.0, %0] & [%bb.1, %0] as: |
1899 | /// - It could cause issues with dominance (e.g. if bb.1 is seen first, then |
1900 | /// the value in bb.1 may not be reachable from bb.0 if it's its |
1901 | /// predecessor.) |
1902 | /// - We also want to make our extract instructions as local as possible so |
1903 | /// the DAG has better chances of folding them out. Duplicating them like |
1904 | /// that is beneficial in that regard. |
1905 | /// |
1906 | /// This is both a minor optimization to avoid creating duplicate |
1907 | /// instructions, but also a requirement for correctness. It is not forbidden |
1908 | /// for a PHI node to have the same [BB, Val] pair multiple times. If we |
1909 | /// returned a new value each time, those previously identical pairs would all |
1910 | /// have different incoming values (from the same block) and it'd cause a "PHI |
1911 | /// node has multiple entries for the same basic block with different incoming |
1912 | /// values!" verifier error. |
1913 | Value *getSlicedVal(BasicBlock *BB, Value *Inc, StringRef NewValName) { |
1914 | Value *&Res = SlicedVals[{BB, Inc}]; |
1915 | if (Res) |
1916 | return Res; |
1917 | |
1918 | IRBuilder<> B(BB->getTerminator()); |
1919 | if (Instruction *IncInst = dyn_cast<Instruction>(Val: Inc)) |
1920 | B.SetCurrentDebugLocation(IncInst->getDebugLoc()); |
1921 | |
1922 | if (NumElts > 1) { |
1923 | SmallVector<int, 4> Mask; |
1924 | for (unsigned K = Idx; K < (Idx + NumElts); ++K) |
1925 | Mask.push_back(Elt: K); |
1926 | Res = B.CreateShuffleVector(V: Inc, Mask, Name: NewValName); |
1927 | } else |
1928 | Res = B.CreateExtractElement(Vec: Inc, Idx, Name: NewValName); |
1929 | |
1930 | return Res; |
1931 | } |
1932 | |
1933 | private: |
1934 | SmallDenseMap<std::pair<BasicBlock *, Value *>, Value *> SlicedVals; |
1935 | }; |
1936 | |
1937 | bool AMDGPUCodeGenPrepareImpl::visitPHINode(PHINode &I) { |
1938 | // Break-up fixed-vector PHIs into smaller pieces. |
1939 | // Default threshold is 32, so it breaks up any vector that's >32 bits into |
1940 | // its elements, or into 32-bit pieces (for 8/16 bit elts). |
1941 | // |
1942 | // This is only helpful for DAGISel because it doesn't handle large PHIs as |
1943 | // well as GlobalISel. DAGISel lowers PHIs by using CopyToReg/CopyFromReg. |
1944 | // With large, odd-sized PHIs we may end up needing many `build_vector` |
1945 | // operations with most elements being "undef". This inhibits a lot of |
1946 | // optimization opportunities and can result in unreasonably high register |
1947 | // pressure and the inevitable stack spilling. |
1948 | if (!BreakLargePHIs || getCGPassBuilderOption().EnableGlobalISelOption) |
1949 | return false; |
1950 | |
1951 | FixedVectorType *FVT = dyn_cast<FixedVectorType>(Val: I.getType()); |
1952 | if (!FVT || FVT->getNumElements() == 1 || |
1953 | DL->getTypeSizeInBits(Ty: FVT) <= BreakLargePHIsThreshold) |
1954 | return false; |
1955 | |
1956 | if (!ForceBreakLargePHIs && !canBreakPHINode(I)) |
1957 | return false; |
1958 | |
1959 | std::vector<VectorSlice> Slices; |
1960 | |
1961 | Type *EltTy = FVT->getElementType(); |
1962 | { |
1963 | unsigned Idx = 0; |
1964 | // For 8/16 bits type, don't scalarize fully but break it up into as many |
1965 | // 32-bit slices as we can, and scalarize the tail. |
1966 | const unsigned EltSize = DL->getTypeSizeInBits(Ty: EltTy); |
1967 | const unsigned NumElts = FVT->getNumElements(); |
1968 | if (EltSize == 8 || EltSize == 16) { |
1969 | const unsigned SubVecSize = (32 / EltSize); |
1970 | Type *SubVecTy = FixedVectorType::get(ElementType: EltTy, NumElts: SubVecSize); |
1971 | for (unsigned End = alignDown(Value: NumElts, Align: SubVecSize); Idx < End; |
1972 | Idx += SubVecSize) |
1973 | Slices.emplace_back(args&: SubVecTy, args&: Idx, args: SubVecSize); |
1974 | } |
1975 | |
1976 | // Scalarize all remaining elements. |
1977 | for (; Idx < NumElts; ++Idx) |
1978 | Slices.emplace_back(args&: EltTy, args&: Idx, args: 1); |
1979 | } |
1980 | |
1981 | assert(Slices.size() > 1); |
1982 | |
1983 | // Create one PHI per vector piece. The "VectorSlice" class takes care of |
1984 | // creating the necessary instruction to extract the relevant slices of each |
1985 | // incoming value. |
1986 | IRBuilder<> B(I.getParent()); |
1987 | B.SetCurrentDebugLocation(I.getDebugLoc()); |
1988 | |
1989 | unsigned IncNameSuffix = 0; |
1990 | for (VectorSlice &S : Slices) { |
1991 | // We need to reset the build on each iteration, because getSlicedVal may |
1992 | // have inserted something into I's BB. |
1993 | B.SetInsertPoint(I.getParent()->getFirstNonPHIIt()); |
1994 | S.NewPHI = B.CreatePHI(Ty: S.Ty, NumReservedValues: I.getNumIncomingValues()); |
1995 | |
1996 | for (const auto &[Idx, BB] : enumerate(First: I.blocks())) { |
1997 | S.NewPHI->addIncoming(V: S.getSlicedVal(BB, Inc: I.getIncomingValue(i: Idx), |
1998 | NewValName: "largephi.extractslice" + |
1999 | std::to_string(val: IncNameSuffix++)), |
2000 | BB); |
2001 | } |
2002 | } |
2003 | |
2004 | // And replace this PHI with a vector of all the previous PHI values. |
2005 | Value *Vec = PoisonValue::get(T: FVT); |
2006 | unsigned NameSuffix = 0; |
2007 | for (VectorSlice &S : Slices) { |
2008 | const auto ValName = "largephi.insertslice" + std::to_string(val: NameSuffix++); |
2009 | if (S.NumElts > 1) |
2010 | Vec = |
2011 | B.CreateInsertVector(DstType: FVT, SrcVec: Vec, SubVec: S.NewPHI, Idx: B.getInt64(C: S.Idx), Name: ValName); |
2012 | else |
2013 | Vec = B.CreateInsertElement(Vec, NewElt: S.NewPHI, Idx: S.Idx, Name: ValName); |
2014 | } |
2015 | |
2016 | I.replaceAllUsesWith(V: Vec); |
2017 | I.eraseFromParent(); |
2018 | return true; |
2019 | } |
2020 | |
2021 | /// \param V Value to check |
2022 | /// \param DL DataLayout |
2023 | /// \param TM TargetMachine (TODO: remove once DL contains nullptr values) |
2024 | /// \param AS Target Address Space |
2025 | /// \return true if \p V cannot be the null value of \p AS, false otherwise. |
2026 | static bool isPtrKnownNeverNull(const Value *V, const DataLayout &DL, |
2027 | const AMDGPUTargetMachine &TM, unsigned AS) { |
2028 | // Pointer cannot be null if it's a block address, GV or alloca. |
2029 | // NOTE: We don't support extern_weak, but if we did, we'd need to check for |
2030 | // it as the symbol could be null in such cases. |
2031 | if (isa<BlockAddress>(Val: V) || isa<GlobalValue>(Val: V) || isa<AllocaInst>(Val: V)) |
2032 | return true; |
2033 | |
2034 | // Check nonnull arguments. |
2035 | if (const auto *Arg = dyn_cast<Argument>(Val: V); Arg && Arg->hasNonNullAttr()) |
2036 | return true; |
2037 | |
2038 | // getUnderlyingObject may have looked through another addrspacecast, although |
2039 | // the optimizable situations most likely folded out by now. |
2040 | if (AS != cast<PointerType>(Val: V->getType())->getAddressSpace()) |
2041 | return false; |
2042 | |
2043 | // TODO: Calls that return nonnull? |
2044 | |
2045 | // For all other things, use KnownBits. |
2046 | // We either use 0 or all bits set to indicate null, so check whether the |
2047 | // value can be zero or all ones. |
2048 | // |
2049 | // TODO: Use ValueTracking's isKnownNeverNull if it becomes aware that some |
2050 | // address spaces have non-zero null values. |
2051 | auto SrcPtrKB = computeKnownBits(V, DL); |
2052 | const auto NullVal = TM.getNullPointerValue(AddrSpace: AS); |
2053 | |
2054 | assert(SrcPtrKB.getBitWidth() == DL.getPointerSizeInBits(AS)); |
2055 | assert((NullVal == 0 || NullVal == -1) && |
2056 | "don't know how to check for this null value!" ); |
2057 | return NullVal ? !SrcPtrKB.getMaxValue().isAllOnes() : SrcPtrKB.isNonZero(); |
2058 | } |
2059 | |
2060 | bool AMDGPUCodeGenPrepareImpl::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { |
2061 | // Intrinsic doesn't support vectors, also it seems that it's often difficult |
2062 | // to prove that a vector cannot have any nulls in it so it's unclear if it's |
2063 | // worth supporting. |
2064 | if (I.getType()->isVectorTy()) |
2065 | return false; |
2066 | |
2067 | // Check if this can be lowered to a amdgcn.addrspacecast.nonnull. |
2068 | // This is only worthwhile for casts from/to priv/local to flat. |
2069 | const unsigned SrcAS = I.getSrcAddressSpace(); |
2070 | const unsigned DstAS = I.getDestAddressSpace(); |
2071 | |
2072 | bool CanLower = false; |
2073 | if (SrcAS == AMDGPUAS::FLAT_ADDRESS) |
2074 | CanLower = (DstAS == AMDGPUAS::LOCAL_ADDRESS || |
2075 | DstAS == AMDGPUAS::PRIVATE_ADDRESS); |
2076 | else if (DstAS == AMDGPUAS::FLAT_ADDRESS) |
2077 | CanLower = (SrcAS == AMDGPUAS::LOCAL_ADDRESS || |
2078 | SrcAS == AMDGPUAS::PRIVATE_ADDRESS); |
2079 | if (!CanLower) |
2080 | return false; |
2081 | |
2082 | SmallVector<const Value *, 4> WorkList; |
2083 | getUnderlyingObjects(V: I.getOperand(i_nocapture: 0), Objects&: WorkList); |
2084 | if (!all_of(Range&: WorkList, P: [&](const Value *V) { |
2085 | return isPtrKnownNeverNull(V, DL: *DL, TM: *TM, AS: SrcAS); |
2086 | })) |
2087 | return false; |
2088 | |
2089 | IRBuilder<> B(&I); |
2090 | auto *Intrin = B.CreateIntrinsic( |
2091 | RetTy: I.getType(), ID: Intrinsic::amdgcn_addrspacecast_nonnull, Args: {I.getOperand(i_nocapture: 0)}); |
2092 | I.replaceAllUsesWith(V: Intrin); |
2093 | I.eraseFromParent(); |
2094 | return true; |
2095 | } |
2096 | |
2097 | bool AMDGPUCodeGenPrepareImpl::visitIntrinsicInst(IntrinsicInst &I) { |
2098 | switch (I.getIntrinsicID()) { |
2099 | case Intrinsic::bitreverse: |
2100 | return visitBitreverseIntrinsicInst(I); |
2101 | case Intrinsic::minnum: |
2102 | return visitMinNum(I); |
2103 | case Intrinsic::sqrt: |
2104 | return visitSqrt(I); |
2105 | default: |
2106 | return false; |
2107 | } |
2108 | } |
2109 | |
2110 | bool AMDGPUCodeGenPrepareImpl::visitBitreverseIntrinsicInst(IntrinsicInst &I) { |
2111 | bool Changed = false; |
2112 | |
2113 | if (ST->has16BitInsts() && needsPromotionToI32(T: I.getType()) && |
2114 | UA->isUniform(I: &I)) |
2115 | Changed |= promoteUniformBitreverseToI32(I); |
2116 | |
2117 | return Changed; |
2118 | } |
2119 | |
2120 | /// Match non-nan fract pattern. |
2121 | /// minnum(fsub(x, floor(x)), nextafter(1.0, -1.0) |
2122 | /// |
2123 | /// If fract is a useful instruction for the subtarget. Does not account for the |
2124 | /// nan handling; the instruction has a nan check on the input value. |
2125 | Value *AMDGPUCodeGenPrepareImpl::matchFractPat(IntrinsicInst &I) { |
2126 | if (ST->hasFractBug()) |
2127 | return nullptr; |
2128 | |
2129 | if (I.getIntrinsicID() != Intrinsic::minnum) |
2130 | return nullptr; |
2131 | |
2132 | Type *Ty = I.getType(); |
2133 | if (!isLegalFloatingTy(Ty: Ty->getScalarType())) |
2134 | return nullptr; |
2135 | |
2136 | Value *Arg0 = I.getArgOperand(i: 0); |
2137 | Value *Arg1 = I.getArgOperand(i: 1); |
2138 | |
2139 | const APFloat *C; |
2140 | if (!match(V: Arg1, P: m_APFloat(Res&: C))) |
2141 | return nullptr; |
2142 | |
2143 | APFloat One(1.0); |
2144 | bool LosesInfo; |
2145 | One.convert(ToSemantics: C->getSemantics(), RM: APFloat::rmNearestTiesToEven, losesInfo: &LosesInfo); |
2146 | |
2147 | // Match nextafter(1.0, -1) |
2148 | One.next(nextDown: true); |
2149 | if (One != *C) |
2150 | return nullptr; |
2151 | |
2152 | Value *FloorSrc; |
2153 | if (match(V: Arg0, P: m_FSub(L: m_Value(V&: FloorSrc), |
2154 | R: m_Intrinsic<Intrinsic::floor>(Op0: m_Deferred(V: FloorSrc))))) |
2155 | return FloorSrc; |
2156 | return nullptr; |
2157 | } |
2158 | |
2159 | Value *AMDGPUCodeGenPrepareImpl::applyFractPat(IRBuilder<> &Builder, |
2160 | Value *FractArg) { |
2161 | SmallVector<Value *, 4> FractVals; |
2162 | extractValues(Builder, Values&: FractVals, V: FractArg); |
2163 | |
2164 | SmallVector<Value *, 4> ResultVals(FractVals.size()); |
2165 | |
2166 | Type *Ty = FractArg->getType()->getScalarType(); |
2167 | for (unsigned I = 0, E = FractVals.size(); I != E; ++I) { |
2168 | ResultVals[I] = |
2169 | Builder.CreateIntrinsic(ID: Intrinsic::amdgcn_fract, Types: {Ty}, Args: {FractVals[I]}); |
2170 | } |
2171 | |
2172 | return insertValues(Builder, Ty: FractArg->getType(), Values&: ResultVals); |
2173 | } |
2174 | |
2175 | bool AMDGPUCodeGenPrepareImpl::visitMinNum(IntrinsicInst &I) { |
2176 | Value *FractArg = matchFractPat(I); |
2177 | if (!FractArg) |
2178 | return false; |
2179 | |
2180 | // Match pattern for fract intrinsic in contexts where the nan check has been |
2181 | // optimized out (and hope the knowledge the source can't be nan wasn't lost). |
2182 | if (!I.hasNoNaNs() && |
2183 | !isKnownNeverNaN(V: FractArg, /*Depth=*/0, SQ: SimplifyQuery(*DL, TLInfo))) |
2184 | return false; |
2185 | |
2186 | IRBuilder<> Builder(&I); |
2187 | FastMathFlags FMF = I.getFastMathFlags(); |
2188 | FMF.setNoNaNs(); |
2189 | Builder.setFastMathFlags(FMF); |
2190 | |
2191 | Value *Fract = applyFractPat(Builder, FractArg); |
2192 | Fract->takeName(V: &I); |
2193 | I.replaceAllUsesWith(V: Fract); |
2194 | |
2195 | RecursivelyDeleteTriviallyDeadInstructions(V: &I, TLI: TLInfo); |
2196 | return true; |
2197 | } |
2198 | |
2199 | static bool isOneOrNegOne(const Value *Val) { |
2200 | const APFloat *C; |
2201 | return match(V: Val, P: m_APFloat(Res&: C)) && C->getExactLog2Abs() == 0; |
2202 | } |
2203 | |
2204 | // Expand llvm.sqrt.f32 calls with !fpmath metadata in a semi-fast way. |
2205 | bool AMDGPUCodeGenPrepareImpl::visitSqrt(IntrinsicInst &Sqrt) { |
2206 | Type *Ty = Sqrt.getType()->getScalarType(); |
2207 | if (!Ty->isFloatTy() && (!Ty->isHalfTy() || ST->has16BitInsts())) |
2208 | return false; |
2209 | |
2210 | const FPMathOperator *FPOp = cast<const FPMathOperator>(Val: &Sqrt); |
2211 | FastMathFlags SqrtFMF = FPOp->getFastMathFlags(); |
2212 | |
2213 | // We're trying to handle the fast-but-not-that-fast case only. The lowering |
2214 | // of fast llvm.sqrt will give the raw instruction anyway. |
2215 | if (SqrtFMF.approxFunc() || HasUnsafeFPMath) |
2216 | return false; |
2217 | |
2218 | const float ReqdAccuracy = FPOp->getFPAccuracy(); |
2219 | |
2220 | // Defer correctly rounded expansion to codegen. |
2221 | if (ReqdAccuracy < 1.0f) |
2222 | return false; |
2223 | |
2224 | // FIXME: This is an ugly hack for this pass using forward iteration instead |
2225 | // of reverse. If it worked like a normal combiner, the rsq would form before |
2226 | // we saw a sqrt call. |
2227 | auto *FDiv = |
2228 | dyn_cast_or_null<FPMathOperator>(Val: Sqrt.getUniqueUndroppableUser()); |
2229 | if (FDiv && FDiv->getOpcode() == Instruction::FDiv && |
2230 | FDiv->getFPAccuracy() >= 1.0f && |
2231 | canOptimizeWithRsq(SqrtOp: FPOp, DivFMF: FDiv->getFastMathFlags(), SqrtFMF) && |
2232 | // TODO: We should also handle the arcp case for the fdiv with non-1 value |
2233 | isOneOrNegOne(Val: FDiv->getOperand(i: 0))) |
2234 | return false; |
2235 | |
2236 | Value *SrcVal = Sqrt.getOperand(i_nocapture: 0); |
2237 | bool CanTreatAsDAZ = canIgnoreDenormalInput(V: SrcVal, CtxI: &Sqrt); |
2238 | |
2239 | // The raw instruction is 1 ulp, but the correction for denormal handling |
2240 | // brings it to 2. |
2241 | if (!CanTreatAsDAZ && ReqdAccuracy < 2.0f) |
2242 | return false; |
2243 | |
2244 | IRBuilder<> Builder(&Sqrt); |
2245 | SmallVector<Value *, 4> SrcVals; |
2246 | extractValues(Builder, Values&: SrcVals, V: SrcVal); |
2247 | |
2248 | SmallVector<Value *, 4> ResultVals(SrcVals.size()); |
2249 | for (int I = 0, E = SrcVals.size(); I != E; ++I) { |
2250 | if (CanTreatAsDAZ) |
2251 | ResultVals[I] = Builder.CreateCall(Callee: getSqrtF32(), Args: SrcVals[I]); |
2252 | else |
2253 | ResultVals[I] = emitSqrtIEEE2ULP(Builder, Src: SrcVals[I], FMF: SqrtFMF); |
2254 | } |
2255 | |
2256 | Value *NewSqrt = insertValues(Builder, Ty: Sqrt.getType(), Values&: ResultVals); |
2257 | NewSqrt->takeName(V: &Sqrt); |
2258 | Sqrt.replaceAllUsesWith(V: NewSqrt); |
2259 | Sqrt.eraseFromParent(); |
2260 | return true; |
2261 | } |
2262 | |
2263 | bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { |
2264 | Impl.Mod = &M; |
2265 | Impl.DL = &Impl.Mod->getDataLayout(); |
2266 | Impl.SqrtF32 = nullptr; |
2267 | Impl.LdexpF32 = nullptr; |
2268 | return false; |
2269 | } |
2270 | |
2271 | bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { |
2272 | if (skipFunction(F)) |
2273 | return false; |
2274 | |
2275 | auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); |
2276 | if (!TPC) |
2277 | return false; |
2278 | |
2279 | const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); |
2280 | Impl.TM = &TM; |
2281 | Impl.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); |
2282 | Impl.ST = &TM.getSubtarget<GCNSubtarget>(F); |
2283 | Impl.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
2284 | Impl.UA = &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo(); |
2285 | auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); |
2286 | Impl.DT = DTWP ? &DTWP->getDomTree() : nullptr; |
2287 | Impl.HasUnsafeFPMath = hasUnsafeFPMath(F); |
2288 | SIModeRegisterDefaults Mode(F, *Impl.ST); |
2289 | Impl.HasFP32DenormalFlush = |
2290 | Mode.FP32Denormals == DenormalMode::getPreserveSign(); |
2291 | return Impl.run(F); |
2292 | } |
2293 | |
2294 | PreservedAnalyses AMDGPUCodeGenPreparePass::run(Function &F, |
2295 | FunctionAnalysisManager &FAM) { |
2296 | AMDGPUCodeGenPrepareImpl Impl; |
2297 | Impl.Mod = F.getParent(); |
2298 | Impl.DL = &Impl.Mod->getDataLayout(); |
2299 | Impl.TM = static_cast<const AMDGPUTargetMachine *>(&TM); |
2300 | Impl.TLInfo = &FAM.getResult<TargetLibraryAnalysis>(IR&: F); |
2301 | Impl.ST = &TM.getSubtarget<GCNSubtarget>(F); |
2302 | Impl.AC = &FAM.getResult<AssumptionAnalysis>(IR&: F); |
2303 | Impl.UA = &FAM.getResult<UniformityInfoAnalysis>(IR&: F); |
2304 | Impl.DT = FAM.getCachedResult<DominatorTreeAnalysis>(IR&: F); |
2305 | Impl.HasUnsafeFPMath = hasUnsafeFPMath(F); |
2306 | SIModeRegisterDefaults Mode(F, *Impl.ST); |
2307 | Impl.HasFP32DenormalFlush = |
2308 | Mode.FP32Denormals == DenormalMode::getPreserveSign(); |
2309 | PreservedAnalyses PA = PreservedAnalyses::none(); |
2310 | if (!Impl.FlowChanged) |
2311 | PA.preserveSet<CFGAnalyses>(); |
2312 | return Impl.run(F) ? PA : PreservedAnalyses::all(); |
2313 | } |
2314 | |
2315 | INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, |
2316 | "AMDGPU IR optimizations" , false, false) |
2317 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
2318 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
2319 | INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) |
2320 | INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations" , |
2321 | false, false) |
2322 | |
2323 | char AMDGPUCodeGenPrepare::ID = 0; |
2324 | |
2325 | FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { |
2326 | return new AMDGPUCodeGenPrepare(); |
2327 | } |
2328 | |