1 | //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file |
10 | /// This pass does misc. AMDGPU optimizations on IR *just* before instruction |
11 | /// selection. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "AMDGPU.h" |
16 | #include "AMDGPUTargetMachine.h" |
17 | #include "llvm/Analysis/AssumptionCache.h" |
18 | #include "llvm/Analysis/UniformityAnalysis.h" |
19 | #include "llvm/Analysis/ValueTracking.h" |
20 | #include "llvm/CodeGen/TargetPassConfig.h" |
21 | #include "llvm/IR/IRBuilder.h" |
22 | #include "llvm/IR/InstVisitor.h" |
23 | #include "llvm/InitializePasses.h" |
24 | #include "llvm/Support/CommandLine.h" |
25 | #include "llvm/Support/KnownBits.h" |
26 | #include "llvm/Transforms/Utils/Local.h" |
27 | |
28 | #define DEBUG_TYPE "amdgpu-late-codegenprepare" |
29 | |
30 | using namespace llvm; |
31 | |
32 | // Scalar load widening needs running after load-store-vectorizer as that pass |
33 | // doesn't handle overlapping cases. In addition, this pass enhances the |
34 | // widening to handle cases where scalar sub-dword loads are naturally aligned |
35 | // only but not dword aligned. |
36 | static cl::opt<bool> |
37 | WidenLoads("amdgpu-late-codegenprepare-widen-constant-loads" , |
38 | cl::desc("Widen sub-dword constant address space loads in " |
39 | "AMDGPULateCodeGenPrepare" ), |
40 | cl::ReallyHidden, cl::init(Val: true)); |
41 | |
42 | namespace { |
43 | |
44 | class AMDGPULateCodeGenPrepare |
45 | : public FunctionPass, |
46 | public InstVisitor<AMDGPULateCodeGenPrepare, bool> { |
47 | Module *Mod = nullptr; |
48 | const DataLayout *DL = nullptr; |
49 | |
50 | AssumptionCache *AC = nullptr; |
51 | UniformityInfo *UA = nullptr; |
52 | |
53 | SmallVector<WeakTrackingVH, 8> DeadInsts; |
54 | |
55 | public: |
56 | static char ID; |
57 | |
58 | AMDGPULateCodeGenPrepare() : FunctionPass(ID) {} |
59 | |
60 | StringRef getPassName() const override { |
61 | return "AMDGPU IR late optimizations" ; |
62 | } |
63 | |
64 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
65 | AU.addRequired<TargetPassConfig>(); |
66 | AU.addRequired<AssumptionCacheTracker>(); |
67 | AU.addRequired<UniformityInfoWrapperPass>(); |
68 | AU.setPreservesAll(); |
69 | } |
70 | |
71 | bool doInitialization(Module &M) override; |
72 | bool runOnFunction(Function &F) override; |
73 | |
74 | bool visitInstruction(Instruction &) { return false; } |
75 | |
76 | // Check if the specified value is at least DWORD aligned. |
77 | bool isDWORDAligned(const Value *V) const { |
78 | KnownBits Known = computeKnownBits(V, DL: *DL, Depth: 0, AC); |
79 | return Known.countMinTrailingZeros() >= 2; |
80 | } |
81 | |
82 | bool canWidenScalarExtLoad(LoadInst &LI) const; |
83 | bool visitLoadInst(LoadInst &LI); |
84 | }; |
85 | |
86 | using ValueToValueMap = DenseMap<const Value *, Value *>; |
87 | |
88 | class LiveRegOptimizer { |
89 | private: |
90 | Module *Mod = nullptr; |
91 | const DataLayout *DL = nullptr; |
92 | const GCNSubtarget *ST; |
93 | /// The scalar type to convert to |
94 | Type *ConvertToScalar; |
95 | /// The set of visited Instructions |
96 | SmallPtrSet<Instruction *, 4> Visited; |
97 | /// Map of Value -> Converted Value |
98 | ValueToValueMap ValMap; |
99 | /// Map of containing conversions from Optimal Type -> Original Type per BB. |
100 | DenseMap<BasicBlock *, ValueToValueMap> BBUseValMap; |
101 | |
102 | public: |
103 | /// Calculate the and \p return the type to convert to given a problematic \p |
104 | /// OriginalType. In some instances, we may widen the type (e.g. v2i8 -> i32). |
105 | Type *calculateConvertType(Type *OriginalType); |
106 | /// Convert the virtual register defined by \p V to the compatible vector of |
107 | /// legal type |
108 | Value *convertToOptType(Instruction *V, BasicBlock::iterator &InstPt); |
109 | /// Convert the virtual register defined by \p V back to the original type \p |
110 | /// ConvertType, stripping away the MSBs in cases where there was an imperfect |
111 | /// fit (e.g. v2i32 -> v7i8) |
112 | Value *convertFromOptType(Type *ConvertType, Instruction *V, |
113 | BasicBlock::iterator &InstPt, |
114 | BasicBlock *InsertBlock); |
115 | /// Check for problematic PHI nodes or cross-bb values based on the value |
116 | /// defined by \p I, and coerce to legal types if necessary. For problematic |
117 | /// PHI node, we coerce all incoming values in a single invocation. |
118 | bool optimizeLiveType(Instruction *I, |
119 | SmallVectorImpl<WeakTrackingVH> &DeadInsts); |
120 | |
121 | // Whether or not the type should be replaced to avoid inefficient |
122 | // legalization code |
123 | bool shouldReplace(Type *ITy) { |
124 | FixedVectorType *VTy = dyn_cast<FixedVectorType>(Val: ITy); |
125 | if (!VTy) |
126 | return false; |
127 | |
128 | auto TLI = ST->getTargetLowering(); |
129 | |
130 | Type *EltTy = VTy->getElementType(); |
131 | // If the element size is not less than the convert to scalar size, then we |
132 | // can't do any bit packing |
133 | if (!EltTy->isIntegerTy() || |
134 | EltTy->getScalarSizeInBits() > ConvertToScalar->getScalarSizeInBits()) |
135 | return false; |
136 | |
137 | // Only coerce illegal types |
138 | TargetLoweringBase::LegalizeKind LK = |
139 | TLI->getTypeConversion(Context&: EltTy->getContext(), VT: EVT::getEVT(Ty: EltTy, HandleUnknown: false)); |
140 | return LK.first != TargetLoweringBase::TypeLegal; |
141 | } |
142 | |
143 | LiveRegOptimizer(Module *Mod, const GCNSubtarget *ST) : Mod(Mod), ST(ST) { |
144 | DL = &Mod->getDataLayout(); |
145 | ConvertToScalar = Type::getInt32Ty(C&: Mod->getContext()); |
146 | } |
147 | }; |
148 | |
149 | } // end anonymous namespace |
150 | |
151 | bool AMDGPULateCodeGenPrepare::doInitialization(Module &M) { |
152 | Mod = &M; |
153 | DL = &Mod->getDataLayout(); |
154 | return false; |
155 | } |
156 | |
157 | bool AMDGPULateCodeGenPrepare::runOnFunction(Function &F) { |
158 | if (skipFunction(F)) |
159 | return false; |
160 | |
161 | const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>(); |
162 | const TargetMachine &TM = TPC.getTM<TargetMachine>(); |
163 | const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); |
164 | |
165 | AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
166 | UA = &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo(); |
167 | |
168 | // "Optimize" the virtual regs that cross basic block boundaries. When |
169 | // building the SelectionDAG, vectors of illegal types that cross basic blocks |
170 | // will be scalarized and widened, with each scalar living in its |
171 | // own register. To work around this, this optimization converts the |
172 | // vectors to equivalent vectors of legal type (which are converted back |
173 | // before uses in subsequent blocks), to pack the bits into fewer physical |
174 | // registers (used in CopyToReg/CopyFromReg pairs). |
175 | LiveRegOptimizer LRO(Mod, &ST); |
176 | |
177 | bool Changed = false; |
178 | |
179 | bool HasScalarSubwordLoads = ST.hasScalarSubwordLoads(); |
180 | |
181 | for (auto &BB : reverse(C&: F)) |
182 | for (Instruction &I : make_early_inc_range(Range: reverse(C&: BB))) { |
183 | Changed |= !HasScalarSubwordLoads && visit(I); |
184 | Changed |= LRO.optimizeLiveType(I: &I, DeadInsts); |
185 | } |
186 | |
187 | RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts); |
188 | return Changed; |
189 | } |
190 | |
191 | Type *LiveRegOptimizer::calculateConvertType(Type *OriginalType) { |
192 | assert(OriginalType->getScalarSizeInBits() <= |
193 | ConvertToScalar->getScalarSizeInBits()); |
194 | |
195 | FixedVectorType *VTy = cast<FixedVectorType>(Val: OriginalType); |
196 | |
197 | TypeSize OriginalSize = DL->getTypeSizeInBits(Ty: VTy); |
198 | TypeSize ConvertScalarSize = DL->getTypeSizeInBits(Ty: ConvertToScalar); |
199 | unsigned ConvertEltCount = |
200 | (OriginalSize + ConvertScalarSize - 1) / ConvertScalarSize; |
201 | |
202 | if (OriginalSize <= ConvertScalarSize) |
203 | return IntegerType::get(C&: Mod->getContext(), NumBits: ConvertScalarSize); |
204 | |
205 | return VectorType::get(ElementType: Type::getIntNTy(C&: Mod->getContext(), N: ConvertScalarSize), |
206 | NumElements: ConvertEltCount, Scalable: false); |
207 | } |
208 | |
209 | Value *LiveRegOptimizer::convertToOptType(Instruction *V, |
210 | BasicBlock::iterator &InsertPt) { |
211 | FixedVectorType *VTy = cast<FixedVectorType>(Val: V->getType()); |
212 | Type *NewTy = calculateConvertType(OriginalType: V->getType()); |
213 | |
214 | TypeSize OriginalSize = DL->getTypeSizeInBits(Ty: VTy); |
215 | TypeSize NewSize = DL->getTypeSizeInBits(Ty: NewTy); |
216 | |
217 | IRBuilder<> Builder(V->getParent(), InsertPt); |
218 | // If there is a bitsize match, we can fit the old vector into a new vector of |
219 | // desired type. |
220 | if (OriginalSize == NewSize) |
221 | return Builder.CreateBitCast(V, DestTy: NewTy, Name: V->getName() + ".bc" ); |
222 | |
223 | // If there is a bitsize mismatch, we must use a wider vector. |
224 | assert(NewSize > OriginalSize); |
225 | uint64_t ExpandedVecElementCount = NewSize / VTy->getScalarSizeInBits(); |
226 | |
227 | SmallVector<int, 8> ShuffleMask; |
228 | uint64_t OriginalElementCount = VTy->getElementCount().getFixedValue(); |
229 | for (unsigned I = 0; I < OriginalElementCount; I++) |
230 | ShuffleMask.push_back(Elt: I); |
231 | |
232 | for (uint64_t I = OriginalElementCount; I < ExpandedVecElementCount; I++) |
233 | ShuffleMask.push_back(Elt: OriginalElementCount); |
234 | |
235 | Value *ExpandedVec = Builder.CreateShuffleVector(V, Mask: ShuffleMask); |
236 | return Builder.CreateBitCast(V: ExpandedVec, DestTy: NewTy, Name: V->getName() + ".bc" ); |
237 | } |
238 | |
239 | Value *LiveRegOptimizer::convertFromOptType(Type *ConvertType, Instruction *V, |
240 | BasicBlock::iterator &InsertPt, |
241 | BasicBlock *InsertBB) { |
242 | FixedVectorType *NewVTy = cast<FixedVectorType>(Val: ConvertType); |
243 | |
244 | TypeSize OriginalSize = DL->getTypeSizeInBits(Ty: V->getType()); |
245 | TypeSize NewSize = DL->getTypeSizeInBits(Ty: NewVTy); |
246 | |
247 | IRBuilder<> Builder(InsertBB, InsertPt); |
248 | // If there is a bitsize match, we simply convert back to the original type. |
249 | if (OriginalSize == NewSize) |
250 | return Builder.CreateBitCast(V, DestTy: NewVTy, Name: V->getName() + ".bc" ); |
251 | |
252 | // If there is a bitsize mismatch, then we must have used a wider value to |
253 | // hold the bits. |
254 | assert(OriginalSize > NewSize); |
255 | // For wide scalars, we can just truncate the value. |
256 | if (!V->getType()->isVectorTy()) { |
257 | Instruction *Trunc = cast<Instruction>( |
258 | Val: Builder.CreateTrunc(V, DestTy: IntegerType::get(C&: Mod->getContext(), NumBits: NewSize))); |
259 | return cast<Instruction>(Val: Builder.CreateBitCast(V: Trunc, DestTy: NewVTy)); |
260 | } |
261 | |
262 | // For wider vectors, we must strip the MSBs to convert back to the original |
263 | // type. |
264 | VectorType *ExpandedVT = VectorType::get( |
265 | ElementType: Type::getIntNTy(C&: Mod->getContext(), N: NewVTy->getScalarSizeInBits()), |
266 | NumElements: (OriginalSize / NewVTy->getScalarSizeInBits()), Scalable: false); |
267 | Instruction *Converted = |
268 | cast<Instruction>(Val: Builder.CreateBitCast(V, DestTy: ExpandedVT)); |
269 | |
270 | unsigned NarrowElementCount = NewVTy->getElementCount().getFixedValue(); |
271 | SmallVector<int, 8> ShuffleMask(NarrowElementCount); |
272 | std::iota(first: ShuffleMask.begin(), last: ShuffleMask.end(), value: 0); |
273 | |
274 | return Builder.CreateShuffleVector(V: Converted, Mask: ShuffleMask); |
275 | } |
276 | |
277 | bool LiveRegOptimizer::optimizeLiveType( |
278 | Instruction *I, SmallVectorImpl<WeakTrackingVH> &DeadInsts) { |
279 | SmallVector<Instruction *, 4> Worklist; |
280 | SmallPtrSet<PHINode *, 4> PhiNodes; |
281 | SmallPtrSet<Instruction *, 4> Defs; |
282 | SmallPtrSet<Instruction *, 4> Uses; |
283 | |
284 | Worklist.push_back(Elt: cast<Instruction>(Val: I)); |
285 | while (!Worklist.empty()) { |
286 | Instruction *II = Worklist.pop_back_val(); |
287 | |
288 | if (!Visited.insert(Ptr: II).second) |
289 | continue; |
290 | |
291 | if (!shouldReplace(ITy: II->getType())) |
292 | continue; |
293 | |
294 | if (PHINode *Phi = dyn_cast<PHINode>(Val: II)) { |
295 | PhiNodes.insert(Ptr: Phi); |
296 | // Collect all the incoming values of problematic PHI nodes. |
297 | for (Value *V : Phi->incoming_values()) { |
298 | // Repeat the collection process for newly found PHI nodes. |
299 | if (PHINode *OpPhi = dyn_cast<PHINode>(Val: V)) { |
300 | if (!PhiNodes.count(Ptr: OpPhi) && !Visited.count(Ptr: OpPhi)) |
301 | Worklist.push_back(Elt: OpPhi); |
302 | continue; |
303 | } |
304 | |
305 | Instruction *IncInst = dyn_cast<Instruction>(Val: V); |
306 | // Other incoming value types (e.g. vector literals) are unhandled |
307 | if (!IncInst && !isa<ConstantAggregateZero>(Val: V)) |
308 | return false; |
309 | |
310 | // Collect all other incoming values for coercion. |
311 | if (IncInst) |
312 | Defs.insert(Ptr: IncInst); |
313 | } |
314 | } |
315 | |
316 | // Collect all relevant uses. |
317 | for (User *V : II->users()) { |
318 | // Repeat the collection process for problematic PHI nodes. |
319 | if (PHINode *OpPhi = dyn_cast<PHINode>(Val: V)) { |
320 | if (!PhiNodes.count(Ptr: OpPhi) && !Visited.count(Ptr: OpPhi)) |
321 | Worklist.push_back(Elt: OpPhi); |
322 | continue; |
323 | } |
324 | |
325 | Instruction *UseInst = cast<Instruction>(Val: V); |
326 | // Collect all uses of PHINodes and any use the crosses BB boundaries. |
327 | if (UseInst->getParent() != II->getParent() || isa<PHINode>(Val: II)) { |
328 | Uses.insert(Ptr: UseInst); |
329 | if (!Defs.count(Ptr: II) && !isa<PHINode>(Val: II)) { |
330 | Defs.insert(Ptr: II); |
331 | } |
332 | } |
333 | } |
334 | } |
335 | |
336 | // Coerce and track the defs. |
337 | for (Instruction *D : Defs) { |
338 | if (!ValMap.contains(Val: D)) { |
339 | BasicBlock::iterator InsertPt = std::next(x: D->getIterator()); |
340 | Value *ConvertVal = convertToOptType(V: D, InsertPt); |
341 | assert(ConvertVal); |
342 | ValMap[D] = ConvertVal; |
343 | } |
344 | } |
345 | |
346 | // Construct new-typed PHI nodes. |
347 | for (PHINode *Phi : PhiNodes) { |
348 | ValMap[Phi] = PHINode::Create(Ty: calculateConvertType(OriginalType: Phi->getType()), |
349 | NumReservedValues: Phi->getNumIncomingValues(), |
350 | NameStr: Phi->getName() + ".tc" , InsertBefore: Phi->getIterator()); |
351 | } |
352 | |
353 | // Connect all the PHI nodes with their new incoming values. |
354 | for (PHINode *Phi : PhiNodes) { |
355 | PHINode *NewPhi = cast<PHINode>(Val: ValMap[Phi]); |
356 | bool MissingIncVal = false; |
357 | for (int I = 0, E = Phi->getNumIncomingValues(); I < E; I++) { |
358 | Value *IncVal = Phi->getIncomingValue(i: I); |
359 | if (isa<ConstantAggregateZero>(Val: IncVal)) { |
360 | Type *NewType = calculateConvertType(OriginalType: Phi->getType()); |
361 | NewPhi->addIncoming(V: ConstantInt::get(Ty: NewType, V: 0, IsSigned: false), |
362 | BB: Phi->getIncomingBlock(i: I)); |
363 | } else if (ValMap.contains(Val: IncVal) && ValMap[IncVal]) |
364 | NewPhi->addIncoming(V: ValMap[IncVal], BB: Phi->getIncomingBlock(i: I)); |
365 | else |
366 | MissingIncVal = true; |
367 | } |
368 | if (MissingIncVal) { |
369 | Value *DeadVal = ValMap[Phi]; |
370 | // The coercion chain of the PHI is broken. Delete the Phi |
371 | // from the ValMap and any connected / user Phis. |
372 | SmallVector<Value *, 4> PHIWorklist; |
373 | SmallPtrSet<Value *, 4> VisitedPhis; |
374 | PHIWorklist.push_back(Elt: DeadVal); |
375 | while (!PHIWorklist.empty()) { |
376 | Value *NextDeadValue = PHIWorklist.pop_back_val(); |
377 | VisitedPhis.insert(Ptr: NextDeadValue); |
378 | auto OriginalPhi = |
379 | std::find_if(first: PhiNodes.begin(), last: PhiNodes.end(), |
380 | pred: [this, &NextDeadValue](PHINode *CandPhi) { |
381 | return ValMap[CandPhi] == NextDeadValue; |
382 | }); |
383 | // This PHI may have already been removed from maps when |
384 | // unwinding a previous Phi |
385 | if (OriginalPhi != PhiNodes.end()) |
386 | ValMap.erase(Val: *OriginalPhi); |
387 | |
388 | DeadInsts.emplace_back(Args: cast<Instruction>(Val: NextDeadValue)); |
389 | |
390 | for (User *U : NextDeadValue->users()) { |
391 | if (!VisitedPhis.contains(Ptr: cast<PHINode>(Val: U))) |
392 | PHIWorklist.push_back(Elt: U); |
393 | } |
394 | } |
395 | } else { |
396 | DeadInsts.emplace_back(Args: cast<Instruction>(Val: Phi)); |
397 | } |
398 | } |
399 | // Coerce back to the original type and replace the uses. |
400 | for (Instruction *U : Uses) { |
401 | // Replace all converted operands for a use. |
402 | for (auto [OpIdx, Op] : enumerate(First: U->operands())) { |
403 | if (ValMap.contains(Val: Op) && ValMap[Op]) { |
404 | Value *NewVal = nullptr; |
405 | if (BBUseValMap.contains(Val: U->getParent()) && |
406 | BBUseValMap[U->getParent()].contains(Val: ValMap[Op])) |
407 | NewVal = BBUseValMap[U->getParent()][ValMap[Op]]; |
408 | else { |
409 | BasicBlock::iterator InsertPt = U->getParent()->getFirstNonPHIIt(); |
410 | // We may pick up ops that were previously converted for users in |
411 | // other blocks. If there is an originally typed definition of the Op |
412 | // already in this block, simply reuse it. |
413 | if (isa<Instruction>(Val: Op) && !isa<PHINode>(Val: Op) && |
414 | U->getParent() == cast<Instruction>(Val&: Op)->getParent()) { |
415 | NewVal = Op; |
416 | } else { |
417 | NewVal = |
418 | convertFromOptType(ConvertType: Op->getType(), V: cast<Instruction>(Val: ValMap[Op]), |
419 | InsertPt, InsertBB: U->getParent()); |
420 | BBUseValMap[U->getParent()][ValMap[Op]] = NewVal; |
421 | } |
422 | } |
423 | assert(NewVal); |
424 | U->setOperand(i: OpIdx, Val: NewVal); |
425 | } |
426 | } |
427 | } |
428 | |
429 | return true; |
430 | } |
431 | |
432 | bool AMDGPULateCodeGenPrepare::canWidenScalarExtLoad(LoadInst &LI) const { |
433 | unsigned AS = LI.getPointerAddressSpace(); |
434 | // Skip non-constant address space. |
435 | if (AS != AMDGPUAS::CONSTANT_ADDRESS && |
436 | AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT) |
437 | return false; |
438 | // Skip non-simple loads. |
439 | if (!LI.isSimple()) |
440 | return false; |
441 | Type *Ty = LI.getType(); |
442 | // Skip aggregate types. |
443 | if (Ty->isAggregateType()) |
444 | return false; |
445 | unsigned TySize = DL->getTypeStoreSize(Ty); |
446 | // Only handle sub-DWORD loads. |
447 | if (TySize >= 4) |
448 | return false; |
449 | // That load must be at least naturally aligned. |
450 | if (LI.getAlign() < DL->getABITypeAlign(Ty)) |
451 | return false; |
452 | // It should be uniform, i.e. a scalar load. |
453 | return UA->isUniform(I: &LI); |
454 | } |
455 | |
456 | bool AMDGPULateCodeGenPrepare::visitLoadInst(LoadInst &LI) { |
457 | if (!WidenLoads) |
458 | return false; |
459 | |
460 | // Skip if that load is already aligned on DWORD at least as it's handled in |
461 | // SDAG. |
462 | if (LI.getAlign() >= 4) |
463 | return false; |
464 | |
465 | if (!canWidenScalarExtLoad(LI)) |
466 | return false; |
467 | |
468 | int64_t Offset = 0; |
469 | auto *Base = |
470 | GetPointerBaseWithConstantOffset(Ptr: LI.getPointerOperand(), Offset, DL: *DL); |
471 | // If that base is not DWORD aligned, it's not safe to perform the following |
472 | // transforms. |
473 | if (!isDWORDAligned(V: Base)) |
474 | return false; |
475 | |
476 | int64_t Adjust = Offset & 0x3; |
477 | if (Adjust == 0) { |
478 | // With a zero adjust, the original alignment could be promoted with a |
479 | // better one. |
480 | LI.setAlignment(Align(4)); |
481 | return true; |
482 | } |
483 | |
484 | IRBuilder<> IRB(&LI); |
485 | IRB.SetCurrentDebugLocation(LI.getDebugLoc()); |
486 | |
487 | unsigned LdBits = DL->getTypeStoreSizeInBits(Ty: LI.getType()); |
488 | auto IntNTy = Type::getIntNTy(C&: LI.getContext(), N: LdBits); |
489 | |
490 | auto *NewPtr = IRB.CreateConstGEP1_64( |
491 | Ty: IRB.getInt8Ty(), |
492 | Ptr: IRB.CreateAddrSpaceCast(V: Base, DestTy: LI.getPointerOperand()->getType()), |
493 | Idx0: Offset - Adjust); |
494 | |
495 | LoadInst *NewLd = IRB.CreateAlignedLoad(Ty: IRB.getInt32Ty(), Ptr: NewPtr, Align: Align(4)); |
496 | NewLd->copyMetadata(SrcInst: LI); |
497 | NewLd->setMetadata(KindID: LLVMContext::MD_range, Node: nullptr); |
498 | |
499 | unsigned ShAmt = Adjust * 8; |
500 | auto *NewVal = IRB.CreateBitCast( |
501 | V: IRB.CreateTrunc(V: IRB.CreateLShr(LHS: NewLd, RHS: ShAmt), DestTy: IntNTy), DestTy: LI.getType()); |
502 | LI.replaceAllUsesWith(V: NewVal); |
503 | DeadInsts.emplace_back(Args: &LI); |
504 | |
505 | return true; |
506 | } |
507 | |
508 | INITIALIZE_PASS_BEGIN(AMDGPULateCodeGenPrepare, DEBUG_TYPE, |
509 | "AMDGPU IR late optimizations" , false, false) |
510 | INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) |
511 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
512 | INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) |
513 | INITIALIZE_PASS_END(AMDGPULateCodeGenPrepare, DEBUG_TYPE, |
514 | "AMDGPU IR late optimizations" , false, false) |
515 | |
516 | char AMDGPULateCodeGenPrepare::ID = 0; |
517 | |
518 | FunctionPass *llvm::createAMDGPULateCodeGenPreparePass() { |
519 | return new AMDGPULateCodeGenPrepare(); |
520 | } |
521 | |