1 | //=== AMDGPUPrintfRuntimeBinding.cpp - OpenCL printf implementation -------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // \file |
9 | // |
10 | // The pass bind printfs to a kernel arg pointer that will be bound to a buffer |
11 | // later by the runtime. |
12 | // |
13 | // This pass traverses the functions in the module and converts |
14 | // each call to printf to a sequence of operations that |
15 | // store the following into the printf buffer: |
16 | // - format string (passed as a module's metadata unique ID) |
17 | // - bitwise copies of printf arguments |
18 | // The backend passes will need to store metadata in the kernel |
19 | //===----------------------------------------------------------------------===// |
20 | |
21 | #include "AMDGPU.h" |
22 | #include "llvm/ADT/StringExtras.h" |
23 | #include "llvm/Analysis/ValueTracking.h" |
24 | #include "llvm/IR/DiagnosticInfo.h" |
25 | #include "llvm/IR/Dominators.h" |
26 | #include "llvm/IR/IRBuilder.h" |
27 | #include "llvm/IR/Instructions.h" |
28 | #include "llvm/IR/Module.h" |
29 | #include "llvm/InitializePasses.h" |
30 | #include "llvm/Support/DataExtractor.h" |
31 | #include "llvm/TargetParser/Triple.h" |
32 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
33 | |
34 | using namespace llvm; |
35 | |
36 | #define DEBUG_TYPE "printfToRuntime" |
37 | enum { DWORD_ALIGN = 4 }; |
38 | |
39 | namespace { |
40 | class AMDGPUPrintfRuntimeBinding final : public ModulePass { |
41 | |
42 | public: |
43 | static char ID; |
44 | |
45 | explicit AMDGPUPrintfRuntimeBinding(); |
46 | |
47 | private: |
48 | bool runOnModule(Module &M) override; |
49 | }; |
50 | |
51 | class AMDGPUPrintfRuntimeBindingImpl { |
52 | public: |
53 | AMDGPUPrintfRuntimeBindingImpl() = default; |
54 | bool run(Module &M); |
55 | |
56 | private: |
57 | void getConversionSpecifiers(SmallVectorImpl<char> &OpConvSpecifiers, |
58 | StringRef fmt, size_t num_ops) const; |
59 | |
60 | bool lowerPrintfForGpu(Module &M); |
61 | |
62 | const DataLayout *TD; |
63 | SmallVector<CallInst *, 32> Printfs; |
64 | }; |
65 | } // namespace |
66 | |
67 | char AMDGPUPrintfRuntimeBinding::ID = 0; |
68 | |
69 | INITIALIZE_PASS_BEGIN(AMDGPUPrintfRuntimeBinding, |
70 | "amdgpu-printf-runtime-binding" , "AMDGPU Printf lowering" , |
71 | false, false) |
72 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
73 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
74 | INITIALIZE_PASS_END(AMDGPUPrintfRuntimeBinding, "amdgpu-printf-runtime-binding" , |
75 | "AMDGPU Printf lowering" , false, false) |
76 | |
77 | char &llvm::AMDGPUPrintfRuntimeBindingID = AMDGPUPrintfRuntimeBinding::ID; |
78 | |
79 | namespace llvm { |
80 | ModulePass *createAMDGPUPrintfRuntimeBinding() { |
81 | return new AMDGPUPrintfRuntimeBinding(); |
82 | } |
83 | } // namespace llvm |
84 | |
85 | AMDGPUPrintfRuntimeBinding::AMDGPUPrintfRuntimeBinding() : ModulePass(ID) { |
86 | initializeAMDGPUPrintfRuntimeBindingPass(Registry&: *PassRegistry::getPassRegistry()); |
87 | } |
88 | |
89 | void AMDGPUPrintfRuntimeBindingImpl::getConversionSpecifiers( |
90 | SmallVectorImpl<char> &OpConvSpecifiers, StringRef Fmt, |
91 | size_t NumOps) const { |
92 | // not all format characters are collected. |
93 | // At this time the format characters of interest |
94 | // are %p and %s, which use to know if we |
95 | // are either storing a literal string or a |
96 | // pointer to the printf buffer. |
97 | static const char ConvSpecifiers[] = "cdieEfgGaosuxXp" ; |
98 | size_t CurFmtSpecifierIdx = 0; |
99 | size_t PrevFmtSpecifierIdx = 0; |
100 | |
101 | while ((CurFmtSpecifierIdx = Fmt.find_first_of( |
102 | Chars: ConvSpecifiers, From: CurFmtSpecifierIdx)) != StringRef::npos) { |
103 | bool ArgDump = false; |
104 | StringRef CurFmt = Fmt.substr(Start: PrevFmtSpecifierIdx, |
105 | N: CurFmtSpecifierIdx - PrevFmtSpecifierIdx); |
106 | size_t pTag = CurFmt.find_last_of(C: '%'); |
107 | if (pTag != StringRef::npos) { |
108 | ArgDump = true; |
109 | while (pTag && CurFmt[--pTag] == '%') { |
110 | ArgDump = !ArgDump; |
111 | } |
112 | } |
113 | |
114 | if (ArgDump) |
115 | OpConvSpecifiers.push_back(Elt: Fmt[CurFmtSpecifierIdx]); |
116 | |
117 | PrevFmtSpecifierIdx = ++CurFmtSpecifierIdx; |
118 | } |
119 | } |
120 | |
121 | static bool shouldPrintAsStr(char Specifier, Type *OpType) { |
122 | return Specifier == 's' && isa<PointerType>(Val: OpType); |
123 | } |
124 | |
125 | constexpr StringLiteral NonLiteralStr("???" ); |
126 | static_assert(NonLiteralStr.size() == 3); |
127 | |
128 | static StringRef getAsConstantStr(Value *V) { |
129 | StringRef S; |
130 | if (!getConstantStringInfo(V, Str&: S)) |
131 | S = NonLiteralStr; |
132 | |
133 | return S; |
134 | } |
135 | |
136 | static void diagnoseInvalidFormatString(const CallBase *CI) { |
137 | DiagnosticInfoUnsupported UnsupportedFormatStr( |
138 | *CI->getParent()->getParent(), |
139 | "printf format string must be a trivially resolved constant string " |
140 | "global variable" , |
141 | CI->getDebugLoc()); |
142 | CI->getContext().diagnose(DI: UnsupportedFormatStr); |
143 | } |
144 | |
145 | bool AMDGPUPrintfRuntimeBindingImpl::lowerPrintfForGpu(Module &M) { |
146 | LLVMContext &Ctx = M.getContext(); |
147 | IRBuilder<> Builder(Ctx); |
148 | Type *I32Ty = Type::getInt32Ty(C&: Ctx); |
149 | |
150 | // Instead of creating global variables, the printf format strings are |
151 | // extracted and passed as metadata. This avoids polluting llvm's symbol |
152 | // tables in this module. Metadata is going to be extracted by the backend |
153 | // passes and inserted into the OpenCL binary as appropriate. |
154 | NamedMDNode *metaD = M.getOrInsertNamedMetadata(Name: "llvm.printf.fmts" ); |
155 | unsigned UniqID = metaD->getNumOperands(); |
156 | |
157 | for (auto *CI : Printfs) { |
158 | unsigned NumOps = CI->arg_size(); |
159 | |
160 | SmallString<16> OpConvSpecifiers; |
161 | Value *Op = CI->getArgOperand(i: 0); |
162 | |
163 | StringRef FormatStr; |
164 | if (!getConstantStringInfo(V: Op, Str&: FormatStr)) { |
165 | Value *Stripped = Op->stripPointerCasts(); |
166 | if (!isa<UndefValue>(Val: Stripped) && !isa<ConstantPointerNull>(Val: Stripped)) |
167 | diagnoseInvalidFormatString(CI); |
168 | continue; |
169 | } |
170 | |
171 | // We need this call to ascertain that we are printing a string or a |
172 | // pointer. It takes out the specifiers and fills up the first arg. |
173 | getConversionSpecifiers(OpConvSpecifiers, Fmt: FormatStr, NumOps: NumOps - 1); |
174 | |
175 | // Add metadata for the string |
176 | std::string AStreamHolder; |
177 | raw_string_ostream Sizes(AStreamHolder); |
178 | int Sum = DWORD_ALIGN; |
179 | Sizes << CI->arg_size() - 1; |
180 | Sizes << ':'; |
181 | for (unsigned ArgCount = 1; |
182 | ArgCount < CI->arg_size() && ArgCount <= OpConvSpecifiers.size(); |
183 | ArgCount++) { |
184 | Value *Arg = CI->getArgOperand(i: ArgCount); |
185 | Type *ArgType = Arg->getType(); |
186 | unsigned ArgSize = TD->getTypeAllocSize(Ty: ArgType); |
187 | // |
188 | // ArgSize by design should be a multiple of DWORD_ALIGN, |
189 | // expand the arguments that do not follow this rule. |
190 | // |
191 | if (ArgSize % DWORD_ALIGN != 0) { |
192 | Type *ResType = Type::getInt32Ty(C&: Ctx); |
193 | if (auto *VecType = dyn_cast<VectorType>(Val: ArgType)) |
194 | ResType = VectorType::get(ElementType: ResType, EC: VecType->getElementCount()); |
195 | Builder.SetInsertPoint(CI); |
196 | Builder.SetCurrentDebugLocation(CI->getDebugLoc()); |
197 | |
198 | if (ArgType->isFloatingPointTy()) { |
199 | Arg = Builder.CreateBitCast( |
200 | V: Arg, |
201 | DestTy: IntegerType::getIntNTy(C&: Ctx, N: ArgType->getPrimitiveSizeInBits())); |
202 | } |
203 | |
204 | if (OpConvSpecifiers[ArgCount - 1] == 'x' || |
205 | OpConvSpecifiers[ArgCount - 1] == 'X' || |
206 | OpConvSpecifiers[ArgCount - 1] == 'u' || |
207 | OpConvSpecifiers[ArgCount - 1] == 'o') |
208 | Arg = Builder.CreateZExt(V: Arg, DestTy: ResType); |
209 | else |
210 | Arg = Builder.CreateSExt(V: Arg, DestTy: ResType); |
211 | ArgType = Arg->getType(); |
212 | ArgSize = TD->getTypeAllocSize(Ty: ArgType); |
213 | CI->setOperand(i_nocapture: ArgCount, Val_nocapture: Arg); |
214 | } |
215 | if (OpConvSpecifiers[ArgCount - 1] == 'f') { |
216 | ConstantFP *FpCons = dyn_cast<ConstantFP>(Val: Arg); |
217 | if (FpCons) |
218 | ArgSize = 4; |
219 | else { |
220 | FPExtInst *FpExt = dyn_cast<FPExtInst>(Val: Arg); |
221 | if (FpExt && FpExt->getType()->isDoubleTy() && |
222 | FpExt->getOperand(i_nocapture: 0)->getType()->isFloatTy()) |
223 | ArgSize = 4; |
224 | } |
225 | } |
226 | if (shouldPrintAsStr(Specifier: OpConvSpecifiers[ArgCount - 1], OpType: ArgType)) |
227 | ArgSize = alignTo(Value: getAsConstantStr(V: Arg).size() + 1, Align: 4); |
228 | |
229 | LLVM_DEBUG(dbgs() << "Printf ArgSize (in buffer) = " << ArgSize |
230 | << " for type: " << *ArgType << '\n'); |
231 | Sizes << ArgSize << ':'; |
232 | Sum += ArgSize; |
233 | } |
234 | LLVM_DEBUG(dbgs() << "Printf format string in source = " << FormatStr |
235 | << '\n'); |
236 | for (char C : FormatStr) { |
237 | // Rest of the C escape sequences (e.g. \') are handled correctly |
238 | // by the MDParser |
239 | switch (C) { |
240 | case '\a': |
241 | Sizes << "\\a" ; |
242 | break; |
243 | case '\b': |
244 | Sizes << "\\b" ; |
245 | break; |
246 | case '\f': |
247 | Sizes << "\\f" ; |
248 | break; |
249 | case '\n': |
250 | Sizes << "\\n" ; |
251 | break; |
252 | case '\r': |
253 | Sizes << "\\r" ; |
254 | break; |
255 | case '\v': |
256 | Sizes << "\\v" ; |
257 | break; |
258 | case ':': |
259 | // ':' cannot be scanned by Flex, as it is defined as a delimiter |
260 | // Replace it with it's octal representation \72 |
261 | Sizes << "\\72" ; |
262 | break; |
263 | default: |
264 | Sizes << C; |
265 | break; |
266 | } |
267 | } |
268 | |
269 | // Insert the printf_alloc call |
270 | Builder.SetInsertPoint(CI); |
271 | Builder.SetCurrentDebugLocation(CI->getDebugLoc()); |
272 | |
273 | AttributeList Attr = AttributeList::get(C&: Ctx, Index: AttributeList::FunctionIndex, |
274 | Kinds: Attribute::NoUnwind); |
275 | |
276 | Type *SizetTy = Type::getInt32Ty(C&: Ctx); |
277 | |
278 | Type *Tys_alloc[1] = {SizetTy}; |
279 | Type *I8Ty = Type::getInt8Ty(C&: Ctx); |
280 | Type *I8Ptr = PointerType::get(ElementType: I8Ty, AddressSpace: 1); |
281 | FunctionType *FTy_alloc = FunctionType::get(Result: I8Ptr, Params: Tys_alloc, isVarArg: false); |
282 | FunctionCallee PrintfAllocFn = |
283 | M.getOrInsertFunction(Name: StringRef("__printf_alloc" ), T: FTy_alloc, AttributeList: Attr); |
284 | |
285 | LLVM_DEBUG(dbgs() << "Printf metadata = " << Sizes.str() << '\n'); |
286 | std::string fmtstr = itostr(X: ++UniqID) + ":" + Sizes.str(); |
287 | MDString *fmtStrArray = MDString::get(Context&: Ctx, Str: fmtstr); |
288 | |
289 | MDNode *myMD = MDNode::get(Context&: Ctx, MDs: fmtStrArray); |
290 | metaD->addOperand(M: myMD); |
291 | Value *sumC = ConstantInt::get(Ty: SizetTy, V: Sum, IsSigned: false); |
292 | SmallVector<Value *, 1> alloc_args; |
293 | alloc_args.push_back(Elt: sumC); |
294 | CallInst *pcall = CallInst::Create(Func: PrintfAllocFn, Args: alloc_args, |
295 | NameStr: "printf_alloc_fn" , InsertBefore: CI->getIterator()); |
296 | |
297 | // |
298 | // Insert code to split basicblock with a |
299 | // piece of hammock code. |
300 | // basicblock splits after buffer overflow check |
301 | // |
302 | ConstantPointerNull *zeroIntPtr = |
303 | ConstantPointerNull::get(T: PointerType::get(ElementType: I8Ty, AddressSpace: 1)); |
304 | auto *cmp = cast<ICmpInst>(Val: Builder.CreateICmpNE(LHS: pcall, RHS: zeroIntPtr, Name: "" )); |
305 | if (!CI->use_empty()) { |
306 | Value *result = |
307 | Builder.CreateSExt(V: Builder.CreateNot(V: cmp), DestTy: I32Ty, Name: "printf_res" ); |
308 | CI->replaceAllUsesWith(V: result); |
309 | } |
310 | SplitBlock(Old: CI->getParent(), SplitPt: cmp); |
311 | Instruction *Brnch = |
312 | SplitBlockAndInsertIfThen(Cond: cmp, SplitBefore: cmp->getNextNode(), Unreachable: false); |
313 | BasicBlock::iterator BrnchPoint = Brnch->getIterator(); |
314 | |
315 | Builder.SetInsertPoint(Brnch); |
316 | |
317 | // store unique printf id in the buffer |
318 | // |
319 | GetElementPtrInst *BufferIdx = GetElementPtrInst::Create( |
320 | PointeeType: I8Ty, Ptr: pcall, IdxList: ConstantInt::get(Context&: Ctx, V: APInt(32, 0)), NameStr: "PrintBuffID" , |
321 | InsertBefore: BrnchPoint); |
322 | |
323 | Type *idPointer = PointerType::get(ElementType: I32Ty, AddressSpace: AMDGPUAS::GLOBAL_ADDRESS); |
324 | Value *id_gep_cast = |
325 | new BitCastInst(BufferIdx, idPointer, "PrintBuffIdCast" , BrnchPoint); |
326 | |
327 | new StoreInst(ConstantInt::get(Ty: I32Ty, V: UniqID), id_gep_cast, BrnchPoint); |
328 | |
329 | // 1st 4 bytes hold the printf_id |
330 | // the following GEP is the buffer pointer |
331 | BufferIdx = GetElementPtrInst::Create(PointeeType: I8Ty, Ptr: pcall, |
332 | IdxList: ConstantInt::get(Context&: Ctx, V: APInt(32, 4)), |
333 | NameStr: "PrintBuffGep" , InsertBefore: BrnchPoint); |
334 | |
335 | Type *Int32Ty = Type::getInt32Ty(C&: Ctx); |
336 | for (unsigned ArgCount = 1; |
337 | ArgCount < CI->arg_size() && ArgCount <= OpConvSpecifiers.size(); |
338 | ArgCount++) { |
339 | Value *Arg = CI->getArgOperand(i: ArgCount); |
340 | Type *ArgType = Arg->getType(); |
341 | SmallVector<Value *, 32> WhatToStore; |
342 | if (ArgType->isFPOrFPVectorTy() && !isa<VectorType>(Val: ArgType)) { |
343 | if (OpConvSpecifiers[ArgCount - 1] == 'f') { |
344 | if (auto *FpCons = dyn_cast<ConstantFP>(Val: Arg)) { |
345 | APFloat Val(FpCons->getValueAPF()); |
346 | bool Lost = false; |
347 | Val.convert(ToSemantics: APFloat::IEEEsingle(), RM: APFloat::rmNearestTiesToEven, |
348 | losesInfo: &Lost); |
349 | Arg = ConstantFP::get(Context&: Ctx, V: Val); |
350 | } else if (auto *FpExt = dyn_cast<FPExtInst>(Val: Arg)) { |
351 | if (FpExt->getType()->isDoubleTy() && |
352 | FpExt->getOperand(i_nocapture: 0)->getType()->isFloatTy()) { |
353 | Arg = FpExt->getOperand(i_nocapture: 0); |
354 | } |
355 | } |
356 | } |
357 | WhatToStore.push_back(Elt: Arg); |
358 | } else if (isa<PointerType>(Val: ArgType)) { |
359 | if (shouldPrintAsStr(Specifier: OpConvSpecifiers[ArgCount - 1], OpType: ArgType)) { |
360 | StringRef S = getAsConstantStr(V: Arg); |
361 | if (!S.empty()) { |
362 | const uint64_t ReadSize = 4; |
363 | |
364 | DataExtractor (S, /*IsLittleEndian=*/true, 8); |
365 | DataExtractor::Cursor Offset(0); |
366 | while (Offset && Offset.tell() < S.size()) { |
367 | uint64_t ReadNow = std::min(a: ReadSize, b: S.size() - Offset.tell()); |
368 | uint64_t ReadBytes = 0; |
369 | switch (ReadNow) { |
370 | default: llvm_unreachable("min(4, X) > 4?" ); |
371 | case 1: |
372 | ReadBytes = Extractor.getU8(C&: Offset); |
373 | break; |
374 | case 2: |
375 | ReadBytes = Extractor.getU16(C&: Offset); |
376 | break; |
377 | case 3: |
378 | ReadBytes = Extractor.getU24(C&: Offset); |
379 | break; |
380 | case 4: |
381 | ReadBytes = Extractor.getU32(C&: Offset); |
382 | break; |
383 | } |
384 | |
385 | cantFail(Err: Offset.takeError(), |
386 | Msg: "failed to read bytes from constant array" ); |
387 | |
388 | APInt IntVal(8 * ReadSize, ReadBytes); |
389 | |
390 | // TODO: Should not bothering aligning up. |
391 | if (ReadNow < ReadSize) |
392 | IntVal = IntVal.zext(width: 8 * ReadSize); |
393 | |
394 | Type *IntTy = Type::getIntNTy(C&: Ctx, N: IntVal.getBitWidth()); |
395 | WhatToStore.push_back(Elt: ConstantInt::get(Ty: IntTy, V: IntVal)); |
396 | } |
397 | } else { |
398 | // Empty string, give a hint to RT it is no NULL |
399 | Value *ANumV = ConstantInt::get(Ty: Int32Ty, V: 0xFFFFFF00, IsSigned: false); |
400 | WhatToStore.push_back(Elt: ANumV); |
401 | } |
402 | } else { |
403 | WhatToStore.push_back(Elt: Arg); |
404 | } |
405 | } else { |
406 | WhatToStore.push_back(Elt: Arg); |
407 | } |
408 | for (unsigned I = 0, E = WhatToStore.size(); I != E; ++I) { |
409 | Value *TheBtCast = WhatToStore[I]; |
410 | unsigned ArgSize = TD->getTypeAllocSize(Ty: TheBtCast->getType()); |
411 | StoreInst *StBuff = new StoreInst(TheBtCast, BufferIdx, BrnchPoint); |
412 | LLVM_DEBUG(dbgs() << "inserting store to printf buffer:\n" |
413 | << *StBuff << '\n'); |
414 | (void)StBuff; |
415 | if (I + 1 == E && ArgCount + 1 == CI->arg_size()) |
416 | break; |
417 | BufferIdx = GetElementPtrInst::Create( |
418 | PointeeType: I8Ty, Ptr: BufferIdx, IdxList: {ConstantInt::get(Ty: I32Ty, V: ArgSize)}, |
419 | NameStr: "PrintBuffNextPtr" , InsertBefore: BrnchPoint); |
420 | LLVM_DEBUG(dbgs() << "inserting gep to the printf buffer:\n" |
421 | << *BufferIdx << '\n'); |
422 | } |
423 | } |
424 | } |
425 | |
426 | // erase the printf calls |
427 | for (auto *CI : Printfs) |
428 | CI->eraseFromParent(); |
429 | |
430 | Printfs.clear(); |
431 | return true; |
432 | } |
433 | |
434 | bool AMDGPUPrintfRuntimeBindingImpl::run(Module &M) { |
435 | Triple TT(M.getTargetTriple()); |
436 | if (TT.getArch() == Triple::r600) |
437 | return false; |
438 | |
439 | auto PrintfFunction = M.getFunction(Name: "printf" ); |
440 | if (!PrintfFunction || !PrintfFunction->isDeclaration()) |
441 | return false; |
442 | |
443 | for (auto &U : PrintfFunction->uses()) { |
444 | if (auto *CI = dyn_cast<CallInst>(Val: U.getUser())) { |
445 | if (CI->isCallee(U: &U) && !CI->isNoBuiltin()) |
446 | Printfs.push_back(Elt: CI); |
447 | } |
448 | } |
449 | |
450 | if (Printfs.empty()) |
451 | return false; |
452 | |
453 | TD = &M.getDataLayout(); |
454 | |
455 | return lowerPrintfForGpu(M); |
456 | } |
457 | |
458 | bool AMDGPUPrintfRuntimeBinding::runOnModule(Module &M) { |
459 | return AMDGPUPrintfRuntimeBindingImpl().run(M); |
460 | } |
461 | |
462 | PreservedAnalyses |
463 | AMDGPUPrintfRuntimeBindingPass::run(Module &M, ModuleAnalysisManager &AM) { |
464 | bool Changed = AMDGPUPrintfRuntimeBindingImpl().run(M); |
465 | return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); |
466 | } |
467 | |