1 | //===- AMDGPUBaseInfo.h - Top level definitions for AMDGPU ------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #ifndef LLVM_LIB_TARGET_AMDGPU_UTILS_AMDGPUBASEINFO_H |
10 | #define LLVM_LIB_TARGET_AMDGPU_UTILS_AMDGPUBASEINFO_H |
11 | |
12 | #include "AMDGPUSubtarget.h" |
13 | #include "SIDefines.h" |
14 | #include "llvm/IR/CallingConv.h" |
15 | #include "llvm/IR/InstrTypes.h" |
16 | #include "llvm/IR/Module.h" |
17 | #include "llvm/Support/Alignment.h" |
18 | #include <array> |
19 | #include <functional> |
20 | #include <utility> |
21 | |
22 | struct amd_kernel_code_t; |
23 | |
24 | namespace llvm { |
25 | |
26 | struct Align; |
27 | class Argument; |
28 | class Function; |
29 | class GlobalValue; |
30 | class MCInstrInfo; |
31 | class MCRegisterClass; |
32 | class MCRegisterInfo; |
33 | class MCSubtargetInfo; |
34 | class StringRef; |
35 | class Triple; |
36 | class raw_ostream; |
37 | |
38 | namespace AMDGPU { |
39 | |
40 | struct AMDGPUMCKernelCodeT; |
41 | struct IsaVersion; |
42 | |
43 | /// Generic target versions emitted by this version of LLVM. |
44 | /// |
45 | /// These numbers are incremented every time a codegen breaking change occurs |
46 | /// within a generic family. |
47 | namespace GenericVersion { |
48 | static constexpr unsigned GFX9 = 1; |
49 | static constexpr unsigned GFX10_1 = 1; |
50 | static constexpr unsigned GFX10_3 = 1; |
51 | static constexpr unsigned GFX11 = 1; |
52 | static constexpr unsigned GFX12 = 1; |
53 | } // namespace GenericVersion |
54 | |
55 | enum { AMDHSA_COV4 = 4, AMDHSA_COV5 = 5, AMDHSA_COV6 = 6 }; |
56 | |
57 | /// \returns True if \p STI is AMDHSA. |
58 | bool isHsaAbi(const MCSubtargetInfo &STI); |
59 | |
60 | /// \returns Code object version from the IR module flag. |
61 | unsigned getAMDHSACodeObjectVersion(const Module &M); |
62 | |
63 | /// \returns Code object version from ELF's e_ident[EI_ABIVERSION]. |
64 | unsigned getAMDHSACodeObjectVersion(unsigned ABIVersion); |
65 | |
66 | /// \returns The default HSA code object version. This should only be used when |
67 | /// we lack a more accurate CodeObjectVersion value (e.g. from the IR module |
68 | /// flag or a .amdhsa_code_object_version directive) |
69 | unsigned getDefaultAMDHSACodeObjectVersion(); |
70 | |
71 | /// \returns ABIVersion suitable for use in ELF's e_ident[EI_ABIVERSION]. \param |
72 | /// CodeObjectVersion is a value returned by getAMDHSACodeObjectVersion(). |
73 | uint8_t getELFABIVersion(const Triple &OS, unsigned CodeObjectVersion); |
74 | |
75 | /// \returns The offset of the multigrid_sync_arg argument from implicitarg_ptr |
76 | unsigned getMultigridSyncArgImplicitArgPosition(unsigned COV); |
77 | |
78 | /// \returns The offset of the hostcall pointer argument from implicitarg_ptr |
79 | unsigned getHostcallImplicitArgPosition(unsigned COV); |
80 | |
81 | unsigned getDefaultQueueImplicitArgPosition(unsigned COV); |
82 | unsigned getCompletionActionImplicitArgPosition(unsigned COV); |
83 | |
84 | struct GcnBufferFormatInfo { |
85 | unsigned Format; |
86 | unsigned BitsPerComp; |
87 | unsigned NumComponents; |
88 | unsigned NumFormat; |
89 | unsigned DataFormat; |
90 | }; |
91 | |
92 | struct MAIInstInfo { |
93 | uint16_t Opcode; |
94 | bool is_dgemm; |
95 | bool is_gfx940_xdl; |
96 | }; |
97 | |
98 | #define GET_MIMGBaseOpcode_DECL |
99 | #define GET_MIMGDim_DECL |
100 | #define GET_MIMGEncoding_DECL |
101 | #define GET_MIMGLZMapping_DECL |
102 | #define GET_MIMGMIPMapping_DECL |
103 | #define GET_MIMGBiASMapping_DECL |
104 | #define GET_MAIInstInfoTable_DECL |
105 | #include "AMDGPUGenSearchableTables.inc" |
106 | |
107 | namespace IsaInfo { |
108 | |
109 | enum { |
110 | // The closed Vulkan driver sets 96, which limits the wave count to 8 but |
111 | // doesn't spill SGPRs as much as when 80 is set. |
112 | FIXED_NUM_SGPRS_FOR_INIT_BUG = 96, |
113 | TRAP_NUM_SGPRS = 16 |
114 | }; |
115 | |
116 | enum class TargetIDSetting { |
117 | Unsupported, |
118 | Any, |
119 | Off, |
120 | On |
121 | }; |
122 | |
123 | class AMDGPUTargetID { |
124 | private: |
125 | const MCSubtargetInfo &STI; |
126 | TargetIDSetting XnackSetting; |
127 | TargetIDSetting SramEccSetting; |
128 | |
129 | public: |
130 | explicit AMDGPUTargetID(const MCSubtargetInfo &STI); |
131 | ~AMDGPUTargetID() = default; |
132 | |
133 | /// \return True if the current xnack setting is not "Unsupported". |
134 | bool isXnackSupported() const { |
135 | return XnackSetting != TargetIDSetting::Unsupported; |
136 | } |
137 | |
138 | /// \returns True if the current xnack setting is "On" or "Any". |
139 | bool isXnackOnOrAny() const { |
140 | return XnackSetting == TargetIDSetting::On || |
141 | XnackSetting == TargetIDSetting::Any; |
142 | } |
143 | |
144 | /// \returns True if current xnack setting is "On" or "Off", |
145 | /// false otherwise. |
146 | bool isXnackOnOrOff() const { |
147 | return getXnackSetting() == TargetIDSetting::On || |
148 | getXnackSetting() == TargetIDSetting::Off; |
149 | } |
150 | |
151 | /// \returns The current xnack TargetIDSetting, possible options are |
152 | /// "Unsupported", "Any", "Off", and "On". |
153 | TargetIDSetting getXnackSetting() const { |
154 | return XnackSetting; |
155 | } |
156 | |
157 | /// Sets xnack setting to \p NewXnackSetting. |
158 | void setXnackSetting(TargetIDSetting NewXnackSetting) { |
159 | XnackSetting = NewXnackSetting; |
160 | } |
161 | |
162 | /// \return True if the current sramecc setting is not "Unsupported". |
163 | bool isSramEccSupported() const { |
164 | return SramEccSetting != TargetIDSetting::Unsupported; |
165 | } |
166 | |
167 | /// \returns True if the current sramecc setting is "On" or "Any". |
168 | bool isSramEccOnOrAny() const { |
169 | return SramEccSetting == TargetIDSetting::On || |
170 | SramEccSetting == TargetIDSetting::Any; |
171 | } |
172 | |
173 | /// \returns True if current sramecc setting is "On" or "Off", |
174 | /// false otherwise. |
175 | bool isSramEccOnOrOff() const { |
176 | return getSramEccSetting() == TargetIDSetting::On || |
177 | getSramEccSetting() == TargetIDSetting::Off; |
178 | } |
179 | |
180 | /// \returns The current sramecc TargetIDSetting, possible options are |
181 | /// "Unsupported", "Any", "Off", and "On". |
182 | TargetIDSetting getSramEccSetting() const { |
183 | return SramEccSetting; |
184 | } |
185 | |
186 | /// Sets sramecc setting to \p NewSramEccSetting. |
187 | void setSramEccSetting(TargetIDSetting NewSramEccSetting) { |
188 | SramEccSetting = NewSramEccSetting; |
189 | } |
190 | |
191 | void setTargetIDFromFeaturesString(StringRef FS); |
192 | void setTargetIDFromTargetIDStream(StringRef TargetID); |
193 | |
194 | /// \returns String representation of an object. |
195 | std::string toString() const; |
196 | }; |
197 | |
198 | /// \returns Wavefront size for given subtarget \p STI. |
199 | unsigned getWavefrontSize(const MCSubtargetInfo *STI); |
200 | |
201 | /// \returns Local memory size in bytes for given subtarget \p STI. |
202 | unsigned getLocalMemorySize(const MCSubtargetInfo *STI); |
203 | |
204 | /// \returns Maximum addressable local memory size in bytes for given subtarget |
205 | /// \p STI. |
206 | unsigned getAddressableLocalMemorySize(const MCSubtargetInfo *STI); |
207 | |
208 | /// \returns Number of execution units per compute unit for given subtarget \p |
209 | /// STI. |
210 | unsigned getEUsPerCU(const MCSubtargetInfo *STI); |
211 | |
212 | /// \returns Maximum number of work groups per compute unit for given subtarget |
213 | /// \p STI and limited by given \p FlatWorkGroupSize. |
214 | unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, |
215 | unsigned FlatWorkGroupSize); |
216 | |
217 | /// \returns Minimum number of waves per execution unit for given subtarget \p |
218 | /// STI. |
219 | unsigned getMinWavesPerEU(const MCSubtargetInfo *STI); |
220 | |
221 | /// \returns Maximum number of waves per execution unit for given subtarget \p |
222 | /// STI without any kind of limitation. |
223 | unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI); |
224 | |
225 | /// \returns Number of waves per execution unit required to support the given \p |
226 | /// FlatWorkGroupSize. |
227 | unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI, |
228 | unsigned FlatWorkGroupSize); |
229 | |
230 | /// \returns Minimum flat work group size for given subtarget \p STI. |
231 | unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI); |
232 | |
233 | /// \returns Maximum flat work group size for given subtarget \p STI. |
234 | unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI); |
235 | |
236 | /// \returns Number of waves per work group for given subtarget \p STI and |
237 | /// \p FlatWorkGroupSize. |
238 | unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, |
239 | unsigned FlatWorkGroupSize); |
240 | |
241 | /// \returns SGPR allocation granularity for given subtarget \p STI. |
242 | unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI); |
243 | |
244 | /// \returns SGPR encoding granularity for given subtarget \p STI. |
245 | unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI); |
246 | |
247 | /// \returns Total number of SGPRs for given subtarget \p STI. |
248 | unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI); |
249 | |
250 | /// \returns Addressable number of SGPRs for given subtarget \p STI. |
251 | unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI); |
252 | |
253 | /// \returns Minimum number of SGPRs that meets the given number of waves per |
254 | /// execution unit requirement for given subtarget \p STI. |
255 | unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU); |
256 | |
257 | /// \returns Maximum number of SGPRs that meets the given number of waves per |
258 | /// execution unit requirement for given subtarget \p STI. |
259 | unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, |
260 | bool Addressable); |
261 | |
262 | /// \returns Number of extra SGPRs implicitly required by given subtarget \p |
263 | /// STI when the given special registers are used. |
264 | unsigned (const MCSubtargetInfo *STI, bool VCCUsed, |
265 | bool FlatScrUsed, bool XNACKUsed); |
266 | |
267 | /// \returns Number of extra SGPRs implicitly required by given subtarget \p |
268 | /// STI when the given special registers are used. XNACK is inferred from |
269 | /// \p STI. |
270 | unsigned (const MCSubtargetInfo *STI, bool VCCUsed, |
271 | bool FlatScrUsed); |
272 | |
273 | /// \returns Number of SGPR blocks needed for given subtarget \p STI when |
274 | /// \p NumSGPRs are used. \p NumSGPRs should already include any special |
275 | /// register counts. |
276 | unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs); |
277 | |
278 | /// \returns VGPR allocation granularity for given subtarget \p STI. |
279 | /// |
280 | /// For subtargets which support it, \p EnableWavefrontSize32 should match |
281 | /// the ENABLE_WAVEFRONT_SIZE32 kernel descriptor field. |
282 | unsigned |
283 | getVGPRAllocGranule(const MCSubtargetInfo *STI, |
284 | std::optional<bool> EnableWavefrontSize32 = std::nullopt); |
285 | |
286 | /// \returns VGPR encoding granularity for given subtarget \p STI. |
287 | /// |
288 | /// For subtargets which support it, \p EnableWavefrontSize32 should match |
289 | /// the ENABLE_WAVEFRONT_SIZE32 kernel descriptor field. |
290 | unsigned getVGPREncodingGranule( |
291 | const MCSubtargetInfo *STI, |
292 | std::optional<bool> EnableWavefrontSize32 = std::nullopt); |
293 | |
294 | /// \returns Total number of VGPRs for given subtarget \p STI. |
295 | unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI); |
296 | |
297 | /// \returns Addressable number of architectural VGPRs for a given subtarget \p |
298 | /// STI. |
299 | unsigned getAddressableNumArchVGPRs(const MCSubtargetInfo *STI); |
300 | |
301 | /// \returns Addressable number of VGPRs for given subtarget \p STI. |
302 | unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI); |
303 | |
304 | /// \returns Minimum number of VGPRs that meets given number of waves per |
305 | /// execution unit requirement for given subtarget \p STI. |
306 | unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU); |
307 | |
308 | /// \returns Maximum number of VGPRs that meets given number of waves per |
309 | /// execution unit requirement for given subtarget \p STI. |
310 | unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU); |
311 | |
312 | /// \returns Number of waves reachable for a given \p NumVGPRs usage for given |
313 | /// subtarget \p STI. |
314 | unsigned getNumWavesPerEUWithNumVGPRs(const MCSubtargetInfo *STI, |
315 | unsigned NumVGPRs); |
316 | |
317 | /// \returns Number of waves reachable for a given \p NumVGPRs usage, \p Granule |
318 | /// size, \p MaxWaves possible, and \p TotalNumVGPRs available. |
319 | unsigned getNumWavesPerEUWithNumVGPRs(unsigned NumVGPRs, unsigned Granule, |
320 | unsigned MaxWaves, |
321 | unsigned TotalNumVGPRs); |
322 | |
323 | /// \returns Occupancy for a given \p SGPRs usage, \p MaxWaves possible, and \p |
324 | /// Gen. |
325 | unsigned getOccupancyWithNumSGPRs(unsigned SGPRs, unsigned MaxWaves, |
326 | AMDGPUSubtarget::Generation Gen); |
327 | |
328 | /// \returns Number of VGPR blocks needed for given subtarget \p STI when |
329 | /// \p NumVGPRs are used. We actually return the number of blocks -1, since |
330 | /// that's what we encode. |
331 | /// |
332 | /// For subtargets which support it, \p EnableWavefrontSize32 should match the |
333 | /// ENABLE_WAVEFRONT_SIZE32 kernel descriptor field. |
334 | unsigned getEncodedNumVGPRBlocks( |
335 | const MCSubtargetInfo *STI, unsigned NumVGPRs, |
336 | std::optional<bool> EnableWavefrontSize32 = std::nullopt); |
337 | |
338 | /// \returns Number of VGPR blocks that need to be allocated for the given |
339 | /// subtarget \p STI when \p NumVGPRs are used. |
340 | unsigned getAllocatedNumVGPRBlocks( |
341 | const MCSubtargetInfo *STI, unsigned NumVGPRs, |
342 | std::optional<bool> EnableWavefrontSize32 = std::nullopt); |
343 | |
344 | } // end namespace IsaInfo |
345 | |
346 | // Represents a field in an encoded value. |
347 | template <unsigned HighBit, unsigned LowBit, unsigned D = 0> |
348 | struct EncodingField { |
349 | static_assert(HighBit >= LowBit, "Invalid bit range!" ); |
350 | static constexpr unsigned Offset = LowBit; |
351 | static constexpr unsigned Width = HighBit - LowBit + 1; |
352 | |
353 | using ValueType = unsigned; |
354 | static constexpr ValueType Default = D; |
355 | |
356 | ValueType Value; |
357 | constexpr EncodingField(ValueType Value) : Value(Value) {} |
358 | |
359 | constexpr uint64_t encode() const { return Value; } |
360 | static ValueType decode(uint64_t Encoded) { return Encoded; } |
361 | }; |
362 | |
363 | // Represents a single bit in an encoded value. |
364 | template <unsigned Bit, unsigned D = 0> |
365 | using EncodingBit = EncodingField<Bit, Bit, D>; |
366 | |
367 | // A helper for encoding and decoding multiple fields. |
368 | template <typename... Fields> struct EncodingFields { |
369 | static constexpr uint64_t encode(Fields... Values) { |
370 | return ((Values.encode() << Values.Offset) | ...); |
371 | } |
372 | |
373 | static std::tuple<typename Fields::ValueType...> decode(uint64_t Encoded) { |
374 | return {Fields::decode((Encoded >> Fields::Offset) & |
375 | maxUIntN(Fields::Width))...}; |
376 | } |
377 | }; |
378 | |
379 | LLVM_READONLY |
380 | int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx); |
381 | |
382 | LLVM_READONLY |
383 | inline bool hasNamedOperand(uint64_t Opcode, uint64_t NamedIdx) { |
384 | return getNamedOperandIdx(Opcode, NamedIdx) != -1; |
385 | } |
386 | |
387 | LLVM_READONLY |
388 | int getSOPPWithRelaxation(uint16_t Opcode); |
389 | |
390 | struct MIMGBaseOpcodeInfo { |
391 | MIMGBaseOpcode BaseOpcode; |
392 | bool Store; |
393 | bool Atomic; |
394 | bool AtomicX2; |
395 | bool Sampler; |
396 | bool Gather4; |
397 | |
398 | uint8_t ; |
399 | bool Gradients; |
400 | bool G16; |
401 | bool Coordinates; |
402 | bool LodOrClampOrMip; |
403 | bool HasD16; |
404 | bool MSAA; |
405 | bool BVH; |
406 | bool A16; |
407 | bool NoReturn; |
408 | }; |
409 | |
410 | LLVM_READONLY |
411 | const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc); |
412 | |
413 | LLVM_READONLY |
414 | const MIMGBaseOpcodeInfo *getMIMGBaseOpcodeInfo(unsigned BaseOpcode); |
415 | |
416 | struct MIMGDimInfo { |
417 | MIMGDim Dim; |
418 | uint8_t NumCoords; |
419 | uint8_t NumGradients; |
420 | bool MSAA; |
421 | bool DA; |
422 | uint8_t Encoding; |
423 | const char *AsmSuffix; |
424 | }; |
425 | |
426 | LLVM_READONLY |
427 | const MIMGDimInfo *getMIMGDimInfo(unsigned ); |
428 | |
429 | LLVM_READONLY |
430 | const MIMGDimInfo *getMIMGDimInfoByEncoding(uint8_t DimEnc); |
431 | |
432 | LLVM_READONLY |
433 | const MIMGDimInfo *getMIMGDimInfoByAsmSuffix(StringRef AsmSuffix); |
434 | |
435 | struct MIMGLZMappingInfo { |
436 | MIMGBaseOpcode L; |
437 | MIMGBaseOpcode LZ; |
438 | }; |
439 | |
440 | struct MIMGMIPMappingInfo { |
441 | MIMGBaseOpcode MIP; |
442 | MIMGBaseOpcode NONMIP; |
443 | }; |
444 | |
445 | struct MIMGBiasMappingInfo { |
446 | MIMGBaseOpcode Bias; |
447 | MIMGBaseOpcode NoBias; |
448 | }; |
449 | |
450 | struct MIMGOffsetMappingInfo { |
451 | MIMGBaseOpcode Offset; |
452 | MIMGBaseOpcode NoOffset; |
453 | }; |
454 | |
455 | struct MIMGG16MappingInfo { |
456 | MIMGBaseOpcode G; |
457 | MIMGBaseOpcode G16; |
458 | }; |
459 | |
460 | LLVM_READONLY |
461 | const MIMGLZMappingInfo *getMIMGLZMappingInfo(unsigned L); |
462 | |
463 | struct WMMAOpcodeMappingInfo { |
464 | unsigned Opcode2Addr; |
465 | unsigned Opcode3Addr; |
466 | }; |
467 | |
468 | LLVM_READONLY |
469 | const MIMGMIPMappingInfo *getMIMGMIPMappingInfo(unsigned MIP); |
470 | |
471 | LLVM_READONLY |
472 | const MIMGBiasMappingInfo *getMIMGBiasMappingInfo(unsigned Bias); |
473 | |
474 | LLVM_READONLY |
475 | const MIMGOffsetMappingInfo *getMIMGOffsetMappingInfo(unsigned Offset); |
476 | |
477 | LLVM_READONLY |
478 | const MIMGG16MappingInfo *getMIMGG16MappingInfo(unsigned G); |
479 | |
480 | LLVM_READONLY |
481 | int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, |
482 | unsigned VDataDwords, unsigned VAddrDwords); |
483 | |
484 | LLVM_READONLY |
485 | int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels); |
486 | |
487 | LLVM_READONLY |
488 | unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode, |
489 | const MIMGDimInfo *Dim, bool IsA16, |
490 | bool IsG16Supported); |
491 | |
492 | struct MIMGInfo { |
493 | uint16_t Opcode; |
494 | uint16_t BaseOpcode; |
495 | uint8_t MIMGEncoding; |
496 | uint8_t VDataDwords; |
497 | uint8_t VAddrDwords; |
498 | uint8_t VAddrOperands; |
499 | }; |
500 | |
501 | LLVM_READONLY |
502 | const MIMGInfo *getMIMGInfo(unsigned Opc); |
503 | |
504 | LLVM_READONLY |
505 | int getMTBUFBaseOpcode(unsigned Opc); |
506 | |
507 | LLVM_READONLY |
508 | int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements); |
509 | |
510 | LLVM_READONLY |
511 | int getMTBUFElements(unsigned Opc); |
512 | |
513 | LLVM_READONLY |
514 | bool getMTBUFHasVAddr(unsigned Opc); |
515 | |
516 | LLVM_READONLY |
517 | bool getMTBUFHasSrsrc(unsigned Opc); |
518 | |
519 | LLVM_READONLY |
520 | bool getMTBUFHasSoffset(unsigned Opc); |
521 | |
522 | LLVM_READONLY |
523 | int getMUBUFBaseOpcode(unsigned Opc); |
524 | |
525 | LLVM_READONLY |
526 | int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements); |
527 | |
528 | LLVM_READONLY |
529 | int getMUBUFElements(unsigned Opc); |
530 | |
531 | LLVM_READONLY |
532 | bool getMUBUFHasVAddr(unsigned Opc); |
533 | |
534 | LLVM_READONLY |
535 | bool getMUBUFHasSrsrc(unsigned Opc); |
536 | |
537 | LLVM_READONLY |
538 | bool getMUBUFHasSoffset(unsigned Opc); |
539 | |
540 | LLVM_READONLY |
541 | bool getMUBUFIsBufferInv(unsigned Opc); |
542 | |
543 | LLVM_READONLY |
544 | bool getMUBUFTfe(unsigned Opc); |
545 | |
546 | LLVM_READONLY |
547 | bool getSMEMIsBuffer(unsigned Opc); |
548 | |
549 | LLVM_READONLY |
550 | bool getVOP1IsSingle(unsigned Opc); |
551 | |
552 | LLVM_READONLY |
553 | bool getVOP2IsSingle(unsigned Opc); |
554 | |
555 | LLVM_READONLY |
556 | bool getVOP3IsSingle(unsigned Opc); |
557 | |
558 | LLVM_READONLY |
559 | bool isVOPC64DPP(unsigned Opc); |
560 | |
561 | LLVM_READONLY |
562 | bool isVOPCAsmOnly(unsigned Opc); |
563 | |
564 | /// Returns true if MAI operation is a double precision GEMM. |
565 | LLVM_READONLY |
566 | bool getMAIIsDGEMM(unsigned Opc); |
567 | |
568 | LLVM_READONLY |
569 | bool getMAIIsGFX940XDL(unsigned Opc); |
570 | |
571 | struct CanBeVOPD { |
572 | bool X; |
573 | bool Y; |
574 | }; |
575 | |
576 | /// \returns SIEncodingFamily used for VOPD encoding on a \p ST. |
577 | LLVM_READONLY |
578 | unsigned getVOPDEncodingFamily(const MCSubtargetInfo &ST); |
579 | |
580 | LLVM_READONLY |
581 | CanBeVOPD getCanBeVOPD(unsigned Opc); |
582 | |
583 | LLVM_READONLY |
584 | const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp, |
585 | uint8_t NumComponents, |
586 | uint8_t NumFormat, |
587 | const MCSubtargetInfo &STI); |
588 | LLVM_READONLY |
589 | const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format, |
590 | const MCSubtargetInfo &STI); |
591 | |
592 | LLVM_READONLY |
593 | int getMCOpcode(uint16_t Opcode, unsigned Gen); |
594 | |
595 | LLVM_READONLY |
596 | unsigned getVOPDOpcode(unsigned Opc); |
597 | |
598 | LLVM_READONLY |
599 | int getVOPDFull(unsigned OpX, unsigned OpY, unsigned EncodingFamily); |
600 | |
601 | LLVM_READONLY |
602 | bool isVOPD(unsigned Opc); |
603 | |
604 | LLVM_READNONE |
605 | bool isMAC(unsigned Opc); |
606 | |
607 | LLVM_READNONE |
608 | bool isPermlane16(unsigned Opc); |
609 | |
610 | LLVM_READNONE |
611 | bool isGenericAtomic(unsigned Opc); |
612 | |
613 | LLVM_READNONE |
614 | bool isCvt_F32_Fp8_Bf8_e64(unsigned Opc); |
615 | |
616 | namespace VOPD { |
617 | |
618 | enum Component : unsigned { |
619 | DST = 0, |
620 | SRC0, |
621 | SRC1, |
622 | SRC2, |
623 | |
624 | DST_NUM = 1, |
625 | MAX_SRC_NUM = 3, |
626 | MAX_OPR_NUM = DST_NUM + MAX_SRC_NUM |
627 | }; |
628 | |
629 | // LSB mask for VGPR banks per VOPD component operand. |
630 | // 4 banks result in a mask 3, setting 2 lower bits. |
631 | constexpr unsigned VOPD_VGPR_BANK_MASKS[] = {1, 3, 3, 1}; |
632 | |
633 | enum ComponentIndex : unsigned { X = 0, Y = 1 }; |
634 | constexpr unsigned COMPONENTS[] = {ComponentIndex::X, ComponentIndex::Y}; |
635 | constexpr unsigned COMPONENTS_NUM = 2; |
636 | |
637 | // Properties of VOPD components. |
638 | class ComponentProps { |
639 | private: |
640 | unsigned SrcOperandsNum = 0; |
641 | unsigned MandatoryLiteralIdx = ~0u; |
642 | bool HasSrc2Acc = false; |
643 | |
644 | public: |
645 | ComponentProps() = default; |
646 | ComponentProps(const MCInstrDesc &OpDesc); |
647 | |
648 | // Return the total number of src operands this component has. |
649 | unsigned getCompSrcOperandsNum() const { return SrcOperandsNum; } |
650 | |
651 | // Return the number of src operands of this component visible to the parser. |
652 | unsigned getCompParsedSrcOperandsNum() const { |
653 | return SrcOperandsNum - HasSrc2Acc; |
654 | } |
655 | |
656 | // Return true iif this component has a mandatory literal. |
657 | bool hasMandatoryLiteral() const { return MandatoryLiteralIdx != ~0u; } |
658 | |
659 | // If this component has a mandatory literal, return component operand |
660 | // index of this literal (i.e. either Component::SRC1 or Component::SRC2). |
661 | unsigned getMandatoryLiteralCompOperandIndex() const { |
662 | assert(hasMandatoryLiteral()); |
663 | return MandatoryLiteralIdx; |
664 | } |
665 | |
666 | // Return true iif this component has operand |
667 | // with component index CompSrcIdx and this operand may be a register. |
668 | bool hasRegSrcOperand(unsigned CompSrcIdx) const { |
669 | assert(CompSrcIdx < Component::MAX_SRC_NUM); |
670 | return SrcOperandsNum > CompSrcIdx && !hasMandatoryLiteralAt(CompSrcIdx); |
671 | } |
672 | |
673 | // Return true iif this component has tied src2. |
674 | bool hasSrc2Acc() const { return HasSrc2Acc; } |
675 | |
676 | private: |
677 | bool hasMandatoryLiteralAt(unsigned CompSrcIdx) const { |
678 | assert(CompSrcIdx < Component::MAX_SRC_NUM); |
679 | return MandatoryLiteralIdx == Component::DST_NUM + CompSrcIdx; |
680 | } |
681 | }; |
682 | |
683 | enum ComponentKind : unsigned { |
684 | SINGLE = 0, // A single VOP1 or VOP2 instruction which may be used in VOPD. |
685 | COMPONENT_X, // A VOPD instruction, X component. |
686 | COMPONENT_Y, // A VOPD instruction, Y component. |
687 | MAX = COMPONENT_Y |
688 | }; |
689 | |
690 | // Interface functions of this class map VOPD component operand indices |
691 | // to indices of operands in MachineInstr/MCInst or parsed operands array. |
692 | // |
693 | // Note that this class operates with 3 kinds of indices: |
694 | // - VOPD component operand indices (Component::DST, Component::SRC0, etc.); |
695 | // - MC operand indices (they refer operands in a MachineInstr/MCInst); |
696 | // - parsed operand indices (they refer operands in parsed operands array). |
697 | // |
698 | // For SINGLE components mapping between these indices is trivial. |
699 | // But things get more complicated for COMPONENT_X and |
700 | // COMPONENT_Y because these components share the same |
701 | // MachineInstr/MCInst and the same parsed operands array. |
702 | // Below is an example of component operand to parsed operand |
703 | // mapping for the following instruction: |
704 | // |
705 | // v_dual_add_f32 v255, v4, v5 :: v_dual_mov_b32 v6, v1 |
706 | // |
707 | // PARSED COMPONENT PARSED |
708 | // COMPONENT OPERANDS OPERAND INDEX OPERAND INDEX |
709 | // ------------------------------------------------------------------- |
710 | // "v_dual_add_f32" 0 |
711 | // v_dual_add_f32 v255 0 (DST) --> 1 |
712 | // v4 1 (SRC0) --> 2 |
713 | // v5 2 (SRC1) --> 3 |
714 | // "::" 4 |
715 | // "v_dual_mov_b32" 5 |
716 | // v_dual_mov_b32 v6 0 (DST) --> 6 |
717 | // v1 1 (SRC0) --> 7 |
718 | // ------------------------------------------------------------------- |
719 | // |
720 | class ComponentLayout { |
721 | private: |
722 | // Regular MachineInstr/MCInst operands are ordered as follows: |
723 | // dst, src0 [, other src operands] |
724 | // VOPD MachineInstr/MCInst operands are ordered as follows: |
725 | // dstX, dstY, src0X [, other OpX operands], src0Y [, other OpY operands] |
726 | // Each ComponentKind has operand indices defined below. |
727 | static constexpr unsigned MC_DST_IDX[] = {0, 0, 1}; |
728 | static constexpr unsigned FIRST_MC_SRC_IDX[] = {1, 2, 2 /* + OpX.MCSrcNum */}; |
729 | |
730 | // Parsed operands of regular instructions are ordered as follows: |
731 | // Mnemo dst src0 [vsrc1 ...] |
732 | // Parsed VOPD operands are ordered as follows: |
733 | // OpXMnemo dstX src0X [vsrc1X|imm vsrc1X|vsrc1X imm] '::' |
734 | // OpYMnemo dstY src0Y [vsrc1Y|imm vsrc1Y|vsrc1Y imm] |
735 | // Each ComponentKind has operand indices defined below. |
736 | static constexpr unsigned PARSED_DST_IDX[] = {1, 1, |
737 | 4 /* + OpX.ParsedSrcNum */}; |
738 | static constexpr unsigned FIRST_PARSED_SRC_IDX[] = { |
739 | 2, 2, 5 /* + OpX.ParsedSrcNum */}; |
740 | |
741 | private: |
742 | const ComponentKind Kind; |
743 | const ComponentProps PrevComp; |
744 | |
745 | public: |
746 | // Create layout for COMPONENT_X or SINGLE component. |
747 | ComponentLayout(ComponentKind Kind) : Kind(Kind) { |
748 | assert(Kind == ComponentKind::SINGLE || Kind == ComponentKind::COMPONENT_X); |
749 | } |
750 | |
751 | // Create layout for COMPONENT_Y which depends on COMPONENT_X layout. |
752 | ComponentLayout(const ComponentProps &OpXProps) |
753 | : Kind(ComponentKind::COMPONENT_Y), PrevComp(OpXProps) {} |
754 | |
755 | public: |
756 | // Return the index of dst operand in MCInst operands. |
757 | unsigned getIndexOfDstInMCOperands() const { return MC_DST_IDX[Kind]; } |
758 | |
759 | // Return the index of the specified src operand in MCInst operands. |
760 | unsigned getIndexOfSrcInMCOperands(unsigned CompSrcIdx) const { |
761 | assert(CompSrcIdx < Component::MAX_SRC_NUM); |
762 | return FIRST_MC_SRC_IDX[Kind] + getPrevCompSrcNum() + CompSrcIdx; |
763 | } |
764 | |
765 | // Return the index of dst operand in the parsed operands array. |
766 | unsigned getIndexOfDstInParsedOperands() const { |
767 | return PARSED_DST_IDX[Kind] + getPrevCompParsedSrcNum(); |
768 | } |
769 | |
770 | // Return the index of the specified src operand in the parsed operands array. |
771 | unsigned getIndexOfSrcInParsedOperands(unsigned CompSrcIdx) const { |
772 | assert(CompSrcIdx < Component::MAX_SRC_NUM); |
773 | return FIRST_PARSED_SRC_IDX[Kind] + getPrevCompParsedSrcNum() + CompSrcIdx; |
774 | } |
775 | |
776 | private: |
777 | unsigned getPrevCompSrcNum() const { |
778 | return PrevComp.getCompSrcOperandsNum(); |
779 | } |
780 | unsigned getPrevCompParsedSrcNum() const { |
781 | return PrevComp.getCompParsedSrcOperandsNum(); |
782 | } |
783 | }; |
784 | |
785 | // Layout and properties of VOPD components. |
786 | class ComponentInfo : public ComponentLayout, public ComponentProps { |
787 | public: |
788 | // Create ComponentInfo for COMPONENT_X or SINGLE component. |
789 | ComponentInfo(const MCInstrDesc &OpDesc, |
790 | ComponentKind Kind = ComponentKind::SINGLE) |
791 | : ComponentLayout(Kind), ComponentProps(OpDesc) {} |
792 | |
793 | // Create ComponentInfo for COMPONENT_Y which depends on COMPONENT_X layout. |
794 | ComponentInfo(const MCInstrDesc &OpDesc, const ComponentProps &OpXProps) |
795 | : ComponentLayout(OpXProps), ComponentProps(OpDesc) {} |
796 | |
797 | // Map component operand index to parsed operand index. |
798 | // Return 0 if the specified operand does not exist. |
799 | unsigned getIndexInParsedOperands(unsigned CompOprIdx) const; |
800 | }; |
801 | |
802 | // Properties of VOPD instructions. |
803 | class InstInfo { |
804 | private: |
805 | const ComponentInfo CompInfo[COMPONENTS_NUM]; |
806 | |
807 | public: |
808 | using RegIndices = std::array<unsigned, Component::MAX_OPR_NUM>; |
809 | |
810 | InstInfo(const MCInstrDesc &OpX, const MCInstrDesc &OpY) |
811 | : CompInfo{OpX, OpY} {} |
812 | |
813 | InstInfo(const ComponentInfo &OprInfoX, const ComponentInfo &OprInfoY) |
814 | : CompInfo{OprInfoX, OprInfoY} {} |
815 | |
816 | const ComponentInfo &operator[](size_t ComponentIdx) const { |
817 | assert(ComponentIdx < COMPONENTS_NUM); |
818 | return CompInfo[ComponentIdx]; |
819 | } |
820 | |
821 | // Check VOPD operands constraints. |
822 | // GetRegIdx(Component, MCOperandIdx) must return a VGPR register index |
823 | // for the specified component and MC operand. The callback must return 0 |
824 | // if the operand is not a register or not a VGPR. |
825 | // If \p SkipSrc is set to true then constraints for source operands are not |
826 | // checked. |
827 | bool hasInvalidOperand(std::function<unsigned(unsigned, unsigned)> GetRegIdx, |
828 | bool SkipSrc = false) const { |
829 | return getInvalidCompOperandIndex(GetRegIdx, SkipSrc).has_value(); |
830 | } |
831 | |
832 | // Check VOPD operands constraints. |
833 | // Return the index of an invalid component operand, if any. |
834 | // If \p SkipSrc is set to true then constraints for source operands are not |
835 | // checked. |
836 | std::optional<unsigned> getInvalidCompOperandIndex( |
837 | std::function<unsigned(unsigned, unsigned)> GetRegIdx, |
838 | bool SkipSrc = false) const; |
839 | |
840 | private: |
841 | RegIndices |
842 | getRegIndices(unsigned ComponentIdx, |
843 | std::function<unsigned(unsigned, unsigned)> GetRegIdx) const; |
844 | }; |
845 | |
846 | } // namespace VOPD |
847 | |
848 | LLVM_READONLY |
849 | std::pair<unsigned, unsigned> getVOPDComponents(unsigned VOPDOpcode); |
850 | |
851 | LLVM_READONLY |
852 | // Get properties of 2 single VOP1/VOP2 instructions |
853 | // used as components to create a VOPD instruction. |
854 | VOPD::InstInfo getVOPDInstInfo(const MCInstrDesc &OpX, const MCInstrDesc &OpY); |
855 | |
856 | LLVM_READONLY |
857 | // Get properties of VOPD X and Y components. |
858 | VOPD::InstInfo |
859 | getVOPDInstInfo(unsigned VOPDOpcode, const MCInstrInfo *InstrInfo); |
860 | |
861 | LLVM_READONLY |
862 | bool isTrue16Inst(unsigned Opc); |
863 | |
864 | LLVM_READONLY |
865 | bool isInvalidSingleUseConsumerInst(unsigned Opc); |
866 | |
867 | LLVM_READONLY |
868 | bool isInvalidSingleUseProducerInst(unsigned Opc); |
869 | |
870 | LLVM_READONLY |
871 | unsigned mapWMMA2AddrTo3AddrOpcode(unsigned Opc); |
872 | |
873 | LLVM_READONLY |
874 | unsigned mapWMMA3AddrTo2AddrOpcode(unsigned Opc); |
875 | |
876 | void initDefaultAMDKernelCodeT(AMDGPUMCKernelCodeT &, |
877 | const MCSubtargetInfo *STI); |
878 | |
879 | bool isGroupSegment(const GlobalValue *GV); |
880 | bool isGlobalSegment(const GlobalValue *GV); |
881 | bool isReadOnlySegment(const GlobalValue *GV); |
882 | |
883 | /// \returns True if constants should be emitted to .text section for given |
884 | /// target triple \p TT, false otherwise. |
885 | bool shouldEmitConstantsToTextSection(const Triple &TT); |
886 | |
887 | /// \returns Integer value requested using \p F's \p Name attribute. |
888 | /// |
889 | /// \returns \p Default if attribute is not present. |
890 | /// |
891 | /// \returns \p Default and emits error if requested value cannot be converted |
892 | /// to integer. |
893 | int getIntegerAttribute(const Function &F, StringRef Name, int Default); |
894 | |
895 | /// \returns A pair of integer values requested using \p F's \p Name attribute |
896 | /// in "first[,second]" format ("second" is optional unless \p OnlyFirstRequired |
897 | /// is false). |
898 | /// |
899 | /// \returns \p Default if attribute is not present. |
900 | /// |
901 | /// \returns \p Default and emits error if one of the requested values cannot be |
902 | /// converted to integer, or \p OnlyFirstRequired is false and "second" value is |
903 | /// not present. |
904 | std::pair<unsigned, unsigned> |
905 | getIntegerPairAttribute(const Function &F, StringRef Name, |
906 | std::pair<unsigned, unsigned> Default, |
907 | bool OnlyFirstRequired = false); |
908 | |
909 | /// \returns Generate a vector of integer values requested using \p F's \p Name |
910 | /// attribute. |
911 | /// |
912 | /// \returns true if exactly Size (>2) number of integers are found in the |
913 | /// attribute. |
914 | /// |
915 | /// \returns false if any error occurs. |
916 | SmallVector<unsigned> getIntegerVecAttribute(const Function &F, StringRef Name, |
917 | unsigned Size); |
918 | |
919 | /// Represents the counter values to wait for in an s_waitcnt instruction. |
920 | /// |
921 | /// Large values (including the maximum possible integer) can be used to |
922 | /// represent "don't care" waits. |
923 | struct Waitcnt { |
924 | unsigned LoadCnt = ~0u; // Corresponds to Vmcnt prior to gfx12. |
925 | unsigned ExpCnt = ~0u; |
926 | unsigned DsCnt = ~0u; // Corresponds to LGKMcnt prior to gfx12. |
927 | unsigned StoreCnt = ~0u; // Corresponds to VScnt on gfx10/gfx11. |
928 | unsigned SampleCnt = ~0u; // gfx12+ only. |
929 | unsigned BvhCnt = ~0u; // gfx12+ only. |
930 | unsigned KmCnt = ~0u; // gfx12+ only. |
931 | |
932 | Waitcnt() = default; |
933 | // Pre-gfx12 constructor. |
934 | Waitcnt(unsigned VmCnt, unsigned ExpCnt, unsigned LgkmCnt, unsigned VsCnt) |
935 | : LoadCnt(VmCnt), ExpCnt(ExpCnt), DsCnt(LgkmCnt), StoreCnt(VsCnt), |
936 | SampleCnt(~0u), BvhCnt(~0u), KmCnt(~0u) {} |
937 | |
938 | // gfx12+ constructor. |
939 | Waitcnt(unsigned LoadCnt, unsigned ExpCnt, unsigned DsCnt, unsigned StoreCnt, |
940 | unsigned SampleCnt, unsigned BvhCnt, unsigned KmCnt) |
941 | : LoadCnt(LoadCnt), ExpCnt(ExpCnt), DsCnt(DsCnt), StoreCnt(StoreCnt), |
942 | SampleCnt(SampleCnt), BvhCnt(BvhCnt), KmCnt(KmCnt) {} |
943 | |
944 | bool hasWait() const { return StoreCnt != ~0u || hasWaitExceptStoreCnt(); } |
945 | |
946 | bool hasWaitExceptStoreCnt() const { |
947 | return LoadCnt != ~0u || ExpCnt != ~0u || DsCnt != ~0u || |
948 | SampleCnt != ~0u || BvhCnt != ~0u || KmCnt != ~0u; |
949 | } |
950 | |
951 | bool hasWaitStoreCnt() const { return StoreCnt != ~0u; } |
952 | |
953 | Waitcnt combined(const Waitcnt &Other) const { |
954 | // Does the right thing provided self and Other are either both pre-gfx12 |
955 | // or both gfx12+. |
956 | return Waitcnt( |
957 | std::min(a: LoadCnt, b: Other.LoadCnt), std::min(a: ExpCnt, b: Other.ExpCnt), |
958 | std::min(a: DsCnt, b: Other.DsCnt), std::min(a: StoreCnt, b: Other.StoreCnt), |
959 | std::min(a: SampleCnt, b: Other.SampleCnt), std::min(a: BvhCnt, b: Other.BvhCnt), |
960 | std::min(a: KmCnt, b: Other.KmCnt)); |
961 | } |
962 | }; |
963 | |
964 | // The following methods are only meaningful on targets that support |
965 | // S_WAITCNT. |
966 | |
967 | /// \returns Vmcnt bit mask for given isa \p Version. |
968 | unsigned getVmcntBitMask(const IsaVersion &Version); |
969 | |
970 | /// \returns Expcnt bit mask for given isa \p Version. |
971 | unsigned getExpcntBitMask(const IsaVersion &Version); |
972 | |
973 | /// \returns Lgkmcnt bit mask for given isa \p Version. |
974 | unsigned getLgkmcntBitMask(const IsaVersion &Version); |
975 | |
976 | /// \returns Waitcnt bit mask for given isa \p Version. |
977 | unsigned getWaitcntBitMask(const IsaVersion &Version); |
978 | |
979 | /// \returns Decoded Vmcnt from given \p Waitcnt for given isa \p Version. |
980 | unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt); |
981 | |
982 | /// \returns Decoded Expcnt from given \p Waitcnt for given isa \p Version. |
983 | unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt); |
984 | |
985 | /// \returns Decoded Lgkmcnt from given \p Waitcnt for given isa \p Version. |
986 | unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt); |
987 | |
988 | /// Decodes Vmcnt, Expcnt and Lgkmcnt from given \p Waitcnt for given isa |
989 | /// \p Version, and writes decoded values into \p Vmcnt, \p Expcnt and |
990 | /// \p Lgkmcnt respectively. Should not be used on gfx12+, the instruction |
991 | /// which needs it is deprecated |
992 | /// |
993 | /// \details \p Vmcnt, \p Expcnt and \p Lgkmcnt are decoded as follows: |
994 | /// \p Vmcnt = \p Waitcnt[3:0] (pre-gfx9) |
995 | /// \p Vmcnt = \p Waitcnt[15:14,3:0] (gfx9,10) |
996 | /// \p Vmcnt = \p Waitcnt[15:10] (gfx11) |
997 | /// \p Expcnt = \p Waitcnt[6:4] (pre-gfx11) |
998 | /// \p Expcnt = \p Waitcnt[2:0] (gfx11) |
999 | /// \p Lgkmcnt = \p Waitcnt[11:8] (pre-gfx10) |
1000 | /// \p Lgkmcnt = \p Waitcnt[13:8] (gfx10) |
1001 | /// \p Lgkmcnt = \p Waitcnt[9:4] (gfx11) |
1002 | /// |
1003 | void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, |
1004 | unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt); |
1005 | |
1006 | Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded); |
1007 | |
1008 | /// \returns \p Waitcnt with encoded \p Vmcnt for given isa \p Version. |
1009 | unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, |
1010 | unsigned Vmcnt); |
1011 | |
1012 | /// \returns \p Waitcnt with encoded \p Expcnt for given isa \p Version. |
1013 | unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, |
1014 | unsigned Expcnt); |
1015 | |
1016 | /// \returns \p Waitcnt with encoded \p Lgkmcnt for given isa \p Version. |
1017 | unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, |
1018 | unsigned Lgkmcnt); |
1019 | |
1020 | /// Encodes \p Vmcnt, \p Expcnt and \p Lgkmcnt into Waitcnt for given isa |
1021 | /// \p Version. Should not be used on gfx12+, the instruction which needs |
1022 | /// it is deprecated |
1023 | /// |
1024 | /// \details \p Vmcnt, \p Expcnt and \p Lgkmcnt are encoded as follows: |
1025 | /// Waitcnt[2:0] = \p Expcnt (gfx11+) |
1026 | /// Waitcnt[3:0] = \p Vmcnt (pre-gfx9) |
1027 | /// Waitcnt[3:0] = \p Vmcnt[3:0] (gfx9,10) |
1028 | /// Waitcnt[6:4] = \p Expcnt (pre-gfx11) |
1029 | /// Waitcnt[9:4] = \p Lgkmcnt (gfx11) |
1030 | /// Waitcnt[11:8] = \p Lgkmcnt (pre-gfx10) |
1031 | /// Waitcnt[13:8] = \p Lgkmcnt (gfx10) |
1032 | /// Waitcnt[15:10] = \p Vmcnt (gfx11) |
1033 | /// Waitcnt[15:14] = \p Vmcnt[5:4] (gfx9,10) |
1034 | /// |
1035 | /// \returns Waitcnt with encoded \p Vmcnt, \p Expcnt and \p Lgkmcnt for given |
1036 | /// isa \p Version. |
1037 | /// |
1038 | unsigned encodeWaitcnt(const IsaVersion &Version, |
1039 | unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt); |
1040 | |
1041 | unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded); |
1042 | |
1043 | // The following methods are only meaningful on targets that support |
1044 | // S_WAIT_*CNT, introduced with gfx12. |
1045 | |
1046 | /// \returns Loadcnt bit mask for given isa \p Version. |
1047 | /// Returns 0 for versions that do not support LOADcnt |
1048 | unsigned getLoadcntBitMask(const IsaVersion &Version); |
1049 | |
1050 | /// \returns Samplecnt bit mask for given isa \p Version. |
1051 | /// Returns 0 for versions that do not support SAMPLEcnt |
1052 | unsigned getSamplecntBitMask(const IsaVersion &Version); |
1053 | |
1054 | /// \returns Bvhcnt bit mask for given isa \p Version. |
1055 | /// Returns 0 for versions that do not support BVHcnt |
1056 | unsigned getBvhcntBitMask(const IsaVersion &Version); |
1057 | |
1058 | /// \returns Dscnt bit mask for given isa \p Version. |
1059 | /// Returns 0 for versions that do not support DScnt |
1060 | unsigned getDscntBitMask(const IsaVersion &Version); |
1061 | |
1062 | /// \returns Dscnt bit mask for given isa \p Version. |
1063 | /// Returns 0 for versions that do not support KMcnt |
1064 | unsigned getKmcntBitMask(const IsaVersion &Version); |
1065 | |
1066 | /// \return STOREcnt or VScnt bit mask for given isa \p Version. |
1067 | /// returns 0 for versions that do not support STOREcnt or VScnt. |
1068 | /// STOREcnt and VScnt are the same counter, the name used |
1069 | /// depends on the ISA version. |
1070 | unsigned getStorecntBitMask(const IsaVersion &Version); |
1071 | |
1072 | // The following are only meaningful on targets that support |
1073 | // S_WAIT_LOADCNT_DSCNT and S_WAIT_STORECNT_DSCNT. |
1074 | |
1075 | /// \returns Decoded Waitcnt structure from given \p LoadcntDscnt for given |
1076 | /// isa \p Version. |
1077 | Waitcnt decodeLoadcntDscnt(const IsaVersion &Version, unsigned LoadcntDscnt); |
1078 | |
1079 | /// \returns Decoded Waitcnt structure from given \p StorecntDscnt for given |
1080 | /// isa \p Version. |
1081 | Waitcnt decodeStorecntDscnt(const IsaVersion &Version, unsigned StorecntDscnt); |
1082 | |
1083 | /// \returns \p Loadcnt and \p Dscnt components of \p Decoded encoded as an |
1084 | /// immediate that can be used with S_WAIT_LOADCNT_DSCNT for given isa |
1085 | /// \p Version. |
1086 | unsigned encodeLoadcntDscnt(const IsaVersion &Version, const Waitcnt &Decoded); |
1087 | |
1088 | /// \returns \p Storecnt and \p Dscnt components of \p Decoded encoded as an |
1089 | /// immediate that can be used with S_WAIT_STORECNT_DSCNT for given isa |
1090 | /// \p Version. |
1091 | unsigned encodeStorecntDscnt(const IsaVersion &Version, const Waitcnt &Decoded); |
1092 | |
1093 | namespace Hwreg { |
1094 | |
1095 | using HwregId = EncodingField<5, 0>; |
1096 | using HwregOffset = EncodingField<10, 6>; |
1097 | |
1098 | struct HwregSize : EncodingField<15, 11, 32> { |
1099 | using EncodingField::EncodingField; |
1100 | constexpr uint64_t encode() const { return Value - 1; } |
1101 | static ValueType decode(uint64_t Encoded) { return Encoded + 1; } |
1102 | }; |
1103 | |
1104 | using HwregEncoding = EncodingFields<HwregId, HwregOffset, HwregSize>; |
1105 | |
1106 | } // namespace Hwreg |
1107 | |
1108 | namespace DepCtr { |
1109 | |
1110 | int getDefaultDepCtrEncoding(const MCSubtargetInfo &STI); |
1111 | int encodeDepCtr(const StringRef Name, int64_t Val, unsigned &UsedOprMask, |
1112 | const MCSubtargetInfo &STI); |
1113 | bool isSymbolicDepCtrEncoding(unsigned Code, bool &HasNonDefaultVal, |
1114 | const MCSubtargetInfo &STI); |
1115 | bool decodeDepCtr(unsigned Code, int &Id, StringRef &Name, unsigned &Val, |
1116 | bool &IsDefault, const MCSubtargetInfo &STI); |
1117 | |
1118 | /// \returns Decoded VaVdst from given immediate \p Encoded. |
1119 | unsigned decodeFieldVaVdst(unsigned Encoded); |
1120 | |
1121 | /// \returns Decoded VmVsrc from given immediate \p Encoded. |
1122 | unsigned decodeFieldVmVsrc(unsigned Encoded); |
1123 | |
1124 | /// \returns Decoded SaSdst from given immediate \p Encoded. |
1125 | unsigned decodeFieldSaSdst(unsigned Encoded); |
1126 | |
1127 | /// \returns \p VmVsrc as an encoded Depctr immediate. |
1128 | unsigned encodeFieldVmVsrc(unsigned VmVsrc); |
1129 | |
1130 | /// \returns \p Encoded combined with encoded \p VmVsrc. |
1131 | unsigned encodeFieldVmVsrc(unsigned Encoded, unsigned VmVsrc); |
1132 | |
1133 | /// \returns \p VaVdst as an encoded Depctr immediate. |
1134 | unsigned encodeFieldVaVdst(unsigned VaVdst); |
1135 | |
1136 | /// \returns \p Encoded combined with encoded \p VaVdst. |
1137 | unsigned encodeFieldVaVdst(unsigned Encoded, unsigned VaVdst); |
1138 | |
1139 | /// \returns \p SaSdst as an encoded Depctr immediate. |
1140 | unsigned encodeFieldSaSdst(unsigned SaSdst); |
1141 | |
1142 | /// \returns \p Encoded combined with encoded \p SaSdst. |
1143 | unsigned encodeFieldSaSdst(unsigned Encoded, unsigned SaSdst); |
1144 | |
1145 | } // namespace DepCtr |
1146 | |
1147 | namespace Exp { |
1148 | |
1149 | bool getTgtName(unsigned Id, StringRef &Name, int &Index); |
1150 | |
1151 | LLVM_READONLY |
1152 | unsigned getTgtId(const StringRef Name); |
1153 | |
1154 | LLVM_READNONE |
1155 | bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI); |
1156 | |
1157 | } // namespace Exp |
1158 | |
1159 | namespace MTBUFFormat { |
1160 | |
1161 | LLVM_READNONE |
1162 | int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt); |
1163 | |
1164 | void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt); |
1165 | |
1166 | int64_t getDfmt(const StringRef Name); |
1167 | |
1168 | StringRef getDfmtName(unsigned Id); |
1169 | |
1170 | int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI); |
1171 | |
1172 | StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI); |
1173 | |
1174 | bool isValidDfmtNfmt(unsigned Val, const MCSubtargetInfo &STI); |
1175 | |
1176 | bool isValidNfmt(unsigned Val, const MCSubtargetInfo &STI); |
1177 | |
1178 | int64_t getUnifiedFormat(const StringRef Name, const MCSubtargetInfo &STI); |
1179 | |
1180 | StringRef getUnifiedFormatName(unsigned Id, const MCSubtargetInfo &STI); |
1181 | |
1182 | bool isValidUnifiedFormat(unsigned Val, const MCSubtargetInfo &STI); |
1183 | |
1184 | int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt, |
1185 | const MCSubtargetInfo &STI); |
1186 | |
1187 | bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI); |
1188 | |
1189 | unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI); |
1190 | |
1191 | } // namespace MTBUFFormat |
1192 | |
1193 | namespace SendMsg { |
1194 | |
1195 | LLVM_READNONE |
1196 | bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI); |
1197 | |
1198 | LLVM_READNONE |
1199 | bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI, |
1200 | bool Strict = true); |
1201 | |
1202 | LLVM_READNONE |
1203 | bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, |
1204 | const MCSubtargetInfo &STI, bool Strict = true); |
1205 | |
1206 | LLVM_READNONE |
1207 | bool msgRequiresOp(int64_t MsgId, const MCSubtargetInfo &STI); |
1208 | |
1209 | LLVM_READNONE |
1210 | bool msgSupportsStream(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI); |
1211 | |
1212 | void decodeMsg(unsigned Val, uint16_t &MsgId, uint16_t &OpId, |
1213 | uint16_t &StreamId, const MCSubtargetInfo &STI); |
1214 | |
1215 | LLVM_READNONE |
1216 | uint64_t encodeMsg(uint64_t MsgId, |
1217 | uint64_t OpId, |
1218 | uint64_t StreamId); |
1219 | |
1220 | } // namespace SendMsg |
1221 | |
1222 | |
1223 | unsigned getInitialPSInputAddr(const Function &F); |
1224 | |
1225 | bool getHasColorExport(const Function &F); |
1226 | |
1227 | bool getHasDepthExport(const Function &F); |
1228 | |
1229 | LLVM_READNONE |
1230 | bool isShader(CallingConv::ID CC); |
1231 | |
1232 | LLVM_READNONE |
1233 | bool isGraphics(CallingConv::ID CC); |
1234 | |
1235 | LLVM_READNONE |
1236 | bool isCompute(CallingConv::ID CC); |
1237 | |
1238 | LLVM_READNONE |
1239 | bool isEntryFunctionCC(CallingConv::ID CC); |
1240 | |
1241 | // These functions are considered entrypoints into the current module, i.e. they |
1242 | // are allowed to be called from outside the current module. This is different |
1243 | // from isEntryFunctionCC, which is only true for functions that are entered by |
1244 | // the hardware. Module entry points include all entry functions but also |
1245 | // include functions that can be called from other functions inside or outside |
1246 | // the current module. Module entry functions are allowed to allocate LDS. |
1247 | LLVM_READNONE |
1248 | bool isModuleEntryFunctionCC(CallingConv::ID CC); |
1249 | |
1250 | LLVM_READNONE |
1251 | bool isChainCC(CallingConv::ID CC); |
1252 | |
1253 | bool isKernelCC(const Function *Func); |
1254 | |
1255 | // FIXME: Remove this when calling conventions cleaned up |
1256 | LLVM_READNONE |
1257 | inline bool isKernel(CallingConv::ID CC) { |
1258 | switch (CC) { |
1259 | case CallingConv::AMDGPU_KERNEL: |
1260 | case CallingConv::SPIR_KERNEL: |
1261 | return true; |
1262 | default: |
1263 | return false; |
1264 | } |
1265 | } |
1266 | |
1267 | bool hasXNACK(const MCSubtargetInfo &STI); |
1268 | bool hasSRAMECC(const MCSubtargetInfo &STI); |
1269 | bool hasMIMG_R128(const MCSubtargetInfo &STI); |
1270 | bool hasA16(const MCSubtargetInfo &STI); |
1271 | bool hasG16(const MCSubtargetInfo &STI); |
1272 | bool hasPackedD16(const MCSubtargetInfo &STI); |
1273 | bool hasGDS(const MCSubtargetInfo &STI); |
1274 | unsigned getNSAMaxSize(const MCSubtargetInfo &STI, bool HasSampler = false); |
1275 | unsigned getMaxNumUserSGPRs(const MCSubtargetInfo &STI); |
1276 | |
1277 | bool isSI(const MCSubtargetInfo &STI); |
1278 | bool isCI(const MCSubtargetInfo &STI); |
1279 | bool isVI(const MCSubtargetInfo &STI); |
1280 | bool isGFX9(const MCSubtargetInfo &STI); |
1281 | bool isGFX9_GFX10(const MCSubtargetInfo &STI); |
1282 | bool isGFX9_GFX10_GFX11(const MCSubtargetInfo &STI); |
1283 | bool isGFX8_GFX9_GFX10(const MCSubtargetInfo &STI); |
1284 | bool isGFX8Plus(const MCSubtargetInfo &STI); |
1285 | bool isGFX9Plus(const MCSubtargetInfo &STI); |
1286 | bool isNotGFX9Plus(const MCSubtargetInfo &STI); |
1287 | bool isGFX10(const MCSubtargetInfo &STI); |
1288 | bool isGFX10_GFX11(const MCSubtargetInfo &STI); |
1289 | bool isGFX10Plus(const MCSubtargetInfo &STI); |
1290 | bool isNotGFX10Plus(const MCSubtargetInfo &STI); |
1291 | bool isGFX10Before1030(const MCSubtargetInfo &STI); |
1292 | bool isGFX11(const MCSubtargetInfo &STI); |
1293 | bool isGFX11Plus(const MCSubtargetInfo &STI); |
1294 | bool isGFX12(const MCSubtargetInfo &STI); |
1295 | bool isGFX12Plus(const MCSubtargetInfo &STI); |
1296 | bool isNotGFX12Plus(const MCSubtargetInfo &STI); |
1297 | bool isNotGFX11Plus(const MCSubtargetInfo &STI); |
1298 | bool isGCN3Encoding(const MCSubtargetInfo &STI); |
1299 | bool isGFX10_AEncoding(const MCSubtargetInfo &STI); |
1300 | bool isGFX10_BEncoding(const MCSubtargetInfo &STI); |
1301 | bool hasGFX10_3Insts(const MCSubtargetInfo &STI); |
1302 | bool isGFX10_3_GFX11(const MCSubtargetInfo &STI); |
1303 | bool isGFX90A(const MCSubtargetInfo &STI); |
1304 | bool isGFX940(const MCSubtargetInfo &STI); |
1305 | bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI); |
1306 | bool hasMAIInsts(const MCSubtargetInfo &STI); |
1307 | bool hasVOPD(const MCSubtargetInfo &STI); |
1308 | bool hasDPPSrc1SGPR(const MCSubtargetInfo &STI); |
1309 | int getTotalNumVGPRs(bool has90AInsts, int32_t ArgNumAGPR, int32_t ArgNumVGPR); |
1310 | unsigned hasKernargPreload(const MCSubtargetInfo &STI); |
1311 | bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST); |
1312 | |
1313 | /// Is Reg - scalar register |
1314 | bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI); |
1315 | |
1316 | /// \returns if \p Reg occupies the high 16-bits of a 32-bit register. |
1317 | /// The bit indicating isHi is the LSB of the encoding. |
1318 | bool isHi(unsigned Reg, const MCRegisterInfo &MRI); |
1319 | |
1320 | /// If \p Reg is a pseudo reg, return the correct hardware register given |
1321 | /// \p STI otherwise return \p Reg. |
1322 | unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI); |
1323 | |
1324 | /// Convert hardware register \p Reg to a pseudo register |
1325 | LLVM_READNONE |
1326 | unsigned mc2PseudoReg(unsigned Reg); |
1327 | |
1328 | LLVM_READNONE |
1329 | bool isInlineValue(unsigned Reg); |
1330 | |
1331 | /// Is this an AMDGPU specific source operand? These include registers, |
1332 | /// inline constants, literals and mandatory literals (KImm). |
1333 | bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo); |
1334 | |
1335 | /// Is this a KImm operand? |
1336 | bool isKImmOperand(const MCInstrDesc &Desc, unsigned OpNo); |
1337 | |
1338 | /// Is this floating-point operand? |
1339 | bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo); |
1340 | |
1341 | /// Does this operand support only inlinable literals? |
1342 | bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo); |
1343 | |
1344 | /// Get the size in bits of a register from the register class \p RC. |
1345 | unsigned getRegBitWidth(unsigned RCID); |
1346 | |
1347 | /// Get the size in bits of a register from the register class \p RC. |
1348 | unsigned getRegBitWidth(const MCRegisterClass &RC); |
1349 | |
1350 | /// Get size of register operand |
1351 | unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, |
1352 | unsigned OpNo); |
1353 | |
1354 | LLVM_READNONE |
1355 | inline unsigned getOperandSize(const MCOperandInfo &OpInfo) { |
1356 | switch (OpInfo.OperandType) { |
1357 | case AMDGPU::OPERAND_REG_IMM_INT32: |
1358 | case AMDGPU::OPERAND_REG_IMM_FP32: |
1359 | case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED: |
1360 | case AMDGPU::OPERAND_REG_INLINE_C_INT32: |
1361 | case AMDGPU::OPERAND_REG_INLINE_C_FP32: |
1362 | case AMDGPU::OPERAND_REG_INLINE_AC_INT32: |
1363 | case AMDGPU::OPERAND_REG_INLINE_AC_FP32: |
1364 | case AMDGPU::OPERAND_REG_IMM_V2INT32: |
1365 | case AMDGPU::OPERAND_REG_IMM_V2FP32: |
1366 | case AMDGPU::OPERAND_REG_INLINE_C_V2INT32: |
1367 | case AMDGPU::OPERAND_REG_INLINE_C_V2FP32: |
1368 | case AMDGPU::OPERAND_KIMM32: |
1369 | case AMDGPU::OPERAND_KIMM16: // mandatory literal is always size 4 |
1370 | case AMDGPU::OPERAND_INLINE_SPLIT_BARRIER_INT32: |
1371 | return 4; |
1372 | |
1373 | case AMDGPU::OPERAND_REG_IMM_INT64: |
1374 | case AMDGPU::OPERAND_REG_IMM_FP64: |
1375 | case AMDGPU::OPERAND_REG_INLINE_C_INT64: |
1376 | case AMDGPU::OPERAND_REG_INLINE_C_FP64: |
1377 | case AMDGPU::OPERAND_REG_INLINE_AC_FP64: |
1378 | return 8; |
1379 | |
1380 | case AMDGPU::OPERAND_REG_IMM_INT16: |
1381 | case AMDGPU::OPERAND_REG_IMM_BF16: |
1382 | case AMDGPU::OPERAND_REG_IMM_FP16: |
1383 | case AMDGPU::OPERAND_REG_IMM_BF16_DEFERRED: |
1384 | case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED: |
1385 | case AMDGPU::OPERAND_REG_INLINE_C_INT16: |
1386 | case AMDGPU::OPERAND_REG_INLINE_C_BF16: |
1387 | case AMDGPU::OPERAND_REG_INLINE_C_FP16: |
1388 | case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: |
1389 | case AMDGPU::OPERAND_REG_INLINE_C_V2BF16: |
1390 | case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: |
1391 | case AMDGPU::OPERAND_REG_INLINE_AC_INT16: |
1392 | case AMDGPU::OPERAND_REG_INLINE_AC_BF16: |
1393 | case AMDGPU::OPERAND_REG_INLINE_AC_FP16: |
1394 | case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16: |
1395 | case AMDGPU::OPERAND_REG_INLINE_AC_V2BF16: |
1396 | case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: |
1397 | case AMDGPU::OPERAND_REG_IMM_V2INT16: |
1398 | case AMDGPU::OPERAND_REG_IMM_V2BF16: |
1399 | case AMDGPU::OPERAND_REG_IMM_V2FP16: |
1400 | return 2; |
1401 | |
1402 | default: |
1403 | llvm_unreachable("unhandled operand type" ); |
1404 | } |
1405 | } |
1406 | |
1407 | LLVM_READNONE |
1408 | inline unsigned getOperandSize(const MCInstrDesc &Desc, unsigned OpNo) { |
1409 | return getOperandSize(OpInfo: Desc.operands()[OpNo]); |
1410 | } |
1411 | |
1412 | /// Is this literal inlinable, and not one of the values intended for floating |
1413 | /// point values. |
1414 | LLVM_READNONE |
1415 | inline bool isInlinableIntLiteral(int64_t Literal) { |
1416 | return Literal >= -16 && Literal <= 64; |
1417 | } |
1418 | |
1419 | /// Is this literal inlinable |
1420 | LLVM_READNONE |
1421 | bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi); |
1422 | |
1423 | LLVM_READNONE |
1424 | bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi); |
1425 | |
1426 | LLVM_READNONE |
1427 | bool isInlinableLiteralBF16(int16_t Literal, bool HasInv2Pi); |
1428 | |
1429 | LLVM_READNONE |
1430 | bool isInlinableLiteralFP16(int16_t Literal, bool HasInv2Pi); |
1431 | |
1432 | LLVM_READNONE |
1433 | bool isInlinableLiteralBF16(int16_t Literal, bool HasInv2Pi); |
1434 | |
1435 | LLVM_READNONE |
1436 | bool isInlinableLiteralI16(int32_t Literal, bool HasInv2Pi); |
1437 | |
1438 | LLVM_READNONE |
1439 | std::optional<unsigned> getInlineEncodingV2I16(uint32_t Literal); |
1440 | |
1441 | LLVM_READNONE |
1442 | std::optional<unsigned> getInlineEncodingV2BF16(uint32_t Literal); |
1443 | |
1444 | LLVM_READNONE |
1445 | std::optional<unsigned> getInlineEncodingV2F16(uint32_t Literal); |
1446 | |
1447 | LLVM_READNONE |
1448 | bool isInlinableLiteralV216(uint32_t Literal, uint8_t OpType); |
1449 | |
1450 | LLVM_READNONE |
1451 | bool isInlinableLiteralV2I16(uint32_t Literal); |
1452 | |
1453 | LLVM_READNONE |
1454 | bool isInlinableLiteralV2BF16(uint32_t Literal); |
1455 | |
1456 | LLVM_READNONE |
1457 | bool isInlinableLiteralV2F16(uint32_t Literal); |
1458 | |
1459 | LLVM_READNONE |
1460 | bool isValid32BitLiteral(uint64_t Val, bool IsFP64); |
1461 | |
1462 | bool isArgPassedInSGPR(const Argument *Arg); |
1463 | |
1464 | bool isArgPassedInSGPR(const CallBase *CB, unsigned ArgNo); |
1465 | |
1466 | LLVM_READONLY |
1467 | bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST, |
1468 | int64_t EncodedOffset); |
1469 | |
1470 | LLVM_READONLY |
1471 | bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST, |
1472 | int64_t EncodedOffset, |
1473 | bool IsBuffer); |
1474 | |
1475 | /// Convert \p ByteOffset to dwords if the subtarget uses dword SMRD immediate |
1476 | /// offsets. |
1477 | uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST, uint64_t ByteOffset); |
1478 | |
1479 | /// \returns The encoding that will be used for \p ByteOffset in the |
1480 | /// SMRD offset field, or std::nullopt if it won't fit. On GFX9 and GFX10 |
1481 | /// S_LOAD instructions have a signed offset, on other subtargets it is |
1482 | /// unsigned. S_BUFFER has an unsigned offset for all subtargets. |
1483 | std::optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST, |
1484 | int64_t ByteOffset, bool IsBuffer, |
1485 | bool HasSOffset = false); |
1486 | |
1487 | /// \return The encoding that can be used for a 32-bit literal offset in an SMRD |
1488 | /// instruction. This is only useful on CI.s |
1489 | std::optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST, |
1490 | int64_t ByteOffset); |
1491 | |
1492 | /// For pre-GFX12 FLAT instructions the offset must be positive; |
1493 | /// MSB is ignored and forced to zero. |
1494 | /// |
1495 | /// \return The number of bits available for the signed offset field in flat |
1496 | /// instructions. Note that some forms of the instruction disallow negative |
1497 | /// offsets. |
1498 | unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST); |
1499 | |
1500 | /// \returns true if this offset is small enough to fit in the SMRD |
1501 | /// offset field. \p ByteOffset should be the offset in bytes and |
1502 | /// not the encoded offset. |
1503 | bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset); |
1504 | |
1505 | LLVM_READNONE |
1506 | inline bool isLegalDPALU_DPPControl(unsigned DC) { |
1507 | return DC >= DPP::ROW_NEWBCAST_FIRST && DC <= DPP::ROW_NEWBCAST_LAST; |
1508 | } |
1509 | |
1510 | /// \returns true if an instruction may have a 64-bit VGPR operand. |
1511 | bool hasAny64BitVGPROperands(const MCInstrDesc &OpDesc); |
1512 | |
1513 | /// \returns true if an instruction is a DP ALU DPP. |
1514 | bool isDPALU_DPP(const MCInstrDesc &OpDesc); |
1515 | |
1516 | /// \returns true if the intrinsic is divergent |
1517 | bool isIntrinsicSourceOfDivergence(unsigned IntrID); |
1518 | |
1519 | /// \returns true if the intrinsic is uniform |
1520 | bool isIntrinsicAlwaysUniform(unsigned IntrID); |
1521 | |
1522 | /// \returns lds block size in terms of dwords. \p |
1523 | /// This is used to calculate the lds size encoded for PAL metadata 3.0+ which |
1524 | /// must be defined in terms of bytes. |
1525 | unsigned getLdsDwGranularity(const MCSubtargetInfo &ST); |
1526 | |
1527 | } // end namespace AMDGPU |
1528 | |
1529 | raw_ostream &operator<<(raw_ostream &OS, |
1530 | const AMDGPU::IsaInfo::TargetIDSetting S); |
1531 | |
1532 | } // end namespace llvm |
1533 | |
1534 | #endif // LLVM_LIB_TARGET_AMDGPU_UTILS_AMDGPUBASEINFO_H |
1535 | |