1 | //===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains the ARM addressing mode implementation stuff. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H |
14 | #define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H |
15 | |
16 | #include "llvm/ADT/APFloat.h" |
17 | #include "llvm/ADT/APInt.h" |
18 | #include "llvm/ADT/bit.h" |
19 | #include "llvm/Support/ErrorHandling.h" |
20 | #include "llvm/Support/MathExtras.h" |
21 | #include <cassert> |
22 | |
23 | namespace llvm { |
24 | |
25 | /// ARM_AM - ARM Addressing Mode Stuff |
26 | namespace ARM_AM { |
27 | enum ShiftOpc { |
28 | no_shift = 0, |
29 | asr, |
30 | lsl, |
31 | lsr, |
32 | ror, |
33 | rrx, |
34 | uxtw |
35 | }; |
36 | |
37 | enum AddrOpc { |
38 | sub = 0, |
39 | add |
40 | }; |
41 | |
42 | inline const char *getAddrOpcStr(AddrOpc Op) { return Op == sub ? "-" : "" ; } |
43 | |
44 | inline const StringRef getShiftOpcStr(ShiftOpc Op) { |
45 | switch (Op) { |
46 | default: llvm_unreachable("Unknown shift opc!" ); |
47 | case ARM_AM::asr: return "asr" ; |
48 | case ARM_AM::lsl: return "lsl" ; |
49 | case ARM_AM::lsr: return "lsr" ; |
50 | case ARM_AM::ror: return "ror" ; |
51 | case ARM_AM::rrx: return "rrx" ; |
52 | case ARM_AM::uxtw: return "uxtw" ; |
53 | } |
54 | } |
55 | |
56 | inline unsigned getShiftOpcEncoding(ShiftOpc Op) { |
57 | switch (Op) { |
58 | default: llvm_unreachable("Unknown shift opc!" ); |
59 | case ARM_AM::asr: return 2; |
60 | case ARM_AM::lsl: return 0; |
61 | case ARM_AM::lsr: return 1; |
62 | case ARM_AM::ror: return 3; |
63 | } |
64 | } |
65 | |
66 | enum AMSubMode { |
67 | bad_am_submode = 0, |
68 | ia, |
69 | ib, |
70 | da, |
71 | db |
72 | }; |
73 | |
74 | inline const char *getAMSubModeStr(AMSubMode Mode) { |
75 | switch (Mode) { |
76 | default: llvm_unreachable("Unknown addressing sub-mode!" ); |
77 | case ARM_AM::ia: return "ia" ; |
78 | case ARM_AM::ib: return "ib" ; |
79 | case ARM_AM::da: return "da" ; |
80 | case ARM_AM::db: return "db" ; |
81 | } |
82 | } |
83 | |
84 | //===--------------------------------------------------------------------===// |
85 | // Addressing Mode #1: shift_operand with registers |
86 | //===--------------------------------------------------------------------===// |
87 | // |
88 | // This 'addressing mode' is used for arithmetic instructions. It can |
89 | // represent things like: |
90 | // reg |
91 | // reg [asr|lsl|lsr|ror|rrx] reg |
92 | // reg [asr|lsl|lsr|ror|rrx] imm |
93 | // |
94 | // This is stored three operands [rega, regb, opc]. The first is the base |
95 | // reg, the second is the shift amount (or reg0 if not present or imm). The |
96 | // third operand encodes the shift opcode and the imm if a reg isn't present. |
97 | // |
98 | inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) { |
99 | return ShOp | (Imm << 3); |
100 | } |
101 | inline unsigned getSORegOffset(unsigned Op) { return Op >> 3; } |
102 | inline ShiftOpc getSORegShOp(unsigned Op) { return (ShiftOpc)(Op & 7); } |
103 | |
104 | /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return |
105 | /// the 8-bit imm value. |
106 | inline unsigned getSOImmValImm(unsigned Imm) { return Imm & 0xFF; } |
107 | /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return |
108 | /// the rotate amount. |
109 | inline unsigned getSOImmValRot(unsigned Imm) { return (Imm >> 8) * 2; } |
110 | |
111 | /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand, |
112 | /// computing the rotate amount to use. If this immediate value cannot be |
113 | /// handled with a single shifter-op, determine a good rotate amount that will |
114 | /// take a maximal chunk of bits out of the immediate. |
115 | inline unsigned getSOImmValRotate(unsigned Imm) { |
116 | // 8-bit (or less) immediates are trivially shifter_operands with a rotate |
117 | // of zero. |
118 | if ((Imm & ~255U) == 0) return 0; |
119 | |
120 | // Use CTZ to compute the rotate amount. |
121 | unsigned TZ = llvm::countr_zero(Val: Imm); |
122 | |
123 | // Rotate amount must be even. Something like 0x200 must be rotated 8 bits, |
124 | // not 9. |
125 | unsigned RotAmt = TZ & ~1; |
126 | |
127 | // If we can handle this spread, return it. |
128 | if ((llvm::rotr<uint32_t>(V: Imm, R: RotAmt) & ~255U) == 0) |
129 | return (32-RotAmt)&31; // HW rotates right, not left. |
130 | |
131 | // For values like 0xF000000F, we should ignore the low 6 bits, then |
132 | // retry the hunt. |
133 | if (Imm & 63U) { |
134 | unsigned TZ2 = llvm::countr_zero(Val: Imm & ~63U); |
135 | unsigned RotAmt2 = TZ2 & ~1; |
136 | if ((llvm::rotr<uint32_t>(V: Imm, R: RotAmt2) & ~255U) == 0) |
137 | return (32-RotAmt2)&31; // HW rotates right, not left. |
138 | } |
139 | |
140 | // Otherwise, we have no way to cover this span of bits with a single |
141 | // shifter_op immediate. Return a chunk of bits that will be useful to |
142 | // handle. |
143 | return (32-RotAmt)&31; // HW rotates right, not left. |
144 | } |
145 | |
146 | /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit |
147 | /// into an shifter_operand immediate operand, return the 12-bit encoding for |
148 | /// it. If not, return -1. |
149 | inline int getSOImmVal(unsigned Arg) { |
150 | // 8-bit (or less) immediates are trivially shifter_operands with a rotate |
151 | // of zero. |
152 | if ((Arg & ~255U) == 0) return Arg; |
153 | |
154 | unsigned RotAmt = getSOImmValRotate(Imm: Arg); |
155 | |
156 | // If this cannot be handled with a single shifter_op, bail out. |
157 | if (llvm::rotr<uint32_t>(V: ~255U, R: RotAmt) & Arg) |
158 | return -1; |
159 | |
160 | // Encode this correctly. |
161 | return llvm::rotl<uint32_t>(V: Arg, R: RotAmt) | ((RotAmt >> 1) << 8); |
162 | } |
163 | |
164 | /// isSOImmTwoPartVal - Return true if the specified value can be obtained by |
165 | /// or'ing together two SOImmVal's. |
166 | inline bool isSOImmTwoPartVal(unsigned V) { |
167 | // If this can be handled with a single shifter_op, bail out. |
168 | V = llvm::rotr<uint32_t>(V: ~255U, R: getSOImmValRotate(Imm: V)) & V; |
169 | if (V == 0) |
170 | return false; |
171 | |
172 | // If this can be handled with two shifter_op's, accept. |
173 | V = llvm::rotr<uint32_t>(V: ~255U, R: getSOImmValRotate(Imm: V)) & V; |
174 | return V == 0; |
175 | } |
176 | |
177 | /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal, |
178 | /// return the first chunk of it. |
179 | inline unsigned getSOImmTwoPartFirst(unsigned V) { |
180 | return llvm::rotr<uint32_t>(V: 255U, R: getSOImmValRotate(Imm: V)) & V; |
181 | } |
182 | |
183 | /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal, |
184 | /// return the second chunk of it. |
185 | inline unsigned getSOImmTwoPartSecond(unsigned V) { |
186 | // Mask out the first hunk. |
187 | V = llvm::rotr<uint32_t>(V: ~255U, R: getSOImmValRotate(Imm: V)) & V; |
188 | |
189 | // Take what's left. |
190 | assert(V == (llvm::rotr<uint32_t>(255U, getSOImmValRotate(V)) & V)); |
191 | return V; |
192 | } |
193 | |
194 | /// isSOImmTwoPartValNeg - Return true if the specified value can be obtained |
195 | /// by two SOImmVal, that -V = First + Second. |
196 | /// "R+V" can be optimized to (sub (sub R, First), Second). |
197 | /// "R=V" can be optimized to (sub (mvn R, ~(-First)), Second). |
198 | inline bool isSOImmTwoPartValNeg(unsigned V) { |
199 | unsigned First; |
200 | if (!isSOImmTwoPartVal(V: -V)) |
201 | return false; |
202 | // Return false if ~(-First) is not a SoImmval. |
203 | First = getSOImmTwoPartFirst(V: -V); |
204 | First = ~(-First); |
205 | return !(llvm::rotr<uint32_t>(V: ~255U, R: getSOImmValRotate(Imm: First)) & First); |
206 | } |
207 | |
208 | /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed |
209 | /// by a left shift. Returns the shift amount to use. |
210 | inline unsigned getThumbImmValShift(unsigned Imm) { |
211 | // 8-bit (or less) immediates are trivially immediate operand with a shift |
212 | // of zero. |
213 | if ((Imm & ~255U) == 0) return 0; |
214 | |
215 | // Use CTZ to compute the shift amount. |
216 | return llvm::countr_zero(Val: Imm); |
217 | } |
218 | |
219 | /// isThumbImmShiftedVal - Return true if the specified value can be obtained |
220 | /// by left shifting a 8-bit immediate. |
221 | inline bool isThumbImmShiftedVal(unsigned V) { |
222 | // If this can be handled with |
223 | V = (~255U << getThumbImmValShift(Imm: V)) & V; |
224 | return V == 0; |
225 | } |
226 | |
227 | /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed |
228 | /// by a left shift. Returns the shift amount to use. |
229 | inline unsigned getThumbImm16ValShift(unsigned Imm) { |
230 | // 16-bit (or less) immediates are trivially immediate operand with a shift |
231 | // of zero. |
232 | if ((Imm & ~65535U) == 0) return 0; |
233 | |
234 | // Use CTZ to compute the shift amount. |
235 | return llvm::countr_zero(Val: Imm); |
236 | } |
237 | |
238 | /// isThumbImm16ShiftedVal - Return true if the specified value can be |
239 | /// obtained by left shifting a 16-bit immediate. |
240 | inline bool isThumbImm16ShiftedVal(unsigned V) { |
241 | // If this can be handled with |
242 | V = (~65535U << getThumbImm16ValShift(Imm: V)) & V; |
243 | return V == 0; |
244 | } |
245 | |
246 | /// getThumbImmNonShiftedVal - If V is a value that satisfies |
247 | /// isThumbImmShiftedVal, return the non-shiftd value. |
248 | inline unsigned getThumbImmNonShiftedVal(unsigned V) { |
249 | return V >> getThumbImmValShift(Imm: V); |
250 | } |
251 | |
252 | |
253 | /// getT2SOImmValSplat - Return the 12-bit encoded representation |
254 | /// if the specified value can be obtained by splatting the low 8 bits |
255 | /// into every other byte or every byte of a 32-bit value. i.e., |
256 | /// 00000000 00000000 00000000 abcdefgh control = 0 |
257 | /// 00000000 abcdefgh 00000000 abcdefgh control = 1 |
258 | /// abcdefgh 00000000 abcdefgh 00000000 control = 2 |
259 | /// abcdefgh abcdefgh abcdefgh abcdefgh control = 3 |
260 | /// Return -1 if none of the above apply. |
261 | /// See ARM Reference Manual A6.3.2. |
262 | inline int getT2SOImmValSplatVal(unsigned V) { |
263 | unsigned u, Vs, Imm; |
264 | // control = 0 |
265 | if ((V & 0xffffff00) == 0) |
266 | return V; |
267 | |
268 | // If the value is zeroes in the first byte, just shift those off |
269 | Vs = ((V & 0xff) == 0) ? V >> 8 : V; |
270 | // Any passing value only has 8 bits of payload, splatted across the word |
271 | Imm = Vs & 0xff; |
272 | // Likewise, any passing values have the payload splatted into the 3rd byte |
273 | u = Imm | (Imm << 16); |
274 | |
275 | // control = 1 or 2 |
276 | if (Vs == u) |
277 | return (((Vs == V) ? 1 : 2) << 8) | Imm; |
278 | |
279 | // control = 3 |
280 | if (Vs == (u | (u << 8))) |
281 | return (3 << 8) | Imm; |
282 | |
283 | return -1; |
284 | } |
285 | |
286 | /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the |
287 | /// specified value is a rotated 8-bit value. Return -1 if no rotation |
288 | /// encoding is possible. |
289 | /// See ARM Reference Manual A6.3.2. |
290 | inline int getT2SOImmValRotateVal(unsigned V) { |
291 | unsigned RotAmt = llvm::countl_zero(Val: V); |
292 | if (RotAmt >= 24) |
293 | return -1; |
294 | |
295 | // If 'Arg' can be handled with a single shifter_op return the value. |
296 | if ((llvm::rotr<uint32_t>(V: 0xff000000U, R: RotAmt) & V) == V) |
297 | return (llvm::rotr<uint32_t>(V, R: 24 - RotAmt) & 0x7f) | |
298 | ((RotAmt + 8) << 7); |
299 | |
300 | return -1; |
301 | } |
302 | |
303 | /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit |
304 | /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit |
305 | /// encoding for it. If not, return -1. |
306 | /// See ARM Reference Manual A6.3.2. |
307 | inline int getT2SOImmVal(unsigned Arg) { |
308 | // If 'Arg' is an 8-bit splat, then get the encoded value. |
309 | int Splat = getT2SOImmValSplatVal(V: Arg); |
310 | if (Splat != -1) |
311 | return Splat; |
312 | |
313 | // If 'Arg' can be handled with a single shifter_op return the value. |
314 | int Rot = getT2SOImmValRotateVal(V: Arg); |
315 | if (Rot != -1) |
316 | return Rot; |
317 | |
318 | return -1; |
319 | } |
320 | |
321 | inline unsigned getT2SOImmValRotate(unsigned V) { |
322 | if ((V & ~255U) == 0) return 0; |
323 | // Use CTZ to compute the rotate amount. |
324 | unsigned RotAmt = llvm::countr_zero(Val: V); |
325 | return (32 - RotAmt) & 31; |
326 | } |
327 | |
328 | inline bool isT2SOImmTwoPartVal(unsigned Imm) { |
329 | unsigned V = Imm; |
330 | // Passing values can be any combination of splat values and shifter |
331 | // values. If this can be handled with a single shifter or splat, bail |
332 | // out. Those should be handled directly, not with a two-part val. |
333 | if (getT2SOImmValSplatVal(V) != -1) |
334 | return false; |
335 | V = llvm::rotr<uint32_t>(V: ~255U, R: getT2SOImmValRotate(V)) & V; |
336 | if (V == 0) |
337 | return false; |
338 | |
339 | // If this can be handled as an immediate, accept. |
340 | if (getT2SOImmVal(Arg: V) != -1) return true; |
341 | |
342 | // Likewise, try masking out a splat value first. |
343 | V = Imm; |
344 | if (getT2SOImmValSplatVal(V: V & 0xff00ff00U) != -1) |
345 | V &= ~0xff00ff00U; |
346 | else if (getT2SOImmValSplatVal(V: V & 0x00ff00ffU) != -1) |
347 | V &= ~0x00ff00ffU; |
348 | // If what's left can be handled as an immediate, accept. |
349 | if (getT2SOImmVal(Arg: V) != -1) return true; |
350 | |
351 | // Otherwise, do not accept. |
352 | return false; |
353 | } |
354 | |
355 | inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) { |
356 | assert (isT2SOImmTwoPartVal(Imm) && |
357 | "Immedate cannot be encoded as two part immediate!" ); |
358 | // Try a shifter operand as one part |
359 | unsigned V = llvm::rotr<uint32_t>(V: ~255, R: getT2SOImmValRotate(V: Imm)) & Imm; |
360 | // If the rest is encodable as an immediate, then return it. |
361 | if (getT2SOImmVal(Arg: V) != -1) return V; |
362 | |
363 | // Try masking out a splat value first. |
364 | if (getT2SOImmValSplatVal(V: Imm & 0xff00ff00U) != -1) |
365 | return Imm & 0xff00ff00U; |
366 | |
367 | // The other splat is all that's left as an option. |
368 | assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1); |
369 | return Imm & 0x00ff00ffU; |
370 | } |
371 | |
372 | inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) { |
373 | // Mask out the first hunk |
374 | Imm ^= getT2SOImmTwoPartFirst(Imm); |
375 | // Return what's left |
376 | assert (getT2SOImmVal(Imm) != -1 && |
377 | "Unable to encode second part of T2 two part SO immediate" ); |
378 | return Imm; |
379 | } |
380 | |
381 | |
382 | //===--------------------------------------------------------------------===// |
383 | // Addressing Mode #2 |
384 | //===--------------------------------------------------------------------===// |
385 | // |
386 | // This is used for most simple load/store instructions. |
387 | // |
388 | // addrmode2 := reg +/- reg shop imm |
389 | // addrmode2 := reg +/- imm12 |
390 | // |
391 | // The first operand is always a Reg. The second operand is a reg if in |
392 | // reg/reg form, otherwise it's reg#0. The third field encodes the operation |
393 | // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The |
394 | // fourth operand 16-17 encodes the index mode. |
395 | // |
396 | // If this addressing mode is a frame index (before prolog/epilog insertion |
397 | // and code rewriting), this operand will have the form: FI#, reg0, <offs> |
398 | // with no shift amount for the frame offset. |
399 | // |
400 | inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO, |
401 | unsigned IdxMode = 0) { |
402 | assert(Imm12 < (1 << 12) && "Imm too large!" ); |
403 | bool isSub = Opc == sub; |
404 | return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ; |
405 | } |
406 | inline unsigned getAM2Offset(unsigned AM2Opc) { |
407 | return AM2Opc & ((1 << 12)-1); |
408 | } |
409 | inline AddrOpc getAM2Op(unsigned AM2Opc) { |
410 | return ((AM2Opc >> 12) & 1) ? sub : add; |
411 | } |
412 | inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) { |
413 | return (ShiftOpc)((AM2Opc >> 13) & 7); |
414 | } |
415 | inline unsigned getAM2IdxMode(unsigned AM2Opc) { return (AM2Opc >> 16); } |
416 | |
417 | //===--------------------------------------------------------------------===// |
418 | // Addressing Mode #3 |
419 | //===--------------------------------------------------------------------===// |
420 | // |
421 | // This is used for sign-extending loads, and load/store-pair instructions. |
422 | // |
423 | // addrmode3 := reg +/- reg |
424 | // addrmode3 := reg +/- imm8 |
425 | // |
426 | // The first operand is always a Reg. The second operand is a reg if in |
427 | // reg/reg form, otherwise it's reg#0. The third field encodes the operation |
428 | // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the |
429 | // index mode. |
430 | |
431 | /// getAM3Opc - This function encodes the addrmode3 opc field. |
432 | inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset, |
433 | unsigned IdxMode = 0) { |
434 | bool isSub = Opc == sub; |
435 | return ((int)isSub << 8) | Offset | (IdxMode << 9); |
436 | } |
437 | inline unsigned char getAM3Offset(unsigned AM3Opc) { return AM3Opc & 0xFF; } |
438 | inline AddrOpc getAM3Op(unsigned AM3Opc) { |
439 | return ((AM3Opc >> 8) & 1) ? sub : add; |
440 | } |
441 | inline unsigned getAM3IdxMode(unsigned AM3Opc) { return (AM3Opc >> 9); } |
442 | |
443 | //===--------------------------------------------------------------------===// |
444 | // Addressing Mode #4 |
445 | //===--------------------------------------------------------------------===// |
446 | // |
447 | // This is used for load / store multiple instructions. |
448 | // |
449 | // addrmode4 := reg, <mode> |
450 | // |
451 | // The four modes are: |
452 | // IA - Increment after |
453 | // IB - Increment before |
454 | // DA - Decrement after |
455 | // DB - Decrement before |
456 | // For VFP instructions, only the IA and DB modes are valid. |
457 | |
458 | inline AMSubMode getAM4SubMode(unsigned Mode) { |
459 | return (AMSubMode)(Mode & 0x7); |
460 | } |
461 | |
462 | inline unsigned getAM4ModeImm(AMSubMode SubMode) { return (int)SubMode; } |
463 | |
464 | //===--------------------------------------------------------------------===// |
465 | // Addressing Mode #5 |
466 | //===--------------------------------------------------------------------===// |
467 | // |
468 | // This is used for coprocessor instructions, such as FP load/stores. |
469 | // |
470 | // addrmode5 := reg +/- imm8*4 |
471 | // |
472 | // The first operand is always a Reg. The second operand encodes the |
473 | // operation (add or subtract) in bit 8 and the immediate in bits 0-7. |
474 | |
475 | /// getAM5Opc - This function encodes the addrmode5 opc field. |
476 | inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) { |
477 | bool isSub = Opc == sub; |
478 | return ((int)isSub << 8) | Offset; |
479 | } |
480 | inline unsigned char getAM5Offset(unsigned AM5Opc) { return AM5Opc & 0xFF; } |
481 | inline AddrOpc getAM5Op(unsigned AM5Opc) { |
482 | return ((AM5Opc >> 8) & 1) ? sub : add; |
483 | } |
484 | |
485 | //===--------------------------------------------------------------------===// |
486 | // Addressing Mode #5 FP16 |
487 | //===--------------------------------------------------------------------===// |
488 | // |
489 | // This is used for coprocessor instructions, such as 16-bit FP load/stores. |
490 | // |
491 | // addrmode5fp16 := reg +/- imm8*2 |
492 | // |
493 | // The first operand is always a Reg. The second operand encodes the |
494 | // operation (add or subtract) in bit 8 and the immediate in bits 0-7. |
495 | |
496 | /// getAM5FP16Opc - This function encodes the addrmode5fp16 opc field. |
497 | inline unsigned getAM5FP16Opc(AddrOpc Opc, unsigned char Offset) { |
498 | bool isSub = Opc == sub; |
499 | return ((int)isSub << 8) | Offset; |
500 | } |
501 | inline unsigned char getAM5FP16Offset(unsigned AM5Opc) { |
502 | return AM5Opc & 0xFF; |
503 | } |
504 | inline AddrOpc getAM5FP16Op(unsigned AM5Opc) { |
505 | return ((AM5Opc >> 8) & 1) ? sub : add; |
506 | } |
507 | |
508 | //===--------------------------------------------------------------------===// |
509 | // Addressing Mode #6 |
510 | //===--------------------------------------------------------------------===// |
511 | // |
512 | // This is used for NEON load / store instructions. |
513 | // |
514 | // addrmode6 := reg with optional alignment |
515 | // |
516 | // This is stored in two operands [regaddr, align]. The first is the |
517 | // address register. The second operand is the value of the alignment |
518 | // specifier in bytes or zero if no explicit alignment. |
519 | // Valid alignments depend on the specific instruction. |
520 | |
521 | //===--------------------------------------------------------------------===// |
522 | // NEON/MVE Modified Immediates |
523 | //===--------------------------------------------------------------------===// |
524 | // |
525 | // Several NEON and MVE instructions (e.g., VMOV) take a "modified immediate" |
526 | // vector operand, where a small immediate encoded in the instruction |
527 | // specifies a full NEON vector value. These modified immediates are |
528 | // represented here as encoded integers. The low 8 bits hold the immediate |
529 | // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold |
530 | // the "Cmode" field of the instruction. The interfaces below treat the |
531 | // Op and Cmode values as a single 5-bit value. |
532 | |
533 | inline unsigned createVMOVModImm(unsigned OpCmode, unsigned Val) { |
534 | return (OpCmode << 8) | Val; |
535 | } |
536 | inline unsigned getVMOVModImmOpCmode(unsigned ModImm) { |
537 | return (ModImm >> 8) & 0x1f; |
538 | } |
539 | inline unsigned getVMOVModImmVal(unsigned ModImm) { return ModImm & 0xff; } |
540 | |
541 | /// decodeVMOVModImm - Decode a NEON/MVE modified immediate value into the |
542 | /// element value and the element size in bits. (If the element size is |
543 | /// smaller than the vector, it is splatted into all the elements.) |
544 | inline uint64_t decodeVMOVModImm(unsigned ModImm, unsigned &EltBits) { |
545 | unsigned OpCmode = getVMOVModImmOpCmode(ModImm); |
546 | unsigned Imm8 = getVMOVModImmVal(ModImm); |
547 | uint64_t Val = 0; |
548 | |
549 | if (OpCmode == 0xe) { |
550 | // 8-bit vector elements |
551 | Val = Imm8; |
552 | EltBits = 8; |
553 | } else if ((OpCmode & 0xc) == 0x8) { |
554 | // 16-bit vector elements |
555 | unsigned ByteNum = (OpCmode & 0x6) >> 1; |
556 | Val = Imm8 << (8 * ByteNum); |
557 | EltBits = 16; |
558 | } else if ((OpCmode & 0x8) == 0) { |
559 | // 32-bit vector elements, zero with one byte set |
560 | unsigned ByteNum = (OpCmode & 0x6) >> 1; |
561 | Val = Imm8 << (8 * ByteNum); |
562 | EltBits = 32; |
563 | } else if ((OpCmode & 0xe) == 0xc) { |
564 | // 32-bit vector elements, one byte with low bits set |
565 | unsigned ByteNum = 1 + (OpCmode & 0x1); |
566 | Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum))); |
567 | EltBits = 32; |
568 | } else if (OpCmode == 0x1e) { |
569 | // 64-bit vector elements |
570 | for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) { |
571 | if ((ModImm >> ByteNum) & 1) |
572 | Val |= (uint64_t)0xff << (8 * ByteNum); |
573 | } |
574 | EltBits = 64; |
575 | } else { |
576 | llvm_unreachable("Unsupported VMOV immediate" ); |
577 | } |
578 | return Val; |
579 | } |
580 | |
581 | // Generic validation for single-byte immediate (0X00, 00X0, etc). |
582 | inline bool isNEONBytesplat(unsigned Value, unsigned Size) { |
583 | assert(Size >= 1 && Size <= 4 && "Invalid size" ); |
584 | unsigned count = 0; |
585 | for (unsigned i = 0; i < Size; ++i) { |
586 | if (Value & 0xff) count++; |
587 | Value >>= 8; |
588 | } |
589 | return count == 1; |
590 | } |
591 | |
592 | /// Checks if Value is a correct immediate for instructions like VBIC/VORR. |
593 | inline bool isNEONi16splat(unsigned Value) { |
594 | if (Value > 0xffff) |
595 | return false; |
596 | // i16 value with set bits only in one byte X0 or 0X. |
597 | return Value == 0 || isNEONBytesplat(Value, Size: 2); |
598 | } |
599 | |
600 | // Encode NEON 16 bits Splat immediate for instructions like VBIC/VORR |
601 | inline unsigned encodeNEONi16splat(unsigned Value) { |
602 | assert(isNEONi16splat(Value) && "Invalid NEON splat value" ); |
603 | if (Value >= 0x100) |
604 | Value = (Value >> 8) | 0xa00; |
605 | else |
606 | Value |= 0x800; |
607 | return Value; |
608 | } |
609 | |
610 | /// Checks if Value is a correct immediate for instructions like VBIC/VORR. |
611 | inline bool isNEONi32splat(unsigned Value) { |
612 | // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X. |
613 | return Value == 0 || isNEONBytesplat(Value, Size: 4); |
614 | } |
615 | |
616 | /// Encode NEON 32 bits Splat immediate for instructions like VBIC/VORR. |
617 | inline unsigned encodeNEONi32splat(unsigned Value) { |
618 | assert(isNEONi32splat(Value) && "Invalid NEON splat value" ); |
619 | if (Value >= 0x100 && Value <= 0xff00) |
620 | Value = (Value >> 8) | 0x200; |
621 | else if (Value > 0xffff && Value <= 0xff0000) |
622 | Value = (Value >> 16) | 0x400; |
623 | else if (Value > 0xffffff) |
624 | Value = (Value >> 24) | 0x600; |
625 | return Value; |
626 | } |
627 | |
628 | //===--------------------------------------------------------------------===// |
629 | // Floating-point Immediates |
630 | // |
631 | inline float getFPImmFloat(unsigned Imm) { |
632 | // We expect an 8-bit binary encoding of a floating-point number here. |
633 | |
634 | uint8_t Sign = (Imm >> 7) & 0x1; |
635 | uint8_t Exp = (Imm >> 4) & 0x7; |
636 | uint8_t Mantissa = Imm & 0xf; |
637 | |
638 | // 8-bit FP IEEE Float Encoding |
639 | // abcd efgh aBbbbbbc defgh000 00000000 00000000 |
640 | // |
641 | // where B = NOT(b); |
642 | uint32_t I = 0; |
643 | I |= Sign << 31; |
644 | I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30; |
645 | I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25; |
646 | I |= (Exp & 0x3) << 23; |
647 | I |= Mantissa << 19; |
648 | return bit_cast<float>(from: I); |
649 | } |
650 | |
651 | /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit |
652 | /// floating-point value. If the value cannot be represented as an 8-bit |
653 | /// floating-point value, then return -1. |
654 | inline int getFP16Imm(const APInt &Imm) { |
655 | uint32_t Sign = Imm.lshr(shiftAmt: 15).getZExtValue() & 1; |
656 | int32_t Exp = (Imm.lshr(shiftAmt: 10).getSExtValue() & 0x1f) - 15; // -14 to 15 |
657 | int64_t Mantissa = Imm.getZExtValue() & 0x3ff; // 10 bits |
658 | |
659 | // We can handle 4 bits of mantissa. |
660 | // mantissa = (16+UInt(e:f:g:h))/16. |
661 | if (Mantissa & 0x3f) |
662 | return -1; |
663 | Mantissa >>= 6; |
664 | |
665 | // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 |
666 | if (Exp < -3 || Exp > 4) |
667 | return -1; |
668 | Exp = ((Exp+3) & 0x7) ^ 4; |
669 | |
670 | return ((int)Sign << 7) | (Exp << 4) | Mantissa; |
671 | } |
672 | |
673 | inline int getFP16Imm(const APFloat &FPImm) { |
674 | return getFP16Imm(Imm: FPImm.bitcastToAPInt()); |
675 | } |
676 | |
677 | /// If this is a FP16Imm encoded as a fp32 value, return the 8-bit encoding |
678 | /// for it. Otherwise return -1 like getFP16Imm. |
679 | inline int getFP32FP16Imm(const APInt &Imm) { |
680 | if (Imm.getActiveBits() > 16) |
681 | return -1; |
682 | return ARM_AM::getFP16Imm(Imm: Imm.trunc(width: 16)); |
683 | } |
684 | |
685 | inline int getFP32FP16Imm(const APFloat &FPImm) { |
686 | return getFP32FP16Imm(Imm: FPImm.bitcastToAPInt()); |
687 | } |
688 | |
689 | /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit |
690 | /// floating-point value. If the value cannot be represented as an 8-bit |
691 | /// floating-point value, then return -1. |
692 | inline int getFP32Imm(const APInt &Imm) { |
693 | uint32_t Sign = Imm.lshr(shiftAmt: 31).getZExtValue() & 1; |
694 | int32_t Exp = (Imm.lshr(shiftAmt: 23).getSExtValue() & 0xff) - 127; // -126 to 127 |
695 | int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits |
696 | |
697 | // We can handle 4 bits of mantissa. |
698 | // mantissa = (16+UInt(e:f:g:h))/16. |
699 | if (Mantissa & 0x7ffff) |
700 | return -1; |
701 | Mantissa >>= 19; |
702 | if ((Mantissa & 0xf) != Mantissa) |
703 | return -1; |
704 | |
705 | // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 |
706 | if (Exp < -3 || Exp > 4) |
707 | return -1; |
708 | Exp = ((Exp+3) & 0x7) ^ 4; |
709 | |
710 | return ((int)Sign << 7) | (Exp << 4) | Mantissa; |
711 | } |
712 | |
713 | inline int getFP32Imm(const APFloat &FPImm) { |
714 | return getFP32Imm(Imm: FPImm.bitcastToAPInt()); |
715 | } |
716 | |
717 | /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit |
718 | /// floating-point value. If the value cannot be represented as an 8-bit |
719 | /// floating-point value, then return -1. |
720 | inline int getFP64Imm(const APInt &Imm) { |
721 | uint64_t Sign = Imm.lshr(shiftAmt: 63).getZExtValue() & 1; |
722 | int64_t Exp = (Imm.lshr(shiftAmt: 52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023 |
723 | uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL; |
724 | |
725 | // We can handle 4 bits of mantissa. |
726 | // mantissa = (16+UInt(e:f:g:h))/16. |
727 | if (Mantissa & 0xffffffffffffULL) |
728 | return -1; |
729 | Mantissa >>= 48; |
730 | if ((Mantissa & 0xf) != Mantissa) |
731 | return -1; |
732 | |
733 | // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 |
734 | if (Exp < -3 || Exp > 4) |
735 | return -1; |
736 | Exp = ((Exp+3) & 0x7) ^ 4; |
737 | |
738 | return ((int)Sign << 7) | (Exp << 4) | Mantissa; |
739 | } |
740 | |
741 | inline int getFP64Imm(const APFloat &FPImm) { |
742 | return getFP64Imm(Imm: FPImm.bitcastToAPInt()); |
743 | } |
744 | |
745 | } // end namespace ARM_AM |
746 | } // end namespace llvm |
747 | |
748 | #endif |
749 | |