1 | //===-- ARMUnwindOpAsm.cpp - ARM Unwind Opcodes Assembler -------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the unwind opcode assembler for ARM exception handling |
10 | // table. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "ARMUnwindOpAsm.h" |
15 | #include "llvm/ADT/bit.h" |
16 | #include "llvm/Support/ARMEHABI.h" |
17 | #include "llvm/Support/LEB128.h" |
18 | #include <cassert> |
19 | |
20 | using namespace llvm; |
21 | |
22 | namespace { |
23 | |
24 | /// UnwindOpcodeStreamer - The simple wrapper over SmallVector to emit bytes |
25 | /// with MSB to LSB per uint32_t ordering. For example, the first byte will |
26 | /// be placed in Vec[3], and the following bytes will be placed in 2, 1, 0, |
27 | /// 7, 6, 5, 4, 11, 10, 9, 8, and so on. |
28 | class UnwindOpcodeStreamer { |
29 | private: |
30 | SmallVectorImpl<uint8_t> &Vec; |
31 | size_t Pos = 3; |
32 | |
33 | public: |
34 | UnwindOpcodeStreamer(SmallVectorImpl<uint8_t> &V) : Vec(V) {} |
35 | |
36 | /// Emit the byte in MSB to LSB per uint32_t order. |
37 | void EmitByte(uint8_t elem) { |
38 | Vec[Pos] = elem; |
39 | Pos = (((Pos ^ 0x3u) + 1) ^ 0x3u); |
40 | } |
41 | |
42 | /// Emit the size prefix. |
43 | void EmitSize(size_t Size) { |
44 | size_t SizeInWords = (Size + 3) / 4; |
45 | assert(SizeInWords <= 0x100u && |
46 | "Only 256 additional words are allowed for unwind opcodes" ); |
47 | EmitByte(elem: static_cast<uint8_t>(SizeInWords - 1)); |
48 | } |
49 | |
50 | /// Emit the personality index prefix. |
51 | void EmitPersonalityIndex(unsigned PI) { |
52 | assert(PI < ARM::EHABI::NUM_PERSONALITY_INDEX && |
53 | "Invalid personality prefix" ); |
54 | EmitByte(elem: ARM::EHABI::EHT_COMPACT | PI); |
55 | } |
56 | |
57 | /// Fill the rest of bytes with FINISH opcode. |
58 | void FillFinishOpcode() { |
59 | while (Pos < Vec.size()) |
60 | EmitByte(elem: ARM::EHABI::UNWIND_OPCODE_FINISH); |
61 | } |
62 | }; |
63 | |
64 | } // end anonymous namespace |
65 | |
66 | void UnwindOpcodeAssembler::EmitRegSave(uint32_t RegSave) { |
67 | if (RegSave == 0u) { |
68 | // That's the special case for RA PAC. |
69 | EmitInt8(Opcode: ARM::EHABI::UNWIND_OPCODE_POP_RA_AUTH_CODE); |
70 | return; |
71 | } |
72 | |
73 | // One byte opcode to save register r14 and r11-r4 |
74 | if (RegSave & (1u << 4)) { |
75 | // The one byte opcode will always save r4, thus we can't use the one byte |
76 | // opcode when r4 is not in .save directive. |
77 | |
78 | // Compute the consecutive registers from r4 to r11. |
79 | uint32_t Mask = RegSave & 0xff0u; |
80 | uint32_t Range = llvm::countr_one(Value: Mask >> 5); // Exclude r4. |
81 | // Mask off non-consecutive registers. Keep r4. |
82 | Mask &= ~(0xffffffe0u << Range); |
83 | |
84 | // Emit this opcode when the mask covers every registers. |
85 | uint32_t UnmaskedReg = RegSave & 0xfff0u & (~Mask); |
86 | if (UnmaskedReg == 0u) { |
87 | // Pop r[4 : (4 + n)] |
88 | EmitInt8(Opcode: ARM::EHABI::UNWIND_OPCODE_POP_REG_RANGE_R4 | Range); |
89 | RegSave &= 0x000fu; |
90 | } else if (UnmaskedReg == (1u << 14)) { |
91 | // Pop r[14] + r[4 : (4 + n)] |
92 | EmitInt8(Opcode: ARM::EHABI::UNWIND_OPCODE_POP_REG_RANGE_R4_R14 | Range); |
93 | RegSave &= 0x000fu; |
94 | } |
95 | } |
96 | |
97 | // Two bytes opcode to save register r15-r4 |
98 | if ((RegSave & 0xfff0u) != 0) |
99 | EmitInt16(Opcode: ARM::EHABI::UNWIND_OPCODE_POP_REG_MASK_R4 | (RegSave >> 4)); |
100 | |
101 | // Opcode to save register r3-r0 |
102 | if ((RegSave & 0x000fu) != 0) |
103 | EmitInt16(Opcode: ARM::EHABI::UNWIND_OPCODE_POP_REG_MASK | (RegSave & 0x000fu)); |
104 | } |
105 | |
106 | /// Emit unwind opcodes for .vsave directives |
107 | void UnwindOpcodeAssembler::EmitVFPRegSave(uint32_t VFPRegSave) { |
108 | // We only have 4 bits to save the offset in the opcode so look at the lower |
109 | // and upper 16 bits separately. |
110 | for (uint32_t Regs : {VFPRegSave & 0xffff0000u, VFPRegSave & 0x0000ffffu}) { |
111 | while (Regs) { |
112 | // Now look for a run of set bits. Remember the MSB and LSB of the run. |
113 | auto RangeMSB = llvm::bit_width(Value: Regs); |
114 | auto RangeLen = llvm::countl_one(Value: Regs << (32 - RangeMSB)); |
115 | auto RangeLSB = RangeMSB - RangeLen; |
116 | |
117 | int Opcode = RangeLSB >= 16 |
118 | ? ARM::EHABI::UNWIND_OPCODE_POP_VFP_REG_RANGE_FSTMFDD_D16 |
119 | : ARM::EHABI::UNWIND_OPCODE_POP_VFP_REG_RANGE_FSTMFDD; |
120 | |
121 | EmitInt16(Opcode: Opcode | ((RangeLSB % 16) << 4) | (RangeLen - 1)); |
122 | |
123 | // Zero out bits we're done with. |
124 | Regs &= ~(-1u << RangeLSB); |
125 | } |
126 | } |
127 | } |
128 | |
129 | /// Emit unwind opcodes to copy address from source register to $sp. |
130 | void UnwindOpcodeAssembler::EmitSetSP(uint16_t Reg) { |
131 | EmitInt8(Opcode: ARM::EHABI::UNWIND_OPCODE_SET_VSP | Reg); |
132 | } |
133 | |
134 | /// Emit unwind opcodes to add $sp with an offset. |
135 | void UnwindOpcodeAssembler::EmitSPOffset(int64_t Offset) { |
136 | if (Offset > 0x200) { |
137 | uint8_t Buff[16]; |
138 | Buff[0] = ARM::EHABI::UNWIND_OPCODE_INC_VSP_ULEB128; |
139 | size_t ULEBSize = encodeULEB128(Value: (Offset - 0x204) >> 2, p: Buff + 1); |
140 | emitBytes(Opcode: Buff, Size: ULEBSize + 1); |
141 | } else if (Offset > 0) { |
142 | if (Offset > 0x100) { |
143 | EmitInt8(Opcode: ARM::EHABI::UNWIND_OPCODE_INC_VSP | 0x3fu); |
144 | Offset -= 0x100; |
145 | } |
146 | EmitInt8(Opcode: ARM::EHABI::UNWIND_OPCODE_INC_VSP | |
147 | static_cast<uint8_t>((Offset - 4) >> 2)); |
148 | } else if (Offset < 0) { |
149 | while (Offset < -0x100) { |
150 | EmitInt8(Opcode: ARM::EHABI::UNWIND_OPCODE_DEC_VSP | 0x3fu); |
151 | Offset += 0x100; |
152 | } |
153 | EmitInt8(Opcode: ARM::EHABI::UNWIND_OPCODE_DEC_VSP | |
154 | static_cast<uint8_t>(((-Offset) - 4) >> 2)); |
155 | } |
156 | } |
157 | |
158 | void UnwindOpcodeAssembler::Finalize(unsigned &PersonalityIndex, |
159 | SmallVectorImpl<uint8_t> &Result) { |
160 | UnwindOpcodeStreamer OpStreamer(Result); |
161 | |
162 | if (HasPersonality) { |
163 | // User-specifed personality routine: [ SIZE , OP1 , OP2 , ... ] |
164 | PersonalityIndex = ARM::EHABI::NUM_PERSONALITY_INDEX; |
165 | size_t TotalSize = Ops.size() + 1; |
166 | size_t RoundUpSize = (TotalSize + 3) / 4 * 4; |
167 | Result.resize(N: RoundUpSize); |
168 | OpStreamer.EmitSize(Size: RoundUpSize); |
169 | } else { |
170 | // If no personalityindex is specified, select ane |
171 | if (PersonalityIndex == ARM::EHABI::NUM_PERSONALITY_INDEX) |
172 | PersonalityIndex = (Ops.size() <= 3) ? ARM::EHABI::AEABI_UNWIND_CPP_PR0 |
173 | : ARM::EHABI::AEABI_UNWIND_CPP_PR1; |
174 | if (PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0) { |
175 | // __aeabi_unwind_cpp_pr0: [ 0x80 , OP1 , OP2 , OP3 ] |
176 | assert(Ops.size() <= 3 && "too many opcodes for __aeabi_unwind_cpp_pr0" ); |
177 | Result.resize(N: 4); |
178 | OpStreamer.EmitPersonalityIndex(PI: PersonalityIndex); |
179 | } else { |
180 | // __aeabi_unwind_cpp_pr{1,2}: [ {0x81,0x82} , SIZE , OP1 , OP2 , ... ] |
181 | size_t TotalSize = Ops.size() + 2; |
182 | size_t RoundUpSize = (TotalSize + 3) / 4 * 4; |
183 | Result.resize(N: RoundUpSize); |
184 | OpStreamer.EmitPersonalityIndex(PI: PersonalityIndex); |
185 | OpStreamer.EmitSize(Size: RoundUpSize); |
186 | } |
187 | } |
188 | |
189 | // Copy the unwind opcodes |
190 | for (size_t i = OpBegins.size() - 1; i > 0; --i) |
191 | for (size_t j = OpBegins[i - 1], end = OpBegins[i]; j < end; ++j) |
192 | OpStreamer.EmitByte(elem: Ops[j]); |
193 | |
194 | // Emit the padding finish opcodes if the size is not multiple of 4. |
195 | OpStreamer.FillFinishOpcode(); |
196 | |
197 | // Reset the assembler state |
198 | Reset(); |
199 | } |
200 | |