1 | //===- BitTracker.cpp -----------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | // SSA-based bit propagation. |
10 | // |
11 | // The purpose of this code is, for a given virtual register, to provide |
12 | // information about the value of each bit in the register. The values |
13 | // of bits are represented by the class BitValue, and take one of four |
14 | // cases: 0, 1, "ref" and "bottom". The 0 and 1 are rather clear, the |
15 | // "ref" value means that the bit is a copy of another bit (which itself |
16 | // cannot be a copy of yet another bit---such chains are not allowed). |
17 | // A "ref" value is associated with a BitRef structure, which indicates |
18 | // which virtual register, and which bit in that register is the origin |
19 | // of the value. For example, given an instruction |
20 | // %2 = ASL %1, 1 |
21 | // assuming that nothing is known about bits of %1, bit 1 of %2 |
22 | // will be a "ref" to (%1, 0). If there is a subsequent instruction |
23 | // %3 = ASL %2, 2 |
24 | // then bit 3 of %3 will be a "ref" to (%1, 0) as well. |
25 | // The "bottom" case means that the bit's value cannot be determined, |
26 | // and that this virtual register actually defines it. The "bottom" case |
27 | // is discussed in detail in BitTracker.h. In fact, "bottom" is a "ref |
28 | // to self", so for the %1 above, the bit 0 of it will be a "ref" to |
29 | // (%1, 0), bit 1 will be a "ref" to (%1, 1), etc. |
30 | // |
31 | // The tracker implements the Wegman-Zadeck algorithm, originally developed |
32 | // for SSA-based constant propagation. Each register is represented as |
33 | // a sequence of bits, with the convention that bit 0 is the least signi- |
34 | // ficant bit. Each bit is propagated individually. The class RegisterCell |
35 | // implements the register's representation, and is also the subject of |
36 | // the lattice operations in the tracker. |
37 | // |
38 | // The intended usage of the bit tracker is to create a target-specific |
39 | // machine instruction evaluator, pass the evaluator to the BitTracker |
40 | // object, and run the tracker. The tracker will then collect the bit |
41 | // value information for a given machine function. After that, it can be |
42 | // queried for the cells for each virtual register. |
43 | // Sample code: |
44 | // const TargetSpecificEvaluator TSE(TRI, MRI); |
45 | // BitTracker BT(TSE, MF); |
46 | // BT.run(); |
47 | // ... |
48 | // unsigned Reg = interestingRegister(); |
49 | // RegisterCell RC = BT.get(Reg); |
50 | // if (RC[3].is(1)) |
51 | // Reg0bit3 = 1; |
52 | // |
53 | // The code below is intended to be fully target-independent. |
54 | |
55 | #include "BitTracker.h" |
56 | #include "llvm/ADT/APInt.h" |
57 | #include "llvm/ADT/BitVector.h" |
58 | #include "llvm/CodeGen/MachineBasicBlock.h" |
59 | #include "llvm/CodeGen/MachineFunction.h" |
60 | #include "llvm/CodeGen/MachineInstr.h" |
61 | #include "llvm/CodeGen/MachineOperand.h" |
62 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
63 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
64 | #include "llvm/IR/Constants.h" |
65 | #include "llvm/Support/Debug.h" |
66 | #include "llvm/Support/raw_ostream.h" |
67 | #include <cassert> |
68 | #include <cstdint> |
69 | #include <iterator> |
70 | |
71 | using namespace llvm; |
72 | |
73 | using BT = BitTracker; |
74 | |
75 | namespace { |
76 | |
77 | // Local trickery to pretty print a register (without the whole "%number" |
78 | // business). |
79 | struct printv { |
80 | printv(unsigned r) : R(r) {} |
81 | |
82 | unsigned R; |
83 | }; |
84 | |
85 | raw_ostream &operator<< (raw_ostream &OS, const printv &PV) { |
86 | if (PV.R) |
87 | OS << 'v' << Register::virtReg2Index(Reg: PV.R); |
88 | else |
89 | OS << 's'; |
90 | return OS; |
91 | } |
92 | |
93 | } // end anonymous namespace |
94 | |
95 | namespace llvm { |
96 | |
97 | raw_ostream &operator<<(raw_ostream &OS, const BT::BitValue &BV) { |
98 | switch (BV.Type) { |
99 | case BT::BitValue::Top: |
100 | OS << 'T'; |
101 | break; |
102 | case BT::BitValue::Zero: |
103 | OS << '0'; |
104 | break; |
105 | case BT::BitValue::One: |
106 | OS << '1'; |
107 | break; |
108 | case BT::BitValue::Ref: |
109 | OS << printv(BV.RefI.Reg) << '[' << BV.RefI.Pos << ']'; |
110 | break; |
111 | } |
112 | return OS; |
113 | } |
114 | |
115 | raw_ostream &operator<<(raw_ostream &OS, const BT::RegisterCell &RC) { |
116 | unsigned n = RC.Bits.size(); |
117 | OS << "{ w:" << n; |
118 | // Instead of printing each bit value individually, try to group them |
119 | // into logical segments, such as sequences of 0 or 1 bits or references |
120 | // to consecutive bits (e.g. "bits 3-5 are same as bits 7-9 of reg xyz"). |
121 | // "Start" will be the index of the beginning of the most recent segment. |
122 | unsigned Start = 0; |
123 | bool SeqRef = false; // A sequence of refs to consecutive bits. |
124 | bool ConstRef = false; // A sequence of refs to the same bit. |
125 | |
126 | for (unsigned i = 1, n = RC.Bits.size(); i < n; ++i) { |
127 | const BT::BitValue &V = RC[i]; |
128 | const BT::BitValue &SV = RC[Start]; |
129 | bool IsRef = (V.Type == BT::BitValue::Ref); |
130 | // If the current value is the same as Start, skip to the next one. |
131 | if (!IsRef && V == SV) |
132 | continue; |
133 | if (IsRef && SV.Type == BT::BitValue::Ref && V.RefI.Reg == SV.RefI.Reg) { |
134 | if (Start+1 == i) { |
135 | SeqRef = (V.RefI.Pos == SV.RefI.Pos+1); |
136 | ConstRef = (V.RefI.Pos == SV.RefI.Pos); |
137 | } |
138 | if (SeqRef && V.RefI.Pos == SV.RefI.Pos+(i-Start)) |
139 | continue; |
140 | if (ConstRef && V.RefI.Pos == SV.RefI.Pos) |
141 | continue; |
142 | } |
143 | |
144 | // The current value is different. Print the previous one and reset |
145 | // the Start. |
146 | OS << " [" << Start; |
147 | unsigned Count = i - Start; |
148 | if (Count == 1) { |
149 | OS << "]:" << SV; |
150 | } else { |
151 | OS << '-' << i-1 << "]:" ; |
152 | if (SV.Type == BT::BitValue::Ref && SeqRef) |
153 | OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-' |
154 | << SV.RefI.Pos+(Count-1) << ']'; |
155 | else |
156 | OS << SV; |
157 | } |
158 | Start = i; |
159 | SeqRef = ConstRef = false; |
160 | } |
161 | |
162 | OS << " [" << Start; |
163 | unsigned Count = n - Start; |
164 | if (n-Start == 1) { |
165 | OS << "]:" << RC[Start]; |
166 | } else { |
167 | OS << '-' << n-1 << "]:" ; |
168 | const BT::BitValue &SV = RC[Start]; |
169 | if (SV.Type == BT::BitValue::Ref && SeqRef) |
170 | OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-' |
171 | << SV.RefI.Pos+(Count-1) << ']'; |
172 | else |
173 | OS << SV; |
174 | } |
175 | OS << " }" ; |
176 | |
177 | return OS; |
178 | } |
179 | |
180 | } // end namespace llvm |
181 | |
182 | void BitTracker::print_cells(raw_ostream &OS) const { |
183 | for (const std::pair<unsigned, RegisterCell> P : Map) |
184 | dbgs() << printReg(Reg: P.first, TRI: &ME.TRI) << " -> " << P.second << "\n" ; |
185 | } |
186 | |
187 | BitTracker::BitTracker(const MachineEvaluator &E, MachineFunction &F) |
188 | : ME(E), MF(F), MRI(F.getRegInfo()), Map(*new CellMapType), Trace(false) { |
189 | } |
190 | |
191 | BitTracker::~BitTracker() { |
192 | delete ⤅ |
193 | } |
194 | |
195 | // If we were allowed to update a cell for a part of a register, the meet |
196 | // operation would need to be parametrized by the register number and the |
197 | // exact part of the register, so that the computer BitRefs correspond to |
198 | // the actual bits of the "self" register. |
199 | // While this cannot happen in the current implementation, I'm not sure |
200 | // if this should be ruled out in the future. |
201 | bool BT::RegisterCell::meet(const RegisterCell &RC, Register SelfR) { |
202 | // An example when "meet" can be invoked with SelfR == 0 is a phi node |
203 | // with a physical register as an operand. |
204 | assert(SelfR == 0 || SelfR.isVirtual()); |
205 | bool Changed = false; |
206 | for (uint16_t i = 0, n = Bits.size(); i < n; ++i) { |
207 | const BitValue &RCV = RC[i]; |
208 | Changed |= Bits[i].meet(V: RCV, Self: BitRef(SelfR, i)); |
209 | } |
210 | return Changed; |
211 | } |
212 | |
213 | // Insert the entire cell RC into the current cell at position given by M. |
214 | BT::RegisterCell &BT::RegisterCell::insert(const BT::RegisterCell &RC, |
215 | const BitMask &M) { |
216 | uint16_t B = M.first(), E = M.last(), W = width(); |
217 | // M must be a valid mask for *this. |
218 | assert(B < W && E < W); |
219 | // The masked part of *this must have the same number of bits |
220 | // as the source. |
221 | assert(B > E || E-B+1 == RC.width()); // B <= E => E-B+1 = |RC|. |
222 | assert(B <= E || E+(W-B)+1 == RC.width()); // E < B => E+(W-B)+1 = |RC|. |
223 | if (B <= E) { |
224 | for (uint16_t i = 0; i <= E-B; ++i) |
225 | Bits[i+B] = RC[i]; |
226 | } else { |
227 | for (uint16_t i = 0; i < W-B; ++i) |
228 | Bits[i+B] = RC[i]; |
229 | for (uint16_t i = 0; i <= E; ++i) |
230 | Bits[i] = RC[i+(W-B)]; |
231 | } |
232 | return *this; |
233 | } |
234 | |
235 | BT::RegisterCell BT::RegisterCell::(const BitMask &M) const { |
236 | uint16_t B = M.first(), E = M.last(), W = width(); |
237 | assert(B < W && E < W); |
238 | if (B <= E) { |
239 | RegisterCell RC(E-B+1); |
240 | for (uint16_t i = B; i <= E; ++i) |
241 | RC.Bits[i-B] = Bits[i]; |
242 | return RC; |
243 | } |
244 | |
245 | RegisterCell RC(E+(W-B)+1); |
246 | for (uint16_t i = 0; i < W-B; ++i) |
247 | RC.Bits[i] = Bits[i+B]; |
248 | for (uint16_t i = 0; i <= E; ++i) |
249 | RC.Bits[i+(W-B)] = Bits[i]; |
250 | return RC; |
251 | } |
252 | |
253 | BT::RegisterCell &BT::RegisterCell::rol(uint16_t Sh) { |
254 | // Rotate left (i.e. towards increasing bit indices). |
255 | // Swap the two parts: [0..W-Sh-1] [W-Sh..W-1] |
256 | uint16_t W = width(); |
257 | Sh = Sh % W; |
258 | if (Sh == 0) |
259 | return *this; |
260 | |
261 | RegisterCell Tmp(W-Sh); |
262 | // Tmp = [0..W-Sh-1]. |
263 | for (uint16_t i = 0; i < W-Sh; ++i) |
264 | Tmp[i] = Bits[i]; |
265 | // Shift [W-Sh..W-1] to [0..Sh-1]. |
266 | for (uint16_t i = 0; i < Sh; ++i) |
267 | Bits[i] = Bits[W-Sh+i]; |
268 | // Copy Tmp to [Sh..W-1]. |
269 | for (uint16_t i = 0; i < W-Sh; ++i) |
270 | Bits[i+Sh] = Tmp.Bits[i]; |
271 | return *this; |
272 | } |
273 | |
274 | BT::RegisterCell &BT::RegisterCell::fill(uint16_t B, uint16_t E, |
275 | const BitValue &V) { |
276 | assert(B <= E); |
277 | while (B < E) |
278 | Bits[B++] = V; |
279 | return *this; |
280 | } |
281 | |
282 | BT::RegisterCell &BT::RegisterCell::cat(const RegisterCell &RC) { |
283 | // Append the cell given as the argument to the "this" cell. |
284 | // Bit 0 of RC becomes bit W of the result, where W is this->width(). |
285 | uint16_t W = width(), WRC = RC.width(); |
286 | Bits.resize(N: W+WRC); |
287 | for (uint16_t i = 0; i < WRC; ++i) |
288 | Bits[i+W] = RC.Bits[i]; |
289 | return *this; |
290 | } |
291 | |
292 | uint16_t BT::RegisterCell::ct(bool B) const { |
293 | uint16_t W = width(); |
294 | uint16_t C = 0; |
295 | BitValue V = B; |
296 | while (C < W && Bits[C] == V) |
297 | C++; |
298 | return C; |
299 | } |
300 | |
301 | uint16_t BT::RegisterCell::cl(bool B) const { |
302 | uint16_t W = width(); |
303 | uint16_t C = 0; |
304 | BitValue V = B; |
305 | while (C < W && Bits[W-(C+1)] == V) |
306 | C++; |
307 | return C; |
308 | } |
309 | |
310 | bool BT::RegisterCell::operator== (const RegisterCell &RC) const { |
311 | uint16_t W = Bits.size(); |
312 | if (RC.Bits.size() != W) |
313 | return false; |
314 | for (uint16_t i = 0; i < W; ++i) |
315 | if (Bits[i] != RC[i]) |
316 | return false; |
317 | return true; |
318 | } |
319 | |
320 | BT::RegisterCell &BT::RegisterCell::regify(unsigned R) { |
321 | for (unsigned i = 0, n = width(); i < n; ++i) { |
322 | const BitValue &V = Bits[i]; |
323 | if (V.Type == BitValue::Ref && V.RefI.Reg == 0) |
324 | Bits[i].RefI = BitRef(R, i); |
325 | } |
326 | return *this; |
327 | } |
328 | |
329 | uint16_t BT::MachineEvaluator::getRegBitWidth(const RegisterRef &RR) const { |
330 | // The general problem is with finding a register class that corresponds |
331 | // to a given reference reg:sub. There can be several such classes, and |
332 | // since we only care about the register size, it does not matter which |
333 | // such class we would find. |
334 | // The easiest way to accomplish what we want is to |
335 | // 1. find a physical register PhysR from the same class as RR.Reg, |
336 | // 2. find a physical register PhysS that corresponds to PhysR:RR.Sub, |
337 | // 3. find a register class that contains PhysS. |
338 | if (RR.Reg.isVirtual()) { |
339 | const auto &VC = composeWithSubRegIndex(RC: *MRI.getRegClass(Reg: RR.Reg), Idx: RR.Sub); |
340 | return TRI.getRegSizeInBits(RC: VC); |
341 | } |
342 | assert(RR.Reg.isPhysical()); |
343 | MCRegister PhysR = |
344 | (RR.Sub == 0) ? RR.Reg.asMCReg() : TRI.getSubReg(Reg: RR.Reg, Idx: RR.Sub); |
345 | return getPhysRegBitWidth(Reg: PhysR); |
346 | } |
347 | |
348 | BT::RegisterCell BT::MachineEvaluator::getCell(const RegisterRef &RR, |
349 | const CellMapType &M) const { |
350 | uint16_t BW = getRegBitWidth(RR); |
351 | |
352 | // Physical registers are assumed to be present in the map with an unknown |
353 | // value. Don't actually insert anything in the map, just return the cell. |
354 | if (RR.Reg.isPhysical()) |
355 | return RegisterCell::self(Reg: 0, Width: BW); |
356 | |
357 | assert(RR.Reg.isVirtual()); |
358 | // For virtual registers that belong to a class that is not tracked, |
359 | // generate an "unknown" value as well. |
360 | const TargetRegisterClass *C = MRI.getRegClass(Reg: RR.Reg); |
361 | if (!track(RC: C)) |
362 | return RegisterCell::self(Reg: 0, Width: BW); |
363 | |
364 | CellMapType::const_iterator F = M.find(x: RR.Reg); |
365 | if (F != M.end()) { |
366 | if (!RR.Sub) |
367 | return F->second; |
368 | BitMask M = mask(Reg: RR.Reg, Sub: RR.Sub); |
369 | return F->second.extract(M); |
370 | } |
371 | // If not found, create a "top" entry, but do not insert it in the map. |
372 | return RegisterCell::top(Width: BW); |
373 | } |
374 | |
375 | void BT::MachineEvaluator::putCell(const RegisterRef &RR, RegisterCell RC, |
376 | CellMapType &M) const { |
377 | // While updating the cell map can be done in a meaningful way for |
378 | // a part of a register, it makes little sense to implement it as the |
379 | // SSA representation would never contain such "partial definitions". |
380 | if (!RR.Reg.isVirtual()) |
381 | return; |
382 | assert(RR.Sub == 0 && "Unexpected sub-register in definition" ); |
383 | // Eliminate all ref-to-reg-0 bit values: replace them with "self". |
384 | M[RR.Reg] = RC.regify(R: RR.Reg); |
385 | } |
386 | |
387 | // Check if the cell represents a compile-time integer value. |
388 | bool BT::MachineEvaluator::isInt(const RegisterCell &A) const { |
389 | uint16_t W = A.width(); |
390 | for (uint16_t i = 0; i < W; ++i) |
391 | if (!A[i].is(T: 0) && !A[i].is(T: 1)) |
392 | return false; |
393 | return true; |
394 | } |
395 | |
396 | // Convert a cell to the integer value. The result must fit in uint64_t. |
397 | uint64_t BT::MachineEvaluator::toInt(const RegisterCell &A) const { |
398 | assert(isInt(A)); |
399 | uint64_t Val = 0; |
400 | uint16_t W = A.width(); |
401 | for (uint16_t i = 0; i < W; ++i) { |
402 | Val <<= 1; |
403 | Val |= A[i].is(T: 1); |
404 | } |
405 | return Val; |
406 | } |
407 | |
408 | // Evaluator helper functions. These implement some common operation on |
409 | // register cells that can be used to implement target-specific instructions |
410 | // in a target-specific evaluator. |
411 | |
412 | BT::RegisterCell BT::MachineEvaluator::eIMM(int64_t V, uint16_t W) const { |
413 | RegisterCell Res(W); |
414 | // For bits beyond the 63rd, this will generate the sign bit of V. |
415 | for (uint16_t i = 0; i < W; ++i) { |
416 | Res[i] = BitValue(V & 1); |
417 | V >>= 1; |
418 | } |
419 | return Res; |
420 | } |
421 | |
422 | BT::RegisterCell BT::MachineEvaluator::eIMM(const ConstantInt *CI) const { |
423 | const APInt &A = CI->getValue(); |
424 | uint16_t BW = A.getBitWidth(); |
425 | assert((unsigned)BW == A.getBitWidth() && "BitWidth overflow" ); |
426 | RegisterCell Res(BW); |
427 | for (uint16_t i = 0; i < BW; ++i) |
428 | Res[i] = A[i]; |
429 | return Res; |
430 | } |
431 | |
432 | BT::RegisterCell BT::MachineEvaluator::eADD(const RegisterCell &A1, |
433 | const RegisterCell &A2) const { |
434 | uint16_t W = A1.width(); |
435 | assert(W == A2.width()); |
436 | RegisterCell Res(W); |
437 | bool Carry = false; |
438 | uint16_t I; |
439 | for (I = 0; I < W; ++I) { |
440 | const BitValue &V1 = A1[I]; |
441 | const BitValue &V2 = A2[I]; |
442 | if (!V1.num() || !V2.num()) |
443 | break; |
444 | unsigned S = bool(V1) + bool(V2) + Carry; |
445 | Res[I] = BitValue(S & 1); |
446 | Carry = (S > 1); |
447 | } |
448 | for (; I < W; ++I) { |
449 | const BitValue &V1 = A1[I]; |
450 | const BitValue &V2 = A2[I]; |
451 | // If the next bit is same as Carry, the result will be 0 plus the |
452 | // other bit. The Carry bit will remain unchanged. |
453 | if (V1.is(T: Carry)) |
454 | Res[I] = BitValue::ref(V: V2); |
455 | else if (V2.is(T: Carry)) |
456 | Res[I] = BitValue::ref(V: V1); |
457 | else |
458 | break; |
459 | } |
460 | for (; I < W; ++I) |
461 | Res[I] = BitValue::self(); |
462 | return Res; |
463 | } |
464 | |
465 | BT::RegisterCell BT::MachineEvaluator::eSUB(const RegisterCell &A1, |
466 | const RegisterCell &A2) const { |
467 | uint16_t W = A1.width(); |
468 | assert(W == A2.width()); |
469 | RegisterCell Res(W); |
470 | bool Borrow = false; |
471 | uint16_t I; |
472 | for (I = 0; I < W; ++I) { |
473 | const BitValue &V1 = A1[I]; |
474 | const BitValue &V2 = A2[I]; |
475 | if (!V1.num() || !V2.num()) |
476 | break; |
477 | unsigned S = bool(V1) - bool(V2) - Borrow; |
478 | Res[I] = BitValue(S & 1); |
479 | Borrow = (S > 1); |
480 | } |
481 | for (; I < W; ++I) { |
482 | const BitValue &V1 = A1[I]; |
483 | const BitValue &V2 = A2[I]; |
484 | if (V1.is(T: Borrow)) { |
485 | Res[I] = BitValue::ref(V: V2); |
486 | break; |
487 | } |
488 | if (V2.is(T: Borrow)) |
489 | Res[I] = BitValue::ref(V: V1); |
490 | else |
491 | break; |
492 | } |
493 | for (; I < W; ++I) |
494 | Res[I] = BitValue::self(); |
495 | return Res; |
496 | } |
497 | |
498 | BT::RegisterCell BT::MachineEvaluator::eMLS(const RegisterCell &A1, |
499 | const RegisterCell &A2) const { |
500 | uint16_t W = A1.width() + A2.width(); |
501 | uint16_t Z = A1.ct(B: false) + A2.ct(B: false); |
502 | RegisterCell Res(W); |
503 | Res.fill(B: 0, E: Z, V: BitValue::Zero); |
504 | Res.fill(B: Z, E: W, V: BitValue::self()); |
505 | return Res; |
506 | } |
507 | |
508 | BT::RegisterCell BT::MachineEvaluator::eMLU(const RegisterCell &A1, |
509 | const RegisterCell &A2) const { |
510 | uint16_t W = A1.width() + A2.width(); |
511 | uint16_t Z = A1.ct(B: false) + A2.ct(B: false); |
512 | RegisterCell Res(W); |
513 | Res.fill(B: 0, E: Z, V: BitValue::Zero); |
514 | Res.fill(B: Z, E: W, V: BitValue::self()); |
515 | return Res; |
516 | } |
517 | |
518 | BT::RegisterCell BT::MachineEvaluator::eASL(const RegisterCell &A1, |
519 | uint16_t Sh) const { |
520 | assert(Sh <= A1.width()); |
521 | RegisterCell Res = RegisterCell::ref(C: A1); |
522 | Res.rol(Sh); |
523 | Res.fill(B: 0, E: Sh, V: BitValue::Zero); |
524 | return Res; |
525 | } |
526 | |
527 | BT::RegisterCell BT::MachineEvaluator::eLSR(const RegisterCell &A1, |
528 | uint16_t Sh) const { |
529 | uint16_t W = A1.width(); |
530 | assert(Sh <= W); |
531 | RegisterCell Res = RegisterCell::ref(C: A1); |
532 | Res.rol(Sh: W-Sh); |
533 | Res.fill(B: W-Sh, E: W, V: BitValue::Zero); |
534 | return Res; |
535 | } |
536 | |
537 | BT::RegisterCell BT::MachineEvaluator::eASR(const RegisterCell &A1, |
538 | uint16_t Sh) const { |
539 | uint16_t W = A1.width(); |
540 | assert(Sh <= W); |
541 | RegisterCell Res = RegisterCell::ref(C: A1); |
542 | BitValue Sign = Res[W-1]; |
543 | Res.rol(Sh: W-Sh); |
544 | Res.fill(B: W-Sh, E: W, V: Sign); |
545 | return Res; |
546 | } |
547 | |
548 | BT::RegisterCell BT::MachineEvaluator::eAND(const RegisterCell &A1, |
549 | const RegisterCell &A2) const { |
550 | uint16_t W = A1.width(); |
551 | assert(W == A2.width()); |
552 | RegisterCell Res(W); |
553 | for (uint16_t i = 0; i < W; ++i) { |
554 | const BitValue &V1 = A1[i]; |
555 | const BitValue &V2 = A2[i]; |
556 | if (V1.is(T: 1)) |
557 | Res[i] = BitValue::ref(V: V2); |
558 | else if (V2.is(T: 1)) |
559 | Res[i] = BitValue::ref(V: V1); |
560 | else if (V1.is(T: 0) || V2.is(T: 0)) |
561 | Res[i] = BitValue::Zero; |
562 | else if (V1 == V2) |
563 | Res[i] = V1; |
564 | else |
565 | Res[i] = BitValue::self(); |
566 | } |
567 | return Res; |
568 | } |
569 | |
570 | BT::RegisterCell BT::MachineEvaluator::eORL(const RegisterCell &A1, |
571 | const RegisterCell &A2) const { |
572 | uint16_t W = A1.width(); |
573 | assert(W == A2.width()); |
574 | RegisterCell Res(W); |
575 | for (uint16_t i = 0; i < W; ++i) { |
576 | const BitValue &V1 = A1[i]; |
577 | const BitValue &V2 = A2[i]; |
578 | if (V1.is(T: 1) || V2.is(T: 1)) |
579 | Res[i] = BitValue::One; |
580 | else if (V1.is(T: 0)) |
581 | Res[i] = BitValue::ref(V: V2); |
582 | else if (V2.is(T: 0)) |
583 | Res[i] = BitValue::ref(V: V1); |
584 | else if (V1 == V2) |
585 | Res[i] = V1; |
586 | else |
587 | Res[i] = BitValue::self(); |
588 | } |
589 | return Res; |
590 | } |
591 | |
592 | BT::RegisterCell BT::MachineEvaluator::eXOR(const RegisterCell &A1, |
593 | const RegisterCell &A2) const { |
594 | uint16_t W = A1.width(); |
595 | assert(W == A2.width()); |
596 | RegisterCell Res(W); |
597 | for (uint16_t i = 0; i < W; ++i) { |
598 | const BitValue &V1 = A1[i]; |
599 | const BitValue &V2 = A2[i]; |
600 | if (V1.is(T: 0)) |
601 | Res[i] = BitValue::ref(V: V2); |
602 | else if (V2.is(T: 0)) |
603 | Res[i] = BitValue::ref(V: V1); |
604 | else if (V1 == V2) |
605 | Res[i] = BitValue::Zero; |
606 | else |
607 | Res[i] = BitValue::self(); |
608 | } |
609 | return Res; |
610 | } |
611 | |
612 | BT::RegisterCell BT::MachineEvaluator::eNOT(const RegisterCell &A1) const { |
613 | uint16_t W = A1.width(); |
614 | RegisterCell Res(W); |
615 | for (uint16_t i = 0; i < W; ++i) { |
616 | const BitValue &V = A1[i]; |
617 | if (V.is(T: 0)) |
618 | Res[i] = BitValue::One; |
619 | else if (V.is(T: 1)) |
620 | Res[i] = BitValue::Zero; |
621 | else |
622 | Res[i] = BitValue::self(); |
623 | } |
624 | return Res; |
625 | } |
626 | |
627 | BT::RegisterCell BT::MachineEvaluator::eSET(const RegisterCell &A1, |
628 | uint16_t BitN) const { |
629 | assert(BitN < A1.width()); |
630 | RegisterCell Res = RegisterCell::ref(C: A1); |
631 | Res[BitN] = BitValue::One; |
632 | return Res; |
633 | } |
634 | |
635 | BT::RegisterCell BT::MachineEvaluator::eCLR(const RegisterCell &A1, |
636 | uint16_t BitN) const { |
637 | assert(BitN < A1.width()); |
638 | RegisterCell Res = RegisterCell::ref(C: A1); |
639 | Res[BitN] = BitValue::Zero; |
640 | return Res; |
641 | } |
642 | |
643 | BT::RegisterCell BT::MachineEvaluator::eCLB(const RegisterCell &A1, bool B, |
644 | uint16_t W) const { |
645 | uint16_t C = A1.cl(B), AW = A1.width(); |
646 | // If the last leading non-B bit is not a constant, then we don't know |
647 | // the real count. |
648 | if ((C < AW && A1[AW-1-C].num()) || C == AW) |
649 | return eIMM(V: C, W); |
650 | return RegisterCell::self(Reg: 0, Width: W); |
651 | } |
652 | |
653 | BT::RegisterCell BT::MachineEvaluator::eCTB(const RegisterCell &A1, bool B, |
654 | uint16_t W) const { |
655 | uint16_t C = A1.ct(B), AW = A1.width(); |
656 | // If the last trailing non-B bit is not a constant, then we don't know |
657 | // the real count. |
658 | if ((C < AW && A1[C].num()) || C == AW) |
659 | return eIMM(V: C, W); |
660 | return RegisterCell::self(Reg: 0, Width: W); |
661 | } |
662 | |
663 | BT::RegisterCell BT::MachineEvaluator::eSXT(const RegisterCell &A1, |
664 | uint16_t FromN) const { |
665 | uint16_t W = A1.width(); |
666 | assert(FromN <= W); |
667 | RegisterCell Res = RegisterCell::ref(C: A1); |
668 | BitValue Sign = Res[FromN-1]; |
669 | // Sign-extend "inreg". |
670 | Res.fill(B: FromN, E: W, V: Sign); |
671 | return Res; |
672 | } |
673 | |
674 | BT::RegisterCell BT::MachineEvaluator::eZXT(const RegisterCell &A1, |
675 | uint16_t FromN) const { |
676 | uint16_t W = A1.width(); |
677 | assert(FromN <= W); |
678 | RegisterCell Res = RegisterCell::ref(C: A1); |
679 | Res.fill(B: FromN, E: W, V: BitValue::Zero); |
680 | return Res; |
681 | } |
682 | |
683 | BT::RegisterCell BT::MachineEvaluator::eXTR(const RegisterCell &A1, |
684 | uint16_t B, uint16_t E) const { |
685 | uint16_t W = A1.width(); |
686 | assert(B < W && E <= W); |
687 | if (B == E) |
688 | return RegisterCell(0); |
689 | uint16_t Last = (E > 0) ? E-1 : W-1; |
690 | RegisterCell Res = RegisterCell::ref(C: A1).extract(M: BT::BitMask(B, Last)); |
691 | // Return shorter cell. |
692 | return Res; |
693 | } |
694 | |
695 | BT::RegisterCell BT::MachineEvaluator::eINS(const RegisterCell &A1, |
696 | const RegisterCell &A2, uint16_t AtN) const { |
697 | uint16_t W1 = A1.width(), W2 = A2.width(); |
698 | (void)W1; |
699 | assert(AtN < W1 && AtN+W2 <= W1); |
700 | // Copy bits from A1, insert A2 at position AtN. |
701 | RegisterCell Res = RegisterCell::ref(C: A1); |
702 | if (W2 > 0) |
703 | Res.insert(RC: RegisterCell::ref(C: A2), M: BT::BitMask(AtN, AtN+W2-1)); |
704 | return Res; |
705 | } |
706 | |
707 | BT::BitMask BT::MachineEvaluator::mask(Register Reg, unsigned Sub) const { |
708 | assert(Sub == 0 && "Generic BitTracker::mask called for Sub != 0" ); |
709 | uint16_t W = getRegBitWidth(RR: Reg); |
710 | assert(W > 0 && "Cannot generate mask for empty register" ); |
711 | return BitMask(0, W-1); |
712 | } |
713 | |
714 | uint16_t BT::MachineEvaluator::getPhysRegBitWidth(MCRegister Reg) const { |
715 | const TargetRegisterClass &PC = *TRI.getMinimalPhysRegClass(Reg); |
716 | return TRI.getRegSizeInBits(RC: PC); |
717 | } |
718 | |
719 | bool BT::MachineEvaluator::evaluate(const MachineInstr &MI, |
720 | const CellMapType &Inputs, |
721 | CellMapType &Outputs) const { |
722 | unsigned Opc = MI.getOpcode(); |
723 | switch (Opc) { |
724 | case TargetOpcode::REG_SEQUENCE: { |
725 | RegisterRef RD = MI.getOperand(i: 0); |
726 | assert(RD.Sub == 0); |
727 | RegisterRef RS = MI.getOperand(i: 1); |
728 | unsigned SS = MI.getOperand(i: 2).getImm(); |
729 | RegisterRef RT = MI.getOperand(i: 3); |
730 | unsigned ST = MI.getOperand(i: 4).getImm(); |
731 | assert(SS != ST); |
732 | |
733 | uint16_t W = getRegBitWidth(RR: RD); |
734 | RegisterCell Res(W); |
735 | Res.insert(RC: RegisterCell::ref(C: getCell(RR: RS, M: Inputs)), M: mask(Reg: RD.Reg, Sub: SS)); |
736 | Res.insert(RC: RegisterCell::ref(C: getCell(RR: RT, M: Inputs)), M: mask(Reg: RD.Reg, Sub: ST)); |
737 | putCell(RR: RD, RC: Res, M&: Outputs); |
738 | break; |
739 | } |
740 | |
741 | case TargetOpcode::COPY: { |
742 | // COPY can transfer a smaller register into a wider one. |
743 | // If that is the case, fill the remaining high bits with 0. |
744 | RegisterRef RD = MI.getOperand(i: 0); |
745 | RegisterRef RS = MI.getOperand(i: 1); |
746 | assert(RD.Sub == 0); |
747 | uint16_t WD = getRegBitWidth(RR: RD); |
748 | uint16_t WS = getRegBitWidth(RR: RS); |
749 | assert(WD >= WS); |
750 | RegisterCell Src = getCell(RR: RS, M: Inputs); |
751 | RegisterCell Res(WD); |
752 | Res.insert(RC: Src, M: BitMask(0, WS-1)); |
753 | Res.fill(B: WS, E: WD, V: BitValue::Zero); |
754 | putCell(RR: RD, RC: Res, M&: Outputs); |
755 | break; |
756 | } |
757 | |
758 | default: |
759 | return false; |
760 | } |
761 | |
762 | return true; |
763 | } |
764 | |
765 | bool BT::UseQueueType::Cmp::operator()(const MachineInstr *InstA, |
766 | const MachineInstr *InstB) const { |
767 | // This is a comparison function for a priority queue: give higher priority |
768 | // to earlier instructions. |
769 | // This operator is used as "less", so returning "true" gives InstB higher |
770 | // priority (because then InstA < InstB). |
771 | if (InstA == InstB) |
772 | return false; |
773 | const MachineBasicBlock *BA = InstA->getParent(); |
774 | const MachineBasicBlock *BB = InstB->getParent(); |
775 | if (BA != BB) { |
776 | // If the blocks are different, ideally the dominating block would |
777 | // have a higher priority, but it may be too expensive to check. |
778 | return BA->getNumber() > BB->getNumber(); |
779 | } |
780 | |
781 | auto getDist = [this] (const MachineInstr *MI) { |
782 | auto F = Dist.find(Val: MI); |
783 | if (F != Dist.end()) |
784 | return F->second; |
785 | MachineBasicBlock::const_iterator I = MI->getParent()->begin(); |
786 | MachineBasicBlock::const_iterator E = MI->getIterator(); |
787 | unsigned D = std::distance(first: I, last: E); |
788 | Dist.insert(KV: std::make_pair(x&: MI, y&: D)); |
789 | return D; |
790 | }; |
791 | |
792 | return getDist(InstA) > getDist(InstB); |
793 | } |
794 | |
795 | // Main W-Z implementation. |
796 | |
797 | void BT::visitPHI(const MachineInstr &PI) { |
798 | int ThisN = PI.getParent()->getNumber(); |
799 | if (Trace) |
800 | dbgs() << "Visit FI(" << printMBBReference(MBB: *PI.getParent()) << "): " << PI; |
801 | |
802 | const MachineOperand &MD = PI.getOperand(i: 0); |
803 | assert(MD.getSubReg() == 0 && "Unexpected sub-register in definition" ); |
804 | RegisterRef DefRR(MD); |
805 | uint16_t DefBW = ME.getRegBitWidth(RR: DefRR); |
806 | |
807 | RegisterCell DefC = ME.getCell(RR: DefRR, M: Map); |
808 | if (DefC == RegisterCell::self(Reg: DefRR.Reg, Width: DefBW)) // XXX slow |
809 | return; |
810 | |
811 | bool Changed = false; |
812 | |
813 | for (unsigned i = 1, n = PI.getNumOperands(); i < n; i += 2) { |
814 | const MachineBasicBlock *PB = PI.getOperand(i: i + 1).getMBB(); |
815 | int PredN = PB->getNumber(); |
816 | if (Trace) |
817 | dbgs() << " edge " << printMBBReference(MBB: *PB) << "->" |
818 | << printMBBReference(MBB: *PI.getParent()); |
819 | if (!EdgeExec.count(x: CFGEdge(PredN, ThisN))) { |
820 | if (Trace) |
821 | dbgs() << " not executable\n" ; |
822 | continue; |
823 | } |
824 | |
825 | RegisterRef RU = PI.getOperand(i); |
826 | RegisterCell ResC = ME.getCell(RR: RU, M: Map); |
827 | if (Trace) |
828 | dbgs() << " input reg: " << printReg(Reg: RU.Reg, TRI: &ME.TRI, SubIdx: RU.Sub) |
829 | << " cell: " << ResC << "\n" ; |
830 | Changed |= DefC.meet(RC: ResC, SelfR: DefRR.Reg); |
831 | } |
832 | |
833 | if (Changed) { |
834 | if (Trace) |
835 | dbgs() << "Output: " << printReg(Reg: DefRR.Reg, TRI: &ME.TRI, SubIdx: DefRR.Sub) |
836 | << " cell: " << DefC << "\n" ; |
837 | ME.putCell(RR: DefRR, RC: DefC, M&: Map); |
838 | visitUsesOf(Reg: DefRR.Reg); |
839 | } |
840 | } |
841 | |
842 | void BT::visitNonBranch(const MachineInstr &MI) { |
843 | if (Trace) |
844 | dbgs() << "Visit MI(" << printMBBReference(MBB: *MI.getParent()) << "): " << MI; |
845 | if (MI.isDebugInstr()) |
846 | return; |
847 | assert(!MI.isBranch() && "Unexpected branch instruction" ); |
848 | |
849 | CellMapType ResMap; |
850 | bool Eval = ME.evaluate(MI, Inputs: Map, Outputs&: ResMap); |
851 | |
852 | if (Trace && Eval) { |
853 | for (const MachineOperand &MO : MI.operands()) { |
854 | if (!MO.isReg() || !MO.isUse()) |
855 | continue; |
856 | RegisterRef RU(MO); |
857 | dbgs() << " input reg: " << printReg(Reg: RU.Reg, TRI: &ME.TRI, SubIdx: RU.Sub) |
858 | << " cell: " << ME.getCell(RR: RU, M: Map) << "\n" ; |
859 | } |
860 | dbgs() << "Outputs:\n" ; |
861 | for (const std::pair<const unsigned, RegisterCell> &P : ResMap) { |
862 | RegisterRef RD(P.first); |
863 | dbgs() << " " << printReg(Reg: P.first, TRI: &ME.TRI) << " cell: " |
864 | << ME.getCell(RR: RD, M: ResMap) << "\n" ; |
865 | } |
866 | } |
867 | |
868 | // Iterate over all definitions of the instruction, and update the |
869 | // cells accordingly. |
870 | for (const MachineOperand &MO : MI.operands()) { |
871 | // Visit register defs only. |
872 | if (!MO.isReg() || !MO.isDef()) |
873 | continue; |
874 | RegisterRef RD(MO); |
875 | assert(RD.Sub == 0 && "Unexpected sub-register in definition" ); |
876 | if (!RD.Reg.isVirtual()) |
877 | continue; |
878 | |
879 | bool Changed = false; |
880 | if (!Eval || ResMap.count(x: RD.Reg) == 0) { |
881 | // Set to "ref" (aka "bottom"). |
882 | uint16_t DefBW = ME.getRegBitWidth(RR: RD); |
883 | RegisterCell RefC = RegisterCell::self(Reg: RD.Reg, Width: DefBW); |
884 | if (RefC != ME.getCell(RR: RD, M: Map)) { |
885 | ME.putCell(RR: RD, RC: RefC, M&: Map); |
886 | Changed = true; |
887 | } |
888 | } else { |
889 | RegisterCell DefC = ME.getCell(RR: RD, M: Map); |
890 | RegisterCell ResC = ME.getCell(RR: RD, M: ResMap); |
891 | // This is a non-phi instruction, so the values of the inputs come |
892 | // from the same registers each time this instruction is evaluated. |
893 | // During the propagation, the values of the inputs can become lowered |
894 | // in the sense of the lattice operation, which may cause different |
895 | // results to be calculated in subsequent evaluations. This should |
896 | // not cause the bottoming of the result in the map, since the new |
897 | // result is already reflecting the lowered inputs. |
898 | for (uint16_t i = 0, w = DefC.width(); i < w; ++i) { |
899 | BitValue &V = DefC[i]; |
900 | // Bits that are already "bottom" should not be updated. |
901 | if (V.Type == BitValue::Ref && V.RefI.Reg == RD.Reg) |
902 | continue; |
903 | // Same for those that are identical in DefC and ResC. |
904 | if (V == ResC[i]) |
905 | continue; |
906 | V = ResC[i]; |
907 | Changed = true; |
908 | } |
909 | if (Changed) |
910 | ME.putCell(RR: RD, RC: DefC, M&: Map); |
911 | } |
912 | if (Changed) |
913 | visitUsesOf(Reg: RD.Reg); |
914 | } |
915 | } |
916 | |
917 | void BT::visitBranchesFrom(const MachineInstr &BI) { |
918 | const MachineBasicBlock &B = *BI.getParent(); |
919 | MachineBasicBlock::const_iterator It = BI, End = B.end(); |
920 | BranchTargetList Targets, BTs; |
921 | bool FallsThrough = true, DefaultToAll = false; |
922 | int ThisN = B.getNumber(); |
923 | |
924 | do { |
925 | BTs.clear(); |
926 | const MachineInstr &MI = *It; |
927 | if (Trace) |
928 | dbgs() << "Visit BR(" << printMBBReference(MBB: B) << "): " << MI; |
929 | assert(MI.isBranch() && "Expecting branch instruction" ); |
930 | InstrExec.insert(x: &MI); |
931 | bool Eval = ME.evaluate(BI: MI, Inputs: Map, Targets&: BTs, FallsThru&: FallsThrough); |
932 | if (!Eval) { |
933 | // If the evaluation failed, we will add all targets. Keep going in |
934 | // the loop to mark all executable branches as such. |
935 | DefaultToAll = true; |
936 | FallsThrough = true; |
937 | if (Trace) |
938 | dbgs() << " failed to evaluate: will add all CFG successors\n" ; |
939 | } else if (!DefaultToAll) { |
940 | // If evaluated successfully add the targets to the cumulative list. |
941 | if (Trace) { |
942 | dbgs() << " adding targets:" ; |
943 | for (const MachineBasicBlock *BT : BTs) |
944 | dbgs() << " " << printMBBReference(MBB: *BT); |
945 | if (FallsThrough) |
946 | dbgs() << "\n falls through\n" ; |
947 | else |
948 | dbgs() << "\n does not fall through\n" ; |
949 | } |
950 | Targets.insert(Start: BTs.begin(), End: BTs.end()); |
951 | } |
952 | ++It; |
953 | } while (FallsThrough && It != End); |
954 | |
955 | if (B.mayHaveInlineAsmBr()) |
956 | DefaultToAll = true; |
957 | |
958 | if (!DefaultToAll) { |
959 | // Need to add all CFG successors that lead to EH landing pads. |
960 | // There won't be explicit branches to these blocks, but they must |
961 | // be processed. |
962 | for (const MachineBasicBlock *SB : B.successors()) { |
963 | if (SB->isEHPad()) |
964 | Targets.insert(X: SB); |
965 | } |
966 | if (FallsThrough) { |
967 | MachineFunction::const_iterator BIt = B.getIterator(); |
968 | MachineFunction::const_iterator Next = std::next(x: BIt); |
969 | if (Next != MF.end()) |
970 | Targets.insert(X: &*Next); |
971 | } |
972 | } else { |
973 | for (const MachineBasicBlock *SB : B.successors()) |
974 | Targets.insert(X: SB); |
975 | } |
976 | |
977 | for (const MachineBasicBlock *TB : Targets) |
978 | FlowQ.push(x: CFGEdge(ThisN, TB->getNumber())); |
979 | } |
980 | |
981 | void BT::visitUsesOf(Register Reg) { |
982 | if (Trace) |
983 | dbgs() << "queuing uses of modified reg " << printReg(Reg, TRI: &ME.TRI) |
984 | << " cell: " << ME.getCell(RR: Reg, M: Map) << '\n'; |
985 | |
986 | for (MachineInstr &UseI : MRI.use_nodbg_instructions(Reg)) |
987 | UseQ.push(MI: &UseI); |
988 | } |
989 | |
990 | BT::RegisterCell BT::get(RegisterRef RR) const { |
991 | return ME.getCell(RR, M: Map); |
992 | } |
993 | |
994 | void BT::put(RegisterRef RR, const RegisterCell &RC) { |
995 | ME.putCell(RR, RC, M&: Map); |
996 | } |
997 | |
998 | // Replace all references to bits from OldRR with the corresponding bits |
999 | // in NewRR. |
1000 | void BT::subst(RegisterRef OldRR, RegisterRef NewRR) { |
1001 | assert(Map.count(OldRR.Reg) > 0 && "OldRR not present in map" ); |
1002 | BitMask OM = ME.mask(Reg: OldRR.Reg, Sub: OldRR.Sub); |
1003 | BitMask NM = ME.mask(Reg: NewRR.Reg, Sub: NewRR.Sub); |
1004 | uint16_t OMB = OM.first(), OME = OM.last(); |
1005 | uint16_t NMB = NM.first(), NME = NM.last(); |
1006 | (void)NME; |
1007 | assert((OME-OMB == NME-NMB) && |
1008 | "Substituting registers of different lengths" ); |
1009 | for (std::pair<const unsigned, RegisterCell> &P : Map) { |
1010 | RegisterCell &RC = P.second; |
1011 | for (uint16_t i = 0, w = RC.width(); i < w; ++i) { |
1012 | BitValue &V = RC[i]; |
1013 | if (V.Type != BitValue::Ref || V.RefI.Reg != OldRR.Reg) |
1014 | continue; |
1015 | if (V.RefI.Pos < OMB || V.RefI.Pos > OME) |
1016 | continue; |
1017 | V.RefI.Reg = NewRR.Reg; |
1018 | V.RefI.Pos += NMB-OMB; |
1019 | } |
1020 | } |
1021 | } |
1022 | |
1023 | // Check if the block has been "executed" during propagation. (If not, the |
1024 | // block is dead, but it may still appear to be reachable.) |
1025 | bool BT::reached(const MachineBasicBlock *B) const { |
1026 | int BN = B->getNumber(); |
1027 | assert(BN >= 0); |
1028 | return ReachedBB.count(V: BN); |
1029 | } |
1030 | |
1031 | // Visit an individual instruction. This could be a newly added instruction, |
1032 | // or one that has been modified by an optimization. |
1033 | void BT::visit(const MachineInstr &MI) { |
1034 | assert(!MI.isBranch() && "Only non-branches are allowed" ); |
1035 | InstrExec.insert(x: &MI); |
1036 | visitNonBranch(MI); |
1037 | // Make sure to flush all the pending use updates. |
1038 | runUseQueue(); |
1039 | // The call to visitNonBranch could propagate the changes until a branch |
1040 | // is actually visited. This could result in adding CFG edges to the flow |
1041 | // queue. Since the queue won't be processed, clear it. |
1042 | while (!FlowQ.empty()) |
1043 | FlowQ.pop(); |
1044 | } |
1045 | |
1046 | void BT::reset() { |
1047 | EdgeExec.clear(); |
1048 | InstrExec.clear(); |
1049 | Map.clear(); |
1050 | ReachedBB.clear(); |
1051 | ReachedBB.reserve(Size: MF.size()); |
1052 | } |
1053 | |
1054 | void BT::runEdgeQueue(BitVector &BlockScanned) { |
1055 | while (!FlowQ.empty()) { |
1056 | CFGEdge Edge = FlowQ.front(); |
1057 | FlowQ.pop(); |
1058 | |
1059 | if (!EdgeExec.insert(x: Edge).second) |
1060 | return; |
1061 | ReachedBB.insert(V: Edge.second); |
1062 | |
1063 | const MachineBasicBlock &B = *MF.getBlockNumbered(N: Edge.second); |
1064 | MachineBasicBlock::const_iterator It = B.begin(), End = B.end(); |
1065 | // Visit PHI nodes first. |
1066 | while (It != End && It->isPHI()) { |
1067 | const MachineInstr &PI = *It++; |
1068 | InstrExec.insert(x: &PI); |
1069 | visitPHI(PI); |
1070 | } |
1071 | |
1072 | // If this block has already been visited through a flow graph edge, |
1073 | // then the instructions have already been processed. Any updates to |
1074 | // the cells would now only happen through visitUsesOf... |
1075 | if (BlockScanned[Edge.second]) |
1076 | return; |
1077 | BlockScanned[Edge.second] = true; |
1078 | |
1079 | // Visit non-branch instructions. |
1080 | while (It != End && !It->isBranch()) { |
1081 | const MachineInstr &MI = *It++; |
1082 | InstrExec.insert(x: &MI); |
1083 | visitNonBranch(MI); |
1084 | } |
1085 | // If block end has been reached, add the fall-through edge to the queue. |
1086 | if (It == End) { |
1087 | MachineFunction::const_iterator BIt = B.getIterator(); |
1088 | MachineFunction::const_iterator Next = std::next(x: BIt); |
1089 | if (Next != MF.end() && B.isSuccessor(MBB: &*Next)) { |
1090 | int ThisN = B.getNumber(); |
1091 | int NextN = Next->getNumber(); |
1092 | FlowQ.push(x: CFGEdge(ThisN, NextN)); |
1093 | } |
1094 | } else { |
1095 | // Handle the remaining sequence of branches. This function will update |
1096 | // the work queue. |
1097 | visitBranchesFrom(BI: *It); |
1098 | } |
1099 | } // while (!FlowQ->empty()) |
1100 | } |
1101 | |
1102 | void BT::runUseQueue() { |
1103 | while (!UseQ.empty()) { |
1104 | MachineInstr &UseI = *UseQ.front(); |
1105 | UseQ.pop(); |
1106 | |
1107 | if (!InstrExec.count(x: &UseI)) |
1108 | continue; |
1109 | if (UseI.isPHI()) |
1110 | visitPHI(PI: UseI); |
1111 | else if (!UseI.isBranch()) |
1112 | visitNonBranch(MI: UseI); |
1113 | else |
1114 | visitBranchesFrom(BI: UseI); |
1115 | } |
1116 | } |
1117 | |
1118 | void BT::run() { |
1119 | reset(); |
1120 | assert(FlowQ.empty()); |
1121 | |
1122 | using MachineFlowGraphTraits = GraphTraits<const MachineFunction*>; |
1123 | const MachineBasicBlock *Entry = MachineFlowGraphTraits::getEntryNode(F: &MF); |
1124 | |
1125 | unsigned MaxBN = 0; |
1126 | for (const MachineBasicBlock &B : MF) { |
1127 | assert(B.getNumber() >= 0 && "Disconnected block" ); |
1128 | unsigned BN = B.getNumber(); |
1129 | if (BN > MaxBN) |
1130 | MaxBN = BN; |
1131 | } |
1132 | |
1133 | // Keep track of visited blocks. |
1134 | BitVector BlockScanned(MaxBN+1); |
1135 | |
1136 | int EntryN = Entry->getNumber(); |
1137 | // Generate a fake edge to get something to start with. |
1138 | FlowQ.push(x: CFGEdge(-1, EntryN)); |
1139 | |
1140 | while (!FlowQ.empty() || !UseQ.empty()) { |
1141 | runEdgeQueue(BlockScanned); |
1142 | runUseQueue(); |
1143 | } |
1144 | UseQ.reset(); |
1145 | |
1146 | if (Trace) |
1147 | print_cells(OS&: dbgs() << "Cells after propagation:\n" ); |
1148 | } |
1149 | |