1 | //===- HexagonMCInstrInfo.cpp - Utility functions on Hexagon MCInsts ------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Utility functions for Hexagon specific MCInst queries |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #ifndef LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H |
14 | #define LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H |
15 | |
16 | #include "llvm/ADT/SmallVector.h" |
17 | #include "llvm/ADT/StringRef.h" |
18 | #include "llvm/ADT/iterator.h" |
19 | #include "llvm/ADT/iterator_range.h" |
20 | #include "llvm/MC/MCInst.h" |
21 | #include "llvm/Support/MathExtras.h" |
22 | #include <cstddef> |
23 | #include <cstdint> |
24 | |
25 | namespace llvm { |
26 | |
27 | class HexagonMCChecker; |
28 | class MCContext; |
29 | class MCExpr; |
30 | class MCInstrDesc; |
31 | class MCInstrInfo; |
32 | class MCRegisterInfo; |
33 | class MCSubtargetInfo; |
34 | |
35 | class DuplexCandidate { |
36 | public: |
37 | unsigned packetIndexI, packetIndexJ, iClass; |
38 | |
39 | DuplexCandidate(unsigned i, unsigned j, unsigned iClass) |
40 | : packetIndexI(i), packetIndexJ(j), iClass(iClass) {} |
41 | }; |
42 | |
43 | namespace Hexagon { |
44 | |
45 | class PacketIterator |
46 | : public llvm::iterator_facade_base< |
47 | PacketIterator, std::forward_iterator_tag, const MCInst> { |
48 | MCInstrInfo const &MCII; |
49 | MCInst::const_iterator BundleCurrent; |
50 | MCInst::const_iterator BundleEnd; |
51 | MCInst::const_iterator DuplexCurrent; |
52 | MCInst::const_iterator DuplexEnd; |
53 | |
54 | public: |
55 | PacketIterator(MCInstrInfo const &MCII, MCInst const &Inst); |
56 | PacketIterator(MCInstrInfo const &MCII, MCInst const &Inst, std::nullptr_t); |
57 | |
58 | PacketIterator &operator++(); |
59 | MCInst const &operator*() const; |
60 | bool operator==(PacketIterator const &Other) const; |
61 | }; |
62 | |
63 | } // end namespace Hexagon |
64 | |
65 | namespace HexagonMCInstrInfo { |
66 | |
67 | constexpr size_t innerLoopOffset = 0; |
68 | constexpr int64_t innerLoopMask = 1 << innerLoopOffset; |
69 | |
70 | constexpr size_t outerLoopOffset = 1; |
71 | constexpr int64_t outerLoopMask = 1 << outerLoopOffset; |
72 | |
73 | // do not reorder memory load/stores by default load/stores are re-ordered |
74 | // and by default loads can be re-ordered |
75 | constexpr size_t memReorderDisabledOffset = 2; |
76 | constexpr int64_t memReorderDisabledMask = 1 << memReorderDisabledOffset; |
77 | |
78 | constexpr size_t splitNoMemOrderOffset = 3; |
79 | constexpr int64_t splitNoMemorderMask = 1 << splitNoMemOrderOffset; |
80 | |
81 | constexpr size_t noShuffleOffset = 4; |
82 | constexpr int64_t noShuffleMask = 1 << noShuffleOffset; |
83 | |
84 | constexpr size_t bundleInstructionsOffset = 1; |
85 | |
86 | void addConstant(MCInst &MI, uint64_t Value, MCContext &Context); |
87 | void addConstExtender(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB, |
88 | MCInst const &MCI); |
89 | |
90 | // Returns a iterator range of instructions in this bundle |
91 | iterator_range<Hexagon::PacketIterator> |
92 | bundleInstructions(MCInstrInfo const &MCII, MCInst const &MCI); |
93 | iterator_range<MCInst::const_iterator> bundleInstructions(MCInst const &MCI); |
94 | |
95 | // Returns the number of instructions in the bundle |
96 | size_t bundleSize(MCInst const &MCI); |
97 | |
98 | // Put the packet in to canonical form, compound, duplex, pad, and shuffle |
99 | bool canonicalizePacket(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, |
100 | MCContext &Context, MCInst &MCB, |
101 | HexagonMCChecker *Checker, |
102 | bool AttemptCompatibility = false); |
103 | bool IsABranchingInst(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, |
104 | MCInst const &I); |
105 | |
106 | // Create a duplex instruction given the two subinsts |
107 | MCInst *deriveDuplex(MCContext &Context, unsigned iClass, MCInst const &inst0, |
108 | MCInst const &inst1); |
109 | MCInst deriveExtender(MCInstrInfo const &MCII, MCInst const &Inst, |
110 | MCOperand const &MO); |
111 | |
112 | // Convert this instruction in to a duplex subinst |
113 | MCInst deriveSubInst(MCInst const &Inst); |
114 | |
115 | // Return the extender for instruction at Index or nullptr if none |
116 | MCInst const *extenderForIndex(MCInst const &MCB, size_t Index); |
117 | void extendIfNeeded(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB, |
118 | MCInst const &MCI); |
119 | |
120 | // Return memory access size in bytes |
121 | unsigned getMemAccessSize(MCInstrInfo const &MCII, MCInst const &MCI); |
122 | |
123 | // Return memory access size |
124 | unsigned getAddrMode(MCInstrInfo const &MCII, MCInst const &MCI); |
125 | |
126 | MCInstrDesc const &getDesc(MCInstrInfo const &MCII, MCInst const &MCI); |
127 | |
128 | // Return which duplex group this instruction belongs to |
129 | unsigned getDuplexCandidateGroup(MCInst const &MI); |
130 | |
131 | // Return a list of all possible instruction duplex combinations |
132 | SmallVector<DuplexCandidate, 8> |
133 | getDuplexPossibilties(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, |
134 | MCInst const &MCB); |
135 | unsigned getDuplexRegisterNumbering(unsigned Reg); |
136 | |
137 | MCExpr const &getExpr(MCExpr const &Expr); |
138 | |
139 | // Return the index of the extendable operand |
140 | unsigned short getExtendableOp(MCInstrInfo const &MCII, MCInst const &MCI); |
141 | |
142 | // Return a reference to the extendable operand |
143 | MCOperand const &getExtendableOperand(MCInstrInfo const &MCII, |
144 | MCInst const &MCI); |
145 | |
146 | // Return the implicit alignment of the extendable operand |
147 | unsigned getExtentAlignment(MCInstrInfo const &MCII, MCInst const &MCI); |
148 | |
149 | // Return the number of logical bits of the extendable operand |
150 | unsigned getExtentBits(MCInstrInfo const &MCII, MCInst const &MCI); |
151 | |
152 | // Check if the extendable operand is signed. |
153 | bool isExtentSigned(MCInstrInfo const &MCII, MCInst const &MCI); |
154 | |
155 | // Return the max value that a constant extendable operand can have |
156 | // without being extended. |
157 | int getMaxValue(MCInstrInfo const &MCII, MCInst const &MCI); |
158 | |
159 | // Return the min value that a constant extendable operand can have |
160 | // without being extended. |
161 | int getMinValue(MCInstrInfo const &MCII, MCInst const &MCI); |
162 | |
163 | // Return instruction name |
164 | StringRef getName(MCInstrInfo const &MCII, MCInst const &MCI); |
165 | |
166 | // Return the operand index for the new value. |
167 | unsigned short getNewValueOp(MCInstrInfo const &MCII, MCInst const &MCI); |
168 | |
169 | // Return the operand that consumes or produces a new value. |
170 | MCOperand const &getNewValueOperand(MCInstrInfo const &MCII, MCInst const &MCI); |
171 | unsigned short getNewValueOp2(MCInstrInfo const &MCII, MCInst const &MCI); |
172 | MCOperand const &getNewValueOperand2(MCInstrInfo const &MCII, |
173 | MCInst const &MCI); |
174 | |
175 | // Return the Hexagon ISA class for the insn. |
176 | unsigned getType(MCInstrInfo const &MCII, MCInst const &MCI); |
177 | |
178 | /// Return the resources used by this instruction |
179 | unsigned getCVIResources(MCInstrInfo const &MCII, |
180 | MCSubtargetInfo const &STI, |
181 | MCInst const &MCI); |
182 | |
183 | /// Return the slots used by the insn. |
184 | unsigned getUnits(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, |
185 | MCInst const &MCI); |
186 | unsigned getOtherReservedSlots(MCInstrInfo const &MCII, |
187 | MCSubtargetInfo const &STI, MCInst const &MCI); |
188 | bool hasDuplex(MCInstrInfo const &MCII, MCInst const &MCI); |
189 | |
190 | // Does the packet have an extender for the instruction at Index |
191 | bool hasExtenderForIndex(MCInst const &MCB, size_t Index); |
192 | |
193 | bool hasImmExt(MCInst const &MCI); |
194 | |
195 | // Return whether the instruction is a legal new-value producer. |
196 | bool hasNewValue(MCInstrInfo const &MCII, MCInst const &MCI); |
197 | bool hasNewValue2(MCInstrInfo const &MCII, MCInst const &MCI); |
198 | bool hasTmpDst(MCInstrInfo const &MCII, MCInst const &MCI); |
199 | bool hasHvxTmp(MCInstrInfo const &MCII, MCInst const &MCI); |
200 | unsigned iClassOfDuplexPair(unsigned Ga, unsigned Gb); |
201 | |
202 | int64_t minConstant(MCInst const &MCI, size_t Index); |
203 | template <unsigned N, unsigned S> |
204 | bool inRange(MCInst const &MCI, size_t Index) { |
205 | return isShiftedUInt<N, S>(minConstant(MCI, Index)); |
206 | } |
207 | template <unsigned N, unsigned S> |
208 | bool inSRange(MCInst const &MCI, size_t Index) { |
209 | return isShiftedInt<N, S>(minConstant(MCI, Index)); |
210 | } |
211 | template <unsigned N> bool inRange(MCInst const &MCI, size_t Index) { |
212 | return isUInt<N>(minConstant(MCI, Index)); |
213 | } |
214 | |
215 | // Return the instruction at Index |
216 | MCInst const &instruction(MCInst const &MCB, size_t Index); |
217 | bool isAccumulator(MCInstrInfo const &MCII, MCInst const &MCI); |
218 | |
219 | // Returns whether this MCInst is a wellformed bundle |
220 | bool isBundle(MCInst const &MCI); |
221 | |
222 | // Return whether the insn is an actual insn. |
223 | bool isCanon(MCInstrInfo const &MCII, MCInst const &MCI); |
224 | bool isCofMax1(MCInstrInfo const &MCII, MCInst const &MCI); |
225 | bool isCofRelax1(MCInstrInfo const &MCII, MCInst const &MCI); |
226 | bool isCofRelax2(MCInstrInfo const &MCII, MCInst const &MCI); |
227 | bool isCompound(MCInstrInfo const &MCII, MCInst const &MCI); |
228 | |
229 | // Return whether the instruction needs to be constant extended. |
230 | bool isConstExtended(MCInstrInfo const &MCII, MCInst const &MCI); |
231 | bool isCVINew(MCInstrInfo const &MCII, MCInst const &MCI); |
232 | |
233 | // Is this double register suitable for use in a duplex subinst |
234 | bool isDblRegForSubInst(unsigned Reg); |
235 | |
236 | // Is this a duplex instruction |
237 | bool isDuplex(MCInstrInfo const &MCII, MCInst const &MCI); |
238 | |
239 | // Can these instructions be duplexed |
240 | bool isDuplexPair(MCInst const &MIa, MCInst const &MIb); |
241 | |
242 | // Can these duplex classes be combine in to a duplex instruction |
243 | bool isDuplexPairMatch(unsigned Ga, unsigned Gb); |
244 | |
245 | // Return true if the insn may be extended based on the operand value. |
246 | bool isExtendable(MCInstrInfo const &MCII, MCInst const &MCI); |
247 | |
248 | // Return whether the instruction must be always extended. |
249 | bool isExtended(MCInstrInfo const &MCII, MCInst const &MCI); |
250 | |
251 | /// Return whether it is a floating-point insn. |
252 | bool isFloat(MCInstrInfo const &MCII, MCInst const &MCI); |
253 | |
254 | bool isHVX(MCInstrInfo const &MCII, MCInst const &MCI); |
255 | |
256 | // Returns whether this instruction is an immediate extender |
257 | bool isImmext(MCInst const &MCI); |
258 | |
259 | // Returns whether this bundle is an endloop0 |
260 | bool isInnerLoop(MCInst const &MCI); |
261 | |
262 | // Is this an integer register |
263 | bool isIntReg(unsigned Reg); |
264 | |
265 | // Is this register suitable for use in a duplex subinst |
266 | bool isIntRegForSubInst(unsigned Reg); |
267 | bool isMemReorderDisabled(MCInst const &MCI); |
268 | |
269 | // Return whether the insn is a new-value consumer. |
270 | bool isNewValue(MCInstrInfo const &MCII, MCInst const &MCI); |
271 | /// Return true if the operand is a new-value store insn. |
272 | bool isNewValueStore(MCInstrInfo const &MCII, MCInst const &MCI); |
273 | bool isOpExtendable(MCInstrInfo const &MCII, MCInst const &MCI, unsigned short); |
274 | |
275 | // Can these two instructions be duplexed |
276 | bool isOrderedDuplexPair(MCInstrInfo const &MCII, MCInst const &MIa, |
277 | bool ExtendedA, MCInst const &MIb, bool ExtendedB, |
278 | bool bisReversable, MCSubtargetInfo const &STI); |
279 | |
280 | // Returns whether this bundle is an endloop1 |
281 | bool isOuterLoop(MCInst const &MCI); |
282 | |
283 | // Return whether this instruction is predicated |
284 | bool isPredicated(MCInstrInfo const &MCII, MCInst const &MCI); |
285 | bool isPredicateLate(MCInstrInfo const &MCII, MCInst const &MCI); |
286 | bool isPredicatedNew(MCInstrInfo const &MCII, MCInst const &MCI); |
287 | |
288 | // Return whether the predicate sense is true |
289 | bool isPredicatedTrue(MCInstrInfo const &MCII, MCInst const &MCI); |
290 | |
291 | // Return true if this is a scalar predicate register. |
292 | bool isPredReg(MCRegisterInfo const &MRI, unsigned Reg); |
293 | |
294 | // Returns true if the Ith operand is a predicate register. |
295 | bool isPredRegister(MCInstrInfo const &MCII, MCInst const &Inst, unsigned I); |
296 | |
297 | // Return whether the insn is a prefix. |
298 | bool isPrefix(MCInstrInfo const &MCII, MCInst const &MCI); |
299 | |
300 | // Return whether the insn is solo, i.e., cannot be in a packet. |
301 | bool isSolo(MCInstrInfo const &MCII, MCInst const &MCI); |
302 | |
303 | /// Return whether the insn can be packaged only with A and X-type insns. |
304 | bool isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI); |
305 | |
306 | /// Return whether the insn can be packaged only with an A-type insn in slot #1. |
307 | bool isRestrictSlot1AOK(MCInstrInfo const &MCII, MCInst const &MCI); |
308 | bool isRestrictNoSlot1Store(MCInstrInfo const &MCII, MCInst const &MCI); |
309 | bool isSubInstruction(MCInst const &MCI); |
310 | bool isVector(MCInstrInfo const &MCII, MCInst const &MCI); |
311 | bool mustExtend(MCExpr const &Expr); |
312 | bool mustNotExtend(MCExpr const &Expr); |
313 | |
314 | // Returns true if this instruction requires a slot to execute. |
315 | bool requiresSlot(MCSubtargetInfo const &STI, MCInst const &MCI); |
316 | |
317 | |
318 | // Returns true if \a MCB would require endloop padding. |
319 | bool LoopNeedsPadding(MCInst const &MCB); |
320 | |
321 | unsigned packetSize(StringRef CPU); |
322 | |
323 | // Returns the maximum number of slots available in the given |
324 | // subtarget's packets. |
325 | unsigned packetSizeSlots(MCSubtargetInfo const &STI); |
326 | |
327 | // Returns the number of slots consumed by this packet, considering duplexed |
328 | // and compound instructions. |
329 | unsigned slotsConsumed(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, |
330 | MCInst const &MCI); |
331 | |
332 | // Pad the bundle with nops to satisfy endloop requirements. |
333 | void padEndloop(MCInst &MCI, MCContext &Context); |
334 | class PredicateInfo { |
335 | public: |
336 | PredicateInfo() : Register(0), Operand(0), PredicatedTrue(false) {} |
337 | PredicateInfo(unsigned Register, unsigned Operand, bool PredicatedTrue) |
338 | : Register(Register), Operand(Operand), PredicatedTrue(PredicatedTrue) {} |
339 | bool isPredicated() const; |
340 | unsigned Register; |
341 | unsigned Operand; |
342 | bool PredicatedTrue; |
343 | }; |
344 | PredicateInfo predicateInfo(MCInstrInfo const &MCII, MCInst const &MCI); |
345 | bool (MCInstrInfo const &MCII, MCInst const &MCI); |
346 | |
347 | // Replace the instructions inside MCB, represented by Candidate |
348 | void replaceDuplex(MCContext &Context, MCInst &MCI, DuplexCandidate Candidate); |
349 | |
350 | bool s27_2_reloc(MCExpr const &Expr); |
351 | // Marks a bundle as endloop0 |
352 | void setInnerLoop(MCInst &MCI); |
353 | void setMemReorderDisabled(MCInst &MCI); |
354 | void setMustExtend(MCExpr const &Expr, bool Val = true); |
355 | void setMustNotExtend(MCExpr const &Expr, bool Val = true); |
356 | void setS27_2_reloc(MCExpr const &Expr, bool Val = true); |
357 | |
358 | // Marks a bundle as endloop1 |
359 | void setOuterLoop(MCInst &MCI); |
360 | |
361 | // Would duplexing this instruction create a requirement to extend |
362 | bool subInstWouldBeExtended(MCInst const &potentialDuplex); |
363 | unsigned SubregisterBit(unsigned Consumer, unsigned Producer, |
364 | unsigned Producer2); |
365 | |
366 | bool IsVecRegSingle(unsigned VecReg); |
367 | bool IsVecRegPair(unsigned VecReg); |
368 | bool IsReverseVecRegPair(unsigned VecReg); |
369 | bool IsSingleConsumerRefPairProducer(unsigned Producer, unsigned Consumer); |
370 | |
371 | /// Returns an ordered pair of the constituent register ordinals for |
372 | /// each of the elements of \a VecRegPair. For example, Hexagon::W0 ("v0:1") |
373 | /// returns { 0, 1 } and Hexagon::W1 ("v3:2") returns { 3, 2 }. |
374 | std::pair<unsigned, unsigned> GetVecRegPairIndices(unsigned VecRegPair); |
375 | |
376 | // Attempt to find and replace compound pairs |
377 | void tryCompound(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, |
378 | MCContext &Context, MCInst &MCI); |
379 | |
380 | } // end namespace HexagonMCInstrInfo |
381 | |
382 | } // end namespace llvm |
383 | |
384 | #endif // LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H |
385 | |