1 | //===-- RISCVInsertWriteVXRM.cpp - Insert Write of RISC-V VXRM CSR --------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This pass inserts writes to the VXRM CSR as needed by vector instructions. |
10 | // Each instruction that uses VXRM carries an operand that contains its required |
11 | // VXRM value. This pass tries to optimize placement to avoid redundant writes |
12 | // to VXRM. |
13 | // |
14 | // This is done using 2 dataflow algorithms. The first is a forward data flow |
15 | // to calculate where a VXRM value is available. The second is a backwards |
16 | // dataflow to determine where a VXRM value is anticipated. |
17 | // |
18 | // Finally, we use the results of these two dataflows to insert VXRM writes |
19 | // where a value is anticipated, but not available. |
20 | // |
21 | // FIXME: This pass does not split critical edges, so there can still be some |
22 | // redundancy. |
23 | // |
24 | // FIXME: If we are willing to have writes that aren't always needed, we could |
25 | // reduce the number of VXRM writes in some cases. |
26 | //===----------------------------------------------------------------------===// |
27 | |
28 | #include "MCTargetDesc/RISCVBaseInfo.h" |
29 | #include "RISCV.h" |
30 | #include "RISCVSubtarget.h" |
31 | #include "llvm/CodeGen/MachineFunctionPass.h" |
32 | #include <queue> |
33 | |
34 | using namespace llvm; |
35 | |
36 | #define DEBUG_TYPE "riscv-insert-write-vxrm" |
37 | #define RISCV_INSERT_WRITE_VXRM_NAME "RISC-V Insert Write VXRM Pass" |
38 | |
39 | namespace { |
40 | |
41 | class VXRMInfo { |
42 | uint8_t VXRMImm = 0; |
43 | |
44 | enum : uint8_t { |
45 | Uninitialized, |
46 | Static, |
47 | Unknown, |
48 | } State = Uninitialized; |
49 | |
50 | public: |
51 | VXRMInfo() {} |
52 | |
53 | static VXRMInfo getUnknown() { |
54 | VXRMInfo Info; |
55 | Info.setUnknown(); |
56 | return Info; |
57 | } |
58 | |
59 | bool isValid() const { return State != Uninitialized; } |
60 | void setUnknown() { State = Unknown; } |
61 | bool isUnknown() const { return State == Unknown; } |
62 | |
63 | bool isStatic() const { return State == Static; } |
64 | |
65 | void setVXRMImm(unsigned Imm) { |
66 | assert(Imm <= 3 && "Unexpected VXRM value" ); |
67 | VXRMImm = Imm; |
68 | State = Static; |
69 | } |
70 | unsigned getVXRMImm() const { |
71 | assert(isStatic() && VXRMImm <= 3 && "Unexpected state" ); |
72 | return VXRMImm; |
73 | } |
74 | |
75 | bool operator==(const VXRMInfo &Other) const { |
76 | // Uninitialized is only equal to another Uninitialized. |
77 | if (State != Other.State) |
78 | return false; |
79 | |
80 | if (isStatic()) |
81 | return VXRMImm == Other.VXRMImm; |
82 | |
83 | assert((isValid() || isUnknown()) && "Unexpected state" ); |
84 | return true; |
85 | } |
86 | |
87 | bool operator!=(const VXRMInfo &Other) const { return !(*this == Other); } |
88 | |
89 | // Calculate the VXRMInfo visible to a block assuming this and Other are |
90 | // both predecessors. |
91 | VXRMInfo intersect(const VXRMInfo &Other) const { |
92 | // If the new value isn't valid, ignore it. |
93 | if (!Other.isValid()) |
94 | return *this; |
95 | |
96 | // If this value isn't valid, this must be the first predecessor, use it. |
97 | if (!isValid()) |
98 | return Other; |
99 | |
100 | // If either is unknown, the result is unknown. |
101 | if (isUnknown() || Other.isUnknown()) |
102 | return VXRMInfo::getUnknown(); |
103 | |
104 | // If we have an exact match, return this. |
105 | if (*this == Other) |
106 | return *this; |
107 | |
108 | // Otherwise the result is unknown. |
109 | return VXRMInfo::getUnknown(); |
110 | } |
111 | |
112 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
113 | /// Support for debugging, callable in GDB: V->dump() |
114 | LLVM_DUMP_METHOD void dump() const { |
115 | print(dbgs()); |
116 | dbgs() << "\n" ; |
117 | } |
118 | |
119 | void print(raw_ostream &OS) const { |
120 | OS << '{'; |
121 | if (!isValid()) |
122 | OS << "Uninitialized" ; |
123 | else if (isUnknown()) |
124 | OS << "Unknown" ; |
125 | else |
126 | OS << getVXRMImm(); |
127 | OS << '}'; |
128 | } |
129 | #endif |
130 | }; |
131 | |
132 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
133 | LLVM_ATTRIBUTE_USED |
134 | inline raw_ostream &operator<<(raw_ostream &OS, const VXRMInfo &V) { |
135 | V.print(OS); |
136 | return OS; |
137 | } |
138 | #endif |
139 | |
140 | struct BlockData { |
141 | // Indicates if the block uses VXRM. Uninitialized means no use. |
142 | VXRMInfo VXRMUse; |
143 | |
144 | // Indicates the VXRM output from the block. Unitialized means transparent. |
145 | VXRMInfo VXRMOut; |
146 | |
147 | // Keeps track of the available VXRM value at the start of the basic bloc. |
148 | VXRMInfo AvailableIn; |
149 | |
150 | // Keeps track of the available VXRM value at the end of the basic block. |
151 | VXRMInfo AvailableOut; |
152 | |
153 | // Keeps track of what VXRM is anticipated at the start of the basic block. |
154 | VXRMInfo AnticipatedIn; |
155 | |
156 | // Keeps track of what VXRM is anticipated at the end of the basic block. |
157 | VXRMInfo AnticipatedOut; |
158 | |
159 | // Keeps track of whether the block is already in the queue. |
160 | bool InQueue; |
161 | |
162 | BlockData() = default; |
163 | }; |
164 | |
165 | class RISCVInsertWriteVXRM : public MachineFunctionPass { |
166 | const TargetInstrInfo *TII; |
167 | |
168 | std::vector<BlockData> BlockInfo; |
169 | std::queue<const MachineBasicBlock *> WorkList; |
170 | |
171 | public: |
172 | static char ID; |
173 | |
174 | RISCVInsertWriteVXRM() : MachineFunctionPass(ID) {} |
175 | |
176 | bool runOnMachineFunction(MachineFunction &MF) override; |
177 | |
178 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
179 | AU.setPreservesCFG(); |
180 | MachineFunctionPass::getAnalysisUsage(AU); |
181 | } |
182 | |
183 | StringRef getPassName() const override { |
184 | return RISCV_INSERT_WRITE_VXRM_NAME; |
185 | } |
186 | |
187 | private: |
188 | bool computeVXRMChanges(const MachineBasicBlock &MBB); |
189 | void computeAvailable(const MachineBasicBlock &MBB); |
190 | void computeAnticipated(const MachineBasicBlock &MBB); |
191 | void emitWriteVXRM(MachineBasicBlock &MBB); |
192 | }; |
193 | |
194 | } // end anonymous namespace |
195 | |
196 | char RISCVInsertWriteVXRM::ID = 0; |
197 | |
198 | INITIALIZE_PASS(RISCVInsertWriteVXRM, DEBUG_TYPE, RISCV_INSERT_WRITE_VXRM_NAME, |
199 | false, false) |
200 | |
201 | static bool ignoresVXRM(const MachineInstr &MI) { |
202 | switch (RISCV::getRVVMCOpcode(RVVPseudoOpcode: MI.getOpcode())) { |
203 | default: |
204 | return false; |
205 | case RISCV::VNCLIP_WI: |
206 | case RISCV::VNCLIPU_WI: |
207 | return MI.getOperand(i: 3).getImm() == 0; |
208 | } |
209 | } |
210 | |
211 | bool RISCVInsertWriteVXRM::computeVXRMChanges(const MachineBasicBlock &MBB) { |
212 | BlockData &BBInfo = BlockInfo[MBB.getNumber()]; |
213 | |
214 | bool NeedVXRMWrite = false; |
215 | for (const MachineInstr &MI : MBB) { |
216 | int VXRMIdx = RISCVII::getVXRMOpNum(Desc: MI.getDesc()); |
217 | if (VXRMIdx >= 0 && !ignoresVXRM(MI)) { |
218 | unsigned NewVXRMImm = MI.getOperand(i: VXRMIdx).getImm(); |
219 | |
220 | if (!BBInfo.VXRMUse.isValid()) |
221 | BBInfo.VXRMUse.setVXRMImm(NewVXRMImm); |
222 | |
223 | BBInfo.VXRMOut.setVXRMImm(NewVXRMImm); |
224 | NeedVXRMWrite = true; |
225 | continue; |
226 | } |
227 | |
228 | if (MI.isCall() || MI.isInlineAsm() || |
229 | MI.modifiesRegister(Reg: RISCV::VXRM, /*TRI=*/nullptr)) { |
230 | if (!BBInfo.VXRMUse.isValid()) |
231 | BBInfo.VXRMUse.setUnknown(); |
232 | |
233 | BBInfo.VXRMOut.setUnknown(); |
234 | } |
235 | } |
236 | |
237 | return NeedVXRMWrite; |
238 | } |
239 | |
240 | void RISCVInsertWriteVXRM::computeAvailable(const MachineBasicBlock &MBB) { |
241 | BlockData &BBInfo = BlockInfo[MBB.getNumber()]; |
242 | |
243 | BBInfo.InQueue = false; |
244 | |
245 | VXRMInfo Available; |
246 | if (MBB.pred_empty()) { |
247 | Available.setUnknown(); |
248 | } else { |
249 | for (const MachineBasicBlock *P : MBB.predecessors()) |
250 | Available = Available.intersect(Other: BlockInfo[P->getNumber()].AvailableOut); |
251 | } |
252 | |
253 | // If we don't have any valid available info, wait until we do. |
254 | if (!Available.isValid()) |
255 | return; |
256 | |
257 | if (Available != BBInfo.AvailableIn) { |
258 | BBInfo.AvailableIn = Available; |
259 | LLVM_DEBUG(dbgs() << "AvailableIn state of " << printMBBReference(MBB) |
260 | << " changed to " << BBInfo.AvailableIn << "\n" ); |
261 | } |
262 | |
263 | if (BBInfo.VXRMOut.isValid()) |
264 | Available = BBInfo.VXRMOut; |
265 | |
266 | if (Available == BBInfo.AvailableOut) |
267 | return; |
268 | |
269 | BBInfo.AvailableOut = Available; |
270 | LLVM_DEBUG(dbgs() << "AvailableOut state of " << printMBBReference(MBB) |
271 | << " changed to " << BBInfo.AvailableOut << "\n" ); |
272 | |
273 | // Add the successors to the work list so that we can propagate. |
274 | for (MachineBasicBlock *S : MBB.successors()) { |
275 | if (!BlockInfo[S->getNumber()].InQueue) { |
276 | BlockInfo[S->getNumber()].InQueue = true; |
277 | WorkList.push(x: S); |
278 | } |
279 | } |
280 | } |
281 | |
282 | void RISCVInsertWriteVXRM::computeAnticipated(const MachineBasicBlock &MBB) { |
283 | BlockData &BBInfo = BlockInfo[MBB.getNumber()]; |
284 | |
285 | BBInfo.InQueue = false; |
286 | |
287 | VXRMInfo Anticipated; |
288 | if (MBB.succ_empty()) { |
289 | Anticipated.setUnknown(); |
290 | } else { |
291 | for (const MachineBasicBlock *S : MBB.successors()) |
292 | Anticipated = |
293 | Anticipated.intersect(Other: BlockInfo[S->getNumber()].AnticipatedIn); |
294 | } |
295 | |
296 | // If we don't have any valid anticipated info, wait until we do. |
297 | if (!Anticipated.isValid()) |
298 | return; |
299 | |
300 | if (Anticipated != BBInfo.AnticipatedOut) { |
301 | BBInfo.AnticipatedOut = Anticipated; |
302 | LLVM_DEBUG(dbgs() << "AnticipatedOut state of " << printMBBReference(MBB) |
303 | << " changed to " << BBInfo.AnticipatedOut << "\n" ); |
304 | } |
305 | |
306 | // If this block reads VXRM, copy it. |
307 | if (BBInfo.VXRMUse.isValid()) |
308 | Anticipated = BBInfo.VXRMUse; |
309 | |
310 | if (Anticipated == BBInfo.AnticipatedIn) |
311 | return; |
312 | |
313 | BBInfo.AnticipatedIn = Anticipated; |
314 | LLVM_DEBUG(dbgs() << "AnticipatedIn state of " << printMBBReference(MBB) |
315 | << " changed to " << BBInfo.AnticipatedIn << "\n" ); |
316 | |
317 | // Add the predecessors to the work list so that we can propagate. |
318 | for (MachineBasicBlock *P : MBB.predecessors()) { |
319 | if (!BlockInfo[P->getNumber()].InQueue) { |
320 | BlockInfo[P->getNumber()].InQueue = true; |
321 | WorkList.push(x: P); |
322 | } |
323 | } |
324 | } |
325 | |
326 | void RISCVInsertWriteVXRM::emitWriteVXRM(MachineBasicBlock &MBB) { |
327 | const BlockData &BBInfo = BlockInfo[MBB.getNumber()]; |
328 | |
329 | VXRMInfo Info = BBInfo.AvailableIn; |
330 | |
331 | // Flag to indicates we need to insert a VXRM write. We want to delay it as |
332 | // late as possible in this block. |
333 | bool PendingInsert = false; |
334 | |
335 | // Insert VXRM write if anticipated and not available. |
336 | if (BBInfo.AnticipatedIn.isStatic()) { |
337 | // If this is the entry block and the value is anticipated, insert. |
338 | if (MBB.isEntryBlock()) { |
339 | PendingInsert = true; |
340 | } else { |
341 | // Search for any predecessors that wouldn't satisfy our requirement and |
342 | // insert a write VXRM if needed. |
343 | // NOTE: If one predecessor is able to provide the requirement, but |
344 | // another isn't, it means we have a critical edge. The better placement |
345 | // would be to split the critical edge. |
346 | for (MachineBasicBlock *P : MBB.predecessors()) { |
347 | const BlockData &PInfo = BlockInfo[P->getNumber()]; |
348 | // If it's available out of the predecessor, then we're ok. |
349 | if (PInfo.AvailableOut.isStatic() && |
350 | PInfo.AvailableOut.getVXRMImm() == |
351 | BBInfo.AnticipatedIn.getVXRMImm()) |
352 | continue; |
353 | // If the predecessor anticipates this value for all its succesors, |
354 | // then a write to VXRM would have already occured before this block is |
355 | // executed. |
356 | if (PInfo.AnticipatedOut.isStatic() && |
357 | PInfo.AnticipatedOut.getVXRMImm() == |
358 | BBInfo.AnticipatedIn.getVXRMImm()) |
359 | continue; |
360 | PendingInsert = true; |
361 | break; |
362 | } |
363 | } |
364 | |
365 | Info = BBInfo.AnticipatedIn; |
366 | } |
367 | |
368 | for (MachineInstr &MI : MBB) { |
369 | int VXRMIdx = RISCVII::getVXRMOpNum(Desc: MI.getDesc()); |
370 | if (VXRMIdx >= 0 && !ignoresVXRM(MI)) { |
371 | unsigned NewVXRMImm = MI.getOperand(i: VXRMIdx).getImm(); |
372 | |
373 | if (PendingInsert || !Info.isStatic() || |
374 | Info.getVXRMImm() != NewVXRMImm) { |
375 | assert((!PendingInsert || |
376 | (Info.isStatic() && Info.getVXRMImm() == NewVXRMImm)) && |
377 | "Pending VXRM insertion mismatch" ); |
378 | LLVM_DEBUG(dbgs() << "Inserting before " ; MI.print(dbgs())); |
379 | BuildMI(BB&: MBB, I&: MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: RISCV::WriteVXRMImm)) |
380 | .addImm(Val: NewVXRMImm); |
381 | PendingInsert = false; |
382 | } |
383 | |
384 | MI.addOperand(Op: MachineOperand::CreateReg(Reg: RISCV::VXRM, /*IsDef*/ isDef: false, |
385 | /*IsImp*/ isImp: true)); |
386 | Info.setVXRMImm(NewVXRMImm); |
387 | continue; |
388 | } |
389 | |
390 | if (MI.isCall() || MI.isInlineAsm() || |
391 | MI.modifiesRegister(Reg: RISCV::VXRM, /*TRI=*/nullptr)) |
392 | Info.setUnknown(); |
393 | } |
394 | |
395 | // If all our successors anticipate a value, do the insert. |
396 | // NOTE: It's possible that not all predecessors of our successor provide the |
397 | // correct value. This can occur on critical edges. If we don't split the |
398 | // critical edge we'll also have a write vxrm in the succesor that is |
399 | // redundant with this one. |
400 | if (PendingInsert || |
401 | (BBInfo.AnticipatedOut.isStatic() && |
402 | (!Info.isStatic() || |
403 | Info.getVXRMImm() != BBInfo.AnticipatedOut.getVXRMImm()))) { |
404 | assert((!PendingInsert || |
405 | (Info.isStatic() && BBInfo.AnticipatedOut.isStatic() && |
406 | Info.getVXRMImm() == BBInfo.AnticipatedOut.getVXRMImm())) && |
407 | "Pending VXRM insertion mismatch" ); |
408 | LLVM_DEBUG(dbgs() << "Inserting at end of " << printMBBReference(MBB) |
409 | << " changing to " << BBInfo.AnticipatedOut << "\n" ); |
410 | BuildMI(BB&: MBB, I: MBB.getFirstTerminator(), MIMD: DebugLoc(), |
411 | MCID: TII->get(Opcode: RISCV::WriteVXRMImm)) |
412 | .addImm(Val: BBInfo.AnticipatedOut.getVXRMImm()); |
413 | } |
414 | } |
415 | |
416 | bool RISCVInsertWriteVXRM::runOnMachineFunction(MachineFunction &MF) { |
417 | // Skip if the vector extension is not enabled. |
418 | const RISCVSubtarget &ST = MF.getSubtarget<RISCVSubtarget>(); |
419 | if (!ST.hasVInstructions()) |
420 | return false; |
421 | |
422 | TII = ST.getInstrInfo(); |
423 | |
424 | assert(BlockInfo.empty() && "Expect empty block infos" ); |
425 | BlockInfo.resize(new_size: MF.getNumBlockIDs()); |
426 | |
427 | // Phase 1 - collect block information. |
428 | bool NeedVXRMChange = false; |
429 | for (const MachineBasicBlock &MBB : MF) |
430 | NeedVXRMChange |= computeVXRMChanges(MBB); |
431 | |
432 | if (!NeedVXRMChange) { |
433 | BlockInfo.clear(); |
434 | return false; |
435 | } |
436 | |
437 | // Phase 2 - Compute available VXRM using a forward walk. |
438 | for (const MachineBasicBlock &MBB : MF) { |
439 | WorkList.push(x: &MBB); |
440 | BlockInfo[MBB.getNumber()].InQueue = true; |
441 | } |
442 | while (!WorkList.empty()) { |
443 | const MachineBasicBlock &MBB = *WorkList.front(); |
444 | WorkList.pop(); |
445 | computeAvailable(MBB); |
446 | } |
447 | |
448 | // Phase 3 - Compute anticipated VXRM using a backwards walk. |
449 | for (const MachineBasicBlock &MBB : llvm::reverse(C&: MF)) { |
450 | WorkList.push(x: &MBB); |
451 | BlockInfo[MBB.getNumber()].InQueue = true; |
452 | } |
453 | while (!WorkList.empty()) { |
454 | const MachineBasicBlock &MBB = *WorkList.front(); |
455 | WorkList.pop(); |
456 | computeAnticipated(MBB); |
457 | } |
458 | |
459 | // Phase 4 - Emit VXRM writes at the earliest place possible. |
460 | for (MachineBasicBlock &MBB : MF) |
461 | emitWriteVXRM(MBB); |
462 | |
463 | BlockInfo.clear(); |
464 | |
465 | return true; |
466 | } |
467 | |
468 | FunctionPass *llvm::createRISCVInsertWriteVXRMPass() { |
469 | return new RISCVInsertWriteVXRM(); |
470 | } |
471 | |