1//===-- SystemZISelLowering.h - SystemZ DAG lowering interface --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the interfaces that SystemZ uses to lower LLVM code into a
10// selection DAG.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
15#define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
16
17#include "SystemZ.h"
18#include "SystemZInstrInfo.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/CodeGen/TargetLowering.h"
22#include <optional>
23
24namespace llvm {
25namespace SystemZISD {
26enum NodeType : unsigned {
27 FIRST_NUMBER = ISD::BUILTIN_OP_END,
28
29 // Return with a glue operand. Operand 0 is the chain operand.
30 RET_GLUE,
31
32 // Calls a function. Operand 0 is the chain operand and operand 1
33 // is the target address. The arguments start at operand 2.
34 // There is an optional glue operand at the end.
35 CALL,
36 SIBCALL,
37
38 // TLS calls. Like regular calls, except operand 1 is the TLS symbol.
39 // (The call target is implicitly __tls_get_offset.)
40 TLS_GDCALL,
41 TLS_LDCALL,
42
43 // Wraps a TargetGlobalAddress that should be loaded using PC-relative
44 // accesses (LARL). Operand 0 is the address.
45 PCREL_WRAPPER,
46
47 // Used in cases where an offset is applied to a TargetGlobalAddress.
48 // Operand 0 is the full TargetGlobalAddress and operand 1 is a
49 // PCREL_WRAPPER for an anchor point. This is used so that we can
50 // cheaply refer to either the full address or the anchor point
51 // as a register base.
52 PCREL_OFFSET,
53
54 // Integer comparisons. There are three operands: the two values
55 // to compare, and an integer of type SystemZICMP.
56 ICMP,
57
58 // Floating-point comparisons. The two operands are the values to compare.
59 FCMP,
60
61 // Test under mask. The first operand is ANDed with the second operand
62 // and the condition codes are set on the result. The third operand is
63 // a boolean that is true if the condition codes need to distinguish
64 // between CCMASK_TM_MIXED_MSB_0 and CCMASK_TM_MIXED_MSB_1 (which the
65 // register forms do but the memory forms don't).
66 TM,
67
68 // Branches if a condition is true. Operand 0 is the chain operand;
69 // operand 1 is the 4-bit condition-code mask, with bit N in
70 // big-endian order meaning "branch if CC=N"; operand 2 is the
71 // target block and operand 3 is the flag operand.
72 BR_CCMASK,
73
74 // Selects between operand 0 and operand 1. Operand 2 is the
75 // mask of condition-code values for which operand 0 should be
76 // chosen over operand 1; it has the same form as BR_CCMASK.
77 // Operand 3 is the flag operand.
78 SELECT_CCMASK,
79
80 // Evaluates to the gap between the stack pointer and the
81 // base of the dynamically-allocatable area.
82 ADJDYNALLOC,
83
84 // For allocating stack space when using stack clash protector.
85 // Allocation is performed by block, and each block is probed.
86 PROBED_ALLOCA,
87
88 // Count number of bits set in operand 0 per byte.
89 POPCNT,
90
91 // Wrappers around the ISD opcodes of the same name. The output is GR128.
92 // Input operands may be GR64 or GR32, depending on the instruction.
93 SMUL_LOHI,
94 UMUL_LOHI,
95 SDIVREM,
96 UDIVREM,
97
98 // Add/subtract with overflow/carry. These have the same operands as
99 // the corresponding standard operations, except with the carry flag
100 // replaced by a condition code value.
101 SADDO, SSUBO, UADDO, USUBO, ADDCARRY, SUBCARRY,
102
103 // Set the condition code from a boolean value in operand 0.
104 // Operand 1 is a mask of all condition-code values that may result of this
105 // operation, operand 2 is a mask of condition-code values that may result
106 // if the boolean is true.
107 // Note that this operation is always optimized away, we will never
108 // generate any code for it.
109 GET_CCMASK,
110
111 // Use a series of MVCs to copy bytes from one memory location to another.
112 // The operands are:
113 // - the target address
114 // - the source address
115 // - the constant length
116 //
117 // This isn't a memory opcode because we'd need to attach two
118 // MachineMemOperands rather than one.
119 MVC,
120
121 // Similar to MVC, but for logic operations (AND, OR, XOR).
122 NC,
123 OC,
124 XC,
125
126 // Use CLC to compare two blocks of memory, with the same comments
127 // as for MVC.
128 CLC,
129
130 // Use MVC to set a block of memory after storing the first byte.
131 MEMSET_MVC,
132
133 // Use an MVST-based sequence to implement stpcpy().
134 STPCPY,
135
136 // Use a CLST-based sequence to implement strcmp(). The two input operands
137 // are the addresses of the strings to compare.
138 STRCMP,
139
140 // Use an SRST-based sequence to search a block of memory. The first
141 // operand is the end address, the second is the start, and the third
142 // is the character to search for. CC is set to 1 on success and 2
143 // on failure.
144 SEARCH_STRING,
145
146 // Store the CC value in bits 29 and 28 of an integer.
147 IPM,
148
149 // Transaction begin. The first operand is the chain, the second
150 // the TDB pointer, and the third the immediate control field.
151 // Returns CC value and chain.
152 TBEGIN,
153 TBEGIN_NOFLOAT,
154
155 // Transaction end. Just the chain operand. Returns CC value and chain.
156 TEND,
157
158 // Create a vector constant by filling byte N of the result with bit
159 // 15-N of the single operand.
160 BYTE_MASK,
161
162 // Create a vector constant by replicating an element-sized RISBG-style mask.
163 // The first operand specifies the starting set bit and the second operand
164 // specifies the ending set bit. Both operands count from the MSB of the
165 // element.
166 ROTATE_MASK,
167
168 // Replicate a GPR scalar value into all elements of a vector.
169 REPLICATE,
170
171 // Create a vector from two i64 GPRs.
172 JOIN_DWORDS,
173
174 // Replicate one element of a vector into all elements. The first operand
175 // is the vector and the second is the index of the element to replicate.
176 SPLAT,
177
178 // Interleave elements from the high half of operand 0 and the high half
179 // of operand 1.
180 MERGE_HIGH,
181
182 // Likewise for the low halves.
183 MERGE_LOW,
184
185 // Concatenate the vectors in the first two operands, shift them left
186 // by the third operand, and take the first half of the result.
187 SHL_DOUBLE,
188
189 // Take one element of the first v2i64 operand and the one element of
190 // the second v2i64 operand and concatenate them to form a v2i64 result.
191 // The third operand is a 4-bit value of the form 0A0B, where A and B
192 // are the element selectors for the first operand and second operands
193 // respectively.
194 PERMUTE_DWORDS,
195
196 // Perform a general vector permute on vector operands 0 and 1.
197 // Each byte of operand 2 controls the corresponding byte of the result,
198 // in the same way as a byte-level VECTOR_SHUFFLE mask.
199 PERMUTE,
200
201 // Pack vector operands 0 and 1 into a single vector with half-sized elements.
202 PACK,
203
204 // Likewise, but saturate the result and set CC. PACKS_CC does signed
205 // saturation and PACKLS_CC does unsigned saturation.
206 PACKS_CC,
207 PACKLS_CC,
208
209 // Unpack the first half of vector operand 0 into double-sized elements.
210 // UNPACK_HIGH sign-extends and UNPACKL_HIGH zero-extends.
211 UNPACK_HIGH,
212 UNPACKL_HIGH,
213
214 // Likewise for the second half.
215 UNPACK_LOW,
216 UNPACKL_LOW,
217
218 // Shift/rotate each element of vector operand 0 by the number of bits
219 // specified by scalar operand 1.
220 VSHL_BY_SCALAR,
221 VSRL_BY_SCALAR,
222 VSRA_BY_SCALAR,
223 VROTL_BY_SCALAR,
224
225 // For each element of the output type, sum across all sub-elements of
226 // operand 0 belonging to the corresponding element, and add in the
227 // rightmost sub-element of the corresponding element of operand 1.
228 VSUM,
229
230 // Compute carry/borrow indication for add/subtract.
231 VACC, VSCBI,
232 // Add/subtract with carry/borrow.
233 VAC, VSBI,
234 // Compute carry/borrow indication for add/subtract with carry/borrow.
235 VACCC, VSBCBI,
236
237 // Compare integer vector operands 0 and 1 to produce the usual 0/-1
238 // vector result. VICMPE is for equality, VICMPH for "signed greater than"
239 // and VICMPHL for "unsigned greater than".
240 VICMPE,
241 VICMPH,
242 VICMPHL,
243
244 // Likewise, but also set the condition codes on the result.
245 VICMPES,
246 VICMPHS,
247 VICMPHLS,
248
249 // Compare floating-point vector operands 0 and 1 to produce the usual 0/-1
250 // vector result. VFCMPE is for "ordered and equal", VFCMPH for "ordered and
251 // greater than" and VFCMPHE for "ordered and greater than or equal to".
252 VFCMPE,
253 VFCMPH,
254 VFCMPHE,
255
256 // Likewise, but also set the condition codes on the result.
257 VFCMPES,
258 VFCMPHS,
259 VFCMPHES,
260
261 // Test floating-point data class for vectors.
262 VFTCI,
263
264 // Extend the even f32 elements of vector operand 0 to produce a vector
265 // of f64 elements.
266 VEXTEND,
267
268 // Round the f64 elements of vector operand 0 to f32s and store them in the
269 // even elements of the result.
270 VROUND,
271
272 // AND the two vector operands together and set CC based on the result.
273 VTM,
274
275 // i128 high integer comparisons.
276 SCMP128HI,
277 UCMP128HI,
278
279 // String operations that set CC as a side-effect.
280 VFAE_CC,
281 VFAEZ_CC,
282 VFEE_CC,
283 VFEEZ_CC,
284 VFENE_CC,
285 VFENEZ_CC,
286 VISTR_CC,
287 VSTRC_CC,
288 VSTRCZ_CC,
289 VSTRS_CC,
290 VSTRSZ_CC,
291
292 // Test Data Class.
293 //
294 // Operand 0: the value to test
295 // Operand 1: the bit mask
296 TDC,
297
298 // z/OS XPLINK ADA Entry
299 // Wraps a TargetGlobalAddress that should be loaded from a function's
300 // AssociatedData Area (ADA). Tha ADA is passed to the function by the
301 // caller in the XPLink ABI defined register R5.
302 // Operand 0: the GlobalValue/External Symbol
303 // Operand 1: the ADA register
304 // Operand 2: the offset (0 for the first and 8 for the second element in the
305 // function descriptor)
306 ADA_ENTRY,
307
308 // Strict variants of scalar floating-point comparisons.
309 // Quiet and signaling versions.
310 STRICT_FCMP = ISD::FIRST_TARGET_STRICTFP_OPCODE,
311 STRICT_FCMPS,
312
313 // Strict variants of vector floating-point comparisons.
314 // Quiet and signaling versions.
315 STRICT_VFCMPE,
316 STRICT_VFCMPH,
317 STRICT_VFCMPHE,
318 STRICT_VFCMPES,
319 STRICT_VFCMPHS,
320 STRICT_VFCMPHES,
321
322 // Strict variants of VEXTEND and VROUND.
323 STRICT_VEXTEND,
324 STRICT_VROUND,
325
326 // Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or
327 // ATOMIC_LOAD_<op>.
328 //
329 // Operand 0: the address of the containing 32-bit-aligned field
330 // Operand 1: the second operand of <op>, in the high bits of an i32
331 // for everything except ATOMIC_SWAPW
332 // Operand 2: how many bits to rotate the i32 left to bring the first
333 // operand into the high bits
334 // Operand 3: the negative of operand 2, for rotating the other way
335 // Operand 4: the width of the field in bits (8 or 16)
336 ATOMIC_SWAPW = ISD::FIRST_TARGET_MEMORY_OPCODE,
337 ATOMIC_LOADW_ADD,
338 ATOMIC_LOADW_SUB,
339 ATOMIC_LOADW_AND,
340 ATOMIC_LOADW_OR,
341 ATOMIC_LOADW_XOR,
342 ATOMIC_LOADW_NAND,
343 ATOMIC_LOADW_MIN,
344 ATOMIC_LOADW_MAX,
345 ATOMIC_LOADW_UMIN,
346 ATOMIC_LOADW_UMAX,
347
348 // A wrapper around the inner loop of an ATOMIC_CMP_SWAP.
349 //
350 // Operand 0: the address of the containing 32-bit-aligned field
351 // Operand 1: the compare value, in the low bits of an i32
352 // Operand 2: the swap value, in the low bits of an i32
353 // Operand 3: how many bits to rotate the i32 left to bring the first
354 // operand into the high bits
355 // Operand 4: the negative of operand 2, for rotating the other way
356 // Operand 5: the width of the field in bits (8 or 16)
357 ATOMIC_CMP_SWAPW,
358
359 // Atomic compare-and-swap returning CC value.
360 // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
361 ATOMIC_CMP_SWAP,
362
363 // 128-bit atomic load.
364 // Val, OUTCHAIN = ATOMIC_LOAD_128(INCHAIN, ptr)
365 ATOMIC_LOAD_128,
366
367 // 128-bit atomic store.
368 // OUTCHAIN = ATOMIC_STORE_128(INCHAIN, val, ptr)
369 ATOMIC_STORE_128,
370
371 // 128-bit atomic compare-and-swap.
372 // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
373 ATOMIC_CMP_SWAP_128,
374
375 // Byte swapping load/store. Same operands as regular load/store.
376 LRV, STRV,
377
378 // Element swapping load/store. Same operands as regular load/store.
379 VLER, VSTER,
380
381 // Use STORE CLOCK FAST to store current TOD clock value.
382 STCKF,
383
384 // Prefetch from the second operand using the 4-bit control code in
385 // the first operand. The code is 1 for a load prefetch and 2 for
386 // a store prefetch.
387 PREFETCH
388};
389
390// Return true if OPCODE is some kind of PC-relative address.
391inline bool isPCREL(unsigned Opcode) {
392 return Opcode == PCREL_WRAPPER || Opcode == PCREL_OFFSET;
393}
394} // end namespace SystemZISD
395
396namespace SystemZICMP {
397// Describes whether an integer comparison needs to be signed or unsigned,
398// or whether either type is OK.
399enum {
400 Any,
401 UnsignedOnly,
402 SignedOnly
403};
404} // end namespace SystemZICMP
405
406class SystemZSubtarget;
407
408class SystemZTargetLowering : public TargetLowering {
409public:
410 explicit SystemZTargetLowering(const TargetMachine &TM,
411 const SystemZSubtarget &STI);
412
413 bool useSoftFloat() const override;
414
415 // Override TargetLowering.
416 MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
417 return MVT::i32;
418 }
419 MVT getVectorIdxTy(const DataLayout &DL) const override {
420 // Only the lower 12 bits of an element index are used, so we don't
421 // want to clobber the upper 32 bits of a GPR unnecessarily.
422 return MVT::i32;
423 }
424 TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT)
425 const override {
426 // Widen subvectors to the full width rather than promoting integer
427 // elements. This is better because:
428 //
429 // (a) it means that we can handle the ABI for passing and returning
430 // sub-128 vectors without having to handle them as legal types.
431 //
432 // (b) we don't have instructions to extend on load and truncate on store,
433 // so promoting the integers is less efficient.
434 //
435 // (c) there are no multiplication instructions for the widest integer
436 // type (v2i64).
437 if (VT.getScalarSizeInBits() % 8 == 0)
438 return TypeWidenVector;
439 return TargetLoweringBase::getPreferredVectorAction(VT);
440 }
441 unsigned
442 getNumRegisters(LLVMContext &Context, EVT VT,
443 std::optional<MVT> RegisterVT) const override {
444 // i128 inline assembly operand.
445 if (VT == MVT::i128 && RegisterVT && *RegisterVT == MVT::Untyped)
446 return 1;
447 return TargetLowering::getNumRegisters(Context, VT);
448 }
449 MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC,
450 EVT VT) const override {
451 // 128-bit single-element vector types are passed like other vectors,
452 // not like their element type.
453 if (VT.isVector() && VT.getSizeInBits() == 128 &&
454 VT.getVectorNumElements() == 1)
455 return MVT::v16i8;
456 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
457 }
458 bool isCheapToSpeculateCtlz(Type *) const override { return true; }
459 bool isCheapToSpeculateCttz(Type *) const override { return true; }
460 bool preferZeroCompareBranch() const override { return true; }
461 bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override {
462 ConstantInt* Mask = dyn_cast<ConstantInt>(Val: AndI.getOperand(i: 1));
463 return Mask && Mask->getValue().isIntN(N: 16);
464 }
465 bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
466 return VT.isScalarInteger();
467 }
468 EVT getSetCCResultType(const DataLayout &DL, LLVMContext &,
469 EVT) const override;
470 bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
471 EVT VT) const override;
472 bool isFPImmLegal(const APFloat &Imm, EVT VT,
473 bool ForCodeSize) const override;
474 bool ShouldShrinkFPConstant(EVT VT) const override {
475 // Do not shrink 64-bit FP constpool entries since LDEB is slower than
476 // LD, and having the full constant in memory enables reg/mem opcodes.
477 return VT != MVT::f64;
478 }
479 bool hasInlineStackProbe(const MachineFunction &MF) const override;
480 AtomicExpansionKind shouldCastAtomicLoadInIR(LoadInst *LI) const override;
481 AtomicExpansionKind shouldCastAtomicStoreInIR(StoreInst *SI) const override;
482 AtomicExpansionKind
483 shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const override;
484 bool isLegalICmpImmediate(int64_t Imm) const override;
485 bool isLegalAddImmediate(int64_t Imm) const override;
486 bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty,
487 unsigned AS,
488 Instruction *I = nullptr) const override;
489 bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, Align Alignment,
490 MachineMemOperand::Flags Flags,
491 unsigned *Fast) const override;
492 bool
493 findOptimalMemOpLowering(std::vector<EVT> &MemOps, unsigned Limit,
494 const MemOp &Op, unsigned DstAS, unsigned SrcAS,
495 const AttributeList &FuncAttributes) const override;
496 EVT getOptimalMemOpType(const MemOp &Op,
497 const AttributeList &FuncAttributes) const override;
498 bool isTruncateFree(Type *, Type *) const override;
499 bool isTruncateFree(EVT, EVT) const override;
500
501 bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
502 bool MathUsed) const override {
503 // Form add and sub with overflow intrinsics regardless of any extra
504 // users of the math result.
505 return VT == MVT::i32 || VT == MVT::i64;
506 }
507
508 bool shouldConsiderGEPOffsetSplit() const override { return true; }
509
510 bool shouldExpandCmpUsingSelects() const override { return true; }
511
512 const char *getTargetNodeName(unsigned Opcode) const override;
513 std::pair<unsigned, const TargetRegisterClass *>
514 getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
515 StringRef Constraint, MVT VT) const override;
516 TargetLowering::ConstraintType
517 getConstraintType(StringRef Constraint) const override;
518 TargetLowering::ConstraintWeight
519 getSingleConstraintMatchWeight(AsmOperandInfo &info,
520 const char *constraint) const override;
521 void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint,
522 std::vector<SDValue> &Ops,
523 SelectionDAG &DAG) const override;
524
525 InlineAsm::ConstraintCode
526 getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
527 if (ConstraintCode.size() == 1) {
528 switch(ConstraintCode[0]) {
529 default:
530 break;
531 case 'o':
532 return InlineAsm::ConstraintCode::o;
533 case 'Q':
534 return InlineAsm::ConstraintCode::Q;
535 case 'R':
536 return InlineAsm::ConstraintCode::R;
537 case 'S':
538 return InlineAsm::ConstraintCode::S;
539 case 'T':
540 return InlineAsm::ConstraintCode::T;
541 }
542 } else if (ConstraintCode.size() == 2 && ConstraintCode[0] == 'Z') {
543 switch (ConstraintCode[1]) {
544 default:
545 break;
546 case 'Q':
547 return InlineAsm::ConstraintCode::ZQ;
548 case 'R':
549 return InlineAsm::ConstraintCode::ZR;
550 case 'S':
551 return InlineAsm::ConstraintCode::ZS;
552 case 'T':
553 return InlineAsm::ConstraintCode::ZT;
554 }
555 }
556 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
557 }
558
559 Register getRegisterByName(const char *RegName, LLT VT,
560 const MachineFunction &MF) const override;
561
562 /// If a physical register, this returns the register that receives the
563 /// exception address on entry to an EH pad.
564 Register
565 getExceptionPointerRegister(const Constant *PersonalityFn) const override;
566
567 /// If a physical register, this returns the register that receives the
568 /// exception typeid on entry to a landing pad.
569 Register
570 getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
571
572 /// Override to support customized stack guard loading.
573 bool useLoadStackGuardNode() const override {
574 return true;
575 }
576 void insertSSPDeclarations(Module &M) const override {
577 }
578
579 MachineBasicBlock *
580 EmitInstrWithCustomInserter(MachineInstr &MI,
581 MachineBasicBlock *BB) const override;
582 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
583 void LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results,
584 SelectionDAG &DAG) const override;
585 void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
586 SelectionDAG &DAG) const override;
587 const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
588 bool allowTruncateForTailCall(Type *, Type *) const override;
589 bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
590 bool splitValueIntoRegisterParts(
591 SelectionDAG & DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
592 unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC)
593 const override;
594 SDValue joinRegisterPartsIntoValue(
595 SelectionDAG & DAG, const SDLoc &DL, const SDValue *Parts,
596 unsigned NumParts, MVT PartVT, EVT ValueVT,
597 std::optional<CallingConv::ID> CC) const override;
598 SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv,
599 bool isVarArg,
600 const SmallVectorImpl<ISD::InputArg> &Ins,
601 const SDLoc &DL, SelectionDAG &DAG,
602 SmallVectorImpl<SDValue> &InVals) const override;
603 SDValue LowerCall(CallLoweringInfo &CLI,
604 SmallVectorImpl<SDValue> &InVals) const override;
605
606 std::pair<SDValue, SDValue>
607 makeExternalCall(SDValue Chain, SelectionDAG &DAG, const char *CalleeName,
608 EVT RetVT, ArrayRef<SDValue> Ops, CallingConv::ID CallConv,
609 bool IsSigned, SDLoc DL, bool DoesNotReturn,
610 bool IsReturnValueUsed) const;
611
612 bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
613 bool isVarArg,
614 const SmallVectorImpl<ISD::OutputArg> &Outs,
615 LLVMContext &Context) const override;
616 SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
617 const SmallVectorImpl<ISD::OutputArg> &Outs,
618 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
619 SelectionDAG &DAG) const override;
620 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
621
622 /// Determine which of the bits specified in Mask are known to be either
623 /// zero or one and return them in the KnownZero/KnownOne bitsets.
624 void computeKnownBitsForTargetNode(const SDValue Op,
625 KnownBits &Known,
626 const APInt &DemandedElts,
627 const SelectionDAG &DAG,
628 unsigned Depth = 0) const override;
629
630 /// Determine the number of bits in the operation that are sign bits.
631 unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
632 const APInt &DemandedElts,
633 const SelectionDAG &DAG,
634 unsigned Depth) const override;
635
636 bool isGuaranteedNotToBeUndefOrPoisonForTargetNode(
637 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
638 bool PoisonOnly, unsigned Depth) const override;
639
640 ISD::NodeType getExtendForAtomicOps() const override {
641 return ISD::ANY_EXTEND;
642 }
643 ISD::NodeType getExtendForAtomicCmpSwapArg() const override {
644 return ISD::ZERO_EXTEND;
645 }
646
647 bool supportSwiftError() const override {
648 return true;
649 }
650
651 unsigned getStackProbeSize(const MachineFunction &MF) const;
652
653private:
654 const SystemZSubtarget &Subtarget;
655
656 // Implement LowerOperation for individual opcodes.
657 SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
658 const SDLoc &DL, EVT VT,
659 SDValue CmpOp0, SDValue CmpOp1, SDValue Chain) const;
660 SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL,
661 EVT VT, ISD::CondCode CC,
662 SDValue CmpOp0, SDValue CmpOp1,
663 SDValue Chain = SDValue(),
664 bool IsSignaling = false) const;
665 SDValue lowerSETCC(SDValue Op, SelectionDAG &DAG) const;
666 SDValue lowerSTRICT_FSETCC(SDValue Op, SelectionDAG &DAG,
667 bool IsSignaling) const;
668 SDValue lowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
669 SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
670 SDValue lowerGlobalAddress(GlobalAddressSDNode *Node,
671 SelectionDAG &DAG) const;
672 SDValue lowerTLSGetOffset(GlobalAddressSDNode *Node,
673 SelectionDAG &DAG, unsigned Opcode,
674 SDValue GOTOffset) const;
675 SDValue lowerThreadPointer(const SDLoc &DL, SelectionDAG &DAG) const;
676 SDValue lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
677 SelectionDAG &DAG) const;
678 SDValue lowerBlockAddress(BlockAddressSDNode *Node,
679 SelectionDAG &DAG) const;
680 SDValue lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const;
681 SDValue lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const;
682 SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
683 SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
684 SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
685 SDValue lowerVASTART_ELF(SDValue Op, SelectionDAG &DAG) const;
686 SDValue lowerVASTART_XPLINK(SDValue Op, SelectionDAG &DAG) const;
687 SDValue lowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
688 SDValue lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
689 SDValue lowerDYNAMIC_STACKALLOC_ELF(SDValue Op, SelectionDAG &DAG) const;
690 SDValue lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op, SelectionDAG &DAG) const;
691 SDValue lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
692 SDValue lowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
693 SDValue lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
694 SDValue lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const;
695 SDValue lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const;
696 SDValue lowerXALUO(SDValue Op, SelectionDAG &DAG) const;
697 SDValue lowerUADDSUBO_CARRY(SDValue Op, SelectionDAG &DAG) const;
698 SDValue lowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
699 SDValue lowerOR(SDValue Op, SelectionDAG &DAG) const;
700 SDValue lowerCTPOP(SDValue Op, SelectionDAG &DAG) const;
701 SDValue lowerVECREDUCE_ADD(SDValue Op, SelectionDAG &DAG) const;
702 SDValue lowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const;
703 SDValue lowerATOMIC_LDST_I128(SDValue Op, SelectionDAG &DAG) const;
704 SDValue lowerATOMIC_LOAD_OP(SDValue Op, SelectionDAG &DAG,
705 unsigned Opcode) const;
706 SDValue lowerATOMIC_LOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
707 SDValue lowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
708 SDValue lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const;
709 SDValue lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
710 SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const;
711 SDValue lowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const;
712 SDValue lowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
713 bool isVectorElementLoad(SDValue Op) const;
714 SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
715 SmallVectorImpl<SDValue> &Elems) const;
716 SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
717 SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
718 SDValue lowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
719 SDValue lowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
720 SDValue lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
721 SDValue lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const;
722 SDValue lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const;
723 SDValue lowerShift(SDValue Op, SelectionDAG &DAG, unsigned ByScalar) const;
724 SDValue lowerIS_FPCLASS(SDValue Op, SelectionDAG &DAG) const;
725 SDValue lowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const;
726 SDValue lowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const;
727
728 bool canTreatAsByteVector(EVT VT) const;
729 SDValue combineExtract(const SDLoc &DL, EVT ElemVT, EVT VecVT, SDValue OrigOp,
730 unsigned Index, DAGCombinerInfo &DCI,
731 bool Force) const;
732 SDValue combineTruncateExtract(const SDLoc &DL, EVT TruncVT, SDValue Op,
733 DAGCombinerInfo &DCI) const;
734 SDValue combineZERO_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
735 SDValue combineSIGN_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
736 SDValue combineSIGN_EXTEND_INREG(SDNode *N, DAGCombinerInfo &DCI) const;
737 SDValue combineMERGE(SDNode *N, DAGCombinerInfo &DCI) const;
738 bool canLoadStoreByteSwapped(EVT VT) const;
739 SDValue combineLOAD(SDNode *N, DAGCombinerInfo &DCI) const;
740 SDValue combineSTORE(SDNode *N, DAGCombinerInfo &DCI) const;
741 SDValue combineVECTOR_SHUFFLE(SDNode *N, DAGCombinerInfo &DCI) const;
742 SDValue combineEXTRACT_VECTOR_ELT(SDNode *N, DAGCombinerInfo &DCI) const;
743 SDValue combineJOIN_DWORDS(SDNode *N, DAGCombinerInfo &DCI) const;
744 SDValue combineFP_ROUND(SDNode *N, DAGCombinerInfo &DCI) const;
745 SDValue combineFP_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
746 SDValue combineINT_TO_FP(SDNode *N, DAGCombinerInfo &DCI) const;
747 SDValue combineBSWAP(SDNode *N, DAGCombinerInfo &DCI) const;
748 SDValue combineBR_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
749 SDValue combineSELECT_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
750 SDValue combineGET_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
751 SDValue combineIntDIVREM(SDNode *N, DAGCombinerInfo &DCI) const;
752 SDValue combineINTRINSIC(SDNode *N, DAGCombinerInfo &DCI) const;
753
754 SDValue unwrapAddress(SDValue N) const override;
755
756 // If the last instruction before MBBI in MBB was some form of COMPARE,
757 // try to replace it with a COMPARE AND BRANCH just before MBBI.
758 // CCMask and Target are the BRC-like operands for the branch.
759 // Return true if the change was made.
760 bool convertPrevCompareToBranch(MachineBasicBlock *MBB,
761 MachineBasicBlock::iterator MBBI,
762 unsigned CCMask,
763 MachineBasicBlock *Target) const;
764
765 // Implement EmitInstrWithCustomInserter for individual operation types.
766 MachineBasicBlock *emitAdjCallStack(MachineInstr &MI,
767 MachineBasicBlock *BB) const;
768 MachineBasicBlock *emitSelect(MachineInstr &MI, MachineBasicBlock *BB) const;
769 MachineBasicBlock *emitCondStore(MachineInstr &MI, MachineBasicBlock *BB,
770 unsigned StoreOpcode, unsigned STOCOpcode,
771 bool Invert) const;
772 MachineBasicBlock *emitICmp128Hi(MachineInstr &MI, MachineBasicBlock *BB,
773 bool Unsigned) const;
774 MachineBasicBlock *emitPair128(MachineInstr &MI,
775 MachineBasicBlock *MBB) const;
776 MachineBasicBlock *emitExt128(MachineInstr &MI, MachineBasicBlock *MBB,
777 bool ClearEven) const;
778 MachineBasicBlock *emitAtomicLoadBinary(MachineInstr &MI,
779 MachineBasicBlock *BB,
780 unsigned BinOpcode,
781 bool Invert = false) const;
782 MachineBasicBlock *emitAtomicLoadMinMax(MachineInstr &MI,
783 MachineBasicBlock *MBB,
784 unsigned CompareOpcode,
785 unsigned KeepOldMask) const;
786 MachineBasicBlock *emitAtomicCmpSwapW(MachineInstr &MI,
787 MachineBasicBlock *BB) const;
788 MachineBasicBlock *emitMemMemWrapper(MachineInstr &MI, MachineBasicBlock *BB,
789 unsigned Opcode,
790 bool IsMemset = false) const;
791 MachineBasicBlock *emitStringWrapper(MachineInstr &MI, MachineBasicBlock *BB,
792 unsigned Opcode) const;
793 MachineBasicBlock *emitTransactionBegin(MachineInstr &MI,
794 MachineBasicBlock *MBB,
795 unsigned Opcode, bool NoFloat) const;
796 MachineBasicBlock *emitLoadAndTestCmp0(MachineInstr &MI,
797 MachineBasicBlock *MBB,
798 unsigned Opcode) const;
799 MachineBasicBlock *emitProbedAlloca(MachineInstr &MI,
800 MachineBasicBlock *MBB) const;
801
802 SDValue getBackchainAddress(SDValue SP, SelectionDAG &DAG) const;
803
804 MachineMemOperand::Flags
805 getTargetMMOFlags(const Instruction &I) const override;
806 const TargetRegisterClass *getRepRegClassFor(MVT VT) const override;
807};
808
809struct SystemZVectorConstantInfo {
810private:
811 APInt IntBits; // The 128 bits as an integer.
812 APInt SplatBits; // Smallest splat value.
813 APInt SplatUndef; // Bits correspoding to undef operands of the BVN.
814 unsigned SplatBitSize = 0;
815 bool isFP128 = false;
816public:
817 unsigned Opcode = 0;
818 SmallVector<unsigned, 2> OpVals;
819 MVT VecVT;
820 SystemZVectorConstantInfo(APInt IntImm);
821 SystemZVectorConstantInfo(APFloat FPImm)
822 : SystemZVectorConstantInfo(FPImm.bitcastToAPInt()) {
823 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
824 }
825 SystemZVectorConstantInfo(BuildVectorSDNode *BVN);
826 bool isVectorConstantLegal(const SystemZSubtarget &Subtarget);
827};
828
829} // end namespace llvm
830
831#endif
832