1//===-- X86ShuffleDecode.cpp - X86 shuffle decode logic -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Define several functions to decode x86 specific shuffle semantics into a
10// generic vector mask.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86ShuffleDecode.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/Support/MathExtras.h"
19
20//===----------------------------------------------------------------------===//
21// Vector Mask Decoding
22//===----------------------------------------------------------------------===//
23
24namespace llvm {
25
26void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
27 // Defaults the copying the dest value.
28 ShuffleMask.push_back(Elt: 0);
29 ShuffleMask.push_back(Elt: 1);
30 ShuffleMask.push_back(Elt: 2);
31 ShuffleMask.push_back(Elt: 3);
32
33 // Decode the immediate.
34 unsigned ZMask = Imm & 15;
35 unsigned CountD = (Imm >> 4) & 3;
36 unsigned CountS = (Imm >> 6) & 3;
37
38 // CountS selects which input element to use.
39 unsigned InVal = 4 + CountS;
40 // CountD specifies which element of destination to update.
41 ShuffleMask[CountD] = InVal;
42 // ZMask zaps values, potentially overriding the CountD elt.
43 if (ZMask & 1) ShuffleMask[0] = SM_SentinelZero;
44 if (ZMask & 2) ShuffleMask[1] = SM_SentinelZero;
45 if (ZMask & 4) ShuffleMask[2] = SM_SentinelZero;
46 if (ZMask & 8) ShuffleMask[3] = SM_SentinelZero;
47}
48
49void DecodeInsertElementMask(unsigned NumElts, unsigned Idx, unsigned Len,
50 SmallVectorImpl<int> &ShuffleMask) {
51 assert((Idx + Len) <= NumElts && "Insertion out of range");
52
53 for (unsigned i = 0; i != NumElts; ++i)
54 ShuffleMask.push_back(Elt: i);
55 for (unsigned i = 0; i != Len; ++i)
56 ShuffleMask[Idx + i] = NumElts + i;
57}
58
59// <3,1> or <6,7,2,3>
60void DecodeMOVHLPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
61 for (unsigned i = NElts / 2; i != NElts; ++i)
62 ShuffleMask.push_back(Elt: NElts + i);
63
64 for (unsigned i = NElts / 2; i != NElts; ++i)
65 ShuffleMask.push_back(Elt: i);
66}
67
68// <0,2> or <0,1,4,5>
69void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
70 for (unsigned i = 0; i != NElts / 2; ++i)
71 ShuffleMask.push_back(Elt: i);
72
73 for (unsigned i = 0; i != NElts / 2; ++i)
74 ShuffleMask.push_back(Elt: NElts + i);
75}
76
77void DecodeMOVSLDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) {
78 for (int i = 0, e = NumElts / 2; i < e; ++i) {
79 ShuffleMask.push_back(Elt: 2 * i);
80 ShuffleMask.push_back(Elt: 2 * i);
81 }
82}
83
84void DecodeMOVSHDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) {
85 for (int i = 0, e = NumElts / 2; i < e; ++i) {
86 ShuffleMask.push_back(Elt: 2 * i + 1);
87 ShuffleMask.push_back(Elt: 2 * i + 1);
88 }
89}
90
91void DecodeMOVDDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) {
92 const unsigned NumLaneElts = 2;
93
94 for (unsigned l = 0; l < NumElts; l += NumLaneElts)
95 for (unsigned i = 0; i < NumLaneElts; ++i)
96 ShuffleMask.push_back(Elt: l);
97}
98
99void DecodePSLLDQMask(unsigned NumElts, unsigned Imm,
100 SmallVectorImpl<int> &ShuffleMask) {
101 const unsigned NumLaneElts = 16;
102
103 for (unsigned l = 0; l < NumElts; l += NumLaneElts)
104 for (unsigned i = 0; i < NumLaneElts; ++i) {
105 int M = SM_SentinelZero;
106 if (i >= Imm) M = i - Imm + l;
107 ShuffleMask.push_back(Elt: M);
108 }
109}
110
111void DecodePSRLDQMask(unsigned NumElts, unsigned Imm,
112 SmallVectorImpl<int> &ShuffleMask) {
113 const unsigned NumLaneElts = 16;
114
115 for (unsigned l = 0; l < NumElts; l += NumLaneElts)
116 for (unsigned i = 0; i < NumLaneElts; ++i) {
117 unsigned Base = i + Imm;
118 int M = Base + l;
119 if (Base >= NumLaneElts) M = SM_SentinelZero;
120 ShuffleMask.push_back(Elt: M);
121 }
122}
123
124void DecodePALIGNRMask(unsigned NumElts, unsigned Imm,
125 SmallVectorImpl<int> &ShuffleMask) {
126 const unsigned NumLaneElts = 16;
127
128 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
129 for (unsigned i = 0; i != NumLaneElts; ++i) {
130 unsigned Base = i + Imm;
131 // if i+imm is out of this lane then we actually need the other source
132 if (Base >= NumLaneElts) Base += NumElts - NumLaneElts;
133 ShuffleMask.push_back(Elt: Base + l);
134 }
135 }
136}
137
138void DecodeVALIGNMask(unsigned NumElts, unsigned Imm,
139 SmallVectorImpl<int> &ShuffleMask) {
140 // Not all bits of the immediate are used so mask it.
141 assert(isPowerOf2_32(NumElts) && "NumElts should be power of 2");
142 Imm = Imm & (NumElts - 1);
143 for (unsigned i = 0; i != NumElts; ++i)
144 ShuffleMask.push_back(Elt: i + Imm);
145}
146
147void DecodePSHUFMask(unsigned NumElts, unsigned ScalarBits, unsigned Imm,
148 SmallVectorImpl<int> &ShuffleMask) {
149 unsigned Size = NumElts * ScalarBits;
150 unsigned NumLanes = Size / 128;
151 if (NumLanes == 0) NumLanes = 1; // Handle MMX
152 unsigned NumLaneElts = NumElts / NumLanes;
153
154 uint32_t SplatImm = (Imm & 0xff) * 0x01010101;
155 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
156 for (unsigned i = 0; i != NumLaneElts; ++i) {
157 ShuffleMask.push_back(Elt: SplatImm % NumLaneElts + l);
158 SplatImm /= NumLaneElts;
159 }
160 }
161}
162
163void DecodePSHUFHWMask(unsigned NumElts, unsigned Imm,
164 SmallVectorImpl<int> &ShuffleMask) {
165 for (unsigned l = 0; l != NumElts; l += 8) {
166 unsigned NewImm = Imm;
167 for (unsigned i = 0, e = 4; i != e; ++i) {
168 ShuffleMask.push_back(Elt: l + i);
169 }
170 for (unsigned i = 4, e = 8; i != e; ++i) {
171 ShuffleMask.push_back(Elt: l + 4 + (NewImm & 3));
172 NewImm >>= 2;
173 }
174 }
175}
176
177void DecodePSHUFLWMask(unsigned NumElts, unsigned Imm,
178 SmallVectorImpl<int> &ShuffleMask) {
179 for (unsigned l = 0; l != NumElts; l += 8) {
180 unsigned NewImm = Imm;
181 for (unsigned i = 0, e = 4; i != e; ++i) {
182 ShuffleMask.push_back(Elt: l + (NewImm & 3));
183 NewImm >>= 2;
184 }
185 for (unsigned i = 4, e = 8; i != e; ++i) {
186 ShuffleMask.push_back(Elt: l + i);
187 }
188 }
189}
190
191void DecodePSWAPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) {
192 unsigned NumHalfElts = NumElts / 2;
193
194 for (unsigned l = 0; l != NumHalfElts; ++l)
195 ShuffleMask.push_back(Elt: l + NumHalfElts);
196 for (unsigned h = 0; h != NumHalfElts; ++h)
197 ShuffleMask.push_back(Elt: h);
198}
199
200void DecodeSHUFPMask(unsigned NumElts, unsigned ScalarBits,
201 unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
202 unsigned NumLaneElts = 128 / ScalarBits;
203
204 unsigned NewImm = Imm;
205 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
206 // each half of a lane comes from different source
207 for (unsigned s = 0; s != NumElts * 2; s += NumElts) {
208 for (unsigned i = 0; i != NumLaneElts / 2; ++i) {
209 ShuffleMask.push_back(Elt: NewImm % NumLaneElts + s + l);
210 NewImm /= NumLaneElts;
211 }
212 }
213 if (NumLaneElts == 4) NewImm = Imm; // reload imm
214 }
215}
216
217void DecodeUNPCKHMask(unsigned NumElts, unsigned ScalarBits,
218 SmallVectorImpl<int> &ShuffleMask) {
219 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
220 // independently on 128-bit lanes.
221 unsigned NumLanes = (NumElts * ScalarBits) / 128;
222 if (NumLanes == 0) NumLanes = 1; // Handle MMX
223 unsigned NumLaneElts = NumElts / NumLanes;
224
225 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
226 for (unsigned i = l + NumLaneElts / 2, e = l + NumLaneElts; i != e; ++i) {
227 ShuffleMask.push_back(Elt: i); // Reads from dest/src1
228 ShuffleMask.push_back(Elt: i + NumElts); // Reads from src/src2
229 }
230 }
231}
232
233void DecodeUNPCKLMask(unsigned NumElts, unsigned ScalarBits,
234 SmallVectorImpl<int> &ShuffleMask) {
235 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
236 // independently on 128-bit lanes.
237 unsigned NumLanes = (NumElts * ScalarBits) / 128;
238 if (NumLanes == 0 ) NumLanes = 1; // Handle MMX
239 unsigned NumLaneElts = NumElts / NumLanes;
240
241 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
242 for (unsigned i = l, e = l + NumLaneElts / 2; i != e; ++i) {
243 ShuffleMask.push_back(Elt: i); // Reads from dest/src1
244 ShuffleMask.push_back(Elt: i + NumElts); // Reads from src/src2
245 }
246 }
247}
248
249void DecodeVectorBroadcast(unsigned NumElts,
250 SmallVectorImpl<int> &ShuffleMask) {
251 ShuffleMask.append(NumInputs: NumElts, Elt: 0);
252}
253
254void DecodeSubVectorBroadcast(unsigned DstNumElts, unsigned SrcNumElts,
255 SmallVectorImpl<int> &ShuffleMask) {
256 unsigned Scale = DstNumElts / SrcNumElts;
257
258 for (unsigned i = 0; i != Scale; ++i)
259 for (unsigned j = 0; j != SrcNumElts; ++j)
260 ShuffleMask.push_back(Elt: j);
261}
262
263void decodeVSHUF64x2FamilyMask(unsigned NumElts, unsigned ScalarSize,
264 unsigned Imm,
265 SmallVectorImpl<int> &ShuffleMask) {
266 unsigned NumElementsInLane = 128 / ScalarSize;
267 unsigned NumLanes = NumElts / NumElementsInLane;
268
269 for (unsigned l = 0; l != NumElts; l += NumElementsInLane) {
270 unsigned Index = (Imm % NumLanes) * NumElementsInLane;
271 Imm /= NumLanes; // Discard the bits we just used.
272 // We actually need the other source.
273 if (l >= (NumElts / 2))
274 Index += NumElts;
275 for (unsigned i = 0; i != NumElementsInLane; ++i)
276 ShuffleMask.push_back(Elt: Index + i);
277 }
278}
279
280void DecodeVPERM2X128Mask(unsigned NumElts, unsigned Imm,
281 SmallVectorImpl<int> &ShuffleMask) {
282 unsigned HalfSize = NumElts / 2;
283
284 for (unsigned l = 0; l != 2; ++l) {
285 unsigned HalfMask = Imm >> (l * 4);
286 unsigned HalfBegin = (HalfMask & 0x3) * HalfSize;
287 for (unsigned i = HalfBegin, e = HalfBegin + HalfSize; i != e; ++i)
288 ShuffleMask.push_back(Elt: (HalfMask & 8) ? SM_SentinelZero : (int)i);
289 }
290}
291
292void DecodePSHUFBMask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
293 SmallVectorImpl<int> &ShuffleMask) {
294 for (int i = 0, e = RawMask.size(); i < e; ++i) {
295 uint64_t M = RawMask[i];
296 if (UndefElts[i]) {
297 ShuffleMask.push_back(Elt: SM_SentinelUndef);
298 continue;
299 }
300 // For 256/512-bit vectors the base of the shuffle is the 128-bit
301 // subvector we're inside.
302 int Base = (i / 16) * 16;
303 // If the high bit (7) of the byte is set, the element is zeroed.
304 if (M & (1 << 7))
305 ShuffleMask.push_back(Elt: SM_SentinelZero);
306 else {
307 // Only the least significant 4 bits of the byte are used.
308 int Index = Base + (M & 0xf);
309 ShuffleMask.push_back(Elt: Index);
310 }
311 }
312}
313
314void DecodeBLENDMask(unsigned NumElts, unsigned Imm,
315 SmallVectorImpl<int> &ShuffleMask) {
316 for (unsigned i = 0; i < NumElts; ++i) {
317 // If there are more than 8 elements in the vector, then any immediate blend
318 // mask wraps around.
319 unsigned Bit = i % 8;
320 ShuffleMask.push_back(Elt: ((Imm >> Bit) & 1) ? NumElts + i : i);
321 }
322}
323
324void DecodeVPPERMMask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
325 SmallVectorImpl<int> &ShuffleMask) {
326 assert(RawMask.size() == 16 && "Illegal VPPERM shuffle mask size");
327
328 // VPPERM Operation
329 // Bits[4:0] - Byte Index (0 - 31)
330 // Bits[7:5] - Permute Operation
331 //
332 // Permute Operation:
333 // 0 - Source byte (no logical operation).
334 // 1 - Invert source byte.
335 // 2 - Bit reverse of source byte.
336 // 3 - Bit reverse of inverted source byte.
337 // 4 - 00h (zero - fill).
338 // 5 - FFh (ones - fill).
339 // 6 - Most significant bit of source byte replicated in all bit positions.
340 // 7 - Invert most significant bit of source byte and replicate in all bit positions.
341 for (int i = 0, e = RawMask.size(); i < e; ++i) {
342 if (UndefElts[i]) {
343 ShuffleMask.push_back(Elt: SM_SentinelUndef);
344 continue;
345 }
346
347 uint64_t M = RawMask[i];
348 uint64_t PermuteOp = (M >> 5) & 0x7;
349 if (PermuteOp == 4) {
350 ShuffleMask.push_back(Elt: SM_SentinelZero);
351 continue;
352 }
353 if (PermuteOp != 0) {
354 ShuffleMask.clear();
355 return;
356 }
357
358 uint64_t Index = M & 0x1F;
359 ShuffleMask.push_back(Elt: (int)Index);
360 }
361}
362
363void DecodeVPERMMask(unsigned NumElts, unsigned Imm,
364 SmallVectorImpl<int> &ShuffleMask) {
365 for (unsigned l = 0; l != NumElts; l += 4)
366 for (unsigned i = 0; i != 4; ++i)
367 ShuffleMask.push_back(Elt: l + ((Imm >> (2 * i)) & 3));
368}
369
370void DecodeZeroExtendMask(unsigned SrcScalarBits, unsigned DstScalarBits,
371 unsigned NumDstElts, bool IsAnyExtend,
372 SmallVectorImpl<int> &ShuffleMask) {
373 unsigned Scale = DstScalarBits / SrcScalarBits;
374 assert(SrcScalarBits < DstScalarBits &&
375 "Expected zero extension mask to increase scalar size");
376
377 int Sentinel = IsAnyExtend ? SM_SentinelUndef : SM_SentinelZero;
378 for (unsigned i = 0; i != NumDstElts; i++) {
379 ShuffleMask.push_back(Elt: i);
380 ShuffleMask.append(NumInputs: Scale - 1, Elt: Sentinel);
381 }
382}
383
384void DecodeZeroMoveLowMask(unsigned NumElts,
385 SmallVectorImpl<int> &ShuffleMask) {
386 ShuffleMask.push_back(Elt: 0);
387 ShuffleMask.append(NumInputs: NumElts - 1, Elt: SM_SentinelZero);
388}
389
390void DecodeScalarMoveMask(unsigned NumElts, bool IsLoad,
391 SmallVectorImpl<int> &ShuffleMask) {
392 // First element comes from the first element of second source.
393 // Remaining elements: Load zero extends / Move copies from first source.
394 ShuffleMask.push_back(Elt: NumElts);
395 for (unsigned i = 1; i < NumElts; i++)
396 ShuffleMask.push_back(Elt: IsLoad ? static_cast<int>(SM_SentinelZero) : i);
397}
398
399void DecodeEXTRQIMask(unsigned NumElts, unsigned EltSize, int Len, int Idx,
400 SmallVectorImpl<int> &ShuffleMask) {
401 unsigned HalfElts = NumElts / 2;
402
403 // Only the bottom 6 bits are valid for each immediate.
404 Len &= 0x3F;
405 Idx &= 0x3F;
406
407 // We can only decode this bit extraction instruction as a shuffle if both the
408 // length and index work with whole elements.
409 if (0 != (Len % EltSize) || 0 != (Idx % EltSize))
410 return;
411
412 // A length of zero is equivalent to a bit length of 64.
413 if (Len == 0)
414 Len = 64;
415
416 // If the length + index exceeds the bottom 64 bits the result is undefined.
417 if ((Len + Idx) > 64) {
418 ShuffleMask.append(NumInputs: NumElts, Elt: SM_SentinelUndef);
419 return;
420 }
421
422 // Convert index and index to work with elements.
423 Len /= EltSize;
424 Idx /= EltSize;
425
426 // EXTRQ: Extract Len elements starting from Idx. Zero pad the remaining
427 // elements of the lower 64-bits. The upper 64-bits are undefined.
428 for (int i = 0; i != Len; ++i)
429 ShuffleMask.push_back(Elt: i + Idx);
430 for (int i = Len; i != (int)HalfElts; ++i)
431 ShuffleMask.push_back(Elt: SM_SentinelZero);
432 for (int i = HalfElts; i != (int)NumElts; ++i)
433 ShuffleMask.push_back(Elt: SM_SentinelUndef);
434}
435
436void DecodeINSERTQIMask(unsigned NumElts, unsigned EltSize, int Len, int Idx,
437 SmallVectorImpl<int> &ShuffleMask) {
438 unsigned HalfElts = NumElts / 2;
439
440 // Only the bottom 6 bits are valid for each immediate.
441 Len &= 0x3F;
442 Idx &= 0x3F;
443
444 // We can only decode this bit insertion instruction as a shuffle if both the
445 // length and index work with whole elements.
446 if (0 != (Len % EltSize) || 0 != (Idx % EltSize))
447 return;
448
449 // A length of zero is equivalent to a bit length of 64.
450 if (Len == 0)
451 Len = 64;
452
453 // If the length + index exceeds the bottom 64 bits the result is undefined.
454 if ((Len + Idx) > 64) {
455 ShuffleMask.append(NumInputs: NumElts, Elt: SM_SentinelUndef);
456 return;
457 }
458
459 // Convert index and index to work with elements.
460 Len /= EltSize;
461 Idx /= EltSize;
462
463 // INSERTQ: Extract lowest Len elements from lower half of second source and
464 // insert over first source starting at Idx element. The upper 64-bits are
465 // undefined.
466 for (int i = 0; i != Idx; ++i)
467 ShuffleMask.push_back(Elt: i);
468 for (int i = 0; i != Len; ++i)
469 ShuffleMask.push_back(Elt: i + NumElts);
470 for (int i = Idx + Len; i != (int)HalfElts; ++i)
471 ShuffleMask.push_back(Elt: i);
472 for (int i = HalfElts; i != (int)NumElts; ++i)
473 ShuffleMask.push_back(Elt: SM_SentinelUndef);
474}
475
476void DecodeVPERMILPMask(unsigned NumElts, unsigned ScalarBits,
477 ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
478 SmallVectorImpl<int> &ShuffleMask) {
479 unsigned VecSize = NumElts * ScalarBits;
480 unsigned NumLanes = VecSize / 128;
481 unsigned NumEltsPerLane = NumElts / NumLanes;
482 assert((VecSize == 128 || VecSize == 256 || VecSize == 512) &&
483 "Unexpected vector size");
484 assert((ScalarBits == 32 || ScalarBits == 64) && "Unexpected element size");
485
486 for (unsigned i = 0, e = RawMask.size(); i < e; ++i) {
487 if (UndefElts[i]) {
488 ShuffleMask.push_back(Elt: SM_SentinelUndef);
489 continue;
490 }
491 uint64_t M = RawMask[i];
492 M = (ScalarBits == 64 ? ((M >> 1) & 0x1) : (M & 0x3));
493 unsigned LaneOffset = i & ~(NumEltsPerLane - 1);
494 ShuffleMask.push_back(Elt: (int)(LaneOffset + M));
495 }
496}
497
498void DecodeVPERMIL2PMask(unsigned NumElts, unsigned ScalarBits, unsigned M2Z,
499 ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
500 SmallVectorImpl<int> &ShuffleMask) {
501 unsigned VecSize = NumElts * ScalarBits;
502 unsigned NumLanes = VecSize / 128;
503 unsigned NumEltsPerLane = NumElts / NumLanes;
504 assert((VecSize == 128 || VecSize == 256) && "Unexpected vector size");
505 assert((ScalarBits == 32 || ScalarBits == 64) && "Unexpected element size");
506 assert((NumElts == RawMask.size()) && "Unexpected mask size");
507
508 for (unsigned i = 0, e = RawMask.size(); i < e; ++i) {
509 if (UndefElts[i]) {
510 ShuffleMask.push_back(Elt: SM_SentinelUndef);
511 continue;
512 }
513
514 // VPERMIL2 Operation.
515 // Bits[3] - Match Bit.
516 // Bits[2:1] - (Per Lane) PD Shuffle Mask.
517 // Bits[2:0] - (Per Lane) PS Shuffle Mask.
518 uint64_t Selector = RawMask[i];
519 unsigned MatchBit = (Selector >> 3) & 0x1;
520
521 // M2Z[0:1] MatchBit
522 // 0Xb X Source selected by Selector index.
523 // 10b 0 Source selected by Selector index.
524 // 10b 1 Zero.
525 // 11b 0 Zero.
526 // 11b 1 Source selected by Selector index.
527 if ((M2Z & 0x2) != 0 && MatchBit != (M2Z & 0x1)) {
528 ShuffleMask.push_back(Elt: SM_SentinelZero);
529 continue;
530 }
531
532 int Index = i & ~(NumEltsPerLane - 1);
533 if (ScalarBits == 64)
534 Index += (Selector >> 1) & 0x1;
535 else
536 Index += Selector & 0x3;
537
538 int Src = (Selector >> 2) & 0x1;
539 Index += Src * NumElts;
540 ShuffleMask.push_back(Elt: Index);
541 }
542}
543
544void DecodeVPERMVMask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
545 SmallVectorImpl<int> &ShuffleMask) {
546 uint64_t EltMaskSize = RawMask.size() - 1;
547 for (int i = 0, e = RawMask.size(); i != e; ++i) {
548 if (UndefElts[i]) {
549 ShuffleMask.push_back(Elt: SM_SentinelUndef);
550 continue;
551 }
552 uint64_t M = RawMask[i];
553 M &= EltMaskSize;
554 ShuffleMask.push_back(Elt: (int)M);
555 }
556}
557
558void DecodeVPERMV3Mask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
559 SmallVectorImpl<int> &ShuffleMask) {
560 uint64_t EltMaskSize = (RawMask.size() * 2) - 1;
561 for (int i = 0, e = RawMask.size(); i != e; ++i) {
562 if (UndefElts[i]) {
563 ShuffleMask.push_back(Elt: SM_SentinelUndef);
564 continue;
565 }
566 uint64_t M = RawMask[i];
567 M &= EltMaskSize;
568 ShuffleMask.push_back(Elt: (int)M);
569 }
570}
571
572} // namespace llvm
573