1//===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the X86 specific subclass of TargetSubtargetInfo.
10//
11//===----------------------------------------------------------------------===//
12
13#include "X86Subtarget.h"
14#include "GISel/X86CallLowering.h"
15#include "GISel/X86LegalizerInfo.h"
16#include "GISel/X86RegisterBankInfo.h"
17#include "MCTargetDesc/X86BaseInfo.h"
18#include "X86.h"
19#include "X86MacroFusion.h"
20#include "X86TargetMachine.h"
21#include "llvm/CodeGen/GlobalISel/CallLowering.h"
22#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
23#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
24#include "llvm/CodeGen/ScheduleDAGMutation.h"
25#include "llvm/IR/Attributes.h"
26#include "llvm/IR/ConstantRange.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/GlobalValue.h"
29#include "llvm/IR/Module.h"
30#include "llvm/Support/Casting.h"
31#include "llvm/Support/CodeGen.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/TargetParser/Triple.h"
38
39#if defined(_MSC_VER)
40#include <intrin.h>
41#endif
42
43using namespace llvm;
44
45#define DEBUG_TYPE "subtarget"
46
47#define GET_SUBTARGETINFO_TARGET_DESC
48#define GET_SUBTARGETINFO_CTOR
49#include "X86GenSubtargetInfo.inc"
50
51// Temporary option to control early if-conversion for x86 while adding machine
52// models.
53static cl::opt<bool>
54X86EarlyIfConv("x86-early-ifcvt", cl::Hidden,
55 cl::desc("Enable early if-conversion on X86"));
56
57
58/// Classify a blockaddress reference for the current subtarget according to how
59/// we should reference it in a non-pcrel context.
60unsigned char X86Subtarget::classifyBlockAddressReference() const {
61 return classifyLocalReference(GV: nullptr);
62}
63
64/// Classify a global variable reference for the current subtarget according to
65/// how we should reference it in a non-pcrel context.
66unsigned char
67X86Subtarget::classifyGlobalReference(const GlobalValue *GV) const {
68 return classifyGlobalReference(GV, M: *GV->getParent());
69}
70
71unsigned char
72X86Subtarget::classifyLocalReference(const GlobalValue *GV) const {
73 CodeModel::Model CM = TM.getCodeModel();
74 // Tagged globals have non-zero upper bits, which makes direct references
75 // require a 64-bit immediate. With the small/medium code models this causes
76 // relocation errors, so we go through the GOT instead.
77 if (AllowTaggedGlobals && CM != CodeModel::Large && GV && !isa<Function>(Val: GV))
78 return X86II::MO_GOTPCREL_NORELAX;
79
80 // If we're not PIC, it's not very interesting.
81 if (!isPositionIndependent())
82 return X86II::MO_NO_FLAG;
83
84 if (is64Bit()) {
85 // 64-bit ELF PIC local references may use GOTOFF relocations.
86 if (isTargetELF()) {
87 assert(CM != CodeModel::Tiny &&
88 "Tiny codesize model not supported on X86");
89 // In the large code model, all text is far from any global data, so we
90 // use GOTOFF.
91 if (CM == CodeModel::Large)
92 return X86II::MO_GOTOFF;
93 // Large GlobalValues use GOTOFF, otherwise use RIP-rel access.
94 if (GV)
95 return TM.isLargeGlobalValue(GV) ? X86II::MO_GOTOFF : X86II::MO_NO_FLAG;
96 // GV == nullptr is for all other non-GlobalValue global data like the
97 // constant pool, jump tables, labels, etc. The small and medium code
98 // models treat these as accessible with a RIP-rel access.
99 return X86II::MO_NO_FLAG;
100 }
101
102 // Otherwise, this is either a RIP-relative reference or a 64-bit movabsq,
103 // both of which use MO_NO_FLAG.
104 return X86II::MO_NO_FLAG;
105 }
106
107 // The COFF dynamic linker just patches the executable sections.
108 if (isTargetCOFF())
109 return X86II::MO_NO_FLAG;
110
111 if (isTargetDarwin()) {
112 // 32 bit macho has no relocation for a-b if a is undefined, even if
113 // b is in the section that is being relocated.
114 // This means we have to use o load even for GVs that are known to be
115 // local to the dso.
116 if (GV && (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
117 return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
118
119 return X86II::MO_PIC_BASE_OFFSET;
120 }
121
122 return X86II::MO_GOTOFF;
123}
124
125unsigned char X86Subtarget::classifyGlobalReference(const GlobalValue *GV,
126 const Module &M) const {
127 // The static large model never uses stubs.
128 if (TM.getCodeModel() == CodeModel::Large && !isPositionIndependent())
129 return X86II::MO_NO_FLAG;
130
131 // Absolute symbols can be referenced directly.
132 if (GV) {
133 if (std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange()) {
134 // See if we can use the 8-bit immediate form. Note that some instructions
135 // will sign extend the immediate operand, so to be conservative we only
136 // accept the range [0,128).
137 if (CR->getUnsignedMax().ult(RHS: 128))
138 return X86II::MO_ABS8;
139 else
140 return X86II::MO_NO_FLAG;
141 }
142 }
143
144 if (TM.shouldAssumeDSOLocal(GV))
145 return classifyLocalReference(GV);
146
147 if (isTargetCOFF()) {
148 // ExternalSymbolSDNode like _tls_index.
149 if (!GV)
150 return X86II::MO_NO_FLAG;
151 if (GV->hasDLLImportStorageClass())
152 return X86II::MO_DLLIMPORT;
153 return X86II::MO_COFFSTUB;
154 }
155 // Some JIT users use *-win32-elf triples; these shouldn't use GOT tables.
156 if (isOSWindows())
157 return X86II::MO_NO_FLAG;
158
159 if (is64Bit()) {
160 // ELF supports a large, truly PIC code model with non-PC relative GOT
161 // references. Other object file formats do not. Use the no-flag, 64-bit
162 // reference for them.
163 if (TM.getCodeModel() == CodeModel::Large)
164 return isTargetELF() ? X86II::MO_GOT : X86II::MO_NO_FLAG;
165 // Tagged globals have non-zero upper bits, which makes direct references
166 // require a 64-bit immediate. So we can't let the linker relax the
167 // relocation to a 32-bit RIP-relative direct reference.
168 if (AllowTaggedGlobals && GV && !isa<Function>(Val: GV))
169 return X86II::MO_GOTPCREL_NORELAX;
170 return X86II::MO_GOTPCREL;
171 }
172
173 if (isTargetDarwin()) {
174 if (!isPositionIndependent())
175 return X86II::MO_DARWIN_NONLAZY;
176 return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
177 }
178
179 // 32-bit ELF references GlobalAddress directly in static relocation model.
180 // We cannot use MO_GOT because EBX may not be set up.
181 if (TM.getRelocationModel() == Reloc::Static)
182 return X86II::MO_NO_FLAG;
183 return X86II::MO_GOT;
184}
185
186unsigned char
187X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV) const {
188 return classifyGlobalFunctionReference(GV, M: *GV->getParent());
189}
190
191unsigned char
192X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV,
193 const Module &M) const {
194 if (TM.shouldAssumeDSOLocal(GV))
195 return X86II::MO_NO_FLAG;
196
197 // Functions on COFF can be non-DSO local for three reasons:
198 // - They are intrinsic functions (!GV)
199 // - They are marked dllimport
200 // - They are extern_weak, and a stub is needed
201 if (isTargetCOFF()) {
202 if (!GV)
203 return X86II::MO_NO_FLAG;
204 if (GV->hasDLLImportStorageClass())
205 return X86II::MO_DLLIMPORT;
206 return X86II::MO_COFFSTUB;
207 }
208
209 const Function *F = dyn_cast_or_null<Function>(Val: GV);
210
211 if (isTargetELF()) {
212 if (is64Bit() && F && (CallingConv::X86_RegCall == F->getCallingConv()))
213 // According to psABI, PLT stub clobbers XMM8-XMM15.
214 // In Regcall calling convention those registers are used for passing
215 // parameters. Thus we need to prevent lazy binding in Regcall.
216 return X86II::MO_GOTPCREL;
217 // If PLT must be avoided then the call should be via GOTPCREL.
218 if (((F && F->hasFnAttribute(Kind: Attribute::NonLazyBind)) ||
219 (!F && M.getRtLibUseGOT())) &&
220 is64Bit())
221 return X86II::MO_GOTPCREL;
222 // Reference ExternalSymbol directly in static relocation model.
223 if (!is64Bit() && !GV && TM.getRelocationModel() == Reloc::Static)
224 return X86II::MO_NO_FLAG;
225 return X86II::MO_PLT;
226 }
227
228 if (is64Bit()) {
229 if (F && F->hasFnAttribute(Kind: Attribute::NonLazyBind))
230 // If the function is marked as non-lazy, generate an indirect call
231 // which loads from the GOT directly. This avoids runtime overhead
232 // at the cost of eager binding (and one extra byte of encoding).
233 return X86II::MO_GOTPCREL;
234 return X86II::MO_NO_FLAG;
235 }
236
237 return X86II::MO_NO_FLAG;
238}
239
240/// Return true if the subtarget allows calls to immediate address.
241bool X86Subtarget::isLegalToCallImmediateAddr() const {
242 // FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32
243 // but WinCOFFObjectWriter::RecordRelocation cannot emit them. Once it does,
244 // the following check for Win32 should be removed.
245 if (Is64Bit || isTargetWin32())
246 return false;
247 return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
248}
249
250void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef TuneCPU,
251 StringRef FS) {
252 if (CPU.empty())
253 CPU = "generic";
254
255 if (TuneCPU.empty())
256 TuneCPU = "i586"; // FIXME: "generic" is more modern than llc tests expect.
257
258 std::string FullFS = X86_MC::ParseX86Triple(TT: TargetTriple);
259 assert(!FullFS.empty() && "Failed to parse X86 triple");
260
261 if (!FS.empty())
262 FullFS = (Twine(FullFS) + "," + FS).str();
263
264 // Attach EVEX512 feature when we have AVX512 features with a default CPU.
265 // "pentium4" is default CPU for 32-bit targets.
266 // "x86-64" is default CPU for 64-bit targets.
267 if (CPU == "generic" || CPU == "pentium4" || CPU == "x86-64") {
268 size_t posNoEVEX512 = FS.rfind(Str: "-evex512");
269 // Make sure we won't be cheated by "-avx512fp16".
270 size_t posNoAVX512F =
271 FS.ends_with(Suffix: "-avx512f") ? FS.size() - 8 : FS.rfind(Str: "-avx512f,");
272 size_t posEVEX512 = FS.rfind(Str: "+evex512");
273 // Any AVX512XXX will enable AVX512F.
274 size_t posAVX512F = FS.rfind(Str: "+avx512");
275
276 if (posAVX512F != StringRef::npos &&
277 (posNoAVX512F == StringRef::npos || posNoAVX512F < posAVX512F))
278 if (posEVEX512 == StringRef::npos && posNoEVEX512 == StringRef::npos)
279 FullFS += ",+evex512";
280 }
281
282 // Parse features string and set the CPU.
283 ParseSubtargetFeatures(CPU, TuneCPU, FS: FullFS);
284
285 // All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of
286 // 16-bytes and under that are reasonably fast. These features were
287 // introduced with Intel's Nehalem/Silvermont and AMD's Family10h
288 // micro-architectures respectively.
289 if (hasSSE42() || hasSSE4A())
290 IsUnalignedMem16Slow = false;
291
292 LLVM_DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
293 << ", MMX " << HasMMX << ", 64bit " << HasX86_64 << "\n");
294 if (Is64Bit && !HasX86_64)
295 report_fatal_error(reason: "64-bit code requested on a subtarget that doesn't "
296 "support it!");
297
298 // Stack alignment is 16 bytes on Darwin, Linux, kFreeBSD, NaCl, and for all
299 // 64-bit targets. On Solaris (32-bit), stack alignment is 4 bytes
300 // following the i386 psABI, while on Illumos it is always 16 bytes.
301 if (StackAlignOverride)
302 stackAlignment = *StackAlignOverride;
303 else if (isTargetDarwin() || isTargetLinux() || isTargetKFreeBSD() ||
304 isTargetNaCl() || Is64Bit)
305 stackAlignment = Align(16);
306
307 // Consume the vector width attribute or apply any target specific limit.
308 if (PreferVectorWidthOverride)
309 PreferVectorWidth = PreferVectorWidthOverride;
310 else if (Prefer128Bit)
311 PreferVectorWidth = 128;
312 else if (Prefer256Bit)
313 PreferVectorWidth = 256;
314}
315
316X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU,
317 StringRef TuneCPU,
318 StringRef FS) {
319 initSubtargetFeatures(CPU, TuneCPU, FS);
320 return *this;
321}
322
323X86Subtarget::X86Subtarget(const Triple &TT, StringRef CPU, StringRef TuneCPU,
324 StringRef FS, const X86TargetMachine &TM,
325 MaybeAlign StackAlignOverride,
326 unsigned PreferVectorWidthOverride,
327 unsigned RequiredVectorWidth)
328 : X86GenSubtargetInfo(TT, CPU, TuneCPU, FS),
329 PICStyle(PICStyles::Style::None), TM(TM), TargetTriple(TT),
330 StackAlignOverride(StackAlignOverride),
331 PreferVectorWidthOverride(PreferVectorWidthOverride),
332 RequiredVectorWidth(RequiredVectorWidth),
333 InstrInfo(initializeSubtargetDependencies(CPU, TuneCPU, FS)),
334 TLInfo(TM, *this), FrameLowering(*this, getStackAlignment()) {
335 // Determine the PICStyle based on the target selected.
336 if (!isPositionIndependent() || TM.getCodeModel() == CodeModel::Large)
337 // With the large code model, None forces all memory accesses to be indirect
338 // rather than RIP-relative.
339 setPICStyle(PICStyles::Style::None);
340 else if (is64Bit())
341 setPICStyle(PICStyles::Style::RIPRel);
342 else if (isTargetCOFF())
343 setPICStyle(PICStyles::Style::None);
344 else if (isTargetDarwin())
345 setPICStyle(PICStyles::Style::StubPIC);
346 else if (isTargetELF())
347 setPICStyle(PICStyles::Style::GOT);
348
349 CallLoweringInfo.reset(p: new X86CallLowering(*getTargetLowering()));
350 Legalizer.reset(p: new X86LegalizerInfo(*this, TM));
351
352 auto *RBI = new X86RegisterBankInfo(*getRegisterInfo());
353 RegBankInfo.reset(p: RBI);
354 InstSelector.reset(p: createX86InstructionSelector(TM, *this, *RBI));
355}
356
357const CallLowering *X86Subtarget::getCallLowering() const {
358 return CallLoweringInfo.get();
359}
360
361InstructionSelector *X86Subtarget::getInstructionSelector() const {
362 return InstSelector.get();
363}
364
365const LegalizerInfo *X86Subtarget::getLegalizerInfo() const {
366 return Legalizer.get();
367}
368
369const RegisterBankInfo *X86Subtarget::getRegBankInfo() const {
370 return RegBankInfo.get();
371}
372
373bool X86Subtarget::enableEarlyIfConversion() const {
374 return canUseCMOV() && X86EarlyIfConv;
375}
376
377void X86Subtarget::getPostRAMutations(
378 std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
379 Mutations.push_back(x: createX86MacroFusionDAGMutation());
380}
381
382bool X86Subtarget::isPositionIndependent() const {
383 return TM.isPositionIndependent();
384}
385