1 | //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This pass transforms simple global variables that never have their address |
10 | // taken. If obviously true, it marks read/write globals as constant, deletes |
11 | // variables only stored to, etc. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "llvm/Transforms/IPO/GlobalOpt.h" |
16 | #include "llvm/ADT/DenseMap.h" |
17 | #include "llvm/ADT/STLExtras.h" |
18 | #include "llvm/ADT/SmallPtrSet.h" |
19 | #include "llvm/ADT/SmallVector.h" |
20 | #include "llvm/ADT/Statistic.h" |
21 | #include "llvm/ADT/Twine.h" |
22 | #include "llvm/ADT/iterator_range.h" |
23 | #include "llvm/Analysis/BlockFrequencyInfo.h" |
24 | #include "llvm/Analysis/ConstantFolding.h" |
25 | #include "llvm/Analysis/MemoryBuiltins.h" |
26 | #include "llvm/Analysis/TargetLibraryInfo.h" |
27 | #include "llvm/Analysis/TargetTransformInfo.h" |
28 | #include "llvm/Analysis/ValueTracking.h" |
29 | #include "llvm/BinaryFormat/Dwarf.h" |
30 | #include "llvm/IR/Attributes.h" |
31 | #include "llvm/IR/BasicBlock.h" |
32 | #include "llvm/IR/CallingConv.h" |
33 | #include "llvm/IR/Constant.h" |
34 | #include "llvm/IR/Constants.h" |
35 | #include "llvm/IR/DataLayout.h" |
36 | #include "llvm/IR/DebugInfoMetadata.h" |
37 | #include "llvm/IR/DerivedTypes.h" |
38 | #include "llvm/IR/Dominators.h" |
39 | #include "llvm/IR/Function.h" |
40 | #include "llvm/IR/GlobalAlias.h" |
41 | #include "llvm/IR/GlobalValue.h" |
42 | #include "llvm/IR/GlobalVariable.h" |
43 | #include "llvm/IR/IRBuilder.h" |
44 | #include "llvm/IR/InstrTypes.h" |
45 | #include "llvm/IR/Instruction.h" |
46 | #include "llvm/IR/Instructions.h" |
47 | #include "llvm/IR/IntrinsicInst.h" |
48 | #include "llvm/IR/Module.h" |
49 | #include "llvm/IR/Operator.h" |
50 | #include "llvm/IR/Type.h" |
51 | #include "llvm/IR/Use.h" |
52 | #include "llvm/IR/User.h" |
53 | #include "llvm/IR/Value.h" |
54 | #include "llvm/IR/ValueHandle.h" |
55 | #include "llvm/Support/AtomicOrdering.h" |
56 | #include "llvm/Support/Casting.h" |
57 | #include "llvm/Support/CommandLine.h" |
58 | #include "llvm/Support/Debug.h" |
59 | #include "llvm/Support/ErrorHandling.h" |
60 | #include "llvm/Support/raw_ostream.h" |
61 | #include "llvm/Transforms/IPO.h" |
62 | #include "llvm/Transforms/Utils/CtorUtils.h" |
63 | #include "llvm/Transforms/Utils/Evaluator.h" |
64 | #include "llvm/Transforms/Utils/GlobalStatus.h" |
65 | #include "llvm/Transforms/Utils/Local.h" |
66 | #include <cassert> |
67 | #include <cstdint> |
68 | #include <optional> |
69 | #include <utility> |
70 | #include <vector> |
71 | |
72 | using namespace llvm; |
73 | |
74 | #define DEBUG_TYPE "globalopt" |
75 | |
76 | STATISTIC(NumMarked , "Number of globals marked constant" ); |
77 | STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr" ); |
78 | STATISTIC(NumSRA , "Number of aggregate globals broken into scalars" ); |
79 | STATISTIC(NumSubstitute,"Number of globals with initializers stored into them" ); |
80 | STATISTIC(NumDeleted , "Number of globals deleted" ); |
81 | STATISTIC(NumGlobUses , "Number of global uses devirtualized" ); |
82 | STATISTIC(NumLocalized , "Number of globals localized" ); |
83 | STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans" ); |
84 | STATISTIC(NumFastCallFns , "Number of functions converted to fastcc" ); |
85 | STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated" ); |
86 | STATISTIC(NumNestRemoved , "Number of nest attributes removed" ); |
87 | STATISTIC(NumAliasesResolved, "Number of global aliases resolved" ); |
88 | STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated" ); |
89 | STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed" ); |
90 | STATISTIC(NumAtExitRemoved, "Number of atexit handlers removed" ); |
91 | STATISTIC(NumInternalFunc, "Number of internal functions" ); |
92 | STATISTIC(NumColdCC, "Number of functions marked coldcc" ); |
93 | STATISTIC(NumIFuncsResolved, "Number of statically resolved IFuncs" ); |
94 | STATISTIC(NumIFuncsDeleted, "Number of IFuncs removed" ); |
95 | |
96 | static cl::opt<bool> |
97 | EnableColdCCStressTest("enable-coldcc-stress-test" , |
98 | cl::desc("Enable stress test of coldcc by adding " |
99 | "calling conv to all internal functions." ), |
100 | cl::init(Val: false), cl::Hidden); |
101 | |
102 | static cl::opt<int> ColdCCRelFreq( |
103 | "coldcc-rel-freq" , cl::Hidden, cl::init(Val: 2), |
104 | cl::desc( |
105 | "Maximum block frequency, expressed as a percentage of caller's " |
106 | "entry frequency, for a call site to be considered cold for enabling" |
107 | "coldcc" )); |
108 | |
109 | /// Is this global variable possibly used by a leak checker as a root? If so, |
110 | /// we might not really want to eliminate the stores to it. |
111 | static bool isLeakCheckerRoot(GlobalVariable *GV) { |
112 | // A global variable is a root if it is a pointer, or could plausibly contain |
113 | // a pointer. There are two challenges; one is that we could have a struct |
114 | // the has an inner member which is a pointer. We recurse through the type to |
115 | // detect these (up to a point). The other is that we may actually be a union |
116 | // of a pointer and another type, and so our LLVM type is an integer which |
117 | // gets converted into a pointer, or our type is an [i8 x #] with a pointer |
118 | // potentially contained here. |
119 | |
120 | if (GV->hasPrivateLinkage()) |
121 | return false; |
122 | |
123 | SmallVector<Type *, 4> Types; |
124 | Types.push_back(Elt: GV->getValueType()); |
125 | |
126 | unsigned Limit = 20; |
127 | do { |
128 | Type *Ty = Types.pop_back_val(); |
129 | switch (Ty->getTypeID()) { |
130 | default: break; |
131 | case Type::PointerTyID: |
132 | return true; |
133 | case Type::FixedVectorTyID: |
134 | case Type::ScalableVectorTyID: |
135 | if (cast<VectorType>(Val: Ty)->getElementType()->isPointerTy()) |
136 | return true; |
137 | break; |
138 | case Type::ArrayTyID: |
139 | Types.push_back(Elt: cast<ArrayType>(Val: Ty)->getElementType()); |
140 | break; |
141 | case Type::StructTyID: { |
142 | StructType *STy = cast<StructType>(Val: Ty); |
143 | if (STy->isOpaque()) return true; |
144 | for (Type *InnerTy : STy->elements()) { |
145 | if (isa<PointerType>(Val: InnerTy)) return true; |
146 | if (isa<StructType>(Val: InnerTy) || isa<ArrayType>(Val: InnerTy) || |
147 | isa<VectorType>(Val: InnerTy)) |
148 | Types.push_back(Elt: InnerTy); |
149 | } |
150 | break; |
151 | } |
152 | } |
153 | if (--Limit == 0) return true; |
154 | } while (!Types.empty()); |
155 | return false; |
156 | } |
157 | |
158 | /// Given a value that is stored to a global but never read, determine whether |
159 | /// it's safe to remove the store and the chain of computation that feeds the |
160 | /// store. |
161 | static bool IsSafeComputationToRemove( |
162 | Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { |
163 | do { |
164 | if (isa<Constant>(Val: V)) |
165 | return true; |
166 | if (!V->hasOneUse()) |
167 | return false; |
168 | if (isa<LoadInst>(Val: V) || isa<InvokeInst>(Val: V) || isa<Argument>(Val: V) || |
169 | isa<GlobalValue>(Val: V)) |
170 | return false; |
171 | if (isAllocationFn(V, GetTLI)) |
172 | return true; |
173 | |
174 | Instruction *I = cast<Instruction>(Val: V); |
175 | if (I->mayHaveSideEffects()) |
176 | return false; |
177 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: I)) { |
178 | if (!GEP->hasAllConstantIndices()) |
179 | return false; |
180 | } else if (I->getNumOperands() != 1) { |
181 | return false; |
182 | } |
183 | |
184 | V = I->getOperand(i: 0); |
185 | } while (true); |
186 | } |
187 | |
188 | /// This GV is a pointer root. Loop over all users of the global and clean up |
189 | /// any that obviously don't assign the global a value that isn't dynamically |
190 | /// allocated. |
191 | static bool |
192 | CleanupPointerRootUsers(GlobalVariable *GV, |
193 | function_ref<TargetLibraryInfo &(Function &)> GetTLI) { |
194 | // A brief explanation of leak checkers. The goal is to find bugs where |
195 | // pointers are forgotten, causing an accumulating growth in memory |
196 | // usage over time. The common strategy for leak checkers is to explicitly |
197 | // allow the memory pointed to by globals at exit. This is popular because it |
198 | // also solves another problem where the main thread of a C++ program may shut |
199 | // down before other threads that are still expecting to use those globals. To |
200 | // handle that case, we expect the program may create a singleton and never |
201 | // destroy it. |
202 | |
203 | bool Changed = false; |
204 | |
205 | // If Dead[n].first is the only use of a malloc result, we can delete its |
206 | // chain of computation and the store to the global in Dead[n].second. |
207 | SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; |
208 | |
209 | SmallVector<User *> Worklist(GV->users()); |
210 | // Constants can't be pointers to dynamically allocated memory. |
211 | while (!Worklist.empty()) { |
212 | User *U = Worklist.pop_back_val(); |
213 | if (StoreInst *SI = dyn_cast<StoreInst>(Val: U)) { |
214 | Value *V = SI->getValueOperand(); |
215 | if (isa<Constant>(Val: V)) { |
216 | Changed = true; |
217 | SI->eraseFromParent(); |
218 | } else if (Instruction *I = dyn_cast<Instruction>(Val: V)) { |
219 | if (I->hasOneUse()) |
220 | Dead.push_back(Elt: std::make_pair(x&: I, y&: SI)); |
221 | } |
222 | } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(Val: U)) { |
223 | if (isa<Constant>(Val: MSI->getValue())) { |
224 | Changed = true; |
225 | MSI->eraseFromParent(); |
226 | } else if (Instruction *I = dyn_cast<Instruction>(Val: MSI->getValue())) { |
227 | if (I->hasOneUse()) |
228 | Dead.push_back(Elt: std::make_pair(x&: I, y&: MSI)); |
229 | } |
230 | } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Val: U)) { |
231 | GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(Val: MTI->getSource()); |
232 | if (MemSrc && MemSrc->isConstant()) { |
233 | Changed = true; |
234 | MTI->eraseFromParent(); |
235 | } else if (Instruction *I = dyn_cast<Instruction>(Val: MTI->getSource())) { |
236 | if (I->hasOneUse()) |
237 | Dead.push_back(Elt: std::make_pair(x&: I, y&: MTI)); |
238 | } |
239 | } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: U)) { |
240 | if (isa<GEPOperator>(Val: CE)) |
241 | append_range(C&: Worklist, R: CE->users()); |
242 | } |
243 | } |
244 | |
245 | for (int i = 0, e = Dead.size(); i != e; ++i) { |
246 | if (IsSafeComputationToRemove(V: Dead[i].first, GetTLI)) { |
247 | Dead[i].second->eraseFromParent(); |
248 | Instruction *I = Dead[i].first; |
249 | do { |
250 | if (isAllocationFn(V: I, GetTLI)) |
251 | break; |
252 | Instruction *J = dyn_cast<Instruction>(Val: I->getOperand(i: 0)); |
253 | if (!J) |
254 | break; |
255 | I->eraseFromParent(); |
256 | I = J; |
257 | } while (true); |
258 | I->eraseFromParent(); |
259 | Changed = true; |
260 | } |
261 | } |
262 | |
263 | GV->removeDeadConstantUsers(); |
264 | return Changed; |
265 | } |
266 | |
267 | /// We just marked GV constant. Loop over all users of the global, cleaning up |
268 | /// the obvious ones. This is largely just a quick scan over the use list to |
269 | /// clean up the easy and obvious cruft. This returns true if it made a change. |
270 | static bool CleanupConstantGlobalUsers(GlobalVariable *GV, |
271 | const DataLayout &DL) { |
272 | Constant *Init = GV->getInitializer(); |
273 | SmallVector<User *, 8> WorkList(GV->users()); |
274 | SmallPtrSet<User *, 8> Visited; |
275 | bool Changed = false; |
276 | |
277 | SmallVector<WeakTrackingVH> MaybeDeadInsts; |
278 | auto EraseFromParent = [&](Instruction *I) { |
279 | for (Value *Op : I->operands()) |
280 | if (auto *OpI = dyn_cast<Instruction>(Val: Op)) |
281 | MaybeDeadInsts.push_back(Elt: OpI); |
282 | I->eraseFromParent(); |
283 | Changed = true; |
284 | }; |
285 | while (!WorkList.empty()) { |
286 | User *U = WorkList.pop_back_val(); |
287 | if (!Visited.insert(Ptr: U).second) |
288 | continue; |
289 | |
290 | if (auto *BO = dyn_cast<BitCastOperator>(Val: U)) |
291 | append_range(C&: WorkList, R: BO->users()); |
292 | if (auto *ASC = dyn_cast<AddrSpaceCastOperator>(Val: U)) |
293 | append_range(C&: WorkList, R: ASC->users()); |
294 | else if (auto *GEP = dyn_cast<GEPOperator>(Val: U)) |
295 | append_range(C&: WorkList, R: GEP->users()); |
296 | else if (auto *LI = dyn_cast<LoadInst>(Val: U)) { |
297 | // A load from a uniform value is always the same, regardless of any |
298 | // applied offset. |
299 | Type *Ty = LI->getType(); |
300 | if (Constant *Res = ConstantFoldLoadFromUniformValue(C: Init, Ty, DL)) { |
301 | LI->replaceAllUsesWith(V: Res); |
302 | EraseFromParent(LI); |
303 | continue; |
304 | } |
305 | |
306 | Value *PtrOp = LI->getPointerOperand(); |
307 | APInt Offset(DL.getIndexTypeSizeInBits(Ty: PtrOp->getType()), 0); |
308 | PtrOp = PtrOp->stripAndAccumulateConstantOffsets( |
309 | DL, Offset, /* AllowNonInbounds */ true); |
310 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: PtrOp)) { |
311 | if (II->getIntrinsicID() == Intrinsic::threadlocal_address) |
312 | PtrOp = II->getArgOperand(i: 0); |
313 | } |
314 | if (PtrOp == GV) { |
315 | if (auto *Value = ConstantFoldLoadFromConst(C: Init, Ty, Offset, DL)) { |
316 | LI->replaceAllUsesWith(V: Value); |
317 | EraseFromParent(LI); |
318 | } |
319 | } |
320 | } else if (StoreInst *SI = dyn_cast<StoreInst>(Val: U)) { |
321 | // Store must be unreachable or storing Init into the global. |
322 | EraseFromParent(SI); |
323 | } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Val: U)) { // memset/cpy/mv |
324 | if (getUnderlyingObject(V: MI->getRawDest()) == GV) |
325 | EraseFromParent(MI); |
326 | } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: U)) { |
327 | if (II->getIntrinsicID() == Intrinsic::threadlocal_address) |
328 | append_range(C&: WorkList, R: II->users()); |
329 | } |
330 | } |
331 | |
332 | Changed |= |
333 | RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts&: MaybeDeadInsts); |
334 | GV->removeDeadConstantUsers(); |
335 | return Changed; |
336 | } |
337 | |
338 | /// Part of the global at a specific offset, which is only accessed through |
339 | /// loads and stores with the given type. |
340 | struct GlobalPart { |
341 | Type *Ty; |
342 | Constant *Initializer = nullptr; |
343 | bool IsLoaded = false; |
344 | bool IsStored = false; |
345 | }; |
346 | |
347 | /// Look at all uses of the global and determine which (offset, type) pairs it |
348 | /// can be split into. |
349 | static bool collectSRATypes(DenseMap<uint64_t, GlobalPart> &Parts, |
350 | GlobalVariable *GV, const DataLayout &DL) { |
351 | SmallVector<Use *, 16> Worklist; |
352 | SmallPtrSet<Use *, 16> Visited; |
353 | auto AppendUses = [&](Value *V) { |
354 | for (Use &U : V->uses()) |
355 | if (Visited.insert(Ptr: &U).second) |
356 | Worklist.push_back(Elt: &U); |
357 | }; |
358 | AppendUses(GV); |
359 | while (!Worklist.empty()) { |
360 | Use *U = Worklist.pop_back_val(); |
361 | User *V = U->getUser(); |
362 | |
363 | auto *GEP = dyn_cast<GEPOperator>(Val: V); |
364 | if (isa<BitCastOperator>(Val: V) || isa<AddrSpaceCastOperator>(Val: V) || |
365 | (GEP && GEP->hasAllConstantIndices())) { |
366 | AppendUses(V); |
367 | continue; |
368 | } |
369 | |
370 | if (Value *Ptr = getLoadStorePointerOperand(V)) { |
371 | // This is storing the global address into somewhere, not storing into |
372 | // the global. |
373 | if (isa<StoreInst>(Val: V) && U->getOperandNo() == 0) |
374 | return false; |
375 | |
376 | APInt Offset(DL.getIndexTypeSizeInBits(Ty: Ptr->getType()), 0); |
377 | Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset, |
378 | /* AllowNonInbounds */ true); |
379 | if (Ptr != GV || Offset.getActiveBits() >= 64) |
380 | return false; |
381 | |
382 | // TODO: We currently require that all accesses at a given offset must |
383 | // use the same type. This could be relaxed. |
384 | Type *Ty = getLoadStoreType(I: V); |
385 | const auto &[It, Inserted] = |
386 | Parts.try_emplace(Key: Offset.getZExtValue(), Args: GlobalPart{.Ty: Ty}); |
387 | if (Ty != It->second.Ty) |
388 | return false; |
389 | |
390 | if (Inserted) { |
391 | It->second.Initializer = |
392 | ConstantFoldLoadFromConst(C: GV->getInitializer(), Ty, Offset, DL); |
393 | if (!It->second.Initializer) { |
394 | LLVM_DEBUG(dbgs() << "Global SRA: Failed to evaluate initializer of " |
395 | << *GV << " with type " << *Ty << " at offset " |
396 | << Offset.getZExtValue()); |
397 | return false; |
398 | } |
399 | } |
400 | |
401 | // Scalable types not currently supported. |
402 | if (Ty->isScalableTy()) |
403 | return false; |
404 | |
405 | auto IsStored = [](Value *V, Constant *Initializer) { |
406 | auto *SI = dyn_cast<StoreInst>(Val: V); |
407 | if (!SI) |
408 | return false; |
409 | |
410 | Constant *StoredConst = dyn_cast<Constant>(Val: SI->getOperand(i_nocapture: 0)); |
411 | if (!StoredConst) |
412 | return true; |
413 | |
414 | // Don't consider stores that only write the initializer value. |
415 | return Initializer != StoredConst; |
416 | }; |
417 | |
418 | It->second.IsLoaded |= isa<LoadInst>(Val: V); |
419 | It->second.IsStored |= IsStored(V, It->second.Initializer); |
420 | continue; |
421 | } |
422 | |
423 | // Ignore dead constant users. |
424 | if (auto *C = dyn_cast<Constant>(Val: V)) { |
425 | if (!isSafeToDestroyConstant(C)) |
426 | return false; |
427 | continue; |
428 | } |
429 | |
430 | // Unknown user. |
431 | return false; |
432 | } |
433 | |
434 | return true; |
435 | } |
436 | |
437 | /// Copy over the debug info for a variable to its SRA replacements. |
438 | static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV, |
439 | uint64_t FragmentOffsetInBits, |
440 | uint64_t FragmentSizeInBits, |
441 | uint64_t VarSize) { |
442 | SmallVector<DIGlobalVariableExpression *, 1> GVs; |
443 | GV->getDebugInfo(GVs); |
444 | for (auto *GVE : GVs) { |
445 | DIVariable *Var = GVE->getVariable(); |
446 | DIExpression *Expr = GVE->getExpression(); |
447 | int64_t CurVarOffsetInBytes = 0; |
448 | uint64_t CurVarOffsetInBits = 0; |
449 | uint64_t FragmentEndInBits = FragmentOffsetInBits + FragmentSizeInBits; |
450 | |
451 | // Calculate the offset (Bytes), Continue if unknown. |
452 | if (!Expr->extractIfOffset(Offset&: CurVarOffsetInBytes)) |
453 | continue; |
454 | |
455 | // Ignore negative offset. |
456 | if (CurVarOffsetInBytes < 0) |
457 | continue; |
458 | |
459 | // Convert offset to bits. |
460 | CurVarOffsetInBits = CHAR_BIT * (uint64_t)CurVarOffsetInBytes; |
461 | |
462 | // Current var starts after the fragment, ignore. |
463 | if (CurVarOffsetInBits >= FragmentEndInBits) |
464 | continue; |
465 | |
466 | uint64_t CurVarSize = Var->getType()->getSizeInBits(); |
467 | uint64_t CurVarEndInBits = CurVarOffsetInBits + CurVarSize; |
468 | // Current variable ends before start of fragment, ignore. |
469 | if (CurVarSize != 0 && /* CurVarSize is known */ |
470 | CurVarEndInBits <= FragmentOffsetInBits) |
471 | continue; |
472 | |
473 | // Current variable fits in (not greater than) the fragment, |
474 | // does not need fragment expression. |
475 | if (CurVarSize != 0 && /* CurVarSize is known */ |
476 | CurVarOffsetInBits >= FragmentOffsetInBits && |
477 | CurVarEndInBits <= FragmentEndInBits) { |
478 | uint64_t CurVarOffsetInFragment = |
479 | (CurVarOffsetInBits - FragmentOffsetInBits) / 8; |
480 | if (CurVarOffsetInFragment != 0) |
481 | Expr = DIExpression::get(Context&: Expr->getContext(), Elements: {dwarf::DW_OP_plus_uconst, |
482 | CurVarOffsetInFragment}); |
483 | else |
484 | Expr = DIExpression::get(Context&: Expr->getContext(), Elements: {}); |
485 | auto *NGVE = |
486 | DIGlobalVariableExpression::get(Context&: GVE->getContext(), Variable: Var, Expression: Expr); |
487 | NGV->addDebugInfo(GV: NGVE); |
488 | continue; |
489 | } |
490 | // Current variable does not fit in single fragment, |
491 | // emit a fragment expression. |
492 | if (FragmentSizeInBits < VarSize) { |
493 | if (CurVarOffsetInBits > FragmentOffsetInBits) |
494 | continue; |
495 | uint64_t CurVarFragmentOffsetInBits = |
496 | FragmentOffsetInBits - CurVarOffsetInBits; |
497 | uint64_t CurVarFragmentSizeInBits = FragmentSizeInBits; |
498 | if (CurVarSize != 0 && CurVarEndInBits < FragmentEndInBits) |
499 | CurVarFragmentSizeInBits -= (FragmentEndInBits - CurVarEndInBits); |
500 | if (CurVarOffsetInBits) |
501 | Expr = DIExpression::get(Context&: Expr->getContext(), Elements: {}); |
502 | if (auto E = DIExpression::createFragmentExpression( |
503 | Expr, OffsetInBits: CurVarFragmentOffsetInBits, SizeInBits: CurVarFragmentSizeInBits)) |
504 | Expr = *E; |
505 | else |
506 | continue; |
507 | } |
508 | auto *NGVE = DIGlobalVariableExpression::get(Context&: GVE->getContext(), Variable: Var, Expression: Expr); |
509 | NGV->addDebugInfo(GV: NGVE); |
510 | } |
511 | } |
512 | |
513 | /// Perform scalar replacement of aggregates on the specified global variable. |
514 | /// This opens the door for other optimizations by exposing the behavior of the |
515 | /// program in a more fine-grained way. We have determined that this |
516 | /// transformation is safe already. We return the first global variable we |
517 | /// insert so that the caller can reprocess it. |
518 | static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { |
519 | assert(GV->hasLocalLinkage()); |
520 | |
521 | // Collect types to split into. |
522 | DenseMap<uint64_t, GlobalPart> Parts; |
523 | if (!collectSRATypes(Parts, GV, DL) || Parts.empty()) |
524 | return nullptr; |
525 | |
526 | // Make sure we don't SRA back to the same type. |
527 | if (Parts.size() == 1 && Parts.begin()->second.Ty == GV->getValueType()) |
528 | return nullptr; |
529 | |
530 | // Don't perform SRA if we would have to split into many globals. Ignore |
531 | // parts that are either only loaded or only stored, because we expect them |
532 | // to be optimized away. |
533 | unsigned NumParts = count_if(Range&: Parts, P: [](const auto &Pair) { |
534 | return Pair.second.IsLoaded && Pair.second.IsStored; |
535 | }); |
536 | if (NumParts > 16) |
537 | return nullptr; |
538 | |
539 | // Sort by offset. |
540 | SmallVector<std::tuple<uint64_t, Type *, Constant *>, 16> TypesVector; |
541 | for (const auto &Pair : Parts) { |
542 | TypesVector.push_back( |
543 | Elt: {Pair.first, Pair.second.Ty, Pair.second.Initializer}); |
544 | } |
545 | sort(C&: TypesVector, Comp: llvm::less_first()); |
546 | |
547 | // Check that the types are non-overlapping. |
548 | uint64_t Offset = 0; |
549 | for (const auto &[OffsetForTy, Ty, _] : TypesVector) { |
550 | // Overlaps with previous type. |
551 | if (OffsetForTy < Offset) |
552 | return nullptr; |
553 | |
554 | Offset = OffsetForTy + DL.getTypeAllocSize(Ty); |
555 | } |
556 | |
557 | // Some accesses go beyond the end of the global, don't bother. |
558 | if (Offset > DL.getTypeAllocSize(Ty: GV->getValueType())) |
559 | return nullptr; |
560 | |
561 | LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n" ); |
562 | |
563 | // Get the alignment of the global, either explicit or target-specific. |
564 | Align StartAlignment = |
565 | DL.getValueOrABITypeAlignment(Alignment: GV->getAlign(), Ty: GV->getValueType()); |
566 | uint64_t VarSize = DL.getTypeSizeInBits(Ty: GV->getValueType()); |
567 | |
568 | // Create replacement globals. |
569 | DenseMap<uint64_t, GlobalVariable *> NewGlobals; |
570 | unsigned NameSuffix = 0; |
571 | for (auto &[OffsetForTy, Ty, Initializer] : TypesVector) { |
572 | GlobalVariable *NGV = new GlobalVariable( |
573 | *GV->getParent(), Ty, false, GlobalVariable::InternalLinkage, |
574 | Initializer, GV->getName() + "." + Twine(NameSuffix++), GV, |
575 | GV->getThreadLocalMode(), GV->getAddressSpace()); |
576 | NGV->copyAttributesFrom(Src: GV); |
577 | NewGlobals.insert(KV: {OffsetForTy, NGV}); |
578 | |
579 | // Calculate the known alignment of the field. If the original aggregate |
580 | // had 256 byte alignment for example, something might depend on that: |
581 | // propagate info to each field. |
582 | Align NewAlign = commonAlignment(A: StartAlignment, Offset: OffsetForTy); |
583 | if (NewAlign > DL.getABITypeAlign(Ty)) |
584 | NGV->setAlignment(NewAlign); |
585 | |
586 | // Copy over the debug info for the variable. |
587 | transferSRADebugInfo(GV, NGV, FragmentOffsetInBits: OffsetForTy * 8, |
588 | FragmentSizeInBits: DL.getTypeAllocSizeInBits(Ty), VarSize); |
589 | } |
590 | |
591 | // Replace uses of the original global with uses of the new global. |
592 | SmallVector<Value *, 16> Worklist; |
593 | SmallPtrSet<Value *, 16> Visited; |
594 | SmallVector<WeakTrackingVH, 16> DeadInsts; |
595 | auto AppendUsers = [&](Value *V) { |
596 | for (User *U : V->users()) |
597 | if (Visited.insert(Ptr: U).second) |
598 | Worklist.push_back(Elt: U); |
599 | }; |
600 | AppendUsers(GV); |
601 | while (!Worklist.empty()) { |
602 | Value *V = Worklist.pop_back_val(); |
603 | if (isa<BitCastOperator>(Val: V) || isa<AddrSpaceCastOperator>(Val: V) || |
604 | isa<GEPOperator>(Val: V)) { |
605 | AppendUsers(V); |
606 | if (isa<Instruction>(Val: V)) |
607 | DeadInsts.push_back(Elt: V); |
608 | continue; |
609 | } |
610 | |
611 | if (Value *Ptr = getLoadStorePointerOperand(V)) { |
612 | APInt Offset(DL.getIndexTypeSizeInBits(Ty: Ptr->getType()), 0); |
613 | Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset, |
614 | /* AllowNonInbounds */ true); |
615 | assert(Ptr == GV && "Load/store must be from/to global" ); |
616 | GlobalVariable *NGV = NewGlobals[Offset.getZExtValue()]; |
617 | assert(NGV && "Must have replacement global for this offset" ); |
618 | |
619 | // Update the pointer operand and recalculate alignment. |
620 | Align PrefAlign = DL.getPrefTypeAlign(Ty: getLoadStoreType(I: V)); |
621 | Align NewAlign = |
622 | getOrEnforceKnownAlignment(V: NGV, PrefAlign, DL, CxtI: cast<Instruction>(Val: V)); |
623 | |
624 | if (auto *LI = dyn_cast<LoadInst>(Val: V)) { |
625 | LI->setOperand(i_nocapture: 0, Val_nocapture: NGV); |
626 | LI->setAlignment(NewAlign); |
627 | } else { |
628 | auto *SI = cast<StoreInst>(Val: V); |
629 | SI->setOperand(i_nocapture: 1, Val_nocapture: NGV); |
630 | SI->setAlignment(NewAlign); |
631 | } |
632 | continue; |
633 | } |
634 | |
635 | assert(isa<Constant>(V) && isSafeToDestroyConstant(cast<Constant>(V)) && |
636 | "Other users can only be dead constants" ); |
637 | } |
638 | |
639 | // Delete old instructions and global. |
640 | RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); |
641 | GV->removeDeadConstantUsers(); |
642 | GV->eraseFromParent(); |
643 | ++NumSRA; |
644 | |
645 | assert(NewGlobals.size() > 0); |
646 | return NewGlobals.begin()->second; |
647 | } |
648 | |
649 | /// Return true if all users of the specified value will trap if the value is |
650 | /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid |
651 | /// reprocessing them. |
652 | static bool AllUsesOfValueWillTrapIfNull(const Value *V, |
653 | SmallPtrSetImpl<const PHINode*> &PHIs) { |
654 | for (const User *U : V->users()) { |
655 | if (const Instruction *I = dyn_cast<Instruction>(Val: U)) { |
656 | // If null pointer is considered valid, then all uses are non-trapping. |
657 | // Non address-space 0 globals have already been pruned by the caller. |
658 | if (NullPointerIsDefined(F: I->getFunction())) |
659 | return false; |
660 | } |
661 | if (isa<LoadInst>(Val: U)) { |
662 | // Will trap. |
663 | } else if (const StoreInst *SI = dyn_cast<StoreInst>(Val: U)) { |
664 | if (SI->getOperand(i_nocapture: 0) == V) { |
665 | return false; // Storing the value. |
666 | } |
667 | } else if (const CallInst *CI = dyn_cast<CallInst>(Val: U)) { |
668 | if (CI->getCalledOperand() != V) { |
669 | return false; // Not calling the ptr |
670 | } |
671 | } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Val: U)) { |
672 | if (II->getCalledOperand() != V) { |
673 | return false; // Not calling the ptr |
674 | } |
675 | } else if (const AddrSpaceCastInst *CI = dyn_cast<AddrSpaceCastInst>(Val: U)) { |
676 | if (!AllUsesOfValueWillTrapIfNull(V: CI, PHIs)) |
677 | return false; |
678 | } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Val: U)) { |
679 | if (!AllUsesOfValueWillTrapIfNull(V: GEPI, PHIs)) return false; |
680 | } else if (const PHINode *PN = dyn_cast<PHINode>(Val: U)) { |
681 | // If we've already seen this phi node, ignore it, it has already been |
682 | // checked. |
683 | if (PHIs.insert(Ptr: PN).second && !AllUsesOfValueWillTrapIfNull(V: PN, PHIs)) |
684 | return false; |
685 | } else if (isa<ICmpInst>(Val: U) && |
686 | !ICmpInst::isSigned(predicate: cast<ICmpInst>(Val: U)->getPredicate()) && |
687 | isa<LoadInst>(Val: U->getOperand(i: 0)) && |
688 | isa<ConstantPointerNull>(Val: U->getOperand(i: 1))) { |
689 | assert(isa<GlobalValue>(cast<LoadInst>(U->getOperand(0)) |
690 | ->getPointerOperand() |
691 | ->stripPointerCasts()) && |
692 | "Should be GlobalVariable" ); |
693 | // This and only this kind of non-signed ICmpInst is to be replaced with |
694 | // the comparing of the value of the created global init bool later in |
695 | // optimizeGlobalAddressOfAllocation for the global variable. |
696 | } else { |
697 | return false; |
698 | } |
699 | } |
700 | return true; |
701 | } |
702 | |
703 | /// Return true if all uses of any loads from GV will trap if the loaded value |
704 | /// is null. Note that this also permits comparisons of the loaded value |
705 | /// against null, as a special case. |
706 | static bool allUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { |
707 | SmallVector<const Value *, 4> Worklist; |
708 | Worklist.push_back(Elt: GV); |
709 | while (!Worklist.empty()) { |
710 | const Value *P = Worklist.pop_back_val(); |
711 | for (const auto *U : P->users()) { |
712 | if (auto *LI = dyn_cast<LoadInst>(Val: U)) { |
713 | SmallPtrSet<const PHINode *, 8> PHIs; |
714 | if (!AllUsesOfValueWillTrapIfNull(V: LI, PHIs)) |
715 | return false; |
716 | } else if (auto *SI = dyn_cast<StoreInst>(Val: U)) { |
717 | // Ignore stores to the global. |
718 | if (SI->getPointerOperand() != P) |
719 | return false; |
720 | } else if (auto *CE = dyn_cast<ConstantExpr>(Val: U)) { |
721 | if (CE->stripPointerCasts() != GV) |
722 | return false; |
723 | // Check further the ConstantExpr. |
724 | Worklist.push_back(Elt: CE); |
725 | } else { |
726 | // We don't know or understand this user, bail out. |
727 | return false; |
728 | } |
729 | } |
730 | } |
731 | |
732 | return true; |
733 | } |
734 | |
735 | /// Get all the loads/store uses for global variable \p GV. |
736 | static void allUsesOfLoadAndStores(GlobalVariable *GV, |
737 | SmallVector<Value *, 4> &Uses) { |
738 | SmallVector<Value *, 4> Worklist; |
739 | Worklist.push_back(Elt: GV); |
740 | while (!Worklist.empty()) { |
741 | auto *P = Worklist.pop_back_val(); |
742 | for (auto *U : P->users()) { |
743 | if (auto *CE = dyn_cast<ConstantExpr>(Val: U)) { |
744 | Worklist.push_back(Elt: CE); |
745 | continue; |
746 | } |
747 | |
748 | assert((isa<LoadInst>(U) || isa<StoreInst>(U)) && |
749 | "Expect only load or store instructions" ); |
750 | Uses.push_back(Elt: U); |
751 | } |
752 | } |
753 | } |
754 | |
755 | static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { |
756 | bool Changed = false; |
757 | for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { |
758 | Instruction *I = cast<Instruction>(Val: *UI++); |
759 | // Uses are non-trapping if null pointer is considered valid. |
760 | // Non address-space 0 globals are already pruned by the caller. |
761 | if (NullPointerIsDefined(F: I->getFunction())) |
762 | return false; |
763 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: I)) { |
764 | LI->setOperand(i_nocapture: 0, Val_nocapture: NewV); |
765 | Changed = true; |
766 | } else if (StoreInst *SI = dyn_cast<StoreInst>(Val: I)) { |
767 | if (SI->getOperand(i_nocapture: 1) == V) { |
768 | SI->setOperand(i_nocapture: 1, Val_nocapture: NewV); |
769 | Changed = true; |
770 | } |
771 | } else if (isa<CallInst>(Val: I) || isa<InvokeInst>(Val: I)) { |
772 | CallBase *CB = cast<CallBase>(Val: I); |
773 | if (CB->getCalledOperand() == V) { |
774 | // Calling through the pointer! Turn into a direct call, but be careful |
775 | // that the pointer is not also being passed as an argument. |
776 | CB->setCalledOperand(NewV); |
777 | Changed = true; |
778 | bool PassedAsArg = false; |
779 | for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) |
780 | if (CB->getArgOperand(i) == V) { |
781 | PassedAsArg = true; |
782 | CB->setArgOperand(i, v: NewV); |
783 | } |
784 | |
785 | if (PassedAsArg) { |
786 | // Being passed as an argument also. Be careful to not invalidate UI! |
787 | UI = V->user_begin(); |
788 | } |
789 | } |
790 | } else if (AddrSpaceCastInst *CI = dyn_cast<AddrSpaceCastInst>(Val: I)) { |
791 | Changed |= OptimizeAwayTrappingUsesOfValue( |
792 | V: CI, NewV: ConstantExpr::getAddrSpaceCast(C: NewV, Ty: CI->getType())); |
793 | if (CI->use_empty()) { |
794 | Changed = true; |
795 | CI->eraseFromParent(); |
796 | } |
797 | } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Val: I)) { |
798 | // Should handle GEP here. |
799 | SmallVector<Constant*, 8> Idxs; |
800 | Idxs.reserve(N: GEPI->getNumOperands()-1); |
801 | for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); |
802 | i != e; ++i) |
803 | if (Constant *C = dyn_cast<Constant>(Val&: *i)) |
804 | Idxs.push_back(Elt: C); |
805 | else |
806 | break; |
807 | if (Idxs.size() == GEPI->getNumOperands()-1) |
808 | Changed |= OptimizeAwayTrappingUsesOfValue( |
809 | V: GEPI, NewV: ConstantExpr::getGetElementPtr(Ty: GEPI->getSourceElementType(), |
810 | C: NewV, IdxList: Idxs)); |
811 | if (GEPI->use_empty()) { |
812 | Changed = true; |
813 | GEPI->eraseFromParent(); |
814 | } |
815 | } |
816 | } |
817 | |
818 | return Changed; |
819 | } |
820 | |
821 | /// The specified global has only one non-null value stored into it. If there |
822 | /// are uses of the loaded value that would trap if the loaded value is |
823 | /// dynamically null, then we know that they cannot be reachable with a null |
824 | /// optimize away the load. |
825 | static bool OptimizeAwayTrappingUsesOfLoads( |
826 | GlobalVariable *GV, Constant *LV, const DataLayout &DL, |
827 | function_ref<TargetLibraryInfo &(Function &)> GetTLI) { |
828 | bool Changed = false; |
829 | |
830 | // Keep track of whether we are able to remove all the uses of the global |
831 | // other than the store that defines it. |
832 | bool AllNonStoreUsesGone = true; |
833 | |
834 | // Replace all uses of loads with uses of uses of the stored value. |
835 | for (User *GlobalUser : llvm::make_early_inc_range(Range: GV->users())) { |
836 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: GlobalUser)) { |
837 | Changed |= OptimizeAwayTrappingUsesOfValue(V: LI, NewV: LV); |
838 | // If we were able to delete all uses of the loads |
839 | if (LI->use_empty()) { |
840 | LI->eraseFromParent(); |
841 | Changed = true; |
842 | } else { |
843 | AllNonStoreUsesGone = false; |
844 | } |
845 | } else if (isa<StoreInst>(Val: GlobalUser)) { |
846 | // Ignore the store that stores "LV" to the global. |
847 | assert(GlobalUser->getOperand(1) == GV && |
848 | "Must be storing *to* the global" ); |
849 | } else { |
850 | AllNonStoreUsesGone = false; |
851 | |
852 | // If we get here we could have other crazy uses that are transitively |
853 | // loaded. |
854 | assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || |
855 | isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || |
856 | isa<BitCastInst>(GlobalUser) || |
857 | isa<GetElementPtrInst>(GlobalUser) || |
858 | isa<AddrSpaceCastInst>(GlobalUser)) && |
859 | "Only expect load and stores!" ); |
860 | } |
861 | } |
862 | |
863 | if (Changed) { |
864 | LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV |
865 | << "\n" ); |
866 | ++NumGlobUses; |
867 | } |
868 | |
869 | // If we nuked all of the loads, then none of the stores are needed either, |
870 | // nor is the global. |
871 | if (AllNonStoreUsesGone) { |
872 | if (isLeakCheckerRoot(GV)) { |
873 | Changed |= CleanupPointerRootUsers(GV, GetTLI); |
874 | } else { |
875 | Changed = true; |
876 | CleanupConstantGlobalUsers(GV, DL); |
877 | } |
878 | if (GV->use_empty()) { |
879 | LLVM_DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n" ); |
880 | Changed = true; |
881 | GV->eraseFromParent(); |
882 | ++NumDeleted; |
883 | } |
884 | } |
885 | return Changed; |
886 | } |
887 | |
888 | /// Walk the use list of V, constant folding all of the instructions that are |
889 | /// foldable. |
890 | static void ConstantPropUsersOf(Value *V, const DataLayout &DL, |
891 | TargetLibraryInfo *TLI) { |
892 | for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) |
893 | if (Instruction *I = dyn_cast<Instruction>(Val: *UI++)) |
894 | if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { |
895 | I->replaceAllUsesWith(V: NewC); |
896 | |
897 | // Advance UI to the next non-I use to avoid invalidating it! |
898 | // Instructions could multiply use V. |
899 | while (UI != E && *UI == I) |
900 | ++UI; |
901 | if (isInstructionTriviallyDead(I, TLI)) |
902 | I->eraseFromParent(); |
903 | } |
904 | } |
905 | |
906 | /// This function takes the specified global variable, and transforms the |
907 | /// program as if it always contained the result of the specified malloc. |
908 | /// Because it is always the result of the specified malloc, there is no reason |
909 | /// to actually DO the malloc. Instead, turn the malloc into a global, and any |
910 | /// loads of GV as uses of the new global. |
911 | static GlobalVariable * |
912 | OptimizeGlobalAddressOfAllocation(GlobalVariable *GV, CallInst *CI, |
913 | uint64_t AllocSize, Constant *InitVal, |
914 | const DataLayout &DL, |
915 | TargetLibraryInfo *TLI) { |
916 | LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI |
917 | << '\n'); |
918 | |
919 | // Create global of type [AllocSize x i8]. |
920 | Type *GlobalType = ArrayType::get(ElementType: Type::getInt8Ty(C&: GV->getContext()), |
921 | NumElements: AllocSize); |
922 | |
923 | // Create the new global variable. The contents of the allocated memory is |
924 | // undefined initially, so initialize with an undef value. |
925 | GlobalVariable *NewGV = new GlobalVariable( |
926 | *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, |
927 | UndefValue::get(T: GlobalType), GV->getName() + ".body" , nullptr, |
928 | GV->getThreadLocalMode()); |
929 | |
930 | // Initialize the global at the point of the original call. Note that this |
931 | // is a different point from the initialization referred to below for the |
932 | // nullability handling. Sublety: We have not proven the original global was |
933 | // only initialized once. As such, we can not fold this into the initializer |
934 | // of the new global as may need to re-init the storage multiple times. |
935 | if (!isa<UndefValue>(Val: InitVal)) { |
936 | IRBuilder<> Builder(CI->getNextNode()); |
937 | // TODO: Use alignment above if align!=1 |
938 | Builder.CreateMemSet(Ptr: NewGV, Val: InitVal, Size: AllocSize, Align: std::nullopt); |
939 | } |
940 | |
941 | // Update users of the allocation to use the new global instead. |
942 | CI->replaceAllUsesWith(V: NewGV); |
943 | |
944 | // If there is a comparison against null, we will insert a global bool to |
945 | // keep track of whether the global was initialized yet or not. |
946 | GlobalVariable *InitBool = |
947 | new GlobalVariable(Type::getInt1Ty(C&: GV->getContext()), false, |
948 | GlobalValue::InternalLinkage, |
949 | ConstantInt::getFalse(Context&: GV->getContext()), |
950 | GV->getName()+".init" , GV->getThreadLocalMode()); |
951 | bool InitBoolUsed = false; |
952 | |
953 | // Loop over all instruction uses of GV, processing them in turn. |
954 | SmallVector<Value *, 4> Guses; |
955 | allUsesOfLoadAndStores(GV, Uses&: Guses); |
956 | for (auto *U : Guses) { |
957 | if (StoreInst *SI = dyn_cast<StoreInst>(Val: U)) { |
958 | // The global is initialized when the store to it occurs. If the stored |
959 | // value is null value, the global bool is set to false, otherwise true. |
960 | new StoreInst(ConstantInt::getBool( |
961 | Context&: GV->getContext(), |
962 | V: !isa<ConstantPointerNull>(Val: SI->getValueOperand())), |
963 | InitBool, false, Align(1), SI->getOrdering(), |
964 | SI->getSyncScopeID(), SI->getIterator()); |
965 | SI->eraseFromParent(); |
966 | continue; |
967 | } |
968 | |
969 | LoadInst *LI = cast<LoadInst>(Val: U); |
970 | while (!LI->use_empty()) { |
971 | Use &LoadUse = *LI->use_begin(); |
972 | ICmpInst *ICI = dyn_cast<ICmpInst>(Val: LoadUse.getUser()); |
973 | if (!ICI) { |
974 | LoadUse.set(NewGV); |
975 | continue; |
976 | } |
977 | |
978 | // Replace the cmp X, 0 with a use of the bool value. |
979 | Value *LV = new LoadInst(InitBool->getValueType(), InitBool, |
980 | InitBool->getName() + ".val" , false, Align(1), |
981 | LI->getOrdering(), LI->getSyncScopeID(), |
982 | LI->getIterator()); |
983 | InitBoolUsed = true; |
984 | switch (ICI->getPredicate()) { |
985 | default: llvm_unreachable("Unknown ICmp Predicate!" ); |
986 | case ICmpInst::ICMP_ULT: // X < null -> always false |
987 | LV = ConstantInt::getFalse(Context&: GV->getContext()); |
988 | break; |
989 | case ICmpInst::ICMP_UGE: // X >= null -> always true |
990 | LV = ConstantInt::getTrue(Context&: GV->getContext()); |
991 | break; |
992 | case ICmpInst::ICMP_ULE: |
993 | case ICmpInst::ICMP_EQ: |
994 | LV = BinaryOperator::CreateNot(Op: LV, Name: "notinit" , InsertBefore: ICI->getIterator()); |
995 | break; |
996 | case ICmpInst::ICMP_NE: |
997 | case ICmpInst::ICMP_UGT: |
998 | break; // no change. |
999 | } |
1000 | ICI->replaceAllUsesWith(V: LV); |
1001 | ICI->eraseFromParent(); |
1002 | } |
1003 | LI->eraseFromParent(); |
1004 | } |
1005 | |
1006 | // If the initialization boolean was used, insert it, otherwise delete it. |
1007 | if (!InitBoolUsed) { |
1008 | while (!InitBool->use_empty()) // Delete initializations |
1009 | cast<StoreInst>(Val: InitBool->user_back())->eraseFromParent(); |
1010 | delete InitBool; |
1011 | } else |
1012 | GV->getParent()->insertGlobalVariable(Where: GV->getIterator(), GV: InitBool); |
1013 | |
1014 | // Now the GV is dead, nuke it and the allocation.. |
1015 | GV->eraseFromParent(); |
1016 | CI->eraseFromParent(); |
1017 | |
1018 | // To further other optimizations, loop over all users of NewGV and try to |
1019 | // constant prop them. This will promote GEP instructions with constant |
1020 | // indices into GEP constant-exprs, which will allow global-opt to hack on it. |
1021 | ConstantPropUsersOf(V: NewGV, DL, TLI); |
1022 | |
1023 | return NewGV; |
1024 | } |
1025 | |
1026 | /// Scan the use-list of GV checking to make sure that there are no complex uses |
1027 | /// of GV. We permit simple things like dereferencing the pointer, but not |
1028 | /// storing through the address, unless it is to the specified global. |
1029 | static bool |
1030 | valueIsOnlyUsedLocallyOrStoredToOneGlobal(const CallInst *CI, |
1031 | const GlobalVariable *GV) { |
1032 | SmallPtrSet<const Value *, 4> Visited; |
1033 | SmallVector<const Value *, 4> Worklist; |
1034 | Worklist.push_back(Elt: CI); |
1035 | |
1036 | while (!Worklist.empty()) { |
1037 | const Value *V = Worklist.pop_back_val(); |
1038 | if (!Visited.insert(Ptr: V).second) |
1039 | continue; |
1040 | |
1041 | for (const Use &VUse : V->uses()) { |
1042 | const User *U = VUse.getUser(); |
1043 | if (isa<LoadInst>(Val: U) || isa<CmpInst>(Val: U)) |
1044 | continue; // Fine, ignore. |
1045 | |
1046 | if (auto *SI = dyn_cast<StoreInst>(Val: U)) { |
1047 | if (SI->getValueOperand() == V && |
1048 | SI->getPointerOperand()->stripPointerCasts() != GV) |
1049 | return false; // Storing the pointer not into GV... bad. |
1050 | continue; // Otherwise, storing through it, or storing into GV... fine. |
1051 | } |
1052 | |
1053 | if (auto *BCI = dyn_cast<BitCastInst>(Val: U)) { |
1054 | Worklist.push_back(Elt: BCI); |
1055 | continue; |
1056 | } |
1057 | |
1058 | if (auto *GEPI = dyn_cast<GetElementPtrInst>(Val: U)) { |
1059 | Worklist.push_back(Elt: GEPI); |
1060 | continue; |
1061 | } |
1062 | |
1063 | return false; |
1064 | } |
1065 | } |
1066 | |
1067 | return true; |
1068 | } |
1069 | |
1070 | /// If we have a global that is only initialized with a fixed size allocation |
1071 | /// try to transform the program to use global memory instead of heap |
1072 | /// allocated memory. This eliminates dynamic allocation, avoids an indirection |
1073 | /// accessing the data, and exposes the resultant global to further GlobalOpt. |
1074 | static bool tryToOptimizeStoreOfAllocationToGlobal(GlobalVariable *GV, |
1075 | CallInst *CI, |
1076 | const DataLayout &DL, |
1077 | TargetLibraryInfo *TLI) { |
1078 | if (!isRemovableAlloc(V: CI, TLI)) |
1079 | // Must be able to remove the call when we get done.. |
1080 | return false; |
1081 | |
1082 | Type *Int8Ty = Type::getInt8Ty(C&: CI->getFunction()->getContext()); |
1083 | Constant *InitVal = getInitialValueOfAllocation(V: CI, TLI, Ty: Int8Ty); |
1084 | if (!InitVal) |
1085 | // Must be able to emit a memset for initialization |
1086 | return false; |
1087 | |
1088 | uint64_t AllocSize; |
1089 | if (!getObjectSize(Ptr: CI, Size&: AllocSize, DL, TLI, Opts: ObjectSizeOpts())) |
1090 | return false; |
1091 | |
1092 | // Restrict this transformation to only working on small allocations |
1093 | // (2048 bytes currently), as we don't want to introduce a 16M global or |
1094 | // something. |
1095 | if (AllocSize >= 2048) |
1096 | return false; |
1097 | |
1098 | // We can't optimize this global unless all uses of it are *known* to be |
1099 | // of the malloc value, not of the null initializer value (consider a use |
1100 | // that compares the global's value against zero to see if the malloc has |
1101 | // been reached). To do this, we check to see if all uses of the global |
1102 | // would trap if the global were null: this proves that they must all |
1103 | // happen after the malloc. |
1104 | if (!allUsesOfLoadedValueWillTrapIfNull(GV)) |
1105 | return false; |
1106 | |
1107 | // We can't optimize this if the malloc itself is used in a complex way, |
1108 | // for example, being stored into multiple globals. This allows the |
1109 | // malloc to be stored into the specified global, loaded, gep, icmp'd. |
1110 | // These are all things we could transform to using the global for. |
1111 | if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV)) |
1112 | return false; |
1113 | |
1114 | OptimizeGlobalAddressOfAllocation(GV, CI, AllocSize, InitVal, DL, TLI); |
1115 | return true; |
1116 | } |
1117 | |
1118 | // Try to optimize globals based on the knowledge that only one value (besides |
1119 | // its initializer) is ever stored to the global. |
1120 | static bool |
1121 | optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, |
1122 | const DataLayout &DL, |
1123 | function_ref<TargetLibraryInfo &(Function &)> GetTLI) { |
1124 | // Ignore no-op GEPs and bitcasts. |
1125 | StoredOnceVal = StoredOnceVal->stripPointerCasts(); |
1126 | |
1127 | // If we are dealing with a pointer global that is initialized to null and |
1128 | // only has one (non-null) value stored into it, then we can optimize any |
1129 | // users of the loaded value (often calls and loads) that would trap if the |
1130 | // value was null. |
1131 | if (GV->getInitializer()->getType()->isPointerTy() && |
1132 | GV->getInitializer()->isNullValue() && |
1133 | StoredOnceVal->getType()->isPointerTy() && |
1134 | !NullPointerIsDefined( |
1135 | F: nullptr /* F */, |
1136 | AS: GV->getInitializer()->getType()->getPointerAddressSpace())) { |
1137 | if (Constant *SOVC = dyn_cast<Constant>(Val: StoredOnceVal)) { |
1138 | // Optimize away any trapping uses of the loaded value. |
1139 | if (OptimizeAwayTrappingUsesOfLoads(GV, LV: SOVC, DL, GetTLI)) |
1140 | return true; |
1141 | } else if (isAllocationFn(V: StoredOnceVal, GetTLI)) { |
1142 | if (auto *CI = dyn_cast<CallInst>(Val: StoredOnceVal)) { |
1143 | auto *TLI = &GetTLI(*CI->getFunction()); |
1144 | if (tryToOptimizeStoreOfAllocationToGlobal(GV, CI, DL, TLI)) |
1145 | return true; |
1146 | } |
1147 | } |
1148 | } |
1149 | |
1150 | return false; |
1151 | } |
1152 | |
1153 | /// At this point, we have learned that the only two values ever stored into GV |
1154 | /// are its initializer and OtherVal. See if we can shrink the global into a |
1155 | /// boolean and select between the two values whenever it is used. This exposes |
1156 | /// the values to other scalar optimizations. |
1157 | static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { |
1158 | Type *GVElType = GV->getValueType(); |
1159 | |
1160 | // If GVElType is already i1, it is already shrunk. If the type of the GV is |
1161 | // an FP value, pointer or vector, don't do this optimization because a select |
1162 | // between them is very expensive and unlikely to lead to later |
1163 | // simplification. In these cases, we typically end up with "cond ? v1 : v2" |
1164 | // where v1 and v2 both require constant pool loads, a big loss. |
1165 | if (GVElType == Type::getInt1Ty(C&: GV->getContext()) || |
1166 | GVElType->isFloatingPointTy() || |
1167 | GVElType->isPointerTy() || GVElType->isVectorTy()) |
1168 | return false; |
1169 | |
1170 | // Walk the use list of the global seeing if all the uses are load or store. |
1171 | // If there is anything else, bail out. |
1172 | for (User *U : GV->users()) { |
1173 | if (!isa<LoadInst>(Val: U) && !isa<StoreInst>(Val: U)) |
1174 | return false; |
1175 | if (getLoadStoreType(I: U) != GVElType) |
1176 | return false; |
1177 | } |
1178 | |
1179 | LLVM_DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n" ); |
1180 | |
1181 | // Create the new global, initializing it to false. |
1182 | GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(C&: GV->getContext()), |
1183 | false, |
1184 | GlobalValue::InternalLinkage, |
1185 | ConstantInt::getFalse(Context&: GV->getContext()), |
1186 | GV->getName()+".b" , |
1187 | GV->getThreadLocalMode(), |
1188 | GV->getType()->getAddressSpace()); |
1189 | NewGV->copyAttributesFrom(Src: GV); |
1190 | GV->getParent()->insertGlobalVariable(Where: GV->getIterator(), GV: NewGV); |
1191 | |
1192 | Constant *InitVal = GV->getInitializer(); |
1193 | assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && |
1194 | "No reason to shrink to bool!" ); |
1195 | |
1196 | SmallVector<DIGlobalVariableExpression *, 1> GVs; |
1197 | GV->getDebugInfo(GVs); |
1198 | |
1199 | // If initialized to zero and storing one into the global, we can use a cast |
1200 | // instead of a select to synthesize the desired value. |
1201 | bool IsOneZero = false; |
1202 | bool EmitOneOrZero = true; |
1203 | auto *CI = dyn_cast<ConstantInt>(Val: OtherVal); |
1204 | if (CI && CI->getValue().getActiveBits() <= 64) { |
1205 | IsOneZero = InitVal->isNullValue() && CI->isOne(); |
1206 | |
1207 | auto *CIInit = dyn_cast<ConstantInt>(Val: GV->getInitializer()); |
1208 | if (CIInit && CIInit->getValue().getActiveBits() <= 64) { |
1209 | uint64_t ValInit = CIInit->getZExtValue(); |
1210 | uint64_t ValOther = CI->getZExtValue(); |
1211 | uint64_t ValMinus = ValOther - ValInit; |
1212 | |
1213 | for(auto *GVe : GVs){ |
1214 | DIGlobalVariable *DGV = GVe->getVariable(); |
1215 | DIExpression *E = GVe->getExpression(); |
1216 | const DataLayout &DL = GV->getDataLayout(); |
1217 | unsigned SizeInOctets = |
1218 | DL.getTypeAllocSizeInBits(Ty: NewGV->getValueType()) / 8; |
1219 | |
1220 | // It is expected that the address of global optimized variable is on |
1221 | // top of the stack. After optimization, value of that variable will |
1222 | // be ether 0 for initial value or 1 for other value. The following |
1223 | // expression should return constant integer value depending on the |
1224 | // value at global object address: |
1225 | // val * (ValOther - ValInit) + ValInit: |
1226 | // DW_OP_deref DW_OP_constu <ValMinus> |
1227 | // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value |
1228 | SmallVector<uint64_t, 12> Ops = { |
1229 | dwarf::DW_OP_deref_size, SizeInOctets, |
1230 | dwarf::DW_OP_constu, ValMinus, |
1231 | dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit, |
1232 | dwarf::DW_OP_plus}; |
1233 | bool WithStackValue = true; |
1234 | E = DIExpression::prependOpcodes(Expr: E, Ops, StackValue: WithStackValue); |
1235 | DIGlobalVariableExpression *DGVE = |
1236 | DIGlobalVariableExpression::get(Context&: NewGV->getContext(), Variable: DGV, Expression: E); |
1237 | NewGV->addDebugInfo(GV: DGVE); |
1238 | } |
1239 | EmitOneOrZero = false; |
1240 | } |
1241 | } |
1242 | |
1243 | if (EmitOneOrZero) { |
1244 | // FIXME: This will only emit address for debugger on which will |
1245 | // be written only 0 or 1. |
1246 | for(auto *GV : GVs) |
1247 | NewGV->addDebugInfo(GV); |
1248 | } |
1249 | |
1250 | while (!GV->use_empty()) { |
1251 | Instruction *UI = cast<Instruction>(Val: GV->user_back()); |
1252 | if (StoreInst *SI = dyn_cast<StoreInst>(Val: UI)) { |
1253 | // Change the store into a boolean store. |
1254 | bool StoringOther = SI->getOperand(i_nocapture: 0) == OtherVal; |
1255 | // Only do this if we weren't storing a loaded value. |
1256 | Value *StoreVal; |
1257 | if (StoringOther || SI->getOperand(i_nocapture: 0) == InitVal) { |
1258 | StoreVal = ConstantInt::get(Ty: Type::getInt1Ty(C&: GV->getContext()), |
1259 | V: StoringOther); |
1260 | } else { |
1261 | // Otherwise, we are storing a previously loaded copy. To do this, |
1262 | // change the copy from copying the original value to just copying the |
1263 | // bool. |
1264 | Instruction *StoredVal = cast<Instruction>(Val: SI->getOperand(i_nocapture: 0)); |
1265 | |
1266 | // If we've already replaced the input, StoredVal will be a cast or |
1267 | // select instruction. If not, it will be a load of the original |
1268 | // global. |
1269 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: StoredVal)) { |
1270 | assert(LI->getOperand(0) == GV && "Not a copy!" ); |
1271 | // Insert a new load, to preserve the saved value. |
1272 | StoreVal = |
1273 | new LoadInst(NewGV->getValueType(), NewGV, LI->getName() + ".b" , |
1274 | false, Align(1), LI->getOrdering(), |
1275 | LI->getSyncScopeID(), LI->getIterator()); |
1276 | } else { |
1277 | assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && |
1278 | "This is not a form that we understand!" ); |
1279 | StoreVal = StoredVal->getOperand(i: 0); |
1280 | assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!" ); |
1281 | } |
1282 | } |
1283 | StoreInst *NSI = |
1284 | new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(), |
1285 | SI->getSyncScopeID(), SI->getIterator()); |
1286 | NSI->setDebugLoc(SI->getDebugLoc()); |
1287 | } else { |
1288 | // Change the load into a load of bool then a select. |
1289 | LoadInst *LI = cast<LoadInst>(Val: UI); |
1290 | LoadInst *NLI = new LoadInst( |
1291 | NewGV->getValueType(), NewGV, LI->getName() + ".b" , false, Align(1), |
1292 | LI->getOrdering(), LI->getSyncScopeID(), LI->getIterator()); |
1293 | Instruction *NSI; |
1294 | if (IsOneZero) |
1295 | NSI = new ZExtInst(NLI, LI->getType(), "" , LI->getIterator()); |
1296 | else |
1297 | NSI = SelectInst::Create(C: NLI, S1: OtherVal, S2: InitVal, NameStr: "" , InsertBefore: LI->getIterator()); |
1298 | NSI->takeName(V: LI); |
1299 | // Since LI is split into two instructions, NLI and NSI both inherit the |
1300 | // same DebugLoc |
1301 | NLI->setDebugLoc(LI->getDebugLoc()); |
1302 | NSI->setDebugLoc(LI->getDebugLoc()); |
1303 | LI->replaceAllUsesWith(V: NSI); |
1304 | } |
1305 | UI->eraseFromParent(); |
1306 | } |
1307 | |
1308 | // Retain the name of the old global variable. People who are debugging their |
1309 | // programs may expect these variables to be named the same. |
1310 | NewGV->takeName(V: GV); |
1311 | GV->eraseFromParent(); |
1312 | return true; |
1313 | } |
1314 | |
1315 | static bool |
1316 | deleteIfDead(GlobalValue &GV, |
1317 | SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats, |
1318 | function_ref<void(Function &)> DeleteFnCallback = nullptr) { |
1319 | GV.removeDeadConstantUsers(); |
1320 | |
1321 | if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) |
1322 | return false; |
1323 | |
1324 | if (const Comdat *C = GV.getComdat()) |
1325 | if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(Ptr: C)) |
1326 | return false; |
1327 | |
1328 | bool Dead; |
1329 | if (auto *F = dyn_cast<Function>(Val: &GV)) |
1330 | Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); |
1331 | else |
1332 | Dead = GV.use_empty(); |
1333 | if (!Dead) |
1334 | return false; |
1335 | |
1336 | LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n" ); |
1337 | if (auto *F = dyn_cast<Function>(Val: &GV)) { |
1338 | if (DeleteFnCallback) |
1339 | DeleteFnCallback(*F); |
1340 | } |
1341 | GV.eraseFromParent(); |
1342 | ++NumDeleted; |
1343 | return true; |
1344 | } |
1345 | |
1346 | static bool isPointerValueDeadOnEntryToFunction( |
1347 | const Function *F, GlobalValue *GV, |
1348 | function_ref<DominatorTree &(Function &)> LookupDomTree) { |
1349 | // Find all uses of GV. We expect them all to be in F, and if we can't |
1350 | // identify any of the uses we bail out. |
1351 | // |
1352 | // On each of these uses, identify if the memory that GV points to is |
1353 | // used/required/live at the start of the function. If it is not, for example |
1354 | // if the first thing the function does is store to the GV, the GV can |
1355 | // possibly be demoted. |
1356 | // |
1357 | // We don't do an exhaustive search for memory operations - simply look |
1358 | // through bitcasts as they're quite common and benign. |
1359 | const DataLayout &DL = GV->getDataLayout(); |
1360 | SmallVector<LoadInst *, 4> Loads; |
1361 | SmallVector<StoreInst *, 4> Stores; |
1362 | for (auto *U : GV->users()) { |
1363 | Instruction *I = dyn_cast<Instruction>(Val: U); |
1364 | if (!I) |
1365 | return false; |
1366 | assert(I->getParent()->getParent() == F); |
1367 | |
1368 | if (auto *LI = dyn_cast<LoadInst>(Val: I)) |
1369 | Loads.push_back(Elt: LI); |
1370 | else if (auto *SI = dyn_cast<StoreInst>(Val: I)) |
1371 | Stores.push_back(Elt: SI); |
1372 | else |
1373 | return false; |
1374 | } |
1375 | |
1376 | // We have identified all uses of GV into loads and stores. Now check if all |
1377 | // of them are known not to depend on the value of the global at the function |
1378 | // entry point. We do this by ensuring that every load is dominated by at |
1379 | // least one store. |
1380 | auto &DT = LookupDomTree(*const_cast<Function *>(F)); |
1381 | |
1382 | // The below check is quadratic. Check we're not going to do too many tests. |
1383 | // FIXME: Even though this will always have worst-case quadratic time, we |
1384 | // could put effort into minimizing the average time by putting stores that |
1385 | // have been shown to dominate at least one load at the beginning of the |
1386 | // Stores array, making subsequent dominance checks more likely to succeed |
1387 | // early. |
1388 | // |
1389 | // The threshold here is fairly large because global->local demotion is a |
1390 | // very powerful optimization should it fire. |
1391 | const unsigned Threshold = 100; |
1392 | if (Loads.size() * Stores.size() > Threshold) |
1393 | return false; |
1394 | |
1395 | for (auto *L : Loads) { |
1396 | auto *LTy = L->getType(); |
1397 | if (none_of(Range&: Stores, P: [&](const StoreInst *S) { |
1398 | auto *STy = S->getValueOperand()->getType(); |
1399 | // The load is only dominated by the store if DomTree says so |
1400 | // and the number of bits loaded in L is less than or equal to |
1401 | // the number of bits stored in S. |
1402 | return DT.dominates(Def: S, User: L) && |
1403 | DL.getTypeStoreSize(Ty: LTy).getFixedValue() <= |
1404 | DL.getTypeStoreSize(Ty: STy).getFixedValue(); |
1405 | })) |
1406 | return false; |
1407 | } |
1408 | // All loads have known dependences inside F, so the global can be localized. |
1409 | return true; |
1410 | } |
1411 | |
1412 | // For a global variable with one store, if the store dominates any loads, |
1413 | // those loads will always load the stored value (as opposed to the |
1414 | // initializer), even in the presence of recursion. |
1415 | static bool forwardStoredOnceStore( |
1416 | GlobalVariable *GV, const StoreInst *StoredOnceStore, |
1417 | function_ref<DominatorTree &(Function &)> LookupDomTree) { |
1418 | const Value *StoredOnceValue = StoredOnceStore->getValueOperand(); |
1419 | // We can do this optimization for non-constants in nosync + norecurse |
1420 | // functions, but globals used in exactly one norecurse functions are already |
1421 | // promoted to an alloca. |
1422 | if (!isa<Constant>(Val: StoredOnceValue)) |
1423 | return false; |
1424 | const Function *F = StoredOnceStore->getFunction(); |
1425 | SmallVector<LoadInst *> Loads; |
1426 | for (User *U : GV->users()) { |
1427 | if (auto *LI = dyn_cast<LoadInst>(Val: U)) { |
1428 | if (LI->getFunction() == F && |
1429 | LI->getType() == StoredOnceValue->getType() && LI->isSimple()) |
1430 | Loads.push_back(Elt: LI); |
1431 | } |
1432 | } |
1433 | // Only compute DT if we have any loads to examine. |
1434 | bool MadeChange = false; |
1435 | if (!Loads.empty()) { |
1436 | auto &DT = LookupDomTree(*const_cast<Function *>(F)); |
1437 | for (auto *LI : Loads) { |
1438 | if (DT.dominates(Def: StoredOnceStore, User: LI)) { |
1439 | LI->replaceAllUsesWith(V: const_cast<Value *>(StoredOnceValue)); |
1440 | LI->eraseFromParent(); |
1441 | MadeChange = true; |
1442 | } |
1443 | } |
1444 | } |
1445 | return MadeChange; |
1446 | } |
1447 | |
1448 | /// Analyze the specified global variable and optimize |
1449 | /// it if possible. If we make a change, return true. |
1450 | static bool |
1451 | processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS, |
1452 | function_ref<TargetTransformInfo &(Function &)> GetTTI, |
1453 | function_ref<TargetLibraryInfo &(Function &)> GetTLI, |
1454 | function_ref<DominatorTree &(Function &)> LookupDomTree) { |
1455 | auto &DL = GV->getDataLayout(); |
1456 | // If this is a first class global and has only one accessing function and |
1457 | // this function is non-recursive, we replace the global with a local alloca |
1458 | // in this function. |
1459 | // |
1460 | // NOTE: It doesn't make sense to promote non-single-value types since we |
1461 | // are just replacing static memory to stack memory. |
1462 | // |
1463 | // If the global is in different address space, don't bring it to stack. |
1464 | if (!GS.HasMultipleAccessingFunctions && |
1465 | GS.AccessingFunction && |
1466 | GV->getValueType()->isSingleValueType() && |
1467 | GV->getType()->getAddressSpace() == DL.getAllocaAddrSpace() && |
1468 | !GV->isExternallyInitialized() && |
1469 | GS.AccessingFunction->doesNotRecurse() && |
1470 | isPointerValueDeadOnEntryToFunction(F: GS.AccessingFunction, GV, |
1471 | LookupDomTree)) { |
1472 | const DataLayout &DL = GV->getDataLayout(); |
1473 | |
1474 | LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n" ); |
1475 | BasicBlock::iterator FirstI = |
1476 | GS.AccessingFunction->getEntryBlock().begin().getNonConst(); |
1477 | Type *ElemTy = GV->getValueType(); |
1478 | // FIXME: Pass Global's alignment when globals have alignment |
1479 | AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), |
1480 | nullptr, GV->getName(), FirstI); |
1481 | if (!isa<UndefValue>(Val: GV->getInitializer())) |
1482 | new StoreInst(GV->getInitializer(), Alloca, FirstI); |
1483 | |
1484 | GV->replaceAllUsesWith(V: Alloca); |
1485 | GV->eraseFromParent(); |
1486 | ++NumLocalized; |
1487 | return true; |
1488 | } |
1489 | |
1490 | bool Changed = false; |
1491 | |
1492 | // If the global is never loaded (but may be stored to), it is dead. |
1493 | // Delete it now. |
1494 | if (!GS.IsLoaded) { |
1495 | LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n" ); |
1496 | |
1497 | if (isLeakCheckerRoot(GV)) { |
1498 | // Delete any constant stores to the global. |
1499 | Changed = CleanupPointerRootUsers(GV, GetTLI); |
1500 | } else { |
1501 | // Delete any stores we can find to the global. We may not be able to |
1502 | // make it completely dead though. |
1503 | Changed = CleanupConstantGlobalUsers(GV, DL); |
1504 | } |
1505 | |
1506 | // If the global is dead now, delete it. |
1507 | if (GV->use_empty()) { |
1508 | GV->eraseFromParent(); |
1509 | ++NumDeleted; |
1510 | Changed = true; |
1511 | } |
1512 | return Changed; |
1513 | |
1514 | } |
1515 | if (GS.StoredType <= GlobalStatus::InitializerStored) { |
1516 | LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n" ); |
1517 | |
1518 | // Don't actually mark a global constant if it's atomic because atomic loads |
1519 | // are implemented by a trivial cmpxchg in some edge-cases and that usually |
1520 | // requires write access to the variable even if it's not actually changed. |
1521 | if (GS.Ordering == AtomicOrdering::NotAtomic) { |
1522 | assert(!GV->isConstant() && "Expected a non-constant global" ); |
1523 | GV->setConstant(true); |
1524 | Changed = true; |
1525 | } |
1526 | |
1527 | // Clean up any obviously simplifiable users now. |
1528 | Changed |= CleanupConstantGlobalUsers(GV, DL); |
1529 | |
1530 | // If the global is dead now, just nuke it. |
1531 | if (GV->use_empty()) { |
1532 | LLVM_DEBUG(dbgs() << " *** Marking constant allowed us to simplify " |
1533 | << "all users and delete global!\n" ); |
1534 | GV->eraseFromParent(); |
1535 | ++NumDeleted; |
1536 | return true; |
1537 | } |
1538 | |
1539 | // Fall through to the next check; see if we can optimize further. |
1540 | ++NumMarked; |
1541 | } |
1542 | if (!GV->getInitializer()->getType()->isSingleValueType()) { |
1543 | const DataLayout &DL = GV->getDataLayout(); |
1544 | if (SRAGlobal(GV, DL)) |
1545 | return true; |
1546 | } |
1547 | Value *StoredOnceValue = GS.getStoredOnceValue(); |
1548 | if (GS.StoredType == GlobalStatus::StoredOnce && StoredOnceValue) { |
1549 | Function &StoreFn = |
1550 | const_cast<Function &>(*GS.StoredOnceStore->getFunction()); |
1551 | bool CanHaveNonUndefGlobalInitializer = |
1552 | GetTTI(StoreFn).canHaveNonUndefGlobalInitializerInAddressSpace( |
1553 | AS: GV->getType()->getAddressSpace()); |
1554 | // If the initial value for the global was an undef value, and if only |
1555 | // one other value was stored into it, we can just change the |
1556 | // initializer to be the stored value, then delete all stores to the |
1557 | // global. This allows us to mark it constant. |
1558 | // This is restricted to address spaces that allow globals to have |
1559 | // initializers. NVPTX, for example, does not support initializers for |
1560 | // shared memory (AS 3). |
1561 | auto *SOVConstant = dyn_cast<Constant>(Val: StoredOnceValue); |
1562 | if (SOVConstant && isa<UndefValue>(Val: GV->getInitializer()) && |
1563 | DL.getTypeAllocSize(Ty: SOVConstant->getType()) == |
1564 | DL.getTypeAllocSize(Ty: GV->getValueType()) && |
1565 | CanHaveNonUndefGlobalInitializer) { |
1566 | if (SOVConstant->getType() == GV->getValueType()) { |
1567 | // Change the initializer in place. |
1568 | GV->setInitializer(SOVConstant); |
1569 | } else { |
1570 | // Create a new global with adjusted type. |
1571 | auto *NGV = new GlobalVariable( |
1572 | *GV->getParent(), SOVConstant->getType(), GV->isConstant(), |
1573 | GV->getLinkage(), SOVConstant, "" , GV, GV->getThreadLocalMode(), |
1574 | GV->getAddressSpace()); |
1575 | NGV->takeName(V: GV); |
1576 | NGV->copyAttributesFrom(Src: GV); |
1577 | GV->replaceAllUsesWith(V: NGV); |
1578 | GV->eraseFromParent(); |
1579 | GV = NGV; |
1580 | } |
1581 | |
1582 | // Clean up any obviously simplifiable users now. |
1583 | CleanupConstantGlobalUsers(GV, DL); |
1584 | |
1585 | if (GV->use_empty()) { |
1586 | LLVM_DEBUG(dbgs() << " *** Substituting initializer allowed us to " |
1587 | << "simplify all users and delete global!\n" ); |
1588 | GV->eraseFromParent(); |
1589 | ++NumDeleted; |
1590 | } |
1591 | ++NumSubstitute; |
1592 | return true; |
1593 | } |
1594 | |
1595 | // Try to optimize globals based on the knowledge that only one value |
1596 | // (besides its initializer) is ever stored to the global. |
1597 | if (optimizeOnceStoredGlobal(GV, StoredOnceVal: StoredOnceValue, DL, GetTLI)) |
1598 | return true; |
1599 | |
1600 | // Try to forward the store to any loads. If we have more than one store, we |
1601 | // may have a store of the initializer between StoredOnceStore and a load. |
1602 | if (GS.NumStores == 1) |
1603 | if (forwardStoredOnceStore(GV, StoredOnceStore: GS.StoredOnceStore, LookupDomTree)) |
1604 | return true; |
1605 | |
1606 | // Otherwise, if the global was not a boolean, we can shrink it to be a |
1607 | // boolean. Skip this optimization for AS that doesn't allow an initializer. |
1608 | if (SOVConstant && GS.Ordering == AtomicOrdering::NotAtomic && |
1609 | (!isa<UndefValue>(Val: GV->getInitializer()) || |
1610 | CanHaveNonUndefGlobalInitializer)) { |
1611 | if (TryToShrinkGlobalToBoolean(GV, OtherVal: SOVConstant)) { |
1612 | ++NumShrunkToBool; |
1613 | return true; |
1614 | } |
1615 | } |
1616 | } |
1617 | |
1618 | return Changed; |
1619 | } |
1620 | |
1621 | /// Analyze the specified global variable and optimize it if possible. If we |
1622 | /// make a change, return true. |
1623 | static bool |
1624 | processGlobal(GlobalValue &GV, |
1625 | function_ref<TargetTransformInfo &(Function &)> GetTTI, |
1626 | function_ref<TargetLibraryInfo &(Function &)> GetTLI, |
1627 | function_ref<DominatorTree &(Function &)> LookupDomTree) { |
1628 | if (GV.getName().starts_with(Prefix: "llvm." )) |
1629 | return false; |
1630 | |
1631 | GlobalStatus GS; |
1632 | |
1633 | if (GlobalStatus::analyzeGlobal(V: &GV, GS)) |
1634 | return false; |
1635 | |
1636 | bool Changed = false; |
1637 | if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { |
1638 | auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global |
1639 | : GlobalValue::UnnamedAddr::Local; |
1640 | if (NewUnnamedAddr != GV.getUnnamedAddr()) { |
1641 | GV.setUnnamedAddr(NewUnnamedAddr); |
1642 | NumUnnamed++; |
1643 | Changed = true; |
1644 | } |
1645 | } |
1646 | |
1647 | // Do more involved optimizations if the global is internal. |
1648 | if (!GV.hasLocalLinkage()) |
1649 | return Changed; |
1650 | |
1651 | auto *GVar = dyn_cast<GlobalVariable>(Val: &GV); |
1652 | if (!GVar) |
1653 | return Changed; |
1654 | |
1655 | if (GVar->isConstant() || !GVar->hasInitializer()) |
1656 | return Changed; |
1657 | |
1658 | return processInternalGlobal(GV: GVar, GS, GetTTI, GetTLI, LookupDomTree) || |
1659 | Changed; |
1660 | } |
1661 | |
1662 | /// Walk all of the direct calls of the specified function, changing them to |
1663 | /// FastCC. |
1664 | static void ChangeCalleesToFastCall(Function *F) { |
1665 | for (User *U : F->users()) { |
1666 | if (isa<BlockAddress>(Val: U)) |
1667 | continue; |
1668 | cast<CallBase>(Val: U)->setCallingConv(CallingConv::Fast); |
1669 | } |
1670 | } |
1671 | |
1672 | static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs, |
1673 | Attribute::AttrKind A) { |
1674 | unsigned AttrIndex; |
1675 | if (Attrs.hasAttrSomewhere(Kind: A, Index: &AttrIndex)) |
1676 | return Attrs.removeAttributeAtIndex(C, Index: AttrIndex, Kind: A); |
1677 | return Attrs; |
1678 | } |
1679 | |
1680 | static void RemoveAttribute(Function *F, Attribute::AttrKind A) { |
1681 | F->setAttributes(StripAttr(C&: F->getContext(), Attrs: F->getAttributes(), A)); |
1682 | for (User *U : F->users()) { |
1683 | if (isa<BlockAddress>(Val: U)) |
1684 | continue; |
1685 | CallBase *CB = cast<CallBase>(Val: U); |
1686 | CB->setAttributes(StripAttr(C&: F->getContext(), Attrs: CB->getAttributes(), A)); |
1687 | } |
1688 | } |
1689 | |
1690 | /// Return true if this is a calling convention that we'd like to change. The |
1691 | /// idea here is that we don't want to mess with the convention if the user |
1692 | /// explicitly requested something with performance implications like coldcc, |
1693 | /// GHC, or anyregcc. |
1694 | static bool hasChangeableCCImpl(Function *F) { |
1695 | CallingConv::ID CC = F->getCallingConv(); |
1696 | |
1697 | // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? |
1698 | if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall) |
1699 | return false; |
1700 | |
1701 | if (F->isVarArg()) |
1702 | return false; |
1703 | |
1704 | // FIXME: Change CC for the whole chain of musttail calls when possible. |
1705 | // |
1706 | // Can't change CC of the function that either has musttail calls, or is a |
1707 | // musttail callee itself |
1708 | for (User *U : F->users()) { |
1709 | if (isa<BlockAddress>(Val: U)) |
1710 | continue; |
1711 | CallInst* CI = dyn_cast<CallInst>(Val: U); |
1712 | if (!CI) |
1713 | continue; |
1714 | |
1715 | if (CI->isMustTailCall()) |
1716 | return false; |
1717 | } |
1718 | |
1719 | for (BasicBlock &BB : *F) |
1720 | if (BB.getTerminatingMustTailCall()) |
1721 | return false; |
1722 | |
1723 | return !F->hasAddressTaken(); |
1724 | } |
1725 | |
1726 | using ChangeableCCCacheTy = SmallDenseMap<Function *, bool, 8>; |
1727 | static bool hasChangeableCC(Function *F, |
1728 | ChangeableCCCacheTy &ChangeableCCCache) { |
1729 | auto Res = ChangeableCCCache.try_emplace(Key: F, Args: false); |
1730 | if (Res.second) |
1731 | Res.first->second = hasChangeableCCImpl(F); |
1732 | return Res.first->second; |
1733 | } |
1734 | |
1735 | /// Return true if the block containing the call site has a BlockFrequency of |
1736 | /// less than ColdCCRelFreq% of the entry block. |
1737 | static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) { |
1738 | const BranchProbability ColdProb(ColdCCRelFreq, 100); |
1739 | auto *CallSiteBB = CB.getParent(); |
1740 | auto CallSiteFreq = CallerBFI.getBlockFreq(BB: CallSiteBB); |
1741 | auto CallerEntryFreq = |
1742 | CallerBFI.getBlockFreq(BB: &(CB.getCaller()->getEntryBlock())); |
1743 | return CallSiteFreq < CallerEntryFreq * ColdProb; |
1744 | } |
1745 | |
1746 | // This function checks if the input function F is cold at all call sites. It |
1747 | // also looks each call site's containing function, returning false if the |
1748 | // caller function contains other non cold calls. The input vector AllCallsCold |
1749 | // contains a list of functions that only have call sites in cold blocks. |
1750 | static bool |
1751 | isValidCandidateForColdCC(Function &F, |
1752 | function_ref<BlockFrequencyInfo &(Function &)> GetBFI, |
1753 | const std::vector<Function *> &AllCallsCold) { |
1754 | |
1755 | if (F.user_empty()) |
1756 | return false; |
1757 | |
1758 | for (User *U : F.users()) { |
1759 | if (isa<BlockAddress>(Val: U)) |
1760 | continue; |
1761 | |
1762 | CallBase &CB = cast<CallBase>(Val&: *U); |
1763 | Function *CallerFunc = CB.getParent()->getParent(); |
1764 | BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc); |
1765 | if (!isColdCallSite(CB, CallerBFI)) |
1766 | return false; |
1767 | if (!llvm::is_contained(Range: AllCallsCold, Element: CallerFunc)) |
1768 | return false; |
1769 | } |
1770 | return true; |
1771 | } |
1772 | |
1773 | static void changeCallSitesToColdCC(Function *F) { |
1774 | for (User *U : F->users()) { |
1775 | if (isa<BlockAddress>(Val: U)) |
1776 | continue; |
1777 | cast<CallBase>(Val: U)->setCallingConv(CallingConv::Cold); |
1778 | } |
1779 | } |
1780 | |
1781 | // This function iterates over all the call instructions in the input Function |
1782 | // and checks that all call sites are in cold blocks and are allowed to use the |
1783 | // coldcc calling convention. |
1784 | static bool |
1785 | hasOnlyColdCalls(Function &F, |
1786 | function_ref<BlockFrequencyInfo &(Function &)> GetBFI, |
1787 | ChangeableCCCacheTy &ChangeableCCCache) { |
1788 | for (BasicBlock &BB : F) { |
1789 | for (Instruction &I : BB) { |
1790 | if (CallInst *CI = dyn_cast<CallInst>(Val: &I)) { |
1791 | // Skip over isline asm instructions since they aren't function calls. |
1792 | if (CI->isInlineAsm()) |
1793 | continue; |
1794 | Function *CalledFn = CI->getCalledFunction(); |
1795 | if (!CalledFn) |
1796 | return false; |
1797 | // Skip over intrinsics since they won't remain as function calls. |
1798 | // Important to do this check before the linkage check below so we |
1799 | // won't bail out on debug intrinsics, possibly making the generated |
1800 | // code dependent on the presence of debug info. |
1801 | if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic) |
1802 | continue; |
1803 | if (!CalledFn->hasLocalLinkage()) |
1804 | return false; |
1805 | // Check if it's valid to use coldcc calling convention. |
1806 | if (!hasChangeableCC(F: CalledFn, ChangeableCCCache)) |
1807 | return false; |
1808 | BlockFrequencyInfo &CallerBFI = GetBFI(F); |
1809 | if (!isColdCallSite(CB&: *CI, CallerBFI)) |
1810 | return false; |
1811 | } |
1812 | } |
1813 | } |
1814 | return true; |
1815 | } |
1816 | |
1817 | static bool hasMustTailCallers(Function *F) { |
1818 | for (User *U : F->users()) { |
1819 | CallBase *CB = dyn_cast<CallBase>(Val: U); |
1820 | if (!CB) { |
1821 | assert(isa<BlockAddress>(U) && |
1822 | "Expected either CallBase or BlockAddress" ); |
1823 | continue; |
1824 | } |
1825 | if (CB->isMustTailCall()) |
1826 | return true; |
1827 | } |
1828 | return false; |
1829 | } |
1830 | |
1831 | static bool hasInvokeCallers(Function *F) { |
1832 | for (User *U : F->users()) |
1833 | if (isa<InvokeInst>(Val: U)) |
1834 | return true; |
1835 | return false; |
1836 | } |
1837 | |
1838 | static void RemovePreallocated(Function *F) { |
1839 | RemoveAttribute(F, A: Attribute::Preallocated); |
1840 | |
1841 | auto *M = F->getParent(); |
1842 | |
1843 | IRBuilder<> Builder(M->getContext()); |
1844 | |
1845 | // Cannot modify users() while iterating over it, so make a copy. |
1846 | SmallVector<User *, 4> PreallocatedCalls(F->users()); |
1847 | for (User *U : PreallocatedCalls) { |
1848 | CallBase *CB = dyn_cast<CallBase>(Val: U); |
1849 | if (!CB) |
1850 | continue; |
1851 | |
1852 | assert( |
1853 | !CB->isMustTailCall() && |
1854 | "Shouldn't call RemotePreallocated() on a musttail preallocated call" ); |
1855 | // Create copy of call without "preallocated" operand bundle. |
1856 | SmallVector<OperandBundleDef, 1> OpBundles; |
1857 | CB->getOperandBundlesAsDefs(Defs&: OpBundles); |
1858 | CallBase *PreallocatedSetup = nullptr; |
1859 | for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) { |
1860 | if (It->getTag() == "preallocated" ) { |
1861 | PreallocatedSetup = cast<CallBase>(Val: *It->input_begin()); |
1862 | OpBundles.erase(CI: It); |
1863 | break; |
1864 | } |
1865 | } |
1866 | assert(PreallocatedSetup && "Did not find preallocated bundle" ); |
1867 | uint64_t ArgCount = |
1868 | cast<ConstantInt>(Val: PreallocatedSetup->getArgOperand(i: 0))->getZExtValue(); |
1869 | |
1870 | assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) && |
1871 | "Unknown indirect call type" ); |
1872 | CallBase *NewCB = CallBase::Create(CB, Bundles: OpBundles, InsertPt: CB->getIterator()); |
1873 | CB->replaceAllUsesWith(V: NewCB); |
1874 | NewCB->takeName(V: CB); |
1875 | CB->eraseFromParent(); |
1876 | |
1877 | Builder.SetInsertPoint(PreallocatedSetup); |
1878 | auto *StackSave = Builder.CreateStackSave(); |
1879 | Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction()); |
1880 | Builder.CreateStackRestore(Ptr: StackSave); |
1881 | |
1882 | // Replace @llvm.call.preallocated.arg() with alloca. |
1883 | // Cannot modify users() while iterating over it, so make a copy. |
1884 | // @llvm.call.preallocated.arg() can be called with the same index multiple |
1885 | // times. So for each @llvm.call.preallocated.arg(), we see if we have |
1886 | // already created a Value* for the index, and if not, create an alloca and |
1887 | // bitcast right after the @llvm.call.preallocated.setup() so that it |
1888 | // dominates all uses. |
1889 | SmallVector<Value *, 2> ArgAllocas(ArgCount); |
1890 | SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users()); |
1891 | for (auto *User : PreallocatedArgs) { |
1892 | auto *UseCall = cast<CallBase>(Val: User); |
1893 | assert(UseCall->getCalledFunction()->getIntrinsicID() == |
1894 | Intrinsic::call_preallocated_arg && |
1895 | "preallocated token use was not a llvm.call.preallocated.arg" ); |
1896 | uint64_t AllocArgIndex = |
1897 | cast<ConstantInt>(Val: UseCall->getArgOperand(i: 1))->getZExtValue(); |
1898 | Value *AllocaReplacement = ArgAllocas[AllocArgIndex]; |
1899 | if (!AllocaReplacement) { |
1900 | auto AddressSpace = UseCall->getType()->getPointerAddressSpace(); |
1901 | auto *ArgType = |
1902 | UseCall->getFnAttr(Kind: Attribute::Preallocated).getValueAsType(); |
1903 | auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction(); |
1904 | Builder.SetInsertPoint(InsertBefore); |
1905 | auto *Alloca = |
1906 | Builder.CreateAlloca(Ty: ArgType, AddrSpace: AddressSpace, ArraySize: nullptr, Name: "paarg" ); |
1907 | ArgAllocas[AllocArgIndex] = Alloca; |
1908 | AllocaReplacement = Alloca; |
1909 | } |
1910 | |
1911 | UseCall->replaceAllUsesWith(V: AllocaReplacement); |
1912 | UseCall->eraseFromParent(); |
1913 | } |
1914 | // Remove @llvm.call.preallocated.setup(). |
1915 | cast<Instruction>(Val: PreallocatedSetup)->eraseFromParent(); |
1916 | } |
1917 | } |
1918 | |
1919 | static bool |
1920 | OptimizeFunctions(Module &M, |
1921 | function_ref<TargetLibraryInfo &(Function &)> GetTLI, |
1922 | function_ref<TargetTransformInfo &(Function &)> GetTTI, |
1923 | function_ref<BlockFrequencyInfo &(Function &)> GetBFI, |
1924 | function_ref<DominatorTree &(Function &)> LookupDomTree, |
1925 | SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats, |
1926 | function_ref<void(Function &F)> ChangedCFGCallback, |
1927 | function_ref<void(Function &F)> DeleteFnCallback) { |
1928 | |
1929 | bool Changed = false; |
1930 | |
1931 | ChangeableCCCacheTy ChangeableCCCache; |
1932 | std::vector<Function *> AllCallsCold; |
1933 | for (Function &F : llvm::make_early_inc_range(Range&: M)) |
1934 | if (hasOnlyColdCalls(F, GetBFI, ChangeableCCCache)) |
1935 | AllCallsCold.push_back(x: &F); |
1936 | |
1937 | // Optimize functions. |
1938 | for (Function &F : llvm::make_early_inc_range(Range&: M)) { |
1939 | // Don't perform global opt pass on naked functions; we don't want fast |
1940 | // calling conventions for naked functions. |
1941 | if (F.hasFnAttribute(Kind: Attribute::Naked)) |
1942 | continue; |
1943 | |
1944 | // Functions without names cannot be referenced outside this module. |
1945 | if (!F.hasName() && !F.isDeclaration() && !F.hasLocalLinkage()) |
1946 | F.setLinkage(GlobalValue::InternalLinkage); |
1947 | |
1948 | if (deleteIfDead(GV&: F, NotDiscardableComdats, DeleteFnCallback)) { |
1949 | Changed = true; |
1950 | continue; |
1951 | } |
1952 | |
1953 | // LLVM's definition of dominance allows instructions that are cyclic |
1954 | // in unreachable blocks, e.g.: |
1955 | // %pat = select i1 %condition, @global, i16* %pat |
1956 | // because any instruction dominates an instruction in a block that's |
1957 | // not reachable from entry. |
1958 | // So, remove unreachable blocks from the function, because a) there's |
1959 | // no point in analyzing them and b) GlobalOpt should otherwise grow |
1960 | // some more complicated logic to break these cycles. |
1961 | // Notify the analysis manager that we've modified the function's CFG. |
1962 | if (!F.isDeclaration()) { |
1963 | if (removeUnreachableBlocks(F)) { |
1964 | Changed = true; |
1965 | ChangedCFGCallback(F); |
1966 | } |
1967 | } |
1968 | |
1969 | Changed |= processGlobal(GV&: F, GetTTI, GetTLI, LookupDomTree); |
1970 | |
1971 | if (!F.hasLocalLinkage()) |
1972 | continue; |
1973 | |
1974 | // If we have an inalloca parameter that we can safely remove the |
1975 | // inalloca attribute from, do so. This unlocks optimizations that |
1976 | // wouldn't be safe in the presence of inalloca. |
1977 | // FIXME: We should also hoist alloca affected by this to the entry |
1978 | // block if possible. |
1979 | if (F.getAttributes().hasAttrSomewhere(Kind: Attribute::InAlloca) && |
1980 | !F.hasAddressTaken() && !hasMustTailCallers(F: &F) && !F.isVarArg()) { |
1981 | RemoveAttribute(F: &F, A: Attribute::InAlloca); |
1982 | Changed = true; |
1983 | } |
1984 | |
1985 | // FIXME: handle invokes |
1986 | // FIXME: handle musttail |
1987 | if (F.getAttributes().hasAttrSomewhere(Kind: Attribute::Preallocated)) { |
1988 | if (!F.hasAddressTaken() && !hasMustTailCallers(F: &F) && |
1989 | !hasInvokeCallers(F: &F)) { |
1990 | RemovePreallocated(F: &F); |
1991 | Changed = true; |
1992 | } |
1993 | continue; |
1994 | } |
1995 | |
1996 | if (hasChangeableCC(F: &F, ChangeableCCCache)) { |
1997 | NumInternalFunc++; |
1998 | TargetTransformInfo &TTI = GetTTI(F); |
1999 | // Change the calling convention to coldcc if either stress testing is |
2000 | // enabled or the target would like to use coldcc on functions which are |
2001 | // cold at all call sites and the callers contain no other non coldcc |
2002 | // calls. |
2003 | if (EnableColdCCStressTest || |
2004 | (TTI.useColdCCForColdCall(F) && |
2005 | isValidCandidateForColdCC(F, GetBFI, AllCallsCold))) { |
2006 | ChangeableCCCache.erase(Val: &F); |
2007 | F.setCallingConv(CallingConv::Cold); |
2008 | changeCallSitesToColdCC(F: &F); |
2009 | Changed = true; |
2010 | NumColdCC++; |
2011 | } |
2012 | } |
2013 | |
2014 | if (hasChangeableCC(F: &F, ChangeableCCCache)) { |
2015 | // If this function has a calling convention worth changing, is not a |
2016 | // varargs function, and is only called directly, promote it to use the |
2017 | // Fast calling convention. |
2018 | F.setCallingConv(CallingConv::Fast); |
2019 | ChangeCalleesToFastCall(F: &F); |
2020 | ++NumFastCallFns; |
2021 | Changed = true; |
2022 | } |
2023 | |
2024 | if (F.getAttributes().hasAttrSomewhere(Kind: Attribute::Nest) && |
2025 | !F.hasAddressTaken()) { |
2026 | // The function is not used by a trampoline intrinsic, so it is safe |
2027 | // to remove the 'nest' attribute. |
2028 | RemoveAttribute(F: &F, A: Attribute::Nest); |
2029 | ++NumNestRemoved; |
2030 | Changed = true; |
2031 | } |
2032 | } |
2033 | return Changed; |
2034 | } |
2035 | |
2036 | static bool |
2037 | OptimizeGlobalVars(Module &M, |
2038 | function_ref<TargetTransformInfo &(Function &)> GetTTI, |
2039 | function_ref<TargetLibraryInfo &(Function &)> GetTLI, |
2040 | function_ref<DominatorTree &(Function &)> LookupDomTree, |
2041 | SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { |
2042 | bool Changed = false; |
2043 | |
2044 | for (GlobalVariable &GV : llvm::make_early_inc_range(Range: M.globals())) { |
2045 | // Global variables without names cannot be referenced outside this module. |
2046 | if (!GV.hasName() && !GV.isDeclaration() && !GV.hasLocalLinkage()) |
2047 | GV.setLinkage(GlobalValue::InternalLinkage); |
2048 | // Simplify the initializer. |
2049 | if (GV.hasInitializer()) |
2050 | if (auto *C = dyn_cast<Constant>(Val: GV.getInitializer())) { |
2051 | auto &DL = M.getDataLayout(); |
2052 | // TLI is not used in the case of a Constant, so use default nullptr |
2053 | // for that optional parameter, since we don't have a Function to |
2054 | // provide GetTLI anyway. |
2055 | Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr); |
2056 | if (New != C) |
2057 | GV.setInitializer(New); |
2058 | } |
2059 | |
2060 | if (deleteIfDead(GV, NotDiscardableComdats)) { |
2061 | Changed = true; |
2062 | continue; |
2063 | } |
2064 | |
2065 | Changed |= processGlobal(GV, GetTTI, GetTLI, LookupDomTree); |
2066 | } |
2067 | return Changed; |
2068 | } |
2069 | |
2070 | /// Evaluate static constructors in the function, if we can. Return true if we |
2071 | /// can, false otherwise. |
2072 | static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, |
2073 | TargetLibraryInfo *TLI) { |
2074 | // Skip external functions. |
2075 | if (F->isDeclaration()) |
2076 | return false; |
2077 | // Call the function. |
2078 | Evaluator Eval(DL, TLI); |
2079 | Constant *RetValDummy; |
2080 | bool EvalSuccess = Eval.EvaluateFunction(F, RetVal&: RetValDummy, |
2081 | ActualArgs: SmallVector<Constant*, 0>()); |
2082 | |
2083 | if (EvalSuccess) { |
2084 | ++NumCtorsEvaluated; |
2085 | |
2086 | // We succeeded at evaluation: commit the result. |
2087 | auto NewInitializers = Eval.getMutatedInitializers(); |
2088 | LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" |
2089 | << F->getName() << "' to " << NewInitializers.size() |
2090 | << " stores.\n" ); |
2091 | for (const auto &Pair : NewInitializers) |
2092 | Pair.first->setInitializer(Pair.second); |
2093 | for (GlobalVariable *GV : Eval.getInvariants()) |
2094 | GV->setConstant(true); |
2095 | } |
2096 | |
2097 | return EvalSuccess; |
2098 | } |
2099 | |
2100 | static int compareNames(Constant *const *A, Constant *const *B) { |
2101 | Value *AStripped = (*A)->stripPointerCasts(); |
2102 | Value *BStripped = (*B)->stripPointerCasts(); |
2103 | return AStripped->getName().compare(RHS: BStripped->getName()); |
2104 | } |
2105 | |
2106 | static void setUsedInitializer(GlobalVariable &V, |
2107 | const SmallPtrSetImpl<GlobalValue *> &Init) { |
2108 | if (Init.empty()) { |
2109 | V.eraseFromParent(); |
2110 | return; |
2111 | } |
2112 | |
2113 | // Get address space of pointers in the array of pointers. |
2114 | const Type *UsedArrayType = V.getValueType(); |
2115 | const auto *VAT = cast<ArrayType>(Val: UsedArrayType); |
2116 | const auto *VEPT = cast<PointerType>(Val: VAT->getArrayElementType()); |
2117 | |
2118 | // Type of pointer to the array of pointers. |
2119 | PointerType *PtrTy = |
2120 | PointerType::get(C&: V.getContext(), AddressSpace: VEPT->getAddressSpace()); |
2121 | |
2122 | SmallVector<Constant *, 8> UsedArray; |
2123 | for (GlobalValue *GV : Init) { |
2124 | Constant *Cast = ConstantExpr::getPointerBitCastOrAddrSpaceCast(C: GV, Ty: PtrTy); |
2125 | UsedArray.push_back(Elt: Cast); |
2126 | } |
2127 | |
2128 | // Sort to get deterministic order. |
2129 | array_pod_sort(Start: UsedArray.begin(), End: UsedArray.end(), Compare: compareNames); |
2130 | ArrayType *ATy = ArrayType::get(ElementType: PtrTy, NumElements: UsedArray.size()); |
2131 | |
2132 | Module *M = V.getParent(); |
2133 | V.removeFromParent(); |
2134 | GlobalVariable *NV = |
2135 | new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage, |
2136 | ConstantArray::get(T: ATy, V: UsedArray), "" ); |
2137 | NV->takeName(V: &V); |
2138 | NV->setSection("llvm.metadata" ); |
2139 | delete &V; |
2140 | } |
2141 | |
2142 | namespace { |
2143 | |
2144 | /// An easy to access representation of llvm.used and llvm.compiler.used. |
2145 | class LLVMUsed { |
2146 | SmallPtrSet<GlobalValue *, 4> Used; |
2147 | SmallPtrSet<GlobalValue *, 4> CompilerUsed; |
2148 | GlobalVariable *UsedV; |
2149 | GlobalVariable *CompilerUsedV; |
2150 | |
2151 | public: |
2152 | LLVMUsed(Module &M) { |
2153 | SmallVector<GlobalValue *, 4> Vec; |
2154 | UsedV = collectUsedGlobalVariables(M, Vec, CompilerUsed: false); |
2155 | Used = {Vec.begin(), Vec.end()}; |
2156 | Vec.clear(); |
2157 | CompilerUsedV = collectUsedGlobalVariables(M, Vec, CompilerUsed: true); |
2158 | CompilerUsed = {Vec.begin(), Vec.end()}; |
2159 | } |
2160 | |
2161 | using iterator = SmallPtrSet<GlobalValue *, 4>::iterator; |
2162 | using used_iterator_range = iterator_range<iterator>; |
2163 | |
2164 | iterator usedBegin() { return Used.begin(); } |
2165 | iterator usedEnd() { return Used.end(); } |
2166 | |
2167 | used_iterator_range used() { |
2168 | return used_iterator_range(usedBegin(), usedEnd()); |
2169 | } |
2170 | |
2171 | iterator compilerUsedBegin() { return CompilerUsed.begin(); } |
2172 | iterator compilerUsedEnd() { return CompilerUsed.end(); } |
2173 | |
2174 | used_iterator_range compilerUsed() { |
2175 | return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); |
2176 | } |
2177 | |
2178 | bool usedCount(GlobalValue *GV) const { return Used.count(Ptr: GV); } |
2179 | |
2180 | bool compilerUsedCount(GlobalValue *GV) const { |
2181 | return CompilerUsed.count(Ptr: GV); |
2182 | } |
2183 | |
2184 | bool usedErase(GlobalValue *GV) { return Used.erase(Ptr: GV); } |
2185 | bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(Ptr: GV); } |
2186 | bool usedInsert(GlobalValue *GV) { return Used.insert(Ptr: GV).second; } |
2187 | |
2188 | bool compilerUsedInsert(GlobalValue *GV) { |
2189 | return CompilerUsed.insert(Ptr: GV).second; |
2190 | } |
2191 | |
2192 | void syncVariablesAndSets() { |
2193 | if (UsedV) |
2194 | setUsedInitializer(V&: *UsedV, Init: Used); |
2195 | if (CompilerUsedV) |
2196 | setUsedInitializer(V&: *CompilerUsedV, Init: CompilerUsed); |
2197 | } |
2198 | }; |
2199 | |
2200 | } // end anonymous namespace |
2201 | |
2202 | static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { |
2203 | if (GA.use_empty()) // No use at all. |
2204 | return false; |
2205 | |
2206 | assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && |
2207 | "We should have removed the duplicated " |
2208 | "element from llvm.compiler.used" ); |
2209 | if (!GA.hasOneUse()) |
2210 | // Strictly more than one use. So at least one is not in llvm.used and |
2211 | // llvm.compiler.used. |
2212 | return true; |
2213 | |
2214 | // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. |
2215 | return !U.usedCount(GV: &GA) && !U.compilerUsedCount(GV: &GA); |
2216 | } |
2217 | |
2218 | static bool mayHaveOtherReferences(GlobalValue &GV, const LLVMUsed &U) { |
2219 | if (!GV.hasLocalLinkage()) |
2220 | return true; |
2221 | |
2222 | return U.usedCount(GV: &GV) || U.compilerUsedCount(GV: &GV); |
2223 | } |
2224 | |
2225 | static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, |
2226 | bool &RenameTarget) { |
2227 | if (GA.isWeakForLinker()) |
2228 | return false; |
2229 | |
2230 | RenameTarget = false; |
2231 | bool Ret = false; |
2232 | if (hasUseOtherThanLLVMUsed(GA, U)) |
2233 | Ret = true; |
2234 | |
2235 | // If the alias is externally visible, we may still be able to simplify it. |
2236 | if (!mayHaveOtherReferences(GV&: GA, U)) |
2237 | return Ret; |
2238 | |
2239 | // If the aliasee has internal linkage and no other references (e.g., |
2240 | // @llvm.used, @llvm.compiler.used), give it the name and linkage of the |
2241 | // alias, and delete the alias. This turns: |
2242 | // define internal ... @f(...) |
2243 | // @a = alias ... @f |
2244 | // into: |
2245 | // define ... @a(...) |
2246 | Constant *Aliasee = GA.getAliasee(); |
2247 | GlobalValue *Target = cast<GlobalValue>(Val: Aliasee->stripPointerCasts()); |
2248 | if (mayHaveOtherReferences(GV&: *Target, U)) |
2249 | return Ret; |
2250 | |
2251 | RenameTarget = true; |
2252 | return true; |
2253 | } |
2254 | |
2255 | static bool |
2256 | OptimizeGlobalAliases(Module &M, |
2257 | SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { |
2258 | bool Changed = false; |
2259 | LLVMUsed Used(M); |
2260 | |
2261 | for (GlobalValue *GV : Used.used()) |
2262 | Used.compilerUsedErase(GV); |
2263 | |
2264 | // Return whether GV is explicitly or implicitly dso_local and not replaceable |
2265 | // by another definition in the current linkage unit. |
2266 | auto IsModuleLocal = [](GlobalValue &GV) { |
2267 | return !GlobalValue::isInterposableLinkage(Linkage: GV.getLinkage()) && |
2268 | (GV.isDSOLocal() || GV.isImplicitDSOLocal()); |
2269 | }; |
2270 | |
2271 | for (GlobalAlias &J : llvm::make_early_inc_range(Range: M.aliases())) { |
2272 | // Aliases without names cannot be referenced outside this module. |
2273 | if (!J.hasName() && !J.isDeclaration() && !J.hasLocalLinkage()) |
2274 | J.setLinkage(GlobalValue::InternalLinkage); |
2275 | |
2276 | if (deleteIfDead(GV&: J, NotDiscardableComdats)) { |
2277 | Changed = true; |
2278 | continue; |
2279 | } |
2280 | |
2281 | // If the alias can change at link time, nothing can be done - bail out. |
2282 | if (!IsModuleLocal(J)) |
2283 | continue; |
2284 | |
2285 | Constant *Aliasee = J.getAliasee(); |
2286 | GlobalValue *Target = dyn_cast<GlobalValue>(Val: Aliasee->stripPointerCasts()); |
2287 | // We can't trivially replace the alias with the aliasee if the aliasee is |
2288 | // non-trivial in some way. We also can't replace the alias with the aliasee |
2289 | // if the aliasee may be preemptible at runtime. On ELF, a non-preemptible |
2290 | // alias can be used to access the definition as if preemption did not |
2291 | // happen. |
2292 | // TODO: Try to handle non-zero GEPs of local aliasees. |
2293 | if (!Target || !IsModuleLocal(*Target)) |
2294 | continue; |
2295 | |
2296 | Target->removeDeadConstantUsers(); |
2297 | |
2298 | // Make all users of the alias use the aliasee instead. |
2299 | bool RenameTarget; |
2300 | if (!hasUsesToReplace(GA&: J, U: Used, RenameTarget)) |
2301 | continue; |
2302 | |
2303 | J.replaceAllUsesWith(V: Aliasee); |
2304 | ++NumAliasesResolved; |
2305 | Changed = true; |
2306 | |
2307 | if (RenameTarget) { |
2308 | // Give the aliasee the name, linkage and other attributes of the alias. |
2309 | Target->takeName(V: &J); |
2310 | Target->setLinkage(J.getLinkage()); |
2311 | Target->setDSOLocal(J.isDSOLocal()); |
2312 | Target->setVisibility(J.getVisibility()); |
2313 | Target->setDLLStorageClass(J.getDLLStorageClass()); |
2314 | |
2315 | if (Used.usedErase(GV: &J)) |
2316 | Used.usedInsert(GV: Target); |
2317 | |
2318 | if (Used.compilerUsedErase(GV: &J)) |
2319 | Used.compilerUsedInsert(GV: Target); |
2320 | } else if (mayHaveOtherReferences(GV&: J, U: Used)) |
2321 | continue; |
2322 | |
2323 | // Delete the alias. |
2324 | M.eraseAlias(Alias: &J); |
2325 | ++NumAliasesRemoved; |
2326 | Changed = true; |
2327 | } |
2328 | |
2329 | Used.syncVariablesAndSets(); |
2330 | |
2331 | return Changed; |
2332 | } |
2333 | |
2334 | static Function * |
2335 | FindAtExitLibFunc(Module &M, |
2336 | function_ref<TargetLibraryInfo &(Function &)> GetTLI, |
2337 | LibFunc Func) { |
2338 | // Hack to get a default TLI before we have actual Function. |
2339 | auto FuncIter = M.begin(); |
2340 | if (FuncIter == M.end()) |
2341 | return nullptr; |
2342 | auto *TLI = &GetTLI(*FuncIter); |
2343 | |
2344 | if (!TLI->has(F: Func)) |
2345 | return nullptr; |
2346 | |
2347 | Function *Fn = M.getFunction(Name: TLI->getName(F: Func)); |
2348 | if (!Fn) |
2349 | return nullptr; |
2350 | |
2351 | // Now get the actual TLI for Fn. |
2352 | TLI = &GetTLI(*Fn); |
2353 | |
2354 | // Make sure that the function has the correct prototype. |
2355 | LibFunc F; |
2356 | if (!TLI->getLibFunc(FDecl: *Fn, F) || F != Func) |
2357 | return nullptr; |
2358 | |
2359 | return Fn; |
2360 | } |
2361 | |
2362 | /// Returns whether the given function is an empty C++ destructor or atexit |
2363 | /// handler and can therefore be eliminated. Note that we assume that other |
2364 | /// optimization passes have already simplified the code so we simply check for |
2365 | /// 'ret'. |
2366 | static bool IsEmptyAtExitFunction(const Function &Fn) { |
2367 | // FIXME: We could eliminate C++ destructors if they're readonly/readnone and |
2368 | // nounwind, but that doesn't seem worth doing. |
2369 | if (Fn.isDeclaration()) |
2370 | return false; |
2371 | |
2372 | for (const auto &I : Fn.getEntryBlock()) { |
2373 | if (I.isDebugOrPseudoInst()) |
2374 | continue; |
2375 | if (isa<ReturnInst>(Val: I)) |
2376 | return true; |
2377 | break; |
2378 | } |
2379 | return false; |
2380 | } |
2381 | |
2382 | static bool OptimizeEmptyGlobalAtExitDtors(Function *CXAAtExitFn, bool isCXX) { |
2383 | /// Itanium C++ ABI p3.3.5: |
2384 | /// |
2385 | /// After constructing a global (or local static) object, that will require |
2386 | /// destruction on exit, a termination function is registered as follows: |
2387 | /// |
2388 | /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); |
2389 | /// |
2390 | /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the |
2391 | /// call f(p) when DSO d is unloaded, before all such termination calls |
2392 | /// registered before this one. It returns zero if registration is |
2393 | /// successful, nonzero on failure. |
2394 | |
2395 | // This pass will look for calls to __cxa_atexit or atexit where the function |
2396 | // is trivial and remove them. |
2397 | bool Changed = false; |
2398 | |
2399 | for (User *U : llvm::make_early_inc_range(Range: CXAAtExitFn->users())) { |
2400 | // We're only interested in calls. Theoretically, we could handle invoke |
2401 | // instructions as well, but neither llvm-gcc nor clang generate invokes |
2402 | // to __cxa_atexit. |
2403 | CallInst *CI = dyn_cast<CallInst>(Val: U); |
2404 | if (!CI) |
2405 | continue; |
2406 | |
2407 | Function *DtorFn = |
2408 | dyn_cast<Function>(Val: CI->getArgOperand(i: 0)->stripPointerCasts()); |
2409 | if (!DtorFn || !IsEmptyAtExitFunction(Fn: *DtorFn)) |
2410 | continue; |
2411 | |
2412 | // Just remove the call. |
2413 | CI->replaceAllUsesWith(V: Constant::getNullValue(Ty: CI->getType())); |
2414 | CI->eraseFromParent(); |
2415 | |
2416 | if (isCXX) |
2417 | ++NumCXXDtorsRemoved; |
2418 | else |
2419 | ++NumAtExitRemoved; |
2420 | |
2421 | Changed |= true; |
2422 | } |
2423 | |
2424 | return Changed; |
2425 | } |
2426 | |
2427 | static Function *hasSideeffectFreeStaticResolution(GlobalIFunc &IF) { |
2428 | if (IF.isInterposable()) |
2429 | return nullptr; |
2430 | |
2431 | Function *Resolver = IF.getResolverFunction(); |
2432 | if (!Resolver) |
2433 | return nullptr; |
2434 | |
2435 | if (Resolver->isInterposable()) |
2436 | return nullptr; |
2437 | |
2438 | // Only handle functions that have been optimized into a single basic block. |
2439 | auto It = Resolver->begin(); |
2440 | if (++It != Resolver->end()) |
2441 | return nullptr; |
2442 | |
2443 | BasicBlock &BB = Resolver->getEntryBlock(); |
2444 | |
2445 | if (any_of(Range&: BB, P: [](Instruction &I) { return I.mayHaveSideEffects(); })) |
2446 | return nullptr; |
2447 | |
2448 | auto *Ret = dyn_cast<ReturnInst>(Val: BB.getTerminator()); |
2449 | if (!Ret) |
2450 | return nullptr; |
2451 | |
2452 | return dyn_cast<Function>(Val: Ret->getReturnValue()); |
2453 | } |
2454 | |
2455 | /// Find IFuncs that have resolvers that always point at the same statically |
2456 | /// known callee, and replace their callers with a direct call. |
2457 | static bool OptimizeStaticIFuncs(Module &M) { |
2458 | bool Changed = false; |
2459 | for (GlobalIFunc &IF : M.ifuncs()) |
2460 | if (Function *Callee = hasSideeffectFreeStaticResolution(IF)) |
2461 | if (!IF.use_empty() && |
2462 | (!Callee->isDeclaration() || |
2463 | none_of(Range: IF.users(), P: [](User *U) { return isa<GlobalAlias>(Val: U); }))) { |
2464 | IF.replaceAllUsesWith(V: Callee); |
2465 | NumIFuncsResolved++; |
2466 | Changed = true; |
2467 | } |
2468 | return Changed; |
2469 | } |
2470 | |
2471 | static bool |
2472 | DeleteDeadIFuncs(Module &M, |
2473 | SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { |
2474 | bool Changed = false; |
2475 | for (GlobalIFunc &IF : make_early_inc_range(Range: M.ifuncs())) |
2476 | if (deleteIfDead(GV&: IF, NotDiscardableComdats)) { |
2477 | NumIFuncsDeleted++; |
2478 | Changed = true; |
2479 | } |
2480 | return Changed; |
2481 | } |
2482 | |
2483 | static bool |
2484 | optimizeGlobalsInModule(Module &M, const DataLayout &DL, |
2485 | function_ref<TargetLibraryInfo &(Function &)> GetTLI, |
2486 | function_ref<TargetTransformInfo &(Function &)> GetTTI, |
2487 | function_ref<BlockFrequencyInfo &(Function &)> GetBFI, |
2488 | function_ref<DominatorTree &(Function &)> LookupDomTree, |
2489 | function_ref<void(Function &F)> ChangedCFGCallback, |
2490 | function_ref<void(Function &F)> DeleteFnCallback) { |
2491 | SmallPtrSet<const Comdat *, 8> NotDiscardableComdats; |
2492 | bool Changed = false; |
2493 | bool LocalChange = true; |
2494 | std::optional<uint32_t> FirstNotFullyEvaluatedPriority; |
2495 | |
2496 | while (LocalChange) { |
2497 | LocalChange = false; |
2498 | |
2499 | NotDiscardableComdats.clear(); |
2500 | for (const GlobalVariable &GV : M.globals()) |
2501 | if (const Comdat *C = GV.getComdat()) |
2502 | if (!GV.isDiscardableIfUnused() || !GV.use_empty()) |
2503 | NotDiscardableComdats.insert(Ptr: C); |
2504 | for (Function &F : M) |
2505 | if (const Comdat *C = F.getComdat()) |
2506 | if (!F.isDefTriviallyDead()) |
2507 | NotDiscardableComdats.insert(Ptr: C); |
2508 | for (GlobalAlias &GA : M.aliases()) |
2509 | if (const Comdat *C = GA.getComdat()) |
2510 | if (!GA.isDiscardableIfUnused() || !GA.use_empty()) |
2511 | NotDiscardableComdats.insert(Ptr: C); |
2512 | |
2513 | // Delete functions that are trivially dead, ccc -> fastcc |
2514 | LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree, |
2515 | NotDiscardableComdats, ChangedCFGCallback, |
2516 | DeleteFnCallback); |
2517 | |
2518 | // Optimize global_ctors list. |
2519 | LocalChange |= |
2520 | optimizeGlobalCtorsList(M, ShouldRemove: [&](uint32_t Priority, Function *F) { |
2521 | if (FirstNotFullyEvaluatedPriority && |
2522 | *FirstNotFullyEvaluatedPriority != Priority) |
2523 | return false; |
2524 | bool Evaluated = EvaluateStaticConstructor(F, DL, TLI: &GetTLI(*F)); |
2525 | if (!Evaluated) |
2526 | FirstNotFullyEvaluatedPriority = Priority; |
2527 | return Evaluated; |
2528 | }); |
2529 | |
2530 | // Optimize non-address-taken globals. |
2531 | LocalChange |= OptimizeGlobalVars(M, GetTTI, GetTLI, LookupDomTree, |
2532 | NotDiscardableComdats); |
2533 | |
2534 | // Resolve aliases, when possible. |
2535 | LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); |
2536 | |
2537 | // Try to remove trivial global destructors if they are not removed |
2538 | // already. |
2539 | if (Function *CXAAtExitFn = |
2540 | FindAtExitLibFunc(M, GetTLI, Func: LibFunc_cxa_atexit)) |
2541 | LocalChange |= OptimizeEmptyGlobalAtExitDtors(CXAAtExitFn, isCXX: true); |
2542 | |
2543 | if (Function *AtExitFn = FindAtExitLibFunc(M, GetTLI, Func: LibFunc_atexit)) |
2544 | LocalChange |= OptimizeEmptyGlobalAtExitDtors(CXAAtExitFn: AtExitFn, isCXX: false); |
2545 | |
2546 | // Optimize IFuncs whose callee's are statically known. |
2547 | LocalChange |= OptimizeStaticIFuncs(M); |
2548 | |
2549 | // Remove any IFuncs that are now dead. |
2550 | LocalChange |= DeleteDeadIFuncs(M, NotDiscardableComdats); |
2551 | |
2552 | Changed |= LocalChange; |
2553 | } |
2554 | |
2555 | // TODO: Move all global ctors functions to the end of the module for code |
2556 | // layout. |
2557 | |
2558 | return Changed; |
2559 | } |
2560 | |
2561 | PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { |
2562 | auto &DL = M.getDataLayout(); |
2563 | auto &FAM = |
2564 | AM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
2565 | auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ |
2566 | return FAM.getResult<DominatorTreeAnalysis>(IR&: F); |
2567 | }; |
2568 | auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { |
2569 | return FAM.getResult<TargetLibraryAnalysis>(IR&: F); |
2570 | }; |
2571 | auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { |
2572 | return FAM.getResult<TargetIRAnalysis>(IR&: F); |
2573 | }; |
2574 | |
2575 | auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { |
2576 | return FAM.getResult<BlockFrequencyAnalysis>(IR&: F); |
2577 | }; |
2578 | auto ChangedCFGCallback = [&FAM](Function &F) { |
2579 | FAM.invalidate(IR&: F, PA: PreservedAnalyses::none()); |
2580 | }; |
2581 | auto DeleteFnCallback = [&FAM](Function &F) { FAM.clear(IR&: F, Name: F.getName()); }; |
2582 | |
2583 | if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree, |
2584 | ChangedCFGCallback, DeleteFnCallback)) |
2585 | return PreservedAnalyses::all(); |
2586 | |
2587 | PreservedAnalyses PA = PreservedAnalyses::none(); |
2588 | // We made sure to clear analyses for deleted functions. |
2589 | PA.preserve<FunctionAnalysisManagerModuleProxy>(); |
2590 | // The only place we modify the CFG is when calling |
2591 | // removeUnreachableBlocks(), but there we make sure to invalidate analyses |
2592 | // for modified functions. |
2593 | PA.preserveSet<CFGAnalyses>(); |
2594 | return PA; |
2595 | } |
2596 | |