1 | //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // OpenMP specific optimizations: |
10 | // |
11 | // - Deduplication of runtime calls, e.g., omp_get_thread_num. |
12 | // - Replacing globalized device memory with stack memory. |
13 | // - Replacing globalized device memory with shared memory. |
14 | // - Parallel region merging. |
15 | // - Transforming generic-mode device kernels to SPMD mode. |
16 | // - Specializing the state machine for generic-mode device kernels. |
17 | // |
18 | //===----------------------------------------------------------------------===// |
19 | |
20 | #include "llvm/Transforms/IPO/OpenMPOpt.h" |
21 | |
22 | #include "llvm/ADT/EnumeratedArray.h" |
23 | #include "llvm/ADT/PostOrderIterator.h" |
24 | #include "llvm/ADT/SetVector.h" |
25 | #include "llvm/ADT/SmallPtrSet.h" |
26 | #include "llvm/ADT/SmallVector.h" |
27 | #include "llvm/ADT/Statistic.h" |
28 | #include "llvm/ADT/StringExtras.h" |
29 | #include "llvm/ADT/StringRef.h" |
30 | #include "llvm/Analysis/CallGraph.h" |
31 | #include "llvm/Analysis/CallGraphSCCPass.h" |
32 | #include "llvm/Analysis/MemoryLocation.h" |
33 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
34 | #include "llvm/Analysis/ValueTracking.h" |
35 | #include "llvm/Frontend/OpenMP/OMPConstants.h" |
36 | #include "llvm/Frontend/OpenMP/OMPDeviceConstants.h" |
37 | #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" |
38 | #include "llvm/IR/Assumptions.h" |
39 | #include "llvm/IR/BasicBlock.h" |
40 | #include "llvm/IR/Constants.h" |
41 | #include "llvm/IR/DiagnosticInfo.h" |
42 | #include "llvm/IR/Dominators.h" |
43 | #include "llvm/IR/Function.h" |
44 | #include "llvm/IR/GlobalValue.h" |
45 | #include "llvm/IR/GlobalVariable.h" |
46 | #include "llvm/IR/InstrTypes.h" |
47 | #include "llvm/IR/Instruction.h" |
48 | #include "llvm/IR/Instructions.h" |
49 | #include "llvm/IR/IntrinsicInst.h" |
50 | #include "llvm/IR/IntrinsicsAMDGPU.h" |
51 | #include "llvm/IR/IntrinsicsNVPTX.h" |
52 | #include "llvm/IR/LLVMContext.h" |
53 | #include "llvm/Support/Casting.h" |
54 | #include "llvm/Support/CommandLine.h" |
55 | #include "llvm/Support/Debug.h" |
56 | #include "llvm/Transforms/IPO/Attributor.h" |
57 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
58 | #include "llvm/Transforms/Utils/CallGraphUpdater.h" |
59 | |
60 | #include <algorithm> |
61 | #include <optional> |
62 | #include <string> |
63 | |
64 | using namespace llvm; |
65 | using namespace omp; |
66 | |
67 | #define DEBUG_TYPE "openmp-opt" |
68 | |
69 | static cl::opt<bool> DisableOpenMPOptimizations( |
70 | "openmp-opt-disable" , cl::desc("Disable OpenMP specific optimizations." ), |
71 | cl::Hidden, cl::init(Val: false)); |
72 | |
73 | static cl::opt<bool> EnableParallelRegionMerging( |
74 | "openmp-opt-enable-merging" , |
75 | cl::desc("Enable the OpenMP region merging optimization." ), cl::Hidden, |
76 | cl::init(Val: false)); |
77 | |
78 | static cl::opt<bool> |
79 | DisableInternalization("openmp-opt-disable-internalization" , |
80 | cl::desc("Disable function internalization." ), |
81 | cl::Hidden, cl::init(Val: false)); |
82 | |
83 | static cl::opt<bool> DeduceICVValues("openmp-deduce-icv-values" , |
84 | cl::init(Val: false), cl::Hidden); |
85 | static cl::opt<bool> PrintICVValues("openmp-print-icv-values" , cl::init(Val: false), |
86 | cl::Hidden); |
87 | static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels" , |
88 | cl::init(Val: false), cl::Hidden); |
89 | |
90 | static cl::opt<bool> HideMemoryTransferLatency( |
91 | "openmp-hide-memory-transfer-latency" , |
92 | cl::desc("[WIP] Tries to hide the latency of host to device memory" |
93 | " transfers" ), |
94 | cl::Hidden, cl::init(Val: false)); |
95 | |
96 | static cl::opt<bool> DisableOpenMPOptDeglobalization( |
97 | "openmp-opt-disable-deglobalization" , |
98 | cl::desc("Disable OpenMP optimizations involving deglobalization." ), |
99 | cl::Hidden, cl::init(Val: false)); |
100 | |
101 | static cl::opt<bool> DisableOpenMPOptSPMDization( |
102 | "openmp-opt-disable-spmdization" , |
103 | cl::desc("Disable OpenMP optimizations involving SPMD-ization." ), |
104 | cl::Hidden, cl::init(Val: false)); |
105 | |
106 | static cl::opt<bool> DisableOpenMPOptFolding( |
107 | "openmp-opt-disable-folding" , |
108 | cl::desc("Disable OpenMP optimizations involving folding." ), cl::Hidden, |
109 | cl::init(Val: false)); |
110 | |
111 | static cl::opt<bool> DisableOpenMPOptStateMachineRewrite( |
112 | "openmp-opt-disable-state-machine-rewrite" , |
113 | cl::desc("Disable OpenMP optimizations that replace the state machine." ), |
114 | cl::Hidden, cl::init(Val: false)); |
115 | |
116 | static cl::opt<bool> DisableOpenMPOptBarrierElimination( |
117 | "openmp-opt-disable-barrier-elimination" , |
118 | cl::desc("Disable OpenMP optimizations that eliminate barriers." ), |
119 | cl::Hidden, cl::init(Val: false)); |
120 | |
121 | static cl::opt<bool> PrintModuleAfterOptimizations( |
122 | "openmp-opt-print-module-after" , |
123 | cl::desc("Print the current module after OpenMP optimizations." ), |
124 | cl::Hidden, cl::init(Val: false)); |
125 | |
126 | static cl::opt<bool> PrintModuleBeforeOptimizations( |
127 | "openmp-opt-print-module-before" , |
128 | cl::desc("Print the current module before OpenMP optimizations." ), |
129 | cl::Hidden, cl::init(Val: false)); |
130 | |
131 | static cl::opt<bool> AlwaysInlineDeviceFunctions( |
132 | "openmp-opt-inline-device" , |
133 | cl::desc("Inline all applicible functions on the device." ), cl::Hidden, |
134 | cl::init(Val: false)); |
135 | |
136 | static cl::opt<bool> |
137 | ("openmp-opt-verbose-remarks" , |
138 | cl::desc("Enables more verbose remarks." ), cl::Hidden, |
139 | cl::init(Val: false)); |
140 | |
141 | static cl::opt<unsigned> |
142 | SetFixpointIterations("openmp-opt-max-iterations" , cl::Hidden, |
143 | cl::desc("Maximal number of attributor iterations." ), |
144 | cl::init(Val: 256)); |
145 | |
146 | static cl::opt<unsigned> |
147 | SharedMemoryLimit("openmp-opt-shared-limit" , cl::Hidden, |
148 | cl::desc("Maximum amount of shared memory to use." ), |
149 | cl::init(Val: std::numeric_limits<unsigned>::max())); |
150 | |
151 | STATISTIC(NumOpenMPRuntimeCallsDeduplicated, |
152 | "Number of OpenMP runtime calls deduplicated" ); |
153 | STATISTIC(NumOpenMPParallelRegionsDeleted, |
154 | "Number of OpenMP parallel regions deleted" ); |
155 | STATISTIC(NumOpenMPRuntimeFunctionsIdentified, |
156 | "Number of OpenMP runtime functions identified" ); |
157 | STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, |
158 | "Number of OpenMP runtime function uses identified" ); |
159 | STATISTIC(NumOpenMPTargetRegionKernels, |
160 | "Number of OpenMP target region entry points (=kernels) identified" ); |
161 | STATISTIC(NumNonOpenMPTargetRegionKernels, |
162 | "Number of non-OpenMP target region kernels identified" ); |
163 | STATISTIC(NumOpenMPTargetRegionKernelsSPMD, |
164 | "Number of OpenMP target region entry points (=kernels) executed in " |
165 | "SPMD-mode instead of generic-mode" ); |
166 | STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine, |
167 | "Number of OpenMP target region entry points (=kernels) executed in " |
168 | "generic-mode without a state machines" ); |
169 | STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback, |
170 | "Number of OpenMP target region entry points (=kernels) executed in " |
171 | "generic-mode with customized state machines with fallback" ); |
172 | STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback, |
173 | "Number of OpenMP target region entry points (=kernels) executed in " |
174 | "generic-mode with customized state machines without fallback" ); |
175 | STATISTIC( |
176 | NumOpenMPParallelRegionsReplacedInGPUStateMachine, |
177 | "Number of OpenMP parallel regions replaced with ID in GPU state machines" ); |
178 | STATISTIC(NumOpenMPParallelRegionsMerged, |
179 | "Number of OpenMP parallel regions merged" ); |
180 | STATISTIC(NumBytesMovedToSharedMemory, |
181 | "Amount of memory pushed to shared memory" ); |
182 | STATISTIC(NumBarriersEliminated, "Number of redundant barriers eliminated" ); |
183 | |
184 | #if !defined(NDEBUG) |
185 | static constexpr auto TAG = "[" DEBUG_TYPE "]" ; |
186 | #endif |
187 | |
188 | namespace KernelInfo { |
189 | |
190 | // struct ConfigurationEnvironmentTy { |
191 | // uint8_t UseGenericStateMachine; |
192 | // uint8_t MayUseNestedParallelism; |
193 | // llvm::omp::OMPTgtExecModeFlags ExecMode; |
194 | // int32_t MinThreads; |
195 | // int32_t MaxThreads; |
196 | // int32_t MinTeams; |
197 | // int32_t MaxTeams; |
198 | // }; |
199 | |
200 | // struct DynamicEnvironmentTy { |
201 | // uint16_t DebugIndentionLevel; |
202 | // }; |
203 | |
204 | // struct KernelEnvironmentTy { |
205 | // ConfigurationEnvironmentTy Configuration; |
206 | // IdentTy *Ident; |
207 | // DynamicEnvironmentTy *DynamicEnv; |
208 | // }; |
209 | |
210 | #define KERNEL_ENVIRONMENT_IDX(MEMBER, IDX) \ |
211 | constexpr const unsigned MEMBER##Idx = IDX; |
212 | |
213 | KERNEL_ENVIRONMENT_IDX(Configuration, 0) |
214 | KERNEL_ENVIRONMENT_IDX(Ident, 1) |
215 | |
216 | #undef KERNEL_ENVIRONMENT_IDX |
217 | |
218 | #define KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MEMBER, IDX) \ |
219 | constexpr const unsigned MEMBER##Idx = IDX; |
220 | |
221 | KERNEL_ENVIRONMENT_CONFIGURATION_IDX(UseGenericStateMachine, 0) |
222 | KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MayUseNestedParallelism, 1) |
223 | KERNEL_ENVIRONMENT_CONFIGURATION_IDX(ExecMode, 2) |
224 | KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MinThreads, 3) |
225 | KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MaxThreads, 4) |
226 | KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MinTeams, 5) |
227 | KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MaxTeams, 6) |
228 | |
229 | #undef KERNEL_ENVIRONMENT_CONFIGURATION_IDX |
230 | |
231 | #define KERNEL_ENVIRONMENT_GETTER(MEMBER, RETURNTYPE) \ |
232 | RETURNTYPE *get##MEMBER##FromKernelEnvironment(ConstantStruct *KernelEnvC) { \ |
233 | return cast<RETURNTYPE>(KernelEnvC->getAggregateElement(MEMBER##Idx)); \ |
234 | } |
235 | |
236 | KERNEL_ENVIRONMENT_GETTER(Ident, Constant) |
237 | KERNEL_ENVIRONMENT_GETTER(Configuration, ConstantStruct) |
238 | |
239 | #undef KERNEL_ENVIRONMENT_GETTER |
240 | |
241 | #define KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MEMBER) \ |
242 | ConstantInt *get##MEMBER##FromKernelEnvironment( \ |
243 | ConstantStruct *KernelEnvC) { \ |
244 | ConstantStruct *ConfigC = \ |
245 | getConfigurationFromKernelEnvironment(KernelEnvC); \ |
246 | return dyn_cast<ConstantInt>(ConfigC->getAggregateElement(MEMBER##Idx)); \ |
247 | } |
248 | |
249 | KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(UseGenericStateMachine) |
250 | KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MayUseNestedParallelism) |
251 | KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(ExecMode) |
252 | KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MinThreads) |
253 | KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MaxThreads) |
254 | KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MinTeams) |
255 | KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MaxTeams) |
256 | |
257 | #undef KERNEL_ENVIRONMENT_CONFIGURATION_GETTER |
258 | |
259 | GlobalVariable * |
260 | getKernelEnvironementGVFromKernelInitCB(CallBase *KernelInitCB) { |
261 | constexpr const int InitKernelEnvironmentArgNo = 0; |
262 | return cast<GlobalVariable>( |
263 | Val: KernelInitCB->getArgOperand(i: InitKernelEnvironmentArgNo) |
264 | ->stripPointerCasts()); |
265 | } |
266 | |
267 | ConstantStruct *getKernelEnvironementFromKernelInitCB(CallBase *KernelInitCB) { |
268 | GlobalVariable *KernelEnvGV = |
269 | getKernelEnvironementGVFromKernelInitCB(KernelInitCB); |
270 | return cast<ConstantStruct>(Val: KernelEnvGV->getInitializer()); |
271 | } |
272 | } // namespace KernelInfo |
273 | |
274 | namespace { |
275 | |
276 | struct AAHeapToShared; |
277 | |
278 | struct AAICVTracker; |
279 | |
280 | /// OpenMP specific information. For now, stores RFIs and ICVs also needed for |
281 | /// Attributor runs. |
282 | struct OMPInformationCache : public InformationCache { |
283 | OMPInformationCache(Module &M, AnalysisGetter &AG, |
284 | BumpPtrAllocator &Allocator, SetVector<Function *> *CGSCC, |
285 | bool OpenMPPostLink) |
286 | : InformationCache(M, AG, Allocator, CGSCC), OMPBuilder(M), |
287 | OpenMPPostLink(OpenMPPostLink) { |
288 | |
289 | OMPBuilder.Config.IsTargetDevice = isOpenMPDevice(M&: OMPBuilder.M); |
290 | OMPBuilder.initialize(); |
291 | initializeRuntimeFunctions(M); |
292 | initializeInternalControlVars(); |
293 | } |
294 | |
295 | /// Generic information that describes an internal control variable. |
296 | struct InternalControlVarInfo { |
297 | /// The kind, as described by InternalControlVar enum. |
298 | InternalControlVar Kind; |
299 | |
300 | /// The name of the ICV. |
301 | StringRef Name; |
302 | |
303 | /// Environment variable associated with this ICV. |
304 | StringRef EnvVarName; |
305 | |
306 | /// Initial value kind. |
307 | ICVInitValue InitKind; |
308 | |
309 | /// Initial value. |
310 | ConstantInt *InitValue; |
311 | |
312 | /// Setter RTL function associated with this ICV. |
313 | RuntimeFunction Setter; |
314 | |
315 | /// Getter RTL function associated with this ICV. |
316 | RuntimeFunction Getter; |
317 | |
318 | /// RTL Function corresponding to the override clause of this ICV |
319 | RuntimeFunction Clause; |
320 | }; |
321 | |
322 | /// Generic information that describes a runtime function |
323 | struct RuntimeFunctionInfo { |
324 | |
325 | /// The kind, as described by the RuntimeFunction enum. |
326 | RuntimeFunction Kind; |
327 | |
328 | /// The name of the function. |
329 | StringRef Name; |
330 | |
331 | /// Flag to indicate a variadic function. |
332 | bool IsVarArg; |
333 | |
334 | /// The return type of the function. |
335 | Type *ReturnType; |
336 | |
337 | /// The argument types of the function. |
338 | SmallVector<Type *, 8> ArgumentTypes; |
339 | |
340 | /// The declaration if available. |
341 | Function *Declaration = nullptr; |
342 | |
343 | /// Uses of this runtime function per function containing the use. |
344 | using UseVector = SmallVector<Use *, 16>; |
345 | |
346 | /// Clear UsesMap for runtime function. |
347 | void clearUsesMap() { UsesMap.clear(); } |
348 | |
349 | /// Boolean conversion that is true if the runtime function was found. |
350 | operator bool() const { return Declaration; } |
351 | |
352 | /// Return the vector of uses in function \p F. |
353 | UseVector &getOrCreateUseVector(Function *F) { |
354 | std::shared_ptr<UseVector> &UV = UsesMap[F]; |
355 | if (!UV) |
356 | UV = std::make_shared<UseVector>(); |
357 | return *UV; |
358 | } |
359 | |
360 | /// Return the vector of uses in function \p F or `nullptr` if there are |
361 | /// none. |
362 | const UseVector *getUseVector(Function &F) const { |
363 | auto I = UsesMap.find(Val: &F); |
364 | if (I != UsesMap.end()) |
365 | return I->second.get(); |
366 | return nullptr; |
367 | } |
368 | |
369 | /// Return how many functions contain uses of this runtime function. |
370 | size_t getNumFunctionsWithUses() const { return UsesMap.size(); } |
371 | |
372 | /// Return the number of arguments (or the minimal number for variadic |
373 | /// functions). |
374 | size_t getNumArgs() const { return ArgumentTypes.size(); } |
375 | |
376 | /// Run the callback \p CB on each use and forget the use if the result is |
377 | /// true. The callback will be fed the function in which the use was |
378 | /// encountered as second argument. |
379 | void foreachUse(SmallVectorImpl<Function *> &SCC, |
380 | function_ref<bool(Use &, Function &)> CB) { |
381 | for (Function *F : SCC) |
382 | foreachUse(CB, F); |
383 | } |
384 | |
385 | /// Run the callback \p CB on each use within the function \p F and forget |
386 | /// the use if the result is true. |
387 | void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) { |
388 | SmallVector<unsigned, 8> ToBeDeleted; |
389 | ToBeDeleted.clear(); |
390 | |
391 | unsigned Idx = 0; |
392 | UseVector &UV = getOrCreateUseVector(F); |
393 | |
394 | for (Use *U : UV) { |
395 | if (CB(*U, *F)) |
396 | ToBeDeleted.push_back(Elt: Idx); |
397 | ++Idx; |
398 | } |
399 | |
400 | // Remove the to-be-deleted indices in reverse order as prior |
401 | // modifications will not modify the smaller indices. |
402 | while (!ToBeDeleted.empty()) { |
403 | unsigned Idx = ToBeDeleted.pop_back_val(); |
404 | UV[Idx] = UV.back(); |
405 | UV.pop_back(); |
406 | } |
407 | } |
408 | |
409 | private: |
410 | /// Map from functions to all uses of this runtime function contained in |
411 | /// them. |
412 | DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap; |
413 | |
414 | public: |
415 | /// Iterators for the uses of this runtime function. |
416 | decltype(UsesMap)::iterator begin() { return UsesMap.begin(); } |
417 | decltype(UsesMap)::iterator end() { return UsesMap.end(); } |
418 | }; |
419 | |
420 | /// An OpenMP-IR-Builder instance |
421 | OpenMPIRBuilder OMPBuilder; |
422 | |
423 | /// Map from runtime function kind to the runtime function description. |
424 | EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction, |
425 | RuntimeFunction::OMPRTL___last> |
426 | RFIs; |
427 | |
428 | /// Map from function declarations/definitions to their runtime enum type. |
429 | DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap; |
430 | |
431 | /// Map from ICV kind to the ICV description. |
432 | EnumeratedArray<InternalControlVarInfo, InternalControlVar, |
433 | InternalControlVar::ICV___last> |
434 | ICVs; |
435 | |
436 | /// Helper to initialize all internal control variable information for those |
437 | /// defined in OMPKinds.def. |
438 | void initializeInternalControlVars() { |
439 | #define ICV_RT_SET(_Name, RTL) \ |
440 | { \ |
441 | auto &ICV = ICVs[_Name]; \ |
442 | ICV.Setter = RTL; \ |
443 | } |
444 | #define ICV_RT_GET(Name, RTL) \ |
445 | { \ |
446 | auto &ICV = ICVs[Name]; \ |
447 | ICV.Getter = RTL; \ |
448 | } |
449 | #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ |
450 | { \ |
451 | auto &ICV = ICVs[Enum]; \ |
452 | ICV.Name = _Name; \ |
453 | ICV.Kind = Enum; \ |
454 | ICV.InitKind = Init; \ |
455 | ICV.EnvVarName = _EnvVarName; \ |
456 | switch (ICV.InitKind) { \ |
457 | case ICV_IMPLEMENTATION_DEFINED: \ |
458 | ICV.InitValue = nullptr; \ |
459 | break; \ |
460 | case ICV_ZERO: \ |
461 | ICV.InitValue = ConstantInt::get( \ |
462 | Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ |
463 | break; \ |
464 | case ICV_FALSE: \ |
465 | ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ |
466 | break; \ |
467 | case ICV_LAST: \ |
468 | break; \ |
469 | } \ |
470 | } |
471 | #include "llvm/Frontend/OpenMP/OMPKinds.def" |
472 | } |
473 | |
474 | /// Returns true if the function declaration \p F matches the runtime |
475 | /// function types, that is, return type \p RTFRetType, and argument types |
476 | /// \p RTFArgTypes. |
477 | static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, |
478 | SmallVector<Type *, 8> &RTFArgTypes) { |
479 | // TODO: We should output information to the user (under debug output |
480 | // and via remarks). |
481 | |
482 | if (!F) |
483 | return false; |
484 | if (F->getReturnType() != RTFRetType) |
485 | return false; |
486 | if (F->arg_size() != RTFArgTypes.size()) |
487 | return false; |
488 | |
489 | auto *RTFTyIt = RTFArgTypes.begin(); |
490 | for (Argument &Arg : F->args()) { |
491 | if (Arg.getType() != *RTFTyIt) |
492 | return false; |
493 | |
494 | ++RTFTyIt; |
495 | } |
496 | |
497 | return true; |
498 | } |
499 | |
500 | // Helper to collect all uses of the declaration in the UsesMap. |
501 | unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { |
502 | unsigned NumUses = 0; |
503 | if (!RFI.Declaration) |
504 | return NumUses; |
505 | OMPBuilder.addAttributes(FnID: RFI.Kind, Fn&: *RFI.Declaration); |
506 | |
507 | if (CollectStats) { |
508 | NumOpenMPRuntimeFunctionsIdentified += 1; |
509 | NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); |
510 | } |
511 | |
512 | // TODO: We directly convert uses into proper calls and unknown uses. |
513 | for (Use &U : RFI.Declaration->uses()) { |
514 | if (Instruction *UserI = dyn_cast<Instruction>(Val: U.getUser())) { |
515 | if (!CGSCC || CGSCC->empty() || CGSCC->contains(key: UserI->getFunction())) { |
516 | RFI.getOrCreateUseVector(F: UserI->getFunction()).push_back(Elt: &U); |
517 | ++NumUses; |
518 | } |
519 | } else { |
520 | RFI.getOrCreateUseVector(F: nullptr).push_back(Elt: &U); |
521 | ++NumUses; |
522 | } |
523 | } |
524 | return NumUses; |
525 | } |
526 | |
527 | // Helper function to recollect uses of a runtime function. |
528 | void recollectUsesForFunction(RuntimeFunction RTF) { |
529 | auto &RFI = RFIs[RTF]; |
530 | RFI.clearUsesMap(); |
531 | collectUses(RFI, /*CollectStats*/ false); |
532 | } |
533 | |
534 | // Helper function to recollect uses of all runtime functions. |
535 | void recollectUses() { |
536 | for (int Idx = 0; Idx < RFIs.size(); ++Idx) |
537 | recollectUsesForFunction(RTF: static_cast<RuntimeFunction>(Idx)); |
538 | } |
539 | |
540 | // Helper function to inherit the calling convention of the function callee. |
541 | void setCallingConvention(FunctionCallee Callee, CallInst *CI) { |
542 | if (Function *Fn = dyn_cast<Function>(Val: Callee.getCallee())) |
543 | CI->setCallingConv(Fn->getCallingConv()); |
544 | } |
545 | |
546 | // Helper function to determine if it's legal to create a call to the runtime |
547 | // functions. |
548 | bool runtimeFnsAvailable(ArrayRef<RuntimeFunction> Fns) { |
549 | // We can always emit calls if we haven't yet linked in the runtime. |
550 | if (!OpenMPPostLink) |
551 | return true; |
552 | |
553 | // Once the runtime has been already been linked in we cannot emit calls to |
554 | // any undefined functions. |
555 | for (RuntimeFunction Fn : Fns) { |
556 | RuntimeFunctionInfo &RFI = RFIs[Fn]; |
557 | |
558 | if (RFI.Declaration && RFI.Declaration->isDeclaration()) |
559 | return false; |
560 | } |
561 | return true; |
562 | } |
563 | |
564 | /// Helper to initialize all runtime function information for those defined |
565 | /// in OpenMPKinds.def. |
566 | void initializeRuntimeFunctions(Module &M) { |
567 | |
568 | // Helper macros for handling __VA_ARGS__ in OMP_RTL |
569 | #define OMP_TYPE(VarName, ...) \ |
570 | Type *VarName = OMPBuilder.VarName; \ |
571 | (void)VarName; |
572 | |
573 | #define OMP_ARRAY_TYPE(VarName, ...) \ |
574 | ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ |
575 | (void)VarName##Ty; \ |
576 | PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ |
577 | (void)VarName##PtrTy; |
578 | |
579 | #define OMP_FUNCTION_TYPE(VarName, ...) \ |
580 | FunctionType *VarName = OMPBuilder.VarName; \ |
581 | (void)VarName; \ |
582 | PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ |
583 | (void)VarName##Ptr; |
584 | |
585 | #define OMP_STRUCT_TYPE(VarName, ...) \ |
586 | StructType *VarName = OMPBuilder.VarName; \ |
587 | (void)VarName; \ |
588 | PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ |
589 | (void)VarName##Ptr; |
590 | |
591 | #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ |
592 | { \ |
593 | SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \ |
594 | Function *F = M.getFunction(_Name); \ |
595 | RTLFunctions.insert(F); \ |
596 | if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ |
597 | RuntimeFunctionIDMap[F] = _Enum; \ |
598 | auto &RFI = RFIs[_Enum]; \ |
599 | RFI.Kind = _Enum; \ |
600 | RFI.Name = _Name; \ |
601 | RFI.IsVarArg = _IsVarArg; \ |
602 | RFI.ReturnType = OMPBuilder._ReturnType; \ |
603 | RFI.ArgumentTypes = std::move(ArgsTypes); \ |
604 | RFI.Declaration = F; \ |
605 | unsigned NumUses = collectUses(RFI); \ |
606 | (void)NumUses; \ |
607 | LLVM_DEBUG({ \ |
608 | dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ |
609 | << " found\n"; \ |
610 | if (RFI.Declaration) \ |
611 | dbgs() << TAG << "-> got " << NumUses << " uses in " \ |
612 | << RFI.getNumFunctionsWithUses() \ |
613 | << " different functions.\n"; \ |
614 | }); \ |
615 | } \ |
616 | } |
617 | #include "llvm/Frontend/OpenMP/OMPKinds.def" |
618 | |
619 | // Remove the `noinline` attribute from `__kmpc`, `ompx::` and `omp_` |
620 | // functions, except if `optnone` is present. |
621 | if (isOpenMPDevice(M)) { |
622 | for (Function &F : M) { |
623 | for (StringRef Prefix : {"__kmpc" , "_ZN4ompx" , "omp_" }) |
624 | if (F.hasFnAttribute(Kind: Attribute::NoInline) && |
625 | F.getName().starts_with(Prefix) && |
626 | !F.hasFnAttribute(Kind: Attribute::OptimizeNone)) |
627 | F.removeFnAttr(Kind: Attribute::NoInline); |
628 | } |
629 | } |
630 | |
631 | // TODO: We should attach the attributes defined in OMPKinds.def. |
632 | } |
633 | |
634 | /// Collection of known OpenMP runtime functions.. |
635 | DenseSet<const Function *> RTLFunctions; |
636 | |
637 | /// Indicates if we have already linked in the OpenMP device library. |
638 | bool OpenMPPostLink = false; |
639 | }; |
640 | |
641 | template <typename Ty, bool InsertInvalidates = true> |
642 | struct BooleanStateWithSetVector : public BooleanState { |
643 | bool contains(const Ty &Elem) const { return Set.contains(Elem); } |
644 | bool insert(const Ty &Elem) { |
645 | if (InsertInvalidates) |
646 | BooleanState::indicatePessimisticFixpoint(); |
647 | return Set.insert(Elem); |
648 | } |
649 | |
650 | const Ty &operator[](int Idx) const { return Set[Idx]; } |
651 | bool operator==(const BooleanStateWithSetVector &RHS) const { |
652 | return BooleanState::operator==(R: RHS) && Set == RHS.Set; |
653 | } |
654 | bool operator!=(const BooleanStateWithSetVector &RHS) const { |
655 | return !(*this == RHS); |
656 | } |
657 | |
658 | bool empty() const { return Set.empty(); } |
659 | size_t size() const { return Set.size(); } |
660 | |
661 | /// "Clamp" this state with \p RHS. |
662 | BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) { |
663 | BooleanState::operator^=(R: RHS); |
664 | Set.insert(RHS.Set.begin(), RHS.Set.end()); |
665 | return *this; |
666 | } |
667 | |
668 | private: |
669 | /// A set to keep track of elements. |
670 | SetVector<Ty> Set; |
671 | |
672 | public: |
673 | typename decltype(Set)::iterator begin() { return Set.begin(); } |
674 | typename decltype(Set)::iterator end() { return Set.end(); } |
675 | typename decltype(Set)::const_iterator begin() const { return Set.begin(); } |
676 | typename decltype(Set)::const_iterator end() const { return Set.end(); } |
677 | }; |
678 | |
679 | template <typename Ty, bool InsertInvalidates = true> |
680 | using BooleanStateWithPtrSetVector = |
681 | BooleanStateWithSetVector<Ty *, InsertInvalidates>; |
682 | |
683 | struct KernelInfoState : AbstractState { |
684 | /// Flag to track if we reached a fixpoint. |
685 | bool IsAtFixpoint = false; |
686 | |
687 | /// The parallel regions (identified by the outlined parallel functions) that |
688 | /// can be reached from the associated function. |
689 | BooleanStateWithPtrSetVector<CallBase, /* InsertInvalidates */ false> |
690 | ReachedKnownParallelRegions; |
691 | |
692 | /// State to track what parallel region we might reach. |
693 | BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions; |
694 | |
695 | /// State to track if we are in SPMD-mode, assumed or know, and why we decided |
696 | /// we cannot be. If it is assumed, then RequiresFullRuntime should also be |
697 | /// false. |
698 | BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker; |
699 | |
700 | /// The __kmpc_target_init call in this kernel, if any. If we find more than |
701 | /// one we abort as the kernel is malformed. |
702 | CallBase *KernelInitCB = nullptr; |
703 | |
704 | /// The constant kernel environement as taken from and passed to |
705 | /// __kmpc_target_init. |
706 | ConstantStruct *KernelEnvC = nullptr; |
707 | |
708 | /// The __kmpc_target_deinit call in this kernel, if any. If we find more than |
709 | /// one we abort as the kernel is malformed. |
710 | CallBase *KernelDeinitCB = nullptr; |
711 | |
712 | /// Flag to indicate if the associated function is a kernel entry. |
713 | bool IsKernelEntry = false; |
714 | |
715 | /// State to track what kernel entries can reach the associated function. |
716 | BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries; |
717 | |
718 | /// State to indicate if we can track parallel level of the associated |
719 | /// function. We will give up tracking if we encounter unknown caller or the |
720 | /// caller is __kmpc_parallel_51. |
721 | BooleanStateWithSetVector<uint8_t> ParallelLevels; |
722 | |
723 | /// Flag that indicates if the kernel has nested Parallelism |
724 | bool NestedParallelism = false; |
725 | |
726 | /// Abstract State interface |
727 | ///{ |
728 | |
729 | KernelInfoState() = default; |
730 | KernelInfoState(bool BestState) { |
731 | if (!BestState) |
732 | indicatePessimisticFixpoint(); |
733 | } |
734 | |
735 | /// See AbstractState::isValidState(...) |
736 | bool isValidState() const override { return true; } |
737 | |
738 | /// See AbstractState::isAtFixpoint(...) |
739 | bool isAtFixpoint() const override { return IsAtFixpoint; } |
740 | |
741 | /// See AbstractState::indicatePessimisticFixpoint(...) |
742 | ChangeStatus indicatePessimisticFixpoint() override { |
743 | IsAtFixpoint = true; |
744 | ParallelLevels.indicatePessimisticFixpoint(); |
745 | ReachingKernelEntries.indicatePessimisticFixpoint(); |
746 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
747 | ReachedKnownParallelRegions.indicatePessimisticFixpoint(); |
748 | ReachedUnknownParallelRegions.indicatePessimisticFixpoint(); |
749 | NestedParallelism = true; |
750 | return ChangeStatus::CHANGED; |
751 | } |
752 | |
753 | /// See AbstractState::indicateOptimisticFixpoint(...) |
754 | ChangeStatus indicateOptimisticFixpoint() override { |
755 | IsAtFixpoint = true; |
756 | ParallelLevels.indicateOptimisticFixpoint(); |
757 | ReachingKernelEntries.indicateOptimisticFixpoint(); |
758 | SPMDCompatibilityTracker.indicateOptimisticFixpoint(); |
759 | ReachedKnownParallelRegions.indicateOptimisticFixpoint(); |
760 | ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); |
761 | return ChangeStatus::UNCHANGED; |
762 | } |
763 | |
764 | /// Return the assumed state |
765 | KernelInfoState &getAssumed() { return *this; } |
766 | const KernelInfoState &getAssumed() const { return *this; } |
767 | |
768 | bool operator==(const KernelInfoState &RHS) const { |
769 | if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker) |
770 | return false; |
771 | if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions) |
772 | return false; |
773 | if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions) |
774 | return false; |
775 | if (ReachingKernelEntries != RHS.ReachingKernelEntries) |
776 | return false; |
777 | if (ParallelLevels != RHS.ParallelLevels) |
778 | return false; |
779 | if (NestedParallelism != RHS.NestedParallelism) |
780 | return false; |
781 | return true; |
782 | } |
783 | |
784 | /// Returns true if this kernel contains any OpenMP parallel regions. |
785 | bool mayContainParallelRegion() { |
786 | return !ReachedKnownParallelRegions.empty() || |
787 | !ReachedUnknownParallelRegions.empty(); |
788 | } |
789 | |
790 | /// Return empty set as the best state of potential values. |
791 | static KernelInfoState getBestState() { return KernelInfoState(true); } |
792 | |
793 | static KernelInfoState getBestState(KernelInfoState &KIS) { |
794 | return getBestState(); |
795 | } |
796 | |
797 | /// Return full set as the worst state of potential values. |
798 | static KernelInfoState getWorstState() { return KernelInfoState(false); } |
799 | |
800 | /// "Clamp" this state with \p KIS. |
801 | KernelInfoState operator^=(const KernelInfoState &KIS) { |
802 | // Do not merge two different _init and _deinit call sites. |
803 | if (KIS.KernelInitCB) { |
804 | if (KernelInitCB && KernelInitCB != KIS.KernelInitCB) |
805 | llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " |
806 | "assumptions." ); |
807 | KernelInitCB = KIS.KernelInitCB; |
808 | } |
809 | if (KIS.KernelDeinitCB) { |
810 | if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB) |
811 | llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " |
812 | "assumptions." ); |
813 | KernelDeinitCB = KIS.KernelDeinitCB; |
814 | } |
815 | if (KIS.KernelEnvC) { |
816 | if (KernelEnvC && KernelEnvC != KIS.KernelEnvC) |
817 | llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt " |
818 | "assumptions." ); |
819 | KernelEnvC = KIS.KernelEnvC; |
820 | } |
821 | SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker; |
822 | ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions; |
823 | ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions; |
824 | NestedParallelism |= KIS.NestedParallelism; |
825 | return *this; |
826 | } |
827 | |
828 | KernelInfoState operator&=(const KernelInfoState &KIS) { |
829 | return (*this ^= KIS); |
830 | } |
831 | |
832 | ///} |
833 | }; |
834 | |
835 | /// Used to map the values physically (in the IR) stored in an offload |
836 | /// array, to a vector in memory. |
837 | struct OffloadArray { |
838 | /// Physical array (in the IR). |
839 | AllocaInst *Array = nullptr; |
840 | /// Mapped values. |
841 | SmallVector<Value *, 8> StoredValues; |
842 | /// Last stores made in the offload array. |
843 | SmallVector<StoreInst *, 8> LastAccesses; |
844 | |
845 | OffloadArray() = default; |
846 | |
847 | /// Initializes the OffloadArray with the values stored in \p Array before |
848 | /// instruction \p Before is reached. Returns false if the initialization |
849 | /// fails. |
850 | /// This MUST be used immediately after the construction of the object. |
851 | bool initialize(AllocaInst &Array, Instruction &Before) { |
852 | if (!Array.getAllocatedType()->isArrayTy()) |
853 | return false; |
854 | |
855 | if (!getValues(Array, Before)) |
856 | return false; |
857 | |
858 | this->Array = &Array; |
859 | return true; |
860 | } |
861 | |
862 | static const unsigned DeviceIDArgNum = 1; |
863 | static const unsigned BasePtrsArgNum = 3; |
864 | static const unsigned PtrsArgNum = 4; |
865 | static const unsigned SizesArgNum = 5; |
866 | |
867 | private: |
868 | /// Traverses the BasicBlock where \p Array is, collecting the stores made to |
869 | /// \p Array, leaving StoredValues with the values stored before the |
870 | /// instruction \p Before is reached. |
871 | bool getValues(AllocaInst &Array, Instruction &Before) { |
872 | // Initialize container. |
873 | const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); |
874 | StoredValues.assign(NumElts: NumValues, Elt: nullptr); |
875 | LastAccesses.assign(NumElts: NumValues, Elt: nullptr); |
876 | |
877 | // TODO: This assumes the instruction \p Before is in the same |
878 | // BasicBlock as Array. Make it general, for any control flow graph. |
879 | BasicBlock *BB = Array.getParent(); |
880 | if (BB != Before.getParent()) |
881 | return false; |
882 | |
883 | const DataLayout &DL = Array.getDataLayout(); |
884 | const unsigned int PointerSize = DL.getPointerSize(); |
885 | |
886 | for (Instruction &I : *BB) { |
887 | if (&I == &Before) |
888 | break; |
889 | |
890 | if (!isa<StoreInst>(Val: &I)) |
891 | continue; |
892 | |
893 | auto *S = cast<StoreInst>(Val: &I); |
894 | int64_t Offset = -1; |
895 | auto *Dst = |
896 | GetPointerBaseWithConstantOffset(Ptr: S->getPointerOperand(), Offset, DL); |
897 | if (Dst == &Array) { |
898 | int64_t Idx = Offset / PointerSize; |
899 | StoredValues[Idx] = getUnderlyingObject(V: S->getValueOperand()); |
900 | LastAccesses[Idx] = S; |
901 | } |
902 | } |
903 | |
904 | return isFilled(); |
905 | } |
906 | |
907 | /// Returns true if all values in StoredValues and |
908 | /// LastAccesses are not nullptrs. |
909 | bool isFilled() { |
910 | const unsigned NumValues = StoredValues.size(); |
911 | for (unsigned I = 0; I < NumValues; ++I) { |
912 | if (!StoredValues[I] || !LastAccesses[I]) |
913 | return false; |
914 | } |
915 | |
916 | return true; |
917 | } |
918 | }; |
919 | |
920 | struct OpenMPOpt { |
921 | |
922 | using = |
923 | function_ref<OptimizationRemarkEmitter &(Function *)>; |
924 | |
925 | (SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater, |
926 | OptimizationRemarkGetter OREGetter, |
927 | OMPInformationCache &OMPInfoCache, Attributor &A) |
928 | : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), |
929 | OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} |
930 | |
931 | /// Check if any remarks are enabled for openmp-opt |
932 | bool () { |
933 | auto &Ctx = M.getContext(); |
934 | return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); |
935 | } |
936 | |
937 | /// Run all OpenMP optimizations on the underlying SCC. |
938 | bool run(bool IsModulePass) { |
939 | if (SCC.empty()) |
940 | return false; |
941 | |
942 | bool Changed = false; |
943 | |
944 | LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() |
945 | << " functions\n" ); |
946 | |
947 | if (IsModulePass) { |
948 | Changed |= runAttributor(IsModulePass); |
949 | |
950 | // Recollect uses, in case Attributor deleted any. |
951 | OMPInfoCache.recollectUses(); |
952 | |
953 | // TODO: This should be folded into buildCustomStateMachine. |
954 | Changed |= rewriteDeviceCodeStateMachine(); |
955 | |
956 | if (remarksEnabled()) |
957 | analysisGlobalization(); |
958 | } else { |
959 | if (PrintICVValues) |
960 | printICVs(); |
961 | if (PrintOpenMPKernels) |
962 | printKernels(); |
963 | |
964 | Changed |= runAttributor(IsModulePass); |
965 | |
966 | // Recollect uses, in case Attributor deleted any. |
967 | OMPInfoCache.recollectUses(); |
968 | |
969 | Changed |= deleteParallelRegions(); |
970 | |
971 | if (HideMemoryTransferLatency) |
972 | Changed |= hideMemTransfersLatency(); |
973 | Changed |= deduplicateRuntimeCalls(); |
974 | if (EnableParallelRegionMerging) { |
975 | if (mergeParallelRegions()) { |
976 | deduplicateRuntimeCalls(); |
977 | Changed = true; |
978 | } |
979 | } |
980 | } |
981 | |
982 | if (OMPInfoCache.OpenMPPostLink) |
983 | Changed |= removeRuntimeSymbols(); |
984 | |
985 | return Changed; |
986 | } |
987 | |
988 | /// Print initial ICV values for testing. |
989 | /// FIXME: This should be done from the Attributor once it is added. |
990 | void printICVs() const { |
991 | InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, |
992 | ICV_proc_bind}; |
993 | |
994 | for (Function *F : SCC) { |
995 | for (auto ICV : ICVs) { |
996 | auto ICVInfo = OMPInfoCache.ICVs[ICV]; |
997 | auto = [&](OptimizationRemarkAnalysis ORA) { |
998 | return ORA << "OpenMP ICV " << ore::NV("OpenMPICV" , ICVInfo.Name) |
999 | << " Value: " |
1000 | << (ICVInfo.InitValue |
1001 | ? toString(I: ICVInfo.InitValue->getValue(), Radix: 10, Signed: true) |
1002 | : "IMPLEMENTATION_DEFINED" ); |
1003 | }; |
1004 | |
1005 | emitRemark<OptimizationRemarkAnalysis>(F, RemarkName: "OpenMPICVTracker" , RemarkCB&: Remark); |
1006 | } |
1007 | } |
1008 | } |
1009 | |
1010 | /// Print OpenMP GPU kernels for testing. |
1011 | void printKernels() const { |
1012 | for (Function *F : SCC) { |
1013 | if (!omp::isOpenMPKernel(Fn&: *F)) |
1014 | continue; |
1015 | |
1016 | auto = [&](OptimizationRemarkAnalysis ORA) { |
1017 | return ORA << "OpenMP GPU kernel " |
1018 | << ore::NV("OpenMPGPUKernel" , F->getName()) << "\n" ; |
1019 | }; |
1020 | |
1021 | emitRemark<OptimizationRemarkAnalysis>(F, RemarkName: "OpenMPGPU" , RemarkCB&: Remark); |
1022 | } |
1023 | } |
1024 | |
1025 | /// Return the call if \p U is a callee use in a regular call. If \p RFI is |
1026 | /// given it has to be the callee or a nullptr is returned. |
1027 | static CallInst *getCallIfRegularCall( |
1028 | Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { |
1029 | CallInst *CI = dyn_cast<CallInst>(Val: U.getUser()); |
1030 | if (CI && CI->isCallee(U: &U) && !CI->hasOperandBundles() && |
1031 | (!RFI || |
1032 | (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) |
1033 | return CI; |
1034 | return nullptr; |
1035 | } |
1036 | |
1037 | /// Return the call if \p V is a regular call. If \p RFI is given it has to be |
1038 | /// the callee or a nullptr is returned. |
1039 | static CallInst *getCallIfRegularCall( |
1040 | Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { |
1041 | CallInst *CI = dyn_cast<CallInst>(Val: &V); |
1042 | if (CI && !CI->hasOperandBundles() && |
1043 | (!RFI || |
1044 | (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration))) |
1045 | return CI; |
1046 | return nullptr; |
1047 | } |
1048 | |
1049 | private: |
1050 | /// Merge parallel regions when it is safe. |
1051 | bool mergeParallelRegions() { |
1052 | const unsigned CallbackCalleeOperand = 2; |
1053 | const unsigned CallbackFirstArgOperand = 3; |
1054 | using InsertPointTy = OpenMPIRBuilder::InsertPointTy; |
1055 | |
1056 | // Check if there are any __kmpc_fork_call calls to merge. |
1057 | OMPInformationCache::RuntimeFunctionInfo &RFI = |
1058 | OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; |
1059 | |
1060 | if (!RFI.Declaration) |
1061 | return false; |
1062 | |
1063 | // Unmergable calls that prevent merging a parallel region. |
1064 | OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { |
1065 | OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], |
1066 | OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], |
1067 | }; |
1068 | |
1069 | bool Changed = false; |
1070 | LoopInfo *LI = nullptr; |
1071 | DominatorTree *DT = nullptr; |
1072 | |
1073 | SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap; |
1074 | |
1075 | BasicBlock *StartBB = nullptr, *EndBB = nullptr; |
1076 | auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) { |
1077 | BasicBlock *CGStartBB = CodeGenIP.getBlock(); |
1078 | BasicBlock *CGEndBB = |
1079 | SplitBlock(Old: CGStartBB, SplitPt: &*CodeGenIP.getPoint(), DT, LI); |
1080 | assert(StartBB != nullptr && "StartBB should not be null" ); |
1081 | CGStartBB->getTerminator()->setSuccessor(Idx: 0, BB: StartBB); |
1082 | assert(EndBB != nullptr && "EndBB should not be null" ); |
1083 | EndBB->getTerminator()->setSuccessor(Idx: 0, BB: CGEndBB); |
1084 | }; |
1085 | |
1086 | auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, |
1087 | Value &Inner, Value *&ReplacementValue) -> InsertPointTy { |
1088 | ReplacementValue = &Inner; |
1089 | return CodeGenIP; |
1090 | }; |
1091 | |
1092 | auto FiniCB = [&](InsertPointTy CodeGenIP) {}; |
1093 | |
1094 | /// Create a sequential execution region within a merged parallel region, |
1095 | /// encapsulated in a master construct with a barrier for synchronization. |
1096 | auto CreateSequentialRegion = [&](Function *OuterFn, |
1097 | BasicBlock *OuterPredBB, |
1098 | Instruction *SeqStartI, |
1099 | Instruction *SeqEndI) { |
1100 | // Isolate the instructions of the sequential region to a separate |
1101 | // block. |
1102 | BasicBlock *ParentBB = SeqStartI->getParent(); |
1103 | BasicBlock *SeqEndBB = |
1104 | SplitBlock(Old: ParentBB, SplitPt: SeqEndI->getNextNode(), DT, LI); |
1105 | BasicBlock *SeqAfterBB = |
1106 | SplitBlock(Old: SeqEndBB, SplitPt: &*SeqEndBB->getFirstInsertionPt(), DT, LI); |
1107 | BasicBlock *SeqStartBB = |
1108 | SplitBlock(Old: ParentBB, SplitPt: SeqStartI, DT, LI, MSSAU: nullptr, BBName: "seq.par.merged" ); |
1109 | |
1110 | assert(ParentBB->getUniqueSuccessor() == SeqStartBB && |
1111 | "Expected a different CFG" ); |
1112 | const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); |
1113 | ParentBB->getTerminator()->eraseFromParent(); |
1114 | |
1115 | auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) { |
1116 | BasicBlock *CGStartBB = CodeGenIP.getBlock(); |
1117 | BasicBlock *CGEndBB = |
1118 | SplitBlock(Old: CGStartBB, SplitPt: &*CodeGenIP.getPoint(), DT, LI); |
1119 | assert(SeqStartBB != nullptr && "SeqStartBB should not be null" ); |
1120 | CGStartBB->getTerminator()->setSuccessor(Idx: 0, BB: SeqStartBB); |
1121 | assert(SeqEndBB != nullptr && "SeqEndBB should not be null" ); |
1122 | SeqEndBB->getTerminator()->setSuccessor(Idx: 0, BB: CGEndBB); |
1123 | }; |
1124 | auto FiniCB = [&](InsertPointTy CodeGenIP) {}; |
1125 | |
1126 | // Find outputs from the sequential region to outside users and |
1127 | // broadcast their values to them. |
1128 | for (Instruction &I : *SeqStartBB) { |
1129 | SmallPtrSet<Instruction *, 4> OutsideUsers; |
1130 | for (User *Usr : I.users()) { |
1131 | Instruction &UsrI = *cast<Instruction>(Val: Usr); |
1132 | // Ignore outputs to LT intrinsics, code extraction for the merged |
1133 | // parallel region will fix them. |
1134 | if (UsrI.isLifetimeStartOrEnd()) |
1135 | continue; |
1136 | |
1137 | if (UsrI.getParent() != SeqStartBB) |
1138 | OutsideUsers.insert(Ptr: &UsrI); |
1139 | } |
1140 | |
1141 | if (OutsideUsers.empty()) |
1142 | continue; |
1143 | |
1144 | // Emit an alloca in the outer region to store the broadcasted |
1145 | // value. |
1146 | const DataLayout &DL = M.getDataLayout(); |
1147 | AllocaInst *AllocaI = new AllocaInst( |
1148 | I.getType(), DL.getAllocaAddrSpace(), nullptr, |
1149 | I.getName() + ".seq.output.alloc" , OuterFn->front().begin()); |
1150 | |
1151 | // Emit a store instruction in the sequential BB to update the |
1152 | // value. |
1153 | new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()->getIterator()); |
1154 | |
1155 | // Emit a load instruction and replace the use of the output value |
1156 | // with it. |
1157 | for (Instruction *UsrI : OutsideUsers) { |
1158 | LoadInst *LoadI = new LoadInst(I.getType(), AllocaI, |
1159 | I.getName() + ".seq.output.load" , |
1160 | UsrI->getIterator()); |
1161 | UsrI->replaceUsesOfWith(From: &I, To: LoadI); |
1162 | } |
1163 | } |
1164 | |
1165 | OpenMPIRBuilder::LocationDescription Loc( |
1166 | InsertPointTy(ParentBB, ParentBB->end()), DL); |
1167 | InsertPointTy SeqAfterIP = |
1168 | OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); |
1169 | |
1170 | OMPInfoCache.OMPBuilder.createBarrier(Loc: SeqAfterIP, Kind: OMPD_parallel); |
1171 | |
1172 | BranchInst::Create(IfTrue: SeqAfterBB, InsertBefore: SeqAfterIP.getBlock()); |
1173 | |
1174 | LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn |
1175 | << "\n" ); |
1176 | }; |
1177 | |
1178 | // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all |
1179 | // contained in BB and only separated by instructions that can be |
1180 | // redundantly executed in parallel. The block BB is split before the first |
1181 | // call (in MergableCIs) and after the last so the entire region we merge |
1182 | // into a single parallel region is contained in a single basic block |
1183 | // without any other instructions. We use the OpenMPIRBuilder to outline |
1184 | // that block and call the resulting function via __kmpc_fork_call. |
1185 | auto Merge = [&](const SmallVectorImpl<CallInst *> &MergableCIs, |
1186 | BasicBlock *BB) { |
1187 | // TODO: Change the interface to allow single CIs expanded, e.g, to |
1188 | // include an outer loop. |
1189 | assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs" ); |
1190 | |
1191 | auto = [&](OptimizationRemark OR) { |
1192 | OR << "Parallel region merged with parallel region" |
1193 | << (MergableCIs.size() > 2 ? "s" : "" ) << " at " ; |
1194 | for (auto *CI : llvm::drop_begin(RangeOrContainer: MergableCIs)) { |
1195 | OR << ore::NV("OpenMPParallelMerge" , CI->getDebugLoc()); |
1196 | if (CI != MergableCIs.back()) |
1197 | OR << ", " ; |
1198 | } |
1199 | return OR << "." ; |
1200 | }; |
1201 | |
1202 | emitRemark<OptimizationRemark>(I: MergableCIs.front(), RemarkName: "OMP150" , RemarkCB&: Remark); |
1203 | |
1204 | Function *OriginalFn = BB->getParent(); |
1205 | LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() |
1206 | << " parallel regions in " << OriginalFn->getName() |
1207 | << "\n" ); |
1208 | |
1209 | // Isolate the calls to merge in a separate block. |
1210 | EndBB = SplitBlock(Old: BB, SplitPt: MergableCIs.back()->getNextNode(), DT, LI); |
1211 | BasicBlock *AfterBB = |
1212 | SplitBlock(Old: EndBB, SplitPt: &*EndBB->getFirstInsertionPt(), DT, LI); |
1213 | StartBB = SplitBlock(Old: BB, SplitPt: MergableCIs.front(), DT, LI, MSSAU: nullptr, |
1214 | BBName: "omp.par.merged" ); |
1215 | |
1216 | assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG" ); |
1217 | const DebugLoc DL = BB->getTerminator()->getDebugLoc(); |
1218 | BB->getTerminator()->eraseFromParent(); |
1219 | |
1220 | // Create sequential regions for sequential instructions that are |
1221 | // in-between mergable parallel regions. |
1222 | for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; |
1223 | It != End; ++It) { |
1224 | Instruction *ForkCI = *It; |
1225 | Instruction *NextForkCI = *(It + 1); |
1226 | |
1227 | // Continue if there are not in-between instructions. |
1228 | if (ForkCI->getNextNode() == NextForkCI) |
1229 | continue; |
1230 | |
1231 | CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), |
1232 | NextForkCI->getPrevNode()); |
1233 | } |
1234 | |
1235 | OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), |
1236 | DL); |
1237 | IRBuilder<>::InsertPoint AllocaIP( |
1238 | &OriginalFn->getEntryBlock(), |
1239 | OriginalFn->getEntryBlock().getFirstInsertionPt()); |
1240 | // Create the merged parallel region with default proc binding, to |
1241 | // avoid overriding binding settings, and without explicit cancellation. |
1242 | InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( |
1243 | Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, IfCondition: nullptr, NumThreads: nullptr, |
1244 | ProcBind: OMP_PROC_BIND_default, /* IsCancellable */ false); |
1245 | BranchInst::Create(IfTrue: AfterBB, InsertBefore: AfterIP.getBlock()); |
1246 | |
1247 | // Perform the actual outlining. |
1248 | OMPInfoCache.OMPBuilder.finalize(Fn: OriginalFn); |
1249 | |
1250 | Function *OutlinedFn = MergableCIs.front()->getCaller(); |
1251 | |
1252 | // Replace the __kmpc_fork_call calls with direct calls to the outlined |
1253 | // callbacks. |
1254 | SmallVector<Value *, 8> Args; |
1255 | for (auto *CI : MergableCIs) { |
1256 | Value *Callee = CI->getArgOperand(i: CallbackCalleeOperand); |
1257 | FunctionType *FT = OMPInfoCache.OMPBuilder.ParallelTask; |
1258 | Args.clear(); |
1259 | Args.push_back(Elt: OutlinedFn->getArg(i: 0)); |
1260 | Args.push_back(Elt: OutlinedFn->getArg(i: 1)); |
1261 | for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; |
1262 | ++U) |
1263 | Args.push_back(Elt: CI->getArgOperand(i: U)); |
1264 | |
1265 | CallInst *NewCI = |
1266 | CallInst::Create(Ty: FT, Func: Callee, Args, NameStr: "" , InsertBefore: CI->getIterator()); |
1267 | if (CI->getDebugLoc()) |
1268 | NewCI->setDebugLoc(CI->getDebugLoc()); |
1269 | |
1270 | // Forward parameter attributes from the callback to the callee. |
1271 | for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E; |
1272 | ++U) |
1273 | for (const Attribute &A : CI->getAttributes().getParamAttrs(ArgNo: U)) |
1274 | NewCI->addParamAttr( |
1275 | ArgNo: U - (CallbackFirstArgOperand - CallbackCalleeOperand), Attr: A); |
1276 | |
1277 | // Emit an explicit barrier to replace the implicit fork-join barrier. |
1278 | if (CI != MergableCIs.back()) { |
1279 | // TODO: Remove barrier if the merged parallel region includes the |
1280 | // 'nowait' clause. |
1281 | OMPInfoCache.OMPBuilder.createBarrier( |
1282 | Loc: InsertPointTy(NewCI->getParent(), |
1283 | NewCI->getNextNode()->getIterator()), |
1284 | Kind: OMPD_parallel); |
1285 | } |
1286 | |
1287 | CI->eraseFromParent(); |
1288 | } |
1289 | |
1290 | assert(OutlinedFn != OriginalFn && "Outlining failed" ); |
1291 | CGUpdater.registerOutlinedFunction(OriginalFn&: *OriginalFn, NewFn&: *OutlinedFn); |
1292 | CGUpdater.reanalyzeFunction(Fn&: *OriginalFn); |
1293 | |
1294 | NumOpenMPParallelRegionsMerged += MergableCIs.size(); |
1295 | |
1296 | return true; |
1297 | }; |
1298 | |
1299 | // Helper function that identifes sequences of |
1300 | // __kmpc_fork_call uses in a basic block. |
1301 | auto DetectPRsCB = [&](Use &U, Function &F) { |
1302 | CallInst *CI = getCallIfRegularCall(U, RFI: &RFI); |
1303 | BB2PRMap[CI->getParent()].insert(Ptr: CI); |
1304 | |
1305 | return false; |
1306 | }; |
1307 | |
1308 | BB2PRMap.clear(); |
1309 | RFI.foreachUse(SCC, CB: DetectPRsCB); |
1310 | SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector; |
1311 | // Find mergable parallel regions within a basic block that are |
1312 | // safe to merge, that is any in-between instructions can safely |
1313 | // execute in parallel after merging. |
1314 | // TODO: support merging across basic-blocks. |
1315 | for (auto &It : BB2PRMap) { |
1316 | auto &CIs = It.getSecond(); |
1317 | if (CIs.size() < 2) |
1318 | continue; |
1319 | |
1320 | BasicBlock *BB = It.getFirst(); |
1321 | SmallVector<CallInst *, 4> MergableCIs; |
1322 | |
1323 | /// Returns true if the instruction is mergable, false otherwise. |
1324 | /// A terminator instruction is unmergable by definition since merging |
1325 | /// works within a BB. Instructions before the mergable region are |
1326 | /// mergable if they are not calls to OpenMP runtime functions that may |
1327 | /// set different execution parameters for subsequent parallel regions. |
1328 | /// Instructions in-between parallel regions are mergable if they are not |
1329 | /// calls to any non-intrinsic function since that may call a non-mergable |
1330 | /// OpenMP runtime function. |
1331 | auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { |
1332 | // We do not merge across BBs, hence return false (unmergable) if the |
1333 | // instruction is a terminator. |
1334 | if (I.isTerminator()) |
1335 | return false; |
1336 | |
1337 | if (!isa<CallInst>(Val: &I)) |
1338 | return true; |
1339 | |
1340 | CallInst *CI = cast<CallInst>(Val: &I); |
1341 | if (IsBeforeMergableRegion) { |
1342 | Function *CalledFunction = CI->getCalledFunction(); |
1343 | if (!CalledFunction) |
1344 | return false; |
1345 | // Return false (unmergable) if the call before the parallel |
1346 | // region calls an explicit affinity (proc_bind) or number of |
1347 | // threads (num_threads) compiler-generated function. Those settings |
1348 | // may be incompatible with following parallel regions. |
1349 | // TODO: ICV tracking to detect compatibility. |
1350 | for (const auto &RFI : UnmergableCallsInfo) { |
1351 | if (CalledFunction == RFI.Declaration) |
1352 | return false; |
1353 | } |
1354 | } else { |
1355 | // Return false (unmergable) if there is a call instruction |
1356 | // in-between parallel regions when it is not an intrinsic. It |
1357 | // may call an unmergable OpenMP runtime function in its callpath. |
1358 | // TODO: Keep track of possible OpenMP calls in the callpath. |
1359 | if (!isa<IntrinsicInst>(Val: CI)) |
1360 | return false; |
1361 | } |
1362 | |
1363 | return true; |
1364 | }; |
1365 | // Find maximal number of parallel region CIs that are safe to merge. |
1366 | for (auto It = BB->begin(), End = BB->end(); It != End;) { |
1367 | Instruction &I = *It; |
1368 | ++It; |
1369 | |
1370 | if (CIs.count(Ptr: &I)) { |
1371 | MergableCIs.push_back(Elt: cast<CallInst>(Val: &I)); |
1372 | continue; |
1373 | } |
1374 | |
1375 | // Continue expanding if the instruction is mergable. |
1376 | if (IsMergable(I, MergableCIs.empty())) |
1377 | continue; |
1378 | |
1379 | // Forward the instruction iterator to skip the next parallel region |
1380 | // since there is an unmergable instruction which can affect it. |
1381 | for (; It != End; ++It) { |
1382 | Instruction &SkipI = *It; |
1383 | if (CIs.count(Ptr: &SkipI)) { |
1384 | LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI |
1385 | << " due to " << I << "\n" ); |
1386 | ++It; |
1387 | break; |
1388 | } |
1389 | } |
1390 | |
1391 | // Store mergable regions found. |
1392 | if (MergableCIs.size() > 1) { |
1393 | MergableCIsVector.push_back(Elt: MergableCIs); |
1394 | LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() |
1395 | << " parallel regions in block " << BB->getName() |
1396 | << " of function " << BB->getParent()->getName() |
1397 | << "\n" ;); |
1398 | } |
1399 | |
1400 | MergableCIs.clear(); |
1401 | } |
1402 | |
1403 | if (!MergableCIsVector.empty()) { |
1404 | Changed = true; |
1405 | |
1406 | for (auto &MergableCIs : MergableCIsVector) |
1407 | Merge(MergableCIs, BB); |
1408 | MergableCIsVector.clear(); |
1409 | } |
1410 | } |
1411 | |
1412 | if (Changed) { |
1413 | /// Re-collect use for fork calls, emitted barrier calls, and |
1414 | /// any emitted master/end_master calls. |
1415 | OMPInfoCache.recollectUsesForFunction(RTF: OMPRTL___kmpc_fork_call); |
1416 | OMPInfoCache.recollectUsesForFunction(RTF: OMPRTL___kmpc_barrier); |
1417 | OMPInfoCache.recollectUsesForFunction(RTF: OMPRTL___kmpc_master); |
1418 | OMPInfoCache.recollectUsesForFunction(RTF: OMPRTL___kmpc_end_master); |
1419 | } |
1420 | |
1421 | return Changed; |
1422 | } |
1423 | |
1424 | /// Try to delete parallel regions if possible. |
1425 | bool deleteParallelRegions() { |
1426 | const unsigned CallbackCalleeOperand = 2; |
1427 | |
1428 | OMPInformationCache::RuntimeFunctionInfo &RFI = |
1429 | OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; |
1430 | |
1431 | if (!RFI.Declaration) |
1432 | return false; |
1433 | |
1434 | bool Changed = false; |
1435 | auto DeleteCallCB = [&](Use &U, Function &) { |
1436 | CallInst *CI = getCallIfRegularCall(U); |
1437 | if (!CI) |
1438 | return false; |
1439 | auto *Fn = dyn_cast<Function>( |
1440 | Val: CI->getArgOperand(i: CallbackCalleeOperand)->stripPointerCasts()); |
1441 | if (!Fn) |
1442 | return false; |
1443 | if (!Fn->onlyReadsMemory()) |
1444 | return false; |
1445 | if (!Fn->hasFnAttribute(Kind: Attribute::WillReturn)) |
1446 | return false; |
1447 | |
1448 | LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " |
1449 | << CI->getCaller()->getName() << "\n" ); |
1450 | |
1451 | auto = [&](OptimizationRemark OR) { |
1452 | return OR << "Removing parallel region with no side-effects." ; |
1453 | }; |
1454 | emitRemark<OptimizationRemark>(I: CI, RemarkName: "OMP160" , RemarkCB&: Remark); |
1455 | |
1456 | CI->eraseFromParent(); |
1457 | Changed = true; |
1458 | ++NumOpenMPParallelRegionsDeleted; |
1459 | return true; |
1460 | }; |
1461 | |
1462 | RFI.foreachUse(SCC, CB: DeleteCallCB); |
1463 | |
1464 | return Changed; |
1465 | } |
1466 | |
1467 | /// Try to eliminate runtime calls by reusing existing ones. |
1468 | bool deduplicateRuntimeCalls() { |
1469 | bool Changed = false; |
1470 | |
1471 | RuntimeFunction DeduplicableRuntimeCallIDs[] = { |
1472 | OMPRTL_omp_get_num_threads, |
1473 | OMPRTL_omp_in_parallel, |
1474 | OMPRTL_omp_get_cancellation, |
1475 | OMPRTL_omp_get_supported_active_levels, |
1476 | OMPRTL_omp_get_level, |
1477 | OMPRTL_omp_get_ancestor_thread_num, |
1478 | OMPRTL_omp_get_team_size, |
1479 | OMPRTL_omp_get_active_level, |
1480 | OMPRTL_omp_in_final, |
1481 | OMPRTL_omp_get_proc_bind, |
1482 | OMPRTL_omp_get_num_places, |
1483 | OMPRTL_omp_get_num_procs, |
1484 | OMPRTL_omp_get_place_num, |
1485 | OMPRTL_omp_get_partition_num_places, |
1486 | OMPRTL_omp_get_partition_place_nums}; |
1487 | |
1488 | // Global-tid is handled separately. |
1489 | SmallSetVector<Value *, 16> GTIdArgs; |
1490 | collectGlobalThreadIdArguments(GTIdArgs); |
1491 | LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() |
1492 | << " global thread ID arguments\n" ); |
1493 | |
1494 | for (Function *F : SCC) { |
1495 | for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) |
1496 | Changed |= deduplicateRuntimeCalls( |
1497 | F&: *F, RFI&: OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); |
1498 | |
1499 | // __kmpc_global_thread_num is special as we can replace it with an |
1500 | // argument in enough cases to make it worth trying. |
1501 | Value *GTIdArg = nullptr; |
1502 | for (Argument &Arg : F->args()) |
1503 | if (GTIdArgs.count(key: &Arg)) { |
1504 | GTIdArg = &Arg; |
1505 | break; |
1506 | } |
1507 | Changed |= deduplicateRuntimeCalls( |
1508 | F&: *F, RFI&: OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], ReplVal: GTIdArg); |
1509 | } |
1510 | |
1511 | return Changed; |
1512 | } |
1513 | |
1514 | /// Tries to remove known runtime symbols that are optional from the module. |
1515 | bool removeRuntimeSymbols() { |
1516 | // The RPC client symbol is defined in `libc` and indicates that something |
1517 | // required an RPC server. If its users were all optimized out then we can |
1518 | // safely remove it. |
1519 | // TODO: This should be somewhere more common in the future. |
1520 | if (GlobalVariable *GV = M.getNamedGlobal(Name: "__llvm_libc_rpc_client" )) { |
1521 | if (!GV->getType()->isPointerTy()) |
1522 | return false; |
1523 | |
1524 | Constant *C = GV->getInitializer(); |
1525 | if (!C) |
1526 | return false; |
1527 | |
1528 | // Check to see if the only user of the RPC client is the external handle. |
1529 | GlobalVariable *Client = dyn_cast<GlobalVariable>(Val: C->stripPointerCasts()); |
1530 | if (!Client || Client->getNumUses() > 1 || |
1531 | Client->user_back() != GV->getInitializer()) |
1532 | return false; |
1533 | |
1534 | Client->replaceAllUsesWith(V: PoisonValue::get(T: Client->getType())); |
1535 | Client->eraseFromParent(); |
1536 | |
1537 | GV->replaceAllUsesWith(V: PoisonValue::get(T: GV->getType())); |
1538 | GV->eraseFromParent(); |
1539 | |
1540 | return true; |
1541 | } |
1542 | return false; |
1543 | } |
1544 | |
1545 | /// Tries to hide the latency of runtime calls that involve host to |
1546 | /// device memory transfers by splitting them into their "issue" and "wait" |
1547 | /// versions. The "issue" is moved upwards as much as possible. The "wait" is |
1548 | /// moved downards as much as possible. The "issue" issues the memory transfer |
1549 | /// asynchronously, returning a handle. The "wait" waits in the returned |
1550 | /// handle for the memory transfer to finish. |
1551 | bool hideMemTransfersLatency() { |
1552 | auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; |
1553 | bool Changed = false; |
1554 | auto SplitMemTransfers = [&](Use &U, Function &Decl) { |
1555 | auto *RTCall = getCallIfRegularCall(U, RFI: &RFI); |
1556 | if (!RTCall) |
1557 | return false; |
1558 | |
1559 | OffloadArray OffloadArrays[3]; |
1560 | if (!getValuesInOffloadArrays(RuntimeCall&: *RTCall, OAs: OffloadArrays)) |
1561 | return false; |
1562 | |
1563 | LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); |
1564 | |
1565 | // TODO: Check if can be moved upwards. |
1566 | bool WasSplit = false; |
1567 | Instruction *WaitMovementPoint = canBeMovedDownwards(RuntimeCall&: *RTCall); |
1568 | if (WaitMovementPoint) |
1569 | WasSplit = splitTargetDataBeginRTC(RuntimeCall&: *RTCall, WaitMovementPoint&: *WaitMovementPoint); |
1570 | |
1571 | Changed |= WasSplit; |
1572 | return WasSplit; |
1573 | }; |
1574 | if (OMPInfoCache.runtimeFnsAvailable( |
1575 | Fns: {OMPRTL___tgt_target_data_begin_mapper_issue, |
1576 | OMPRTL___tgt_target_data_begin_mapper_wait})) |
1577 | RFI.foreachUse(SCC, CB: SplitMemTransfers); |
1578 | |
1579 | return Changed; |
1580 | } |
1581 | |
1582 | void analysisGlobalization() { |
1583 | auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; |
1584 | |
1585 | auto CheckGlobalization = [&](Use &U, Function &Decl) { |
1586 | if (CallInst *CI = getCallIfRegularCall(U, RFI: &RFI)) { |
1587 | auto = [&](OptimizationRemarkMissed ORM) { |
1588 | return ORM |
1589 | << "Found thread data sharing on the GPU. " |
1590 | << "Expect degraded performance due to data globalization." ; |
1591 | }; |
1592 | emitRemark<OptimizationRemarkMissed>(I: CI, RemarkName: "OMP112" , RemarkCB&: Remark); |
1593 | } |
1594 | |
1595 | return false; |
1596 | }; |
1597 | |
1598 | RFI.foreachUse(SCC, CB: CheckGlobalization); |
1599 | } |
1600 | |
1601 | /// Maps the values stored in the offload arrays passed as arguments to |
1602 | /// \p RuntimeCall into the offload arrays in \p OAs. |
1603 | bool getValuesInOffloadArrays(CallInst &RuntimeCall, |
1604 | MutableArrayRef<OffloadArray> OAs) { |
1605 | assert(OAs.size() == 3 && "Need space for three offload arrays!" ); |
1606 | |
1607 | // A runtime call that involves memory offloading looks something like: |
1608 | // call void @__tgt_target_data_begin_mapper(arg0, arg1, |
1609 | // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, |
1610 | // ...) |
1611 | // So, the idea is to access the allocas that allocate space for these |
1612 | // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. |
1613 | // Therefore: |
1614 | // i8** %offload_baseptrs. |
1615 | Value *BasePtrsArg = |
1616 | RuntimeCall.getArgOperand(i: OffloadArray::BasePtrsArgNum); |
1617 | // i8** %offload_ptrs. |
1618 | Value *PtrsArg = RuntimeCall.getArgOperand(i: OffloadArray::PtrsArgNum); |
1619 | // i8** %offload_sizes. |
1620 | Value *SizesArg = RuntimeCall.getArgOperand(i: OffloadArray::SizesArgNum); |
1621 | |
1622 | // Get values stored in **offload_baseptrs. |
1623 | auto *V = getUnderlyingObject(V: BasePtrsArg); |
1624 | if (!isa<AllocaInst>(Val: V)) |
1625 | return false; |
1626 | auto *BasePtrsArray = cast<AllocaInst>(Val: V); |
1627 | if (!OAs[0].initialize(Array&: *BasePtrsArray, Before&: RuntimeCall)) |
1628 | return false; |
1629 | |
1630 | // Get values stored in **offload_baseptrs. |
1631 | V = getUnderlyingObject(V: PtrsArg); |
1632 | if (!isa<AllocaInst>(Val: V)) |
1633 | return false; |
1634 | auto *PtrsArray = cast<AllocaInst>(Val: V); |
1635 | if (!OAs[1].initialize(Array&: *PtrsArray, Before&: RuntimeCall)) |
1636 | return false; |
1637 | |
1638 | // Get values stored in **offload_sizes. |
1639 | V = getUnderlyingObject(V: SizesArg); |
1640 | // If it's a [constant] global array don't analyze it. |
1641 | if (isa<GlobalValue>(Val: V)) |
1642 | return isa<Constant>(Val: V); |
1643 | if (!isa<AllocaInst>(Val: V)) |
1644 | return false; |
1645 | |
1646 | auto *SizesArray = cast<AllocaInst>(Val: V); |
1647 | if (!OAs[2].initialize(Array&: *SizesArray, Before&: RuntimeCall)) |
1648 | return false; |
1649 | |
1650 | return true; |
1651 | } |
1652 | |
1653 | /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. |
1654 | /// For now this is a way to test that the function getValuesInOffloadArrays |
1655 | /// is working properly. |
1656 | /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. |
1657 | void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) { |
1658 | assert(OAs.size() == 3 && "There are three offload arrays to debug!" ); |
1659 | |
1660 | LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n" ); |
1661 | std::string ValuesStr; |
1662 | raw_string_ostream Printer(ValuesStr); |
1663 | std::string Separator = " --- " ; |
1664 | |
1665 | for (auto *BP : OAs[0].StoredValues) { |
1666 | BP->print(O&: Printer); |
1667 | Printer << Separator; |
1668 | } |
1669 | LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << ValuesStr << "\n" ); |
1670 | ValuesStr.clear(); |
1671 | |
1672 | for (auto *P : OAs[1].StoredValues) { |
1673 | P->print(O&: Printer); |
1674 | Printer << Separator; |
1675 | } |
1676 | LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << ValuesStr << "\n" ); |
1677 | ValuesStr.clear(); |
1678 | |
1679 | for (auto *S : OAs[2].StoredValues) { |
1680 | S->print(O&: Printer); |
1681 | Printer << Separator; |
1682 | } |
1683 | LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << ValuesStr << "\n" ); |
1684 | } |
1685 | |
1686 | /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be |
1687 | /// moved. Returns nullptr if the movement is not possible, or not worth it. |
1688 | Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { |
1689 | // FIXME: This traverses only the BasicBlock where RuntimeCall is. |
1690 | // Make it traverse the CFG. |
1691 | |
1692 | Instruction *CurrentI = &RuntimeCall; |
1693 | bool IsWorthIt = false; |
1694 | while ((CurrentI = CurrentI->getNextNode())) { |
1695 | |
1696 | // TODO: Once we detect the regions to be offloaded we should use the |
1697 | // alias analysis manager to check if CurrentI may modify one of |
1698 | // the offloaded regions. |
1699 | if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { |
1700 | if (IsWorthIt) |
1701 | return CurrentI; |
1702 | |
1703 | return nullptr; |
1704 | } |
1705 | |
1706 | // FIXME: For now if we move it over anything without side effect |
1707 | // is worth it. |
1708 | IsWorthIt = true; |
1709 | } |
1710 | |
1711 | // Return end of BasicBlock. |
1712 | return RuntimeCall.getParent()->getTerminator(); |
1713 | } |
1714 | |
1715 | /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. |
1716 | bool splitTargetDataBeginRTC(CallInst &RuntimeCall, |
1717 | Instruction &WaitMovementPoint) { |
1718 | // Create stack allocated handle (__tgt_async_info) at the beginning of the |
1719 | // function. Used for storing information of the async transfer, allowing to |
1720 | // wait on it later. |
1721 | auto &IRBuilder = OMPInfoCache.OMPBuilder; |
1722 | Function *F = RuntimeCall.getCaller(); |
1723 | BasicBlock &Entry = F->getEntryBlock(); |
1724 | IRBuilder.Builder.SetInsertPoint(TheBB: &Entry, |
1725 | IP: Entry.getFirstNonPHIOrDbgOrAlloca()); |
1726 | Value *Handle = IRBuilder.Builder.CreateAlloca( |
1727 | Ty: IRBuilder.AsyncInfo, /*ArraySize=*/nullptr, Name: "handle" ); |
1728 | Handle = |
1729 | IRBuilder.Builder.CreateAddrSpaceCast(V: Handle, DestTy: IRBuilder.AsyncInfoPtr); |
1730 | |
1731 | // Add "issue" runtime call declaration: |
1732 | // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, |
1733 | // i8**, i8**, i64*, i64*) |
1734 | FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( |
1735 | M, FnID: OMPRTL___tgt_target_data_begin_mapper_issue); |
1736 | |
1737 | // Change RuntimeCall call site for its asynchronous version. |
1738 | SmallVector<Value *, 16> Args; |
1739 | for (auto &Arg : RuntimeCall.args()) |
1740 | Args.push_back(Elt: Arg.get()); |
1741 | Args.push_back(Elt: Handle); |
1742 | |
1743 | CallInst *IssueCallsite = CallInst::Create(Func: IssueDecl, Args, /*NameStr=*/"" , |
1744 | InsertBefore: RuntimeCall.getIterator()); |
1745 | OMPInfoCache.setCallingConvention(Callee: IssueDecl, CI: IssueCallsite); |
1746 | RuntimeCall.eraseFromParent(); |
1747 | |
1748 | // Add "wait" runtime call declaration: |
1749 | // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) |
1750 | FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( |
1751 | M, FnID: OMPRTL___tgt_target_data_begin_mapper_wait); |
1752 | |
1753 | Value *WaitParams[2] = { |
1754 | IssueCallsite->getArgOperand( |
1755 | i: OffloadArray::DeviceIDArgNum), // device_id. |
1756 | Handle // handle to wait on. |
1757 | }; |
1758 | CallInst *WaitCallsite = CallInst::Create( |
1759 | Func: WaitDecl, Args: WaitParams, /*NameStr=*/"" , InsertBefore: WaitMovementPoint.getIterator()); |
1760 | OMPInfoCache.setCallingConvention(Callee: WaitDecl, CI: WaitCallsite); |
1761 | |
1762 | return true; |
1763 | } |
1764 | |
1765 | static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, |
1766 | bool GlobalOnly, bool &SingleChoice) { |
1767 | if (CurrentIdent == NextIdent) |
1768 | return CurrentIdent; |
1769 | |
1770 | // TODO: Figure out how to actually combine multiple debug locations. For |
1771 | // now we just keep an existing one if there is a single choice. |
1772 | if (!GlobalOnly || isa<GlobalValue>(Val: NextIdent)) { |
1773 | SingleChoice = !CurrentIdent; |
1774 | return NextIdent; |
1775 | } |
1776 | return nullptr; |
1777 | } |
1778 | |
1779 | /// Return an `struct ident_t*` value that represents the ones used in the |
1780 | /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not |
1781 | /// return a local `struct ident_t*`. For now, if we cannot find a suitable |
1782 | /// return value we create one from scratch. We also do not yet combine |
1783 | /// information, e.g., the source locations, see combinedIdentStruct. |
1784 | Value * |
1785 | getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, |
1786 | Function &F, bool GlobalOnly) { |
1787 | bool SingleChoice = true; |
1788 | Value *Ident = nullptr; |
1789 | auto CombineIdentStruct = [&](Use &U, Function &Caller) { |
1790 | CallInst *CI = getCallIfRegularCall(U, RFI: &RFI); |
1791 | if (!CI || &F != &Caller) |
1792 | return false; |
1793 | Ident = combinedIdentStruct(CurrentIdent: Ident, NextIdent: CI->getArgOperand(i: 0), |
1794 | /* GlobalOnly */ true, SingleChoice); |
1795 | return false; |
1796 | }; |
1797 | RFI.foreachUse(SCC, CB: CombineIdentStruct); |
1798 | |
1799 | if (!Ident || !SingleChoice) { |
1800 | // The IRBuilder uses the insertion block to get to the module, this is |
1801 | // unfortunate but we work around it for now. |
1802 | if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) |
1803 | OMPInfoCache.OMPBuilder.updateToLocation(Loc: OpenMPIRBuilder::InsertPointTy( |
1804 | &F.getEntryBlock(), F.getEntryBlock().begin())); |
1805 | // Create a fallback location if non was found. |
1806 | // TODO: Use the debug locations of the calls instead. |
1807 | uint32_t SrcLocStrSize; |
1808 | Constant *Loc = |
1809 | OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize); |
1810 | Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr: Loc, SrcLocStrSize); |
1811 | } |
1812 | return Ident; |
1813 | } |
1814 | |
1815 | /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or |
1816 | /// \p ReplVal if given. |
1817 | bool deduplicateRuntimeCalls(Function &F, |
1818 | OMPInformationCache::RuntimeFunctionInfo &RFI, |
1819 | Value *ReplVal = nullptr) { |
1820 | auto *UV = RFI.getUseVector(F); |
1821 | if (!UV || UV->size() + (ReplVal != nullptr) < 2) |
1822 | return false; |
1823 | |
1824 | LLVM_DEBUG( |
1825 | dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name |
1826 | << (ReplVal ? " with an existing value\n" : "\n" ) << "\n" ); |
1827 | |
1828 | assert((!ReplVal || (isa<Argument>(ReplVal) && |
1829 | cast<Argument>(ReplVal)->getParent() == &F)) && |
1830 | "Unexpected replacement value!" ); |
1831 | |
1832 | // TODO: Use dominance to find a good position instead. |
1833 | auto CanBeMoved = [this](CallBase &CB) { |
1834 | unsigned NumArgs = CB.arg_size(); |
1835 | if (NumArgs == 0) |
1836 | return true; |
1837 | if (CB.getArgOperand(i: 0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) |
1838 | return false; |
1839 | for (unsigned U = 1; U < NumArgs; ++U) |
1840 | if (isa<Instruction>(Val: CB.getArgOperand(i: U))) |
1841 | return false; |
1842 | return true; |
1843 | }; |
1844 | |
1845 | if (!ReplVal) { |
1846 | auto *DT = |
1847 | OMPInfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(F); |
1848 | if (!DT) |
1849 | return false; |
1850 | Instruction *IP = nullptr; |
1851 | for (Use *U : *UV) { |
1852 | if (CallInst *CI = getCallIfRegularCall(U&: *U, RFI: &RFI)) { |
1853 | if (IP) |
1854 | IP = DT->findNearestCommonDominator(I1: IP, I2: CI); |
1855 | else |
1856 | IP = CI; |
1857 | if (!CanBeMoved(*CI)) |
1858 | continue; |
1859 | if (!ReplVal) |
1860 | ReplVal = CI; |
1861 | } |
1862 | } |
1863 | if (!ReplVal) |
1864 | return false; |
1865 | assert(IP && "Expected insertion point!" ); |
1866 | cast<Instruction>(Val: ReplVal)->moveBefore(MovePos: IP); |
1867 | } |
1868 | |
1869 | // If we use a call as a replacement value we need to make sure the ident is |
1870 | // valid at the new location. For now we just pick a global one, either |
1871 | // existing and used by one of the calls, or created from scratch. |
1872 | if (CallBase *CI = dyn_cast<CallBase>(Val: ReplVal)) { |
1873 | if (!CI->arg_empty() && |
1874 | CI->getArgOperand(i: 0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { |
1875 | Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, |
1876 | /* GlobalOnly */ true); |
1877 | CI->setArgOperand(i: 0, v: Ident); |
1878 | } |
1879 | } |
1880 | |
1881 | bool Changed = false; |
1882 | auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { |
1883 | CallInst *CI = getCallIfRegularCall(U, RFI: &RFI); |
1884 | if (!CI || CI == ReplVal || &F != &Caller) |
1885 | return false; |
1886 | assert(CI->getCaller() == &F && "Unexpected call!" ); |
1887 | |
1888 | auto = [&](OptimizationRemark OR) { |
1889 | return OR << "OpenMP runtime call " |
1890 | << ore::NV("OpenMPOptRuntime" , RFI.Name) << " deduplicated." ; |
1891 | }; |
1892 | if (CI->getDebugLoc()) |
1893 | emitRemark<OptimizationRemark>(I: CI, RemarkName: "OMP170" , RemarkCB&: Remark); |
1894 | else |
1895 | emitRemark<OptimizationRemark>(F: &F, RemarkName: "OMP170" , RemarkCB&: Remark); |
1896 | |
1897 | CI->replaceAllUsesWith(V: ReplVal); |
1898 | CI->eraseFromParent(); |
1899 | ++NumOpenMPRuntimeCallsDeduplicated; |
1900 | Changed = true; |
1901 | return true; |
1902 | }; |
1903 | RFI.foreachUse(SCC, CB: ReplaceAndDeleteCB); |
1904 | |
1905 | return Changed; |
1906 | } |
1907 | |
1908 | /// Collect arguments that represent the global thread id in \p GTIdArgs. |
1909 | void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) { |
1910 | // TODO: Below we basically perform a fixpoint iteration with a pessimistic |
1911 | // initialization. We could define an AbstractAttribute instead and |
1912 | // run the Attributor here once it can be run as an SCC pass. |
1913 | |
1914 | // Helper to check the argument \p ArgNo at all call sites of \p F for |
1915 | // a GTId. |
1916 | auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { |
1917 | if (!F.hasLocalLinkage()) |
1918 | return false; |
1919 | for (Use &U : F.uses()) { |
1920 | if (CallInst *CI = getCallIfRegularCall(U)) { |
1921 | Value *ArgOp = CI->getArgOperand(i: ArgNo); |
1922 | if (CI == &RefCI || GTIdArgs.count(key: ArgOp) || |
1923 | getCallIfRegularCall( |
1924 | V&: *ArgOp, RFI: &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) |
1925 | continue; |
1926 | } |
1927 | return false; |
1928 | } |
1929 | return true; |
1930 | }; |
1931 | |
1932 | // Helper to identify uses of a GTId as GTId arguments. |
1933 | auto AddUserArgs = [&](Value >Id) { |
1934 | for (Use &U : GTId.uses()) |
1935 | if (CallInst *CI = dyn_cast<CallInst>(Val: U.getUser())) |
1936 | if (CI->isArgOperand(U: &U)) |
1937 | if (Function *Callee = CI->getCalledFunction()) |
1938 | if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) |
1939 | GTIdArgs.insert(X: Callee->getArg(i: U.getOperandNo())); |
1940 | }; |
1941 | |
1942 | // The argument users of __kmpc_global_thread_num calls are GTIds. |
1943 | OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = |
1944 | OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; |
1945 | |
1946 | GlobThreadNumRFI.foreachUse(SCC, CB: [&](Use &U, Function &F) { |
1947 | if (CallInst *CI = getCallIfRegularCall(U, RFI: &GlobThreadNumRFI)) |
1948 | AddUserArgs(*CI); |
1949 | return false; |
1950 | }); |
1951 | |
1952 | // Transitively search for more arguments by looking at the users of the |
1953 | // ones we know already. During the search the GTIdArgs vector is extended |
1954 | // so we cannot cache the size nor can we use a range based for. |
1955 | for (unsigned U = 0; U < GTIdArgs.size(); ++U) |
1956 | AddUserArgs(*GTIdArgs[U]); |
1957 | } |
1958 | |
1959 | /// Kernel (=GPU) optimizations and utility functions |
1960 | /// |
1961 | ///{{ |
1962 | |
1963 | /// Cache to remember the unique kernel for a function. |
1964 | DenseMap<Function *, std::optional<Kernel>> UniqueKernelMap; |
1965 | |
1966 | /// Find the unique kernel that will execute \p F, if any. |
1967 | Kernel getUniqueKernelFor(Function &F); |
1968 | |
1969 | /// Find the unique kernel that will execute \p I, if any. |
1970 | Kernel getUniqueKernelFor(Instruction &I) { |
1971 | return getUniqueKernelFor(F&: *I.getFunction()); |
1972 | } |
1973 | |
1974 | /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in |
1975 | /// the cases we can avoid taking the address of a function. |
1976 | bool rewriteDeviceCodeStateMachine(); |
1977 | |
1978 | /// |
1979 | ///}} |
1980 | |
1981 | /// Emit a remark generically |
1982 | /// |
1983 | /// This template function can be used to generically emit a remark. The |
1984 | /// RemarkKind should be one of the following: |
1985 | /// - OptimizationRemark to indicate a successful optimization attempt |
1986 | /// - OptimizationRemarkMissed to report a failed optimization attempt |
1987 | /// - OptimizationRemarkAnalysis to provide additional information about an |
1988 | /// optimization attempt |
1989 | /// |
1990 | /// The remark is built using a callback function provided by the caller that |
1991 | /// takes a RemarkKind as input and returns a RemarkKind. |
1992 | template <typename RemarkKind, typename RemarkCallBack> |
1993 | void (Instruction *I, StringRef , |
1994 | RemarkCallBack &&) const { |
1995 | Function *F = I->getParent()->getParent(); |
1996 | auto &ORE = OREGetter(F); |
1997 | |
1998 | if (RemarkName.starts_with(Prefix: "OMP" )) |
1999 | ORE.emit([&]() { |
2000 | return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)) |
2001 | << " [" << RemarkName << "]" ; |
2002 | }); |
2003 | else |
2004 | ORE.emit( |
2005 | [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); }); |
2006 | } |
2007 | |
2008 | /// Emit a remark on a function. |
2009 | template <typename RemarkKind, typename RemarkCallBack> |
2010 | void (Function *F, StringRef , |
2011 | RemarkCallBack &&) const { |
2012 | auto &ORE = OREGetter(F); |
2013 | |
2014 | if (RemarkName.starts_with(Prefix: "OMP" )) |
2015 | ORE.emit([&]() { |
2016 | return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)) |
2017 | << " [" << RemarkName << "]" ; |
2018 | }); |
2019 | else |
2020 | ORE.emit( |
2021 | [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); }); |
2022 | } |
2023 | |
2024 | /// The underlying module. |
2025 | Module &M; |
2026 | |
2027 | /// The SCC we are operating on. |
2028 | SmallVectorImpl<Function *> &SCC; |
2029 | |
2030 | /// Callback to update the call graph, the first argument is a removed call, |
2031 | /// the second an optional replacement call. |
2032 | CallGraphUpdater &CGUpdater; |
2033 | |
2034 | /// Callback to get an OptimizationRemarkEmitter from a Function * |
2035 | OptimizationRemarkGetter OREGetter; |
2036 | |
2037 | /// OpenMP-specific information cache. Also Used for Attributor runs. |
2038 | OMPInformationCache &OMPInfoCache; |
2039 | |
2040 | /// Attributor instance. |
2041 | Attributor &A; |
2042 | |
2043 | /// Helper function to run Attributor on SCC. |
2044 | bool runAttributor(bool IsModulePass) { |
2045 | if (SCC.empty()) |
2046 | return false; |
2047 | |
2048 | registerAAs(IsModulePass); |
2049 | |
2050 | ChangeStatus Changed = A.run(); |
2051 | |
2052 | LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() |
2053 | << " functions, result: " << Changed << ".\n" ); |
2054 | |
2055 | if (Changed == ChangeStatus::CHANGED) |
2056 | OMPInfoCache.invalidateAnalyses(); |
2057 | |
2058 | return Changed == ChangeStatus::CHANGED; |
2059 | } |
2060 | |
2061 | void registerFoldRuntimeCall(RuntimeFunction RF); |
2062 | |
2063 | /// Populate the Attributor with abstract attribute opportunities in the |
2064 | /// functions. |
2065 | void registerAAs(bool IsModulePass); |
2066 | |
2067 | public: |
2068 | /// Callback to register AAs for live functions, including internal functions |
2069 | /// marked live during the traversal. |
2070 | static void registerAAsForFunction(Attributor &A, const Function &F); |
2071 | }; |
2072 | |
2073 | Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { |
2074 | if (OMPInfoCache.CGSCC && !OMPInfoCache.CGSCC->empty() && |
2075 | !OMPInfoCache.CGSCC->contains(key: &F)) |
2076 | return nullptr; |
2077 | |
2078 | // Use a scope to keep the lifetime of the CachedKernel short. |
2079 | { |
2080 | std::optional<Kernel> &CachedKernel = UniqueKernelMap[&F]; |
2081 | if (CachedKernel) |
2082 | return *CachedKernel; |
2083 | |
2084 | // TODO: We should use an AA to create an (optimistic and callback |
2085 | // call-aware) call graph. For now we stick to simple patterns that |
2086 | // are less powerful, basically the worst fixpoint. |
2087 | if (isOpenMPKernel(Fn&: F)) { |
2088 | CachedKernel = Kernel(&F); |
2089 | return *CachedKernel; |
2090 | } |
2091 | |
2092 | CachedKernel = nullptr; |
2093 | if (!F.hasLocalLinkage()) { |
2094 | |
2095 | // See https://openmp.llvm.org/remarks/OptimizationRemarks.html |
2096 | auto = [&](OptimizationRemarkAnalysis ORA) { |
2097 | return ORA << "Potentially unknown OpenMP target region caller." ; |
2098 | }; |
2099 | emitRemark<OptimizationRemarkAnalysis>(F: &F, RemarkName: "OMP100" , RemarkCB&: Remark); |
2100 | |
2101 | return nullptr; |
2102 | } |
2103 | } |
2104 | |
2105 | auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { |
2106 | if (auto *Cmp = dyn_cast<ICmpInst>(Val: U.getUser())) { |
2107 | // Allow use in equality comparisons. |
2108 | if (Cmp->isEquality()) |
2109 | return getUniqueKernelFor(I&: *Cmp); |
2110 | return nullptr; |
2111 | } |
2112 | if (auto *CB = dyn_cast<CallBase>(Val: U.getUser())) { |
2113 | // Allow direct calls. |
2114 | if (CB->isCallee(U: &U)) |
2115 | return getUniqueKernelFor(I&: *CB); |
2116 | |
2117 | OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = |
2118 | OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; |
2119 | // Allow the use in __kmpc_parallel_51 calls. |
2120 | if (OpenMPOpt::getCallIfRegularCall(V&: *U.getUser(), RFI: &KernelParallelRFI)) |
2121 | return getUniqueKernelFor(I&: *CB); |
2122 | return nullptr; |
2123 | } |
2124 | // Disallow every other use. |
2125 | return nullptr; |
2126 | }; |
2127 | |
2128 | // TODO: In the future we want to track more than just a unique kernel. |
2129 | SmallPtrSet<Kernel, 2> PotentialKernels; |
2130 | OMPInformationCache::foreachUse(F, CB: [&](const Use &U) { |
2131 | PotentialKernels.insert(Ptr: GetUniqueKernelForUse(U)); |
2132 | }); |
2133 | |
2134 | Kernel K = nullptr; |
2135 | if (PotentialKernels.size() == 1) |
2136 | K = *PotentialKernels.begin(); |
2137 | |
2138 | // Cache the result. |
2139 | UniqueKernelMap[&F] = K; |
2140 | |
2141 | return K; |
2142 | } |
2143 | |
2144 | bool OpenMPOpt::rewriteDeviceCodeStateMachine() { |
2145 | OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI = |
2146 | OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; |
2147 | |
2148 | bool Changed = false; |
2149 | if (!KernelParallelRFI) |
2150 | return Changed; |
2151 | |
2152 | // If we have disabled state machine changes, exit |
2153 | if (DisableOpenMPOptStateMachineRewrite) |
2154 | return Changed; |
2155 | |
2156 | for (Function *F : SCC) { |
2157 | |
2158 | // Check if the function is a use in a __kmpc_parallel_51 call at |
2159 | // all. |
2160 | bool UnknownUse = false; |
2161 | bool KernelParallelUse = false; |
2162 | unsigned NumDirectCalls = 0; |
2163 | |
2164 | SmallVector<Use *, 2> ToBeReplacedStateMachineUses; |
2165 | OMPInformationCache::foreachUse(F&: *F, CB: [&](Use &U) { |
2166 | if (auto *CB = dyn_cast<CallBase>(Val: U.getUser())) |
2167 | if (CB->isCallee(U: &U)) { |
2168 | ++NumDirectCalls; |
2169 | return; |
2170 | } |
2171 | |
2172 | if (isa<ICmpInst>(Val: U.getUser())) { |
2173 | ToBeReplacedStateMachineUses.push_back(Elt: &U); |
2174 | return; |
2175 | } |
2176 | |
2177 | // Find wrapper functions that represent parallel kernels. |
2178 | CallInst *CI = |
2179 | OpenMPOpt::getCallIfRegularCall(V&: *U.getUser(), RFI: &KernelParallelRFI); |
2180 | const unsigned int WrapperFunctionArgNo = 6; |
2181 | if (!KernelParallelUse && CI && |
2182 | CI->getArgOperandNo(U: &U) == WrapperFunctionArgNo) { |
2183 | KernelParallelUse = true; |
2184 | ToBeReplacedStateMachineUses.push_back(Elt: &U); |
2185 | return; |
2186 | } |
2187 | UnknownUse = true; |
2188 | }); |
2189 | |
2190 | // Do not emit a remark if we haven't seen a __kmpc_parallel_51 |
2191 | // use. |
2192 | if (!KernelParallelUse) |
2193 | continue; |
2194 | |
2195 | // If this ever hits, we should investigate. |
2196 | // TODO: Checking the number of uses is not a necessary restriction and |
2197 | // should be lifted. |
2198 | if (UnknownUse || NumDirectCalls != 1 || |
2199 | ToBeReplacedStateMachineUses.size() > 2) { |
2200 | auto = [&](OptimizationRemarkAnalysis ORA) { |
2201 | return ORA << "Parallel region is used in " |
2202 | << (UnknownUse ? "unknown" : "unexpected" ) |
2203 | << " ways. Will not attempt to rewrite the state machine." ; |
2204 | }; |
2205 | emitRemark<OptimizationRemarkAnalysis>(F, RemarkName: "OMP101" , RemarkCB&: Remark); |
2206 | continue; |
2207 | } |
2208 | |
2209 | // Even if we have __kmpc_parallel_51 calls, we (for now) give |
2210 | // up if the function is not called from a unique kernel. |
2211 | Kernel K = getUniqueKernelFor(F&: *F); |
2212 | if (!K) { |
2213 | auto = [&](OptimizationRemarkAnalysis ORA) { |
2214 | return ORA << "Parallel region is not called from a unique kernel. " |
2215 | "Will not attempt to rewrite the state machine." ; |
2216 | }; |
2217 | emitRemark<OptimizationRemarkAnalysis>(F, RemarkName: "OMP102" , RemarkCB&: Remark); |
2218 | continue; |
2219 | } |
2220 | |
2221 | // We now know F is a parallel body function called only from the kernel K. |
2222 | // We also identified the state machine uses in which we replace the |
2223 | // function pointer by a new global symbol for identification purposes. This |
2224 | // ensures only direct calls to the function are left. |
2225 | |
2226 | Module &M = *F->getParent(); |
2227 | Type *Int8Ty = Type::getInt8Ty(C&: M.getContext()); |
2228 | |
2229 | auto *ID = new GlobalVariable( |
2230 | M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, |
2231 | UndefValue::get(T: Int8Ty), F->getName() + ".ID" ); |
2232 | |
2233 | for (Use *U : ToBeReplacedStateMachineUses) |
2234 | U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast( |
2235 | C: ID, Ty: U->get()->getType())); |
2236 | |
2237 | ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; |
2238 | |
2239 | Changed = true; |
2240 | } |
2241 | |
2242 | return Changed; |
2243 | } |
2244 | |
2245 | /// Abstract Attribute for tracking ICV values. |
2246 | struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> { |
2247 | using Base = StateWrapper<BooleanState, AbstractAttribute>; |
2248 | AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} |
2249 | |
2250 | /// Returns true if value is assumed to be tracked. |
2251 | bool isAssumedTracked() const { return getAssumed(); } |
2252 | |
2253 | /// Returns true if value is known to be tracked. |
2254 | bool isKnownTracked() const { return getAssumed(); } |
2255 | |
2256 | /// Create an abstract attribute biew for the position \p IRP. |
2257 | static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); |
2258 | |
2259 | /// Return the value with which \p I can be replaced for specific \p ICV. |
2260 | virtual std::optional<Value *> getReplacementValue(InternalControlVar ICV, |
2261 | const Instruction *I, |
2262 | Attributor &A) const { |
2263 | return std::nullopt; |
2264 | } |
2265 | |
2266 | /// Return an assumed unique ICV value if a single candidate is found. If |
2267 | /// there cannot be one, return a nullptr. If it is not clear yet, return |
2268 | /// std::nullopt. |
2269 | virtual std::optional<Value *> |
2270 | getUniqueReplacementValue(InternalControlVar ICV) const = 0; |
2271 | |
2272 | // Currently only nthreads is being tracked. |
2273 | // this array will only grow with time. |
2274 | InternalControlVar TrackableICVs[1] = {ICV_nthreads}; |
2275 | |
2276 | /// See AbstractAttribute::getName() |
2277 | const std::string getName() const override { return "AAICVTracker" ; } |
2278 | |
2279 | /// See AbstractAttribute::getIdAddr() |
2280 | const char *getIdAddr() const override { return &ID; } |
2281 | |
2282 | /// This function should return true if the type of the \p AA is AAICVTracker |
2283 | static bool classof(const AbstractAttribute *AA) { |
2284 | return (AA->getIdAddr() == &ID); |
2285 | } |
2286 | |
2287 | static const char ID; |
2288 | }; |
2289 | |
2290 | struct AAICVTrackerFunction : public AAICVTracker { |
2291 | AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) |
2292 | : AAICVTracker(IRP, A) {} |
2293 | |
2294 | // FIXME: come up with better string. |
2295 | const std::string getAsStr(Attributor *) const override { |
2296 | return "ICVTrackerFunction" ; |
2297 | } |
2298 | |
2299 | // FIXME: come up with some stats. |
2300 | void trackStatistics() const override {} |
2301 | |
2302 | /// We don't manifest anything for this AA. |
2303 | ChangeStatus manifest(Attributor &A) override { |
2304 | return ChangeStatus::UNCHANGED; |
2305 | } |
2306 | |
2307 | // Map of ICV to their values at specific program point. |
2308 | EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar, |
2309 | InternalControlVar::ICV___last> |
2310 | ICVReplacementValuesMap; |
2311 | |
2312 | ChangeStatus updateImpl(Attributor &A) override { |
2313 | ChangeStatus HasChanged = ChangeStatus::UNCHANGED; |
2314 | |
2315 | Function *F = getAnchorScope(); |
2316 | |
2317 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
2318 | |
2319 | for (InternalControlVar ICV : TrackableICVs) { |
2320 | auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; |
2321 | |
2322 | auto &ValuesMap = ICVReplacementValuesMap[ICV]; |
2323 | auto TrackValues = [&](Use &U, Function &) { |
2324 | CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); |
2325 | if (!CI) |
2326 | return false; |
2327 | |
2328 | // FIXME: handle setters with more that 1 arguments. |
2329 | /// Track new value. |
2330 | if (ValuesMap.insert(KV: std::make_pair(x&: CI, y: CI->getArgOperand(i: 0))).second) |
2331 | HasChanged = ChangeStatus::CHANGED; |
2332 | |
2333 | return false; |
2334 | }; |
2335 | |
2336 | auto CallCheck = [&](Instruction &I) { |
2337 | std::optional<Value *> ReplVal = getValueForCall(A, I, ICV); |
2338 | if (ReplVal && ValuesMap.insert(KV: std::make_pair(x: &I, y&: *ReplVal)).second) |
2339 | HasChanged = ChangeStatus::CHANGED; |
2340 | |
2341 | return true; |
2342 | }; |
2343 | |
2344 | // Track all changes of an ICV. |
2345 | SetterRFI.foreachUse(CB: TrackValues, F); |
2346 | |
2347 | bool UsedAssumedInformation = false; |
2348 | A.checkForAllInstructions(Pred: CallCheck, QueryingAA: *this, Opcodes: {Instruction::Call}, |
2349 | UsedAssumedInformation, |
2350 | /* CheckBBLivenessOnly */ true); |
2351 | |
2352 | /// TODO: Figure out a way to avoid adding entry in |
2353 | /// ICVReplacementValuesMap |
2354 | Instruction *Entry = &F->getEntryBlock().front(); |
2355 | if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Val: Entry)) |
2356 | ValuesMap.insert(KV: std::make_pair(x&: Entry, y: nullptr)); |
2357 | } |
2358 | |
2359 | return HasChanged; |
2360 | } |
2361 | |
2362 | /// Helper to check if \p I is a call and get the value for it if it is |
2363 | /// unique. |
2364 | std::optional<Value *> getValueForCall(Attributor &A, const Instruction &I, |
2365 | InternalControlVar &ICV) const { |
2366 | |
2367 | const auto *CB = dyn_cast<CallBase>(Val: &I); |
2368 | if (!CB || CB->hasFnAttr(Kind: "no_openmp" ) || |
2369 | CB->hasFnAttr(Kind: "no_openmp_routines" )) |
2370 | return std::nullopt; |
2371 | |
2372 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
2373 | auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; |
2374 | auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; |
2375 | Function *CalledFunction = CB->getCalledFunction(); |
2376 | |
2377 | // Indirect call, assume ICV changes. |
2378 | if (CalledFunction == nullptr) |
2379 | return nullptr; |
2380 | if (CalledFunction == GetterRFI.Declaration) |
2381 | return std::nullopt; |
2382 | if (CalledFunction == SetterRFI.Declaration) { |
2383 | if (ICVReplacementValuesMap[ICV].count(Val: &I)) |
2384 | return ICVReplacementValuesMap[ICV].lookup(Val: &I); |
2385 | |
2386 | return nullptr; |
2387 | } |
2388 | |
2389 | // Since we don't know, assume it changes the ICV. |
2390 | if (CalledFunction->isDeclaration()) |
2391 | return nullptr; |
2392 | |
2393 | const auto *ICVTrackingAA = A.getAAFor<AAICVTracker>( |
2394 | QueryingAA: *this, IRP: IRPosition::callsite_returned(CB: *CB), DepClass: DepClassTy::REQUIRED); |
2395 | |
2396 | if (ICVTrackingAA->isAssumedTracked()) { |
2397 | std::optional<Value *> URV = |
2398 | ICVTrackingAA->getUniqueReplacementValue(ICV); |
2399 | if (!URV || (*URV && AA::isValidAtPosition(VAC: AA::ValueAndContext(**URV, I), |
2400 | InfoCache&: OMPInfoCache))) |
2401 | return URV; |
2402 | } |
2403 | |
2404 | // If we don't know, assume it changes. |
2405 | return nullptr; |
2406 | } |
2407 | |
2408 | // We don't check unique value for a function, so return std::nullopt. |
2409 | std::optional<Value *> |
2410 | getUniqueReplacementValue(InternalControlVar ICV) const override { |
2411 | return std::nullopt; |
2412 | } |
2413 | |
2414 | /// Return the value with which \p I can be replaced for specific \p ICV. |
2415 | std::optional<Value *> getReplacementValue(InternalControlVar ICV, |
2416 | const Instruction *I, |
2417 | Attributor &A) const override { |
2418 | const auto &ValuesMap = ICVReplacementValuesMap[ICV]; |
2419 | if (ValuesMap.count(Val: I)) |
2420 | return ValuesMap.lookup(Val: I); |
2421 | |
2422 | SmallVector<const Instruction *, 16> Worklist; |
2423 | SmallPtrSet<const Instruction *, 16> Visited; |
2424 | Worklist.push_back(Elt: I); |
2425 | |
2426 | std::optional<Value *> ReplVal; |
2427 | |
2428 | while (!Worklist.empty()) { |
2429 | const Instruction *CurrInst = Worklist.pop_back_val(); |
2430 | if (!Visited.insert(Ptr: CurrInst).second) |
2431 | continue; |
2432 | |
2433 | const BasicBlock *CurrBB = CurrInst->getParent(); |
2434 | |
2435 | // Go up and look for all potential setters/calls that might change the |
2436 | // ICV. |
2437 | while ((CurrInst = CurrInst->getPrevNode())) { |
2438 | if (ValuesMap.count(Val: CurrInst)) { |
2439 | std::optional<Value *> NewReplVal = ValuesMap.lookup(Val: CurrInst); |
2440 | // Unknown value, track new. |
2441 | if (!ReplVal) { |
2442 | ReplVal = NewReplVal; |
2443 | break; |
2444 | } |
2445 | |
2446 | // If we found a new value, we can't know the icv value anymore. |
2447 | if (NewReplVal) |
2448 | if (ReplVal != NewReplVal) |
2449 | return nullptr; |
2450 | |
2451 | break; |
2452 | } |
2453 | |
2454 | std::optional<Value *> NewReplVal = getValueForCall(A, I: *CurrInst, ICV); |
2455 | if (!NewReplVal) |
2456 | continue; |
2457 | |
2458 | // Unknown value, track new. |
2459 | if (!ReplVal) { |
2460 | ReplVal = NewReplVal; |
2461 | break; |
2462 | } |
2463 | |
2464 | // if (NewReplVal.hasValue()) |
2465 | // We found a new value, we can't know the icv value anymore. |
2466 | if (ReplVal != NewReplVal) |
2467 | return nullptr; |
2468 | } |
2469 | |
2470 | // If we are in the same BB and we have a value, we are done. |
2471 | if (CurrBB == I->getParent() && ReplVal) |
2472 | return ReplVal; |
2473 | |
2474 | // Go through all predecessors and add terminators for analysis. |
2475 | for (const BasicBlock *Pred : predecessors(BB: CurrBB)) |
2476 | if (const Instruction *Terminator = Pred->getTerminator()) |
2477 | Worklist.push_back(Elt: Terminator); |
2478 | } |
2479 | |
2480 | return ReplVal; |
2481 | } |
2482 | }; |
2483 | |
2484 | struct AAICVTrackerFunctionReturned : AAICVTracker { |
2485 | AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) |
2486 | : AAICVTracker(IRP, A) {} |
2487 | |
2488 | // FIXME: come up with better string. |
2489 | const std::string getAsStr(Attributor *) const override { |
2490 | return "ICVTrackerFunctionReturned" ; |
2491 | } |
2492 | |
2493 | // FIXME: come up with some stats. |
2494 | void trackStatistics() const override {} |
2495 | |
2496 | /// We don't manifest anything for this AA. |
2497 | ChangeStatus manifest(Attributor &A) override { |
2498 | return ChangeStatus::UNCHANGED; |
2499 | } |
2500 | |
2501 | // Map of ICV to their values at specific program point. |
2502 | EnumeratedArray<std::optional<Value *>, InternalControlVar, |
2503 | InternalControlVar::ICV___last> |
2504 | ICVReplacementValuesMap; |
2505 | |
2506 | /// Return the value with which \p I can be replaced for specific \p ICV. |
2507 | std::optional<Value *> |
2508 | getUniqueReplacementValue(InternalControlVar ICV) const override { |
2509 | return ICVReplacementValuesMap[ICV]; |
2510 | } |
2511 | |
2512 | ChangeStatus updateImpl(Attributor &A) override { |
2513 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
2514 | const auto *ICVTrackingAA = A.getAAFor<AAICVTracker>( |
2515 | QueryingAA: *this, IRP: IRPosition::function(F: *getAnchorScope()), DepClass: DepClassTy::REQUIRED); |
2516 | |
2517 | if (!ICVTrackingAA->isAssumedTracked()) |
2518 | return indicatePessimisticFixpoint(); |
2519 | |
2520 | for (InternalControlVar ICV : TrackableICVs) { |
2521 | std::optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; |
2522 | std::optional<Value *> UniqueICVValue; |
2523 | |
2524 | auto CheckReturnInst = [&](Instruction &I) { |
2525 | std::optional<Value *> NewReplVal = |
2526 | ICVTrackingAA->getReplacementValue(ICV, I: &I, A); |
2527 | |
2528 | // If we found a second ICV value there is no unique returned value. |
2529 | if (UniqueICVValue && UniqueICVValue != NewReplVal) |
2530 | return false; |
2531 | |
2532 | UniqueICVValue = NewReplVal; |
2533 | |
2534 | return true; |
2535 | }; |
2536 | |
2537 | bool UsedAssumedInformation = false; |
2538 | if (!A.checkForAllInstructions(Pred: CheckReturnInst, QueryingAA: *this, Opcodes: {Instruction::Ret}, |
2539 | UsedAssumedInformation, |
2540 | /* CheckBBLivenessOnly */ true)) |
2541 | UniqueICVValue = nullptr; |
2542 | |
2543 | if (UniqueICVValue == ReplVal) |
2544 | continue; |
2545 | |
2546 | ReplVal = UniqueICVValue; |
2547 | Changed = ChangeStatus::CHANGED; |
2548 | } |
2549 | |
2550 | return Changed; |
2551 | } |
2552 | }; |
2553 | |
2554 | struct AAICVTrackerCallSite : AAICVTracker { |
2555 | AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) |
2556 | : AAICVTracker(IRP, A) {} |
2557 | |
2558 | void initialize(Attributor &A) override { |
2559 | assert(getAnchorScope() && "Expected anchor function" ); |
2560 | |
2561 | // We only initialize this AA for getters, so we need to know which ICV it |
2562 | // gets. |
2563 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
2564 | for (InternalControlVar ICV : TrackableICVs) { |
2565 | auto ICVInfo = OMPInfoCache.ICVs[ICV]; |
2566 | auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; |
2567 | if (Getter.Declaration == getAssociatedFunction()) { |
2568 | AssociatedICV = ICVInfo.Kind; |
2569 | return; |
2570 | } |
2571 | } |
2572 | |
2573 | /// Unknown ICV. |
2574 | indicatePessimisticFixpoint(); |
2575 | } |
2576 | |
2577 | ChangeStatus manifest(Attributor &A) override { |
2578 | if (!ReplVal || !*ReplVal) |
2579 | return ChangeStatus::UNCHANGED; |
2580 | |
2581 | A.changeAfterManifest(IRP: IRPosition::inst(I: *getCtxI()), NV&: **ReplVal); |
2582 | A.deleteAfterManifest(I&: *getCtxI()); |
2583 | |
2584 | return ChangeStatus::CHANGED; |
2585 | } |
2586 | |
2587 | // FIXME: come up with better string. |
2588 | const std::string getAsStr(Attributor *) const override { |
2589 | return "ICVTrackerCallSite" ; |
2590 | } |
2591 | |
2592 | // FIXME: come up with some stats. |
2593 | void trackStatistics() const override {} |
2594 | |
2595 | InternalControlVar AssociatedICV; |
2596 | std::optional<Value *> ReplVal; |
2597 | |
2598 | ChangeStatus updateImpl(Attributor &A) override { |
2599 | const auto *ICVTrackingAA = A.getAAFor<AAICVTracker>( |
2600 | QueryingAA: *this, IRP: IRPosition::function(F: *getAnchorScope()), DepClass: DepClassTy::REQUIRED); |
2601 | |
2602 | // We don't have any information, so we assume it changes the ICV. |
2603 | if (!ICVTrackingAA->isAssumedTracked()) |
2604 | return indicatePessimisticFixpoint(); |
2605 | |
2606 | std::optional<Value *> NewReplVal = |
2607 | ICVTrackingAA->getReplacementValue(ICV: AssociatedICV, I: getCtxI(), A); |
2608 | |
2609 | if (ReplVal == NewReplVal) |
2610 | return ChangeStatus::UNCHANGED; |
2611 | |
2612 | ReplVal = NewReplVal; |
2613 | return ChangeStatus::CHANGED; |
2614 | } |
2615 | |
2616 | // Return the value with which associated value can be replaced for specific |
2617 | // \p ICV. |
2618 | std::optional<Value *> |
2619 | getUniqueReplacementValue(InternalControlVar ICV) const override { |
2620 | return ReplVal; |
2621 | } |
2622 | }; |
2623 | |
2624 | struct AAICVTrackerCallSiteReturned : AAICVTracker { |
2625 | AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) |
2626 | : AAICVTracker(IRP, A) {} |
2627 | |
2628 | // FIXME: come up with better string. |
2629 | const std::string getAsStr(Attributor *) const override { |
2630 | return "ICVTrackerCallSiteReturned" ; |
2631 | } |
2632 | |
2633 | // FIXME: come up with some stats. |
2634 | void trackStatistics() const override {} |
2635 | |
2636 | /// We don't manifest anything for this AA. |
2637 | ChangeStatus manifest(Attributor &A) override { |
2638 | return ChangeStatus::UNCHANGED; |
2639 | } |
2640 | |
2641 | // Map of ICV to their values at specific program point. |
2642 | EnumeratedArray<std::optional<Value *>, InternalControlVar, |
2643 | InternalControlVar::ICV___last> |
2644 | ICVReplacementValuesMap; |
2645 | |
2646 | /// Return the value with which associated value can be replaced for specific |
2647 | /// \p ICV. |
2648 | std::optional<Value *> |
2649 | getUniqueReplacementValue(InternalControlVar ICV) const override { |
2650 | return ICVReplacementValuesMap[ICV]; |
2651 | } |
2652 | |
2653 | ChangeStatus updateImpl(Attributor &A) override { |
2654 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
2655 | const auto *ICVTrackingAA = A.getAAFor<AAICVTracker>( |
2656 | QueryingAA: *this, IRP: IRPosition::returned(F: *getAssociatedFunction()), |
2657 | DepClass: DepClassTy::REQUIRED); |
2658 | |
2659 | // We don't have any information, so we assume it changes the ICV. |
2660 | if (!ICVTrackingAA->isAssumedTracked()) |
2661 | return indicatePessimisticFixpoint(); |
2662 | |
2663 | for (InternalControlVar ICV : TrackableICVs) { |
2664 | std::optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV]; |
2665 | std::optional<Value *> NewReplVal = |
2666 | ICVTrackingAA->getUniqueReplacementValue(ICV); |
2667 | |
2668 | if (ReplVal == NewReplVal) |
2669 | continue; |
2670 | |
2671 | ReplVal = NewReplVal; |
2672 | Changed = ChangeStatus::CHANGED; |
2673 | } |
2674 | return Changed; |
2675 | } |
2676 | }; |
2677 | |
2678 | /// Determines if \p BB exits the function unconditionally itself or reaches a |
2679 | /// block that does through only unique successors. |
2680 | static bool hasFunctionEndAsUniqueSuccessor(const BasicBlock *BB) { |
2681 | if (succ_empty(BB)) |
2682 | return true; |
2683 | const BasicBlock *const Successor = BB->getUniqueSuccessor(); |
2684 | if (!Successor) |
2685 | return false; |
2686 | return hasFunctionEndAsUniqueSuccessor(BB: Successor); |
2687 | } |
2688 | |
2689 | struct AAExecutionDomainFunction : public AAExecutionDomain { |
2690 | AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A) |
2691 | : AAExecutionDomain(IRP, A) {} |
2692 | |
2693 | ~AAExecutionDomainFunction() { delete RPOT; } |
2694 | |
2695 | void initialize(Attributor &A) override { |
2696 | Function *F = getAnchorScope(); |
2697 | assert(F && "Expected anchor function" ); |
2698 | RPOT = new ReversePostOrderTraversal<Function *>(F); |
2699 | } |
2700 | |
2701 | const std::string getAsStr(Attributor *) const override { |
2702 | unsigned TotalBlocks = 0, InitialThreadBlocks = 0, AlignedBlocks = 0; |
2703 | for (auto &It : BEDMap) { |
2704 | if (!It.getFirst()) |
2705 | continue; |
2706 | TotalBlocks++; |
2707 | InitialThreadBlocks += It.getSecond().IsExecutedByInitialThreadOnly; |
2708 | AlignedBlocks += It.getSecond().IsReachedFromAlignedBarrierOnly && |
2709 | It.getSecond().IsReachingAlignedBarrierOnly; |
2710 | } |
2711 | return "[AAExecutionDomain] " + std::to_string(val: InitialThreadBlocks) + "/" + |
2712 | std::to_string(val: AlignedBlocks) + " of " + |
2713 | std::to_string(val: TotalBlocks) + |
2714 | " executed by initial thread / aligned" ; |
2715 | } |
2716 | |
2717 | /// See AbstractAttribute::trackStatistics(). |
2718 | void trackStatistics() const override {} |
2719 | |
2720 | ChangeStatus manifest(Attributor &A) override { |
2721 | LLVM_DEBUG({ |
2722 | for (const BasicBlock &BB : *getAnchorScope()) { |
2723 | if (!isExecutedByInitialThreadOnly(BB)) |
2724 | continue; |
2725 | dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " " |
2726 | << BB.getName() << " is executed by a single thread.\n" ; |
2727 | } |
2728 | }); |
2729 | |
2730 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
2731 | |
2732 | if (DisableOpenMPOptBarrierElimination) |
2733 | return Changed; |
2734 | |
2735 | SmallPtrSet<CallBase *, 16> DeletedBarriers; |
2736 | auto HandleAlignedBarrier = [&](CallBase *CB) { |
2737 | const ExecutionDomainTy &ED = CB ? CEDMap[{CB, PRE}] : BEDMap[nullptr]; |
2738 | if (!ED.IsReachedFromAlignedBarrierOnly || |
2739 | ED.EncounteredNonLocalSideEffect) |
2740 | return; |
2741 | if (!ED.EncounteredAssumes.empty() && !A.isModulePass()) |
2742 | return; |
2743 | |
2744 | // We can remove this barrier, if it is one, or aligned barriers reaching |
2745 | // the kernel end (if CB is nullptr). Aligned barriers reaching the kernel |
2746 | // end should only be removed if the kernel end is their unique successor; |
2747 | // otherwise, they may have side-effects that aren't accounted for in the |
2748 | // kernel end in their other successors. If those barriers have other |
2749 | // barriers reaching them, those can be transitively removed as well as |
2750 | // long as the kernel end is also their unique successor. |
2751 | if (CB) { |
2752 | DeletedBarriers.insert(Ptr: CB); |
2753 | A.deleteAfterManifest(I&: *CB); |
2754 | ++NumBarriersEliminated; |
2755 | Changed = ChangeStatus::CHANGED; |
2756 | } else if (!ED.AlignedBarriers.empty()) { |
2757 | Changed = ChangeStatus::CHANGED; |
2758 | SmallVector<CallBase *> Worklist(ED.AlignedBarriers.begin(), |
2759 | ED.AlignedBarriers.end()); |
2760 | SmallSetVector<CallBase *, 16> Visited; |
2761 | while (!Worklist.empty()) { |
2762 | CallBase *LastCB = Worklist.pop_back_val(); |
2763 | if (!Visited.insert(X: LastCB)) |
2764 | continue; |
2765 | if (LastCB->getFunction() != getAnchorScope()) |
2766 | continue; |
2767 | if (!hasFunctionEndAsUniqueSuccessor(BB: LastCB->getParent())) |
2768 | continue; |
2769 | if (!DeletedBarriers.count(Ptr: LastCB)) { |
2770 | ++NumBarriersEliminated; |
2771 | A.deleteAfterManifest(I&: *LastCB); |
2772 | continue; |
2773 | } |
2774 | // The final aligned barrier (LastCB) reaching the kernel end was |
2775 | // removed already. This means we can go one step further and remove |
2776 | // the barriers encoutered last before (LastCB). |
2777 | const ExecutionDomainTy &LastED = CEDMap[{LastCB, PRE}]; |
2778 | Worklist.append(in_start: LastED.AlignedBarriers.begin(), |
2779 | in_end: LastED.AlignedBarriers.end()); |
2780 | } |
2781 | } |
2782 | |
2783 | // If we actually eliminated a barrier we need to eliminate the associated |
2784 | // llvm.assumes as well to avoid creating UB. |
2785 | if (!ED.EncounteredAssumes.empty() && (CB || !ED.AlignedBarriers.empty())) |
2786 | for (auto *AssumeCB : ED.EncounteredAssumes) |
2787 | A.deleteAfterManifest(I&: *AssumeCB); |
2788 | }; |
2789 | |
2790 | for (auto *CB : AlignedBarriers) |
2791 | HandleAlignedBarrier(CB); |
2792 | |
2793 | // Handle the "kernel end barrier" for kernels too. |
2794 | if (omp::isOpenMPKernel(Fn&: *getAnchorScope())) |
2795 | HandleAlignedBarrier(nullptr); |
2796 | |
2797 | return Changed; |
2798 | } |
2799 | |
2800 | bool isNoOpFence(const FenceInst &FI) const override { |
2801 | return getState().isValidState() && !NonNoOpFences.count(Ptr: &FI); |
2802 | } |
2803 | |
2804 | /// Merge barrier and assumption information from \p PredED into the successor |
2805 | /// \p ED. |
2806 | void |
2807 | mergeInPredecessorBarriersAndAssumptions(Attributor &A, ExecutionDomainTy &ED, |
2808 | const ExecutionDomainTy &PredED); |
2809 | |
2810 | /// Merge all information from \p PredED into the successor \p ED. If |
2811 | /// \p InitialEdgeOnly is set, only the initial edge will enter the block |
2812 | /// represented by \p ED from this predecessor. |
2813 | bool mergeInPredecessor(Attributor &A, ExecutionDomainTy &ED, |
2814 | const ExecutionDomainTy &PredED, |
2815 | bool InitialEdgeOnly = false); |
2816 | |
2817 | /// Accumulate information for the entry block in \p EntryBBED. |
2818 | bool handleCallees(Attributor &A, ExecutionDomainTy &EntryBBED); |
2819 | |
2820 | /// See AbstractAttribute::updateImpl. |
2821 | ChangeStatus updateImpl(Attributor &A) override; |
2822 | |
2823 | /// Query interface, see AAExecutionDomain |
2824 | ///{ |
2825 | bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override { |
2826 | if (!isValidState()) |
2827 | return false; |
2828 | assert(BB.getParent() == getAnchorScope() && "Block is out of scope!" ); |
2829 | return BEDMap.lookup(Val: &BB).IsExecutedByInitialThreadOnly; |
2830 | } |
2831 | |
2832 | bool isExecutedInAlignedRegion(Attributor &A, |
2833 | const Instruction &I) const override { |
2834 | assert(I.getFunction() == getAnchorScope() && |
2835 | "Instruction is out of scope!" ); |
2836 | if (!isValidState()) |
2837 | return false; |
2838 | |
2839 | bool ForwardIsOk = true; |
2840 | const Instruction *CurI; |
2841 | |
2842 | // Check forward until a call or the block end is reached. |
2843 | CurI = &I; |
2844 | do { |
2845 | auto *CB = dyn_cast<CallBase>(Val: CurI); |
2846 | if (!CB) |
2847 | continue; |
2848 | if (CB != &I && AlignedBarriers.contains(key: const_cast<CallBase *>(CB))) |
2849 | return true; |
2850 | const auto &It = CEDMap.find(Val: {CB, PRE}); |
2851 | if (It == CEDMap.end()) |
2852 | continue; |
2853 | if (!It->getSecond().IsReachingAlignedBarrierOnly) |
2854 | ForwardIsOk = false; |
2855 | break; |
2856 | } while ((CurI = CurI->getNextNonDebugInstruction())); |
2857 | |
2858 | if (!CurI && !BEDMap.lookup(Val: I.getParent()).IsReachingAlignedBarrierOnly) |
2859 | ForwardIsOk = false; |
2860 | |
2861 | // Check backward until a call or the block beginning is reached. |
2862 | CurI = &I; |
2863 | do { |
2864 | auto *CB = dyn_cast<CallBase>(Val: CurI); |
2865 | if (!CB) |
2866 | continue; |
2867 | if (CB != &I && AlignedBarriers.contains(key: const_cast<CallBase *>(CB))) |
2868 | return true; |
2869 | const auto &It = CEDMap.find(Val: {CB, POST}); |
2870 | if (It == CEDMap.end()) |
2871 | continue; |
2872 | if (It->getSecond().IsReachedFromAlignedBarrierOnly) |
2873 | break; |
2874 | return false; |
2875 | } while ((CurI = CurI->getPrevNonDebugInstruction())); |
2876 | |
2877 | // Delayed decision on the forward pass to allow aligned barrier detection |
2878 | // in the backwards traversal. |
2879 | if (!ForwardIsOk) |
2880 | return false; |
2881 | |
2882 | if (!CurI) { |
2883 | const BasicBlock *BB = I.getParent(); |
2884 | if (BB == &BB->getParent()->getEntryBlock()) |
2885 | return BEDMap.lookup(Val: nullptr).IsReachedFromAlignedBarrierOnly; |
2886 | if (!llvm::all_of(Range: predecessors(BB), P: [&](const BasicBlock *PredBB) { |
2887 | return BEDMap.lookup(Val: PredBB).IsReachedFromAlignedBarrierOnly; |
2888 | })) { |
2889 | return false; |
2890 | } |
2891 | } |
2892 | |
2893 | // On neither traversal we found a anything but aligned barriers. |
2894 | return true; |
2895 | } |
2896 | |
2897 | ExecutionDomainTy getExecutionDomain(const BasicBlock &BB) const override { |
2898 | assert(isValidState() && |
2899 | "No request should be made against an invalid state!" ); |
2900 | return BEDMap.lookup(Val: &BB); |
2901 | } |
2902 | std::pair<ExecutionDomainTy, ExecutionDomainTy> |
2903 | getExecutionDomain(const CallBase &CB) const override { |
2904 | assert(isValidState() && |
2905 | "No request should be made against an invalid state!" ); |
2906 | return {CEDMap.lookup(Val: {&CB, PRE}), CEDMap.lookup(Val: {&CB, POST})}; |
2907 | } |
2908 | ExecutionDomainTy getFunctionExecutionDomain() const override { |
2909 | assert(isValidState() && |
2910 | "No request should be made against an invalid state!" ); |
2911 | return InterProceduralED; |
2912 | } |
2913 | ///} |
2914 | |
2915 | // Check if the edge into the successor block contains a condition that only |
2916 | // lets the main thread execute it. |
2917 | static bool isInitialThreadOnlyEdge(Attributor &A, BranchInst *Edge, |
2918 | BasicBlock &SuccessorBB) { |
2919 | if (!Edge || !Edge->isConditional()) |
2920 | return false; |
2921 | if (Edge->getSuccessor(i: 0) != &SuccessorBB) |
2922 | return false; |
2923 | |
2924 | auto *Cmp = dyn_cast<CmpInst>(Val: Edge->getCondition()); |
2925 | if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality()) |
2926 | return false; |
2927 | |
2928 | ConstantInt *C = dyn_cast<ConstantInt>(Val: Cmp->getOperand(i_nocapture: 1)); |
2929 | if (!C) |
2930 | return false; |
2931 | |
2932 | // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!) |
2933 | if (C->isAllOnesValue()) { |
2934 | auto *CB = dyn_cast<CallBase>(Val: Cmp->getOperand(i_nocapture: 0)); |
2935 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
2936 | auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; |
2937 | CB = CB ? OpenMPOpt::getCallIfRegularCall(V&: *CB, RFI: &RFI) : nullptr; |
2938 | if (!CB) |
2939 | return false; |
2940 | ConstantStruct *KernelEnvC = |
2941 | KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB: CB); |
2942 | ConstantInt *ExecModeC = |
2943 | KernelInfo::getExecModeFromKernelEnvironment(KernelEnvC); |
2944 | return ExecModeC->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC; |
2945 | } |
2946 | |
2947 | if (C->isZero()) { |
2948 | // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x() |
2949 | if (auto *II = dyn_cast<IntrinsicInst>(Val: Cmp->getOperand(i_nocapture: 0))) |
2950 | if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x) |
2951 | return true; |
2952 | |
2953 | // Match: 0 == llvm.amdgcn.workitem.id.x() |
2954 | if (auto *II = dyn_cast<IntrinsicInst>(Val: Cmp->getOperand(i_nocapture: 0))) |
2955 | if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x) |
2956 | return true; |
2957 | } |
2958 | |
2959 | return false; |
2960 | }; |
2961 | |
2962 | /// Mapping containing information about the function for other AAs. |
2963 | ExecutionDomainTy InterProceduralED; |
2964 | |
2965 | enum Direction { PRE = 0, POST = 1 }; |
2966 | /// Mapping containing information per block. |
2967 | DenseMap<const BasicBlock *, ExecutionDomainTy> BEDMap; |
2968 | DenseMap<PointerIntPair<const CallBase *, 1, Direction>, ExecutionDomainTy> |
2969 | CEDMap; |
2970 | SmallSetVector<CallBase *, 16> AlignedBarriers; |
2971 | |
2972 | ReversePostOrderTraversal<Function *> *RPOT = nullptr; |
2973 | |
2974 | /// Set \p R to \V and report true if that changed \p R. |
2975 | static bool setAndRecord(bool &R, bool V) { |
2976 | bool Eq = (R == V); |
2977 | R = V; |
2978 | return !Eq; |
2979 | } |
2980 | |
2981 | /// Collection of fences known to be non-no-opt. All fences not in this set |
2982 | /// can be assumed no-opt. |
2983 | SmallPtrSet<const FenceInst *, 8> NonNoOpFences; |
2984 | }; |
2985 | |
2986 | void AAExecutionDomainFunction::mergeInPredecessorBarriersAndAssumptions( |
2987 | Attributor &A, ExecutionDomainTy &ED, const ExecutionDomainTy &PredED) { |
2988 | for (auto *EA : PredED.EncounteredAssumes) |
2989 | ED.addAssumeInst(A, AI&: *EA); |
2990 | |
2991 | for (auto *AB : PredED.AlignedBarriers) |
2992 | ED.addAlignedBarrier(A, CB&: *AB); |
2993 | } |
2994 | |
2995 | bool AAExecutionDomainFunction::mergeInPredecessor( |
2996 | Attributor &A, ExecutionDomainTy &ED, const ExecutionDomainTy &PredED, |
2997 | bool InitialEdgeOnly) { |
2998 | |
2999 | bool Changed = false; |
3000 | Changed |= |
3001 | setAndRecord(R&: ED.IsExecutedByInitialThreadOnly, |
3002 | V: InitialEdgeOnly || (PredED.IsExecutedByInitialThreadOnly && |
3003 | ED.IsExecutedByInitialThreadOnly)); |
3004 | |
3005 | Changed |= setAndRecord(R&: ED.IsReachedFromAlignedBarrierOnly, |
3006 | V: ED.IsReachedFromAlignedBarrierOnly && |
3007 | PredED.IsReachedFromAlignedBarrierOnly); |
3008 | Changed |= setAndRecord(R&: ED.EncounteredNonLocalSideEffect, |
3009 | V: ED.EncounteredNonLocalSideEffect | |
3010 | PredED.EncounteredNonLocalSideEffect); |
3011 | // Do not track assumptions and barriers as part of Changed. |
3012 | if (ED.IsReachedFromAlignedBarrierOnly) |
3013 | mergeInPredecessorBarriersAndAssumptions(A, ED, PredED); |
3014 | else |
3015 | ED.clearAssumeInstAndAlignedBarriers(); |
3016 | return Changed; |
3017 | } |
3018 | |
3019 | bool AAExecutionDomainFunction::handleCallees(Attributor &A, |
3020 | ExecutionDomainTy &EntryBBED) { |
3021 | SmallVector<std::pair<ExecutionDomainTy, ExecutionDomainTy>, 4> CallSiteEDs; |
3022 | auto PredForCallSite = [&](AbstractCallSite ACS) { |
3023 | const auto *EDAA = A.getAAFor<AAExecutionDomain>( |
3024 | QueryingAA: *this, IRP: IRPosition::function(F: *ACS.getInstruction()->getFunction()), |
3025 | DepClass: DepClassTy::OPTIONAL); |
3026 | if (!EDAA || !EDAA->getState().isValidState()) |
3027 | return false; |
3028 | CallSiteEDs.emplace_back( |
3029 | Args: EDAA->getExecutionDomain(CB: *cast<CallBase>(Val: ACS.getInstruction()))); |
3030 | return true; |
3031 | }; |
3032 | |
3033 | ExecutionDomainTy ExitED; |
3034 | bool AllCallSitesKnown; |
3035 | if (A.checkForAllCallSites(Pred: PredForCallSite, QueryingAA: *this, |
3036 | /* RequiresAllCallSites */ RequireAllCallSites: true, |
3037 | UsedAssumedInformation&: AllCallSitesKnown)) { |
3038 | for (const auto &[CSInED, CSOutED] : CallSiteEDs) { |
3039 | mergeInPredecessor(A, ED&: EntryBBED, PredED: CSInED); |
3040 | ExitED.IsReachingAlignedBarrierOnly &= |
3041 | CSOutED.IsReachingAlignedBarrierOnly; |
3042 | } |
3043 | |
3044 | } else { |
3045 | // We could not find all predecessors, so this is either a kernel or a |
3046 | // function with external linkage (or with some other weird uses). |
3047 | if (omp::isOpenMPKernel(Fn&: *getAnchorScope())) { |
3048 | EntryBBED.IsExecutedByInitialThreadOnly = false; |
3049 | EntryBBED.IsReachedFromAlignedBarrierOnly = true; |
3050 | EntryBBED.EncounteredNonLocalSideEffect = false; |
3051 | ExitED.IsReachingAlignedBarrierOnly = false; |
3052 | } else { |
3053 | EntryBBED.IsExecutedByInitialThreadOnly = false; |
3054 | EntryBBED.IsReachedFromAlignedBarrierOnly = false; |
3055 | EntryBBED.EncounteredNonLocalSideEffect = true; |
3056 | ExitED.IsReachingAlignedBarrierOnly = false; |
3057 | } |
3058 | } |
3059 | |
3060 | bool Changed = false; |
3061 | auto &FnED = BEDMap[nullptr]; |
3062 | Changed |= setAndRecord(R&: FnED.IsReachedFromAlignedBarrierOnly, |
3063 | V: FnED.IsReachedFromAlignedBarrierOnly & |
3064 | EntryBBED.IsReachedFromAlignedBarrierOnly); |
3065 | Changed |= setAndRecord(R&: FnED.IsReachingAlignedBarrierOnly, |
3066 | V: FnED.IsReachingAlignedBarrierOnly & |
3067 | ExitED.IsReachingAlignedBarrierOnly); |
3068 | Changed |= setAndRecord(R&: FnED.IsExecutedByInitialThreadOnly, |
3069 | V: EntryBBED.IsExecutedByInitialThreadOnly); |
3070 | return Changed; |
3071 | } |
3072 | |
3073 | ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) { |
3074 | |
3075 | bool Changed = false; |
3076 | |
3077 | // Helper to deal with an aligned barrier encountered during the forward |
3078 | // traversal. \p CB is the aligned barrier, \p ED is the execution domain when |
3079 | // it was encountered. |
3080 | auto HandleAlignedBarrier = [&](CallBase &CB, ExecutionDomainTy &ED) { |
3081 | Changed |= AlignedBarriers.insert(X: &CB); |
3082 | // First, update the barrier ED kept in the separate CEDMap. |
3083 | auto &CallInED = CEDMap[{&CB, PRE}]; |
3084 | Changed |= mergeInPredecessor(A, ED&: CallInED, PredED: ED); |
3085 | CallInED.IsReachingAlignedBarrierOnly = true; |
3086 | // Next adjust the ED we use for the traversal. |
3087 | ED.EncounteredNonLocalSideEffect = false; |
3088 | ED.IsReachedFromAlignedBarrierOnly = true; |
3089 | // Aligned barrier collection has to come last. |
3090 | ED.clearAssumeInstAndAlignedBarriers(); |
3091 | ED.addAlignedBarrier(A, CB); |
3092 | auto &CallOutED = CEDMap[{&CB, POST}]; |
3093 | Changed |= mergeInPredecessor(A, ED&: CallOutED, PredED: ED); |
3094 | }; |
3095 | |
3096 | auto *LivenessAA = |
3097 | A.getAAFor<AAIsDead>(QueryingAA: *this, IRP: getIRPosition(), DepClass: DepClassTy::OPTIONAL); |
3098 | |
3099 | Function *F = getAnchorScope(); |
3100 | BasicBlock &EntryBB = F->getEntryBlock(); |
3101 | bool IsKernel = omp::isOpenMPKernel(Fn&: *F); |
3102 | |
3103 | SmallVector<Instruction *> SyncInstWorklist; |
3104 | for (auto &RIt : *RPOT) { |
3105 | BasicBlock &BB = *RIt; |
3106 | |
3107 | bool IsEntryBB = &BB == &EntryBB; |
3108 | // TODO: We use local reasoning since we don't have a divergence analysis |
3109 | // running as well. We could basically allow uniform branches here. |
3110 | bool AlignedBarrierLastInBlock = IsEntryBB && IsKernel; |
3111 | bool IsExplicitlyAligned = IsEntryBB && IsKernel; |
3112 | ExecutionDomainTy ED; |
3113 | // Propagate "incoming edges" into information about this block. |
3114 | if (IsEntryBB) { |
3115 | Changed |= handleCallees(A, EntryBBED&: ED); |
3116 | } else { |
3117 | // For live non-entry blocks we only propagate |
3118 | // information via live edges. |
3119 | if (LivenessAA && LivenessAA->isAssumedDead(BB: &BB)) |
3120 | continue; |
3121 | |
3122 | for (auto *PredBB : predecessors(BB: &BB)) { |
3123 | if (LivenessAA && LivenessAA->isEdgeDead(From: PredBB, To: &BB)) |
3124 | continue; |
3125 | bool InitialEdgeOnly = isInitialThreadOnlyEdge( |
3126 | A, Edge: dyn_cast<BranchInst>(Val: PredBB->getTerminator()), SuccessorBB&: BB); |
3127 | mergeInPredecessor(A, ED, PredED: BEDMap[PredBB], InitialEdgeOnly); |
3128 | } |
3129 | } |
3130 | |
3131 | // Now we traverse the block, accumulate effects in ED and attach |
3132 | // information to calls. |
3133 | for (Instruction &I : BB) { |
3134 | bool UsedAssumedInformation; |
3135 | if (A.isAssumedDead(I, QueryingAA: *this, LivenessAA, UsedAssumedInformation, |
3136 | /* CheckBBLivenessOnly */ false, DepClass: DepClassTy::OPTIONAL, |
3137 | /* CheckForDeadStore */ true)) |
3138 | continue; |
3139 | |
3140 | // Asummes and "assume-like" (dbg, lifetime, ...) are handled first, the |
3141 | // former is collected the latter is ignored. |
3142 | if (auto *II = dyn_cast<IntrinsicInst>(Val: &I)) { |
3143 | if (auto *AI = dyn_cast_or_null<AssumeInst>(Val: II)) { |
3144 | ED.addAssumeInst(A, AI&: *AI); |
3145 | continue; |
3146 | } |
3147 | // TODO: Should we also collect and delete lifetime markers? |
3148 | if (II->isAssumeLikeIntrinsic()) |
3149 | continue; |
3150 | } |
3151 | |
3152 | if (auto *FI = dyn_cast<FenceInst>(Val: &I)) { |
3153 | if (!ED.EncounteredNonLocalSideEffect) { |
3154 | // An aligned fence without non-local side-effects is a no-op. |
3155 | if (ED.IsReachedFromAlignedBarrierOnly) |
3156 | continue; |
3157 | // A non-aligned fence without non-local side-effects is a no-op |
3158 | // if the ordering only publishes non-local side-effects (or less). |
3159 | switch (FI->getOrdering()) { |
3160 | case AtomicOrdering::NotAtomic: |
3161 | continue; |
3162 | case AtomicOrdering::Unordered: |
3163 | continue; |
3164 | case AtomicOrdering::Monotonic: |
3165 | continue; |
3166 | case AtomicOrdering::Acquire: |
3167 | break; |
3168 | case AtomicOrdering::Release: |
3169 | continue; |
3170 | case AtomicOrdering::AcquireRelease: |
3171 | break; |
3172 | case AtomicOrdering::SequentiallyConsistent: |
3173 | break; |
3174 | }; |
3175 | } |
3176 | NonNoOpFences.insert(Ptr: FI); |
3177 | } |
3178 | |
3179 | auto *CB = dyn_cast<CallBase>(Val: &I); |
3180 | bool IsNoSync = AA::isNoSyncInst(A, I, QueryingAA: *this); |
3181 | bool IsAlignedBarrier = |
3182 | !IsNoSync && CB && |
3183 | AANoSync::isAlignedBarrier(CB: *CB, ExecutedAligned: AlignedBarrierLastInBlock); |
3184 | |
3185 | AlignedBarrierLastInBlock &= IsNoSync; |
3186 | IsExplicitlyAligned &= IsNoSync; |
3187 | |
3188 | // Next we check for calls. Aligned barriers are handled |
3189 | // explicitly, everything else is kept for the backward traversal and will |
3190 | // also affect our state. |
3191 | if (CB) { |
3192 | if (IsAlignedBarrier) { |
3193 | HandleAlignedBarrier(*CB, ED); |
3194 | AlignedBarrierLastInBlock = true; |
3195 | IsExplicitlyAligned = true; |
3196 | continue; |
3197 | } |
3198 | |
3199 | // Check the pointer(s) of a memory intrinsic explicitly. |
3200 | if (isa<MemIntrinsic>(Val: &I)) { |
3201 | if (!ED.EncounteredNonLocalSideEffect && |
3202 | AA::isPotentiallyAffectedByBarrier(A, I, QueryingAA: *this)) |
3203 | ED.EncounteredNonLocalSideEffect = true; |
3204 | if (!IsNoSync) { |
3205 | ED.IsReachedFromAlignedBarrierOnly = false; |
3206 | SyncInstWorklist.push_back(Elt: &I); |
3207 | } |
3208 | continue; |
3209 | } |
3210 | |
3211 | // Record how we entered the call, then accumulate the effect of the |
3212 | // call in ED for potential use by the callee. |
3213 | auto &CallInED = CEDMap[{CB, PRE}]; |
3214 | Changed |= mergeInPredecessor(A, ED&: CallInED, PredED: ED); |
3215 | |
3216 | // If we have a sync-definition we can check if it starts/ends in an |
3217 | // aligned barrier. If we are unsure we assume any sync breaks |
3218 | // alignment. |
3219 | Function *Callee = CB->getCalledFunction(); |
3220 | if (!IsNoSync && Callee && !Callee->isDeclaration()) { |
3221 | const auto *EDAA = A.getAAFor<AAExecutionDomain>( |
3222 | QueryingAA: *this, IRP: IRPosition::function(F: *Callee), DepClass: DepClassTy::OPTIONAL); |
3223 | if (EDAA && EDAA->getState().isValidState()) { |
3224 | const auto &CalleeED = EDAA->getFunctionExecutionDomain(); |
3225 | ED.IsReachedFromAlignedBarrierOnly = |
3226 | CalleeED.IsReachedFromAlignedBarrierOnly; |
3227 | AlignedBarrierLastInBlock = ED.IsReachedFromAlignedBarrierOnly; |
3228 | if (IsNoSync || !CalleeED.IsReachedFromAlignedBarrierOnly) |
3229 | ED.EncounteredNonLocalSideEffect |= |
3230 | CalleeED.EncounteredNonLocalSideEffect; |
3231 | else |
3232 | ED.EncounteredNonLocalSideEffect = |
3233 | CalleeED.EncounteredNonLocalSideEffect; |
3234 | if (!CalleeED.IsReachingAlignedBarrierOnly) { |
3235 | Changed |= |
3236 | setAndRecord(R&: CallInED.IsReachingAlignedBarrierOnly, V: false); |
3237 | SyncInstWorklist.push_back(Elt: &I); |
3238 | } |
3239 | if (CalleeED.IsReachedFromAlignedBarrierOnly) |
3240 | mergeInPredecessorBarriersAndAssumptions(A, ED, PredED: CalleeED); |
3241 | auto &CallOutED = CEDMap[{CB, POST}]; |
3242 | Changed |= mergeInPredecessor(A, ED&: CallOutED, PredED: ED); |
3243 | continue; |
3244 | } |
3245 | } |
3246 | if (!IsNoSync) { |
3247 | ED.IsReachedFromAlignedBarrierOnly = false; |
3248 | Changed |= setAndRecord(R&: CallInED.IsReachingAlignedBarrierOnly, V: false); |
3249 | SyncInstWorklist.push_back(Elt: &I); |
3250 | } |
3251 | AlignedBarrierLastInBlock &= ED.IsReachedFromAlignedBarrierOnly; |
3252 | ED.EncounteredNonLocalSideEffect |= !CB->doesNotAccessMemory(); |
3253 | auto &CallOutED = CEDMap[{CB, POST}]; |
3254 | Changed |= mergeInPredecessor(A, ED&: CallOutED, PredED: ED); |
3255 | } |
3256 | |
3257 | if (!I.mayHaveSideEffects() && !I.mayReadFromMemory()) |
3258 | continue; |
3259 | |
3260 | // If we have a callee we try to use fine-grained information to |
3261 | // determine local side-effects. |
3262 | if (CB) { |
3263 | const auto *MemAA = A.getAAFor<AAMemoryLocation>( |
3264 | QueryingAA: *this, IRP: IRPosition::callsite_function(CB: *CB), DepClass: DepClassTy::OPTIONAL); |
3265 | |
3266 | auto AccessPred = [&](const Instruction *I, const Value *Ptr, |
3267 | AAMemoryLocation::AccessKind, |
3268 | AAMemoryLocation::MemoryLocationsKind) { |
3269 | return !AA::isPotentiallyAffectedByBarrier(A, Ptrs: {Ptr}, QueryingAA: *this, CtxI: I); |
3270 | }; |
3271 | if (MemAA && MemAA->getState().isValidState() && |
3272 | MemAA->checkForAllAccessesToMemoryKind( |
3273 | Pred: AccessPred, MLK: AAMemoryLocation::ALL_LOCATIONS)) |
3274 | continue; |
3275 | } |
3276 | |
3277 | auto &InfoCache = A.getInfoCache(); |
3278 | if (!I.mayHaveSideEffects() && InfoCache.isOnlyUsedByAssume(I)) |
3279 | continue; |
3280 | |
3281 | if (auto *LI = dyn_cast<LoadInst>(Val: &I)) |
3282 | if (LI->hasMetadata(KindID: LLVMContext::MD_invariant_load)) |
3283 | continue; |
3284 | |
3285 | if (!ED.EncounteredNonLocalSideEffect && |
3286 | AA::isPotentiallyAffectedByBarrier(A, I, QueryingAA: *this)) |
3287 | ED.EncounteredNonLocalSideEffect = true; |
3288 | } |
3289 | |
3290 | bool IsEndAndNotReachingAlignedBarriersOnly = false; |
3291 | if (!isa<UnreachableInst>(Val: BB.getTerminator()) && |
3292 | !BB.getTerminator()->getNumSuccessors()) { |
3293 | |
3294 | Changed |= mergeInPredecessor(A, ED&: InterProceduralED, PredED: ED); |
3295 | |
3296 | auto &FnED = BEDMap[nullptr]; |
3297 | if (IsKernel && !IsExplicitlyAligned) |
3298 | FnED.IsReachingAlignedBarrierOnly = false; |
3299 | Changed |= mergeInPredecessor(A, ED&: FnED, PredED: ED); |
3300 | |
3301 | if (!FnED.IsReachingAlignedBarrierOnly) { |
3302 | IsEndAndNotReachingAlignedBarriersOnly = true; |
3303 | SyncInstWorklist.push_back(Elt: BB.getTerminator()); |
3304 | auto &BBED = BEDMap[&BB]; |
3305 | Changed |= setAndRecord(R&: BBED.IsReachingAlignedBarrierOnly, V: false); |
3306 | } |
3307 | } |
3308 | |
3309 | ExecutionDomainTy &StoredED = BEDMap[&BB]; |
3310 | ED.IsReachingAlignedBarrierOnly = StoredED.IsReachingAlignedBarrierOnly & |
3311 | !IsEndAndNotReachingAlignedBarriersOnly; |
3312 | |
3313 | // Check if we computed anything different as part of the forward |
3314 | // traversal. We do not take assumptions and aligned barriers into account |
3315 | // as they do not influence the state we iterate. Backward traversal values |
3316 | // are handled later on. |
3317 | if (ED.IsExecutedByInitialThreadOnly != |
3318 | StoredED.IsExecutedByInitialThreadOnly || |
3319 | ED.IsReachedFromAlignedBarrierOnly != |
3320 | StoredED.IsReachedFromAlignedBarrierOnly || |
3321 | ED.EncounteredNonLocalSideEffect != |
3322 | StoredED.EncounteredNonLocalSideEffect) |
3323 | Changed = true; |
3324 | |
3325 | // Update the state with the new value. |
3326 | StoredED = std::move(ED); |
3327 | } |
3328 | |
3329 | // Propagate (non-aligned) sync instruction effects backwards until the |
3330 | // entry is hit or an aligned barrier. |
3331 | SmallSetVector<BasicBlock *, 16> Visited; |
3332 | while (!SyncInstWorklist.empty()) { |
3333 | Instruction *SyncInst = SyncInstWorklist.pop_back_val(); |
3334 | Instruction *CurInst = SyncInst; |
3335 | bool HitAlignedBarrierOrKnownEnd = false; |
3336 | while ((CurInst = CurInst->getPrevNode())) { |
3337 | auto *CB = dyn_cast<CallBase>(Val: CurInst); |
3338 | if (!CB) |
3339 | continue; |
3340 | auto &CallOutED = CEDMap[{CB, POST}]; |
3341 | Changed |= setAndRecord(R&: CallOutED.IsReachingAlignedBarrierOnly, V: false); |
3342 | auto &CallInED = CEDMap[{CB, PRE}]; |
3343 | HitAlignedBarrierOrKnownEnd = |
3344 | AlignedBarriers.count(key: CB) || !CallInED.IsReachingAlignedBarrierOnly; |
3345 | if (HitAlignedBarrierOrKnownEnd) |
3346 | break; |
3347 | Changed |= setAndRecord(R&: CallInED.IsReachingAlignedBarrierOnly, V: false); |
3348 | } |
3349 | if (HitAlignedBarrierOrKnownEnd) |
3350 | continue; |
3351 | BasicBlock *SyncBB = SyncInst->getParent(); |
3352 | for (auto *PredBB : predecessors(BB: SyncBB)) { |
3353 | if (LivenessAA && LivenessAA->isEdgeDead(From: PredBB, To: SyncBB)) |
3354 | continue; |
3355 | if (!Visited.insert(X: PredBB)) |
3356 | continue; |
3357 | auto &PredED = BEDMap[PredBB]; |
3358 | if (setAndRecord(R&: PredED.IsReachingAlignedBarrierOnly, V: false)) { |
3359 | Changed = true; |
3360 | SyncInstWorklist.push_back(Elt: PredBB->getTerminator()); |
3361 | } |
3362 | } |
3363 | if (SyncBB != &EntryBB) |
3364 | continue; |
3365 | Changed |= |
3366 | setAndRecord(R&: InterProceduralED.IsReachingAlignedBarrierOnly, V: false); |
3367 | } |
3368 | |
3369 | return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; |
3370 | } |
3371 | |
3372 | /// Try to replace memory allocation calls called by a single thread with a |
3373 | /// static buffer of shared memory. |
3374 | struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> { |
3375 | using Base = StateWrapper<BooleanState, AbstractAttribute>; |
3376 | AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {} |
3377 | |
3378 | /// Create an abstract attribute view for the position \p IRP. |
3379 | static AAHeapToShared &createForPosition(const IRPosition &IRP, |
3380 | Attributor &A); |
3381 | |
3382 | /// Returns true if HeapToShared conversion is assumed to be possible. |
3383 | virtual bool isAssumedHeapToShared(CallBase &CB) const = 0; |
3384 | |
3385 | /// Returns true if HeapToShared conversion is assumed and the CB is a |
3386 | /// callsite to a free operation to be removed. |
3387 | virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0; |
3388 | |
3389 | /// See AbstractAttribute::getName(). |
3390 | const std::string getName() const override { return "AAHeapToShared" ; } |
3391 | |
3392 | /// See AbstractAttribute::getIdAddr(). |
3393 | const char *getIdAddr() const override { return &ID; } |
3394 | |
3395 | /// This function should return true if the type of the \p AA is |
3396 | /// AAHeapToShared. |
3397 | static bool classof(const AbstractAttribute *AA) { |
3398 | return (AA->getIdAddr() == &ID); |
3399 | } |
3400 | |
3401 | /// Unique ID (due to the unique address) |
3402 | static const char ID; |
3403 | }; |
3404 | |
3405 | struct AAHeapToSharedFunction : public AAHeapToShared { |
3406 | AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A) |
3407 | : AAHeapToShared(IRP, A) {} |
3408 | |
3409 | const std::string getAsStr(Attributor *) const override { |
3410 | return "[AAHeapToShared] " + std::to_string(val: MallocCalls.size()) + |
3411 | " malloc calls eligible." ; |
3412 | } |
3413 | |
3414 | /// See AbstractAttribute::trackStatistics(). |
3415 | void trackStatistics() const override {} |
3416 | |
3417 | /// This functions finds free calls that will be removed by the |
3418 | /// HeapToShared transformation. |
3419 | void findPotentialRemovedFreeCalls(Attributor &A) { |
3420 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
3421 | auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; |
3422 | |
3423 | PotentialRemovedFreeCalls.clear(); |
3424 | // Update free call users of found malloc calls. |
3425 | for (CallBase *CB : MallocCalls) { |
3426 | SmallVector<CallBase *, 4> FreeCalls; |
3427 | for (auto *U : CB->users()) { |
3428 | CallBase *C = dyn_cast<CallBase>(Val: U); |
3429 | if (C && C->getCalledFunction() == FreeRFI.Declaration) |
3430 | FreeCalls.push_back(Elt: C); |
3431 | } |
3432 | |
3433 | if (FreeCalls.size() != 1) |
3434 | continue; |
3435 | |
3436 | PotentialRemovedFreeCalls.insert(Ptr: FreeCalls.front()); |
3437 | } |
3438 | } |
3439 | |
3440 | void initialize(Attributor &A) override { |
3441 | if (DisableOpenMPOptDeglobalization) { |
3442 | indicatePessimisticFixpoint(); |
3443 | return; |
3444 | } |
3445 | |
3446 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
3447 | auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; |
3448 | if (!RFI.Declaration) |
3449 | return; |
3450 | |
3451 | Attributor::SimplifictionCallbackTy SCB = |
3452 | [](const IRPosition &, const AbstractAttribute *, |
3453 | bool &) -> std::optional<Value *> { return nullptr; }; |
3454 | |
3455 | Function *F = getAnchorScope(); |
3456 | for (User *U : RFI.Declaration->users()) |
3457 | if (CallBase *CB = dyn_cast<CallBase>(Val: U)) { |
3458 | if (CB->getFunction() != F) |
3459 | continue; |
3460 | MallocCalls.insert(X: CB); |
3461 | A.registerSimplificationCallback(IRP: IRPosition::callsite_returned(CB: *CB), |
3462 | CB: SCB); |
3463 | } |
3464 | |
3465 | findPotentialRemovedFreeCalls(A); |
3466 | } |
3467 | |
3468 | bool isAssumedHeapToShared(CallBase &CB) const override { |
3469 | return isValidState() && MallocCalls.count(key: &CB); |
3470 | } |
3471 | |
3472 | bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override { |
3473 | return isValidState() && PotentialRemovedFreeCalls.count(Ptr: &CB); |
3474 | } |
3475 | |
3476 | ChangeStatus manifest(Attributor &A) override { |
3477 | if (MallocCalls.empty()) |
3478 | return ChangeStatus::UNCHANGED; |
3479 | |
3480 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
3481 | auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared]; |
3482 | |
3483 | Function *F = getAnchorScope(); |
3484 | auto *HS = A.lookupAAFor<AAHeapToStack>(IRP: IRPosition::function(F: *F), QueryingAA: this, |
3485 | DepClass: DepClassTy::OPTIONAL); |
3486 | |
3487 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
3488 | for (CallBase *CB : MallocCalls) { |
3489 | // Skip replacing this if HeapToStack has already claimed it. |
3490 | if (HS && HS->isAssumedHeapToStack(CB: *CB)) |
3491 | continue; |
3492 | |
3493 | // Find the unique free call to remove it. |
3494 | SmallVector<CallBase *, 4> FreeCalls; |
3495 | for (auto *U : CB->users()) { |
3496 | CallBase *C = dyn_cast<CallBase>(Val: U); |
3497 | if (C && C->getCalledFunction() == FreeCall.Declaration) |
3498 | FreeCalls.push_back(Elt: C); |
3499 | } |
3500 | if (FreeCalls.size() != 1) |
3501 | continue; |
3502 | |
3503 | auto *AllocSize = cast<ConstantInt>(Val: CB->getArgOperand(i: 0)); |
3504 | |
3505 | if (AllocSize->getZExtValue() + SharedMemoryUsed > SharedMemoryLimit) { |
3506 | LLVM_DEBUG(dbgs() << TAG << "Cannot replace call " << *CB |
3507 | << " with shared memory." |
3508 | << " Shared memory usage is limited to " |
3509 | << SharedMemoryLimit << " bytes\n" ); |
3510 | continue; |
3511 | } |
3512 | |
3513 | LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB |
3514 | << " with " << AllocSize->getZExtValue() |
3515 | << " bytes of shared memory\n" ); |
3516 | |
3517 | // Create a new shared memory buffer of the same size as the allocation |
3518 | // and replace all the uses of the original allocation with it. |
3519 | Module *M = CB->getModule(); |
3520 | Type *Int8Ty = Type::getInt8Ty(C&: M->getContext()); |
3521 | Type *Int8ArrTy = ArrayType::get(ElementType: Int8Ty, NumElements: AllocSize->getZExtValue()); |
3522 | auto *SharedMem = new GlobalVariable( |
3523 | *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage, |
3524 | PoisonValue::get(T: Int8ArrTy), CB->getName() + "_shared" , nullptr, |
3525 | GlobalValue::NotThreadLocal, |
3526 | static_cast<unsigned>(AddressSpace::Shared)); |
3527 | auto *NewBuffer = |
3528 | ConstantExpr::getPointerCast(C: SharedMem, Ty: Int8Ty->getPointerTo()); |
3529 | |
3530 | auto = [&](OptimizationRemark OR) { |
3531 | return OR << "Replaced globalized variable with " |
3532 | << ore::NV("SharedMemory" , AllocSize->getZExtValue()) |
3533 | << (AllocSize->isOne() ? " byte " : " bytes " ) |
3534 | << "of shared memory." ; |
3535 | }; |
3536 | A.emitRemark<OptimizationRemark>(I: CB, RemarkName: "OMP111" , RemarkCB&: Remark); |
3537 | |
3538 | MaybeAlign Alignment = CB->getRetAlign(); |
3539 | assert(Alignment && |
3540 | "HeapToShared on allocation without alignment attribute" ); |
3541 | SharedMem->setAlignment(*Alignment); |
3542 | |
3543 | A.changeAfterManifest(IRP: IRPosition::callsite_returned(CB: *CB), NV&: *NewBuffer); |
3544 | A.deleteAfterManifest(I&: *CB); |
3545 | A.deleteAfterManifest(I&: *FreeCalls.front()); |
3546 | |
3547 | SharedMemoryUsed += AllocSize->getZExtValue(); |
3548 | NumBytesMovedToSharedMemory = SharedMemoryUsed; |
3549 | Changed = ChangeStatus::CHANGED; |
3550 | } |
3551 | |
3552 | return Changed; |
3553 | } |
3554 | |
3555 | ChangeStatus updateImpl(Attributor &A) override { |
3556 | if (MallocCalls.empty()) |
3557 | return indicatePessimisticFixpoint(); |
3558 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
3559 | auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; |
3560 | if (!RFI.Declaration) |
3561 | return ChangeStatus::UNCHANGED; |
3562 | |
3563 | Function *F = getAnchorScope(); |
3564 | |
3565 | auto NumMallocCalls = MallocCalls.size(); |
3566 | |
3567 | // Only consider malloc calls executed by a single thread with a constant. |
3568 | for (User *U : RFI.Declaration->users()) { |
3569 | if (CallBase *CB = dyn_cast<CallBase>(Val: U)) { |
3570 | if (CB->getCaller() != F) |
3571 | continue; |
3572 | if (!MallocCalls.count(key: CB)) |
3573 | continue; |
3574 | if (!isa<ConstantInt>(Val: CB->getArgOperand(i: 0))) { |
3575 | MallocCalls.remove(X: CB); |
3576 | continue; |
3577 | } |
3578 | const auto *ED = A.getAAFor<AAExecutionDomain>( |
3579 | QueryingAA: *this, IRP: IRPosition::function(F: *F), DepClass: DepClassTy::REQUIRED); |
3580 | if (!ED || !ED->isExecutedByInitialThreadOnly(I: *CB)) |
3581 | MallocCalls.remove(X: CB); |
3582 | } |
3583 | } |
3584 | |
3585 | findPotentialRemovedFreeCalls(A); |
3586 | |
3587 | if (NumMallocCalls != MallocCalls.size()) |
3588 | return ChangeStatus::CHANGED; |
3589 | |
3590 | return ChangeStatus::UNCHANGED; |
3591 | } |
3592 | |
3593 | /// Collection of all malloc calls in a function. |
3594 | SmallSetVector<CallBase *, 4> MallocCalls; |
3595 | /// Collection of potentially removed free calls in a function. |
3596 | SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls; |
3597 | /// The total amount of shared memory that has been used for HeapToShared. |
3598 | unsigned SharedMemoryUsed = 0; |
3599 | }; |
3600 | |
3601 | struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> { |
3602 | using Base = StateWrapper<KernelInfoState, AbstractAttribute>; |
3603 | AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {} |
3604 | |
3605 | /// The callee value is tracked beyond a simple stripPointerCasts, so we allow |
3606 | /// unknown callees. |
3607 | static bool requiresCalleeForCallBase() { return false; } |
3608 | |
3609 | /// Statistics are tracked as part of manifest for now. |
3610 | void trackStatistics() const override {} |
3611 | |
3612 | /// See AbstractAttribute::getAsStr() |
3613 | const std::string getAsStr(Attributor *) const override { |
3614 | if (!isValidState()) |
3615 | return "<invalid>" ; |
3616 | return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD" |
3617 | : "generic" ) + |
3618 | std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]" |
3619 | : "" ) + |
3620 | std::string(" #PRs: " ) + |
3621 | (ReachedKnownParallelRegions.isValidState() |
3622 | ? std::to_string(val: ReachedKnownParallelRegions.size()) |
3623 | : "<invalid>" ) + |
3624 | ", #Unknown PRs: " + |
3625 | (ReachedUnknownParallelRegions.isValidState() |
3626 | ? std::to_string(val: ReachedUnknownParallelRegions.size()) |
3627 | : "<invalid>" ) + |
3628 | ", #Reaching Kernels: " + |
3629 | (ReachingKernelEntries.isValidState() |
3630 | ? std::to_string(val: ReachingKernelEntries.size()) |
3631 | : "<invalid>" ) + |
3632 | ", #ParLevels: " + |
3633 | (ParallelLevels.isValidState() |
3634 | ? std::to_string(val: ParallelLevels.size()) |
3635 | : "<invalid>" ) + |
3636 | ", NestedPar: " + (NestedParallelism ? "yes" : "no" ); |
3637 | } |
3638 | |
3639 | /// Create an abstract attribute biew for the position \p IRP. |
3640 | static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A); |
3641 | |
3642 | /// See AbstractAttribute::getName() |
3643 | const std::string getName() const override { return "AAKernelInfo" ; } |
3644 | |
3645 | /// See AbstractAttribute::getIdAddr() |
3646 | const char *getIdAddr() const override { return &ID; } |
3647 | |
3648 | /// This function should return true if the type of the \p AA is AAKernelInfo |
3649 | static bool classof(const AbstractAttribute *AA) { |
3650 | return (AA->getIdAddr() == &ID); |
3651 | } |
3652 | |
3653 | static const char ID; |
3654 | }; |
3655 | |
3656 | /// The function kernel info abstract attribute, basically, what can we say |
3657 | /// about a function with regards to the KernelInfoState. |
3658 | struct AAKernelInfoFunction : AAKernelInfo { |
3659 | AAKernelInfoFunction(const IRPosition &IRP, Attributor &A) |
3660 | : AAKernelInfo(IRP, A) {} |
3661 | |
3662 | SmallPtrSet<Instruction *, 4> GuardedInstructions; |
3663 | |
3664 | SmallPtrSetImpl<Instruction *> &getGuardedInstructions() { |
3665 | return GuardedInstructions; |
3666 | } |
3667 | |
3668 | void setConfigurationOfKernelEnvironment(ConstantStruct *ConfigC) { |
3669 | Constant *NewKernelEnvC = ConstantFoldInsertValueInstruction( |
3670 | Agg: KernelEnvC, Val: ConfigC, Idxs: {KernelInfo::ConfigurationIdx}); |
3671 | assert(NewKernelEnvC && "Failed to create new kernel environment" ); |
3672 | KernelEnvC = cast<ConstantStruct>(Val: NewKernelEnvC); |
3673 | } |
3674 | |
3675 | #define KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MEMBER) \ |
3676 | void set##MEMBER##OfKernelEnvironment(ConstantInt *NewVal) { \ |
3677 | ConstantStruct *ConfigC = \ |
3678 | KernelInfo::getConfigurationFromKernelEnvironment(KernelEnvC); \ |
3679 | Constant *NewConfigC = ConstantFoldInsertValueInstruction( \ |
3680 | ConfigC, NewVal, {KernelInfo::MEMBER##Idx}); \ |
3681 | assert(NewConfigC && "Failed to create new configuration environment"); \ |
3682 | setConfigurationOfKernelEnvironment(cast<ConstantStruct>(NewConfigC)); \ |
3683 | } |
3684 | |
3685 | KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(UseGenericStateMachine) |
3686 | KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MayUseNestedParallelism) |
3687 | KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(ExecMode) |
3688 | KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MinThreads) |
3689 | KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MaxThreads) |
3690 | KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MinTeams) |
3691 | KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MaxTeams) |
3692 | |
3693 | #undef KERNEL_ENVIRONMENT_CONFIGURATION_SETTER |
3694 | |
3695 | /// See AbstractAttribute::initialize(...). |
3696 | void initialize(Attributor &A) override { |
3697 | // This is a high-level transform that might change the constant arguments |
3698 | // of the init and dinit calls. We need to tell the Attributor about this |
3699 | // to avoid other parts using the current constant value for simpliication. |
3700 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
3701 | |
3702 | Function *Fn = getAnchorScope(); |
3703 | |
3704 | OMPInformationCache::RuntimeFunctionInfo &InitRFI = |
3705 | OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; |
3706 | OMPInformationCache::RuntimeFunctionInfo &DeinitRFI = |
3707 | OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit]; |
3708 | |
3709 | // For kernels we perform more initialization work, first we find the init |
3710 | // and deinit calls. |
3711 | auto StoreCallBase = [](Use &U, |
3712 | OMPInformationCache::RuntimeFunctionInfo &RFI, |
3713 | CallBase *&Storage) { |
3714 | CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, RFI: &RFI); |
3715 | assert(CB && |
3716 | "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!" ); |
3717 | assert(!Storage && |
3718 | "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!" ); |
3719 | Storage = CB; |
3720 | return false; |
3721 | }; |
3722 | InitRFI.foreachUse( |
3723 | CB: [&](Use &U, Function &) { |
3724 | StoreCallBase(U, InitRFI, KernelInitCB); |
3725 | return false; |
3726 | }, |
3727 | F: Fn); |
3728 | DeinitRFI.foreachUse( |
3729 | CB: [&](Use &U, Function &) { |
3730 | StoreCallBase(U, DeinitRFI, KernelDeinitCB); |
3731 | return false; |
3732 | }, |
3733 | F: Fn); |
3734 | |
3735 | // Ignore kernels without initializers such as global constructors. |
3736 | if (!KernelInitCB || !KernelDeinitCB) |
3737 | return; |
3738 | |
3739 | // Add itself to the reaching kernel and set IsKernelEntry. |
3740 | ReachingKernelEntries.insert(Elem: Fn); |
3741 | IsKernelEntry = true; |
3742 | |
3743 | KernelEnvC = |
3744 | KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB); |
3745 | GlobalVariable *KernelEnvGV = |
3746 | KernelInfo::getKernelEnvironementGVFromKernelInitCB(KernelInitCB); |
3747 | |
3748 | Attributor::GlobalVariableSimplifictionCallbackTy |
3749 | KernelConfigurationSimplifyCB = |
3750 | [&](const GlobalVariable &GV, const AbstractAttribute *AA, |
3751 | bool &UsedAssumedInformation) -> std::optional<Constant *> { |
3752 | if (!isAtFixpoint()) { |
3753 | if (!AA) |
3754 | return nullptr; |
3755 | UsedAssumedInformation = true; |
3756 | A.recordDependence(FromAA: *this, ToAA: *AA, DepClass: DepClassTy::OPTIONAL); |
3757 | } |
3758 | return KernelEnvC; |
3759 | }; |
3760 | |
3761 | A.registerGlobalVariableSimplificationCallback( |
3762 | GV: *KernelEnvGV, CB: KernelConfigurationSimplifyCB); |
3763 | |
3764 | // Check if we know we are in SPMD-mode already. |
3765 | ConstantInt *ExecModeC = |
3766 | KernelInfo::getExecModeFromKernelEnvironment(KernelEnvC); |
3767 | ConstantInt *AssumedExecModeC = ConstantInt::get( |
3768 | Ty: ExecModeC->getIntegerType(), |
3769 | V: ExecModeC->getSExtValue() | OMP_TGT_EXEC_MODE_GENERIC_SPMD); |
3770 | if (ExecModeC->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD) |
3771 | SPMDCompatibilityTracker.indicateOptimisticFixpoint(); |
3772 | else if (DisableOpenMPOptSPMDization) |
3773 | // This is a generic region but SPMDization is disabled so stop |
3774 | // tracking. |
3775 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
3776 | else |
3777 | setExecModeOfKernelEnvironment(AssumedExecModeC); |
3778 | |
3779 | const Triple T(Fn->getParent()->getTargetTriple()); |
3780 | auto *Int32Ty = Type::getInt32Ty(C&: Fn->getContext()); |
3781 | auto [MinThreads, MaxThreads] = |
3782 | OpenMPIRBuilder::readThreadBoundsForKernel(T, Kernel&: *Fn); |
3783 | if (MinThreads) |
3784 | setMinThreadsOfKernelEnvironment(ConstantInt::get(Ty: Int32Ty, V: MinThreads)); |
3785 | if (MaxThreads) |
3786 | setMaxThreadsOfKernelEnvironment(ConstantInt::get(Ty: Int32Ty, V: MaxThreads)); |
3787 | auto [MinTeams, MaxTeams] = |
3788 | OpenMPIRBuilder::readTeamBoundsForKernel(T, Kernel&: *Fn); |
3789 | if (MinTeams) |
3790 | setMinTeamsOfKernelEnvironment(ConstantInt::get(Ty: Int32Ty, V: MinTeams)); |
3791 | if (MaxTeams) |
3792 | setMaxTeamsOfKernelEnvironment(ConstantInt::get(Ty: Int32Ty, V: MaxTeams)); |
3793 | |
3794 | ConstantInt *MayUseNestedParallelismC = |
3795 | KernelInfo::getMayUseNestedParallelismFromKernelEnvironment(KernelEnvC); |
3796 | ConstantInt *AssumedMayUseNestedParallelismC = ConstantInt::get( |
3797 | Ty: MayUseNestedParallelismC->getIntegerType(), V: NestedParallelism); |
3798 | setMayUseNestedParallelismOfKernelEnvironment( |
3799 | AssumedMayUseNestedParallelismC); |
3800 | |
3801 | if (!DisableOpenMPOptStateMachineRewrite) { |
3802 | ConstantInt *UseGenericStateMachineC = |
3803 | KernelInfo::getUseGenericStateMachineFromKernelEnvironment( |
3804 | KernelEnvC); |
3805 | ConstantInt *AssumedUseGenericStateMachineC = |
3806 | ConstantInt::get(Ty: UseGenericStateMachineC->getIntegerType(), V: false); |
3807 | setUseGenericStateMachineOfKernelEnvironment( |
3808 | AssumedUseGenericStateMachineC); |
3809 | } |
3810 | |
3811 | // Register virtual uses of functions we might need to preserve. |
3812 | auto RegisterVirtualUse = [&](RuntimeFunction RFKind, |
3813 | Attributor::VirtualUseCallbackTy &CB) { |
3814 | if (!OMPInfoCache.RFIs[RFKind].Declaration) |
3815 | return; |
3816 | A.registerVirtualUseCallback(V: *OMPInfoCache.RFIs[RFKind].Declaration, CB); |
3817 | }; |
3818 | |
3819 | // Add a dependence to ensure updates if the state changes. |
3820 | auto AddDependence = [](Attributor &A, const AAKernelInfo *KI, |
3821 | const AbstractAttribute *QueryingAA) { |
3822 | if (QueryingAA) { |
3823 | A.recordDependence(FromAA: *KI, ToAA: *QueryingAA, DepClass: DepClassTy::OPTIONAL); |
3824 | } |
3825 | return true; |
3826 | }; |
3827 | |
3828 | Attributor::VirtualUseCallbackTy CustomStateMachineUseCB = |
3829 | [&](Attributor &A, const AbstractAttribute *QueryingAA) { |
3830 | // Whenever we create a custom state machine we will insert calls to |
3831 | // __kmpc_get_hardware_num_threads_in_block, |
3832 | // __kmpc_get_warp_size, |
3833 | // __kmpc_barrier_simple_generic, |
3834 | // __kmpc_kernel_parallel, and |
3835 | // __kmpc_kernel_end_parallel. |
3836 | // Not needed if we are on track for SPMDzation. |
3837 | if (SPMDCompatibilityTracker.isValidState()) |
3838 | return AddDependence(A, this, QueryingAA); |
3839 | // Not needed if we can't rewrite due to an invalid state. |
3840 | if (!ReachedKnownParallelRegions.isValidState()) |
3841 | return AddDependence(A, this, QueryingAA); |
3842 | return false; |
3843 | }; |
3844 | |
3845 | // Not needed if we are pre-runtime merge. |
3846 | if (!KernelInitCB->getCalledFunction()->isDeclaration()) { |
3847 | RegisterVirtualUse(OMPRTL___kmpc_get_hardware_num_threads_in_block, |
3848 | CustomStateMachineUseCB); |
3849 | RegisterVirtualUse(OMPRTL___kmpc_get_warp_size, CustomStateMachineUseCB); |
3850 | RegisterVirtualUse(OMPRTL___kmpc_barrier_simple_generic, |
3851 | CustomStateMachineUseCB); |
3852 | RegisterVirtualUse(OMPRTL___kmpc_kernel_parallel, |
3853 | CustomStateMachineUseCB); |
3854 | RegisterVirtualUse(OMPRTL___kmpc_kernel_end_parallel, |
3855 | CustomStateMachineUseCB); |
3856 | } |
3857 | |
3858 | // If we do not perform SPMDzation we do not need the virtual uses below. |
3859 | if (SPMDCompatibilityTracker.isAtFixpoint()) |
3860 | return; |
3861 | |
3862 | Attributor::VirtualUseCallbackTy HWThreadIdUseCB = |
3863 | [&](Attributor &A, const AbstractAttribute *QueryingAA) { |
3864 | // Whenever we perform SPMDzation we will insert |
3865 | // __kmpc_get_hardware_thread_id_in_block calls. |
3866 | if (!SPMDCompatibilityTracker.isValidState()) |
3867 | return AddDependence(A, this, QueryingAA); |
3868 | return false; |
3869 | }; |
3870 | RegisterVirtualUse(OMPRTL___kmpc_get_hardware_thread_id_in_block, |
3871 | HWThreadIdUseCB); |
3872 | |
3873 | Attributor::VirtualUseCallbackTy SPMDBarrierUseCB = |
3874 | [&](Attributor &A, const AbstractAttribute *QueryingAA) { |
3875 | // Whenever we perform SPMDzation with guarding we will insert |
3876 | // __kmpc_simple_barrier_spmd calls. If SPMDzation failed, there is |
3877 | // nothing to guard, or there are no parallel regions, we don't need |
3878 | // the calls. |
3879 | if (!SPMDCompatibilityTracker.isValidState()) |
3880 | return AddDependence(A, this, QueryingAA); |
3881 | if (SPMDCompatibilityTracker.empty()) |
3882 | return AddDependence(A, this, QueryingAA); |
3883 | if (!mayContainParallelRegion()) |
3884 | return AddDependence(A, this, QueryingAA); |
3885 | return false; |
3886 | }; |
3887 | RegisterVirtualUse(OMPRTL___kmpc_barrier_simple_spmd, SPMDBarrierUseCB); |
3888 | } |
3889 | |
3890 | /// Sanitize the string \p S such that it is a suitable global symbol name. |
3891 | static std::string sanitizeForGlobalName(std::string S) { |
3892 | std::replace_if( |
3893 | first: S.begin(), last: S.end(), |
3894 | pred: [](const char C) { |
3895 | return !((C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z') || |
3896 | (C >= '0' && C <= '9') || C == '_'); |
3897 | }, |
3898 | new_value: '.'); |
3899 | return S; |
3900 | } |
3901 | |
3902 | /// Modify the IR based on the KernelInfoState as the fixpoint iteration is |
3903 | /// finished now. |
3904 | ChangeStatus manifest(Attributor &A) override { |
3905 | // If we are not looking at a kernel with __kmpc_target_init and |
3906 | // __kmpc_target_deinit call we cannot actually manifest the information. |
3907 | if (!KernelInitCB || !KernelDeinitCB) |
3908 | return ChangeStatus::UNCHANGED; |
3909 | |
3910 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
3911 | |
3912 | bool HasBuiltStateMachine = true; |
3913 | if (!changeToSPMDMode(A, Changed)) { |
3914 | if (!KernelInitCB->getCalledFunction()->isDeclaration()) |
3915 | HasBuiltStateMachine = buildCustomStateMachine(A, Changed); |
3916 | else |
3917 | HasBuiltStateMachine = false; |
3918 | } |
3919 | |
3920 | // We need to reset KernelEnvC if specific rewriting is not done. |
3921 | ConstantStruct *ExistingKernelEnvC = |
3922 | KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB); |
3923 | ConstantInt *OldUseGenericStateMachineVal = |
3924 | KernelInfo::getUseGenericStateMachineFromKernelEnvironment( |
3925 | KernelEnvC: ExistingKernelEnvC); |
3926 | if (!HasBuiltStateMachine) |
3927 | setUseGenericStateMachineOfKernelEnvironment( |
3928 | OldUseGenericStateMachineVal); |
3929 | |
3930 | // At last, update the KernelEnvc |
3931 | GlobalVariable *KernelEnvGV = |
3932 | KernelInfo::getKernelEnvironementGVFromKernelInitCB(KernelInitCB); |
3933 | if (KernelEnvGV->getInitializer() != KernelEnvC) { |
3934 | KernelEnvGV->setInitializer(KernelEnvC); |
3935 | Changed = ChangeStatus::CHANGED; |
3936 | } |
3937 | |
3938 | return Changed; |
3939 | } |
3940 | |
3941 | void insertInstructionGuardsHelper(Attributor &A) { |
3942 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
3943 | |
3944 | auto CreateGuardedRegion = [&](Instruction *RegionStartI, |
3945 | Instruction *RegionEndI) { |
3946 | LoopInfo *LI = nullptr; |
3947 | DominatorTree *DT = nullptr; |
3948 | MemorySSAUpdater *MSU = nullptr; |
3949 | using InsertPointTy = OpenMPIRBuilder::InsertPointTy; |
3950 | |
3951 | BasicBlock *ParentBB = RegionStartI->getParent(); |
3952 | Function *Fn = ParentBB->getParent(); |
3953 | Module &M = *Fn->getParent(); |
3954 | |
3955 | // Create all the blocks and logic. |
3956 | // ParentBB: |
3957 | // goto RegionCheckTidBB |
3958 | // RegionCheckTidBB: |
3959 | // Tid = __kmpc_hardware_thread_id() |
3960 | // if (Tid != 0) |
3961 | // goto RegionBarrierBB |
3962 | // RegionStartBB: |
3963 | // <execute instructions guarded> |
3964 | // goto RegionEndBB |
3965 | // RegionEndBB: |
3966 | // <store escaping values to shared mem> |
3967 | // goto RegionBarrierBB |
3968 | // RegionBarrierBB: |
3969 | // __kmpc_simple_barrier_spmd() |
3970 | // // second barrier is omitted if lacking escaping values. |
3971 | // <load escaping values from shared mem> |
3972 | // __kmpc_simple_barrier_spmd() |
3973 | // goto RegionExitBB |
3974 | // RegionExitBB: |
3975 | // <execute rest of instructions> |
3976 | |
3977 | BasicBlock *RegionEndBB = SplitBlock(Old: ParentBB, SplitPt: RegionEndI->getNextNode(), |
3978 | DT, LI, MSSAU: MSU, BBName: "region.guarded.end" ); |
3979 | BasicBlock *RegionBarrierBB = |
3980 | SplitBlock(Old: RegionEndBB, SplitPt: &*RegionEndBB->getFirstInsertionPt(), DT, LI, |
3981 | MSSAU: MSU, BBName: "region.barrier" ); |
3982 | BasicBlock *RegionExitBB = |
3983 | SplitBlock(Old: RegionBarrierBB, SplitPt: &*RegionBarrierBB->getFirstInsertionPt(), |
3984 | DT, LI, MSSAU: MSU, BBName: "region.exit" ); |
3985 | BasicBlock *RegionStartBB = |
3986 | SplitBlock(Old: ParentBB, SplitPt: RegionStartI, DT, LI, MSSAU: MSU, BBName: "region.guarded" ); |
3987 | |
3988 | assert(ParentBB->getUniqueSuccessor() == RegionStartBB && |
3989 | "Expected a different CFG" ); |
3990 | |
3991 | BasicBlock *RegionCheckTidBB = SplitBlock( |
3992 | Old: ParentBB, SplitPt: ParentBB->getTerminator(), DT, LI, MSSAU: MSU, BBName: "region.check.tid" ); |
3993 | |
3994 | // Register basic blocks with the Attributor. |
3995 | A.registerManifestAddedBasicBlock(BB&: *RegionEndBB); |
3996 | A.registerManifestAddedBasicBlock(BB&: *RegionBarrierBB); |
3997 | A.registerManifestAddedBasicBlock(BB&: *RegionExitBB); |
3998 | A.registerManifestAddedBasicBlock(BB&: *RegionStartBB); |
3999 | A.registerManifestAddedBasicBlock(BB&: *RegionCheckTidBB); |
4000 | |
4001 | bool HasBroadcastValues = false; |
4002 | // Find escaping outputs from the guarded region to outside users and |
4003 | // broadcast their values to them. |
4004 | for (Instruction &I : *RegionStartBB) { |
4005 | SmallVector<Use *, 4> OutsideUses; |
4006 | for (Use &U : I.uses()) { |
4007 | Instruction &UsrI = *cast<Instruction>(Val: U.getUser()); |
4008 | if (UsrI.getParent() != RegionStartBB) |
4009 | OutsideUses.push_back(Elt: &U); |
4010 | } |
4011 | |
4012 | if (OutsideUses.empty()) |
4013 | continue; |
4014 | |
4015 | HasBroadcastValues = true; |
4016 | |
4017 | // Emit a global variable in shared memory to store the broadcasted |
4018 | // value. |
4019 | auto *SharedMem = new GlobalVariable( |
4020 | M, I.getType(), /* IsConstant */ false, |
4021 | GlobalValue::InternalLinkage, UndefValue::get(T: I.getType()), |
4022 | sanitizeForGlobalName( |
4023 | S: (I.getName() + ".guarded.output.alloc" ).str()), |
4024 | nullptr, GlobalValue::NotThreadLocal, |
4025 | static_cast<unsigned>(AddressSpace::Shared)); |
4026 | |
4027 | // Emit a store instruction to update the value. |
4028 | new StoreInst(&I, SharedMem, |
4029 | RegionEndBB->getTerminator()->getIterator()); |
4030 | |
4031 | LoadInst *LoadI = new LoadInst( |
4032 | I.getType(), SharedMem, I.getName() + ".guarded.output.load" , |
4033 | RegionBarrierBB->getTerminator()->getIterator()); |
4034 | |
4035 | // Emit a load instruction and replace uses of the output value. |
4036 | for (Use *U : OutsideUses) |
4037 | A.changeUseAfterManifest(U&: *U, NV&: *LoadI); |
4038 | } |
4039 | |
4040 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
4041 | |
4042 | // Go to tid check BB in ParentBB. |
4043 | const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); |
4044 | ParentBB->getTerminator()->eraseFromParent(); |
4045 | OpenMPIRBuilder::LocationDescription Loc( |
4046 | InsertPointTy(ParentBB, ParentBB->end()), DL); |
4047 | OMPInfoCache.OMPBuilder.updateToLocation(Loc); |
4048 | uint32_t SrcLocStrSize; |
4049 | auto *SrcLocStr = |
4050 | OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
4051 | Value *Ident = |
4052 | OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
4053 | BranchInst::Create(IfTrue: RegionCheckTidBB, InsertBefore: ParentBB)->setDebugLoc(DL); |
4054 | |
4055 | // Add check for Tid in RegionCheckTidBB |
4056 | RegionCheckTidBB->getTerminator()->eraseFromParent(); |
4057 | OpenMPIRBuilder::LocationDescription LocRegionCheckTid( |
4058 | InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL); |
4059 | OMPInfoCache.OMPBuilder.updateToLocation(Loc: LocRegionCheckTid); |
4060 | FunctionCallee HardwareTidFn = |
4061 | OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( |
4062 | M, FnID: OMPRTL___kmpc_get_hardware_thread_id_in_block); |
4063 | CallInst *Tid = |
4064 | OMPInfoCache.OMPBuilder.Builder.CreateCall(Callee: HardwareTidFn, Args: {}); |
4065 | Tid->setDebugLoc(DL); |
4066 | OMPInfoCache.setCallingConvention(Callee: HardwareTidFn, CI: Tid); |
4067 | Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Arg: Tid); |
4068 | OMPInfoCache.OMPBuilder.Builder |
4069 | .CreateCondBr(Cond: TidCheck, True: RegionStartBB, False: RegionBarrierBB) |
4070 | ->setDebugLoc(DL); |
4071 | |
4072 | // First barrier for synchronization, ensures main thread has updated |
4073 | // values. |
4074 | FunctionCallee BarrierFn = |
4075 | OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( |
4076 | M, FnID: OMPRTL___kmpc_barrier_simple_spmd); |
4077 | OMPInfoCache.OMPBuilder.updateToLocation(Loc: InsertPointTy( |
4078 | RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt())); |
4079 | CallInst *Barrier = |
4080 | OMPInfoCache.OMPBuilder.Builder.CreateCall(Callee: BarrierFn, Args: {Ident, Tid}); |
4081 | Barrier->setDebugLoc(DL); |
4082 | OMPInfoCache.setCallingConvention(Callee: BarrierFn, CI: Barrier); |
4083 | |
4084 | // Second barrier ensures workers have read broadcast values. |
4085 | if (HasBroadcastValues) { |
4086 | CallInst *Barrier = |
4087 | CallInst::Create(Func: BarrierFn, Args: {Ident, Tid}, NameStr: "" , |
4088 | InsertBefore: RegionBarrierBB->getTerminator()->getIterator()); |
4089 | Barrier->setDebugLoc(DL); |
4090 | OMPInfoCache.setCallingConvention(Callee: BarrierFn, CI: Barrier); |
4091 | } |
4092 | }; |
4093 | |
4094 | auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared]; |
4095 | SmallPtrSet<BasicBlock *, 8> Visited; |
4096 | for (Instruction *GuardedI : SPMDCompatibilityTracker) { |
4097 | BasicBlock *BB = GuardedI->getParent(); |
4098 | if (!Visited.insert(Ptr: BB).second) |
4099 | continue; |
4100 | |
4101 | SmallVector<std::pair<Instruction *, Instruction *>> Reorders; |
4102 | Instruction *LastEffect = nullptr; |
4103 | BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend(); |
4104 | while (++IP != IPEnd) { |
4105 | if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory()) |
4106 | continue; |
4107 | Instruction *I = &*IP; |
4108 | if (OpenMPOpt::getCallIfRegularCall(V&: *I, RFI: &AllocSharedRFI)) |
4109 | continue; |
4110 | if (!I->user_empty() || !SPMDCompatibilityTracker.contains(Elem: I)) { |
4111 | LastEffect = nullptr; |
4112 | continue; |
4113 | } |
4114 | if (LastEffect) |
4115 | Reorders.push_back(Elt: {I, LastEffect}); |
4116 | LastEffect = &*IP; |
4117 | } |
4118 | for (auto &Reorder : Reorders) |
4119 | Reorder.first->moveBefore(MovePos: Reorder.second); |
4120 | } |
4121 | |
4122 | SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions; |
4123 | |
4124 | for (Instruction *GuardedI : SPMDCompatibilityTracker) { |
4125 | BasicBlock *BB = GuardedI->getParent(); |
4126 | auto *CalleeAA = A.lookupAAFor<AAKernelInfo>( |
4127 | IRP: IRPosition::function(F: *GuardedI->getFunction()), QueryingAA: nullptr, |
4128 | DepClass: DepClassTy::NONE); |
4129 | assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo" ); |
4130 | auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(Val: CalleeAA); |
4131 | // Continue if instruction is already guarded. |
4132 | if (CalleeAAFunction.getGuardedInstructions().contains(Ptr: GuardedI)) |
4133 | continue; |
4134 | |
4135 | Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr; |
4136 | for (Instruction &I : *BB) { |
4137 | // If instruction I needs to be guarded update the guarded region |
4138 | // bounds. |
4139 | if (SPMDCompatibilityTracker.contains(Elem: &I)) { |
4140 | CalleeAAFunction.getGuardedInstructions().insert(Ptr: &I); |
4141 | if (GuardedRegionStart) |
4142 | GuardedRegionEnd = &I; |
4143 | else |
4144 | GuardedRegionStart = GuardedRegionEnd = &I; |
4145 | |
4146 | continue; |
4147 | } |
4148 | |
4149 | // Instruction I does not need guarding, store |
4150 | // any region found and reset bounds. |
4151 | if (GuardedRegionStart) { |
4152 | GuardedRegions.push_back( |
4153 | Elt: std::make_pair(x&: GuardedRegionStart, y&: GuardedRegionEnd)); |
4154 | GuardedRegionStart = nullptr; |
4155 | GuardedRegionEnd = nullptr; |
4156 | } |
4157 | } |
4158 | } |
4159 | |
4160 | for (auto &GR : GuardedRegions) |
4161 | CreateGuardedRegion(GR.first, GR.second); |
4162 | } |
4163 | |
4164 | void forceSingleThreadPerWorkgroupHelper(Attributor &A) { |
4165 | // Only allow 1 thread per workgroup to continue executing the user code. |
4166 | // |
4167 | // InitCB = __kmpc_target_init(...) |
4168 | // ThreadIdInBlock = __kmpc_get_hardware_thread_id_in_block(); |
4169 | // if (ThreadIdInBlock != 0) return; |
4170 | // UserCode: |
4171 | // // user code |
4172 | // |
4173 | auto &Ctx = getAnchorValue().getContext(); |
4174 | Function *Kernel = getAssociatedFunction(); |
4175 | assert(Kernel && "Expected an associated function!" ); |
4176 | |
4177 | // Create block for user code to branch to from initial block. |
4178 | BasicBlock *InitBB = KernelInitCB->getParent(); |
4179 | BasicBlock *UserCodeBB = InitBB->splitBasicBlock( |
4180 | I: KernelInitCB->getNextNode(), BBName: "main.thread.user_code" ); |
4181 | BasicBlock *ReturnBB = |
4182 | BasicBlock::Create(Context&: Ctx, Name: "exit.threads" , Parent: Kernel, InsertBefore: UserCodeBB); |
4183 | |
4184 | // Register blocks with attributor: |
4185 | A.registerManifestAddedBasicBlock(BB&: *InitBB); |
4186 | A.registerManifestAddedBasicBlock(BB&: *UserCodeBB); |
4187 | A.registerManifestAddedBasicBlock(BB&: *ReturnBB); |
4188 | |
4189 | // Debug location: |
4190 | const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); |
4191 | ReturnInst::Create(C&: Ctx, InsertAtEnd: ReturnBB)->setDebugLoc(DLoc); |
4192 | InitBB->getTerminator()->eraseFromParent(); |
4193 | |
4194 | // Prepare call to OMPRTL___kmpc_get_hardware_thread_id_in_block. |
4195 | Module &M = *Kernel->getParent(); |
4196 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
4197 | FunctionCallee ThreadIdInBlockFn = |
4198 | OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( |
4199 | M, FnID: OMPRTL___kmpc_get_hardware_thread_id_in_block); |
4200 | |
4201 | // Get thread ID in block. |
4202 | CallInst *ThreadIdInBlock = |
4203 | CallInst::Create(Func: ThreadIdInBlockFn, NameStr: "thread_id.in.block" , InsertBefore: InitBB); |
4204 | OMPInfoCache.setCallingConvention(Callee: ThreadIdInBlockFn, CI: ThreadIdInBlock); |
4205 | ThreadIdInBlock->setDebugLoc(DLoc); |
4206 | |
4207 | // Eliminate all threads in the block with ID not equal to 0: |
4208 | Instruction *IsMainThread = |
4209 | ICmpInst::Create(Op: ICmpInst::ICmp, Pred: CmpInst::ICMP_NE, S1: ThreadIdInBlock, |
4210 | S2: ConstantInt::get(Ty: ThreadIdInBlock->getType(), V: 0), |
4211 | Name: "thread.is_main" , InsertBefore: InitBB); |
4212 | IsMainThread->setDebugLoc(DLoc); |
4213 | BranchInst::Create(IfTrue: ReturnBB, IfFalse: UserCodeBB, Cond: IsMainThread, InsertBefore: InitBB); |
4214 | } |
4215 | |
4216 | bool changeToSPMDMode(Attributor &A, ChangeStatus &Changed) { |
4217 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
4218 | |
4219 | // We cannot change to SPMD mode if the runtime functions aren't availible. |
4220 | if (!OMPInfoCache.runtimeFnsAvailable( |
4221 | Fns: {OMPRTL___kmpc_get_hardware_thread_id_in_block, |
4222 | OMPRTL___kmpc_barrier_simple_spmd})) |
4223 | return false; |
4224 | |
4225 | if (!SPMDCompatibilityTracker.isAssumed()) { |
4226 | for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) { |
4227 | if (!NonCompatibleI) |
4228 | continue; |
4229 | |
4230 | // Skip diagnostics on calls to known OpenMP runtime functions for now. |
4231 | if (auto *CB = dyn_cast<CallBase>(Val: NonCompatibleI)) |
4232 | if (OMPInfoCache.RTLFunctions.contains(V: CB->getCalledFunction())) |
4233 | continue; |
4234 | |
4235 | auto = [&](OptimizationRemarkAnalysis ORA) { |
4236 | ORA << "Value has potential side effects preventing SPMD-mode " |
4237 | "execution" ; |
4238 | if (isa<CallBase>(Val: NonCompatibleI)) { |
4239 | ORA << ". Add `[[omp::assume(\"ompx_spmd_amenable\")]]` to " |
4240 | "the called function to override" ; |
4241 | } |
4242 | return ORA << "." ; |
4243 | }; |
4244 | A.emitRemark<OptimizationRemarkAnalysis>(I: NonCompatibleI, RemarkName: "OMP121" , |
4245 | RemarkCB&: Remark); |
4246 | |
4247 | LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: " |
4248 | << *NonCompatibleI << "\n" ); |
4249 | } |
4250 | |
4251 | return false; |
4252 | } |
4253 | |
4254 | // Get the actual kernel, could be the caller of the anchor scope if we have |
4255 | // a debug wrapper. |
4256 | Function *Kernel = getAnchorScope(); |
4257 | if (Kernel->hasLocalLinkage()) { |
4258 | assert(Kernel->hasOneUse() && "Unexpected use of debug kernel wrapper." ); |
4259 | auto *CB = cast<CallBase>(Val: Kernel->user_back()); |
4260 | Kernel = CB->getCaller(); |
4261 | } |
4262 | assert(omp::isOpenMPKernel(*Kernel) && "Expected kernel function!" ); |
4263 | |
4264 | // Check if the kernel is already in SPMD mode, if so, return success. |
4265 | ConstantStruct *ExistingKernelEnvC = |
4266 | KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB); |
4267 | auto *ExecModeC = |
4268 | KernelInfo::getExecModeFromKernelEnvironment(KernelEnvC: ExistingKernelEnvC); |
4269 | const int8_t ExecModeVal = ExecModeC->getSExtValue(); |
4270 | if (ExecModeVal != OMP_TGT_EXEC_MODE_GENERIC) |
4271 | return true; |
4272 | |
4273 | // We will now unconditionally modify the IR, indicate a change. |
4274 | Changed = ChangeStatus::CHANGED; |
4275 | |
4276 | // Do not use instruction guards when no parallel is present inside |
4277 | // the target region. |
4278 | if (mayContainParallelRegion()) |
4279 | insertInstructionGuardsHelper(A); |
4280 | else |
4281 | forceSingleThreadPerWorkgroupHelper(A); |
4282 | |
4283 | // Adjust the global exec mode flag that tells the runtime what mode this |
4284 | // kernel is executed in. |
4285 | assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC && |
4286 | "Initially non-SPMD kernel has SPMD exec mode!" ); |
4287 | setExecModeOfKernelEnvironment( |
4288 | ConstantInt::get(Ty: ExecModeC->getIntegerType(), |
4289 | V: ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD)); |
4290 | |
4291 | ++NumOpenMPTargetRegionKernelsSPMD; |
4292 | |
4293 | auto = [&](OptimizationRemark OR) { |
4294 | return OR << "Transformed generic-mode kernel to SPMD-mode." ; |
4295 | }; |
4296 | A.emitRemark<OptimizationRemark>(I: KernelInitCB, RemarkName: "OMP120" , RemarkCB&: Remark); |
4297 | return true; |
4298 | }; |
4299 | |
4300 | bool buildCustomStateMachine(Attributor &A, ChangeStatus &Changed) { |
4301 | // If we have disabled state machine rewrites, don't make a custom one |
4302 | if (DisableOpenMPOptStateMachineRewrite) |
4303 | return false; |
4304 | |
4305 | // Don't rewrite the state machine if we are not in a valid state. |
4306 | if (!ReachedKnownParallelRegions.isValidState()) |
4307 | return false; |
4308 | |
4309 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
4310 | if (!OMPInfoCache.runtimeFnsAvailable( |
4311 | Fns: {OMPRTL___kmpc_get_hardware_num_threads_in_block, |
4312 | OMPRTL___kmpc_get_warp_size, OMPRTL___kmpc_barrier_simple_generic, |
4313 | OMPRTL___kmpc_kernel_parallel, OMPRTL___kmpc_kernel_end_parallel})) |
4314 | return false; |
4315 | |
4316 | ConstantStruct *ExistingKernelEnvC = |
4317 | KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB); |
4318 | |
4319 | // Check if the current configuration is non-SPMD and generic state machine. |
4320 | // If we already have SPMD mode or a custom state machine we do not need to |
4321 | // go any further. If it is anything but a constant something is weird and |
4322 | // we give up. |
4323 | ConstantInt *UseStateMachineC = |
4324 | KernelInfo::getUseGenericStateMachineFromKernelEnvironment( |
4325 | KernelEnvC: ExistingKernelEnvC); |
4326 | ConstantInt *ModeC = |
4327 | KernelInfo::getExecModeFromKernelEnvironment(KernelEnvC: ExistingKernelEnvC); |
4328 | |
4329 | // If we are stuck with generic mode, try to create a custom device (=GPU) |
4330 | // state machine which is specialized for the parallel regions that are |
4331 | // reachable by the kernel. |
4332 | if (UseStateMachineC->isZero() || |
4333 | (ModeC->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)) |
4334 | return false; |
4335 | |
4336 | Changed = ChangeStatus::CHANGED; |
4337 | |
4338 | // If not SPMD mode, indicate we use a custom state machine now. |
4339 | setUseGenericStateMachineOfKernelEnvironment( |
4340 | ConstantInt::get(Ty: UseStateMachineC->getIntegerType(), V: false)); |
4341 | |
4342 | // If we don't actually need a state machine we are done here. This can |
4343 | // happen if there simply are no parallel regions. In the resulting kernel |
4344 | // all worker threads will simply exit right away, leaving the main thread |
4345 | // to do the work alone. |
4346 | if (!mayContainParallelRegion()) { |
4347 | ++NumOpenMPTargetRegionKernelsWithoutStateMachine; |
4348 | |
4349 | auto = [&](OptimizationRemark OR) { |
4350 | return OR << "Removing unused state machine from generic-mode kernel." ; |
4351 | }; |
4352 | A.emitRemark<OptimizationRemark>(I: KernelInitCB, RemarkName: "OMP130" , RemarkCB&: Remark); |
4353 | |
4354 | return true; |
4355 | } |
4356 | |
4357 | // Keep track in the statistics of our new shiny custom state machine. |
4358 | if (ReachedUnknownParallelRegions.empty()) { |
4359 | ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback; |
4360 | |
4361 | auto = [&](OptimizationRemark OR) { |
4362 | return OR << "Rewriting generic-mode kernel with a customized state " |
4363 | "machine." ; |
4364 | }; |
4365 | A.emitRemark<OptimizationRemark>(I: KernelInitCB, RemarkName: "OMP131" , RemarkCB&: Remark); |
4366 | } else { |
4367 | ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback; |
4368 | |
4369 | auto = [&](OptimizationRemarkAnalysis OR) { |
4370 | return OR << "Generic-mode kernel is executed with a customized state " |
4371 | "machine that requires a fallback." ; |
4372 | }; |
4373 | A.emitRemark<OptimizationRemarkAnalysis>(I: KernelInitCB, RemarkName: "OMP132" , RemarkCB&: Remark); |
4374 | |
4375 | // Tell the user why we ended up with a fallback. |
4376 | for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) { |
4377 | if (!UnknownParallelRegionCB) |
4378 | continue; |
4379 | auto = [&](OptimizationRemarkAnalysis ORA) { |
4380 | return ORA << "Call may contain unknown parallel regions. Use " |
4381 | << "`[[omp::assume(\"omp_no_parallelism\")]]` to " |
4382 | "override." ; |
4383 | }; |
4384 | A.emitRemark<OptimizationRemarkAnalysis>(I: UnknownParallelRegionCB, |
4385 | RemarkName: "OMP133" , RemarkCB&: Remark); |
4386 | } |
4387 | } |
4388 | |
4389 | // Create all the blocks: |
4390 | // |
4391 | // InitCB = __kmpc_target_init(...) |
4392 | // BlockHwSize = |
4393 | // __kmpc_get_hardware_num_threads_in_block(); |
4394 | // WarpSize = __kmpc_get_warp_size(); |
4395 | // BlockSize = BlockHwSize - WarpSize; |
4396 | // IsWorkerCheckBB: bool IsWorker = InitCB != -1; |
4397 | // if (IsWorker) { |
4398 | // if (InitCB >= BlockSize) return; |
4399 | // SMBeginBB: __kmpc_barrier_simple_generic(...); |
4400 | // void *WorkFn; |
4401 | // bool Active = __kmpc_kernel_parallel(&WorkFn); |
4402 | // if (!WorkFn) return; |
4403 | // SMIsActiveCheckBB: if (Active) { |
4404 | // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>) |
4405 | // ParFn0(...); |
4406 | // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>) |
4407 | // ParFn1(...); |
4408 | // ... |
4409 | // SMIfCascadeCurrentBB: else |
4410 | // ((WorkFnTy*)WorkFn)(...); |
4411 | // SMEndParallelBB: __kmpc_kernel_end_parallel(...); |
4412 | // } |
4413 | // SMDoneBB: __kmpc_barrier_simple_generic(...); |
4414 | // goto SMBeginBB; |
4415 | // } |
4416 | // UserCodeEntryBB: // user code |
4417 | // __kmpc_target_deinit(...) |
4418 | // |
4419 | auto &Ctx = getAnchorValue().getContext(); |
4420 | Function *Kernel = getAssociatedFunction(); |
4421 | assert(Kernel && "Expected an associated function!" ); |
4422 | |
4423 | BasicBlock *InitBB = KernelInitCB->getParent(); |
4424 | BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock( |
4425 | I: KernelInitCB->getNextNode(), BBName: "thread.user_code.check" ); |
4426 | BasicBlock *IsWorkerCheckBB = |
4427 | BasicBlock::Create(Context&: Ctx, Name: "is_worker_check" , Parent: Kernel, InsertBefore: UserCodeEntryBB); |
4428 | BasicBlock *StateMachineBeginBB = BasicBlock::Create( |
4429 | Context&: Ctx, Name: "worker_state_machine.begin" , Parent: Kernel, InsertBefore: UserCodeEntryBB); |
4430 | BasicBlock *StateMachineFinishedBB = BasicBlock::Create( |
4431 | Context&: Ctx, Name: "worker_state_machine.finished" , Parent: Kernel, InsertBefore: UserCodeEntryBB); |
4432 | BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create( |
4433 | Context&: Ctx, Name: "worker_state_machine.is_active.check" , Parent: Kernel, InsertBefore: UserCodeEntryBB); |
4434 | BasicBlock *StateMachineIfCascadeCurrentBB = |
4435 | BasicBlock::Create(Context&: Ctx, Name: "worker_state_machine.parallel_region.check" , |
4436 | Parent: Kernel, InsertBefore: UserCodeEntryBB); |
4437 | BasicBlock *StateMachineEndParallelBB = |
4438 | BasicBlock::Create(Context&: Ctx, Name: "worker_state_machine.parallel_region.end" , |
4439 | Parent: Kernel, InsertBefore: UserCodeEntryBB); |
4440 | BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create( |
4441 | Context&: Ctx, Name: "worker_state_machine.done.barrier" , Parent: Kernel, InsertBefore: UserCodeEntryBB); |
4442 | A.registerManifestAddedBasicBlock(BB&: *InitBB); |
4443 | A.registerManifestAddedBasicBlock(BB&: *UserCodeEntryBB); |
4444 | A.registerManifestAddedBasicBlock(BB&: *IsWorkerCheckBB); |
4445 | A.registerManifestAddedBasicBlock(BB&: *StateMachineBeginBB); |
4446 | A.registerManifestAddedBasicBlock(BB&: *StateMachineFinishedBB); |
4447 | A.registerManifestAddedBasicBlock(BB&: *StateMachineIsActiveCheckBB); |
4448 | A.registerManifestAddedBasicBlock(BB&: *StateMachineIfCascadeCurrentBB); |
4449 | A.registerManifestAddedBasicBlock(BB&: *StateMachineEndParallelBB); |
4450 | A.registerManifestAddedBasicBlock(BB&: *StateMachineDoneBarrierBB); |
4451 | |
4452 | const DebugLoc &DLoc = KernelInitCB->getDebugLoc(); |
4453 | ReturnInst::Create(C&: Ctx, InsertAtEnd: StateMachineFinishedBB)->setDebugLoc(DLoc); |
4454 | InitBB->getTerminator()->eraseFromParent(); |
4455 | |
4456 | Instruction *IsWorker = |
4457 | ICmpInst::Create(Op: ICmpInst::ICmp, Pred: llvm::CmpInst::ICMP_NE, S1: KernelInitCB, |
4458 | S2: ConstantInt::get(Ty: KernelInitCB->getType(), V: -1), |
4459 | Name: "thread.is_worker" , InsertBefore: InitBB); |
4460 | IsWorker->setDebugLoc(DLoc); |
4461 | BranchInst::Create(IfTrue: IsWorkerCheckBB, IfFalse: UserCodeEntryBB, Cond: IsWorker, InsertBefore: InitBB); |
4462 | |
4463 | Module &M = *Kernel->getParent(); |
4464 | FunctionCallee BlockHwSizeFn = |
4465 | OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( |
4466 | M, FnID: OMPRTL___kmpc_get_hardware_num_threads_in_block); |
4467 | FunctionCallee WarpSizeFn = |
4468 | OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( |
4469 | M, FnID: OMPRTL___kmpc_get_warp_size); |
4470 | CallInst *BlockHwSize = |
4471 | CallInst::Create(Func: BlockHwSizeFn, NameStr: "block.hw_size" , InsertBefore: IsWorkerCheckBB); |
4472 | OMPInfoCache.setCallingConvention(Callee: BlockHwSizeFn, CI: BlockHwSize); |
4473 | BlockHwSize->setDebugLoc(DLoc); |
4474 | CallInst *WarpSize = |
4475 | CallInst::Create(Func: WarpSizeFn, NameStr: "warp.size" , InsertBefore: IsWorkerCheckBB); |
4476 | OMPInfoCache.setCallingConvention(Callee: WarpSizeFn, CI: WarpSize); |
4477 | WarpSize->setDebugLoc(DLoc); |
4478 | Instruction *BlockSize = BinaryOperator::CreateSub( |
4479 | V1: BlockHwSize, V2: WarpSize, Name: "block.size" , BB: IsWorkerCheckBB); |
4480 | BlockSize->setDebugLoc(DLoc); |
4481 | Instruction *IsMainOrWorker = ICmpInst::Create( |
4482 | Op: ICmpInst::ICmp, Pred: llvm::CmpInst::ICMP_SLT, S1: KernelInitCB, S2: BlockSize, |
4483 | Name: "thread.is_main_or_worker" , InsertBefore: IsWorkerCheckBB); |
4484 | IsMainOrWorker->setDebugLoc(DLoc); |
4485 | BranchInst::Create(IfTrue: StateMachineBeginBB, IfFalse: StateMachineFinishedBB, |
4486 | Cond: IsMainOrWorker, InsertBefore: IsWorkerCheckBB); |
4487 | |
4488 | // Create local storage for the work function pointer. |
4489 | const DataLayout &DL = M.getDataLayout(); |
4490 | Type *VoidPtrTy = PointerType::getUnqual(C&: Ctx); |
4491 | Instruction *WorkFnAI = |
4492 | new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr, |
4493 | "worker.work_fn.addr" , Kernel->getEntryBlock().begin()); |
4494 | WorkFnAI->setDebugLoc(DLoc); |
4495 | |
4496 | OMPInfoCache.OMPBuilder.updateToLocation( |
4497 | Loc: OpenMPIRBuilder::LocationDescription( |
4498 | IRBuilder<>::InsertPoint(StateMachineBeginBB, |
4499 | StateMachineBeginBB->end()), |
4500 | DLoc)); |
4501 | |
4502 | Value *Ident = KernelInfo::getIdentFromKernelEnvironment(KernelEnvC); |
4503 | Value *GTid = KernelInitCB; |
4504 | |
4505 | FunctionCallee BarrierFn = |
4506 | OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( |
4507 | M, FnID: OMPRTL___kmpc_barrier_simple_generic); |
4508 | CallInst *Barrier = |
4509 | CallInst::Create(Func: BarrierFn, Args: {Ident, GTid}, NameStr: "" , InsertBefore: StateMachineBeginBB); |
4510 | OMPInfoCache.setCallingConvention(Callee: BarrierFn, CI: Barrier); |
4511 | Barrier->setDebugLoc(DLoc); |
4512 | |
4513 | if (WorkFnAI->getType()->getPointerAddressSpace() != |
4514 | (unsigned int)AddressSpace::Generic) { |
4515 | WorkFnAI = new AddrSpaceCastInst( |
4516 | WorkFnAI, PointerType::get(C&: Ctx, AddressSpace: (unsigned int)AddressSpace::Generic), |
4517 | WorkFnAI->getName() + ".generic" , StateMachineBeginBB); |
4518 | WorkFnAI->setDebugLoc(DLoc); |
4519 | } |
4520 | |
4521 | FunctionCallee KernelParallelFn = |
4522 | OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( |
4523 | M, FnID: OMPRTL___kmpc_kernel_parallel); |
4524 | CallInst *IsActiveWorker = CallInst::Create( |
4525 | Func: KernelParallelFn, Args: {WorkFnAI}, NameStr: "worker.is_active" , InsertBefore: StateMachineBeginBB); |
4526 | OMPInfoCache.setCallingConvention(Callee: KernelParallelFn, CI: IsActiveWorker); |
4527 | IsActiveWorker->setDebugLoc(DLoc); |
4528 | Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn" , |
4529 | StateMachineBeginBB); |
4530 | WorkFn->setDebugLoc(DLoc); |
4531 | |
4532 | FunctionType *ParallelRegionFnTy = FunctionType::get( |
4533 | Result: Type::getVoidTy(C&: Ctx), Params: {Type::getInt16Ty(C&: Ctx), Type::getInt32Ty(C&: Ctx)}, |
4534 | isVarArg: false); |
4535 | |
4536 | Instruction *IsDone = |
4537 | ICmpInst::Create(Op: ICmpInst::ICmp, Pred: llvm::CmpInst::ICMP_EQ, S1: WorkFn, |
4538 | S2: Constant::getNullValue(Ty: VoidPtrTy), Name: "worker.is_done" , |
4539 | InsertBefore: StateMachineBeginBB); |
4540 | IsDone->setDebugLoc(DLoc); |
4541 | BranchInst::Create(IfTrue: StateMachineFinishedBB, IfFalse: StateMachineIsActiveCheckBB, |
4542 | Cond: IsDone, InsertBefore: StateMachineBeginBB) |
4543 | ->setDebugLoc(DLoc); |
4544 | |
4545 | BranchInst::Create(IfTrue: StateMachineIfCascadeCurrentBB, |
4546 | IfFalse: StateMachineDoneBarrierBB, Cond: IsActiveWorker, |
4547 | InsertBefore: StateMachineIsActiveCheckBB) |
4548 | ->setDebugLoc(DLoc); |
4549 | |
4550 | Value *ZeroArg = |
4551 | Constant::getNullValue(Ty: ParallelRegionFnTy->getParamType(i: 0)); |
4552 | |
4553 | const unsigned int WrapperFunctionArgNo = 6; |
4554 | |
4555 | // Now that we have most of the CFG skeleton it is time for the if-cascade |
4556 | // that checks the function pointer we got from the runtime against the |
4557 | // parallel regions we expect, if there are any. |
4558 | for (int I = 0, E = ReachedKnownParallelRegions.size(); I < E; ++I) { |
4559 | auto *CB = ReachedKnownParallelRegions[I]; |
4560 | auto *ParallelRegion = dyn_cast<Function>( |
4561 | Val: CB->getArgOperand(i: WrapperFunctionArgNo)->stripPointerCasts()); |
4562 | BasicBlock *PRExecuteBB = BasicBlock::Create( |
4563 | Context&: Ctx, Name: "worker_state_machine.parallel_region.execute" , Parent: Kernel, |
4564 | InsertBefore: StateMachineEndParallelBB); |
4565 | CallInst::Create(Func: ParallelRegion, Args: {ZeroArg, GTid}, NameStr: "" , InsertBefore: PRExecuteBB) |
4566 | ->setDebugLoc(DLoc); |
4567 | BranchInst::Create(IfTrue: StateMachineEndParallelBB, InsertBefore: PRExecuteBB) |
4568 | ->setDebugLoc(DLoc); |
4569 | |
4570 | BasicBlock *PRNextBB = |
4571 | BasicBlock::Create(Context&: Ctx, Name: "worker_state_machine.parallel_region.check" , |
4572 | Parent: Kernel, InsertBefore: StateMachineEndParallelBB); |
4573 | A.registerManifestAddedBasicBlock(BB&: *PRExecuteBB); |
4574 | A.registerManifestAddedBasicBlock(BB&: *PRNextBB); |
4575 | |
4576 | // Check if we need to compare the pointer at all or if we can just |
4577 | // call the parallel region function. |
4578 | Value *IsPR; |
4579 | if (I + 1 < E || !ReachedUnknownParallelRegions.empty()) { |
4580 | Instruction *CmpI = ICmpInst::Create( |
4581 | Op: ICmpInst::ICmp, Pred: llvm::CmpInst::ICMP_EQ, S1: WorkFn, S2: ParallelRegion, |
4582 | Name: "worker.check_parallel_region" , InsertBefore: StateMachineIfCascadeCurrentBB); |
4583 | CmpI->setDebugLoc(DLoc); |
4584 | IsPR = CmpI; |
4585 | } else { |
4586 | IsPR = ConstantInt::getTrue(Context&: Ctx); |
4587 | } |
4588 | |
4589 | BranchInst::Create(IfTrue: PRExecuteBB, IfFalse: PRNextBB, Cond: IsPR, |
4590 | InsertBefore: StateMachineIfCascadeCurrentBB) |
4591 | ->setDebugLoc(DLoc); |
4592 | StateMachineIfCascadeCurrentBB = PRNextBB; |
4593 | } |
4594 | |
4595 | // At the end of the if-cascade we place the indirect function pointer call |
4596 | // in case we might need it, that is if there can be parallel regions we |
4597 | // have not handled in the if-cascade above. |
4598 | if (!ReachedUnknownParallelRegions.empty()) { |
4599 | StateMachineIfCascadeCurrentBB->setName( |
4600 | "worker_state_machine.parallel_region.fallback.execute" ); |
4601 | CallInst::Create(Ty: ParallelRegionFnTy, Func: WorkFn, Args: {ZeroArg, GTid}, NameStr: "" , |
4602 | InsertBefore: StateMachineIfCascadeCurrentBB) |
4603 | ->setDebugLoc(DLoc); |
4604 | } |
4605 | BranchInst::Create(IfTrue: StateMachineEndParallelBB, |
4606 | InsertBefore: StateMachineIfCascadeCurrentBB) |
4607 | ->setDebugLoc(DLoc); |
4608 | |
4609 | FunctionCallee EndParallelFn = |
4610 | OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction( |
4611 | M, FnID: OMPRTL___kmpc_kernel_end_parallel); |
4612 | CallInst *EndParallel = |
4613 | CallInst::Create(Func: EndParallelFn, Args: {}, NameStr: "" , InsertBefore: StateMachineEndParallelBB); |
4614 | OMPInfoCache.setCallingConvention(Callee: EndParallelFn, CI: EndParallel); |
4615 | EndParallel->setDebugLoc(DLoc); |
4616 | BranchInst::Create(IfTrue: StateMachineDoneBarrierBB, InsertBefore: StateMachineEndParallelBB) |
4617 | ->setDebugLoc(DLoc); |
4618 | |
4619 | CallInst::Create(Func: BarrierFn, Args: {Ident, GTid}, NameStr: "" , InsertBefore: StateMachineDoneBarrierBB) |
4620 | ->setDebugLoc(DLoc); |
4621 | BranchInst::Create(IfTrue: StateMachineBeginBB, InsertBefore: StateMachineDoneBarrierBB) |
4622 | ->setDebugLoc(DLoc); |
4623 | |
4624 | return true; |
4625 | } |
4626 | |
4627 | /// Fixpoint iteration update function. Will be called every time a dependence |
4628 | /// changed its state (and in the beginning). |
4629 | ChangeStatus updateImpl(Attributor &A) override { |
4630 | KernelInfoState StateBefore = getState(); |
4631 | |
4632 | // When we leave this function this RAII will make sure the member |
4633 | // KernelEnvC is updated properly depending on the state. That member is |
4634 | // used for simplification of values and needs to be up to date at all |
4635 | // times. |
4636 | struct UpdateKernelEnvCRAII { |
4637 | AAKernelInfoFunction &AA; |
4638 | |
4639 | UpdateKernelEnvCRAII(AAKernelInfoFunction &AA) : AA(AA) {} |
4640 | |
4641 | ~UpdateKernelEnvCRAII() { |
4642 | if (!AA.KernelEnvC) |
4643 | return; |
4644 | |
4645 | ConstantStruct *ExistingKernelEnvC = |
4646 | KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB: AA.KernelInitCB); |
4647 | |
4648 | if (!AA.isValidState()) { |
4649 | AA.KernelEnvC = ExistingKernelEnvC; |
4650 | return; |
4651 | } |
4652 | |
4653 | if (!AA.ReachedKnownParallelRegions.isValidState()) |
4654 | AA.setUseGenericStateMachineOfKernelEnvironment( |
4655 | KernelInfo::getUseGenericStateMachineFromKernelEnvironment( |
4656 | KernelEnvC: ExistingKernelEnvC)); |
4657 | |
4658 | if (!AA.SPMDCompatibilityTracker.isValidState()) |
4659 | AA.setExecModeOfKernelEnvironment( |
4660 | KernelInfo::getExecModeFromKernelEnvironment(KernelEnvC: ExistingKernelEnvC)); |
4661 | |
4662 | ConstantInt *MayUseNestedParallelismC = |
4663 | KernelInfo::getMayUseNestedParallelismFromKernelEnvironment( |
4664 | KernelEnvC: AA.KernelEnvC); |
4665 | ConstantInt *NewMayUseNestedParallelismC = ConstantInt::get( |
4666 | Ty: MayUseNestedParallelismC->getIntegerType(), V: AA.NestedParallelism); |
4667 | AA.setMayUseNestedParallelismOfKernelEnvironment( |
4668 | NewMayUseNestedParallelismC); |
4669 | } |
4670 | } RAII(*this); |
4671 | |
4672 | // Callback to check a read/write instruction. |
4673 | auto CheckRWInst = [&](Instruction &I) { |
4674 | // We handle calls later. |
4675 | if (isa<CallBase>(Val: I)) |
4676 | return true; |
4677 | // We only care about write effects. |
4678 | if (!I.mayWriteToMemory()) |
4679 | return true; |
4680 | if (auto *SI = dyn_cast<StoreInst>(Val: &I)) { |
4681 | const auto *UnderlyingObjsAA = A.getAAFor<AAUnderlyingObjects>( |
4682 | QueryingAA: *this, IRP: IRPosition::value(V: *SI->getPointerOperand()), |
4683 | DepClass: DepClassTy::OPTIONAL); |
4684 | auto *HS = A.getAAFor<AAHeapToStack>( |
4685 | QueryingAA: *this, IRP: IRPosition::function(F: *I.getFunction()), |
4686 | DepClass: DepClassTy::OPTIONAL); |
4687 | if (UnderlyingObjsAA && |
4688 | UnderlyingObjsAA->forallUnderlyingObjects(Pred: [&](Value &Obj) { |
4689 | if (AA::isAssumedThreadLocalObject(A, Obj, QueryingAA: *this)) |
4690 | return true; |
4691 | // Check for AAHeapToStack moved objects which must not be |
4692 | // guarded. |
4693 | auto *CB = dyn_cast<CallBase>(Val: &Obj); |
4694 | return CB && HS && HS->isAssumedHeapToStack(CB: *CB); |
4695 | })) |
4696 | return true; |
4697 | } |
4698 | |
4699 | // Insert instruction that needs guarding. |
4700 | SPMDCompatibilityTracker.insert(Elem: &I); |
4701 | return true; |
4702 | }; |
4703 | |
4704 | bool UsedAssumedInformationInCheckRWInst = false; |
4705 | if (!SPMDCompatibilityTracker.isAtFixpoint()) |
4706 | if (!A.checkForAllReadWriteInstructions( |
4707 | Pred: CheckRWInst, QueryingAA&: *this, UsedAssumedInformation&: UsedAssumedInformationInCheckRWInst)) |
4708 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
4709 | |
4710 | bool UsedAssumedInformationFromReachingKernels = false; |
4711 | if (!IsKernelEntry) { |
4712 | updateParallelLevels(A); |
4713 | |
4714 | bool AllReachingKernelsKnown = true; |
4715 | updateReachingKernelEntries(A, AllReachingKernelsKnown); |
4716 | UsedAssumedInformationFromReachingKernels = !AllReachingKernelsKnown; |
4717 | |
4718 | if (!SPMDCompatibilityTracker.empty()) { |
4719 | if (!ParallelLevels.isValidState()) |
4720 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
4721 | else if (!ReachingKernelEntries.isValidState()) |
4722 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
4723 | else { |
4724 | // Check if all reaching kernels agree on the mode as we can otherwise |
4725 | // not guard instructions. We might not be sure about the mode so we |
4726 | // we cannot fix the internal spmd-zation state either. |
4727 | int SPMD = 0, Generic = 0; |
4728 | for (auto *Kernel : ReachingKernelEntries) { |
4729 | auto *CBAA = A.getAAFor<AAKernelInfo>( |
4730 | QueryingAA: *this, IRP: IRPosition::function(F: *Kernel), DepClass: DepClassTy::OPTIONAL); |
4731 | if (CBAA && CBAA->SPMDCompatibilityTracker.isValidState() && |
4732 | CBAA->SPMDCompatibilityTracker.isAssumed()) |
4733 | ++SPMD; |
4734 | else |
4735 | ++Generic; |
4736 | if (!CBAA || !CBAA->SPMDCompatibilityTracker.isAtFixpoint()) |
4737 | UsedAssumedInformationFromReachingKernels = true; |
4738 | } |
4739 | if (SPMD != 0 && Generic != 0) |
4740 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
4741 | } |
4742 | } |
4743 | } |
4744 | |
4745 | // Callback to check a call instruction. |
4746 | bool AllParallelRegionStatesWereFixed = true; |
4747 | bool AllSPMDStatesWereFixed = true; |
4748 | auto CheckCallInst = [&](Instruction &I) { |
4749 | auto &CB = cast<CallBase>(Val&: I); |
4750 | auto *CBAA = A.getAAFor<AAKernelInfo>( |
4751 | QueryingAA: *this, IRP: IRPosition::callsite_function(CB), DepClass: DepClassTy::OPTIONAL); |
4752 | if (!CBAA) |
4753 | return false; |
4754 | getState() ^= CBAA->getState(); |
4755 | AllSPMDStatesWereFixed &= CBAA->SPMDCompatibilityTracker.isAtFixpoint(); |
4756 | AllParallelRegionStatesWereFixed &= |
4757 | CBAA->ReachedKnownParallelRegions.isAtFixpoint(); |
4758 | AllParallelRegionStatesWereFixed &= |
4759 | CBAA->ReachedUnknownParallelRegions.isAtFixpoint(); |
4760 | return true; |
4761 | }; |
4762 | |
4763 | bool UsedAssumedInformationInCheckCallInst = false; |
4764 | if (!A.checkForAllCallLikeInstructions( |
4765 | Pred: CheckCallInst, QueryingAA: *this, UsedAssumedInformation&: UsedAssumedInformationInCheckCallInst)) { |
4766 | LLVM_DEBUG(dbgs() << TAG |
4767 | << "Failed to visit all call-like instructions!\n" ;); |
4768 | return indicatePessimisticFixpoint(); |
4769 | } |
4770 | |
4771 | // If we haven't used any assumed information for the reached parallel |
4772 | // region states we can fix it. |
4773 | if (!UsedAssumedInformationInCheckCallInst && |
4774 | AllParallelRegionStatesWereFixed) { |
4775 | ReachedKnownParallelRegions.indicateOptimisticFixpoint(); |
4776 | ReachedUnknownParallelRegions.indicateOptimisticFixpoint(); |
4777 | } |
4778 | |
4779 | // If we haven't used any assumed information for the SPMD state we can fix |
4780 | // it. |
4781 | if (!UsedAssumedInformationInCheckRWInst && |
4782 | !UsedAssumedInformationInCheckCallInst && |
4783 | !UsedAssumedInformationFromReachingKernels && AllSPMDStatesWereFixed) |
4784 | SPMDCompatibilityTracker.indicateOptimisticFixpoint(); |
4785 | |
4786 | return StateBefore == getState() ? ChangeStatus::UNCHANGED |
4787 | : ChangeStatus::CHANGED; |
4788 | } |
4789 | |
4790 | private: |
4791 | /// Update info regarding reaching kernels. |
4792 | void updateReachingKernelEntries(Attributor &A, |
4793 | bool &AllReachingKernelsKnown) { |
4794 | auto PredCallSite = [&](AbstractCallSite ACS) { |
4795 | Function *Caller = ACS.getInstruction()->getFunction(); |
4796 | |
4797 | assert(Caller && "Caller is nullptr" ); |
4798 | |
4799 | auto *CAA = A.getOrCreateAAFor<AAKernelInfo>( |
4800 | IRP: IRPosition::function(F: *Caller), QueryingAA: this, DepClass: DepClassTy::REQUIRED); |
4801 | if (CAA && CAA->ReachingKernelEntries.isValidState()) { |
4802 | ReachingKernelEntries ^= CAA->ReachingKernelEntries; |
4803 | return true; |
4804 | } |
4805 | |
4806 | // We lost track of the caller of the associated function, any kernel |
4807 | // could reach now. |
4808 | ReachingKernelEntries.indicatePessimisticFixpoint(); |
4809 | |
4810 | return true; |
4811 | }; |
4812 | |
4813 | if (!A.checkForAllCallSites(Pred: PredCallSite, QueryingAA: *this, |
4814 | RequireAllCallSites: true /* RequireAllCallSites */, |
4815 | UsedAssumedInformation&: AllReachingKernelsKnown)) |
4816 | ReachingKernelEntries.indicatePessimisticFixpoint(); |
4817 | } |
4818 | |
4819 | /// Update info regarding parallel levels. |
4820 | void updateParallelLevels(Attributor &A) { |
4821 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
4822 | OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI = |
4823 | OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51]; |
4824 | |
4825 | auto PredCallSite = [&](AbstractCallSite ACS) { |
4826 | Function *Caller = ACS.getInstruction()->getFunction(); |
4827 | |
4828 | assert(Caller && "Caller is nullptr" ); |
4829 | |
4830 | auto *CAA = |
4831 | A.getOrCreateAAFor<AAKernelInfo>(IRP: IRPosition::function(F: *Caller)); |
4832 | if (CAA && CAA->ParallelLevels.isValidState()) { |
4833 | // Any function that is called by `__kmpc_parallel_51` will not be |
4834 | // folded as the parallel level in the function is updated. In order to |
4835 | // get it right, all the analysis would depend on the implentation. That |
4836 | // said, if in the future any change to the implementation, the analysis |
4837 | // could be wrong. As a consequence, we are just conservative here. |
4838 | if (Caller == Parallel51RFI.Declaration) { |
4839 | ParallelLevels.indicatePessimisticFixpoint(); |
4840 | return true; |
4841 | } |
4842 | |
4843 | ParallelLevels ^= CAA->ParallelLevels; |
4844 | |
4845 | return true; |
4846 | } |
4847 | |
4848 | // We lost track of the caller of the associated function, any kernel |
4849 | // could reach now. |
4850 | ParallelLevels.indicatePessimisticFixpoint(); |
4851 | |
4852 | return true; |
4853 | }; |
4854 | |
4855 | bool AllCallSitesKnown = true; |
4856 | if (!A.checkForAllCallSites(Pred: PredCallSite, QueryingAA: *this, |
4857 | RequireAllCallSites: true /* RequireAllCallSites */, |
4858 | UsedAssumedInformation&: AllCallSitesKnown)) |
4859 | ParallelLevels.indicatePessimisticFixpoint(); |
4860 | } |
4861 | }; |
4862 | |
4863 | /// The call site kernel info abstract attribute, basically, what can we say |
4864 | /// about a call site with regards to the KernelInfoState. For now this simply |
4865 | /// forwards the information from the callee. |
4866 | struct AAKernelInfoCallSite : AAKernelInfo { |
4867 | AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A) |
4868 | : AAKernelInfo(IRP, A) {} |
4869 | |
4870 | /// See AbstractAttribute::initialize(...). |
4871 | void initialize(Attributor &A) override { |
4872 | AAKernelInfo::initialize(A); |
4873 | |
4874 | CallBase &CB = cast<CallBase>(Val&: getAssociatedValue()); |
4875 | auto *AssumptionAA = A.getAAFor<AAAssumptionInfo>( |
4876 | QueryingAA: *this, IRP: IRPosition::callsite_function(CB), DepClass: DepClassTy::OPTIONAL); |
4877 | |
4878 | // Check for SPMD-mode assumptions. |
4879 | if (AssumptionAA && AssumptionAA->hasAssumption(Assumption: "ompx_spmd_amenable" )) { |
4880 | indicateOptimisticFixpoint(); |
4881 | return; |
4882 | } |
4883 | |
4884 | // First weed out calls we do not care about, that is readonly/readnone |
4885 | // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a |
4886 | // parallel region or anything else we are looking for. |
4887 | if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(Val: CB)) { |
4888 | indicateOptimisticFixpoint(); |
4889 | return; |
4890 | } |
4891 | |
4892 | // Next we check if we know the callee. If it is a known OpenMP function |
4893 | // we will handle them explicitly in the switch below. If it is not, we |
4894 | // will use an AAKernelInfo object on the callee to gather information and |
4895 | // merge that into the current state. The latter happens in the updateImpl. |
4896 | auto CheckCallee = [&](Function *Callee, unsigned NumCallees) { |
4897 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
4898 | const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Val: Callee); |
4899 | if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { |
4900 | // Unknown caller or declarations are not analyzable, we give up. |
4901 | if (!Callee || !A.isFunctionIPOAmendable(F: *Callee)) { |
4902 | |
4903 | // Unknown callees might contain parallel regions, except if they have |
4904 | // an appropriate assumption attached. |
4905 | if (!AssumptionAA || |
4906 | !(AssumptionAA->hasAssumption(Assumption: "omp_no_openmp" ) || |
4907 | AssumptionAA->hasAssumption(Assumption: "omp_no_parallelism" ))) |
4908 | ReachedUnknownParallelRegions.insert(Elem: &CB); |
4909 | |
4910 | // If SPMDCompatibilityTracker is not fixed, we need to give up on the |
4911 | // idea we can run something unknown in SPMD-mode. |
4912 | if (!SPMDCompatibilityTracker.isAtFixpoint()) { |
4913 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
4914 | SPMDCompatibilityTracker.insert(Elem: &CB); |
4915 | } |
4916 | |
4917 | // We have updated the state for this unknown call properly, there |
4918 | // won't be any change so we indicate a fixpoint. |
4919 | indicateOptimisticFixpoint(); |
4920 | } |
4921 | // If the callee is known and can be used in IPO, we will update the |
4922 | // state based on the callee state in updateImpl. |
4923 | return; |
4924 | } |
4925 | if (NumCallees > 1) { |
4926 | indicatePessimisticFixpoint(); |
4927 | return; |
4928 | } |
4929 | |
4930 | RuntimeFunction RF = It->getSecond(); |
4931 | switch (RF) { |
4932 | // All the functions we know are compatible with SPMD mode. |
4933 | case OMPRTL___kmpc_is_spmd_exec_mode: |
4934 | case OMPRTL___kmpc_distribute_static_fini: |
4935 | case OMPRTL___kmpc_for_static_fini: |
4936 | case OMPRTL___kmpc_global_thread_num: |
4937 | case OMPRTL___kmpc_get_hardware_num_threads_in_block: |
4938 | case OMPRTL___kmpc_get_hardware_num_blocks: |
4939 | case OMPRTL___kmpc_single: |
4940 | case OMPRTL___kmpc_end_single: |
4941 | case OMPRTL___kmpc_master: |
4942 | case OMPRTL___kmpc_end_master: |
4943 | case OMPRTL___kmpc_barrier: |
4944 | case OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2: |
4945 | case OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2: |
4946 | case OMPRTL___kmpc_error: |
4947 | case OMPRTL___kmpc_flush: |
4948 | case OMPRTL___kmpc_get_hardware_thread_id_in_block: |
4949 | case OMPRTL___kmpc_get_warp_size: |
4950 | case OMPRTL_omp_get_thread_num: |
4951 | case OMPRTL_omp_get_num_threads: |
4952 | case OMPRTL_omp_get_max_threads: |
4953 | case OMPRTL_omp_in_parallel: |
4954 | case OMPRTL_omp_get_dynamic: |
4955 | case OMPRTL_omp_get_cancellation: |
4956 | case OMPRTL_omp_get_nested: |
4957 | case OMPRTL_omp_get_schedule: |
4958 | case OMPRTL_omp_get_thread_limit: |
4959 | case OMPRTL_omp_get_supported_active_levels: |
4960 | case OMPRTL_omp_get_max_active_levels: |
4961 | case OMPRTL_omp_get_level: |
4962 | case OMPRTL_omp_get_ancestor_thread_num: |
4963 | case OMPRTL_omp_get_team_size: |
4964 | case OMPRTL_omp_get_active_level: |
4965 | case OMPRTL_omp_in_final: |
4966 | case OMPRTL_omp_get_proc_bind: |
4967 | case OMPRTL_omp_get_num_places: |
4968 | case OMPRTL_omp_get_num_procs: |
4969 | case OMPRTL_omp_get_place_proc_ids: |
4970 | case OMPRTL_omp_get_place_num: |
4971 | case OMPRTL_omp_get_partition_num_places: |
4972 | case OMPRTL_omp_get_partition_place_nums: |
4973 | case OMPRTL_omp_get_wtime: |
4974 | break; |
4975 | case OMPRTL___kmpc_distribute_static_init_4: |
4976 | case OMPRTL___kmpc_distribute_static_init_4u: |
4977 | case OMPRTL___kmpc_distribute_static_init_8: |
4978 | case OMPRTL___kmpc_distribute_static_init_8u: |
4979 | case OMPRTL___kmpc_for_static_init_4: |
4980 | case OMPRTL___kmpc_for_static_init_4u: |
4981 | case OMPRTL___kmpc_for_static_init_8: |
4982 | case OMPRTL___kmpc_for_static_init_8u: { |
4983 | // Check the schedule and allow static schedule in SPMD mode. |
4984 | unsigned ScheduleArgOpNo = 2; |
4985 | auto *ScheduleTypeCI = |
4986 | dyn_cast<ConstantInt>(Val: CB.getArgOperand(i: ScheduleArgOpNo)); |
4987 | unsigned ScheduleTypeVal = |
4988 | ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0; |
4989 | switch (OMPScheduleType(ScheduleTypeVal)) { |
4990 | case OMPScheduleType::UnorderedStatic: |
4991 | case OMPScheduleType::UnorderedStaticChunked: |
4992 | case OMPScheduleType::OrderedDistribute: |
4993 | case OMPScheduleType::OrderedDistributeChunked: |
4994 | break; |
4995 | default: |
4996 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
4997 | SPMDCompatibilityTracker.insert(Elem: &CB); |
4998 | break; |
4999 | }; |
5000 | } break; |
5001 | case OMPRTL___kmpc_target_init: |
5002 | KernelInitCB = &CB; |
5003 | break; |
5004 | case OMPRTL___kmpc_target_deinit: |
5005 | KernelDeinitCB = &CB; |
5006 | break; |
5007 | case OMPRTL___kmpc_parallel_51: |
5008 | if (!handleParallel51(A, CB)) |
5009 | indicatePessimisticFixpoint(); |
5010 | return; |
5011 | case OMPRTL___kmpc_omp_task: |
5012 | // We do not look into tasks right now, just give up. |
5013 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
5014 | SPMDCompatibilityTracker.insert(Elem: &CB); |
5015 | ReachedUnknownParallelRegions.insert(Elem: &CB); |
5016 | break; |
5017 | case OMPRTL___kmpc_alloc_shared: |
5018 | case OMPRTL___kmpc_free_shared: |
5019 | // Return without setting a fixpoint, to be resolved in updateImpl. |
5020 | return; |
5021 | default: |
5022 | // Unknown OpenMP runtime calls cannot be executed in SPMD-mode, |
5023 | // generally. However, they do not hide parallel regions. |
5024 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
5025 | SPMDCompatibilityTracker.insert(Elem: &CB); |
5026 | break; |
5027 | } |
5028 | // All other OpenMP runtime calls will not reach parallel regions so they |
5029 | // can be safely ignored for now. Since it is a known OpenMP runtime call |
5030 | // we have now modeled all effects and there is no need for any update. |
5031 | indicateOptimisticFixpoint(); |
5032 | }; |
5033 | |
5034 | const auto *AACE = |
5035 | A.getAAFor<AACallEdges>(QueryingAA: *this, IRP: getIRPosition(), DepClass: DepClassTy::OPTIONAL); |
5036 | if (!AACE || !AACE->getState().isValidState() || AACE->hasUnknownCallee()) { |
5037 | CheckCallee(getAssociatedFunction(), 1); |
5038 | return; |
5039 | } |
5040 | const auto &OptimisticEdges = AACE->getOptimisticEdges(); |
5041 | for (auto *Callee : OptimisticEdges) { |
5042 | CheckCallee(Callee, OptimisticEdges.size()); |
5043 | if (isAtFixpoint()) |
5044 | break; |
5045 | } |
5046 | } |
5047 | |
5048 | ChangeStatus updateImpl(Attributor &A) override { |
5049 | // TODO: Once we have call site specific value information we can provide |
5050 | // call site specific liveness information and then it makes |
5051 | // sense to specialize attributes for call sites arguments instead of |
5052 | // redirecting requests to the callee argument. |
5053 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
5054 | KernelInfoState StateBefore = getState(); |
5055 | |
5056 | auto CheckCallee = [&](Function *F, int NumCallees) { |
5057 | const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Val: F); |
5058 | |
5059 | // If F is not a runtime function, propagate the AAKernelInfo of the |
5060 | // callee. |
5061 | if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) { |
5062 | const IRPosition &FnPos = IRPosition::function(F: *F); |
5063 | auto *FnAA = |
5064 | A.getAAFor<AAKernelInfo>(QueryingAA: *this, IRP: FnPos, DepClass: DepClassTy::REQUIRED); |
5065 | if (!FnAA) |
5066 | return indicatePessimisticFixpoint(); |
5067 | if (getState() == FnAA->getState()) |
5068 | return ChangeStatus::UNCHANGED; |
5069 | getState() = FnAA->getState(); |
5070 | return ChangeStatus::CHANGED; |
5071 | } |
5072 | if (NumCallees > 1) |
5073 | return indicatePessimisticFixpoint(); |
5074 | |
5075 | CallBase &CB = cast<CallBase>(Val&: getAssociatedValue()); |
5076 | if (It->getSecond() == OMPRTL___kmpc_parallel_51) { |
5077 | if (!handleParallel51(A, CB)) |
5078 | return indicatePessimisticFixpoint(); |
5079 | return StateBefore == getState() ? ChangeStatus::UNCHANGED |
5080 | : ChangeStatus::CHANGED; |
5081 | } |
5082 | |
5083 | // F is a runtime function that allocates or frees memory, check |
5084 | // AAHeapToStack and AAHeapToShared. |
5085 | assert( |
5086 | (It->getSecond() == OMPRTL___kmpc_alloc_shared || |
5087 | It->getSecond() == OMPRTL___kmpc_free_shared) && |
5088 | "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call" ); |
5089 | |
5090 | auto *HeapToStackAA = A.getAAFor<AAHeapToStack>( |
5091 | QueryingAA: *this, IRP: IRPosition::function(F: *CB.getCaller()), DepClass: DepClassTy::OPTIONAL); |
5092 | auto *HeapToSharedAA = A.getAAFor<AAHeapToShared>( |
5093 | QueryingAA: *this, IRP: IRPosition::function(F: *CB.getCaller()), DepClass: DepClassTy::OPTIONAL); |
5094 | |
5095 | RuntimeFunction RF = It->getSecond(); |
5096 | |
5097 | switch (RF) { |
5098 | // If neither HeapToStack nor HeapToShared assume the call is removed, |
5099 | // assume SPMD incompatibility. |
5100 | case OMPRTL___kmpc_alloc_shared: |
5101 | if ((!HeapToStackAA || !HeapToStackAA->isAssumedHeapToStack(CB)) && |
5102 | (!HeapToSharedAA || !HeapToSharedAA->isAssumedHeapToShared(CB))) |
5103 | SPMDCompatibilityTracker.insert(Elem: &CB); |
5104 | break; |
5105 | case OMPRTL___kmpc_free_shared: |
5106 | if ((!HeapToStackAA || |
5107 | !HeapToStackAA->isAssumedHeapToStackRemovedFree(CB)) && |
5108 | (!HeapToSharedAA || |
5109 | !HeapToSharedAA->isAssumedHeapToSharedRemovedFree(CB))) |
5110 | SPMDCompatibilityTracker.insert(Elem: &CB); |
5111 | break; |
5112 | default: |
5113 | SPMDCompatibilityTracker.indicatePessimisticFixpoint(); |
5114 | SPMDCompatibilityTracker.insert(Elem: &CB); |
5115 | } |
5116 | return ChangeStatus::CHANGED; |
5117 | }; |
5118 | |
5119 | const auto *AACE = |
5120 | A.getAAFor<AACallEdges>(QueryingAA: *this, IRP: getIRPosition(), DepClass: DepClassTy::OPTIONAL); |
5121 | if (!AACE || !AACE->getState().isValidState() || AACE->hasUnknownCallee()) { |
5122 | if (Function *F = getAssociatedFunction()) |
5123 | CheckCallee(F, /*NumCallees=*/1); |
5124 | } else { |
5125 | const auto &OptimisticEdges = AACE->getOptimisticEdges(); |
5126 | for (auto *Callee : OptimisticEdges) { |
5127 | CheckCallee(Callee, OptimisticEdges.size()); |
5128 | if (isAtFixpoint()) |
5129 | break; |
5130 | } |
5131 | } |
5132 | |
5133 | return StateBefore == getState() ? ChangeStatus::UNCHANGED |
5134 | : ChangeStatus::CHANGED; |
5135 | } |
5136 | |
5137 | /// Deal with a __kmpc_parallel_51 call (\p CB). Returns true if the call was |
5138 | /// handled, if a problem occurred, false is returned. |
5139 | bool handleParallel51(Attributor &A, CallBase &CB) { |
5140 | const unsigned int NonWrapperFunctionArgNo = 5; |
5141 | const unsigned int WrapperFunctionArgNo = 6; |
5142 | auto ParallelRegionOpArgNo = SPMDCompatibilityTracker.isAssumed() |
5143 | ? NonWrapperFunctionArgNo |
5144 | : WrapperFunctionArgNo; |
5145 | |
5146 | auto *ParallelRegion = dyn_cast<Function>( |
5147 | Val: CB.getArgOperand(i: ParallelRegionOpArgNo)->stripPointerCasts()); |
5148 | if (!ParallelRegion) |
5149 | return false; |
5150 | |
5151 | ReachedKnownParallelRegions.insert(Elem: &CB); |
5152 | /// Check nested parallelism |
5153 | auto *FnAA = A.getAAFor<AAKernelInfo>( |
5154 | QueryingAA: *this, IRP: IRPosition::function(F: *ParallelRegion), DepClass: DepClassTy::OPTIONAL); |
5155 | NestedParallelism |= !FnAA || !FnAA->getState().isValidState() || |
5156 | !FnAA->ReachedKnownParallelRegions.empty() || |
5157 | !FnAA->ReachedKnownParallelRegions.isValidState() || |
5158 | !FnAA->ReachedUnknownParallelRegions.isValidState() || |
5159 | !FnAA->ReachedUnknownParallelRegions.empty(); |
5160 | return true; |
5161 | } |
5162 | }; |
5163 | |
5164 | struct AAFoldRuntimeCall |
5165 | : public StateWrapper<BooleanState, AbstractAttribute> { |
5166 | using Base = StateWrapper<BooleanState, AbstractAttribute>; |
5167 | |
5168 | AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {} |
5169 | |
5170 | /// Statistics are tracked as part of manifest for now. |
5171 | void trackStatistics() const override {} |
5172 | |
5173 | /// Create an abstract attribute biew for the position \p IRP. |
5174 | static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP, |
5175 | Attributor &A); |
5176 | |
5177 | /// See AbstractAttribute::getName() |
5178 | const std::string getName() const override { return "AAFoldRuntimeCall" ; } |
5179 | |
5180 | /// See AbstractAttribute::getIdAddr() |
5181 | const char *getIdAddr() const override { return &ID; } |
5182 | |
5183 | /// This function should return true if the type of the \p AA is |
5184 | /// AAFoldRuntimeCall |
5185 | static bool classof(const AbstractAttribute *AA) { |
5186 | return (AA->getIdAddr() == &ID); |
5187 | } |
5188 | |
5189 | static const char ID; |
5190 | }; |
5191 | |
5192 | struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall { |
5193 | AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A) |
5194 | : AAFoldRuntimeCall(IRP, A) {} |
5195 | |
5196 | /// See AbstractAttribute::getAsStr() |
5197 | const std::string getAsStr(Attributor *) const override { |
5198 | if (!isValidState()) |
5199 | return "<invalid>" ; |
5200 | |
5201 | std::string Str("simplified value: " ); |
5202 | |
5203 | if (!SimplifiedValue) |
5204 | return Str + std::string("none" ); |
5205 | |
5206 | if (!*SimplifiedValue) |
5207 | return Str + std::string("nullptr" ); |
5208 | |
5209 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: *SimplifiedValue)) |
5210 | return Str + std::to_string(val: CI->getSExtValue()); |
5211 | |
5212 | return Str + std::string("unknown" ); |
5213 | } |
5214 | |
5215 | void initialize(Attributor &A) override { |
5216 | if (DisableOpenMPOptFolding) |
5217 | indicatePessimisticFixpoint(); |
5218 | |
5219 | Function *Callee = getAssociatedFunction(); |
5220 | |
5221 | auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache()); |
5222 | const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Val: Callee); |
5223 | assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() && |
5224 | "Expected a known OpenMP runtime function" ); |
5225 | |
5226 | RFKind = It->getSecond(); |
5227 | |
5228 | CallBase &CB = cast<CallBase>(Val&: getAssociatedValue()); |
5229 | A.registerSimplificationCallback( |
5230 | IRP: IRPosition::callsite_returned(CB), |
5231 | CB: [&](const IRPosition &IRP, const AbstractAttribute *AA, |
5232 | bool &UsedAssumedInformation) -> std::optional<Value *> { |
5233 | assert((isValidState() || |
5234 | (SimplifiedValue && *SimplifiedValue == nullptr)) && |
5235 | "Unexpected invalid state!" ); |
5236 | |
5237 | if (!isAtFixpoint()) { |
5238 | UsedAssumedInformation = true; |
5239 | if (AA) |
5240 | A.recordDependence(FromAA: *this, ToAA: *AA, DepClass: DepClassTy::OPTIONAL); |
5241 | } |
5242 | return SimplifiedValue; |
5243 | }); |
5244 | } |
5245 | |
5246 | ChangeStatus updateImpl(Attributor &A) override { |
5247 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
5248 | switch (RFKind) { |
5249 | case OMPRTL___kmpc_is_spmd_exec_mode: |
5250 | Changed |= foldIsSPMDExecMode(A); |
5251 | break; |
5252 | case OMPRTL___kmpc_parallel_level: |
5253 | Changed |= foldParallelLevel(A); |
5254 | break; |
5255 | case OMPRTL___kmpc_get_hardware_num_threads_in_block: |
5256 | Changed = Changed | foldKernelFnAttribute(A, Attr: "omp_target_thread_limit" ); |
5257 | break; |
5258 | case OMPRTL___kmpc_get_hardware_num_blocks: |
5259 | Changed = Changed | foldKernelFnAttribute(A, Attr: "omp_target_num_teams" ); |
5260 | break; |
5261 | default: |
5262 | llvm_unreachable("Unhandled OpenMP runtime function!" ); |
5263 | } |
5264 | |
5265 | return Changed; |
5266 | } |
5267 | |
5268 | ChangeStatus manifest(Attributor &A) override { |
5269 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
5270 | |
5271 | if (SimplifiedValue && *SimplifiedValue) { |
5272 | Instruction &I = *getCtxI(); |
5273 | A.changeAfterManifest(IRP: IRPosition::inst(I), NV&: **SimplifiedValue); |
5274 | A.deleteAfterManifest(I); |
5275 | |
5276 | CallBase *CB = dyn_cast<CallBase>(Val: &I); |
5277 | auto = [&](OptimizationRemark OR) { |
5278 | if (auto *C = dyn_cast<ConstantInt>(Val: *SimplifiedValue)) |
5279 | return OR << "Replacing OpenMP runtime call " |
5280 | << CB->getCalledFunction()->getName() << " with " |
5281 | << ore::NV("FoldedValue" , C->getZExtValue()) << "." ; |
5282 | return OR << "Replacing OpenMP runtime call " |
5283 | << CB->getCalledFunction()->getName() << "." ; |
5284 | }; |
5285 | |
5286 | if (CB && EnableVerboseRemarks) |
5287 | A.emitRemark<OptimizationRemark>(I: CB, RemarkName: "OMP180" , RemarkCB&: Remark); |
5288 | |
5289 | LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with " |
5290 | << **SimplifiedValue << "\n" ); |
5291 | |
5292 | Changed = ChangeStatus::CHANGED; |
5293 | } |
5294 | |
5295 | return Changed; |
5296 | } |
5297 | |
5298 | ChangeStatus indicatePessimisticFixpoint() override { |
5299 | SimplifiedValue = nullptr; |
5300 | return AAFoldRuntimeCall::indicatePessimisticFixpoint(); |
5301 | } |
5302 | |
5303 | private: |
5304 | /// Fold __kmpc_is_spmd_exec_mode into a constant if possible. |
5305 | ChangeStatus foldIsSPMDExecMode(Attributor &A) { |
5306 | std::optional<Value *> SimplifiedValueBefore = SimplifiedValue; |
5307 | |
5308 | unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; |
5309 | unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; |
5310 | auto *CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( |
5311 | QueryingAA: *this, IRP: IRPosition::function(F: *getAnchorScope()), DepClass: DepClassTy::REQUIRED); |
5312 | |
5313 | if (!CallerKernelInfoAA || |
5314 | !CallerKernelInfoAA->ReachingKernelEntries.isValidState()) |
5315 | return indicatePessimisticFixpoint(); |
5316 | |
5317 | for (Kernel K : CallerKernelInfoAA->ReachingKernelEntries) { |
5318 | auto *AA = A.getAAFor<AAKernelInfo>(QueryingAA: *this, IRP: IRPosition::function(F: *K), |
5319 | DepClass: DepClassTy::REQUIRED); |
5320 | |
5321 | if (!AA || !AA->isValidState()) { |
5322 | SimplifiedValue = nullptr; |
5323 | return indicatePessimisticFixpoint(); |
5324 | } |
5325 | |
5326 | if (AA->SPMDCompatibilityTracker.isAssumed()) { |
5327 | if (AA->SPMDCompatibilityTracker.isAtFixpoint()) |
5328 | ++KnownSPMDCount; |
5329 | else |
5330 | ++AssumedSPMDCount; |
5331 | } else { |
5332 | if (AA->SPMDCompatibilityTracker.isAtFixpoint()) |
5333 | ++KnownNonSPMDCount; |
5334 | else |
5335 | ++AssumedNonSPMDCount; |
5336 | } |
5337 | } |
5338 | |
5339 | if ((AssumedSPMDCount + KnownSPMDCount) && |
5340 | (AssumedNonSPMDCount + KnownNonSPMDCount)) |
5341 | return indicatePessimisticFixpoint(); |
5342 | |
5343 | auto &Ctx = getAnchorValue().getContext(); |
5344 | if (KnownSPMDCount || AssumedSPMDCount) { |
5345 | assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && |
5346 | "Expected only SPMD kernels!" ); |
5347 | // All reaching kernels are in SPMD mode. Update all function calls to |
5348 | // __kmpc_is_spmd_exec_mode to 1. |
5349 | SimplifiedValue = ConstantInt::get(Ty: Type::getInt8Ty(C&: Ctx), V: true); |
5350 | } else if (KnownNonSPMDCount || AssumedNonSPMDCount) { |
5351 | assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && |
5352 | "Expected only non-SPMD kernels!" ); |
5353 | // All reaching kernels are in non-SPMD mode. Update all function |
5354 | // calls to __kmpc_is_spmd_exec_mode to 0. |
5355 | SimplifiedValue = ConstantInt::get(Ty: Type::getInt8Ty(C&: Ctx), V: false); |
5356 | } else { |
5357 | // We have empty reaching kernels, therefore we cannot tell if the |
5358 | // associated call site can be folded. At this moment, SimplifiedValue |
5359 | // must be none. |
5360 | assert(!SimplifiedValue && "SimplifiedValue should be none" ); |
5361 | } |
5362 | |
5363 | return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED |
5364 | : ChangeStatus::CHANGED; |
5365 | } |
5366 | |
5367 | /// Fold __kmpc_parallel_level into a constant if possible. |
5368 | ChangeStatus foldParallelLevel(Attributor &A) { |
5369 | std::optional<Value *> SimplifiedValueBefore = SimplifiedValue; |
5370 | |
5371 | auto *CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( |
5372 | QueryingAA: *this, IRP: IRPosition::function(F: *getAnchorScope()), DepClass: DepClassTy::REQUIRED); |
5373 | |
5374 | if (!CallerKernelInfoAA || |
5375 | !CallerKernelInfoAA->ParallelLevels.isValidState()) |
5376 | return indicatePessimisticFixpoint(); |
5377 | |
5378 | if (!CallerKernelInfoAA->ReachingKernelEntries.isValidState()) |
5379 | return indicatePessimisticFixpoint(); |
5380 | |
5381 | if (CallerKernelInfoAA->ReachingKernelEntries.empty()) { |
5382 | assert(!SimplifiedValue && |
5383 | "SimplifiedValue should keep none at this point" ); |
5384 | return ChangeStatus::UNCHANGED; |
5385 | } |
5386 | |
5387 | unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0; |
5388 | unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0; |
5389 | for (Kernel K : CallerKernelInfoAA->ReachingKernelEntries) { |
5390 | auto *AA = A.getAAFor<AAKernelInfo>(QueryingAA: *this, IRP: IRPosition::function(F: *K), |
5391 | DepClass: DepClassTy::REQUIRED); |
5392 | if (!AA || !AA->SPMDCompatibilityTracker.isValidState()) |
5393 | return indicatePessimisticFixpoint(); |
5394 | |
5395 | if (AA->SPMDCompatibilityTracker.isAssumed()) { |
5396 | if (AA->SPMDCompatibilityTracker.isAtFixpoint()) |
5397 | ++KnownSPMDCount; |
5398 | else |
5399 | ++AssumedSPMDCount; |
5400 | } else { |
5401 | if (AA->SPMDCompatibilityTracker.isAtFixpoint()) |
5402 | ++KnownNonSPMDCount; |
5403 | else |
5404 | ++AssumedNonSPMDCount; |
5405 | } |
5406 | } |
5407 | |
5408 | if ((AssumedSPMDCount + KnownSPMDCount) && |
5409 | (AssumedNonSPMDCount + KnownNonSPMDCount)) |
5410 | return indicatePessimisticFixpoint(); |
5411 | |
5412 | auto &Ctx = getAnchorValue().getContext(); |
5413 | // If the caller can only be reached by SPMD kernel entries, the parallel |
5414 | // level is 1. Similarly, if the caller can only be reached by non-SPMD |
5415 | // kernel entries, it is 0. |
5416 | if (AssumedSPMDCount || KnownSPMDCount) { |
5417 | assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 && |
5418 | "Expected only SPMD kernels!" ); |
5419 | SimplifiedValue = ConstantInt::get(Ty: Type::getInt8Ty(C&: Ctx), V: 1); |
5420 | } else { |
5421 | assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 && |
5422 | "Expected only non-SPMD kernels!" ); |
5423 | SimplifiedValue = ConstantInt::get(Ty: Type::getInt8Ty(C&: Ctx), V: 0); |
5424 | } |
5425 | return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED |
5426 | : ChangeStatus::CHANGED; |
5427 | } |
5428 | |
5429 | ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) { |
5430 | // Specialize only if all the calls agree with the attribute constant value |
5431 | int32_t CurrentAttrValue = -1; |
5432 | std::optional<Value *> SimplifiedValueBefore = SimplifiedValue; |
5433 | |
5434 | auto *CallerKernelInfoAA = A.getAAFor<AAKernelInfo>( |
5435 | QueryingAA: *this, IRP: IRPosition::function(F: *getAnchorScope()), DepClass: DepClassTy::REQUIRED); |
5436 | |
5437 | if (!CallerKernelInfoAA || |
5438 | !CallerKernelInfoAA->ReachingKernelEntries.isValidState()) |
5439 | return indicatePessimisticFixpoint(); |
5440 | |
5441 | // Iterate over the kernels that reach this function |
5442 | for (Kernel K : CallerKernelInfoAA->ReachingKernelEntries) { |
5443 | int32_t NextAttrVal = K->getFnAttributeAsParsedInteger(Kind: Attr, Default: -1); |
5444 | |
5445 | if (NextAttrVal == -1 || |
5446 | (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal)) |
5447 | return indicatePessimisticFixpoint(); |
5448 | CurrentAttrValue = NextAttrVal; |
5449 | } |
5450 | |
5451 | if (CurrentAttrValue != -1) { |
5452 | auto &Ctx = getAnchorValue().getContext(); |
5453 | SimplifiedValue = |
5454 | ConstantInt::get(Ty: Type::getInt32Ty(C&: Ctx), V: CurrentAttrValue); |
5455 | } |
5456 | return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED |
5457 | : ChangeStatus::CHANGED; |
5458 | } |
5459 | |
5460 | /// An optional value the associated value is assumed to fold to. That is, we |
5461 | /// assume the associated value (which is a call) can be replaced by this |
5462 | /// simplified value. |
5463 | std::optional<Value *> SimplifiedValue; |
5464 | |
5465 | /// The runtime function kind of the callee of the associated call site. |
5466 | RuntimeFunction RFKind; |
5467 | }; |
5468 | |
5469 | } // namespace |
5470 | |
5471 | /// Register folding callsite |
5472 | void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) { |
5473 | auto &RFI = OMPInfoCache.RFIs[RF]; |
5474 | RFI.foreachUse(SCC, CB: [&](Use &U, Function &F) { |
5475 | CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, RFI: &RFI); |
5476 | if (!CI) |
5477 | return false; |
5478 | A.getOrCreateAAFor<AAFoldRuntimeCall>( |
5479 | IRP: IRPosition::callsite_returned(CB: *CI), /* QueryingAA */ nullptr, |
5480 | DepClass: DepClassTy::NONE, /* ForceUpdate */ false, |
5481 | /* UpdateAfterInit */ false); |
5482 | return false; |
5483 | }); |
5484 | } |
5485 | |
5486 | void OpenMPOpt::registerAAs(bool IsModulePass) { |
5487 | if (SCC.empty()) |
5488 | return; |
5489 | |
5490 | if (IsModulePass) { |
5491 | // Ensure we create the AAKernelInfo AAs first and without triggering an |
5492 | // update. This will make sure we register all value simplification |
5493 | // callbacks before any other AA has the chance to create an AAValueSimplify |
5494 | // or similar. |
5495 | auto CreateKernelInfoCB = [&](Use &, Function &Kernel) { |
5496 | A.getOrCreateAAFor<AAKernelInfo>( |
5497 | IRP: IRPosition::function(F: Kernel), /* QueryingAA */ nullptr, |
5498 | DepClass: DepClassTy::NONE, /* ForceUpdate */ false, |
5499 | /* UpdateAfterInit */ false); |
5500 | return false; |
5501 | }; |
5502 | OMPInformationCache::RuntimeFunctionInfo &InitRFI = |
5503 | OMPInfoCache.RFIs[OMPRTL___kmpc_target_init]; |
5504 | InitRFI.foreachUse(SCC, CB: CreateKernelInfoCB); |
5505 | |
5506 | registerFoldRuntimeCall(RF: OMPRTL___kmpc_is_spmd_exec_mode); |
5507 | registerFoldRuntimeCall(RF: OMPRTL___kmpc_parallel_level); |
5508 | registerFoldRuntimeCall(RF: OMPRTL___kmpc_get_hardware_num_threads_in_block); |
5509 | registerFoldRuntimeCall(RF: OMPRTL___kmpc_get_hardware_num_blocks); |
5510 | } |
5511 | |
5512 | // Create CallSite AA for all Getters. |
5513 | if (DeduceICVValues) { |
5514 | for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { |
5515 | auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)]; |
5516 | |
5517 | auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; |
5518 | |
5519 | auto CreateAA = [&](Use &U, Function &Caller) { |
5520 | CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, RFI: &GetterRFI); |
5521 | if (!CI) |
5522 | return false; |
5523 | |
5524 | auto &CB = cast<CallBase>(Val&: *CI); |
5525 | |
5526 | IRPosition CBPos = IRPosition::callsite_function(CB); |
5527 | A.getOrCreateAAFor<AAICVTracker>(IRP: CBPos); |
5528 | return false; |
5529 | }; |
5530 | |
5531 | GetterRFI.foreachUse(SCC, CB: CreateAA); |
5532 | } |
5533 | } |
5534 | |
5535 | // Create an ExecutionDomain AA for every function and a HeapToStack AA for |
5536 | // every function if there is a device kernel. |
5537 | if (!isOpenMPDevice(M)) |
5538 | return; |
5539 | |
5540 | for (auto *F : SCC) { |
5541 | if (F->isDeclaration()) |
5542 | continue; |
5543 | |
5544 | // We look at internal functions only on-demand but if any use is not a |
5545 | // direct call or outside the current set of analyzed functions, we have |
5546 | // to do it eagerly. |
5547 | if (F->hasLocalLinkage()) { |
5548 | if (llvm::all_of(Range: F->uses(), P: [this](const Use &U) { |
5549 | const auto *CB = dyn_cast<CallBase>(Val: U.getUser()); |
5550 | return CB && CB->isCallee(U: &U) && |
5551 | A.isRunOn(Fn: const_cast<Function *>(CB->getCaller())); |
5552 | })) |
5553 | continue; |
5554 | } |
5555 | registerAAsForFunction(A, F: *F); |
5556 | } |
5557 | } |
5558 | |
5559 | void OpenMPOpt::registerAAsForFunction(Attributor &A, const Function &F) { |
5560 | if (!DisableOpenMPOptDeglobalization) |
5561 | A.getOrCreateAAFor<AAHeapToShared>(IRP: IRPosition::function(F)); |
5562 | A.getOrCreateAAFor<AAExecutionDomain>(IRP: IRPosition::function(F)); |
5563 | if (!DisableOpenMPOptDeglobalization) |
5564 | A.getOrCreateAAFor<AAHeapToStack>(IRP: IRPosition::function(F)); |
5565 | if (F.hasFnAttribute(Kind: Attribute::Convergent)) |
5566 | A.getOrCreateAAFor<AANonConvergent>(IRP: IRPosition::function(F)); |
5567 | |
5568 | for (auto &I : instructions(F)) { |
5569 | if (auto *LI = dyn_cast<LoadInst>(Val: &I)) { |
5570 | bool UsedAssumedInformation = false; |
5571 | A.getAssumedSimplified(V: IRPosition::value(V: *LI), /* AA */ nullptr, |
5572 | UsedAssumedInformation, S: AA::Interprocedural); |
5573 | continue; |
5574 | } |
5575 | if (auto *CI = dyn_cast<CallBase>(Val: &I)) { |
5576 | if (CI->isIndirectCall()) |
5577 | A.getOrCreateAAFor<AAIndirectCallInfo>( |
5578 | IRP: IRPosition::callsite_function(CB: *CI)); |
5579 | } |
5580 | if (auto *SI = dyn_cast<StoreInst>(Val: &I)) { |
5581 | A.getOrCreateAAFor<AAIsDead>(IRP: IRPosition::value(V: *SI)); |
5582 | continue; |
5583 | } |
5584 | if (auto *FI = dyn_cast<FenceInst>(Val: &I)) { |
5585 | A.getOrCreateAAFor<AAIsDead>(IRP: IRPosition::value(V: *FI)); |
5586 | continue; |
5587 | } |
5588 | if (auto *II = dyn_cast<IntrinsicInst>(Val: &I)) { |
5589 | if (II->getIntrinsicID() == Intrinsic::assume) { |
5590 | A.getOrCreateAAFor<AAPotentialValues>( |
5591 | IRP: IRPosition::value(V: *II->getArgOperand(i: 0))); |
5592 | continue; |
5593 | } |
5594 | } |
5595 | } |
5596 | } |
5597 | |
5598 | const char AAICVTracker::ID = 0; |
5599 | const char AAKernelInfo::ID = 0; |
5600 | const char AAExecutionDomain::ID = 0; |
5601 | const char AAHeapToShared::ID = 0; |
5602 | const char AAFoldRuntimeCall::ID = 0; |
5603 | |
5604 | AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, |
5605 | Attributor &A) { |
5606 | AAICVTracker *AA = nullptr; |
5607 | switch (IRP.getPositionKind()) { |
5608 | case IRPosition::IRP_INVALID: |
5609 | case IRPosition::IRP_FLOAT: |
5610 | case IRPosition::IRP_ARGUMENT: |
5611 | case IRPosition::IRP_CALL_SITE_ARGUMENT: |
5612 | llvm_unreachable("ICVTracker can only be created for function position!" ); |
5613 | case IRPosition::IRP_RETURNED: |
5614 | AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); |
5615 | break; |
5616 | case IRPosition::IRP_CALL_SITE_RETURNED: |
5617 | AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); |
5618 | break; |
5619 | case IRPosition::IRP_CALL_SITE: |
5620 | AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); |
5621 | break; |
5622 | case IRPosition::IRP_FUNCTION: |
5623 | AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); |
5624 | break; |
5625 | } |
5626 | |
5627 | return *AA; |
5628 | } |
5629 | |
5630 | AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP, |
5631 | Attributor &A) { |
5632 | AAExecutionDomainFunction *AA = nullptr; |
5633 | switch (IRP.getPositionKind()) { |
5634 | case IRPosition::IRP_INVALID: |
5635 | case IRPosition::IRP_FLOAT: |
5636 | case IRPosition::IRP_ARGUMENT: |
5637 | case IRPosition::IRP_CALL_SITE_ARGUMENT: |
5638 | case IRPosition::IRP_RETURNED: |
5639 | case IRPosition::IRP_CALL_SITE_RETURNED: |
5640 | case IRPosition::IRP_CALL_SITE: |
5641 | llvm_unreachable( |
5642 | "AAExecutionDomain can only be created for function position!" ); |
5643 | case IRPosition::IRP_FUNCTION: |
5644 | AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A); |
5645 | break; |
5646 | } |
5647 | |
5648 | return *AA; |
5649 | } |
5650 | |
5651 | AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP, |
5652 | Attributor &A) { |
5653 | AAHeapToSharedFunction *AA = nullptr; |
5654 | switch (IRP.getPositionKind()) { |
5655 | case IRPosition::IRP_INVALID: |
5656 | case IRPosition::IRP_FLOAT: |
5657 | case IRPosition::IRP_ARGUMENT: |
5658 | case IRPosition::IRP_CALL_SITE_ARGUMENT: |
5659 | case IRPosition::IRP_RETURNED: |
5660 | case IRPosition::IRP_CALL_SITE_RETURNED: |
5661 | case IRPosition::IRP_CALL_SITE: |
5662 | llvm_unreachable( |
5663 | "AAHeapToShared can only be created for function position!" ); |
5664 | case IRPosition::IRP_FUNCTION: |
5665 | AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A); |
5666 | break; |
5667 | } |
5668 | |
5669 | return *AA; |
5670 | } |
5671 | |
5672 | AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP, |
5673 | Attributor &A) { |
5674 | AAKernelInfo *AA = nullptr; |
5675 | switch (IRP.getPositionKind()) { |
5676 | case IRPosition::IRP_INVALID: |
5677 | case IRPosition::IRP_FLOAT: |
5678 | case IRPosition::IRP_ARGUMENT: |
5679 | case IRPosition::IRP_RETURNED: |
5680 | case IRPosition::IRP_CALL_SITE_RETURNED: |
5681 | case IRPosition::IRP_CALL_SITE_ARGUMENT: |
5682 | llvm_unreachable("KernelInfo can only be created for function position!" ); |
5683 | case IRPosition::IRP_CALL_SITE: |
5684 | AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A); |
5685 | break; |
5686 | case IRPosition::IRP_FUNCTION: |
5687 | AA = new (A.Allocator) AAKernelInfoFunction(IRP, A); |
5688 | break; |
5689 | } |
5690 | |
5691 | return *AA; |
5692 | } |
5693 | |
5694 | AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP, |
5695 | Attributor &A) { |
5696 | AAFoldRuntimeCall *AA = nullptr; |
5697 | switch (IRP.getPositionKind()) { |
5698 | case IRPosition::IRP_INVALID: |
5699 | case IRPosition::IRP_FLOAT: |
5700 | case IRPosition::IRP_ARGUMENT: |
5701 | case IRPosition::IRP_RETURNED: |
5702 | case IRPosition::IRP_FUNCTION: |
5703 | case IRPosition::IRP_CALL_SITE: |
5704 | case IRPosition::IRP_CALL_SITE_ARGUMENT: |
5705 | llvm_unreachable("KernelInfo can only be created for call site position!" ); |
5706 | case IRPosition::IRP_CALL_SITE_RETURNED: |
5707 | AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A); |
5708 | break; |
5709 | } |
5710 | |
5711 | return *AA; |
5712 | } |
5713 | |
5714 | PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) { |
5715 | if (!containsOpenMP(M)) |
5716 | return PreservedAnalyses::all(); |
5717 | if (DisableOpenMPOptimizations) |
5718 | return PreservedAnalyses::all(); |
5719 | |
5720 | FunctionAnalysisManager &FAM = |
5721 | AM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
5722 | KernelSet Kernels = getDeviceKernels(M); |
5723 | |
5724 | if (PrintModuleBeforeOptimizations) |
5725 | LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt Module Pass:\n" << M); |
5726 | |
5727 | auto IsCalled = [&](Function &F) { |
5728 | if (Kernels.contains(key: &F)) |
5729 | return true; |
5730 | for (const User *U : F.users()) |
5731 | if (!isa<BlockAddress>(Val: U)) |
5732 | return true; |
5733 | return false; |
5734 | }; |
5735 | |
5736 | auto = [&](Function &F) { |
5737 | auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(IR&: F); |
5738 | ORE.emit(RemarkBuilder: [&]() { |
5739 | OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140" , &F); |
5740 | return ORA << "Could not internalize function. " |
5741 | << "Some optimizations may not be possible. [OMP140]" ; |
5742 | }); |
5743 | }; |
5744 | |
5745 | bool Changed = false; |
5746 | |
5747 | // Create internal copies of each function if this is a kernel Module. This |
5748 | // allows iterprocedural passes to see every call edge. |
5749 | DenseMap<Function *, Function *> InternalizedMap; |
5750 | if (isOpenMPDevice(M)) { |
5751 | SmallPtrSet<Function *, 16> InternalizeFns; |
5752 | for (Function &F : M) |
5753 | if (!F.isDeclaration() && !Kernels.contains(key: &F) && IsCalled(F) && |
5754 | !DisableInternalization) { |
5755 | if (Attributor::isInternalizable(F)) { |
5756 | InternalizeFns.insert(Ptr: &F); |
5757 | } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Kind: Attribute::Cold)) { |
5758 | EmitRemark(F); |
5759 | } |
5760 | } |
5761 | |
5762 | Changed |= |
5763 | Attributor::internalizeFunctions(FnSet&: InternalizeFns, FnMap&: InternalizedMap); |
5764 | } |
5765 | |
5766 | // Look at every function in the Module unless it was internalized. |
5767 | SetVector<Function *> Functions; |
5768 | SmallVector<Function *, 16> SCC; |
5769 | for (Function &F : M) |
5770 | if (!F.isDeclaration() && !InternalizedMap.lookup(Val: &F)) { |
5771 | SCC.push_back(Elt: &F); |
5772 | Functions.insert(X: &F); |
5773 | } |
5774 | |
5775 | if (SCC.empty()) |
5776 | return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); |
5777 | |
5778 | AnalysisGetter AG(FAM); |
5779 | |
5780 | auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { |
5781 | return FAM.getResult<OptimizationRemarkEmitterAnalysis>(IR&: *F); |
5782 | }; |
5783 | |
5784 | BumpPtrAllocator Allocator; |
5785 | CallGraphUpdater CGUpdater; |
5786 | |
5787 | bool PostLink = LTOPhase == ThinOrFullLTOPhase::FullLTOPostLink || |
5788 | LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink; |
5789 | OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ nullptr, PostLink); |
5790 | |
5791 | unsigned MaxFixpointIterations = |
5792 | (isOpenMPDevice(M)) ? SetFixpointIterations : 32; |
5793 | |
5794 | AttributorConfig AC(CGUpdater); |
5795 | AC.DefaultInitializeLiveInternals = false; |
5796 | AC.IsModulePass = true; |
5797 | AC.RewriteSignatures = false; |
5798 | AC.MaxFixpointIterations = MaxFixpointIterations; |
5799 | AC.OREGetter = OREGetter; |
5800 | AC.PassName = DEBUG_TYPE; |
5801 | AC.InitializationCallback = OpenMPOpt::registerAAsForFunction; |
5802 | AC.IPOAmendableCB = [](const Function &F) { |
5803 | return F.hasFnAttribute(Kind: "kernel" ); |
5804 | }; |
5805 | |
5806 | Attributor A(Functions, InfoCache, AC); |
5807 | |
5808 | OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); |
5809 | Changed |= OMPOpt.run(IsModulePass: true); |
5810 | |
5811 | // Optionally inline device functions for potentially better performance. |
5812 | if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M)) |
5813 | for (Function &F : M) |
5814 | if (!F.isDeclaration() && !Kernels.contains(key: &F) && |
5815 | !F.hasFnAttribute(Kind: Attribute::NoInline)) |
5816 | F.addFnAttr(Kind: Attribute::AlwaysInline); |
5817 | |
5818 | if (PrintModuleAfterOptimizations) |
5819 | LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M); |
5820 | |
5821 | if (Changed) |
5822 | return PreservedAnalyses::none(); |
5823 | |
5824 | return PreservedAnalyses::all(); |
5825 | } |
5826 | |
5827 | PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C, |
5828 | CGSCCAnalysisManager &AM, |
5829 | LazyCallGraph &CG, |
5830 | CGSCCUpdateResult &UR) { |
5831 | if (!containsOpenMP(M&: *C.begin()->getFunction().getParent())) |
5832 | return PreservedAnalyses::all(); |
5833 | if (DisableOpenMPOptimizations) |
5834 | return PreservedAnalyses::all(); |
5835 | |
5836 | SmallVector<Function *, 16> SCC; |
5837 | // If there are kernels in the module, we have to run on all SCC's. |
5838 | for (LazyCallGraph::Node &N : C) { |
5839 | Function *Fn = &N.getFunction(); |
5840 | SCC.push_back(Elt: Fn); |
5841 | } |
5842 | |
5843 | if (SCC.empty()) |
5844 | return PreservedAnalyses::all(); |
5845 | |
5846 | Module &M = *C.begin()->getFunction().getParent(); |
5847 | |
5848 | if (PrintModuleBeforeOptimizations) |
5849 | LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt CGSCC Pass:\n" << M); |
5850 | |
5851 | KernelSet Kernels = getDeviceKernels(M); |
5852 | |
5853 | FunctionAnalysisManager &FAM = |
5854 | AM.getResult<FunctionAnalysisManagerCGSCCProxy>(IR&: C, ExtraArgs&: CG).getManager(); |
5855 | |
5856 | AnalysisGetter AG(FAM); |
5857 | |
5858 | auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { |
5859 | return FAM.getResult<OptimizationRemarkEmitterAnalysis>(IR&: *F); |
5860 | }; |
5861 | |
5862 | BumpPtrAllocator Allocator; |
5863 | CallGraphUpdater CGUpdater; |
5864 | CGUpdater.initialize(LCG&: CG, SCC&: C, AM, UR); |
5865 | |
5866 | bool PostLink = LTOPhase == ThinOrFullLTOPhase::FullLTOPostLink || |
5867 | LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink; |
5868 | SetVector<Function *> Functions(SCC.begin(), SCC.end()); |
5869 | OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, |
5870 | /*CGSCC*/ &Functions, PostLink); |
5871 | |
5872 | unsigned MaxFixpointIterations = |
5873 | (isOpenMPDevice(M)) ? SetFixpointIterations : 32; |
5874 | |
5875 | AttributorConfig AC(CGUpdater); |
5876 | AC.DefaultInitializeLiveInternals = false; |
5877 | AC.IsModulePass = false; |
5878 | AC.RewriteSignatures = false; |
5879 | AC.MaxFixpointIterations = MaxFixpointIterations; |
5880 | AC.OREGetter = OREGetter; |
5881 | AC.PassName = DEBUG_TYPE; |
5882 | AC.InitializationCallback = OpenMPOpt::registerAAsForFunction; |
5883 | |
5884 | Attributor A(Functions, InfoCache, AC); |
5885 | |
5886 | OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); |
5887 | bool Changed = OMPOpt.run(IsModulePass: false); |
5888 | |
5889 | if (PrintModuleAfterOptimizations) |
5890 | LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M); |
5891 | |
5892 | if (Changed) |
5893 | return PreservedAnalyses::none(); |
5894 | |
5895 | return PreservedAnalyses::all(); |
5896 | } |
5897 | |
5898 | bool llvm::omp::isOpenMPKernel(Function &Fn) { |
5899 | return Fn.hasFnAttribute(Kind: "kernel" ); |
5900 | } |
5901 | |
5902 | KernelSet llvm::omp::getDeviceKernels(Module &M) { |
5903 | // TODO: Create a more cross-platform way of determining device kernels. |
5904 | NamedMDNode *MD = M.getNamedMetadata(Name: "nvvm.annotations" ); |
5905 | KernelSet Kernels; |
5906 | |
5907 | if (!MD) |
5908 | return Kernels; |
5909 | |
5910 | for (auto *Op : MD->operands()) { |
5911 | if (Op->getNumOperands() < 2) |
5912 | continue; |
5913 | MDString *KindID = dyn_cast<MDString>(Val: Op->getOperand(I: 1)); |
5914 | if (!KindID || KindID->getString() != "kernel" ) |
5915 | continue; |
5916 | |
5917 | Function *KernelFn = |
5918 | mdconst::dyn_extract_or_null<Function>(MD: Op->getOperand(I: 0)); |
5919 | if (!KernelFn) |
5920 | continue; |
5921 | |
5922 | // We are only interested in OpenMP target regions. Others, such as kernels |
5923 | // generated by CUDA but linked together, are not interesting to this pass. |
5924 | if (isOpenMPKernel(Fn&: *KernelFn)) { |
5925 | ++NumOpenMPTargetRegionKernels; |
5926 | Kernels.insert(X: KernelFn); |
5927 | } else |
5928 | ++NumNonOpenMPTargetRegionKernels; |
5929 | } |
5930 | |
5931 | return Kernels; |
5932 | } |
5933 | |
5934 | bool llvm::omp::containsOpenMP(Module &M) { |
5935 | Metadata *MD = M.getModuleFlag(Key: "openmp" ); |
5936 | if (!MD) |
5937 | return false; |
5938 | |
5939 | return true; |
5940 | } |
5941 | |
5942 | bool llvm::omp::isOpenMPDevice(Module &M) { |
5943 | Metadata *MD = M.getModuleFlag(Key: "openmp-device" ); |
5944 | if (!MD) |
5945 | return false; |
5946 | |
5947 | return true; |
5948 | } |
5949 | |