1 | //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the visit functions for load, store and alloca. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "InstCombineInternal.h" |
14 | #include "llvm/ADT/MapVector.h" |
15 | #include "llvm/ADT/SmallString.h" |
16 | #include "llvm/ADT/Statistic.h" |
17 | #include "llvm/Analysis/AliasAnalysis.h" |
18 | #include "llvm/Analysis/Loads.h" |
19 | #include "llvm/IR/DataLayout.h" |
20 | #include "llvm/IR/DebugInfoMetadata.h" |
21 | #include "llvm/IR/IntrinsicInst.h" |
22 | #include "llvm/IR/LLVMContext.h" |
23 | #include "llvm/IR/PatternMatch.h" |
24 | #include "llvm/Transforms/InstCombine/InstCombiner.h" |
25 | #include "llvm/Transforms/Utils/Local.h" |
26 | using namespace llvm; |
27 | using namespace PatternMatch; |
28 | |
29 | #define DEBUG_TYPE "instcombine" |
30 | |
31 | STATISTIC(NumDeadStore, "Number of dead stores eliminated" ); |
32 | STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global" ); |
33 | |
34 | static cl::opt<unsigned> MaxCopiedFromConstantUsers( |
35 | "instcombine-max-copied-from-constant-users" , cl::init(Val: 300), |
36 | cl::desc("Maximum users to visit in copy from constant transform" ), |
37 | cl::Hidden); |
38 | |
39 | namespace llvm { |
40 | cl::opt<bool> EnableInferAlignmentPass( |
41 | "enable-infer-alignment-pass" , cl::init(Val: true), cl::Hidden, cl::ZeroOrMore, |
42 | cl::desc("Enable the InferAlignment pass, disabling alignment inference in " |
43 | "InstCombine" )); |
44 | } |
45 | |
46 | /// isOnlyCopiedFromConstantMemory - Recursively walk the uses of a (derived) |
47 | /// pointer to an alloca. Ignore any reads of the pointer, return false if we |
48 | /// see any stores or other unknown uses. If we see pointer arithmetic, keep |
49 | /// track of whether it moves the pointer (with IsOffset) but otherwise traverse |
50 | /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to |
51 | /// the alloca, and if the source pointer is a pointer to a constant memory |
52 | /// location, we can optimize this. |
53 | static bool |
54 | isOnlyCopiedFromConstantMemory(AAResults *AA, AllocaInst *V, |
55 | MemTransferInst *&TheCopy, |
56 | SmallVectorImpl<Instruction *> &ToDelete) { |
57 | // We track lifetime intrinsics as we encounter them. If we decide to go |
58 | // ahead and replace the value with the memory location, this lets the caller |
59 | // quickly eliminate the markers. |
60 | |
61 | using ValueAndIsOffset = PointerIntPair<Value *, 1, bool>; |
62 | SmallVector<ValueAndIsOffset, 32> Worklist; |
63 | SmallPtrSet<ValueAndIsOffset, 32> Visited; |
64 | Worklist.emplace_back(Args&: V, Args: false); |
65 | while (!Worklist.empty()) { |
66 | ValueAndIsOffset Elem = Worklist.pop_back_val(); |
67 | if (!Visited.insert(Ptr: Elem).second) |
68 | continue; |
69 | if (Visited.size() > MaxCopiedFromConstantUsers) |
70 | return false; |
71 | |
72 | const auto [Value, IsOffset] = Elem; |
73 | for (auto &U : Value->uses()) { |
74 | auto *I = cast<Instruction>(Val: U.getUser()); |
75 | |
76 | if (auto *LI = dyn_cast<LoadInst>(Val: I)) { |
77 | // Ignore non-volatile loads, they are always ok. |
78 | if (!LI->isSimple()) return false; |
79 | continue; |
80 | } |
81 | |
82 | if (isa<PHINode, SelectInst>(Val: I)) { |
83 | // We set IsOffset=true, to forbid the memcpy from occurring after the |
84 | // phi: If one of the phi operands is not based on the alloca, we |
85 | // would incorrectly omit a write. |
86 | Worklist.emplace_back(Args&: I, Args: true); |
87 | continue; |
88 | } |
89 | if (isa<BitCastInst, AddrSpaceCastInst>(Val: I)) { |
90 | // If uses of the bitcast are ok, we are ok. |
91 | Worklist.emplace_back(Args&: I, Args: IsOffset); |
92 | continue; |
93 | } |
94 | if (auto *GEP = dyn_cast<GetElementPtrInst>(Val: I)) { |
95 | // If the GEP has all zero indices, it doesn't offset the pointer. If it |
96 | // doesn't, it does. |
97 | Worklist.emplace_back(Args&: I, Args: IsOffset || !GEP->hasAllZeroIndices()); |
98 | continue; |
99 | } |
100 | |
101 | if (auto *Call = dyn_cast<CallBase>(Val: I)) { |
102 | // If this is the function being called then we treat it like a load and |
103 | // ignore it. |
104 | if (Call->isCallee(U: &U)) |
105 | continue; |
106 | |
107 | unsigned DataOpNo = Call->getDataOperandNo(U: &U); |
108 | bool IsArgOperand = Call->isArgOperand(U: &U); |
109 | |
110 | // Inalloca arguments are clobbered by the call. |
111 | if (IsArgOperand && Call->isInAllocaArgument(ArgNo: DataOpNo)) |
112 | return false; |
113 | |
114 | // If this call site doesn't modify the memory, then we know it is just |
115 | // a load (but one that potentially returns the value itself), so we can |
116 | // ignore it if we know that the value isn't captured. |
117 | bool NoCapture = Call->doesNotCapture(OpNo: DataOpNo); |
118 | if ((Call->onlyReadsMemory() && (Call->use_empty() || NoCapture)) || |
119 | (Call->onlyReadsMemory(OpNo: DataOpNo) && NoCapture)) |
120 | continue; |
121 | |
122 | // If this is being passed as a byval argument, the caller is making a |
123 | // copy, so it is only a read of the alloca. |
124 | if (IsArgOperand && Call->isByValArgument(ArgNo: DataOpNo)) |
125 | continue; |
126 | } |
127 | |
128 | // Lifetime intrinsics can be handled by the caller. |
129 | if (I->isLifetimeStartOrEnd()) { |
130 | assert(I->use_empty() && "Lifetime markers have no result to use!" ); |
131 | ToDelete.push_back(Elt: I); |
132 | continue; |
133 | } |
134 | |
135 | // If this is isn't our memcpy/memmove, reject it as something we can't |
136 | // handle. |
137 | MemTransferInst *MI = dyn_cast<MemTransferInst>(Val: I); |
138 | if (!MI) |
139 | return false; |
140 | |
141 | // If the transfer is volatile, reject it. |
142 | if (MI->isVolatile()) |
143 | return false; |
144 | |
145 | // If the transfer is using the alloca as a source of the transfer, then |
146 | // ignore it since it is a load (unless the transfer is volatile). |
147 | if (U.getOperandNo() == 1) |
148 | continue; |
149 | |
150 | // If we already have seen a copy, reject the second one. |
151 | if (TheCopy) return false; |
152 | |
153 | // If the pointer has been offset from the start of the alloca, we can't |
154 | // safely handle this. |
155 | if (IsOffset) return false; |
156 | |
157 | // If the memintrinsic isn't using the alloca as the dest, reject it. |
158 | if (U.getOperandNo() != 0) return false; |
159 | |
160 | // If the source of the memcpy/move is not constant, reject it. |
161 | if (isModSet(MRI: AA->getModRefInfoMask(P: MI->getSource()))) |
162 | return false; |
163 | |
164 | // Otherwise, the transform is safe. Remember the copy instruction. |
165 | TheCopy = MI; |
166 | } |
167 | } |
168 | return true; |
169 | } |
170 | |
171 | /// isOnlyCopiedFromConstantMemory - Return true if the specified alloca is only |
172 | /// modified by a copy from a constant memory location. If we can prove this, we |
173 | /// can replace any uses of the alloca with uses of the memory location |
174 | /// directly. |
175 | static MemTransferInst * |
176 | isOnlyCopiedFromConstantMemory(AAResults *AA, |
177 | AllocaInst *AI, |
178 | SmallVectorImpl<Instruction *> &ToDelete) { |
179 | MemTransferInst *TheCopy = nullptr; |
180 | if (isOnlyCopiedFromConstantMemory(AA, V: AI, TheCopy, ToDelete)) |
181 | return TheCopy; |
182 | return nullptr; |
183 | } |
184 | |
185 | /// Returns true if V is dereferenceable for size of alloca. |
186 | static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, |
187 | const DataLayout &DL) { |
188 | if (AI->isArrayAllocation()) |
189 | return false; |
190 | uint64_t AllocaSize = DL.getTypeStoreSize(Ty: AI->getAllocatedType()); |
191 | if (!AllocaSize) |
192 | return false; |
193 | return isDereferenceableAndAlignedPointer(V, Alignment: AI->getAlign(), |
194 | Size: APInt(64, AllocaSize), DL); |
195 | } |
196 | |
197 | static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC, |
198 | AllocaInst &AI, DominatorTree &DT) { |
199 | // Check for array size of 1 (scalar allocation). |
200 | if (!AI.isArrayAllocation()) { |
201 | // i32 1 is the canonical array size for scalar allocations. |
202 | if (AI.getArraySize()->getType()->isIntegerTy(Bitwidth: 32)) |
203 | return nullptr; |
204 | |
205 | // Canonicalize it. |
206 | return IC.replaceOperand(I&: AI, OpNum: 0, V: IC.Builder.getInt32(C: 1)); |
207 | } |
208 | |
209 | // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 |
210 | if (const ConstantInt *C = dyn_cast<ConstantInt>(Val: AI.getArraySize())) { |
211 | if (C->getValue().getActiveBits() <= 64) { |
212 | Type *NewTy = ArrayType::get(ElementType: AI.getAllocatedType(), NumElements: C->getZExtValue()); |
213 | AllocaInst *New = IC.Builder.CreateAlloca(Ty: NewTy, AddrSpace: AI.getAddressSpace(), |
214 | ArraySize: nullptr, Name: AI.getName()); |
215 | New->setAlignment(AI.getAlign()); |
216 | New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); |
217 | |
218 | replaceAllDbgUsesWith(From&: AI, To&: *New, DomPoint&: *New, DT); |
219 | return IC.replaceInstUsesWith(I&: AI, V: New); |
220 | } |
221 | } |
222 | |
223 | if (isa<UndefValue>(Val: AI.getArraySize())) |
224 | return IC.replaceInstUsesWith(I&: AI, V: Constant::getNullValue(Ty: AI.getType())); |
225 | |
226 | // Ensure that the alloca array size argument has type equal to the offset |
227 | // size of the alloca() pointer, which, in the tyical case, is intptr_t, |
228 | // so that any casting is exposed early. |
229 | Type *PtrIdxTy = IC.getDataLayout().getIndexType(PtrTy: AI.getType()); |
230 | if (AI.getArraySize()->getType() != PtrIdxTy) { |
231 | Value *V = IC.Builder.CreateIntCast(V: AI.getArraySize(), DestTy: PtrIdxTy, isSigned: false); |
232 | return IC.replaceOperand(I&: AI, OpNum: 0, V); |
233 | } |
234 | |
235 | return nullptr; |
236 | } |
237 | |
238 | namespace { |
239 | // If I and V are pointers in different address space, it is not allowed to |
240 | // use replaceAllUsesWith since I and V have different types. A |
241 | // non-target-specific transformation should not use addrspacecast on V since |
242 | // the two address space may be disjoint depending on target. |
243 | // |
244 | // This class chases down uses of the old pointer until reaching the load |
245 | // instructions, then replaces the old pointer in the load instructions with |
246 | // the new pointer. If during the chasing it sees bitcast or GEP, it will |
247 | // create new bitcast or GEP with the new pointer and use them in the load |
248 | // instruction. |
249 | class PointerReplacer { |
250 | public: |
251 | PointerReplacer(InstCombinerImpl &IC, Instruction &Root, unsigned SrcAS) |
252 | : IC(IC), Root(Root), FromAS(SrcAS) {} |
253 | |
254 | bool collectUsers(); |
255 | void replacePointer(Value *V); |
256 | |
257 | private: |
258 | bool collectUsersRecursive(Instruction &I); |
259 | void replace(Instruction *I); |
260 | Value *getReplacement(Value *I); |
261 | bool isAvailable(Instruction *I) const { |
262 | return I == &Root || Worklist.contains(key: I); |
263 | } |
264 | |
265 | bool isEqualOrValidAddrSpaceCast(const Instruction *I, |
266 | unsigned FromAS) const { |
267 | const auto *ASC = dyn_cast<AddrSpaceCastInst>(Val: I); |
268 | if (!ASC) |
269 | return false; |
270 | unsigned ToAS = ASC->getDestAddressSpace(); |
271 | return (FromAS == ToAS) || IC.isValidAddrSpaceCast(FromAS, ToAS); |
272 | } |
273 | |
274 | SmallPtrSet<Instruction *, 32> ValuesToRevisit; |
275 | SmallSetVector<Instruction *, 4> Worklist; |
276 | MapVector<Value *, Value *> WorkMap; |
277 | InstCombinerImpl &IC; |
278 | Instruction &Root; |
279 | unsigned FromAS; |
280 | }; |
281 | } // end anonymous namespace |
282 | |
283 | bool PointerReplacer::collectUsers() { |
284 | if (!collectUsersRecursive(I&: Root)) |
285 | return false; |
286 | |
287 | // Ensure that all outstanding (indirect) users of I |
288 | // are inserted into the Worklist. Return false |
289 | // otherwise. |
290 | for (auto *Inst : ValuesToRevisit) |
291 | if (!Worklist.contains(key: Inst)) |
292 | return false; |
293 | return true; |
294 | } |
295 | |
296 | bool PointerReplacer::collectUsersRecursive(Instruction &I) { |
297 | for (auto *U : I.users()) { |
298 | auto *Inst = cast<Instruction>(Val: &*U); |
299 | if (auto *Load = dyn_cast<LoadInst>(Val: Inst)) { |
300 | if (Load->isVolatile()) |
301 | return false; |
302 | Worklist.insert(X: Load); |
303 | } else if (auto *PHI = dyn_cast<PHINode>(Val: Inst)) { |
304 | // All incoming values must be instructions for replacability |
305 | if (any_of(Range: PHI->incoming_values(), |
306 | P: [](Value *V) { return !isa<Instruction>(Val: V); })) |
307 | return false; |
308 | |
309 | // If at least one incoming value of the PHI is not in Worklist, |
310 | // store the PHI for revisiting and skip this iteration of the |
311 | // loop. |
312 | if (any_of(Range: PHI->incoming_values(), P: [this](Value *V) { |
313 | return !isAvailable(I: cast<Instruction>(Val: V)); |
314 | })) { |
315 | ValuesToRevisit.insert(Ptr: Inst); |
316 | continue; |
317 | } |
318 | |
319 | Worklist.insert(X: PHI); |
320 | if (!collectUsersRecursive(I&: *PHI)) |
321 | return false; |
322 | } else if (auto *SI = dyn_cast<SelectInst>(Val: Inst)) { |
323 | if (!isa<Instruction>(Val: SI->getTrueValue()) || |
324 | !isa<Instruction>(Val: SI->getFalseValue())) |
325 | return false; |
326 | |
327 | if (!isAvailable(I: cast<Instruction>(Val: SI->getTrueValue())) || |
328 | !isAvailable(I: cast<Instruction>(Val: SI->getFalseValue()))) { |
329 | ValuesToRevisit.insert(Ptr: Inst); |
330 | continue; |
331 | } |
332 | Worklist.insert(X: SI); |
333 | if (!collectUsersRecursive(I&: *SI)) |
334 | return false; |
335 | } else if (isa<GetElementPtrInst>(Val: Inst)) { |
336 | Worklist.insert(X: Inst); |
337 | if (!collectUsersRecursive(I&: *Inst)) |
338 | return false; |
339 | } else if (auto *MI = dyn_cast<MemTransferInst>(Val: Inst)) { |
340 | if (MI->isVolatile()) |
341 | return false; |
342 | Worklist.insert(X: Inst); |
343 | } else if (isEqualOrValidAddrSpaceCast(I: Inst, FromAS)) { |
344 | Worklist.insert(X: Inst); |
345 | if (!collectUsersRecursive(I&: *Inst)) |
346 | return false; |
347 | } else if (Inst->isLifetimeStartOrEnd()) { |
348 | continue; |
349 | } else { |
350 | // TODO: For arbitrary uses with address space mismatches, should we check |
351 | // if we can introduce a valid addrspacecast? |
352 | LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U << '\n'); |
353 | return false; |
354 | } |
355 | } |
356 | |
357 | return true; |
358 | } |
359 | |
360 | Value *PointerReplacer::getReplacement(Value *V) { return WorkMap.lookup(Key: V); } |
361 | |
362 | void PointerReplacer::replace(Instruction *I) { |
363 | if (getReplacement(V: I)) |
364 | return; |
365 | |
366 | if (auto *LT = dyn_cast<LoadInst>(Val: I)) { |
367 | auto *V = getReplacement(V: LT->getPointerOperand()); |
368 | assert(V && "Operand not replaced" ); |
369 | auto *NewI = new LoadInst(LT->getType(), V, "" , LT->isVolatile(), |
370 | LT->getAlign(), LT->getOrdering(), |
371 | LT->getSyncScopeID()); |
372 | NewI->takeName(V: LT); |
373 | copyMetadataForLoad(Dest&: *NewI, Source: *LT); |
374 | |
375 | IC.InsertNewInstWith(New: NewI, Old: LT->getIterator()); |
376 | IC.replaceInstUsesWith(I&: *LT, V: NewI); |
377 | WorkMap[LT] = NewI; |
378 | } else if (auto *PHI = dyn_cast<PHINode>(Val: I)) { |
379 | Type *NewTy = getReplacement(V: PHI->getIncomingValue(i: 0))->getType(); |
380 | auto *NewPHI = PHINode::Create(Ty: NewTy, NumReservedValues: PHI->getNumIncomingValues(), |
381 | NameStr: PHI->getName(), InsertBefore: PHI->getIterator()); |
382 | for (unsigned int I = 0; I < PHI->getNumIncomingValues(); ++I) |
383 | NewPHI->addIncoming(V: getReplacement(V: PHI->getIncomingValue(i: I)), |
384 | BB: PHI->getIncomingBlock(i: I)); |
385 | WorkMap[PHI] = NewPHI; |
386 | } else if (auto *GEP = dyn_cast<GetElementPtrInst>(Val: I)) { |
387 | auto *V = getReplacement(V: GEP->getPointerOperand()); |
388 | assert(V && "Operand not replaced" ); |
389 | SmallVector<Value *, 8> Indices(GEP->indices()); |
390 | auto *NewI = |
391 | GetElementPtrInst::Create(PointeeType: GEP->getSourceElementType(), Ptr: V, IdxList: Indices); |
392 | IC.InsertNewInstWith(New: NewI, Old: GEP->getIterator()); |
393 | NewI->takeName(V: GEP); |
394 | NewI->setNoWrapFlags(GEP->getNoWrapFlags()); |
395 | WorkMap[GEP] = NewI; |
396 | } else if (auto *SI = dyn_cast<SelectInst>(Val: I)) { |
397 | Value *TrueValue = SI->getTrueValue(); |
398 | Value *FalseValue = SI->getFalseValue(); |
399 | if (Value *Replacement = getReplacement(V: TrueValue)) |
400 | TrueValue = Replacement; |
401 | if (Value *Replacement = getReplacement(V: FalseValue)) |
402 | FalseValue = Replacement; |
403 | auto *NewSI = SelectInst::Create(C: SI->getCondition(), S1: TrueValue, S2: FalseValue, |
404 | NameStr: SI->getName(), InsertBefore: nullptr, MDFrom: SI); |
405 | IC.InsertNewInstWith(New: NewSI, Old: SI->getIterator()); |
406 | NewSI->takeName(V: SI); |
407 | WorkMap[SI] = NewSI; |
408 | } else if (auto *MemCpy = dyn_cast<MemTransferInst>(Val: I)) { |
409 | auto *DestV = MemCpy->getRawDest(); |
410 | auto *SrcV = MemCpy->getRawSource(); |
411 | |
412 | if (auto *DestReplace = getReplacement(V: DestV)) |
413 | DestV = DestReplace; |
414 | if (auto *SrcReplace = getReplacement(V: SrcV)) |
415 | SrcV = SrcReplace; |
416 | |
417 | IC.Builder.SetInsertPoint(MemCpy); |
418 | auto *NewI = IC.Builder.CreateMemTransferInst( |
419 | IntrID: MemCpy->getIntrinsicID(), Dst: DestV, DstAlign: MemCpy->getDestAlign(), Src: SrcV, |
420 | SrcAlign: MemCpy->getSourceAlign(), Size: MemCpy->getLength(), isVolatile: MemCpy->isVolatile()); |
421 | AAMDNodes AAMD = MemCpy->getAAMetadata(); |
422 | if (AAMD) |
423 | NewI->setAAMetadata(AAMD); |
424 | |
425 | IC.eraseInstFromFunction(I&: *MemCpy); |
426 | WorkMap[MemCpy] = NewI; |
427 | } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(Val: I)) { |
428 | auto *V = getReplacement(V: ASC->getPointerOperand()); |
429 | assert(V && "Operand not replaced" ); |
430 | assert(isEqualOrValidAddrSpaceCast( |
431 | ASC, V->getType()->getPointerAddressSpace()) && |
432 | "Invalid address space cast!" ); |
433 | |
434 | if (V->getType()->getPointerAddressSpace() != |
435 | ASC->getType()->getPointerAddressSpace()) { |
436 | auto *NewI = new AddrSpaceCastInst(V, ASC->getType(), "" ); |
437 | NewI->takeName(V: ASC); |
438 | IC.InsertNewInstWith(New: NewI, Old: ASC->getIterator()); |
439 | WorkMap[ASC] = NewI; |
440 | } else { |
441 | WorkMap[ASC] = V; |
442 | } |
443 | |
444 | } else { |
445 | llvm_unreachable("should never reach here" ); |
446 | } |
447 | } |
448 | |
449 | void PointerReplacer::replacePointer(Value *V) { |
450 | #ifndef NDEBUG |
451 | auto *PT = cast<PointerType>(Root.getType()); |
452 | auto *NT = cast<PointerType>(V->getType()); |
453 | assert(PT != NT && "Invalid usage" ); |
454 | #endif |
455 | WorkMap[&Root] = V; |
456 | |
457 | for (Instruction *Workitem : Worklist) |
458 | replace(I: Workitem); |
459 | } |
460 | |
461 | Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) { |
462 | if (auto *I = simplifyAllocaArraySize(IC&: *this, AI, DT)) |
463 | return I; |
464 | |
465 | if (AI.getAllocatedType()->isSized()) { |
466 | // Move all alloca's of zero byte objects to the entry block and merge them |
467 | // together. Note that we only do this for alloca's, because malloc should |
468 | // allocate and return a unique pointer, even for a zero byte allocation. |
469 | if (DL.getTypeAllocSize(Ty: AI.getAllocatedType()).getKnownMinValue() == 0) { |
470 | // For a zero sized alloca there is no point in doing an array allocation. |
471 | // This is helpful if the array size is a complicated expression not used |
472 | // elsewhere. |
473 | if (AI.isArrayAllocation()) |
474 | return replaceOperand(I&: AI, OpNum: 0, |
475 | V: ConstantInt::get(Ty: AI.getArraySize()->getType(), V: 1)); |
476 | |
477 | // Get the first instruction in the entry block. |
478 | BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); |
479 | Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); |
480 | if (FirstInst != &AI) { |
481 | // If the entry block doesn't start with a zero-size alloca then move |
482 | // this one to the start of the entry block. There is no problem with |
483 | // dominance as the array size was forced to a constant earlier already. |
484 | AllocaInst *EntryAI = dyn_cast<AllocaInst>(Val: FirstInst); |
485 | if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || |
486 | DL.getTypeAllocSize(Ty: EntryAI->getAllocatedType()) |
487 | .getKnownMinValue() != 0) { |
488 | AI.moveBefore(MovePos: FirstInst); |
489 | return &AI; |
490 | } |
491 | |
492 | // Replace this zero-sized alloca with the one at the start of the entry |
493 | // block after ensuring that the address will be aligned enough for both |
494 | // types. |
495 | const Align MaxAlign = std::max(a: EntryAI->getAlign(), b: AI.getAlign()); |
496 | EntryAI->setAlignment(MaxAlign); |
497 | return replaceInstUsesWith(I&: AI, V: EntryAI); |
498 | } |
499 | } |
500 | } |
501 | |
502 | // Check to see if this allocation is only modified by a memcpy/memmove from |
503 | // a memory location whose alignment is equal to or exceeds that of the |
504 | // allocation. If this is the case, we can change all users to use the |
505 | // constant memory location instead. This is commonly produced by the CFE by |
506 | // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' |
507 | // is only subsequently read. |
508 | SmallVector<Instruction *, 4> ToDelete; |
509 | if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, AI: &AI, ToDelete)) { |
510 | Value *TheSrc = Copy->getSource(); |
511 | Align AllocaAlign = AI.getAlign(); |
512 | Align SourceAlign = getOrEnforceKnownAlignment( |
513 | V: TheSrc, PrefAlign: AllocaAlign, DL, CxtI: &AI, AC: &AC, DT: &DT); |
514 | if (AllocaAlign <= SourceAlign && |
515 | isDereferenceableForAllocaSize(V: TheSrc, AI: &AI, DL) && |
516 | !isa<Instruction>(Val: TheSrc)) { |
517 | // FIXME: Can we sink instructions without violating dominance when TheSrc |
518 | // is an instruction instead of a constant or argument? |
519 | LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); |
520 | LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); |
521 | unsigned SrcAddrSpace = TheSrc->getType()->getPointerAddressSpace(); |
522 | if (AI.getAddressSpace() == SrcAddrSpace) { |
523 | for (Instruction *Delete : ToDelete) |
524 | eraseInstFromFunction(I&: *Delete); |
525 | |
526 | Instruction *NewI = replaceInstUsesWith(I&: AI, V: TheSrc); |
527 | eraseInstFromFunction(I&: *Copy); |
528 | ++NumGlobalCopies; |
529 | return NewI; |
530 | } |
531 | |
532 | PointerReplacer PtrReplacer(*this, AI, SrcAddrSpace); |
533 | if (PtrReplacer.collectUsers()) { |
534 | for (Instruction *Delete : ToDelete) |
535 | eraseInstFromFunction(I&: *Delete); |
536 | |
537 | PtrReplacer.replacePointer(V: TheSrc); |
538 | ++NumGlobalCopies; |
539 | } |
540 | } |
541 | } |
542 | |
543 | // At last, use the generic allocation site handler to aggressively remove |
544 | // unused allocas. |
545 | return visitAllocSite(FI&: AI); |
546 | } |
547 | |
548 | // Are we allowed to form a atomic load or store of this type? |
549 | static bool isSupportedAtomicType(Type *Ty) { |
550 | return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy(); |
551 | } |
552 | |
553 | /// Helper to combine a load to a new type. |
554 | /// |
555 | /// This just does the work of combining a load to a new type. It handles |
556 | /// metadata, etc., and returns the new instruction. The \c NewTy should be the |
557 | /// loaded *value* type. This will convert it to a pointer, cast the operand to |
558 | /// that pointer type, load it, etc. |
559 | /// |
560 | /// Note that this will create all of the instructions with whatever insert |
561 | /// point the \c InstCombinerImpl currently is using. |
562 | LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy, |
563 | const Twine &Suffix) { |
564 | assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && |
565 | "can't fold an atomic load to requested type" ); |
566 | |
567 | LoadInst *NewLoad = |
568 | Builder.CreateAlignedLoad(Ty: NewTy, Ptr: LI.getPointerOperand(), Align: LI.getAlign(), |
569 | isVolatile: LI.isVolatile(), Name: LI.getName() + Suffix); |
570 | NewLoad->setAtomic(Ordering: LI.getOrdering(), SSID: LI.getSyncScopeID()); |
571 | copyMetadataForLoad(Dest&: *NewLoad, Source: LI); |
572 | return NewLoad; |
573 | } |
574 | |
575 | /// Combine a store to a new type. |
576 | /// |
577 | /// Returns the newly created store instruction. |
578 | static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI, |
579 | Value *V) { |
580 | assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && |
581 | "can't fold an atomic store of requested type" ); |
582 | |
583 | Value *Ptr = SI.getPointerOperand(); |
584 | SmallVector<std::pair<unsigned, MDNode *>, 8> MD; |
585 | SI.getAllMetadata(MDs&: MD); |
586 | |
587 | StoreInst *NewStore = |
588 | IC.Builder.CreateAlignedStore(Val: V, Ptr, Align: SI.getAlign(), isVolatile: SI.isVolatile()); |
589 | NewStore->setAtomic(Ordering: SI.getOrdering(), SSID: SI.getSyncScopeID()); |
590 | for (const auto &MDPair : MD) { |
591 | unsigned ID = MDPair.first; |
592 | MDNode *N = MDPair.second; |
593 | // Note, essentially every kind of metadata should be preserved here! This |
594 | // routine is supposed to clone a store instruction changing *only its |
595 | // type*. The only metadata it makes sense to drop is metadata which is |
596 | // invalidated when the pointer type changes. This should essentially |
597 | // never be the case in LLVM, but we explicitly switch over only known |
598 | // metadata to be conservatively correct. If you are adding metadata to |
599 | // LLVM which pertains to stores, you almost certainly want to add it |
600 | // here. |
601 | switch (ID) { |
602 | case LLVMContext::MD_dbg: |
603 | case LLVMContext::MD_DIAssignID: |
604 | case LLVMContext::MD_tbaa: |
605 | case LLVMContext::MD_prof: |
606 | case LLVMContext::MD_fpmath: |
607 | case LLVMContext::MD_tbaa_struct: |
608 | case LLVMContext::MD_alias_scope: |
609 | case LLVMContext::MD_noalias: |
610 | case LLVMContext::MD_nontemporal: |
611 | case LLVMContext::MD_mem_parallel_loop_access: |
612 | case LLVMContext::MD_access_group: |
613 | // All of these directly apply. |
614 | NewStore->setMetadata(KindID: ID, Node: N); |
615 | break; |
616 | case LLVMContext::MD_invariant_load: |
617 | case LLVMContext::MD_nonnull: |
618 | case LLVMContext::MD_noundef: |
619 | case LLVMContext::MD_range: |
620 | case LLVMContext::MD_align: |
621 | case LLVMContext::MD_dereferenceable: |
622 | case LLVMContext::MD_dereferenceable_or_null: |
623 | // These don't apply for stores. |
624 | break; |
625 | } |
626 | } |
627 | |
628 | return NewStore; |
629 | } |
630 | |
631 | /// Combine loads to match the type of their uses' value after looking |
632 | /// through intervening bitcasts. |
633 | /// |
634 | /// The core idea here is that if the result of a load is used in an operation, |
635 | /// we should load the type most conducive to that operation. For example, when |
636 | /// loading an integer and converting that immediately to a pointer, we should |
637 | /// instead directly load a pointer. |
638 | /// |
639 | /// However, this routine must never change the width of a load or the number of |
640 | /// loads as that would introduce a semantic change. This combine is expected to |
641 | /// be a semantic no-op which just allows loads to more closely model the types |
642 | /// of their consuming operations. |
643 | /// |
644 | /// Currently, we also refuse to change the precise type used for an atomic load |
645 | /// or a volatile load. This is debatable, and might be reasonable to change |
646 | /// later. However, it is risky in case some backend or other part of LLVM is |
647 | /// relying on the exact type loaded to select appropriate atomic operations. |
648 | static Instruction *combineLoadToOperationType(InstCombinerImpl &IC, |
649 | LoadInst &Load) { |
650 | // FIXME: We could probably with some care handle both volatile and ordered |
651 | // atomic loads here but it isn't clear that this is important. |
652 | if (!Load.isUnordered()) |
653 | return nullptr; |
654 | |
655 | if (Load.use_empty()) |
656 | return nullptr; |
657 | |
658 | // swifterror values can't be bitcasted. |
659 | if (Load.getPointerOperand()->isSwiftError()) |
660 | return nullptr; |
661 | |
662 | // Fold away bit casts of the loaded value by loading the desired type. |
663 | // Note that we should not do this for pointer<->integer casts, |
664 | // because that would result in type punning. |
665 | if (Load.hasOneUse()) { |
666 | // Don't transform when the type is x86_amx, it makes the pass that lower |
667 | // x86_amx type happy. |
668 | Type *LoadTy = Load.getType(); |
669 | if (auto *BC = dyn_cast<BitCastInst>(Val: Load.user_back())) { |
670 | assert(!LoadTy->isX86_AMXTy() && "Load from x86_amx* should not happen!" ); |
671 | if (BC->getType()->isX86_AMXTy()) |
672 | return nullptr; |
673 | } |
674 | |
675 | if (auto *CastUser = dyn_cast<CastInst>(Val: Load.user_back())) { |
676 | Type *DestTy = CastUser->getDestTy(); |
677 | if (CastUser->isNoopCast(DL: IC.getDataLayout()) && |
678 | LoadTy->isPtrOrPtrVectorTy() == DestTy->isPtrOrPtrVectorTy() && |
679 | (!Load.isAtomic() || isSupportedAtomicType(Ty: DestTy))) { |
680 | LoadInst *NewLoad = IC.combineLoadToNewType(LI&: Load, NewTy: DestTy); |
681 | CastUser->replaceAllUsesWith(V: NewLoad); |
682 | IC.eraseInstFromFunction(I&: *CastUser); |
683 | return &Load; |
684 | } |
685 | } |
686 | } |
687 | |
688 | // FIXME: We should also canonicalize loads of vectors when their elements are |
689 | // cast to other types. |
690 | return nullptr; |
691 | } |
692 | |
693 | static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) { |
694 | // FIXME: We could probably with some care handle both volatile and atomic |
695 | // stores here but it isn't clear that this is important. |
696 | if (!LI.isSimple()) |
697 | return nullptr; |
698 | |
699 | Type *T = LI.getType(); |
700 | if (!T->isAggregateType()) |
701 | return nullptr; |
702 | |
703 | StringRef Name = LI.getName(); |
704 | |
705 | if (auto *ST = dyn_cast<StructType>(Val: T)) { |
706 | // If the struct only have one element, we unpack. |
707 | auto NumElements = ST->getNumElements(); |
708 | if (NumElements == 1) { |
709 | LoadInst *NewLoad = IC.combineLoadToNewType(LI, NewTy: ST->getTypeAtIndex(N: 0U), |
710 | Suffix: ".unpack" ); |
711 | NewLoad->setAAMetadata(LI.getAAMetadata()); |
712 | return IC.replaceInstUsesWith(I&: LI, V: IC.Builder.CreateInsertValue( |
713 | Agg: PoisonValue::get(T), Val: NewLoad, Idxs: 0, Name)); |
714 | } |
715 | |
716 | // We don't want to break loads with padding here as we'd loose |
717 | // the knowledge that padding exists for the rest of the pipeline. |
718 | const DataLayout &DL = IC.getDataLayout(); |
719 | auto *SL = DL.getStructLayout(Ty: ST); |
720 | |
721 | // Don't unpack for structure with scalable vector. |
722 | if (SL->getSizeInBits().isScalable()) |
723 | return nullptr; |
724 | |
725 | if (SL->hasPadding()) |
726 | return nullptr; |
727 | |
728 | const auto Align = LI.getAlign(); |
729 | auto *Addr = LI.getPointerOperand(); |
730 | auto *IdxType = Type::getInt32Ty(C&: T->getContext()); |
731 | auto *Zero = ConstantInt::get(Ty: IdxType, V: 0); |
732 | |
733 | Value *V = PoisonValue::get(T); |
734 | for (unsigned i = 0; i < NumElements; i++) { |
735 | Value *Indices[2] = { |
736 | Zero, |
737 | ConstantInt::get(Ty: IdxType, V: i), |
738 | }; |
739 | auto *Ptr = IC.Builder.CreateInBoundsGEP(Ty: ST, Ptr: Addr, IdxList: ArrayRef(Indices), |
740 | Name: Name + ".elt" ); |
741 | auto *L = IC.Builder.CreateAlignedLoad( |
742 | Ty: ST->getElementType(N: i), Ptr, |
743 | Align: commonAlignment(A: Align, Offset: SL->getElementOffset(Idx: i)), Name: Name + ".unpack" ); |
744 | // Propagate AA metadata. It'll still be valid on the narrowed load. |
745 | L->setAAMetadata(LI.getAAMetadata()); |
746 | V = IC.Builder.CreateInsertValue(Agg: V, Val: L, Idxs: i); |
747 | } |
748 | |
749 | V->setName(Name); |
750 | return IC.replaceInstUsesWith(I&: LI, V); |
751 | } |
752 | |
753 | if (auto *AT = dyn_cast<ArrayType>(Val: T)) { |
754 | auto *ET = AT->getElementType(); |
755 | auto NumElements = AT->getNumElements(); |
756 | if (NumElements == 1) { |
757 | LoadInst *NewLoad = IC.combineLoadToNewType(LI, NewTy: ET, Suffix: ".unpack" ); |
758 | NewLoad->setAAMetadata(LI.getAAMetadata()); |
759 | return IC.replaceInstUsesWith(I&: LI, V: IC.Builder.CreateInsertValue( |
760 | Agg: PoisonValue::get(T), Val: NewLoad, Idxs: 0, Name)); |
761 | } |
762 | |
763 | // Bail out if the array is too large. Ideally we would like to optimize |
764 | // arrays of arbitrary size but this has a terrible impact on compile time. |
765 | // The threshold here is chosen arbitrarily, maybe needs a little bit of |
766 | // tuning. |
767 | if (NumElements > IC.MaxArraySizeForCombine) |
768 | return nullptr; |
769 | |
770 | const DataLayout &DL = IC.getDataLayout(); |
771 | TypeSize EltSize = DL.getTypeAllocSize(Ty: ET); |
772 | const auto Align = LI.getAlign(); |
773 | |
774 | auto *Addr = LI.getPointerOperand(); |
775 | auto *IdxType = Type::getInt64Ty(C&: T->getContext()); |
776 | auto *Zero = ConstantInt::get(Ty: IdxType, V: 0); |
777 | |
778 | Value *V = PoisonValue::get(T); |
779 | TypeSize Offset = TypeSize::getZero(); |
780 | for (uint64_t i = 0; i < NumElements; i++) { |
781 | Value *Indices[2] = { |
782 | Zero, |
783 | ConstantInt::get(Ty: IdxType, V: i), |
784 | }; |
785 | auto *Ptr = IC.Builder.CreateInBoundsGEP(Ty: AT, Ptr: Addr, IdxList: ArrayRef(Indices), |
786 | Name: Name + ".elt" ); |
787 | auto EltAlign = commonAlignment(A: Align, Offset: Offset.getKnownMinValue()); |
788 | auto *L = IC.Builder.CreateAlignedLoad(Ty: AT->getElementType(), Ptr, |
789 | Align: EltAlign, Name: Name + ".unpack" ); |
790 | L->setAAMetadata(LI.getAAMetadata()); |
791 | V = IC.Builder.CreateInsertValue(Agg: V, Val: L, Idxs: i); |
792 | Offset += EltSize; |
793 | } |
794 | |
795 | V->setName(Name); |
796 | return IC.replaceInstUsesWith(I&: LI, V); |
797 | } |
798 | |
799 | return nullptr; |
800 | } |
801 | |
802 | // If we can determine that all possible objects pointed to by the provided |
803 | // pointer value are, not only dereferenceable, but also definitively less than |
804 | // or equal to the provided maximum size, then return true. Otherwise, return |
805 | // false (constant global values and allocas fall into this category). |
806 | // |
807 | // FIXME: This should probably live in ValueTracking (or similar). |
808 | static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, |
809 | const DataLayout &DL) { |
810 | SmallPtrSet<Value *, 4> Visited; |
811 | SmallVector<Value *, 4> Worklist(1, V); |
812 | |
813 | do { |
814 | Value *P = Worklist.pop_back_val(); |
815 | P = P->stripPointerCasts(); |
816 | |
817 | if (!Visited.insert(Ptr: P).second) |
818 | continue; |
819 | |
820 | if (SelectInst *SI = dyn_cast<SelectInst>(Val: P)) { |
821 | Worklist.push_back(Elt: SI->getTrueValue()); |
822 | Worklist.push_back(Elt: SI->getFalseValue()); |
823 | continue; |
824 | } |
825 | |
826 | if (PHINode *PN = dyn_cast<PHINode>(Val: P)) { |
827 | append_range(C&: Worklist, R: PN->incoming_values()); |
828 | continue; |
829 | } |
830 | |
831 | if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Val: P)) { |
832 | if (GA->isInterposable()) |
833 | return false; |
834 | Worklist.push_back(Elt: GA->getAliasee()); |
835 | continue; |
836 | } |
837 | |
838 | // If we know how big this object is, and it is less than MaxSize, continue |
839 | // searching. Otherwise, return false. |
840 | if (AllocaInst *AI = dyn_cast<AllocaInst>(Val: P)) { |
841 | if (!AI->getAllocatedType()->isSized()) |
842 | return false; |
843 | |
844 | ConstantInt *CS = dyn_cast<ConstantInt>(Val: AI->getArraySize()); |
845 | if (!CS) |
846 | return false; |
847 | |
848 | TypeSize TS = DL.getTypeAllocSize(Ty: AI->getAllocatedType()); |
849 | if (TS.isScalable()) |
850 | return false; |
851 | // Make sure that, even if the multiplication below would wrap as an |
852 | // uint64_t, we still do the right thing. |
853 | if ((CS->getValue().zext(width: 128) * APInt(128, TS.getFixedValue())) |
854 | .ugt(RHS: MaxSize)) |
855 | return false; |
856 | continue; |
857 | } |
858 | |
859 | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Val: P)) { |
860 | if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) |
861 | return false; |
862 | |
863 | uint64_t InitSize = DL.getTypeAllocSize(Ty: GV->getValueType()); |
864 | if (InitSize > MaxSize) |
865 | return false; |
866 | continue; |
867 | } |
868 | |
869 | return false; |
870 | } while (!Worklist.empty()); |
871 | |
872 | return true; |
873 | } |
874 | |
875 | // If we're indexing into an object of a known size, and the outer index is |
876 | // not a constant, but having any value but zero would lead to undefined |
877 | // behavior, replace it with zero. |
878 | // |
879 | // For example, if we have: |
880 | // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 |
881 | // ... |
882 | // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x |
883 | // ... = load i32* %arrayidx, align 4 |
884 | // Then we know that we can replace %x in the GEP with i64 0. |
885 | // |
886 | // FIXME: We could fold any GEP index to zero that would cause UB if it were |
887 | // not zero. Currently, we only handle the first such index. Also, we could |
888 | // also search through non-zero constant indices if we kept track of the |
889 | // offsets those indices implied. |
890 | static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC, |
891 | GetElementPtrInst *GEPI, Instruction *MemI, |
892 | unsigned &Idx) { |
893 | if (GEPI->getNumOperands() < 2) |
894 | return false; |
895 | |
896 | // Find the first non-zero index of a GEP. If all indices are zero, return |
897 | // one past the last index. |
898 | auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { |
899 | unsigned I = 1; |
900 | for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { |
901 | Value *V = GEPI->getOperand(i_nocapture: I); |
902 | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val: V)) |
903 | if (CI->isZero()) |
904 | continue; |
905 | |
906 | break; |
907 | } |
908 | |
909 | return I; |
910 | }; |
911 | |
912 | // Skip through initial 'zero' indices, and find the corresponding pointer |
913 | // type. See if the next index is not a constant. |
914 | Idx = FirstNZIdx(GEPI); |
915 | if (Idx == GEPI->getNumOperands()) |
916 | return false; |
917 | if (isa<Constant>(Val: GEPI->getOperand(i_nocapture: Idx))) |
918 | return false; |
919 | |
920 | SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); |
921 | Type *SourceElementType = GEPI->getSourceElementType(); |
922 | // Size information about scalable vectors is not available, so we cannot |
923 | // deduce whether indexing at n is undefined behaviour or not. Bail out. |
924 | if (SourceElementType->isScalableTy()) |
925 | return false; |
926 | |
927 | Type *AllocTy = GetElementPtrInst::getIndexedType(Ty: SourceElementType, IdxList: Ops); |
928 | if (!AllocTy || !AllocTy->isSized()) |
929 | return false; |
930 | const DataLayout &DL = IC.getDataLayout(); |
931 | uint64_t TyAllocSize = DL.getTypeAllocSize(Ty: AllocTy).getFixedValue(); |
932 | |
933 | // If there are more indices after the one we might replace with a zero, make |
934 | // sure they're all non-negative. If any of them are negative, the overall |
935 | // address being computed might be before the base address determined by the |
936 | // first non-zero index. |
937 | auto IsAllNonNegative = [&]() { |
938 | for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { |
939 | KnownBits Known = IC.computeKnownBits(V: GEPI->getOperand(i_nocapture: i), Depth: 0, CxtI: MemI); |
940 | if (Known.isNonNegative()) |
941 | continue; |
942 | return false; |
943 | } |
944 | |
945 | return true; |
946 | }; |
947 | |
948 | // FIXME: If the GEP is not inbounds, and there are extra indices after the |
949 | // one we'll replace, those could cause the address computation to wrap |
950 | // (rendering the IsAllNonNegative() check below insufficient). We can do |
951 | // better, ignoring zero indices (and other indices we can prove small |
952 | // enough not to wrap). |
953 | if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) |
954 | return false; |
955 | |
956 | // Note that isObjectSizeLessThanOrEq will return true only if the pointer is |
957 | // also known to be dereferenceable. |
958 | return isObjectSizeLessThanOrEq(V: GEPI->getOperand(i_nocapture: 0), MaxSize: TyAllocSize, DL) && |
959 | IsAllNonNegative(); |
960 | } |
961 | |
962 | // If we're indexing into an object with a variable index for the memory |
963 | // access, but the object has only one element, we can assume that the index |
964 | // will always be zero. If we replace the GEP, return it. |
965 | static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr, |
966 | Instruction &MemI) { |
967 | if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Val: Ptr)) { |
968 | unsigned Idx; |
969 | if (canReplaceGEPIdxWithZero(IC, GEPI, MemI: &MemI, Idx)) { |
970 | Instruction *NewGEPI = GEPI->clone(); |
971 | NewGEPI->setOperand(i: Idx, |
972 | Val: ConstantInt::get(Ty: GEPI->getOperand(i_nocapture: Idx)->getType(), V: 0)); |
973 | IC.InsertNewInstBefore(New: NewGEPI, Old: GEPI->getIterator()); |
974 | return NewGEPI; |
975 | } |
976 | } |
977 | |
978 | return nullptr; |
979 | } |
980 | |
981 | static bool canSimplifyNullStoreOrGEP(StoreInst &SI) { |
982 | if (NullPointerIsDefined(F: SI.getFunction(), AS: SI.getPointerAddressSpace())) |
983 | return false; |
984 | |
985 | auto *Ptr = SI.getPointerOperand(); |
986 | if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Val: Ptr)) |
987 | Ptr = GEPI->getOperand(i_nocapture: 0); |
988 | return (isa<ConstantPointerNull>(Val: Ptr) && |
989 | !NullPointerIsDefined(F: SI.getFunction(), AS: SI.getPointerAddressSpace())); |
990 | } |
991 | |
992 | static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { |
993 | if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Val: Op)) { |
994 | const Value *GEPI0 = GEPI->getOperand(i_nocapture: 0); |
995 | if (isa<ConstantPointerNull>(Val: GEPI0) && |
996 | !NullPointerIsDefined(F: LI.getFunction(), AS: GEPI->getPointerAddressSpace())) |
997 | return true; |
998 | } |
999 | if (isa<UndefValue>(Val: Op) || |
1000 | (isa<ConstantPointerNull>(Val: Op) && |
1001 | !NullPointerIsDefined(F: LI.getFunction(), AS: LI.getPointerAddressSpace()))) |
1002 | return true; |
1003 | return false; |
1004 | } |
1005 | |
1006 | Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) { |
1007 | Value *Op = LI.getOperand(i_nocapture: 0); |
1008 | if (Value *Res = simplifyLoadInst(LI: &LI, PtrOp: Op, Q: SQ.getWithInstruction(I: &LI))) |
1009 | return replaceInstUsesWith(I&: LI, V: Res); |
1010 | |
1011 | // Try to canonicalize the loaded type. |
1012 | if (Instruction *Res = combineLoadToOperationType(IC&: *this, Load&: LI)) |
1013 | return Res; |
1014 | |
1015 | if (!EnableInferAlignmentPass) { |
1016 | // Attempt to improve the alignment. |
1017 | Align KnownAlign = getOrEnforceKnownAlignment( |
1018 | V: Op, PrefAlign: DL.getPrefTypeAlign(Ty: LI.getType()), DL, CxtI: &LI, AC: &AC, DT: &DT); |
1019 | if (KnownAlign > LI.getAlign()) |
1020 | LI.setAlignment(KnownAlign); |
1021 | } |
1022 | |
1023 | // Replace GEP indices if possible. |
1024 | if (Instruction *NewGEPI = replaceGEPIdxWithZero(IC&: *this, Ptr: Op, MemI&: LI)) |
1025 | return replaceOperand(I&: LI, OpNum: 0, V: NewGEPI); |
1026 | |
1027 | if (Instruction *Res = unpackLoadToAggregate(IC&: *this, LI)) |
1028 | return Res; |
1029 | |
1030 | // Do really simple store-to-load forwarding and load CSE, to catch cases |
1031 | // where there are several consecutive memory accesses to the same location, |
1032 | // separated by a few arithmetic operations. |
1033 | bool IsLoadCSE = false; |
1034 | BatchAAResults BatchAA(*AA); |
1035 | if (Value *AvailableVal = FindAvailableLoadedValue(Load: &LI, AA&: BatchAA, IsLoadCSE: &IsLoadCSE)) { |
1036 | if (IsLoadCSE) |
1037 | combineMetadataForCSE(K: cast<LoadInst>(Val: AvailableVal), J: &LI, DoesKMove: false); |
1038 | |
1039 | return replaceInstUsesWith( |
1040 | I&: LI, V: Builder.CreateBitOrPointerCast(V: AvailableVal, DestTy: LI.getType(), |
1041 | Name: LI.getName() + ".cast" )); |
1042 | } |
1043 | |
1044 | // None of the following transforms are legal for volatile/ordered atomic |
1045 | // loads. Most of them do apply for unordered atomics. |
1046 | if (!LI.isUnordered()) return nullptr; |
1047 | |
1048 | // load(gep null, ...) -> unreachable |
1049 | // load null/undef -> unreachable |
1050 | // TODO: Consider a target hook for valid address spaces for this xforms. |
1051 | if (canSimplifyNullLoadOrGEP(LI, Op)) { |
1052 | CreateNonTerminatorUnreachable(InsertAt: &LI); |
1053 | return replaceInstUsesWith(I&: LI, V: PoisonValue::get(T: LI.getType())); |
1054 | } |
1055 | |
1056 | if (Op->hasOneUse()) { |
1057 | // Change select and PHI nodes to select values instead of addresses: this |
1058 | // helps alias analysis out a lot, allows many others simplifications, and |
1059 | // exposes redundancy in the code. |
1060 | // |
1061 | // Note that we cannot do the transformation unless we know that the |
1062 | // introduced loads cannot trap! Something like this is valid as long as |
1063 | // the condition is always false: load (select bool %C, int* null, int* %G), |
1064 | // but it would not be valid if we transformed it to load from null |
1065 | // unconditionally. |
1066 | // |
1067 | if (SelectInst *SI = dyn_cast<SelectInst>(Val: Op)) { |
1068 | // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). |
1069 | Align Alignment = LI.getAlign(); |
1070 | if (isSafeToLoadUnconditionally(V: SI->getOperand(i_nocapture: 1), Ty: LI.getType(), |
1071 | Alignment, DL, ScanFrom: SI) && |
1072 | isSafeToLoadUnconditionally(V: SI->getOperand(i_nocapture: 2), Ty: LI.getType(), |
1073 | Alignment, DL, ScanFrom: SI)) { |
1074 | LoadInst *V1 = |
1075 | Builder.CreateLoad(Ty: LI.getType(), Ptr: SI->getOperand(i_nocapture: 1), |
1076 | Name: SI->getOperand(i_nocapture: 1)->getName() + ".val" ); |
1077 | LoadInst *V2 = |
1078 | Builder.CreateLoad(Ty: LI.getType(), Ptr: SI->getOperand(i_nocapture: 2), |
1079 | Name: SI->getOperand(i_nocapture: 2)->getName() + ".val" ); |
1080 | assert(LI.isUnordered() && "implied by above" ); |
1081 | V1->setAlignment(Alignment); |
1082 | V1->setAtomic(Ordering: LI.getOrdering(), SSID: LI.getSyncScopeID()); |
1083 | V2->setAlignment(Alignment); |
1084 | V2->setAtomic(Ordering: LI.getOrdering(), SSID: LI.getSyncScopeID()); |
1085 | return SelectInst::Create(C: SI->getCondition(), S1: V1, S2: V2); |
1086 | } |
1087 | |
1088 | // load (select (cond, null, P)) -> load P |
1089 | if (isa<ConstantPointerNull>(Val: SI->getOperand(i_nocapture: 1)) && |
1090 | !NullPointerIsDefined(F: SI->getFunction(), |
1091 | AS: LI.getPointerAddressSpace())) |
1092 | return replaceOperand(I&: LI, OpNum: 0, V: SI->getOperand(i_nocapture: 2)); |
1093 | |
1094 | // load (select (cond, P, null)) -> load P |
1095 | if (isa<ConstantPointerNull>(Val: SI->getOperand(i_nocapture: 2)) && |
1096 | !NullPointerIsDefined(F: SI->getFunction(), |
1097 | AS: LI.getPointerAddressSpace())) |
1098 | return replaceOperand(I&: LI, OpNum: 0, V: SI->getOperand(i_nocapture: 1)); |
1099 | } |
1100 | } |
1101 | return nullptr; |
1102 | } |
1103 | |
1104 | /// Look for extractelement/insertvalue sequence that acts like a bitcast. |
1105 | /// |
1106 | /// \returns underlying value that was "cast", or nullptr otherwise. |
1107 | /// |
1108 | /// For example, if we have: |
1109 | /// |
1110 | /// %E0 = extractelement <2 x double> %U, i32 0 |
1111 | /// %V0 = insertvalue [2 x double] undef, double %E0, 0 |
1112 | /// %E1 = extractelement <2 x double> %U, i32 1 |
1113 | /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 |
1114 | /// |
1115 | /// and the layout of a <2 x double> is isomorphic to a [2 x double], |
1116 | /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. |
1117 | /// Note that %U may contain non-undef values where %V1 has undef. |
1118 | static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) { |
1119 | Value *U = nullptr; |
1120 | while (auto *IV = dyn_cast<InsertValueInst>(Val: V)) { |
1121 | auto *E = dyn_cast<ExtractElementInst>(Val: IV->getInsertedValueOperand()); |
1122 | if (!E) |
1123 | return nullptr; |
1124 | auto *W = E->getVectorOperand(); |
1125 | if (!U) |
1126 | U = W; |
1127 | else if (U != W) |
1128 | return nullptr; |
1129 | auto *CI = dyn_cast<ConstantInt>(Val: E->getIndexOperand()); |
1130 | if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) |
1131 | return nullptr; |
1132 | V = IV->getAggregateOperand(); |
1133 | } |
1134 | if (!match(V, P: m_Undef()) || !U) |
1135 | return nullptr; |
1136 | |
1137 | auto *UT = cast<VectorType>(Val: U->getType()); |
1138 | auto *VT = V->getType(); |
1139 | // Check that types UT and VT are bitwise isomorphic. |
1140 | const auto &DL = IC.getDataLayout(); |
1141 | if (DL.getTypeStoreSizeInBits(Ty: UT) != DL.getTypeStoreSizeInBits(Ty: VT)) { |
1142 | return nullptr; |
1143 | } |
1144 | if (auto *AT = dyn_cast<ArrayType>(Val: VT)) { |
1145 | if (AT->getNumElements() != cast<FixedVectorType>(Val: UT)->getNumElements()) |
1146 | return nullptr; |
1147 | } else { |
1148 | auto *ST = cast<StructType>(Val: VT); |
1149 | if (ST->getNumElements() != cast<FixedVectorType>(Val: UT)->getNumElements()) |
1150 | return nullptr; |
1151 | for (const auto *EltT : ST->elements()) { |
1152 | if (EltT != UT->getElementType()) |
1153 | return nullptr; |
1154 | } |
1155 | } |
1156 | return U; |
1157 | } |
1158 | |
1159 | /// Combine stores to match the type of value being stored. |
1160 | /// |
1161 | /// The core idea here is that the memory does not have any intrinsic type and |
1162 | /// where we can we should match the type of a store to the type of value being |
1163 | /// stored. |
1164 | /// |
1165 | /// However, this routine must never change the width of a store or the number of |
1166 | /// stores as that would introduce a semantic change. This combine is expected to |
1167 | /// be a semantic no-op which just allows stores to more closely model the types |
1168 | /// of their incoming values. |
1169 | /// |
1170 | /// Currently, we also refuse to change the precise type used for an atomic or |
1171 | /// volatile store. This is debatable, and might be reasonable to change later. |
1172 | /// However, it is risky in case some backend or other part of LLVM is relying |
1173 | /// on the exact type stored to select appropriate atomic operations. |
1174 | /// |
1175 | /// \returns true if the store was successfully combined away. This indicates |
1176 | /// the caller must erase the store instruction. We have to let the caller erase |
1177 | /// the store instruction as otherwise there is no way to signal whether it was |
1178 | /// combined or not: IC.EraseInstFromFunction returns a null pointer. |
1179 | static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) { |
1180 | // FIXME: We could probably with some care handle both volatile and ordered |
1181 | // atomic stores here but it isn't clear that this is important. |
1182 | if (!SI.isUnordered()) |
1183 | return false; |
1184 | |
1185 | // swifterror values can't be bitcasted. |
1186 | if (SI.getPointerOperand()->isSwiftError()) |
1187 | return false; |
1188 | |
1189 | Value *V = SI.getValueOperand(); |
1190 | |
1191 | // Fold away bit casts of the stored value by storing the original type. |
1192 | if (auto *BC = dyn_cast<BitCastInst>(Val: V)) { |
1193 | assert(!BC->getType()->isX86_AMXTy() && |
1194 | "store to x86_amx* should not happen!" ); |
1195 | V = BC->getOperand(i_nocapture: 0); |
1196 | // Don't transform when the type is x86_amx, it makes the pass that lower |
1197 | // x86_amx type happy. |
1198 | if (V->getType()->isX86_AMXTy()) |
1199 | return false; |
1200 | if (!SI.isAtomic() || isSupportedAtomicType(Ty: V->getType())) { |
1201 | combineStoreToNewValue(IC, SI, V); |
1202 | return true; |
1203 | } |
1204 | } |
1205 | |
1206 | if (Value *U = likeBitCastFromVector(IC, V)) |
1207 | if (!SI.isAtomic() || isSupportedAtomicType(Ty: U->getType())) { |
1208 | combineStoreToNewValue(IC, SI, V: U); |
1209 | return true; |
1210 | } |
1211 | |
1212 | // FIXME: We should also canonicalize stores of vectors when their elements |
1213 | // are cast to other types. |
1214 | return false; |
1215 | } |
1216 | |
1217 | static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) { |
1218 | // FIXME: We could probably with some care handle both volatile and atomic |
1219 | // stores here but it isn't clear that this is important. |
1220 | if (!SI.isSimple()) |
1221 | return false; |
1222 | |
1223 | Value *V = SI.getValueOperand(); |
1224 | Type *T = V->getType(); |
1225 | |
1226 | if (!T->isAggregateType()) |
1227 | return false; |
1228 | |
1229 | if (auto *ST = dyn_cast<StructType>(Val: T)) { |
1230 | // If the struct only have one element, we unpack. |
1231 | unsigned Count = ST->getNumElements(); |
1232 | if (Count == 1) { |
1233 | V = IC.Builder.CreateExtractValue(Agg: V, Idxs: 0); |
1234 | combineStoreToNewValue(IC, SI, V); |
1235 | return true; |
1236 | } |
1237 | |
1238 | // We don't want to break loads with padding here as we'd loose |
1239 | // the knowledge that padding exists for the rest of the pipeline. |
1240 | const DataLayout &DL = IC.getDataLayout(); |
1241 | auto *SL = DL.getStructLayout(Ty: ST); |
1242 | |
1243 | // Don't unpack for structure with scalable vector. |
1244 | if (SL->getSizeInBits().isScalable()) |
1245 | return false; |
1246 | |
1247 | if (SL->hasPadding()) |
1248 | return false; |
1249 | |
1250 | const auto Align = SI.getAlign(); |
1251 | |
1252 | SmallString<16> EltName = V->getName(); |
1253 | EltName += ".elt" ; |
1254 | auto *Addr = SI.getPointerOperand(); |
1255 | SmallString<16> AddrName = Addr->getName(); |
1256 | AddrName += ".repack" ; |
1257 | |
1258 | auto *IdxType = Type::getInt32Ty(C&: ST->getContext()); |
1259 | auto *Zero = ConstantInt::get(Ty: IdxType, V: 0); |
1260 | for (unsigned i = 0; i < Count; i++) { |
1261 | Value *Indices[2] = { |
1262 | Zero, |
1263 | ConstantInt::get(Ty: IdxType, V: i), |
1264 | }; |
1265 | auto *Ptr = |
1266 | IC.Builder.CreateInBoundsGEP(Ty: ST, Ptr: Addr, IdxList: ArrayRef(Indices), Name: AddrName); |
1267 | auto *Val = IC.Builder.CreateExtractValue(Agg: V, Idxs: i, Name: EltName); |
1268 | auto EltAlign = commonAlignment(A: Align, Offset: SL->getElementOffset(Idx: i)); |
1269 | llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, Align: EltAlign); |
1270 | NS->setAAMetadata(SI.getAAMetadata()); |
1271 | } |
1272 | |
1273 | return true; |
1274 | } |
1275 | |
1276 | if (auto *AT = dyn_cast<ArrayType>(Val: T)) { |
1277 | // If the array only have one element, we unpack. |
1278 | auto NumElements = AT->getNumElements(); |
1279 | if (NumElements == 1) { |
1280 | V = IC.Builder.CreateExtractValue(Agg: V, Idxs: 0); |
1281 | combineStoreToNewValue(IC, SI, V); |
1282 | return true; |
1283 | } |
1284 | |
1285 | // Bail out if the array is too large. Ideally we would like to optimize |
1286 | // arrays of arbitrary size but this has a terrible impact on compile time. |
1287 | // The threshold here is chosen arbitrarily, maybe needs a little bit of |
1288 | // tuning. |
1289 | if (NumElements > IC.MaxArraySizeForCombine) |
1290 | return false; |
1291 | |
1292 | const DataLayout &DL = IC.getDataLayout(); |
1293 | TypeSize EltSize = DL.getTypeAllocSize(Ty: AT->getElementType()); |
1294 | const auto Align = SI.getAlign(); |
1295 | |
1296 | SmallString<16> EltName = V->getName(); |
1297 | EltName += ".elt" ; |
1298 | auto *Addr = SI.getPointerOperand(); |
1299 | SmallString<16> AddrName = Addr->getName(); |
1300 | AddrName += ".repack" ; |
1301 | |
1302 | auto *IdxType = Type::getInt64Ty(C&: T->getContext()); |
1303 | auto *Zero = ConstantInt::get(Ty: IdxType, V: 0); |
1304 | |
1305 | TypeSize Offset = TypeSize::getZero(); |
1306 | for (uint64_t i = 0; i < NumElements; i++) { |
1307 | Value *Indices[2] = { |
1308 | Zero, |
1309 | ConstantInt::get(Ty: IdxType, V: i), |
1310 | }; |
1311 | auto *Ptr = |
1312 | IC.Builder.CreateInBoundsGEP(Ty: AT, Ptr: Addr, IdxList: ArrayRef(Indices), Name: AddrName); |
1313 | auto *Val = IC.Builder.CreateExtractValue(Agg: V, Idxs: i, Name: EltName); |
1314 | auto EltAlign = commonAlignment(A: Align, Offset: Offset.getKnownMinValue()); |
1315 | Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, Align: EltAlign); |
1316 | NS->setAAMetadata(SI.getAAMetadata()); |
1317 | Offset += EltSize; |
1318 | } |
1319 | |
1320 | return true; |
1321 | } |
1322 | |
1323 | return false; |
1324 | } |
1325 | |
1326 | /// equivalentAddressValues - Test if A and B will obviously have the same |
1327 | /// value. This includes recognizing that %t0 and %t1 will have the same |
1328 | /// value in code like this: |
1329 | /// %t0 = getelementptr \@a, 0, 3 |
1330 | /// store i32 0, i32* %t0 |
1331 | /// %t1 = getelementptr \@a, 0, 3 |
1332 | /// %t2 = load i32* %t1 |
1333 | /// |
1334 | static bool equivalentAddressValues(Value *A, Value *B) { |
1335 | // Test if the values are trivially equivalent. |
1336 | if (A == B) return true; |
1337 | |
1338 | // Test if the values come form identical arithmetic instructions. |
1339 | // This uses isIdenticalToWhenDefined instead of isIdenticalTo because |
1340 | // its only used to compare two uses within the same basic block, which |
1341 | // means that they'll always either have the same value or one of them |
1342 | // will have an undefined value. |
1343 | if (isa<BinaryOperator>(Val: A) || |
1344 | isa<CastInst>(Val: A) || |
1345 | isa<PHINode>(Val: A) || |
1346 | isa<GetElementPtrInst>(Val: A)) |
1347 | if (Instruction *BI = dyn_cast<Instruction>(Val: B)) |
1348 | if (cast<Instruction>(Val: A)->isIdenticalToWhenDefined(I: BI)) |
1349 | return true; |
1350 | |
1351 | // Otherwise they may not be equivalent. |
1352 | return false; |
1353 | } |
1354 | |
1355 | Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) { |
1356 | Value *Val = SI.getOperand(i_nocapture: 0); |
1357 | Value *Ptr = SI.getOperand(i_nocapture: 1); |
1358 | |
1359 | // Try to canonicalize the stored type. |
1360 | if (combineStoreToValueType(IC&: *this, SI)) |
1361 | return eraseInstFromFunction(I&: SI); |
1362 | |
1363 | if (!EnableInferAlignmentPass) { |
1364 | // Attempt to improve the alignment. |
1365 | const Align KnownAlign = getOrEnforceKnownAlignment( |
1366 | V: Ptr, PrefAlign: DL.getPrefTypeAlign(Ty: Val->getType()), DL, CxtI: &SI, AC: &AC, DT: &DT); |
1367 | if (KnownAlign > SI.getAlign()) |
1368 | SI.setAlignment(KnownAlign); |
1369 | } |
1370 | |
1371 | // Try to canonicalize the stored type. |
1372 | if (unpackStoreToAggregate(IC&: *this, SI)) |
1373 | return eraseInstFromFunction(I&: SI); |
1374 | |
1375 | // Replace GEP indices if possible. |
1376 | if (Instruction *NewGEPI = replaceGEPIdxWithZero(IC&: *this, Ptr, MemI&: SI)) |
1377 | return replaceOperand(I&: SI, OpNum: 1, V: NewGEPI); |
1378 | |
1379 | // Don't hack volatile/ordered stores. |
1380 | // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. |
1381 | if (!SI.isUnordered()) return nullptr; |
1382 | |
1383 | // If the RHS is an alloca with a single use, zapify the store, making the |
1384 | // alloca dead. |
1385 | if (Ptr->hasOneUse()) { |
1386 | if (isa<AllocaInst>(Val: Ptr)) |
1387 | return eraseInstFromFunction(I&: SI); |
1388 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: Ptr)) { |
1389 | if (isa<AllocaInst>(Val: GEP->getOperand(i_nocapture: 0))) { |
1390 | if (GEP->getOperand(i_nocapture: 0)->hasOneUse()) |
1391 | return eraseInstFromFunction(I&: SI); |
1392 | } |
1393 | } |
1394 | } |
1395 | |
1396 | // If we have a store to a location which is known constant, we can conclude |
1397 | // that the store must be storing the constant value (else the memory |
1398 | // wouldn't be constant), and this must be a noop. |
1399 | if (!isModSet(MRI: AA->getModRefInfoMask(P: Ptr))) |
1400 | return eraseInstFromFunction(I&: SI); |
1401 | |
1402 | // Do really simple DSE, to catch cases where there are several consecutive |
1403 | // stores to the same location, separated by a few arithmetic operations. This |
1404 | // situation often occurs with bitfield accesses. |
1405 | BasicBlock::iterator BBI(SI); |
1406 | for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; |
1407 | --ScanInsts) { |
1408 | --BBI; |
1409 | // Don't count debug info directives, lest they affect codegen, |
1410 | // and we skip pointer-to-pointer bitcasts, which are NOPs. |
1411 | if (BBI->isDebugOrPseudoInst()) { |
1412 | ScanInsts++; |
1413 | continue; |
1414 | } |
1415 | |
1416 | if (StoreInst *PrevSI = dyn_cast<StoreInst>(Val&: BBI)) { |
1417 | // Prev store isn't volatile, and stores to the same location? |
1418 | if (PrevSI->isUnordered() && |
1419 | equivalentAddressValues(A: PrevSI->getOperand(i_nocapture: 1), B: SI.getOperand(i_nocapture: 1)) && |
1420 | PrevSI->getValueOperand()->getType() == |
1421 | SI.getValueOperand()->getType()) { |
1422 | ++NumDeadStore; |
1423 | // Manually add back the original store to the worklist now, so it will |
1424 | // be processed after the operands of the removed store, as this may |
1425 | // expose additional DSE opportunities. |
1426 | Worklist.push(I: &SI); |
1427 | eraseInstFromFunction(I&: *PrevSI); |
1428 | return nullptr; |
1429 | } |
1430 | break; |
1431 | } |
1432 | |
1433 | // If this is a load, we have to stop. However, if the loaded value is from |
1434 | // the pointer we're loading and is producing the pointer we're storing, |
1435 | // then *this* store is dead (X = load P; store X -> P). |
1436 | if (LoadInst *LI = dyn_cast<LoadInst>(Val&: BBI)) { |
1437 | if (LI == Val && equivalentAddressValues(A: LI->getOperand(i_nocapture: 0), B: Ptr)) { |
1438 | assert(SI.isUnordered() && "can't eliminate ordering operation" ); |
1439 | return eraseInstFromFunction(I&: SI); |
1440 | } |
1441 | |
1442 | // Otherwise, this is a load from some other location. Stores before it |
1443 | // may not be dead. |
1444 | break; |
1445 | } |
1446 | |
1447 | // Don't skip over loads, throws or things that can modify memory. |
1448 | if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) |
1449 | break; |
1450 | } |
1451 | |
1452 | // store X, null -> turns into 'unreachable' in SimplifyCFG |
1453 | // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG |
1454 | if (canSimplifyNullStoreOrGEP(SI)) { |
1455 | if (!isa<PoisonValue>(Val)) |
1456 | return replaceOperand(I&: SI, OpNum: 0, V: PoisonValue::get(T: Val->getType())); |
1457 | return nullptr; // Do not modify these! |
1458 | } |
1459 | |
1460 | // This is a non-terminator unreachable marker. Don't remove it. |
1461 | if (isa<UndefValue>(Val: Ptr)) { |
1462 | // Remove guaranteed-to-transfer instructions before the marker. |
1463 | if (removeInstructionsBeforeUnreachable(I&: SI)) |
1464 | return &SI; |
1465 | |
1466 | // Remove all instructions after the marker and handle dead blocks this |
1467 | // implies. |
1468 | SmallVector<BasicBlock *> Worklist; |
1469 | handleUnreachableFrom(I: SI.getNextNode(), Worklist); |
1470 | handlePotentiallyDeadBlocks(Worklist); |
1471 | return nullptr; |
1472 | } |
1473 | |
1474 | // store undef, Ptr -> noop |
1475 | // FIXME: This is technically incorrect because it might overwrite a poison |
1476 | // value. Change to PoisonValue once #52930 is resolved. |
1477 | if (isa<UndefValue>(Val)) |
1478 | return eraseInstFromFunction(I&: SI); |
1479 | |
1480 | return nullptr; |
1481 | } |
1482 | |
1483 | /// Try to transform: |
1484 | /// if () { *P = v1; } else { *P = v2 } |
1485 | /// or: |
1486 | /// *P = v1; if () { *P = v2; } |
1487 | /// into a phi node with a store in the successor. |
1488 | bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) { |
1489 | if (!SI.isUnordered()) |
1490 | return false; // This code has not been audited for volatile/ordered case. |
1491 | |
1492 | // Check if the successor block has exactly 2 incoming edges. |
1493 | BasicBlock *StoreBB = SI.getParent(); |
1494 | BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(Idx: 0); |
1495 | if (!DestBB->hasNPredecessors(N: 2)) |
1496 | return false; |
1497 | |
1498 | // Capture the other block (the block that doesn't contain our store). |
1499 | pred_iterator PredIter = pred_begin(BB: DestBB); |
1500 | if (*PredIter == StoreBB) |
1501 | ++PredIter; |
1502 | BasicBlock *OtherBB = *PredIter; |
1503 | |
1504 | // Bail out if all of the relevant blocks aren't distinct. This can happen, |
1505 | // for example, if SI is in an infinite loop. |
1506 | if (StoreBB == DestBB || OtherBB == DestBB) |
1507 | return false; |
1508 | |
1509 | // Verify that the other block ends in a branch and is not otherwise empty. |
1510 | BasicBlock::iterator BBI(OtherBB->getTerminator()); |
1511 | BranchInst *OtherBr = dyn_cast<BranchInst>(Val&: BBI); |
1512 | if (!OtherBr || BBI == OtherBB->begin()) |
1513 | return false; |
1514 | |
1515 | auto OtherStoreIsMergeable = [&](StoreInst *OtherStore) -> bool { |
1516 | if (!OtherStore || |
1517 | OtherStore->getPointerOperand() != SI.getPointerOperand()) |
1518 | return false; |
1519 | |
1520 | auto *SIVTy = SI.getValueOperand()->getType(); |
1521 | auto *OSVTy = OtherStore->getValueOperand()->getType(); |
1522 | return CastInst::isBitOrNoopPointerCastable(SrcTy: OSVTy, DestTy: SIVTy, DL) && |
1523 | SI.hasSameSpecialState(I2: OtherStore); |
1524 | }; |
1525 | |
1526 | // If the other block ends in an unconditional branch, check for the 'if then |
1527 | // else' case. There is an instruction before the branch. |
1528 | StoreInst *OtherStore = nullptr; |
1529 | if (OtherBr->isUnconditional()) { |
1530 | --BBI; |
1531 | // Skip over debugging info and pseudo probes. |
1532 | while (BBI->isDebugOrPseudoInst()) { |
1533 | if (BBI==OtherBB->begin()) |
1534 | return false; |
1535 | --BBI; |
1536 | } |
1537 | // If this isn't a store, isn't a store to the same location, or is not the |
1538 | // right kind of store, bail out. |
1539 | OtherStore = dyn_cast<StoreInst>(Val&: BBI); |
1540 | if (!OtherStoreIsMergeable(OtherStore)) |
1541 | return false; |
1542 | } else { |
1543 | // Otherwise, the other block ended with a conditional branch. If one of the |
1544 | // destinations is StoreBB, then we have the if/then case. |
1545 | if (OtherBr->getSuccessor(i: 0) != StoreBB && |
1546 | OtherBr->getSuccessor(i: 1) != StoreBB) |
1547 | return false; |
1548 | |
1549 | // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an |
1550 | // if/then triangle. See if there is a store to the same ptr as SI that |
1551 | // lives in OtherBB. |
1552 | for (;; --BBI) { |
1553 | // Check to see if we find the matching store. |
1554 | OtherStore = dyn_cast<StoreInst>(Val&: BBI); |
1555 | if (OtherStoreIsMergeable(OtherStore)) |
1556 | break; |
1557 | |
1558 | // If we find something that may be using or overwriting the stored |
1559 | // value, or if we run out of instructions, we can't do the transform. |
1560 | if (BBI->mayReadFromMemory() || BBI->mayThrow() || |
1561 | BBI->mayWriteToMemory() || BBI == OtherBB->begin()) |
1562 | return false; |
1563 | } |
1564 | |
1565 | // In order to eliminate the store in OtherBr, we have to make sure nothing |
1566 | // reads or overwrites the stored value in StoreBB. |
1567 | for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { |
1568 | // FIXME: This should really be AA driven. |
1569 | if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) |
1570 | return false; |
1571 | } |
1572 | } |
1573 | |
1574 | // Insert a PHI node now if we need it. |
1575 | Value *MergedVal = OtherStore->getValueOperand(); |
1576 | // The debug locations of the original instructions might differ. Merge them. |
1577 | DebugLoc MergedLoc = DILocation::getMergedLocation(LocA: SI.getDebugLoc(), |
1578 | LocB: OtherStore->getDebugLoc()); |
1579 | if (MergedVal != SI.getValueOperand()) { |
1580 | PHINode *PN = |
1581 | PHINode::Create(Ty: SI.getValueOperand()->getType(), NumReservedValues: 2, NameStr: "storemerge" ); |
1582 | PN->addIncoming(V: SI.getValueOperand(), BB: SI.getParent()); |
1583 | Builder.SetInsertPoint(OtherStore); |
1584 | PN->addIncoming(V: Builder.CreateBitOrPointerCast(V: MergedVal, DestTy: PN->getType()), |
1585 | BB: OtherBB); |
1586 | MergedVal = InsertNewInstBefore(New: PN, Old: DestBB->begin()); |
1587 | PN->setDebugLoc(MergedLoc); |
1588 | } |
1589 | |
1590 | // Advance to a place where it is safe to insert the new store and insert it. |
1591 | BBI = DestBB->getFirstInsertionPt(); |
1592 | StoreInst *NewSI = |
1593 | new StoreInst(MergedVal, SI.getOperand(i_nocapture: 1), SI.isVolatile(), SI.getAlign(), |
1594 | SI.getOrdering(), SI.getSyncScopeID()); |
1595 | InsertNewInstBefore(New: NewSI, Old: BBI); |
1596 | NewSI->setDebugLoc(MergedLoc); |
1597 | NewSI->mergeDIAssignID(SourceInstructions: {&SI, OtherStore}); |
1598 | |
1599 | // If the two stores had AA tags, merge them. |
1600 | AAMDNodes AATags = SI.getAAMetadata(); |
1601 | if (AATags) |
1602 | NewSI->setAAMetadata(AATags.merge(Other: OtherStore->getAAMetadata())); |
1603 | |
1604 | // Nuke the old stores. |
1605 | eraseInstFromFunction(I&: SI); |
1606 | eraseInstFromFunction(I&: *OtherStore); |
1607 | return true; |
1608 | } |
1609 | |