1 | //===- AddressSanitizer.cpp - memory error detector -----------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file is a part of AddressSanitizer, an address basic correctness |
10 | // checker. |
11 | // Details of the algorithm: |
12 | // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm |
13 | // |
14 | // FIXME: This sanitizer does not yet handle scalable vectors |
15 | // |
16 | //===----------------------------------------------------------------------===// |
17 | |
18 | #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" |
19 | #include "llvm/ADT/ArrayRef.h" |
20 | #include "llvm/ADT/DenseMap.h" |
21 | #include "llvm/ADT/DepthFirstIterator.h" |
22 | #include "llvm/ADT/SmallPtrSet.h" |
23 | #include "llvm/ADT/SmallVector.h" |
24 | #include "llvm/ADT/Statistic.h" |
25 | #include "llvm/ADT/StringExtras.h" |
26 | #include "llvm/ADT/StringRef.h" |
27 | #include "llvm/ADT/Twine.h" |
28 | #include "llvm/Analysis/GlobalsModRef.h" |
29 | #include "llvm/Analysis/MemoryBuiltins.h" |
30 | #include "llvm/Analysis/StackSafetyAnalysis.h" |
31 | #include "llvm/Analysis/TargetLibraryInfo.h" |
32 | #include "llvm/Analysis/ValueTracking.h" |
33 | #include "llvm/BinaryFormat/MachO.h" |
34 | #include "llvm/Demangle/Demangle.h" |
35 | #include "llvm/IR/Argument.h" |
36 | #include "llvm/IR/Attributes.h" |
37 | #include "llvm/IR/BasicBlock.h" |
38 | #include "llvm/IR/Comdat.h" |
39 | #include "llvm/IR/Constant.h" |
40 | #include "llvm/IR/Constants.h" |
41 | #include "llvm/IR/DIBuilder.h" |
42 | #include "llvm/IR/DataLayout.h" |
43 | #include "llvm/IR/DebugInfoMetadata.h" |
44 | #include "llvm/IR/DebugLoc.h" |
45 | #include "llvm/IR/DerivedTypes.h" |
46 | #include "llvm/IR/EHPersonalities.h" |
47 | #include "llvm/IR/Function.h" |
48 | #include "llvm/IR/GlobalAlias.h" |
49 | #include "llvm/IR/GlobalValue.h" |
50 | #include "llvm/IR/GlobalVariable.h" |
51 | #include "llvm/IR/IRBuilder.h" |
52 | #include "llvm/IR/InlineAsm.h" |
53 | #include "llvm/IR/InstVisitor.h" |
54 | #include "llvm/IR/InstrTypes.h" |
55 | #include "llvm/IR/Instruction.h" |
56 | #include "llvm/IR/Instructions.h" |
57 | #include "llvm/IR/IntrinsicInst.h" |
58 | #include "llvm/IR/Intrinsics.h" |
59 | #include "llvm/IR/LLVMContext.h" |
60 | #include "llvm/IR/MDBuilder.h" |
61 | #include "llvm/IR/Metadata.h" |
62 | #include "llvm/IR/Module.h" |
63 | #include "llvm/IR/Type.h" |
64 | #include "llvm/IR/Use.h" |
65 | #include "llvm/IR/Value.h" |
66 | #include "llvm/MC/MCSectionMachO.h" |
67 | #include "llvm/Support/Casting.h" |
68 | #include "llvm/Support/CommandLine.h" |
69 | #include "llvm/Support/Debug.h" |
70 | #include "llvm/Support/ErrorHandling.h" |
71 | #include "llvm/Support/MathExtras.h" |
72 | #include "llvm/Support/raw_ostream.h" |
73 | #include "llvm/TargetParser/Triple.h" |
74 | #include "llvm/Transforms/Instrumentation.h" |
75 | #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" |
76 | #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" |
77 | #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" |
78 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
79 | #include "llvm/Transforms/Utils/Local.h" |
80 | #include "llvm/Transforms/Utils/ModuleUtils.h" |
81 | #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
82 | #include <algorithm> |
83 | #include <cassert> |
84 | #include <cstddef> |
85 | #include <cstdint> |
86 | #include <iomanip> |
87 | #include <limits> |
88 | #include <sstream> |
89 | #include <string> |
90 | #include <tuple> |
91 | |
92 | using namespace llvm; |
93 | |
94 | #define DEBUG_TYPE "asan" |
95 | |
96 | static const uint64_t kDefaultShadowScale = 3; |
97 | static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; |
98 | static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; |
99 | static const uint64_t kDynamicShadowSentinel = |
100 | std::numeric_limits<uint64_t>::max(); |
101 | static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. |
102 | static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; |
103 | static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; |
104 | static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; |
105 | static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; |
106 | static const uint64_t kMIPS_ShadowOffsetN32 = 1ULL << 29; |
107 | static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; |
108 | static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; |
109 | static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; |
110 | static const uint64_t kLoongArch64_ShadowOffset64 = 1ULL << 46; |
111 | static const uint64_t kRISCV64_ShadowOffset64 = kDynamicShadowSentinel; |
112 | static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; |
113 | static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; |
114 | static const uint64_t kFreeBSDAArch64_ShadowOffset64 = 1ULL << 47; |
115 | static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000; |
116 | static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; |
117 | static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; |
118 | static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; |
119 | static const uint64_t kPS_ShadowOffset64 = 1ULL << 40; |
120 | static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; |
121 | static const uint64_t kEmscriptenShadowOffset = 0; |
122 | |
123 | // The shadow memory space is dynamically allocated. |
124 | static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; |
125 | |
126 | static const size_t kMinStackMallocSize = 1 << 6; // 64B |
127 | static const size_t kMaxStackMallocSize = 1 << 16; // 64K |
128 | static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; |
129 | static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; |
130 | |
131 | const char kAsanModuleCtorName[] = "asan.module_ctor" ; |
132 | const char kAsanModuleDtorName[] = "asan.module_dtor" ; |
133 | static const uint64_t kAsanCtorAndDtorPriority = 1; |
134 | // On Emscripten, the system needs more than one priorities for constructors. |
135 | static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; |
136 | const char kAsanReportErrorTemplate[] = "__asan_report_" ; |
137 | const char kAsanRegisterGlobalsName[] = "__asan_register_globals" ; |
138 | const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals" ; |
139 | const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals" ; |
140 | const char kAsanUnregisterImageGlobalsName[] = |
141 | "__asan_unregister_image_globals" ; |
142 | const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals" ; |
143 | const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals" ; |
144 | const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init" ; |
145 | const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init" ; |
146 | const char kAsanInitName[] = "__asan_init" ; |
147 | const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v" ; |
148 | const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp" ; |
149 | const char kAsanPtrSub[] = "__sanitizer_ptr_sub" ; |
150 | const char kAsanHandleNoReturnName[] = "__asan_handle_no_return" ; |
151 | static const int kMaxAsanStackMallocSizeClass = 10; |
152 | const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_" ; |
153 | const char kAsanStackMallocAlwaysNameTemplate[] = |
154 | "__asan_stack_malloc_always_" ; |
155 | const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_" ; |
156 | const char kAsanGenPrefix[] = "___asan_gen_" ; |
157 | const char kODRGenPrefix[] = "__odr_asan_gen_" ; |
158 | const char kSanCovGenPrefix[] = "__sancov_gen_" ; |
159 | const char kAsanSetShadowPrefix[] = "__asan_set_shadow_" ; |
160 | const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory" ; |
161 | const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory" ; |
162 | |
163 | // ASan version script has __asan_* wildcard. Triple underscore prevents a |
164 | // linker (gold) warning about attempting to export a local symbol. |
165 | const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered" ; |
166 | |
167 | const char kAsanOptionDetectUseAfterReturn[] = |
168 | "__asan_option_detect_stack_use_after_return" ; |
169 | |
170 | const char kAsanShadowMemoryDynamicAddress[] = |
171 | "__asan_shadow_memory_dynamic_address" ; |
172 | |
173 | const char kAsanAllocaPoison[] = "__asan_alloca_poison" ; |
174 | const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison" ; |
175 | |
176 | const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared" ; |
177 | const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private" ; |
178 | const char kAMDGPUBallotName[] = "llvm.amdgcn.ballot.i64" ; |
179 | const char kAMDGPUUnreachableName[] = "llvm.amdgcn.unreachable" ; |
180 | |
181 | // Accesses sizes are powers of two: 1, 2, 4, 8, 16. |
182 | static const size_t kNumberOfAccessSizes = 5; |
183 | |
184 | static const uint64_t kAllocaRzSize = 32; |
185 | |
186 | // ASanAccessInfo implementation constants. |
187 | constexpr size_t kCompileKernelShift = 0; |
188 | constexpr size_t kCompileKernelMask = 0x1; |
189 | constexpr size_t kAccessSizeIndexShift = 1; |
190 | constexpr size_t kAccessSizeIndexMask = 0xf; |
191 | constexpr size_t kIsWriteShift = 5; |
192 | constexpr size_t kIsWriteMask = 0x1; |
193 | |
194 | // Command-line flags. |
195 | |
196 | static cl::opt<bool> ClEnableKasan( |
197 | "asan-kernel" , cl::desc("Enable KernelAddressSanitizer instrumentation" ), |
198 | cl::Hidden, cl::init(Val: false)); |
199 | |
200 | static cl::opt<bool> ClRecover( |
201 | "asan-recover" , |
202 | cl::desc("Enable recovery mode (continue-after-error)." ), |
203 | cl::Hidden, cl::init(Val: false)); |
204 | |
205 | static cl::opt<bool> ClInsertVersionCheck( |
206 | "asan-guard-against-version-mismatch" , |
207 | cl::desc("Guard against compiler/runtime version mismatch." ), cl::Hidden, |
208 | cl::init(Val: true)); |
209 | |
210 | // This flag may need to be replaced with -f[no-]asan-reads. |
211 | static cl::opt<bool> ClInstrumentReads("asan-instrument-reads" , |
212 | cl::desc("instrument read instructions" ), |
213 | cl::Hidden, cl::init(Val: true)); |
214 | |
215 | static cl::opt<bool> ClInstrumentWrites( |
216 | "asan-instrument-writes" , cl::desc("instrument write instructions" ), |
217 | cl::Hidden, cl::init(Val: true)); |
218 | |
219 | static cl::opt<bool> |
220 | ClUseStackSafety("asan-use-stack-safety" , cl::Hidden, cl::init(Val: true), |
221 | cl::Hidden, cl::desc("Use Stack Safety analysis results" ), |
222 | cl::Optional); |
223 | |
224 | static cl::opt<bool> ClInstrumentAtomics( |
225 | "asan-instrument-atomics" , |
226 | cl::desc("instrument atomic instructions (rmw, cmpxchg)" ), cl::Hidden, |
227 | cl::init(Val: true)); |
228 | |
229 | static cl::opt<bool> |
230 | ClInstrumentByval("asan-instrument-byval" , |
231 | cl::desc("instrument byval call arguments" ), cl::Hidden, |
232 | cl::init(Val: true)); |
233 | |
234 | static cl::opt<bool> ClAlwaysSlowPath( |
235 | "asan-always-slow-path" , |
236 | cl::desc("use instrumentation with slow path for all accesses" ), cl::Hidden, |
237 | cl::init(Val: false)); |
238 | |
239 | static cl::opt<bool> ClForceDynamicShadow( |
240 | "asan-force-dynamic-shadow" , |
241 | cl::desc("Load shadow address into a local variable for each function" ), |
242 | cl::Hidden, cl::init(Val: false)); |
243 | |
244 | static cl::opt<bool> |
245 | ClWithIfunc("asan-with-ifunc" , |
246 | cl::desc("Access dynamic shadow through an ifunc global on " |
247 | "platforms that support this" ), |
248 | cl::Hidden, cl::init(Val: true)); |
249 | |
250 | static cl::opt<bool> ClWithIfuncSuppressRemat( |
251 | "asan-with-ifunc-suppress-remat" , |
252 | cl::desc("Suppress rematerialization of dynamic shadow address by passing " |
253 | "it through inline asm in prologue." ), |
254 | cl::Hidden, cl::init(Val: true)); |
255 | |
256 | // This flag limits the number of instructions to be instrumented |
257 | // in any given BB. Normally, this should be set to unlimited (INT_MAX), |
258 | // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary |
259 | // set it to 10000. |
260 | static cl::opt<int> ClMaxInsnsToInstrumentPerBB( |
261 | "asan-max-ins-per-bb" , cl::init(Val: 10000), |
262 | cl::desc("maximal number of instructions to instrument in any given BB" ), |
263 | cl::Hidden); |
264 | |
265 | // This flag may need to be replaced with -f[no]asan-stack. |
266 | static cl::opt<bool> ClStack("asan-stack" , cl::desc("Handle stack memory" ), |
267 | cl::Hidden, cl::init(Val: true)); |
268 | static cl::opt<uint32_t> ClMaxInlinePoisoningSize( |
269 | "asan-max-inline-poisoning-size" , |
270 | cl::desc( |
271 | "Inline shadow poisoning for blocks up to the given size in bytes." ), |
272 | cl::Hidden, cl::init(Val: 64)); |
273 | |
274 | static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn( |
275 | "asan-use-after-return" , |
276 | cl::desc("Sets the mode of detection for stack-use-after-return." ), |
277 | cl::values( |
278 | clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never" , |
279 | "Never detect stack use after return." ), |
280 | clEnumValN( |
281 | AsanDetectStackUseAfterReturnMode::Runtime, "runtime" , |
282 | "Detect stack use after return if " |
283 | "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set." ), |
284 | clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always" , |
285 | "Always detect stack use after return." )), |
286 | cl::Hidden, cl::init(Val: AsanDetectStackUseAfterReturnMode::Runtime)); |
287 | |
288 | static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args" , |
289 | cl::desc("Create redzones for byval " |
290 | "arguments (extra copy " |
291 | "required)" ), cl::Hidden, |
292 | cl::init(Val: true)); |
293 | |
294 | static cl::opt<bool> ClUseAfterScope("asan-use-after-scope" , |
295 | cl::desc("Check stack-use-after-scope" ), |
296 | cl::Hidden, cl::init(Val: false)); |
297 | |
298 | // This flag may need to be replaced with -f[no]asan-globals. |
299 | static cl::opt<bool> ClGlobals("asan-globals" , |
300 | cl::desc("Handle global objects" ), cl::Hidden, |
301 | cl::init(Val: true)); |
302 | |
303 | static cl::opt<bool> ClInitializers("asan-initialization-order" , |
304 | cl::desc("Handle C++ initializer order" ), |
305 | cl::Hidden, cl::init(Val: true)); |
306 | |
307 | static cl::opt<bool> ClInvalidPointerPairs( |
308 | "asan-detect-invalid-pointer-pair" , |
309 | cl::desc("Instrument <, <=, >, >=, - with pointer operands" ), cl::Hidden, |
310 | cl::init(Val: false)); |
311 | |
312 | static cl::opt<bool> ClInvalidPointerCmp( |
313 | "asan-detect-invalid-pointer-cmp" , |
314 | cl::desc("Instrument <, <=, >, >= with pointer operands" ), cl::Hidden, |
315 | cl::init(Val: false)); |
316 | |
317 | static cl::opt<bool> ClInvalidPointerSub( |
318 | "asan-detect-invalid-pointer-sub" , |
319 | cl::desc("Instrument - operations with pointer operands" ), cl::Hidden, |
320 | cl::init(Val: false)); |
321 | |
322 | static cl::opt<unsigned> ClRealignStack( |
323 | "asan-realign-stack" , |
324 | cl::desc("Realign stack to the value of this flag (power of two)" ), |
325 | cl::Hidden, cl::init(Val: 32)); |
326 | |
327 | static cl::opt<int> ClInstrumentationWithCallsThreshold( |
328 | "asan-instrumentation-with-call-threshold" , |
329 | cl::desc("If the function being instrumented contains more than " |
330 | "this number of memory accesses, use callbacks instead of " |
331 | "inline checks (-1 means never use callbacks)." ), |
332 | cl::Hidden, cl::init(Val: 7000)); |
333 | |
334 | static cl::opt<std::string> ClMemoryAccessCallbackPrefix( |
335 | "asan-memory-access-callback-prefix" , |
336 | cl::desc("Prefix for memory access callbacks" ), cl::Hidden, |
337 | cl::init(Val: "__asan_" )); |
338 | |
339 | static cl::opt<bool> ClKasanMemIntrinCallbackPrefix( |
340 | "asan-kernel-mem-intrinsic-prefix" , |
341 | cl::desc("Use prefix for memory intrinsics in KASAN mode" ), cl::Hidden, |
342 | cl::init(Val: false)); |
343 | |
344 | static cl::opt<bool> |
345 | ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas" , |
346 | cl::desc("instrument dynamic allocas" ), |
347 | cl::Hidden, cl::init(Val: true)); |
348 | |
349 | static cl::opt<bool> ClSkipPromotableAllocas( |
350 | "asan-skip-promotable-allocas" , |
351 | cl::desc("Do not instrument promotable allocas" ), cl::Hidden, |
352 | cl::init(Val: true)); |
353 | |
354 | static cl::opt<AsanCtorKind> ClConstructorKind( |
355 | "asan-constructor-kind" , |
356 | cl::desc("Sets the ASan constructor kind" ), |
357 | cl::values(clEnumValN(AsanCtorKind::None, "none" , "No constructors" ), |
358 | clEnumValN(AsanCtorKind::Global, "global" , |
359 | "Use global constructors" )), |
360 | cl::init(Val: AsanCtorKind::Global), cl::Hidden); |
361 | // These flags allow to change the shadow mapping. |
362 | // The shadow mapping looks like |
363 | // Shadow = (Mem >> scale) + offset |
364 | |
365 | static cl::opt<int> ClMappingScale("asan-mapping-scale" , |
366 | cl::desc("scale of asan shadow mapping" ), |
367 | cl::Hidden, cl::init(Val: 0)); |
368 | |
369 | static cl::opt<uint64_t> |
370 | ClMappingOffset("asan-mapping-offset" , |
371 | cl::desc("offset of asan shadow mapping [EXPERIMENTAL]" ), |
372 | cl::Hidden, cl::init(Val: 0)); |
373 | |
374 | // Optimization flags. Not user visible, used mostly for testing |
375 | // and benchmarking the tool. |
376 | |
377 | static cl::opt<bool> ClOpt("asan-opt" , cl::desc("Optimize instrumentation" ), |
378 | cl::Hidden, cl::init(Val: true)); |
379 | |
380 | static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks" , |
381 | cl::desc("Optimize callbacks" ), |
382 | cl::Hidden, cl::init(Val: false)); |
383 | |
384 | static cl::opt<bool> ClOptSameTemp( |
385 | "asan-opt-same-temp" , cl::desc("Instrument the same temp just once" ), |
386 | cl::Hidden, cl::init(Val: true)); |
387 | |
388 | static cl::opt<bool> ClOptGlobals("asan-opt-globals" , |
389 | cl::desc("Don't instrument scalar globals" ), |
390 | cl::Hidden, cl::init(Val: true)); |
391 | |
392 | static cl::opt<bool> ClOptStack( |
393 | "asan-opt-stack" , cl::desc("Don't instrument scalar stack variables" ), |
394 | cl::Hidden, cl::init(Val: false)); |
395 | |
396 | static cl::opt<bool> ClDynamicAllocaStack( |
397 | "asan-stack-dynamic-alloca" , |
398 | cl::desc("Use dynamic alloca to represent stack variables" ), cl::Hidden, |
399 | cl::init(Val: true)); |
400 | |
401 | static cl::opt<uint32_t> ClForceExperiment( |
402 | "asan-force-experiment" , |
403 | cl::desc("Force optimization experiment (for testing)" ), cl::Hidden, |
404 | cl::init(Val: 0)); |
405 | |
406 | static cl::opt<bool> |
407 | ClUsePrivateAlias("asan-use-private-alias" , |
408 | cl::desc("Use private aliases for global variables" ), |
409 | cl::Hidden, cl::init(Val: true)); |
410 | |
411 | static cl::opt<bool> |
412 | ClUseOdrIndicator("asan-use-odr-indicator" , |
413 | cl::desc("Use odr indicators to improve ODR reporting" ), |
414 | cl::Hidden, cl::init(Val: true)); |
415 | |
416 | static cl::opt<bool> |
417 | ClUseGlobalsGC("asan-globals-live-support" , |
418 | cl::desc("Use linker features to support dead " |
419 | "code stripping of globals" ), |
420 | cl::Hidden, cl::init(Val: true)); |
421 | |
422 | // This is on by default even though there is a bug in gold: |
423 | // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 |
424 | static cl::opt<bool> |
425 | ClWithComdat("asan-with-comdat" , |
426 | cl::desc("Place ASan constructors in comdat sections" ), |
427 | cl::Hidden, cl::init(Val: true)); |
428 | |
429 | static cl::opt<AsanDtorKind> ClOverrideDestructorKind( |
430 | "asan-destructor-kind" , |
431 | cl::desc("Sets the ASan destructor kind. The default is to use the value " |
432 | "provided to the pass constructor" ), |
433 | cl::values(clEnumValN(AsanDtorKind::None, "none" , "No destructors" ), |
434 | clEnumValN(AsanDtorKind::Global, "global" , |
435 | "Use global destructors" )), |
436 | cl::init(Val: AsanDtorKind::Invalid), cl::Hidden); |
437 | |
438 | // Debug flags. |
439 | |
440 | static cl::opt<int> ClDebug("asan-debug" , cl::desc("debug" ), cl::Hidden, |
441 | cl::init(Val: 0)); |
442 | |
443 | static cl::opt<int> ClDebugStack("asan-debug-stack" , cl::desc("debug stack" ), |
444 | cl::Hidden, cl::init(Val: 0)); |
445 | |
446 | static cl::opt<std::string> ClDebugFunc("asan-debug-func" , cl::Hidden, |
447 | cl::desc("Debug func" )); |
448 | |
449 | static cl::opt<int> ClDebugMin("asan-debug-min" , cl::desc("Debug min inst" ), |
450 | cl::Hidden, cl::init(Val: -1)); |
451 | |
452 | static cl::opt<int> ClDebugMax("asan-debug-max" , cl::desc("Debug max inst" ), |
453 | cl::Hidden, cl::init(Val: -1)); |
454 | |
455 | STATISTIC(NumInstrumentedReads, "Number of instrumented reads" ); |
456 | STATISTIC(NumInstrumentedWrites, "Number of instrumented writes" ); |
457 | STATISTIC(NumOptimizedAccessesToGlobalVar, |
458 | "Number of optimized accesses to global vars" ); |
459 | STATISTIC(NumOptimizedAccessesToStackVar, |
460 | "Number of optimized accesses to stack vars" ); |
461 | |
462 | namespace { |
463 | |
464 | /// This struct defines the shadow mapping using the rule: |
465 | /// shadow = (mem >> Scale) ADD-or-OR Offset. |
466 | /// If InGlobal is true, then |
467 | /// extern char __asan_shadow[]; |
468 | /// shadow = (mem >> Scale) + &__asan_shadow |
469 | struct ShadowMapping { |
470 | int Scale; |
471 | uint64_t Offset; |
472 | bool OrShadowOffset; |
473 | bool InGlobal; |
474 | }; |
475 | |
476 | } // end anonymous namespace |
477 | |
478 | static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize, |
479 | bool IsKasan) { |
480 | bool IsAndroid = TargetTriple.isAndroid(); |
481 | bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS() || |
482 | TargetTriple.isDriverKit(); |
483 | bool IsMacOS = TargetTriple.isMacOSX(); |
484 | bool IsFreeBSD = TargetTriple.isOSFreeBSD(); |
485 | bool IsNetBSD = TargetTriple.isOSNetBSD(); |
486 | bool IsPS = TargetTriple.isPS(); |
487 | bool IsLinux = TargetTriple.isOSLinux(); |
488 | bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || |
489 | TargetTriple.getArch() == Triple::ppc64le; |
490 | bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; |
491 | bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; |
492 | bool IsMIPSN32ABI = TargetTriple.getEnvironment() == Triple::GNUABIN32; |
493 | bool IsMIPS32 = TargetTriple.isMIPS32(); |
494 | bool IsMIPS64 = TargetTriple.isMIPS64(); |
495 | bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); |
496 | bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 || |
497 | TargetTriple.getArch() == Triple::aarch64_be; |
498 | bool IsLoongArch64 = TargetTriple.isLoongArch64(); |
499 | bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64; |
500 | bool IsWindows = TargetTriple.isOSWindows(); |
501 | bool IsFuchsia = TargetTriple.isOSFuchsia(); |
502 | bool IsEmscripten = TargetTriple.isOSEmscripten(); |
503 | bool IsAMDGPU = TargetTriple.isAMDGPU(); |
504 | |
505 | ShadowMapping Mapping; |
506 | |
507 | Mapping.Scale = kDefaultShadowScale; |
508 | if (ClMappingScale.getNumOccurrences() > 0) { |
509 | Mapping.Scale = ClMappingScale; |
510 | } |
511 | |
512 | if (LongSize == 32) { |
513 | if (IsAndroid) |
514 | Mapping.Offset = kDynamicShadowSentinel; |
515 | else if (IsMIPSN32ABI) |
516 | Mapping.Offset = kMIPS_ShadowOffsetN32; |
517 | else if (IsMIPS32) |
518 | Mapping.Offset = kMIPS32_ShadowOffset32; |
519 | else if (IsFreeBSD) |
520 | Mapping.Offset = kFreeBSD_ShadowOffset32; |
521 | else if (IsNetBSD) |
522 | Mapping.Offset = kNetBSD_ShadowOffset32; |
523 | else if (IsIOS) |
524 | Mapping.Offset = kDynamicShadowSentinel; |
525 | else if (IsWindows) |
526 | Mapping.Offset = kWindowsShadowOffset32; |
527 | else if (IsEmscripten) |
528 | Mapping.Offset = kEmscriptenShadowOffset; |
529 | else |
530 | Mapping.Offset = kDefaultShadowOffset32; |
531 | } else { // LongSize == 64 |
532 | // Fuchsia is always PIE, which means that the beginning of the address |
533 | // space is always available. |
534 | if (IsFuchsia) |
535 | Mapping.Offset = 0; |
536 | else if (IsPPC64) |
537 | Mapping.Offset = kPPC64_ShadowOffset64; |
538 | else if (IsSystemZ) |
539 | Mapping.Offset = kSystemZ_ShadowOffset64; |
540 | else if (IsFreeBSD && IsAArch64) |
541 | Mapping.Offset = kFreeBSDAArch64_ShadowOffset64; |
542 | else if (IsFreeBSD && !IsMIPS64) { |
543 | if (IsKasan) |
544 | Mapping.Offset = kFreeBSDKasan_ShadowOffset64; |
545 | else |
546 | Mapping.Offset = kFreeBSD_ShadowOffset64; |
547 | } else if (IsNetBSD) { |
548 | if (IsKasan) |
549 | Mapping.Offset = kNetBSDKasan_ShadowOffset64; |
550 | else |
551 | Mapping.Offset = kNetBSD_ShadowOffset64; |
552 | } else if (IsPS) |
553 | Mapping.Offset = kPS_ShadowOffset64; |
554 | else if (IsLinux && IsX86_64) { |
555 | if (IsKasan) |
556 | Mapping.Offset = kLinuxKasan_ShadowOffset64; |
557 | else |
558 | Mapping.Offset = (kSmallX86_64ShadowOffsetBase & |
559 | (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); |
560 | } else if (IsWindows && IsX86_64) { |
561 | Mapping.Offset = kWindowsShadowOffset64; |
562 | } else if (IsMIPS64) |
563 | Mapping.Offset = kMIPS64_ShadowOffset64; |
564 | else if (IsIOS) |
565 | Mapping.Offset = kDynamicShadowSentinel; |
566 | else if (IsMacOS && IsAArch64) |
567 | Mapping.Offset = kDynamicShadowSentinel; |
568 | else if (IsAArch64) |
569 | Mapping.Offset = kAArch64_ShadowOffset64; |
570 | else if (IsLoongArch64) |
571 | Mapping.Offset = kLoongArch64_ShadowOffset64; |
572 | else if (IsRISCV64) |
573 | Mapping.Offset = kRISCV64_ShadowOffset64; |
574 | else if (IsAMDGPU) |
575 | Mapping.Offset = (kSmallX86_64ShadowOffsetBase & |
576 | (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); |
577 | else |
578 | Mapping.Offset = kDefaultShadowOffset64; |
579 | } |
580 | |
581 | if (ClForceDynamicShadow) { |
582 | Mapping.Offset = kDynamicShadowSentinel; |
583 | } |
584 | |
585 | if (ClMappingOffset.getNumOccurrences() > 0) { |
586 | Mapping.Offset = ClMappingOffset; |
587 | } |
588 | |
589 | // OR-ing shadow offset if more efficient (at least on x86) if the offset |
590 | // is a power of two, but on ppc64 and loongarch64 we have to use add since |
591 | // the shadow offset is not necessarily 1/8-th of the address space. On |
592 | // SystemZ, we could OR the constant in a single instruction, but it's more |
593 | // efficient to load it once and use indexed addressing. |
594 | Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS && |
595 | !IsRISCV64 && !IsLoongArch64 && |
596 | !(Mapping.Offset & (Mapping.Offset - 1)) && |
597 | Mapping.Offset != kDynamicShadowSentinel; |
598 | bool IsAndroidWithIfuncSupport = |
599 | IsAndroid && !TargetTriple.isAndroidVersionLT(Major: 21); |
600 | Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; |
601 | |
602 | return Mapping; |
603 | } |
604 | |
605 | namespace llvm { |
606 | void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize, |
607 | bool IsKasan, uint64_t *ShadowBase, |
608 | int *MappingScale, bool *OrShadowOffset) { |
609 | auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan); |
610 | *ShadowBase = Mapping.Offset; |
611 | *MappingScale = Mapping.Scale; |
612 | *OrShadowOffset = Mapping.OrShadowOffset; |
613 | } |
614 | |
615 | ASanAccessInfo::ASanAccessInfo(int32_t Packed) |
616 | : Packed(Packed), |
617 | AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask), |
618 | IsWrite((Packed >> kIsWriteShift) & kIsWriteMask), |
619 | CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {} |
620 | |
621 | ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel, |
622 | uint8_t AccessSizeIndex) |
623 | : Packed((IsWrite << kIsWriteShift) + |
624 | (CompileKernel << kCompileKernelShift) + |
625 | (AccessSizeIndex << kAccessSizeIndexShift)), |
626 | AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite), |
627 | CompileKernel(CompileKernel) {} |
628 | |
629 | } // namespace llvm |
630 | |
631 | static uint64_t getRedzoneSizeForScale(int MappingScale) { |
632 | // Redzone used for stack and globals is at least 32 bytes. |
633 | // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. |
634 | return std::max(a: 32U, b: 1U << MappingScale); |
635 | } |
636 | |
637 | static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { |
638 | if (TargetTriple.isOSEmscripten()) { |
639 | return kAsanEmscriptenCtorAndDtorPriority; |
640 | } else { |
641 | return kAsanCtorAndDtorPriority; |
642 | } |
643 | } |
644 | |
645 | namespace { |
646 | /// Helper RAII class to post-process inserted asan runtime calls during a |
647 | /// pass on a single Function. Upon end of scope, detects and applies the |
648 | /// required funclet OpBundle. |
649 | class RuntimeCallInserter { |
650 | Function *OwnerFn = nullptr; |
651 | bool TrackInsertedCalls = false; |
652 | SmallVector<CallInst *> InsertedCalls; |
653 | |
654 | public: |
655 | RuntimeCallInserter(Function &Fn) : OwnerFn(&Fn) { |
656 | if (Fn.hasPersonalityFn()) { |
657 | auto Personality = classifyEHPersonality(Pers: Fn.getPersonalityFn()); |
658 | if (isScopedEHPersonality(Pers: Personality)) |
659 | TrackInsertedCalls = true; |
660 | } |
661 | } |
662 | |
663 | ~RuntimeCallInserter() { |
664 | if (InsertedCalls.empty()) |
665 | return; |
666 | assert(TrackInsertedCalls && "Calls were wrongly tracked" ); |
667 | |
668 | DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(F&: *OwnerFn); |
669 | for (CallInst *CI : InsertedCalls) { |
670 | BasicBlock *BB = CI->getParent(); |
671 | assert(BB && "Instruction doesn't belong to a BasicBlock" ); |
672 | assert(BB->getParent() == OwnerFn && |
673 | "Instruction doesn't belong to the expected Function!" ); |
674 | |
675 | ColorVector &Colors = BlockColors[BB]; |
676 | // funclet opbundles are only valid in monochromatic BBs. |
677 | // Note that unreachable BBs are seen as colorless by colorEHFunclets() |
678 | // and will be DCE'ed later. |
679 | if (Colors.empty()) |
680 | continue; |
681 | if (Colors.size() != 1) { |
682 | OwnerFn->getContext().emitError( |
683 | ErrorStr: "Instruction's BasicBlock is not monochromatic" ); |
684 | continue; |
685 | } |
686 | |
687 | BasicBlock *Color = Colors.front(); |
688 | Instruction *EHPad = Color->getFirstNonPHI(); |
689 | |
690 | if (EHPad && EHPad->isEHPad()) { |
691 | // Replace CI with a clone with an added funclet OperandBundle |
692 | OperandBundleDef OB("funclet" , EHPad); |
693 | auto *NewCall = |
694 | CallBase::addOperandBundle(CB: CI, ID: LLVMContext::OB_funclet, OB, InsertPt: CI); |
695 | NewCall->copyMetadata(SrcInst: *CI); |
696 | CI->replaceAllUsesWith(V: NewCall); |
697 | CI->eraseFromParent(); |
698 | } |
699 | } |
700 | } |
701 | |
702 | CallInst *createRuntimeCall(IRBuilder<> &IRB, FunctionCallee Callee, |
703 | ArrayRef<Value *> Args = {}, |
704 | const Twine &Name = "" ) { |
705 | assert(IRB.GetInsertBlock()->getParent() == OwnerFn); |
706 | |
707 | CallInst *Inst = IRB.CreateCall(Callee, Args, Name, FPMathTag: nullptr); |
708 | if (TrackInsertedCalls) |
709 | InsertedCalls.push_back(Elt: Inst); |
710 | return Inst; |
711 | } |
712 | }; |
713 | |
714 | /// AddressSanitizer: instrument the code in module to find memory bugs. |
715 | struct AddressSanitizer { |
716 | AddressSanitizer(Module &M, const StackSafetyGlobalInfo *SSGI, |
717 | int InstrumentationWithCallsThreshold, |
718 | uint32_t MaxInlinePoisoningSize, bool CompileKernel = false, |
719 | bool Recover = false, bool UseAfterScope = false, |
720 | AsanDetectStackUseAfterReturnMode UseAfterReturn = |
721 | AsanDetectStackUseAfterReturnMode::Runtime) |
722 | : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan |
723 | : CompileKernel), |
724 | Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), |
725 | UseAfterScope(UseAfterScope || ClUseAfterScope), |
726 | UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn |
727 | : UseAfterReturn), |
728 | SSGI(SSGI), |
729 | InstrumentationWithCallsThreshold( |
730 | ClInstrumentationWithCallsThreshold.getNumOccurrences() > 0 |
731 | ? ClInstrumentationWithCallsThreshold |
732 | : InstrumentationWithCallsThreshold), |
733 | MaxInlinePoisoningSize(ClMaxInlinePoisoningSize.getNumOccurrences() > 0 |
734 | ? ClMaxInlinePoisoningSize |
735 | : MaxInlinePoisoningSize) { |
736 | C = &(M.getContext()); |
737 | DL = &M.getDataLayout(); |
738 | LongSize = M.getDataLayout().getPointerSizeInBits(); |
739 | IntptrTy = Type::getIntNTy(C&: *C, N: LongSize); |
740 | PtrTy = PointerType::getUnqual(C&: *C); |
741 | Int32Ty = Type::getInt32Ty(C&: *C); |
742 | TargetTriple = Triple(M.getTargetTriple()); |
743 | |
744 | Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan: this->CompileKernel); |
745 | |
746 | assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid); |
747 | } |
748 | |
749 | TypeSize getAllocaSizeInBytes(const AllocaInst &AI) const { |
750 | return *AI.getAllocationSize(DL: AI.getDataLayout()); |
751 | } |
752 | |
753 | /// Check if we want (and can) handle this alloca. |
754 | bool isInterestingAlloca(const AllocaInst &AI); |
755 | |
756 | bool ignoreAccess(Instruction *Inst, Value *Ptr); |
757 | void getInterestingMemoryOperands( |
758 | Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); |
759 | |
760 | void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, |
761 | InterestingMemoryOperand &O, bool UseCalls, |
762 | const DataLayout &DL, RuntimeCallInserter &RTCI); |
763 | void instrumentPointerComparisonOrSubtraction(Instruction *I, |
764 | RuntimeCallInserter &RTCI); |
765 | void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, |
766 | Value *Addr, MaybeAlign Alignment, |
767 | uint32_t TypeStoreSize, bool IsWrite, |
768 | Value *SizeArgument, bool UseCalls, uint32_t Exp, |
769 | RuntimeCallInserter &RTCI); |
770 | Instruction *instrumentAMDGPUAddress(Instruction *OrigIns, |
771 | Instruction *InsertBefore, Value *Addr, |
772 | uint32_t TypeStoreSize, bool IsWrite, |
773 | Value *SizeArgument); |
774 | Instruction *genAMDGPUReportBlock(IRBuilder<> &IRB, Value *Cond, |
775 | bool Recover); |
776 | void instrumentUnusualSizeOrAlignment(Instruction *I, |
777 | Instruction *InsertBefore, Value *Addr, |
778 | TypeSize TypeStoreSize, bool IsWrite, |
779 | Value *SizeArgument, bool UseCalls, |
780 | uint32_t Exp, |
781 | RuntimeCallInserter &RTCI); |
782 | void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, const DataLayout &DL, |
783 | Type *IntptrTy, Value *Mask, Value *EVL, |
784 | Value *Stride, Instruction *I, Value *Addr, |
785 | MaybeAlign Alignment, unsigned Granularity, |
786 | Type *OpType, bool IsWrite, |
787 | Value *SizeArgument, bool UseCalls, |
788 | uint32_t Exp, RuntimeCallInserter &RTCI); |
789 | Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, |
790 | Value *ShadowValue, uint32_t TypeStoreSize); |
791 | Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, |
792 | bool IsWrite, size_t AccessSizeIndex, |
793 | Value *SizeArgument, uint32_t Exp, |
794 | RuntimeCallInserter &RTCI); |
795 | void instrumentMemIntrinsic(MemIntrinsic *MI, RuntimeCallInserter &RTCI); |
796 | Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); |
797 | bool suppressInstrumentationSiteForDebug(int &Instrumented); |
798 | bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); |
799 | bool maybeInsertAsanInitAtFunctionEntry(Function &F); |
800 | bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); |
801 | void markEscapedLocalAllocas(Function &F); |
802 | |
803 | private: |
804 | friend struct FunctionStackPoisoner; |
805 | |
806 | void initializeCallbacks(Module &M, const TargetLibraryInfo *TLI); |
807 | |
808 | bool LooksLikeCodeInBug11395(Instruction *I); |
809 | bool GlobalIsLinkerInitialized(GlobalVariable *G); |
810 | bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, |
811 | TypeSize TypeStoreSize) const; |
812 | |
813 | /// Helper to cleanup per-function state. |
814 | struct FunctionStateRAII { |
815 | AddressSanitizer *Pass; |
816 | |
817 | FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { |
818 | assert(Pass->ProcessedAllocas.empty() && |
819 | "last pass forgot to clear cache" ); |
820 | assert(!Pass->LocalDynamicShadow); |
821 | } |
822 | |
823 | ~FunctionStateRAII() { |
824 | Pass->LocalDynamicShadow = nullptr; |
825 | Pass->ProcessedAllocas.clear(); |
826 | } |
827 | }; |
828 | |
829 | LLVMContext *C; |
830 | const DataLayout *DL; |
831 | Triple TargetTriple; |
832 | int LongSize; |
833 | bool CompileKernel; |
834 | bool Recover; |
835 | bool UseAfterScope; |
836 | AsanDetectStackUseAfterReturnMode UseAfterReturn; |
837 | Type *IntptrTy; |
838 | Type *Int32Ty; |
839 | PointerType *PtrTy; |
840 | ShadowMapping Mapping; |
841 | FunctionCallee AsanHandleNoReturnFunc; |
842 | FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; |
843 | Constant *AsanShadowGlobal; |
844 | |
845 | // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). |
846 | FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; |
847 | FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; |
848 | |
849 | // These arrays is indexed by AccessIsWrite and Experiment. |
850 | FunctionCallee AsanErrorCallbackSized[2][2]; |
851 | FunctionCallee AsanMemoryAccessCallbackSized[2][2]; |
852 | |
853 | FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; |
854 | Value *LocalDynamicShadow = nullptr; |
855 | const StackSafetyGlobalInfo *SSGI; |
856 | DenseMap<const AllocaInst *, bool> ProcessedAllocas; |
857 | |
858 | FunctionCallee AMDGPUAddressShared; |
859 | FunctionCallee AMDGPUAddressPrivate; |
860 | int InstrumentationWithCallsThreshold; |
861 | uint32_t MaxInlinePoisoningSize; |
862 | }; |
863 | |
864 | class ModuleAddressSanitizer { |
865 | public: |
866 | ModuleAddressSanitizer(Module &M, bool InsertVersionCheck, |
867 | bool CompileKernel = false, bool Recover = false, |
868 | bool UseGlobalsGC = true, bool UseOdrIndicator = true, |
869 | AsanDtorKind DestructorKind = AsanDtorKind::Global, |
870 | AsanCtorKind ConstructorKind = AsanCtorKind::Global) |
871 | : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan |
872 | : CompileKernel), |
873 | InsertVersionCheck(ClInsertVersionCheck.getNumOccurrences() > 0 |
874 | ? ClInsertVersionCheck |
875 | : InsertVersionCheck), |
876 | Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), |
877 | UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), |
878 | // Enable aliases as they should have no downside with ODR indicators. |
879 | UsePrivateAlias(ClUsePrivateAlias.getNumOccurrences() > 0 |
880 | ? ClUsePrivateAlias |
881 | : UseOdrIndicator), |
882 | UseOdrIndicator(ClUseOdrIndicator.getNumOccurrences() > 0 |
883 | ? ClUseOdrIndicator |
884 | : UseOdrIndicator), |
885 | // Not a typo: ClWithComdat is almost completely pointless without |
886 | // ClUseGlobalsGC (because then it only works on modules without |
887 | // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; |
888 | // and both suffer from gold PR19002 for which UseGlobalsGC constructor |
889 | // argument is designed as workaround. Therefore, disable both |
890 | // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to |
891 | // do globals-gc. |
892 | UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel), |
893 | DestructorKind(DestructorKind), |
894 | ConstructorKind(ClConstructorKind.getNumOccurrences() > 0 |
895 | ? ClConstructorKind |
896 | : ConstructorKind) { |
897 | C = &(M.getContext()); |
898 | int LongSize = M.getDataLayout().getPointerSizeInBits(); |
899 | IntptrTy = Type::getIntNTy(C&: *C, N: LongSize); |
900 | PtrTy = PointerType::getUnqual(C&: *C); |
901 | TargetTriple = Triple(M.getTargetTriple()); |
902 | Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan: this->CompileKernel); |
903 | |
904 | if (ClOverrideDestructorKind != AsanDtorKind::Invalid) |
905 | this->DestructorKind = ClOverrideDestructorKind; |
906 | assert(this->DestructorKind != AsanDtorKind::Invalid); |
907 | } |
908 | |
909 | bool instrumentModule(Module &); |
910 | |
911 | private: |
912 | void initializeCallbacks(Module &M); |
913 | |
914 | void instrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); |
915 | void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, |
916 | ArrayRef<GlobalVariable *> ExtendedGlobals, |
917 | ArrayRef<Constant *> MetadataInitializers); |
918 | void instrumentGlobalsELF(IRBuilder<> &IRB, Module &M, |
919 | ArrayRef<GlobalVariable *> ExtendedGlobals, |
920 | ArrayRef<Constant *> MetadataInitializers, |
921 | const std::string &UniqueModuleId); |
922 | void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, |
923 | ArrayRef<GlobalVariable *> ExtendedGlobals, |
924 | ArrayRef<Constant *> MetadataInitializers); |
925 | void |
926 | InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, |
927 | ArrayRef<GlobalVariable *> ExtendedGlobals, |
928 | ArrayRef<Constant *> MetadataInitializers); |
929 | |
930 | GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, |
931 | StringRef OriginalName); |
932 | void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, |
933 | StringRef InternalSuffix); |
934 | Instruction *CreateAsanModuleDtor(Module &M); |
935 | |
936 | const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const; |
937 | bool shouldInstrumentGlobal(GlobalVariable *G) const; |
938 | bool ShouldUseMachOGlobalsSection() const; |
939 | StringRef getGlobalMetadataSection() const; |
940 | void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); |
941 | void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); |
942 | uint64_t getMinRedzoneSizeForGlobal() const { |
943 | return getRedzoneSizeForScale(MappingScale: Mapping.Scale); |
944 | } |
945 | uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; |
946 | int GetAsanVersion(const Module &M) const; |
947 | |
948 | bool CompileKernel; |
949 | bool InsertVersionCheck; |
950 | bool Recover; |
951 | bool UseGlobalsGC; |
952 | bool UsePrivateAlias; |
953 | bool UseOdrIndicator; |
954 | bool UseCtorComdat; |
955 | AsanDtorKind DestructorKind; |
956 | AsanCtorKind ConstructorKind; |
957 | Type *IntptrTy; |
958 | PointerType *PtrTy; |
959 | LLVMContext *C; |
960 | Triple TargetTriple; |
961 | ShadowMapping Mapping; |
962 | FunctionCallee AsanPoisonGlobals; |
963 | FunctionCallee AsanUnpoisonGlobals; |
964 | FunctionCallee AsanRegisterGlobals; |
965 | FunctionCallee AsanUnregisterGlobals; |
966 | FunctionCallee AsanRegisterImageGlobals; |
967 | FunctionCallee AsanUnregisterImageGlobals; |
968 | FunctionCallee AsanRegisterElfGlobals; |
969 | FunctionCallee AsanUnregisterElfGlobals; |
970 | |
971 | Function *AsanCtorFunction = nullptr; |
972 | Function *AsanDtorFunction = nullptr; |
973 | }; |
974 | |
975 | // Stack poisoning does not play well with exception handling. |
976 | // When an exception is thrown, we essentially bypass the code |
977 | // that unpoisones the stack. This is why the run-time library has |
978 | // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire |
979 | // stack in the interceptor. This however does not work inside the |
980 | // actual function which catches the exception. Most likely because the |
981 | // compiler hoists the load of the shadow value somewhere too high. |
982 | // This causes asan to report a non-existing bug on 453.povray. |
983 | // It sounds like an LLVM bug. |
984 | struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { |
985 | Function &F; |
986 | AddressSanitizer &ASan; |
987 | RuntimeCallInserter &RTCI; |
988 | DIBuilder DIB; |
989 | LLVMContext *C; |
990 | Type *IntptrTy; |
991 | Type *IntptrPtrTy; |
992 | ShadowMapping Mapping; |
993 | |
994 | SmallVector<AllocaInst *, 16> AllocaVec; |
995 | SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; |
996 | SmallVector<Instruction *, 8> RetVec; |
997 | |
998 | FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], |
999 | AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; |
1000 | FunctionCallee AsanSetShadowFunc[0x100] = {}; |
1001 | FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; |
1002 | FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; |
1003 | |
1004 | // Stores a place and arguments of poisoning/unpoisoning call for alloca. |
1005 | struct AllocaPoisonCall { |
1006 | IntrinsicInst *InsBefore; |
1007 | AllocaInst *AI; |
1008 | uint64_t Size; |
1009 | bool DoPoison; |
1010 | }; |
1011 | SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; |
1012 | SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; |
1013 | bool HasUntracedLifetimeIntrinsic = false; |
1014 | |
1015 | SmallVector<AllocaInst *, 1> DynamicAllocaVec; |
1016 | SmallVector<IntrinsicInst *, 1> StackRestoreVec; |
1017 | AllocaInst *DynamicAllocaLayout = nullptr; |
1018 | IntrinsicInst *LocalEscapeCall = nullptr; |
1019 | |
1020 | bool HasInlineAsm = false; |
1021 | bool HasReturnsTwiceCall = false; |
1022 | bool PoisonStack; |
1023 | |
1024 | FunctionStackPoisoner(Function &F, AddressSanitizer &ASan, |
1025 | RuntimeCallInserter &RTCI) |
1026 | : F(F), ASan(ASan), RTCI(RTCI), |
1027 | DIB(*F.getParent(), /*AllowUnresolved*/ false), C(ASan.C), |
1028 | IntptrTy(ASan.IntptrTy), IntptrPtrTy(PointerType::get(ElementType: IntptrTy, AddressSpace: 0)), |
1029 | Mapping(ASan.Mapping), |
1030 | PoisonStack(ClStack && |
1031 | !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {} |
1032 | |
1033 | bool runOnFunction() { |
1034 | if (!PoisonStack) |
1035 | return false; |
1036 | |
1037 | if (ClRedzoneByvalArgs) |
1038 | copyArgsPassedByValToAllocas(); |
1039 | |
1040 | // Collect alloca, ret, lifetime instructions etc. |
1041 | for (BasicBlock *BB : depth_first(G: &F.getEntryBlock())) visit(BB&: *BB); |
1042 | |
1043 | if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; |
1044 | |
1045 | initializeCallbacks(M&: *F.getParent()); |
1046 | |
1047 | if (HasUntracedLifetimeIntrinsic) { |
1048 | // If there are lifetime intrinsics which couldn't be traced back to an |
1049 | // alloca, we may not know exactly when a variable enters scope, and |
1050 | // therefore should "fail safe" by not poisoning them. |
1051 | StaticAllocaPoisonCallVec.clear(); |
1052 | DynamicAllocaPoisonCallVec.clear(); |
1053 | } |
1054 | |
1055 | processDynamicAllocas(); |
1056 | processStaticAllocas(); |
1057 | |
1058 | if (ClDebugStack) { |
1059 | LLVM_DEBUG(dbgs() << F); |
1060 | } |
1061 | return true; |
1062 | } |
1063 | |
1064 | // Arguments marked with the "byval" attribute are implicitly copied without |
1065 | // using an alloca instruction. To produce redzones for those arguments, we |
1066 | // copy them a second time into memory allocated with an alloca instruction. |
1067 | void copyArgsPassedByValToAllocas(); |
1068 | |
1069 | // Finds all Alloca instructions and puts |
1070 | // poisoned red zones around all of them. |
1071 | // Then unpoison everything back before the function returns. |
1072 | void processStaticAllocas(); |
1073 | void processDynamicAllocas(); |
1074 | |
1075 | void createDynamicAllocasInitStorage(); |
1076 | |
1077 | // ----------------------- Visitors. |
1078 | /// Collect all Ret instructions, or the musttail call instruction if it |
1079 | /// precedes the return instruction. |
1080 | void visitReturnInst(ReturnInst &RI) { |
1081 | if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall()) |
1082 | RetVec.push_back(Elt: CI); |
1083 | else |
1084 | RetVec.push_back(Elt: &RI); |
1085 | } |
1086 | |
1087 | /// Collect all Resume instructions. |
1088 | void visitResumeInst(ResumeInst &RI) { RetVec.push_back(Elt: &RI); } |
1089 | |
1090 | /// Collect all CatchReturnInst instructions. |
1091 | void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(Elt: &CRI); } |
1092 | |
1093 | void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, |
1094 | Value *SavedStack) { |
1095 | IRBuilder<> IRB(InstBefore); |
1096 | Value *DynamicAreaPtr = IRB.CreatePtrToInt(V: SavedStack, DestTy: IntptrTy); |
1097 | // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we |
1098 | // need to adjust extracted SP to compute the address of the most recent |
1099 | // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for |
1100 | // this purpose. |
1101 | if (!isa<ReturnInst>(Val: InstBefore)) { |
1102 | Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( |
1103 | M: InstBefore->getModule(), id: Intrinsic::get_dynamic_area_offset, |
1104 | Tys: {IntptrTy}); |
1105 | |
1106 | Value *DynamicAreaOffset = IRB.CreateCall(Callee: DynamicAreaOffsetFunc, Args: {}); |
1107 | |
1108 | DynamicAreaPtr = IRB.CreateAdd(LHS: IRB.CreatePtrToInt(V: SavedStack, DestTy: IntptrTy), |
1109 | RHS: DynamicAreaOffset); |
1110 | } |
1111 | |
1112 | RTCI.createRuntimeCall( |
1113 | IRB, Callee: AsanAllocasUnpoisonFunc, |
1114 | Args: {IRB.CreateLoad(Ty: IntptrTy, Ptr: DynamicAllocaLayout), DynamicAreaPtr}); |
1115 | } |
1116 | |
1117 | // Unpoison dynamic allocas redzones. |
1118 | void unpoisonDynamicAllocas() { |
1119 | for (Instruction *Ret : RetVec) |
1120 | unpoisonDynamicAllocasBeforeInst(InstBefore: Ret, SavedStack: DynamicAllocaLayout); |
1121 | |
1122 | for (Instruction *StackRestoreInst : StackRestoreVec) |
1123 | unpoisonDynamicAllocasBeforeInst(InstBefore: StackRestoreInst, |
1124 | SavedStack: StackRestoreInst->getOperand(i: 0)); |
1125 | } |
1126 | |
1127 | // Deploy and poison redzones around dynamic alloca call. To do this, we |
1128 | // should replace this call with another one with changed parameters and |
1129 | // replace all its uses with new address, so |
1130 | // addr = alloca type, old_size, align |
1131 | // is replaced by |
1132 | // new_size = (old_size + additional_size) * sizeof(type) |
1133 | // tmp = alloca i8, new_size, max(align, 32) |
1134 | // addr = tmp + 32 (first 32 bytes are for the left redzone). |
1135 | // Additional_size is added to make new memory allocation contain not only |
1136 | // requested memory, but also left, partial and right redzones. |
1137 | void handleDynamicAllocaCall(AllocaInst *AI); |
1138 | |
1139 | /// Collect Alloca instructions we want (and can) handle. |
1140 | void visitAllocaInst(AllocaInst &AI) { |
1141 | // FIXME: Handle scalable vectors instead of ignoring them. |
1142 | const Type *AllocaType = AI.getAllocatedType(); |
1143 | const auto *STy = dyn_cast<StructType>(Val: AllocaType); |
1144 | if (!ASan.isInterestingAlloca(AI) || isa<ScalableVectorType>(Val: AllocaType) || |
1145 | (STy && STy->containsHomogeneousScalableVectorTypes())) { |
1146 | if (AI.isStaticAlloca()) { |
1147 | // Skip over allocas that are present *before* the first instrumented |
1148 | // alloca, we don't want to move those around. |
1149 | if (AllocaVec.empty()) |
1150 | return; |
1151 | |
1152 | StaticAllocasToMoveUp.push_back(Elt: &AI); |
1153 | } |
1154 | return; |
1155 | } |
1156 | |
1157 | if (!AI.isStaticAlloca()) |
1158 | DynamicAllocaVec.push_back(Elt: &AI); |
1159 | else |
1160 | AllocaVec.push_back(Elt: &AI); |
1161 | } |
1162 | |
1163 | /// Collect lifetime intrinsic calls to check for use-after-scope |
1164 | /// errors. |
1165 | void visitIntrinsicInst(IntrinsicInst &II) { |
1166 | Intrinsic::ID ID = II.getIntrinsicID(); |
1167 | if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(Elt: &II); |
1168 | if (ID == Intrinsic::localescape) LocalEscapeCall = &II; |
1169 | if (!ASan.UseAfterScope) |
1170 | return; |
1171 | if (!II.isLifetimeStartOrEnd()) |
1172 | return; |
1173 | // Found lifetime intrinsic, add ASan instrumentation if necessary. |
1174 | auto *Size = cast<ConstantInt>(Val: II.getArgOperand(i: 0)); |
1175 | // If size argument is undefined, don't do anything. |
1176 | if (Size->isMinusOne()) return; |
1177 | // Check that size doesn't saturate uint64_t and can |
1178 | // be stored in IntptrTy. |
1179 | const uint64_t SizeValue = Size->getValue().getLimitedValue(); |
1180 | if (SizeValue == ~0ULL || |
1181 | !ConstantInt::isValueValidForType(Ty: IntptrTy, V: SizeValue)) |
1182 | return; |
1183 | // Find alloca instruction that corresponds to llvm.lifetime argument. |
1184 | // Currently we can only handle lifetime markers pointing to the |
1185 | // beginning of the alloca. |
1186 | AllocaInst *AI = findAllocaForValue(V: II.getArgOperand(i: 1), OffsetZero: true); |
1187 | if (!AI) { |
1188 | HasUntracedLifetimeIntrinsic = true; |
1189 | return; |
1190 | } |
1191 | // We're interested only in allocas we can handle. |
1192 | if (!ASan.isInterestingAlloca(AI: *AI)) |
1193 | return; |
1194 | bool DoPoison = (ID == Intrinsic::lifetime_end); |
1195 | AllocaPoisonCall APC = {.InsBefore: &II, .AI: AI, .Size: SizeValue, .DoPoison: DoPoison}; |
1196 | if (AI->isStaticAlloca()) |
1197 | StaticAllocaPoisonCallVec.push_back(Elt: APC); |
1198 | else if (ClInstrumentDynamicAllocas) |
1199 | DynamicAllocaPoisonCallVec.push_back(Elt: APC); |
1200 | } |
1201 | |
1202 | void visitCallBase(CallBase &CB) { |
1203 | if (CallInst *CI = dyn_cast<CallInst>(Val: &CB)) { |
1204 | HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; |
1205 | HasReturnsTwiceCall |= CI->canReturnTwice(); |
1206 | } |
1207 | } |
1208 | |
1209 | // ---------------------- Helpers. |
1210 | void initializeCallbacks(Module &M); |
1211 | |
1212 | // Copies bytes from ShadowBytes into shadow memory for indexes where |
1213 | // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that |
1214 | // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. |
1215 | void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, |
1216 | IRBuilder<> &IRB, Value *ShadowBase); |
1217 | void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, |
1218 | size_t Begin, size_t End, IRBuilder<> &IRB, |
1219 | Value *ShadowBase); |
1220 | void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, |
1221 | ArrayRef<uint8_t> ShadowBytes, size_t Begin, |
1222 | size_t End, IRBuilder<> &IRB, Value *ShadowBase); |
1223 | |
1224 | void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); |
1225 | |
1226 | Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, |
1227 | bool Dynamic); |
1228 | PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, |
1229 | Instruction *ThenTerm, Value *ValueIfFalse); |
1230 | }; |
1231 | |
1232 | } // end anonymous namespace |
1233 | |
1234 | void AddressSanitizerPass::printPipeline( |
1235 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
1236 | static_cast<PassInfoMixin<AddressSanitizerPass> *>(this)->printPipeline( |
1237 | OS, MapClassName2PassName); |
1238 | OS << '<'; |
1239 | if (Options.CompileKernel) |
1240 | OS << "kernel" ; |
1241 | OS << '>'; |
1242 | } |
1243 | |
1244 | AddressSanitizerPass::AddressSanitizerPass( |
1245 | const AddressSanitizerOptions &Options, bool UseGlobalGC, |
1246 | bool UseOdrIndicator, AsanDtorKind DestructorKind, |
1247 | AsanCtorKind ConstructorKind) |
1248 | : Options(Options), UseGlobalGC(UseGlobalGC), |
1249 | UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind), |
1250 | ConstructorKind(ConstructorKind) {} |
1251 | |
1252 | PreservedAnalyses AddressSanitizerPass::run(Module &M, |
1253 | ModuleAnalysisManager &MAM) { |
1254 | ModuleAddressSanitizer ModuleSanitizer( |
1255 | M, Options.InsertVersionCheck, Options.CompileKernel, Options.Recover, |
1256 | UseGlobalGC, UseOdrIndicator, DestructorKind, ConstructorKind); |
1257 | bool Modified = false; |
1258 | auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
1259 | const StackSafetyGlobalInfo *const SSGI = |
1260 | ClUseStackSafety ? &MAM.getResult<StackSafetyGlobalAnalysis>(IR&: M) : nullptr; |
1261 | for (Function &F : M) { |
1262 | AddressSanitizer FunctionSanitizer( |
1263 | M, SSGI, Options.InstrumentationWithCallsThreshold, |
1264 | Options.MaxInlinePoisoningSize, Options.CompileKernel, Options.Recover, |
1265 | Options.UseAfterScope, Options.UseAfterReturn); |
1266 | const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(IR&: F); |
1267 | Modified |= FunctionSanitizer.instrumentFunction(F, TLI: &TLI); |
1268 | } |
1269 | Modified |= ModuleSanitizer.instrumentModule(M); |
1270 | if (!Modified) |
1271 | return PreservedAnalyses::all(); |
1272 | |
1273 | PreservedAnalyses PA = PreservedAnalyses::none(); |
1274 | // GlobalsAA is considered stateless and does not get invalidated unless |
1275 | // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers |
1276 | // make changes that require GlobalsAA to be invalidated. |
1277 | PA.abandon<GlobalsAA>(); |
1278 | return PA; |
1279 | } |
1280 | |
1281 | static size_t TypeStoreSizeToSizeIndex(uint32_t TypeSize) { |
1282 | size_t Res = llvm::countr_zero(Val: TypeSize / 8); |
1283 | assert(Res < kNumberOfAccessSizes); |
1284 | return Res; |
1285 | } |
1286 | |
1287 | /// Check if \p G has been created by a trusted compiler pass. |
1288 | static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { |
1289 | // Do not instrument @llvm.global_ctors, @llvm.used, etc. |
1290 | if (G->getName().starts_with(Prefix: "llvm." ) || |
1291 | // Do not instrument gcov counter arrays. |
1292 | G->getName().starts_with(Prefix: "__llvm_gcov_ctr" ) || |
1293 | // Do not instrument rtti proxy symbols for function sanitizer. |
1294 | G->getName().starts_with(Prefix: "__llvm_rtti_proxy" )) |
1295 | return true; |
1296 | |
1297 | // Do not instrument asan globals. |
1298 | if (G->getName().starts_with(Prefix: kAsanGenPrefix) || |
1299 | G->getName().starts_with(Prefix: kSanCovGenPrefix) || |
1300 | G->getName().starts_with(Prefix: kODRGenPrefix)) |
1301 | return true; |
1302 | |
1303 | return false; |
1304 | } |
1305 | |
1306 | static bool isUnsupportedAMDGPUAddrspace(Value *Addr) { |
1307 | Type *PtrTy = cast<PointerType>(Val: Addr->getType()->getScalarType()); |
1308 | unsigned int AddrSpace = PtrTy->getPointerAddressSpace(); |
1309 | if (AddrSpace == 3 || AddrSpace == 5) |
1310 | return true; |
1311 | return false; |
1312 | } |
1313 | |
1314 | Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { |
1315 | // Shadow >> scale |
1316 | Shadow = IRB.CreateLShr(LHS: Shadow, RHS: Mapping.Scale); |
1317 | if (Mapping.Offset == 0) return Shadow; |
1318 | // (Shadow >> scale) | offset |
1319 | Value *ShadowBase; |
1320 | if (LocalDynamicShadow) |
1321 | ShadowBase = LocalDynamicShadow; |
1322 | else |
1323 | ShadowBase = ConstantInt::get(Ty: IntptrTy, V: Mapping.Offset); |
1324 | if (Mapping.OrShadowOffset) |
1325 | return IRB.CreateOr(LHS: Shadow, RHS: ShadowBase); |
1326 | else |
1327 | return IRB.CreateAdd(LHS: Shadow, RHS: ShadowBase); |
1328 | } |
1329 | |
1330 | // Instrument memset/memmove/memcpy |
1331 | void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI, |
1332 | RuntimeCallInserter &RTCI) { |
1333 | InstrumentationIRBuilder IRB(MI); |
1334 | if (isa<MemTransferInst>(Val: MI)) { |
1335 | RTCI.createRuntimeCall( |
1336 | IRB, Callee: isa<MemMoveInst>(Val: MI) ? AsanMemmove : AsanMemcpy, |
1337 | Args: {IRB.CreateAddrSpaceCast(V: MI->getOperand(i_nocapture: 0), DestTy: PtrTy), |
1338 | IRB.CreateAddrSpaceCast(V: MI->getOperand(i_nocapture: 1), DestTy: PtrTy), |
1339 | IRB.CreateIntCast(V: MI->getOperand(i_nocapture: 2), DestTy: IntptrTy, isSigned: false)}); |
1340 | } else if (isa<MemSetInst>(Val: MI)) { |
1341 | RTCI.createRuntimeCall( |
1342 | IRB, Callee: AsanMemset, |
1343 | Args: {IRB.CreateAddrSpaceCast(V: MI->getOperand(i_nocapture: 0), DestTy: PtrTy), |
1344 | IRB.CreateIntCast(V: MI->getOperand(i_nocapture: 1), DestTy: IRB.getInt32Ty(), isSigned: false), |
1345 | IRB.CreateIntCast(V: MI->getOperand(i_nocapture: 2), DestTy: IntptrTy, isSigned: false)}); |
1346 | } |
1347 | MI->eraseFromParent(); |
1348 | } |
1349 | |
1350 | /// Check if we want (and can) handle this alloca. |
1351 | bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { |
1352 | auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(Val: &AI); |
1353 | |
1354 | if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) |
1355 | return PreviouslySeenAllocaInfo->getSecond(); |
1356 | |
1357 | bool IsInteresting = |
1358 | (AI.getAllocatedType()->isSized() && |
1359 | // alloca() may be called with 0 size, ignore it. |
1360 | ((!AI.isStaticAlloca()) || !getAllocaSizeInBytes(AI).isZero()) && |
1361 | // We are only interested in allocas not promotable to registers. |
1362 | // Promotable allocas are common under -O0. |
1363 | (!ClSkipPromotableAllocas || !isAllocaPromotable(AI: &AI)) && |
1364 | // inalloca allocas are not treated as static, and we don't want |
1365 | // dynamic alloca instrumentation for them as well. |
1366 | !AI.isUsedWithInAlloca() && |
1367 | // swifterror allocas are register promoted by ISel |
1368 | !AI.isSwiftError() && |
1369 | // safe allocas are not interesting |
1370 | !(SSGI && SSGI->isSafe(AI))); |
1371 | |
1372 | ProcessedAllocas[&AI] = IsInteresting; |
1373 | return IsInteresting; |
1374 | } |
1375 | |
1376 | bool AddressSanitizer::ignoreAccess(Instruction *Inst, Value *Ptr) { |
1377 | // Instrument accesses from different address spaces only for AMDGPU. |
1378 | Type *PtrTy = cast<PointerType>(Val: Ptr->getType()->getScalarType()); |
1379 | if (PtrTy->getPointerAddressSpace() != 0 && |
1380 | !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Addr: Ptr))) |
1381 | return true; |
1382 | |
1383 | // Ignore swifterror addresses. |
1384 | // swifterror memory addresses are mem2reg promoted by instruction |
1385 | // selection. As such they cannot have regular uses like an instrumentation |
1386 | // function and it makes no sense to track them as memory. |
1387 | if (Ptr->isSwiftError()) |
1388 | return true; |
1389 | |
1390 | // Treat memory accesses to promotable allocas as non-interesting since they |
1391 | // will not cause memory violations. This greatly speeds up the instrumented |
1392 | // executable at -O0. |
1393 | if (auto AI = dyn_cast_or_null<AllocaInst>(Val: Ptr)) |
1394 | if (ClSkipPromotableAllocas && !isInterestingAlloca(AI: *AI)) |
1395 | return true; |
1396 | |
1397 | if (SSGI != nullptr && SSGI->stackAccessIsSafe(I: *Inst) && |
1398 | findAllocaForValue(V: Ptr)) |
1399 | return true; |
1400 | |
1401 | return false; |
1402 | } |
1403 | |
1404 | void AddressSanitizer::getInterestingMemoryOperands( |
1405 | Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { |
1406 | // Do not instrument the load fetching the dynamic shadow address. |
1407 | if (LocalDynamicShadow == I) |
1408 | return; |
1409 | |
1410 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: I)) { |
1411 | if (!ClInstrumentReads || ignoreAccess(Inst: I, Ptr: LI->getPointerOperand())) |
1412 | return; |
1413 | Interesting.emplace_back(Args&: I, Args: LI->getPointerOperandIndex(), Args: false, |
1414 | Args: LI->getType(), Args: LI->getAlign()); |
1415 | } else if (StoreInst *SI = dyn_cast<StoreInst>(Val: I)) { |
1416 | if (!ClInstrumentWrites || ignoreAccess(Inst: I, Ptr: SI->getPointerOperand())) |
1417 | return; |
1418 | Interesting.emplace_back(Args&: I, Args: SI->getPointerOperandIndex(), Args: true, |
1419 | Args: SI->getValueOperand()->getType(), Args: SI->getAlign()); |
1420 | } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Val: I)) { |
1421 | if (!ClInstrumentAtomics || ignoreAccess(Inst: I, Ptr: RMW->getPointerOperand())) |
1422 | return; |
1423 | Interesting.emplace_back(Args&: I, Args: RMW->getPointerOperandIndex(), Args: true, |
1424 | Args: RMW->getValOperand()->getType(), Args: std::nullopt); |
1425 | } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(Val: I)) { |
1426 | if (!ClInstrumentAtomics || ignoreAccess(Inst: I, Ptr: XCHG->getPointerOperand())) |
1427 | return; |
1428 | Interesting.emplace_back(Args&: I, Args: XCHG->getPointerOperandIndex(), Args: true, |
1429 | Args: XCHG->getCompareOperand()->getType(), |
1430 | Args: std::nullopt); |
1431 | } else if (auto CI = dyn_cast<CallInst>(Val: I)) { |
1432 | switch (CI->getIntrinsicID()) { |
1433 | case Intrinsic::masked_load: |
1434 | case Intrinsic::masked_store: |
1435 | case Intrinsic::masked_gather: |
1436 | case Intrinsic::masked_scatter: { |
1437 | bool IsWrite = CI->getType()->isVoidTy(); |
1438 | // Masked store has an initial operand for the value. |
1439 | unsigned OpOffset = IsWrite ? 1 : 0; |
1440 | if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) |
1441 | return; |
1442 | |
1443 | auto BasePtr = CI->getOperand(i_nocapture: OpOffset); |
1444 | if (ignoreAccess(Inst: I, Ptr: BasePtr)) |
1445 | return; |
1446 | Type *Ty = IsWrite ? CI->getArgOperand(i: 0)->getType() : CI->getType(); |
1447 | MaybeAlign Alignment = Align(1); |
1448 | // Otherwise no alignment guarantees. We probably got Undef. |
1449 | if (auto *Op = dyn_cast<ConstantInt>(Val: CI->getOperand(i_nocapture: 1 + OpOffset))) |
1450 | Alignment = Op->getMaybeAlignValue(); |
1451 | Value *Mask = CI->getOperand(i_nocapture: 2 + OpOffset); |
1452 | Interesting.emplace_back(Args&: I, Args&: OpOffset, Args&: IsWrite, Args&: Ty, Args&: Alignment, Args&: Mask); |
1453 | break; |
1454 | } |
1455 | case Intrinsic::masked_expandload: |
1456 | case Intrinsic::masked_compressstore: { |
1457 | bool IsWrite = CI->getIntrinsicID() == Intrinsic::masked_compressstore; |
1458 | unsigned OpOffset = IsWrite ? 1 : 0; |
1459 | if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) |
1460 | return; |
1461 | auto BasePtr = CI->getOperand(i_nocapture: OpOffset); |
1462 | if (ignoreAccess(Inst: I, Ptr: BasePtr)) |
1463 | return; |
1464 | MaybeAlign Alignment = BasePtr->getPointerAlignment(DL: *DL); |
1465 | Type *Ty = IsWrite ? CI->getArgOperand(i: 0)->getType() : CI->getType(); |
1466 | |
1467 | IRBuilder IB(I); |
1468 | Value *Mask = CI->getOperand(i_nocapture: 1 + OpOffset); |
1469 | // Use the popcount of Mask as the effective vector length. |
1470 | Type *ExtTy = VectorType::get(ElementType: IntptrTy, Other: cast<VectorType>(Val: Ty)); |
1471 | Value *ExtMask = IB.CreateZExt(V: Mask, DestTy: ExtTy); |
1472 | Value *EVL = IB.CreateAddReduce(Src: ExtMask); |
1473 | Value *TrueMask = ConstantInt::get(Ty: Mask->getType(), V: 1); |
1474 | Interesting.emplace_back(Args&: I, Args&: OpOffset, Args&: IsWrite, Args&: Ty, Args&: Alignment, Args&: TrueMask, |
1475 | Args&: EVL); |
1476 | break; |
1477 | } |
1478 | case Intrinsic::vp_load: |
1479 | case Intrinsic::vp_store: |
1480 | case Intrinsic::experimental_vp_strided_load: |
1481 | case Intrinsic::experimental_vp_strided_store: { |
1482 | auto *VPI = cast<VPIntrinsic>(Val: CI); |
1483 | unsigned IID = CI->getIntrinsicID(); |
1484 | bool IsWrite = CI->getType()->isVoidTy(); |
1485 | if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) |
1486 | return; |
1487 | unsigned PtrOpNo = *VPI->getMemoryPointerParamPos(IID); |
1488 | Type *Ty = IsWrite ? CI->getArgOperand(i: 0)->getType() : CI->getType(); |
1489 | MaybeAlign Alignment = VPI->getOperand(i_nocapture: PtrOpNo)->getPointerAlignment(DL: *DL); |
1490 | Value *Stride = nullptr; |
1491 | if (IID == Intrinsic::experimental_vp_strided_store || |
1492 | IID == Intrinsic::experimental_vp_strided_load) { |
1493 | Stride = VPI->getOperand(i_nocapture: PtrOpNo + 1); |
1494 | // Use the pointer alignment as the element alignment if the stride is a |
1495 | // mutiple of the pointer alignment. Otherwise, the element alignment |
1496 | // should be Align(1). |
1497 | unsigned PointerAlign = Alignment.valueOrOne().value(); |
1498 | if (!isa<ConstantInt>(Val: Stride) || |
1499 | cast<ConstantInt>(Val: Stride)->getZExtValue() % PointerAlign != 0) |
1500 | Alignment = Align(1); |
1501 | } |
1502 | Interesting.emplace_back(Args&: I, Args&: PtrOpNo, Args&: IsWrite, Args&: Ty, Args&: Alignment, |
1503 | Args: VPI->getMaskParam(), Args: VPI->getVectorLengthParam(), |
1504 | Args&: Stride); |
1505 | break; |
1506 | } |
1507 | case Intrinsic::vp_gather: |
1508 | case Intrinsic::vp_scatter: { |
1509 | auto *VPI = cast<VPIntrinsic>(Val: CI); |
1510 | unsigned IID = CI->getIntrinsicID(); |
1511 | bool IsWrite = IID == Intrinsic::vp_scatter; |
1512 | if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) |
1513 | return; |
1514 | unsigned PtrOpNo = *VPI->getMemoryPointerParamPos(IID); |
1515 | Type *Ty = IsWrite ? CI->getArgOperand(i: 0)->getType() : CI->getType(); |
1516 | MaybeAlign Alignment = VPI->getPointerAlignment(); |
1517 | Interesting.emplace_back(Args&: I, Args&: PtrOpNo, Args&: IsWrite, Args&: Ty, Args&: Alignment, |
1518 | Args: VPI->getMaskParam(), |
1519 | Args: VPI->getVectorLengthParam()); |
1520 | break; |
1521 | } |
1522 | default: |
1523 | for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) { |
1524 | if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || |
1525 | ignoreAccess(Inst: I, Ptr: CI->getArgOperand(i: ArgNo))) |
1526 | continue; |
1527 | Type *Ty = CI->getParamByValType(ArgNo); |
1528 | Interesting.emplace_back(Args&: I, Args&: ArgNo, Args: false, Args&: Ty, Args: Align(1)); |
1529 | } |
1530 | } |
1531 | } |
1532 | } |
1533 | |
1534 | static bool isPointerOperand(Value *V) { |
1535 | return V->getType()->isPointerTy() || isa<PtrToIntInst>(Val: V); |
1536 | } |
1537 | |
1538 | // This is a rough heuristic; it may cause both false positives and |
1539 | // false negatives. The proper implementation requires cooperation with |
1540 | // the frontend. |
1541 | static bool isInterestingPointerComparison(Instruction *I) { |
1542 | if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Val: I)) { |
1543 | if (!Cmp->isRelational()) |
1544 | return false; |
1545 | } else { |
1546 | return false; |
1547 | } |
1548 | return isPointerOperand(V: I->getOperand(i: 0)) && |
1549 | isPointerOperand(V: I->getOperand(i: 1)); |
1550 | } |
1551 | |
1552 | // This is a rough heuristic; it may cause both false positives and |
1553 | // false negatives. The proper implementation requires cooperation with |
1554 | // the frontend. |
1555 | static bool isInterestingPointerSubtraction(Instruction *I) { |
1556 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: I)) { |
1557 | if (BO->getOpcode() != Instruction::Sub) |
1558 | return false; |
1559 | } else { |
1560 | return false; |
1561 | } |
1562 | return isPointerOperand(V: I->getOperand(i: 0)) && |
1563 | isPointerOperand(V: I->getOperand(i: 1)); |
1564 | } |
1565 | |
1566 | bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { |
1567 | // If a global variable does not have dynamic initialization we don't |
1568 | // have to instrument it. However, if a global does not have initializer |
1569 | // at all, we assume it has dynamic initializer (in other TU). |
1570 | if (!G->hasInitializer()) |
1571 | return false; |
1572 | |
1573 | if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().IsDynInit) |
1574 | return false; |
1575 | |
1576 | return true; |
1577 | } |
1578 | |
1579 | void AddressSanitizer::instrumentPointerComparisonOrSubtraction( |
1580 | Instruction *I, RuntimeCallInserter &RTCI) { |
1581 | IRBuilder<> IRB(I); |
1582 | FunctionCallee F = isa<ICmpInst>(Val: I) ? AsanPtrCmpFunction : AsanPtrSubFunction; |
1583 | Value *Param[2] = {I->getOperand(i: 0), I->getOperand(i: 1)}; |
1584 | for (Value *&i : Param) { |
1585 | if (i->getType()->isPointerTy()) |
1586 | i = IRB.CreatePointerCast(V: i, DestTy: IntptrTy); |
1587 | } |
1588 | RTCI.createRuntimeCall(IRB, Callee: F, Args: Param); |
1589 | } |
1590 | |
1591 | static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, |
1592 | Instruction *InsertBefore, Value *Addr, |
1593 | MaybeAlign Alignment, unsigned Granularity, |
1594 | TypeSize TypeStoreSize, bool IsWrite, |
1595 | Value *SizeArgument, bool UseCalls, |
1596 | uint32_t Exp, RuntimeCallInserter &RTCI) { |
1597 | // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check |
1598 | // if the data is properly aligned. |
1599 | if (!TypeStoreSize.isScalable()) { |
1600 | const auto FixedSize = TypeStoreSize.getFixedValue(); |
1601 | switch (FixedSize) { |
1602 | case 8: |
1603 | case 16: |
1604 | case 32: |
1605 | case 64: |
1606 | case 128: |
1607 | if (!Alignment || *Alignment >= Granularity || |
1608 | *Alignment >= FixedSize / 8) |
1609 | return Pass->instrumentAddress(OrigIns: I, InsertBefore, Addr, Alignment, |
1610 | TypeStoreSize: FixedSize, IsWrite, SizeArgument: nullptr, UseCalls, |
1611 | Exp, RTCI); |
1612 | } |
1613 | } |
1614 | Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeStoreSize, |
1615 | IsWrite, SizeArgument: nullptr, UseCalls, Exp, RTCI); |
1616 | } |
1617 | |
1618 | void AddressSanitizer::instrumentMaskedLoadOrStore( |
1619 | AddressSanitizer *Pass, const DataLayout &DL, Type *IntptrTy, Value *Mask, |
1620 | Value *EVL, Value *Stride, Instruction *I, Value *Addr, |
1621 | MaybeAlign Alignment, unsigned Granularity, Type *OpType, bool IsWrite, |
1622 | Value *SizeArgument, bool UseCalls, uint32_t Exp, |
1623 | RuntimeCallInserter &RTCI) { |
1624 | auto *VTy = cast<VectorType>(Val: OpType); |
1625 | TypeSize ElemTypeSize = DL.getTypeStoreSizeInBits(Ty: VTy->getScalarType()); |
1626 | auto Zero = ConstantInt::get(Ty: IntptrTy, V: 0); |
1627 | |
1628 | IRBuilder IB(I); |
1629 | Instruction *LoopInsertBefore = I; |
1630 | if (EVL) { |
1631 | // The end argument of SplitBlockAndInsertForLane is assumed bigger |
1632 | // than zero, so we should check whether EVL is zero here. |
1633 | Type *EVLType = EVL->getType(); |
1634 | Value *IsEVLZero = IB.CreateICmpNE(LHS: EVL, RHS: ConstantInt::get(Ty: EVLType, V: 0)); |
1635 | LoopInsertBefore = SplitBlockAndInsertIfThen(Cond: IsEVLZero, SplitBefore: I, Unreachable: false); |
1636 | IB.SetInsertPoint(LoopInsertBefore); |
1637 | // Cast EVL to IntptrTy. |
1638 | EVL = IB.CreateZExtOrTrunc(V: EVL, DestTy: IntptrTy); |
1639 | // To avoid undefined behavior for extracting with out of range index, use |
1640 | // the minimum of evl and element count as trip count. |
1641 | Value *EC = IB.CreateElementCount(DstType: IntptrTy, EC: VTy->getElementCount()); |
1642 | EVL = IB.CreateBinaryIntrinsic(ID: Intrinsic::umin, LHS: EVL, RHS: EC); |
1643 | } else { |
1644 | EVL = IB.CreateElementCount(DstType: IntptrTy, EC: VTy->getElementCount()); |
1645 | } |
1646 | |
1647 | // Cast Stride to IntptrTy. |
1648 | if (Stride) |
1649 | Stride = IB.CreateZExtOrTrunc(V: Stride, DestTy: IntptrTy); |
1650 | |
1651 | SplitBlockAndInsertForEachLane(End: EVL, InsertBefore: LoopInsertBefore, |
1652 | Func: [&](IRBuilderBase &IRB, Value *Index) { |
1653 | Value *MaskElem = IRB.CreateExtractElement(Vec: Mask, Idx: Index); |
1654 | if (auto *MaskElemC = dyn_cast<ConstantInt>(Val: MaskElem)) { |
1655 | if (MaskElemC->isZero()) |
1656 | // No check |
1657 | return; |
1658 | // Unconditional check |
1659 | } else { |
1660 | // Conditional check |
1661 | Instruction *ThenTerm = SplitBlockAndInsertIfThen( |
1662 | Cond: MaskElem, SplitBefore: &*IRB.GetInsertPoint(), Unreachable: false); |
1663 | IRB.SetInsertPoint(ThenTerm); |
1664 | } |
1665 | |
1666 | Value *InstrumentedAddress; |
1667 | if (isa<VectorType>(Val: Addr->getType())) { |
1668 | assert( |
1669 | cast<VectorType>(Addr->getType())->getElementType()->isPointerTy() && |
1670 | "Expected vector of pointer." ); |
1671 | InstrumentedAddress = IRB.CreateExtractElement(Vec: Addr, Idx: Index); |
1672 | } else if (Stride) { |
1673 | Index = IRB.CreateMul(LHS: Index, RHS: Stride); |
1674 | InstrumentedAddress = IRB.CreatePtrAdd(Ptr: Addr, Offset: Index); |
1675 | } else { |
1676 | InstrumentedAddress = IRB.CreateGEP(Ty: VTy, Ptr: Addr, IdxList: {Zero, Index}); |
1677 | } |
1678 | doInstrumentAddress(Pass, I, InsertBefore: &*IRB.GetInsertPoint(), Addr: InstrumentedAddress, |
1679 | Alignment, Granularity, TypeStoreSize: ElemTypeSize, IsWrite, |
1680 | SizeArgument, UseCalls, Exp, RTCI); |
1681 | }); |
1682 | } |
1683 | |
1684 | void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, |
1685 | InterestingMemoryOperand &O, bool UseCalls, |
1686 | const DataLayout &DL, |
1687 | RuntimeCallInserter &RTCI) { |
1688 | Value *Addr = O.getPtr(); |
1689 | |
1690 | // Optimization experiments. |
1691 | // The experiments can be used to evaluate potential optimizations that remove |
1692 | // instrumentation (assess false negatives). Instead of completely removing |
1693 | // some instrumentation, you set Exp to a non-zero value (mask of optimization |
1694 | // experiments that want to remove instrumentation of this instruction). |
1695 | // If Exp is non-zero, this pass will emit special calls into runtime |
1696 | // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls |
1697 | // make runtime terminate the program in a special way (with a different |
1698 | // exit status). Then you run the new compiler on a buggy corpus, collect |
1699 | // the special terminations (ideally, you don't see them at all -- no false |
1700 | // negatives) and make the decision on the optimization. |
1701 | uint32_t Exp = ClForceExperiment; |
1702 | |
1703 | if (ClOpt && ClOptGlobals) { |
1704 | // If initialization order checking is disabled, a simple access to a |
1705 | // dynamically initialized global is always valid. |
1706 | GlobalVariable *G = dyn_cast<GlobalVariable>(Val: getUnderlyingObject(V: Addr)); |
1707 | if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && |
1708 | isSafeAccess(ObjSizeVis, Addr, TypeStoreSize: O.TypeStoreSize)) { |
1709 | NumOptimizedAccessesToGlobalVar++; |
1710 | return; |
1711 | } |
1712 | } |
1713 | |
1714 | if (ClOpt && ClOptStack) { |
1715 | // A direct inbounds access to a stack variable is always valid. |
1716 | if (isa<AllocaInst>(Val: getUnderlyingObject(V: Addr)) && |
1717 | isSafeAccess(ObjSizeVis, Addr, TypeStoreSize: O.TypeStoreSize)) { |
1718 | NumOptimizedAccessesToStackVar++; |
1719 | return; |
1720 | } |
1721 | } |
1722 | |
1723 | if (O.IsWrite) |
1724 | NumInstrumentedWrites++; |
1725 | else |
1726 | NumInstrumentedReads++; |
1727 | |
1728 | unsigned Granularity = 1 << Mapping.Scale; |
1729 | if (O.MaybeMask) { |
1730 | instrumentMaskedLoadOrStore(Pass: this, DL, IntptrTy, Mask: O.MaybeMask, EVL: O.MaybeEVL, |
1731 | Stride: O.MaybeStride, I: O.getInsn(), Addr, Alignment: O.Alignment, |
1732 | Granularity, OpType: O.OpType, IsWrite: O.IsWrite, SizeArgument: nullptr, |
1733 | UseCalls, Exp, RTCI); |
1734 | } else { |
1735 | doInstrumentAddress(Pass: this, I: O.getInsn(), InsertBefore: O.getInsn(), Addr, Alignment: O.Alignment, |
1736 | Granularity, TypeStoreSize: O.TypeStoreSize, IsWrite: O.IsWrite, SizeArgument: nullptr, |
1737 | UseCalls, Exp, RTCI); |
1738 | } |
1739 | } |
1740 | |
1741 | Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, |
1742 | Value *Addr, bool IsWrite, |
1743 | size_t AccessSizeIndex, |
1744 | Value *SizeArgument, |
1745 | uint32_t Exp, |
1746 | RuntimeCallInserter &RTCI) { |
1747 | InstrumentationIRBuilder IRB(InsertBefore); |
1748 | Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(Ty: IRB.getInt32Ty(), V: Exp); |
1749 | CallInst *Call = nullptr; |
1750 | if (SizeArgument) { |
1751 | if (Exp == 0) |
1752 | Call = RTCI.createRuntimeCall(IRB, Callee: AsanErrorCallbackSized[IsWrite][0], |
1753 | Args: {Addr, SizeArgument}); |
1754 | else |
1755 | Call = RTCI.createRuntimeCall(IRB, Callee: AsanErrorCallbackSized[IsWrite][1], |
1756 | Args: {Addr, SizeArgument, ExpVal}); |
1757 | } else { |
1758 | if (Exp == 0) |
1759 | Call = RTCI.createRuntimeCall( |
1760 | IRB, Callee: AsanErrorCallback[IsWrite][0][AccessSizeIndex], Args: Addr); |
1761 | else |
1762 | Call = RTCI.createRuntimeCall( |
1763 | IRB, Callee: AsanErrorCallback[IsWrite][1][AccessSizeIndex], Args: {Addr, ExpVal}); |
1764 | } |
1765 | |
1766 | Call->setCannotMerge(); |
1767 | return Call; |
1768 | } |
1769 | |
1770 | Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, |
1771 | Value *ShadowValue, |
1772 | uint32_t TypeStoreSize) { |
1773 | size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; |
1774 | // Addr & (Granularity - 1) |
1775 | Value *LastAccessedByte = |
1776 | IRB.CreateAnd(LHS: AddrLong, RHS: ConstantInt::get(Ty: IntptrTy, V: Granularity - 1)); |
1777 | // (Addr & (Granularity - 1)) + size - 1 |
1778 | if (TypeStoreSize / 8 > 1) |
1779 | LastAccessedByte = IRB.CreateAdd( |
1780 | LHS: LastAccessedByte, RHS: ConstantInt::get(Ty: IntptrTy, V: TypeStoreSize / 8 - 1)); |
1781 | // (uint8_t) ((Addr & (Granularity-1)) + size - 1) |
1782 | LastAccessedByte = |
1783 | IRB.CreateIntCast(V: LastAccessedByte, DestTy: ShadowValue->getType(), isSigned: false); |
1784 | // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue |
1785 | return IRB.CreateICmpSGE(LHS: LastAccessedByte, RHS: ShadowValue); |
1786 | } |
1787 | |
1788 | Instruction *AddressSanitizer::instrumentAMDGPUAddress( |
1789 | Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, |
1790 | uint32_t TypeStoreSize, bool IsWrite, Value *SizeArgument) { |
1791 | // Do not instrument unsupported addrspaces. |
1792 | if (isUnsupportedAMDGPUAddrspace(Addr)) |
1793 | return nullptr; |
1794 | Type *PtrTy = cast<PointerType>(Val: Addr->getType()->getScalarType()); |
1795 | // Follow host instrumentation for global and constant addresses. |
1796 | if (PtrTy->getPointerAddressSpace() != 0) |
1797 | return InsertBefore; |
1798 | // Instrument generic addresses in supported addressspaces. |
1799 | IRBuilder<> IRB(InsertBefore); |
1800 | Value *IsShared = IRB.CreateCall(Callee: AMDGPUAddressShared, Args: {Addr}); |
1801 | Value *IsPrivate = IRB.CreateCall(Callee: AMDGPUAddressPrivate, Args: {Addr}); |
1802 | Value *IsSharedOrPrivate = IRB.CreateOr(LHS: IsShared, RHS: IsPrivate); |
1803 | Value *Cmp = IRB.CreateNot(V: IsSharedOrPrivate); |
1804 | Value *AddrSpaceZeroLanding = |
1805 | SplitBlockAndInsertIfThen(Cond: Cmp, SplitBefore: InsertBefore, Unreachable: false); |
1806 | InsertBefore = cast<Instruction>(Val: AddrSpaceZeroLanding); |
1807 | return InsertBefore; |
1808 | } |
1809 | |
1810 | Instruction *AddressSanitizer::genAMDGPUReportBlock(IRBuilder<> &IRB, |
1811 | Value *Cond, bool Recover) { |
1812 | Module &M = *IRB.GetInsertBlock()->getModule(); |
1813 | Value *ReportCond = Cond; |
1814 | if (!Recover) { |
1815 | auto Ballot = M.getOrInsertFunction(Name: kAMDGPUBallotName, RetTy: IRB.getInt64Ty(), |
1816 | Args: IRB.getInt1Ty()); |
1817 | ReportCond = IRB.CreateIsNotNull(Arg: IRB.CreateCall(Callee: Ballot, Args: {Cond})); |
1818 | } |
1819 | |
1820 | auto *Trm = |
1821 | SplitBlockAndInsertIfThen(Cond: ReportCond, SplitBefore: &*IRB.GetInsertPoint(), Unreachable: false, |
1822 | BranchWeights: MDBuilder(*C).createUnlikelyBranchWeights()); |
1823 | Trm->getParent()->setName("asan.report" ); |
1824 | |
1825 | if (Recover) |
1826 | return Trm; |
1827 | |
1828 | Trm = SplitBlockAndInsertIfThen(Cond, SplitBefore: Trm, Unreachable: false); |
1829 | IRB.SetInsertPoint(Trm); |
1830 | return IRB.CreateCall( |
1831 | Callee: M.getOrInsertFunction(Name: kAMDGPUUnreachableName, RetTy: IRB.getVoidTy()), Args: {}); |
1832 | } |
1833 | |
1834 | void AddressSanitizer::instrumentAddress(Instruction *OrigIns, |
1835 | Instruction *InsertBefore, Value *Addr, |
1836 | MaybeAlign Alignment, |
1837 | uint32_t TypeStoreSize, bool IsWrite, |
1838 | Value *SizeArgument, bool UseCalls, |
1839 | uint32_t Exp, |
1840 | RuntimeCallInserter &RTCI) { |
1841 | if (TargetTriple.isAMDGPU()) { |
1842 | InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr, |
1843 | TypeStoreSize, IsWrite, SizeArgument); |
1844 | if (!InsertBefore) |
1845 | return; |
1846 | } |
1847 | |
1848 | InstrumentationIRBuilder IRB(InsertBefore); |
1849 | size_t AccessSizeIndex = TypeStoreSizeToSizeIndex(TypeSize: TypeStoreSize); |
1850 | const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); |
1851 | |
1852 | if (UseCalls && ClOptimizeCallbacks) { |
1853 | const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); |
1854 | Module *M = IRB.GetInsertBlock()->getParent()->getParent(); |
1855 | IRB.CreateCall( |
1856 | Callee: Intrinsic::getDeclaration(M, id: Intrinsic::asan_check_memaccess), |
1857 | Args: {IRB.CreatePointerCast(V: Addr, DestTy: PtrTy), |
1858 | ConstantInt::get(Ty: Int32Ty, V: AccessInfo.Packed)}); |
1859 | return; |
1860 | } |
1861 | |
1862 | Value *AddrLong = IRB.CreatePointerCast(V: Addr, DestTy: IntptrTy); |
1863 | if (UseCalls) { |
1864 | if (Exp == 0) |
1865 | RTCI.createRuntimeCall( |
1866 | IRB, Callee: AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], Args: AddrLong); |
1867 | else |
1868 | RTCI.createRuntimeCall( |
1869 | IRB, Callee: AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], |
1870 | Args: {AddrLong, ConstantInt::get(Ty: IRB.getInt32Ty(), V: Exp)}); |
1871 | return; |
1872 | } |
1873 | |
1874 | Type *ShadowTy = |
1875 | IntegerType::get(C&: *C, NumBits: std::max(a: 8U, b: TypeStoreSize >> Mapping.Scale)); |
1876 | Type *ShadowPtrTy = PointerType::get(ElementType: ShadowTy, AddressSpace: 0); |
1877 | Value *ShadowPtr = memToShadow(Shadow: AddrLong, IRB); |
1878 | const uint64_t ShadowAlign = |
1879 | std::max<uint64_t>(a: Alignment.valueOrOne().value() >> Mapping.Scale, b: 1); |
1880 | Value *ShadowValue = IRB.CreateAlignedLoad( |
1881 | Ty: ShadowTy, Ptr: IRB.CreateIntToPtr(V: ShadowPtr, DestTy: ShadowPtrTy), Align: Align(ShadowAlign)); |
1882 | |
1883 | Value *Cmp = IRB.CreateIsNotNull(Arg: ShadowValue); |
1884 | size_t Granularity = 1ULL << Mapping.Scale; |
1885 | Instruction *CrashTerm = nullptr; |
1886 | |
1887 | bool GenSlowPath = (ClAlwaysSlowPath || (TypeStoreSize < 8 * Granularity)); |
1888 | |
1889 | if (TargetTriple.isAMDGCN()) { |
1890 | if (GenSlowPath) { |
1891 | auto *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeStoreSize); |
1892 | Cmp = IRB.CreateAnd(LHS: Cmp, RHS: Cmp2); |
1893 | } |
1894 | CrashTerm = genAMDGPUReportBlock(IRB, Cond: Cmp, Recover); |
1895 | } else if (GenSlowPath) { |
1896 | // We use branch weights for the slow path check, to indicate that the slow |
1897 | // path is rarely taken. This seems to be the case for SPEC benchmarks. |
1898 | Instruction *CheckTerm = SplitBlockAndInsertIfThen( |
1899 | Cond: Cmp, SplitBefore: InsertBefore, Unreachable: false, BranchWeights: MDBuilder(*C).createUnlikelyBranchWeights()); |
1900 | assert(cast<BranchInst>(CheckTerm)->isUnconditional()); |
1901 | BasicBlock *NextBB = CheckTerm->getSuccessor(Idx: 0); |
1902 | IRB.SetInsertPoint(CheckTerm); |
1903 | Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeStoreSize); |
1904 | if (Recover) { |
1905 | CrashTerm = SplitBlockAndInsertIfThen(Cond: Cmp2, SplitBefore: CheckTerm, Unreachable: false); |
1906 | } else { |
1907 | BasicBlock *CrashBlock = |
1908 | BasicBlock::Create(Context&: *C, Name: "" , Parent: NextBB->getParent(), InsertBefore: NextBB); |
1909 | CrashTerm = new UnreachableInst(*C, CrashBlock); |
1910 | BranchInst *NewTerm = BranchInst::Create(IfTrue: CrashBlock, IfFalse: NextBB, Cond: Cmp2); |
1911 | ReplaceInstWithInst(From: CheckTerm, To: NewTerm); |
1912 | } |
1913 | } else { |
1914 | CrashTerm = SplitBlockAndInsertIfThen(Cond: Cmp, SplitBefore: InsertBefore, Unreachable: !Recover); |
1915 | } |
1916 | |
1917 | Instruction *Crash = generateCrashCode( |
1918 | InsertBefore: CrashTerm, Addr: AddrLong, IsWrite, AccessSizeIndex, SizeArgument, Exp, RTCI); |
1919 | if (OrigIns->getDebugLoc()) |
1920 | Crash->setDebugLoc(OrigIns->getDebugLoc()); |
1921 | } |
1922 | |
1923 | // Instrument unusual size or unusual alignment. |
1924 | // We can not do it with a single check, so we do 1-byte check for the first |
1925 | // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able |
1926 | // to report the actual access size. |
1927 | void AddressSanitizer::instrumentUnusualSizeOrAlignment( |
1928 | Instruction *I, Instruction *InsertBefore, Value *Addr, |
1929 | TypeSize TypeStoreSize, bool IsWrite, Value *SizeArgument, bool UseCalls, |
1930 | uint32_t Exp, RuntimeCallInserter &RTCI) { |
1931 | InstrumentationIRBuilder IRB(InsertBefore); |
1932 | Value *NumBits = IRB.CreateTypeSize(DstType: IntptrTy, Size: TypeStoreSize); |
1933 | Value *Size = IRB.CreateLShr(LHS: NumBits, RHS: ConstantInt::get(Ty: IntptrTy, V: 3)); |
1934 | |
1935 | Value *AddrLong = IRB.CreatePointerCast(V: Addr, DestTy: IntptrTy); |
1936 | if (UseCalls) { |
1937 | if (Exp == 0) |
1938 | RTCI.createRuntimeCall(IRB, Callee: AsanMemoryAccessCallbackSized[IsWrite][0], |
1939 | Args: {AddrLong, Size}); |
1940 | else |
1941 | RTCI.createRuntimeCall( |
1942 | IRB, Callee: AsanMemoryAccessCallbackSized[IsWrite][1], |
1943 | Args: {AddrLong, Size, ConstantInt::get(Ty: IRB.getInt32Ty(), V: Exp)}); |
1944 | } else { |
1945 | Value *SizeMinusOne = IRB.CreateSub(LHS: Size, RHS: ConstantInt::get(Ty: IntptrTy, V: 1)); |
1946 | Value *LastByte = IRB.CreateIntToPtr( |
1947 | V: IRB.CreateAdd(LHS: AddrLong, RHS: SizeMinusOne), |
1948 | DestTy: Addr->getType()); |
1949 | instrumentAddress(OrigIns: I, InsertBefore, Addr, Alignment: {}, TypeStoreSize: 8, IsWrite, SizeArgument: Size, UseCalls: false, Exp, |
1950 | RTCI); |
1951 | instrumentAddress(OrigIns: I, InsertBefore, Addr: LastByte, Alignment: {}, TypeStoreSize: 8, IsWrite, SizeArgument: Size, UseCalls: false, |
1952 | Exp, RTCI); |
1953 | } |
1954 | } |
1955 | |
1956 | void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, |
1957 | GlobalValue *ModuleName) { |
1958 | // Set up the arguments to our poison/unpoison functions. |
1959 | IRBuilder<> IRB(&GlobalInit.front(), |
1960 | GlobalInit.front().getFirstInsertionPt()); |
1961 | |
1962 | // Add a call to poison all external globals before the given function starts. |
1963 | Value *ModuleNameAddr = ConstantExpr::getPointerCast(C: ModuleName, Ty: IntptrTy); |
1964 | IRB.CreateCall(Callee: AsanPoisonGlobals, Args: ModuleNameAddr); |
1965 | |
1966 | // Add calls to unpoison all globals before each return instruction. |
1967 | for (auto &BB : GlobalInit) |
1968 | if (ReturnInst *RI = dyn_cast<ReturnInst>(Val: BB.getTerminator())) |
1969 | CallInst::Create(Func: AsanUnpoisonGlobals, NameStr: "" , InsertBefore: RI->getIterator()); |
1970 | } |
1971 | |
1972 | void ModuleAddressSanitizer::createInitializerPoisonCalls( |
1973 | Module &M, GlobalValue *ModuleName) { |
1974 | GlobalVariable *GV = M.getGlobalVariable(Name: "llvm.global_ctors" ); |
1975 | if (!GV) |
1976 | return; |
1977 | |
1978 | ConstantArray *CA = dyn_cast<ConstantArray>(Val: GV->getInitializer()); |
1979 | if (!CA) |
1980 | return; |
1981 | |
1982 | for (Use &OP : CA->operands()) { |
1983 | if (isa<ConstantAggregateZero>(Val: OP)) continue; |
1984 | ConstantStruct *CS = cast<ConstantStruct>(Val&: OP); |
1985 | |
1986 | // Must have a function or null ptr. |
1987 | if (Function *F = dyn_cast<Function>(Val: CS->getOperand(i_nocapture: 1))) { |
1988 | if (F->getName() == kAsanModuleCtorName) continue; |
1989 | auto *Priority = cast<ConstantInt>(Val: CS->getOperand(i_nocapture: 0)); |
1990 | // Don't instrument CTORs that will run before asan.module_ctor. |
1991 | if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) |
1992 | continue; |
1993 | poisonOneInitializer(GlobalInit&: *F, ModuleName); |
1994 | } |
1995 | } |
1996 | } |
1997 | |
1998 | const GlobalVariable * |
1999 | ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const { |
2000 | // In case this function should be expanded to include rules that do not just |
2001 | // apply when CompileKernel is true, either guard all existing rules with an |
2002 | // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules |
2003 | // should also apply to user space. |
2004 | assert(CompileKernel && "Only expecting to be called when compiling kernel" ); |
2005 | |
2006 | const Constant *C = GA.getAliasee(); |
2007 | |
2008 | // When compiling the kernel, globals that are aliased by symbols prefixed |
2009 | // by "__" are special and cannot be padded with a redzone. |
2010 | if (GA.getName().starts_with(Prefix: "__" )) |
2011 | return dyn_cast<GlobalVariable>(Val: C->stripPointerCastsAndAliases()); |
2012 | |
2013 | return nullptr; |
2014 | } |
2015 | |
2016 | bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { |
2017 | Type *Ty = G->getValueType(); |
2018 | LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n" ); |
2019 | |
2020 | if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().NoAddress) |
2021 | return false; |
2022 | if (!Ty->isSized()) return false; |
2023 | if (!G->hasInitializer()) return false; |
2024 | // Globals in address space 1 and 4 are supported for AMDGPU. |
2025 | if (G->getAddressSpace() && |
2026 | !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Addr: G))) |
2027 | return false; |
2028 | if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. |
2029 | // Two problems with thread-locals: |
2030 | // - The address of the main thread's copy can't be computed at link-time. |
2031 | // - Need to poison all copies, not just the main thread's one. |
2032 | if (G->isThreadLocal()) return false; |
2033 | // For now, just ignore this Global if the alignment is large. |
2034 | if (G->getAlign() && *G->getAlign() > getMinRedzoneSizeForGlobal()) return false; |
2035 | |
2036 | // For non-COFF targets, only instrument globals known to be defined by this |
2037 | // TU. |
2038 | // FIXME: We can instrument comdat globals on ELF if we are using the |
2039 | // GC-friendly metadata scheme. |
2040 | if (!TargetTriple.isOSBinFormatCOFF()) { |
2041 | if (!G->hasExactDefinition() || G->hasComdat()) |
2042 | return false; |
2043 | } else { |
2044 | // On COFF, don't instrument non-ODR linkages. |
2045 | if (G->isInterposable()) |
2046 | return false; |
2047 | // If the global has AvailableExternally linkage, then it is not in this |
2048 | // module, which means it does not need to be instrumented. |
2049 | if (G->hasAvailableExternallyLinkage()) |
2050 | return false; |
2051 | } |
2052 | |
2053 | // If a comdat is present, it must have a selection kind that implies ODR |
2054 | // semantics: no duplicates, any, or exact match. |
2055 | if (Comdat *C = G->getComdat()) { |
2056 | switch (C->getSelectionKind()) { |
2057 | case Comdat::Any: |
2058 | case Comdat::ExactMatch: |
2059 | case Comdat::NoDeduplicate: |
2060 | break; |
2061 | case Comdat::Largest: |
2062 | case Comdat::SameSize: |
2063 | return false; |
2064 | } |
2065 | } |
2066 | |
2067 | if (G->hasSection()) { |
2068 | // The kernel uses explicit sections for mostly special global variables |
2069 | // that we should not instrument. E.g. the kernel may rely on their layout |
2070 | // without redzones, or remove them at link time ("discard.*"), etc. |
2071 | if (CompileKernel) |
2072 | return false; |
2073 | |
2074 | StringRef Section = G->getSection(); |
2075 | |
2076 | // Globals from llvm.metadata aren't emitted, do not instrument them. |
2077 | if (Section == "llvm.metadata" ) return false; |
2078 | // Do not instrument globals from special LLVM sections. |
2079 | if (Section.contains(Other: "__llvm" ) || Section.contains(Other: "__LLVM" )) |
2080 | return false; |
2081 | |
2082 | // Do not instrument function pointers to initialization and termination |
2083 | // routines: dynamic linker will not properly handle redzones. |
2084 | if (Section.starts_with(Prefix: ".preinit_array" ) || |
2085 | Section.starts_with(Prefix: ".init_array" ) || |
2086 | Section.starts_with(Prefix: ".fini_array" )) { |
2087 | return false; |
2088 | } |
2089 | |
2090 | // Do not instrument user-defined sections (with names resembling |
2091 | // valid C identifiers) |
2092 | if (TargetTriple.isOSBinFormatELF()) { |
2093 | if (llvm::all_of(Range&: Section, |
2094 | P: [](char c) { return llvm::isAlnum(C: c) || c == '_'; })) |
2095 | return false; |
2096 | } |
2097 | |
2098 | // On COFF, if the section name contains '$', it is highly likely that the |
2099 | // user is using section sorting to create an array of globals similar to |
2100 | // the way initialization callbacks are registered in .init_array and |
2101 | // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones |
2102 | // to such globals is counterproductive, because the intent is that they |
2103 | // will form an array, and out-of-bounds accesses are expected. |
2104 | // See https://github.com/google/sanitizers/issues/305 |
2105 | // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx |
2106 | if (TargetTriple.isOSBinFormatCOFF() && Section.contains(C: '$')) { |
2107 | LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " |
2108 | << *G << "\n" ); |
2109 | return false; |
2110 | } |
2111 | |
2112 | if (TargetTriple.isOSBinFormatMachO()) { |
2113 | StringRef ParsedSegment, ParsedSection; |
2114 | unsigned TAA = 0, StubSize = 0; |
2115 | bool TAAParsed; |
2116 | cantFail(Err: MCSectionMachO::ParseSectionSpecifier( |
2117 | Spec: Section, Segment&: ParsedSegment, Section&: ParsedSection, TAA, TAAParsed, StubSize)); |
2118 | |
2119 | // Ignore the globals from the __OBJC section. The ObjC runtime assumes |
2120 | // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to |
2121 | // them. |
2122 | if (ParsedSegment == "__OBJC" || |
2123 | (ParsedSegment == "__DATA" && ParsedSection.starts_with(Prefix: "__objc_" ))) { |
2124 | LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n" ); |
2125 | return false; |
2126 | } |
2127 | // See https://github.com/google/sanitizers/issues/32 |
2128 | // Constant CFString instances are compiled in the following way: |
2129 | // -- the string buffer is emitted into |
2130 | // __TEXT,__cstring,cstring_literals |
2131 | // -- the constant NSConstantString structure referencing that buffer |
2132 | // is placed into __DATA,__cfstring |
2133 | // Therefore there's no point in placing redzones into __DATA,__cfstring. |
2134 | // Moreover, it causes the linker to crash on OS X 10.7 |
2135 | if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring" ) { |
2136 | LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n" ); |
2137 | return false; |
2138 | } |
2139 | // The linker merges the contents of cstring_literals and removes the |
2140 | // trailing zeroes. |
2141 | if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { |
2142 | LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n" ); |
2143 | return false; |
2144 | } |
2145 | } |
2146 | } |
2147 | |
2148 | if (CompileKernel) { |
2149 | // Globals that prefixed by "__" are special and cannot be padded with a |
2150 | // redzone. |
2151 | if (G->getName().starts_with(Prefix: "__" )) |
2152 | return false; |
2153 | } |
2154 | |
2155 | return true; |
2156 | } |
2157 | |
2158 | // On Mach-O platforms, we emit global metadata in a separate section of the |
2159 | // binary in order to allow the linker to properly dead strip. This is only |
2160 | // supported on recent versions of ld64. |
2161 | bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { |
2162 | if (!TargetTriple.isOSBinFormatMachO()) |
2163 | return false; |
2164 | |
2165 | if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(Major: 10, Minor: 11)) |
2166 | return true; |
2167 | if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(Major: 9)) |
2168 | return true; |
2169 | if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(Major: 2)) |
2170 | return true; |
2171 | if (TargetTriple.isDriverKit()) |
2172 | return true; |
2173 | if (TargetTriple.isXROS()) |
2174 | return true; |
2175 | |
2176 | return false; |
2177 | } |
2178 | |
2179 | StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { |
2180 | switch (TargetTriple.getObjectFormat()) { |
2181 | case Triple::COFF: return ".ASAN$GL" ; |
2182 | case Triple::ELF: return "asan_globals" ; |
2183 | case Triple::MachO: return "__DATA,__asan_globals,regular" ; |
2184 | case Triple::Wasm: |
2185 | case Triple::GOFF: |
2186 | case Triple::SPIRV: |
2187 | case Triple::XCOFF: |
2188 | case Triple::DXContainer: |
2189 | report_fatal_error( |
2190 | reason: "ModuleAddressSanitizer not implemented for object file format" ); |
2191 | case Triple::UnknownObjectFormat: |
2192 | break; |
2193 | } |
2194 | llvm_unreachable("unsupported object format" ); |
2195 | } |
2196 | |
2197 | void ModuleAddressSanitizer::initializeCallbacks(Module &M) { |
2198 | IRBuilder<> IRB(*C); |
2199 | |
2200 | // Declare our poisoning and unpoisoning functions. |
2201 | AsanPoisonGlobals = |
2202 | M.getOrInsertFunction(Name: kAsanPoisonGlobalsName, RetTy: IRB.getVoidTy(), Args: IntptrTy); |
2203 | AsanUnpoisonGlobals = |
2204 | M.getOrInsertFunction(Name: kAsanUnpoisonGlobalsName, RetTy: IRB.getVoidTy()); |
2205 | |
2206 | // Declare functions that register/unregister globals. |
2207 | AsanRegisterGlobals = M.getOrInsertFunction( |
2208 | Name: kAsanRegisterGlobalsName, RetTy: IRB.getVoidTy(), Args: IntptrTy, Args: IntptrTy); |
2209 | AsanUnregisterGlobals = M.getOrInsertFunction( |
2210 | Name: kAsanUnregisterGlobalsName, RetTy: IRB.getVoidTy(), Args: IntptrTy, Args: IntptrTy); |
2211 | |
2212 | // Declare the functions that find globals in a shared object and then invoke |
2213 | // the (un)register function on them. |
2214 | AsanRegisterImageGlobals = M.getOrInsertFunction( |
2215 | Name: kAsanRegisterImageGlobalsName, RetTy: IRB.getVoidTy(), Args: IntptrTy); |
2216 | AsanUnregisterImageGlobals = M.getOrInsertFunction( |
2217 | Name: kAsanUnregisterImageGlobalsName, RetTy: IRB.getVoidTy(), Args: IntptrTy); |
2218 | |
2219 | AsanRegisterElfGlobals = |
2220 | M.getOrInsertFunction(Name: kAsanRegisterElfGlobalsName, RetTy: IRB.getVoidTy(), |
2221 | Args: IntptrTy, Args: IntptrTy, Args: IntptrTy); |
2222 | AsanUnregisterElfGlobals = |
2223 | M.getOrInsertFunction(Name: kAsanUnregisterElfGlobalsName, RetTy: IRB.getVoidTy(), |
2224 | Args: IntptrTy, Args: IntptrTy, Args: IntptrTy); |
2225 | } |
2226 | |
2227 | // Put the metadata and the instrumented global in the same group. This ensures |
2228 | // that the metadata is discarded if the instrumented global is discarded. |
2229 | void ModuleAddressSanitizer::SetComdatForGlobalMetadata( |
2230 | GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { |
2231 | Module &M = *G->getParent(); |
2232 | Comdat *C = G->getComdat(); |
2233 | if (!C) { |
2234 | if (!G->hasName()) { |
2235 | // If G is unnamed, it must be internal. Give it an artificial name |
2236 | // so we can put it in a comdat. |
2237 | assert(G->hasLocalLinkage()); |
2238 | G->setName(Twine(kAsanGenPrefix) + "_anon_global" ); |
2239 | } |
2240 | |
2241 | if (!InternalSuffix.empty() && G->hasLocalLinkage()) { |
2242 | std::string Name = std::string(G->getName()); |
2243 | Name += InternalSuffix; |
2244 | C = M.getOrInsertComdat(Name); |
2245 | } else { |
2246 | C = M.getOrInsertComdat(Name: G->getName()); |
2247 | } |
2248 | |
2249 | // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private |
2250 | // linkage to internal linkage so that a symbol table entry is emitted. This |
2251 | // is necessary in order to create the comdat group. |
2252 | if (TargetTriple.isOSBinFormatCOFF()) { |
2253 | C->setSelectionKind(Comdat::NoDeduplicate); |
2254 | if (G->hasPrivateLinkage()) |
2255 | G->setLinkage(GlobalValue::InternalLinkage); |
2256 | } |
2257 | G->setComdat(C); |
2258 | } |
2259 | |
2260 | assert(G->hasComdat()); |
2261 | Metadata->setComdat(G->getComdat()); |
2262 | } |
2263 | |
2264 | // Create a separate metadata global and put it in the appropriate ASan |
2265 | // global registration section. |
2266 | GlobalVariable * |
2267 | ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, |
2268 | StringRef OriginalName) { |
2269 | auto Linkage = TargetTriple.isOSBinFormatMachO() |
2270 | ? GlobalVariable::InternalLinkage |
2271 | : GlobalVariable::PrivateLinkage; |
2272 | GlobalVariable *Metadata = new GlobalVariable( |
2273 | M, Initializer->getType(), false, Linkage, Initializer, |
2274 | Twine("__asan_global_" ) + GlobalValue::dropLLVMManglingEscape(Name: OriginalName)); |
2275 | Metadata->setSection(getGlobalMetadataSection()); |
2276 | // Place metadata in a large section for x86-64 ELF binaries to mitigate |
2277 | // relocation pressure. |
2278 | setGlobalVariableLargeSection(TargetTriple, GV&: *Metadata); |
2279 | return Metadata; |
2280 | } |
2281 | |
2282 | Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { |
2283 | AsanDtorFunction = Function::createWithDefaultAttr( |
2284 | Ty: FunctionType::get(Result: Type::getVoidTy(C&: *C), isVarArg: false), |
2285 | Linkage: GlobalValue::InternalLinkage, AddrSpace: 0, N: kAsanModuleDtorName, M: &M); |
2286 | AsanDtorFunction->addFnAttr(Kind: Attribute::NoUnwind); |
2287 | // Ensure Dtor cannot be discarded, even if in a comdat. |
2288 | appendToUsed(M, Values: {AsanDtorFunction}); |
2289 | BasicBlock *AsanDtorBB = BasicBlock::Create(Context&: *C, Name: "" , Parent: AsanDtorFunction); |
2290 | |
2291 | return ReturnInst::Create(C&: *C, InsertAtEnd: AsanDtorBB); |
2292 | } |
2293 | |
2294 | void ModuleAddressSanitizer::InstrumentGlobalsCOFF( |
2295 | IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, |
2296 | ArrayRef<Constant *> MetadataInitializers) { |
2297 | assert(ExtendedGlobals.size() == MetadataInitializers.size()); |
2298 | auto &DL = M.getDataLayout(); |
2299 | |
2300 | SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); |
2301 | for (size_t i = 0; i < ExtendedGlobals.size(); i++) { |
2302 | Constant *Initializer = MetadataInitializers[i]; |
2303 | GlobalVariable *G = ExtendedGlobals[i]; |
2304 | GlobalVariable *Metadata = |
2305 | CreateMetadataGlobal(M, Initializer, OriginalName: G->getName()); |
2306 | MDNode *MD = MDNode::get(Context&: M.getContext(), MDs: ValueAsMetadata::get(V: G)); |
2307 | Metadata->setMetadata(KindID: LLVMContext::MD_associated, Node: MD); |
2308 | MetadataGlobals[i] = Metadata; |
2309 | |
2310 | // The MSVC linker always inserts padding when linking incrementally. We |
2311 | // cope with that by aligning each struct to its size, which must be a power |
2312 | // of two. |
2313 | unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Ty: Initializer->getType()); |
2314 | assert(isPowerOf2_32(SizeOfGlobalStruct) && |
2315 | "global metadata will not be padded appropriately" ); |
2316 | Metadata->setAlignment(assumeAligned(Value: SizeOfGlobalStruct)); |
2317 | |
2318 | SetComdatForGlobalMetadata(G, Metadata, InternalSuffix: "" ); |
2319 | } |
2320 | |
2321 | // Update llvm.compiler.used, adding the new metadata globals. This is |
2322 | // needed so that during LTO these variables stay alive. |
2323 | if (!MetadataGlobals.empty()) |
2324 | appendToCompilerUsed(M, Values: MetadataGlobals); |
2325 | } |
2326 | |
2327 | void ModuleAddressSanitizer::instrumentGlobalsELF( |
2328 | IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, |
2329 | ArrayRef<Constant *> MetadataInitializers, |
2330 | const std::string &UniqueModuleId) { |
2331 | assert(ExtendedGlobals.size() == MetadataInitializers.size()); |
2332 | |
2333 | // Putting globals in a comdat changes the semantic and potentially cause |
2334 | // false negative odr violations at link time. If odr indicators are used, we |
2335 | // keep the comdat sections, as link time odr violations will be dectected on |
2336 | // the odr indicator symbols. |
2337 | bool UseComdatForGlobalsGC = UseOdrIndicator && !UniqueModuleId.empty(); |
2338 | |
2339 | SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); |
2340 | for (size_t i = 0; i < ExtendedGlobals.size(); i++) { |
2341 | GlobalVariable *G = ExtendedGlobals[i]; |
2342 | GlobalVariable *Metadata = |
2343 | CreateMetadataGlobal(M, Initializer: MetadataInitializers[i], OriginalName: G->getName()); |
2344 | MDNode *MD = MDNode::get(Context&: M.getContext(), MDs: ValueAsMetadata::get(V: G)); |
2345 | Metadata->setMetadata(KindID: LLVMContext::MD_associated, Node: MD); |
2346 | MetadataGlobals[i] = Metadata; |
2347 | |
2348 | if (UseComdatForGlobalsGC) |
2349 | SetComdatForGlobalMetadata(G, Metadata, InternalSuffix: UniqueModuleId); |
2350 | } |
2351 | |
2352 | // Update llvm.compiler.used, adding the new metadata globals. This is |
2353 | // needed so that during LTO these variables stay alive. |
2354 | if (!MetadataGlobals.empty()) |
2355 | appendToCompilerUsed(M, Values: MetadataGlobals); |
2356 | |
2357 | // RegisteredFlag serves two purposes. First, we can pass it to dladdr() |
2358 | // to look up the loaded image that contains it. Second, we can store in it |
2359 | // whether registration has already occurred, to prevent duplicate |
2360 | // registration. |
2361 | // |
2362 | // Common linkage ensures that there is only one global per shared library. |
2363 | GlobalVariable *RegisteredFlag = new GlobalVariable( |
2364 | M, IntptrTy, false, GlobalVariable::CommonLinkage, |
2365 | ConstantInt::get(Ty: IntptrTy, V: 0), kAsanGlobalsRegisteredFlagName); |
2366 | RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); |
2367 | |
2368 | // Create start and stop symbols. |
2369 | GlobalVariable *StartELFMetadata = new GlobalVariable( |
2370 | M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, |
2371 | "__start_" + getGlobalMetadataSection()); |
2372 | StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); |
2373 | GlobalVariable *StopELFMetadata = new GlobalVariable( |
2374 | M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, |
2375 | "__stop_" + getGlobalMetadataSection()); |
2376 | StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); |
2377 | |
2378 | // Create a call to register the globals with the runtime. |
2379 | if (ConstructorKind == AsanCtorKind::Global) |
2380 | IRB.CreateCall(Callee: AsanRegisterElfGlobals, |
2381 | Args: {IRB.CreatePointerCast(V: RegisteredFlag, DestTy: IntptrTy), |
2382 | IRB.CreatePointerCast(V: StartELFMetadata, DestTy: IntptrTy), |
2383 | IRB.CreatePointerCast(V: StopELFMetadata, DestTy: IntptrTy)}); |
2384 | |
2385 | // We also need to unregister globals at the end, e.g., when a shared library |
2386 | // gets closed. |
2387 | if (DestructorKind != AsanDtorKind::None && !MetadataGlobals.empty()) { |
2388 | IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); |
2389 | IrbDtor.CreateCall(Callee: AsanUnregisterElfGlobals, |
2390 | Args: {IRB.CreatePointerCast(V: RegisteredFlag, DestTy: IntptrTy), |
2391 | IRB.CreatePointerCast(V: StartELFMetadata, DestTy: IntptrTy), |
2392 | IRB.CreatePointerCast(V: StopELFMetadata, DestTy: IntptrTy)}); |
2393 | } |
2394 | } |
2395 | |
2396 | void ModuleAddressSanitizer::InstrumentGlobalsMachO( |
2397 | IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, |
2398 | ArrayRef<Constant *> MetadataInitializers) { |
2399 | assert(ExtendedGlobals.size() == MetadataInitializers.size()); |
2400 | |
2401 | // On recent Mach-O platforms, use a structure which binds the liveness of |
2402 | // the global variable to the metadata struct. Keep the list of "Liveness" GV |
2403 | // created to be added to llvm.compiler.used |
2404 | StructType *LivenessTy = StructType::get(elt1: IntptrTy, elts: IntptrTy); |
2405 | SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); |
2406 | |
2407 | for (size_t i = 0; i < ExtendedGlobals.size(); i++) { |
2408 | Constant *Initializer = MetadataInitializers[i]; |
2409 | GlobalVariable *G = ExtendedGlobals[i]; |
2410 | GlobalVariable *Metadata = |
2411 | CreateMetadataGlobal(M, Initializer, OriginalName: G->getName()); |
2412 | |
2413 | // On recent Mach-O platforms, we emit the global metadata in a way that |
2414 | // allows the linker to properly strip dead globals. |
2415 | auto LivenessBinder = |
2416 | ConstantStruct::get(T: LivenessTy, Vs: Initializer->getAggregateElement(Elt: 0u), |
2417 | Vs: ConstantExpr::getPointerCast(C: Metadata, Ty: IntptrTy)); |
2418 | GlobalVariable *Liveness = new GlobalVariable( |
2419 | M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, |
2420 | Twine("__asan_binder_" ) + G->getName()); |
2421 | Liveness->setSection("__DATA,__asan_liveness,regular,live_support" ); |
2422 | LivenessGlobals[i] = Liveness; |
2423 | } |
2424 | |
2425 | // Update llvm.compiler.used, adding the new liveness globals. This is |
2426 | // needed so that during LTO these variables stay alive. The alternative |
2427 | // would be to have the linker handling the LTO symbols, but libLTO |
2428 | // current API does not expose access to the section for each symbol. |
2429 | if (!LivenessGlobals.empty()) |
2430 | appendToCompilerUsed(M, Values: LivenessGlobals); |
2431 | |
2432 | // RegisteredFlag serves two purposes. First, we can pass it to dladdr() |
2433 | // to look up the loaded image that contains it. Second, we can store in it |
2434 | // whether registration has already occurred, to prevent duplicate |
2435 | // registration. |
2436 | // |
2437 | // common linkage ensures that there is only one global per shared library. |
2438 | GlobalVariable *RegisteredFlag = new GlobalVariable( |
2439 | M, IntptrTy, false, GlobalVariable::CommonLinkage, |
2440 | ConstantInt::get(Ty: IntptrTy, V: 0), kAsanGlobalsRegisteredFlagName); |
2441 | RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); |
2442 | |
2443 | if (ConstructorKind == AsanCtorKind::Global) |
2444 | IRB.CreateCall(Callee: AsanRegisterImageGlobals, |
2445 | Args: {IRB.CreatePointerCast(V: RegisteredFlag, DestTy: IntptrTy)}); |
2446 | |
2447 | // We also need to unregister globals at the end, e.g., when a shared library |
2448 | // gets closed. |
2449 | if (DestructorKind != AsanDtorKind::None) { |
2450 | IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); |
2451 | IrbDtor.CreateCall(Callee: AsanUnregisterImageGlobals, |
2452 | Args: {IRB.CreatePointerCast(V: RegisteredFlag, DestTy: IntptrTy)}); |
2453 | } |
2454 | } |
2455 | |
2456 | void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( |
2457 | IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, |
2458 | ArrayRef<Constant *> MetadataInitializers) { |
2459 | assert(ExtendedGlobals.size() == MetadataInitializers.size()); |
2460 | unsigned N = ExtendedGlobals.size(); |
2461 | assert(N > 0); |
2462 | |
2463 | // On platforms that don't have a custom metadata section, we emit an array |
2464 | // of global metadata structures. |
2465 | ArrayType *ArrayOfGlobalStructTy = |
2466 | ArrayType::get(ElementType: MetadataInitializers[0]->getType(), NumElements: N); |
2467 | auto AllGlobals = new GlobalVariable( |
2468 | M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, |
2469 | ConstantArray::get(T: ArrayOfGlobalStructTy, V: MetadataInitializers), "" ); |
2470 | if (Mapping.Scale > 3) |
2471 | AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); |
2472 | |
2473 | if (ConstructorKind == AsanCtorKind::Global) |
2474 | IRB.CreateCall(Callee: AsanRegisterGlobals, |
2475 | Args: {IRB.CreatePointerCast(V: AllGlobals, DestTy: IntptrTy), |
2476 | ConstantInt::get(Ty: IntptrTy, V: N)}); |
2477 | |
2478 | // We also need to unregister globals at the end, e.g., when a shared library |
2479 | // gets closed. |
2480 | if (DestructorKind != AsanDtorKind::None) { |
2481 | IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); |
2482 | IrbDtor.CreateCall(Callee: AsanUnregisterGlobals, |
2483 | Args: {IRB.CreatePointerCast(V: AllGlobals, DestTy: IntptrTy), |
2484 | ConstantInt::get(Ty: IntptrTy, V: N)}); |
2485 | } |
2486 | } |
2487 | |
2488 | // This function replaces all global variables with new variables that have |
2489 | // trailing redzones. It also creates a function that poisons |
2490 | // redzones and inserts this function into llvm.global_ctors. |
2491 | // Sets *CtorComdat to true if the global registration code emitted into the |
2492 | // asan constructor is comdat-compatible. |
2493 | void ModuleAddressSanitizer::instrumentGlobals(IRBuilder<> &IRB, Module &M, |
2494 | bool *CtorComdat) { |
2495 | // Build set of globals that are aliased by some GA, where |
2496 | // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable. |
2497 | SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; |
2498 | if (CompileKernel) { |
2499 | for (auto &GA : M.aliases()) { |
2500 | if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA)) |
2501 | AliasedGlobalExclusions.insert(Ptr: GV); |
2502 | } |
2503 | } |
2504 | |
2505 | SmallVector<GlobalVariable *, 16> GlobalsToChange; |
2506 | for (auto &G : M.globals()) { |
2507 | if (!AliasedGlobalExclusions.count(Ptr: &G) && shouldInstrumentGlobal(G: &G)) |
2508 | GlobalsToChange.push_back(Elt: &G); |
2509 | } |
2510 | |
2511 | size_t n = GlobalsToChange.size(); |
2512 | auto &DL = M.getDataLayout(); |
2513 | |
2514 | // A global is described by a structure |
2515 | // size_t beg; |
2516 | // size_t size; |
2517 | // size_t size_with_redzone; |
2518 | // const char *name; |
2519 | // const char *module_name; |
2520 | // size_t has_dynamic_init; |
2521 | // size_t padding_for_windows_msvc_incremental_link; |
2522 | // size_t odr_indicator; |
2523 | // We initialize an array of such structures and pass it to a run-time call. |
2524 | StructType *GlobalStructTy = |
2525 | StructType::get(elt1: IntptrTy, elts: IntptrTy, elts: IntptrTy, elts: IntptrTy, elts: IntptrTy, |
2526 | elts: IntptrTy, elts: IntptrTy, elts: IntptrTy); |
2527 | SmallVector<GlobalVariable *, 16> NewGlobals(n); |
2528 | SmallVector<Constant *, 16> Initializers(n); |
2529 | |
2530 | bool HasDynamicallyInitializedGlobals = false; |
2531 | |
2532 | // We shouldn't merge same module names, as this string serves as unique |
2533 | // module ID in runtime. |
2534 | GlobalVariable *ModuleName = |
2535 | n != 0 |
2536 | ? createPrivateGlobalForString(M, Str: M.getModuleIdentifier(), |
2537 | /*AllowMerging*/ false, NamePrefix: kAsanGenPrefix) |
2538 | : nullptr; |
2539 | |
2540 | for (size_t i = 0; i < n; i++) { |
2541 | GlobalVariable *G = GlobalsToChange[i]; |
2542 | |
2543 | GlobalValue::SanitizerMetadata MD; |
2544 | if (G->hasSanitizerMetadata()) |
2545 | MD = G->getSanitizerMetadata(); |
2546 | |
2547 | // The runtime library tries demangling symbol names in the descriptor but |
2548 | // functionality like __cxa_demangle may be unavailable (e.g. |
2549 | // -static-libstdc++). So we demangle the symbol names here. |
2550 | std::string NameForGlobal = G->getName().str(); |
2551 | GlobalVariable *Name = |
2552 | createPrivateGlobalForString(M, Str: llvm::demangle(MangledName: NameForGlobal), |
2553 | /*AllowMerging*/ true, NamePrefix: kAsanGenPrefix); |
2554 | |
2555 | Type *Ty = G->getValueType(); |
2556 | const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); |
2557 | const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); |
2558 | Type *RightRedZoneTy = ArrayType::get(ElementType: IRB.getInt8Ty(), NumElements: RightRedzoneSize); |
2559 | |
2560 | StructType *NewTy = StructType::get(elt1: Ty, elts: RightRedZoneTy); |
2561 | Constant *NewInitializer = ConstantStruct::get( |
2562 | T: NewTy, Vs: G->getInitializer(), Vs: Constant::getNullValue(Ty: RightRedZoneTy)); |
2563 | |
2564 | // Create a new global variable with enough space for a redzone. |
2565 | GlobalValue::LinkageTypes Linkage = G->getLinkage(); |
2566 | if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) |
2567 | Linkage = GlobalValue::InternalLinkage; |
2568 | GlobalVariable *NewGlobal = new GlobalVariable( |
2569 | M, NewTy, G->isConstant(), Linkage, NewInitializer, "" , G, |
2570 | G->getThreadLocalMode(), G->getAddressSpace()); |
2571 | NewGlobal->copyAttributesFrom(Src: G); |
2572 | NewGlobal->setComdat(G->getComdat()); |
2573 | NewGlobal->setAlignment(Align(getMinRedzoneSizeForGlobal())); |
2574 | // Don't fold globals with redzones. ODR violation detector and redzone |
2575 | // poisoning implicitly creates a dependence on the global's address, so it |
2576 | // is no longer valid for it to be marked unnamed_addr. |
2577 | NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); |
2578 | |
2579 | // Move null-terminated C strings to "__asan_cstring" section on Darwin. |
2580 | if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && |
2581 | G->isConstant()) { |
2582 | auto Seq = dyn_cast<ConstantDataSequential>(Val: G->getInitializer()); |
2583 | if (Seq && Seq->isCString()) |
2584 | NewGlobal->setSection("__TEXT,__asan_cstring,regular" ); |
2585 | } |
2586 | |
2587 | // Transfer the debug info and type metadata. The payload starts at offset |
2588 | // zero so we can copy the metadata over as is. |
2589 | NewGlobal->copyMetadata(Src: G, Offset: 0); |
2590 | |
2591 | Value *Indices2[2]; |
2592 | Indices2[0] = IRB.getInt32(C: 0); |
2593 | Indices2[1] = IRB.getInt32(C: 0); |
2594 | |
2595 | G->replaceAllUsesWith( |
2596 | V: ConstantExpr::getGetElementPtr(Ty: NewTy, C: NewGlobal, IdxList: Indices2, NW: true)); |
2597 | NewGlobal->takeName(V: G); |
2598 | G->eraseFromParent(); |
2599 | NewGlobals[i] = NewGlobal; |
2600 | |
2601 | Constant *ODRIndicator = ConstantPointerNull::get(T: PtrTy); |
2602 | GlobalValue *InstrumentedGlobal = NewGlobal; |
2603 | |
2604 | bool CanUsePrivateAliases = |
2605 | TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || |
2606 | TargetTriple.isOSBinFormatWasm(); |
2607 | if (CanUsePrivateAliases && UsePrivateAlias) { |
2608 | // Create local alias for NewGlobal to avoid crash on ODR between |
2609 | // instrumented and non-instrumented libraries. |
2610 | InstrumentedGlobal = |
2611 | GlobalAlias::create(Linkage: GlobalValue::PrivateLinkage, Name: "" , Aliasee: NewGlobal); |
2612 | } |
2613 | |
2614 | // ODR should not happen for local linkage. |
2615 | if (NewGlobal->hasLocalLinkage()) { |
2616 | ODRIndicator = |
2617 | ConstantExpr::getIntToPtr(C: ConstantInt::get(Ty: IntptrTy, V: -1), Ty: PtrTy); |
2618 | } else if (UseOdrIndicator) { |
2619 | // With local aliases, we need to provide another externally visible |
2620 | // symbol __odr_asan_XXX to detect ODR violation. |
2621 | auto *ODRIndicatorSym = |
2622 | new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, |
2623 | Constant::getNullValue(Ty: IRB.getInt8Ty()), |
2624 | kODRGenPrefix + NameForGlobal, nullptr, |
2625 | NewGlobal->getThreadLocalMode()); |
2626 | |
2627 | // Set meaningful attributes for indicator symbol. |
2628 | ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); |
2629 | ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); |
2630 | ODRIndicatorSym->setAlignment(Align(1)); |
2631 | ODRIndicator = ODRIndicatorSym; |
2632 | } |
2633 | |
2634 | Constant *Initializer = ConstantStruct::get( |
2635 | T: GlobalStructTy, |
2636 | Vs: ConstantExpr::getPointerCast(C: InstrumentedGlobal, Ty: IntptrTy), |
2637 | Vs: ConstantInt::get(Ty: IntptrTy, V: SizeInBytes), |
2638 | Vs: ConstantInt::get(Ty: IntptrTy, V: SizeInBytes + RightRedzoneSize), |
2639 | Vs: ConstantExpr::getPointerCast(C: Name, Ty: IntptrTy), |
2640 | Vs: ConstantExpr::getPointerCast(C: ModuleName, Ty: IntptrTy), |
2641 | Vs: ConstantInt::get(Ty: IntptrTy, V: MD.IsDynInit), |
2642 | Vs: Constant::getNullValue(Ty: IntptrTy), |
2643 | Vs: ConstantExpr::getPointerCast(C: ODRIndicator, Ty: IntptrTy)); |
2644 | |
2645 | if (ClInitializers && MD.IsDynInit) |
2646 | HasDynamicallyInitializedGlobals = true; |
2647 | |
2648 | LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n" ); |
2649 | |
2650 | Initializers[i] = Initializer; |
2651 | } |
2652 | |
2653 | // Add instrumented globals to llvm.compiler.used list to avoid LTO from |
2654 | // ConstantMerge'ing them. |
2655 | SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; |
2656 | for (size_t i = 0; i < n; i++) { |
2657 | GlobalVariable *G = NewGlobals[i]; |
2658 | if (G->getName().empty()) continue; |
2659 | GlobalsToAddToUsedList.push_back(Elt: G); |
2660 | } |
2661 | appendToCompilerUsed(M, Values: ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); |
2662 | |
2663 | if (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) { |
2664 | // Use COMDAT and register globals even if n == 0 to ensure that (a) the |
2665 | // linkage unit will only have one module constructor, and (b) the register |
2666 | // function will be called. The module destructor is not created when n == |
2667 | // 0. |
2668 | *CtorComdat = true; |
2669 | instrumentGlobalsELF(IRB, M, ExtendedGlobals: NewGlobals, MetadataInitializers: Initializers, |
2670 | UniqueModuleId: getUniqueModuleId(M: &M)); |
2671 | } else if (n == 0) { |
2672 | // When UseGlobalsGC is false, COMDAT can still be used if n == 0, because |
2673 | // all compile units will have identical module constructor/destructor. |
2674 | *CtorComdat = TargetTriple.isOSBinFormatELF(); |
2675 | } else { |
2676 | *CtorComdat = false; |
2677 | if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { |
2678 | InstrumentGlobalsCOFF(IRB, M, ExtendedGlobals: NewGlobals, MetadataInitializers: Initializers); |
2679 | } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { |
2680 | InstrumentGlobalsMachO(IRB, M, ExtendedGlobals: NewGlobals, MetadataInitializers: Initializers); |
2681 | } else { |
2682 | InstrumentGlobalsWithMetadataArray(IRB, M, ExtendedGlobals: NewGlobals, MetadataInitializers: Initializers); |
2683 | } |
2684 | } |
2685 | |
2686 | // Create calls for poisoning before initializers run and unpoisoning after. |
2687 | if (HasDynamicallyInitializedGlobals) |
2688 | createInitializerPoisonCalls(M, ModuleName); |
2689 | |
2690 | LLVM_DEBUG(dbgs() << M); |
2691 | } |
2692 | |
2693 | uint64_t |
2694 | ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { |
2695 | constexpr uint64_t kMaxRZ = 1 << 18; |
2696 | const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); |
2697 | |
2698 | uint64_t RZ = 0; |
2699 | if (SizeInBytes <= MinRZ / 2) { |
2700 | // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is |
2701 | // at least 32 bytes, optimize when SizeInBytes is less than or equal to |
2702 | // half of MinRZ. |
2703 | RZ = MinRZ - SizeInBytes; |
2704 | } else { |
2705 | // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. |
2706 | RZ = std::clamp(val: (SizeInBytes / MinRZ / 4) * MinRZ, lo: MinRZ, hi: kMaxRZ); |
2707 | |
2708 | // Round up to multiple of MinRZ. |
2709 | if (SizeInBytes % MinRZ) |
2710 | RZ += MinRZ - (SizeInBytes % MinRZ); |
2711 | } |
2712 | |
2713 | assert((RZ + SizeInBytes) % MinRZ == 0); |
2714 | |
2715 | return RZ; |
2716 | } |
2717 | |
2718 | int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { |
2719 | int LongSize = M.getDataLayout().getPointerSizeInBits(); |
2720 | bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); |
2721 | int Version = 8; |
2722 | // 32-bit Android is one version ahead because of the switch to dynamic |
2723 | // shadow. |
2724 | Version += (LongSize == 32 && isAndroid); |
2725 | return Version; |
2726 | } |
2727 | |
2728 | bool ModuleAddressSanitizer::instrumentModule(Module &M) { |
2729 | initializeCallbacks(M); |
2730 | |
2731 | // Create a module constructor. A destructor is created lazily because not all |
2732 | // platforms, and not all modules need it. |
2733 | if (ConstructorKind == AsanCtorKind::Global) { |
2734 | if (CompileKernel) { |
2735 | // The kernel always builds with its own runtime, and therefore does not |
2736 | // need the init and version check calls. |
2737 | AsanCtorFunction = createSanitizerCtor(M, CtorName: kAsanModuleCtorName); |
2738 | } else { |
2739 | std::string AsanVersion = std::to_string(val: GetAsanVersion(M)); |
2740 | std::string VersionCheckName = |
2741 | InsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : "" ; |
2742 | std::tie(args&: AsanCtorFunction, args: std::ignore) = |
2743 | createSanitizerCtorAndInitFunctions(M, CtorName: kAsanModuleCtorName, |
2744 | InitName: kAsanInitName, /*InitArgTypes=*/{}, |
2745 | /*InitArgs=*/{}, VersionCheckName); |
2746 | } |
2747 | } |
2748 | |
2749 | bool CtorComdat = true; |
2750 | if (ClGlobals) { |
2751 | assert(AsanCtorFunction || ConstructorKind == AsanCtorKind::None); |
2752 | if (AsanCtorFunction) { |
2753 | IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); |
2754 | instrumentGlobals(IRB, M, CtorComdat: &CtorComdat); |
2755 | } else { |
2756 | IRBuilder<> IRB(*C); |
2757 | instrumentGlobals(IRB, M, CtorComdat: &CtorComdat); |
2758 | } |
2759 | } |
2760 | |
2761 | const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); |
2762 | |
2763 | // Put the constructor and destructor in comdat if both |
2764 | // (1) global instrumentation is not TU-specific |
2765 | // (2) target is ELF. |
2766 | if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { |
2767 | if (AsanCtorFunction) { |
2768 | AsanCtorFunction->setComdat(M.getOrInsertComdat(Name: kAsanModuleCtorName)); |
2769 | appendToGlobalCtors(M, F: AsanCtorFunction, Priority, Data: AsanCtorFunction); |
2770 | } |
2771 | if (AsanDtorFunction) { |
2772 | AsanDtorFunction->setComdat(M.getOrInsertComdat(Name: kAsanModuleDtorName)); |
2773 | appendToGlobalDtors(M, F: AsanDtorFunction, Priority, Data: AsanDtorFunction); |
2774 | } |
2775 | } else { |
2776 | if (AsanCtorFunction) |
2777 | appendToGlobalCtors(M, F: AsanCtorFunction, Priority); |
2778 | if (AsanDtorFunction) |
2779 | appendToGlobalDtors(M, F: AsanDtorFunction, Priority); |
2780 | } |
2781 | |
2782 | return true; |
2783 | } |
2784 | |
2785 | void AddressSanitizer::initializeCallbacks(Module &M, const TargetLibraryInfo *TLI) { |
2786 | IRBuilder<> IRB(*C); |
2787 | // Create __asan_report* callbacks. |
2788 | // IsWrite, TypeSize and Exp are encoded in the function name. |
2789 | for (int Exp = 0; Exp < 2; Exp++) { |
2790 | for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { |
2791 | const std::string TypeStr = AccessIsWrite ? "store" : "load" ; |
2792 | const std::string ExpStr = Exp ? "exp_" : "" ; |
2793 | const std::string EndingStr = Recover ? "_noabort" : "" ; |
2794 | |
2795 | SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; |
2796 | SmallVector<Type *, 2> Args1{1, IntptrTy}; |
2797 | AttributeList AL2; |
2798 | AttributeList AL1; |
2799 | if (Exp) { |
2800 | Type *ExpType = Type::getInt32Ty(C&: *C); |
2801 | Args2.push_back(Elt: ExpType); |
2802 | Args1.push_back(Elt: ExpType); |
2803 | if (auto AK = TLI->getExtAttrForI32Param(Signed: false)) { |
2804 | AL2 = AL2.addParamAttribute(C&: *C, ArgNo: 2, Kind: AK); |
2805 | AL1 = AL1.addParamAttribute(C&: *C, ArgNo: 1, Kind: AK); |
2806 | } |
2807 | } |
2808 | AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( |
2809 | Name: kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, |
2810 | T: FunctionType::get(Result: IRB.getVoidTy(), Params: Args2, isVarArg: false), AttributeList: AL2); |
2811 | |
2812 | AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( |
2813 | Name: ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, |
2814 | T: FunctionType::get(Result: IRB.getVoidTy(), Params: Args2, isVarArg: false), AttributeList: AL2); |
2815 | |
2816 | for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; |
2817 | AccessSizeIndex++) { |
2818 | const std::string Suffix = TypeStr + itostr(X: 1ULL << AccessSizeIndex); |
2819 | AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = |
2820 | M.getOrInsertFunction( |
2821 | Name: kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, |
2822 | T: FunctionType::get(Result: IRB.getVoidTy(), Params: Args1, isVarArg: false), AttributeList: AL1); |
2823 | |
2824 | AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = |
2825 | M.getOrInsertFunction( |
2826 | Name: ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, |
2827 | T: FunctionType::get(Result: IRB.getVoidTy(), Params: Args1, isVarArg: false), AttributeList: AL1); |
2828 | } |
2829 | } |
2830 | } |
2831 | |
2832 | const std::string MemIntrinCallbackPrefix = |
2833 | (CompileKernel && !ClKasanMemIntrinCallbackPrefix) |
2834 | ? std::string("" ) |
2835 | : ClMemoryAccessCallbackPrefix; |
2836 | AsanMemmove = M.getOrInsertFunction(Name: MemIntrinCallbackPrefix + "memmove" , |
2837 | RetTy: PtrTy, Args: PtrTy, Args: PtrTy, Args: IntptrTy); |
2838 | AsanMemcpy = M.getOrInsertFunction(Name: MemIntrinCallbackPrefix + "memcpy" , RetTy: PtrTy, |
2839 | Args: PtrTy, Args: PtrTy, Args: IntptrTy); |
2840 | AsanMemset = M.getOrInsertFunction(Name: MemIntrinCallbackPrefix + "memset" , |
2841 | AttributeList: TLI->getAttrList(C, ArgNos: {1}, /*Signed=*/false), |
2842 | RetTy: PtrTy, Args: PtrTy, Args: IRB.getInt32Ty(), Args: IntptrTy); |
2843 | |
2844 | AsanHandleNoReturnFunc = |
2845 | M.getOrInsertFunction(Name: kAsanHandleNoReturnName, RetTy: IRB.getVoidTy()); |
2846 | |
2847 | AsanPtrCmpFunction = |
2848 | M.getOrInsertFunction(Name: kAsanPtrCmp, RetTy: IRB.getVoidTy(), Args: IntptrTy, Args: IntptrTy); |
2849 | AsanPtrSubFunction = |
2850 | M.getOrInsertFunction(Name: kAsanPtrSub, RetTy: IRB.getVoidTy(), Args: IntptrTy, Args: IntptrTy); |
2851 | if (Mapping.InGlobal) |
2852 | AsanShadowGlobal = M.getOrInsertGlobal(Name: "__asan_shadow" , |
2853 | Ty: ArrayType::get(ElementType: IRB.getInt8Ty(), NumElements: 0)); |
2854 | |
2855 | AMDGPUAddressShared = |
2856 | M.getOrInsertFunction(Name: kAMDGPUAddressSharedName, RetTy: IRB.getInt1Ty(), Args: PtrTy); |
2857 | AMDGPUAddressPrivate = |
2858 | M.getOrInsertFunction(Name: kAMDGPUAddressPrivateName, RetTy: IRB.getInt1Ty(), Args: PtrTy); |
2859 | } |
2860 | |
2861 | bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { |
2862 | // For each NSObject descendant having a +load method, this method is invoked |
2863 | // by the ObjC runtime before any of the static constructors is called. |
2864 | // Therefore we need to instrument such methods with a call to __asan_init |
2865 | // at the beginning in order to initialize our runtime before any access to |
2866 | // the shadow memory. |
2867 | // We cannot just ignore these methods, because they may call other |
2868 | // instrumented functions. |
2869 | if (F.getName().contains(Other: " load]" )) { |
2870 | FunctionCallee AsanInitFunction = |
2871 | declareSanitizerInitFunction(M&: *F.getParent(), InitName: kAsanInitName, InitArgTypes: {}); |
2872 | IRBuilder<> IRB(&F.front(), F.front().begin()); |
2873 | IRB.CreateCall(Callee: AsanInitFunction, Args: {}); |
2874 | return true; |
2875 | } |
2876 | return false; |
2877 | } |
2878 | |
2879 | bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { |
2880 | // Generate code only when dynamic addressing is needed. |
2881 | if (Mapping.Offset != kDynamicShadowSentinel) |
2882 | return false; |
2883 | |
2884 | IRBuilder<> IRB(&F.front().front()); |
2885 | if (Mapping.InGlobal) { |
2886 | if (ClWithIfuncSuppressRemat) { |
2887 | // An empty inline asm with input reg == output reg. |
2888 | // An opaque pointer-to-int cast, basically. |
2889 | InlineAsm *Asm = InlineAsm::get( |
2890 | Ty: FunctionType::get(Result: IntptrTy, Params: {AsanShadowGlobal->getType()}, isVarArg: false), |
2891 | AsmString: StringRef("" ), Constraints: StringRef("=r,0" ), |
2892 | /*hasSideEffects=*/false); |
2893 | LocalDynamicShadow = |
2894 | IRB.CreateCall(Callee: Asm, Args: {AsanShadowGlobal}, Name: ".asan.shadow" ); |
2895 | } else { |
2896 | LocalDynamicShadow = |
2897 | IRB.CreatePointerCast(V: AsanShadowGlobal, DestTy: IntptrTy, Name: ".asan.shadow" ); |
2898 | } |
2899 | } else { |
2900 | Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( |
2901 | Name: kAsanShadowMemoryDynamicAddress, Ty: IntptrTy); |
2902 | LocalDynamicShadow = IRB.CreateLoad(Ty: IntptrTy, Ptr: GlobalDynamicAddress); |
2903 | } |
2904 | return true; |
2905 | } |
2906 | |
2907 | void AddressSanitizer::markEscapedLocalAllocas(Function &F) { |
2908 | // Find the one possible call to llvm.localescape and pre-mark allocas passed |
2909 | // to it as uninteresting. This assumes we haven't started processing allocas |
2910 | // yet. This check is done up front because iterating the use list in |
2911 | // isInterestingAlloca would be algorithmically slower. |
2912 | assert(ProcessedAllocas.empty() && "must process localescape before allocas" ); |
2913 | |
2914 | // Try to get the declaration of llvm.localescape. If it's not in the module, |
2915 | // we can exit early. |
2916 | if (!F.getParent()->getFunction(Name: "llvm.localescape" )) return; |
2917 | |
2918 | // Look for a call to llvm.localescape call in the entry block. It can't be in |
2919 | // any other block. |
2920 | for (Instruction &I : F.getEntryBlock()) { |
2921 | IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: &I); |
2922 | if (II && II->getIntrinsicID() == Intrinsic::localescape) { |
2923 | // We found a call. Mark all the allocas passed in as uninteresting. |
2924 | for (Value *Arg : II->args()) { |
2925 | AllocaInst *AI = dyn_cast<AllocaInst>(Val: Arg->stripPointerCasts()); |
2926 | assert(AI && AI->isStaticAlloca() && |
2927 | "non-static alloca arg to localescape" ); |
2928 | ProcessedAllocas[AI] = false; |
2929 | } |
2930 | break; |
2931 | } |
2932 | } |
2933 | } |
2934 | |
2935 | bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { |
2936 | bool ShouldInstrument = |
2937 | ClDebugMin < 0 || ClDebugMax < 0 || |
2938 | (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); |
2939 | Instrumented++; |
2940 | return !ShouldInstrument; |
2941 | } |
2942 | |
2943 | bool AddressSanitizer::instrumentFunction(Function &F, |
2944 | const TargetLibraryInfo *TLI) { |
2945 | if (F.empty()) |
2946 | return false; |
2947 | if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; |
2948 | if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; |
2949 | if (F.getName().starts_with(Prefix: "__asan_" )) return false; |
2950 | if (F.isPresplitCoroutine()) |
2951 | return false; |
2952 | |
2953 | bool FunctionModified = false; |
2954 | |
2955 | // If needed, insert __asan_init before checking for SanitizeAddress attr. |
2956 | // This function needs to be called even if the function body is not |
2957 | // instrumented. |
2958 | if (maybeInsertAsanInitAtFunctionEntry(F)) |
2959 | FunctionModified = true; |
2960 | |
2961 | // Leave if the function doesn't need instrumentation. |
2962 | if (!F.hasFnAttribute(Kind: Attribute::SanitizeAddress)) return FunctionModified; |
2963 | |
2964 | if (F.hasFnAttribute(Kind: Attribute::DisableSanitizerInstrumentation)) |
2965 | return FunctionModified; |
2966 | |
2967 | LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n" ); |
2968 | |
2969 | initializeCallbacks(M&: *F.getParent(), TLI); |
2970 | |
2971 | FunctionStateRAII CleanupObj(this); |
2972 | |
2973 | RuntimeCallInserter RTCI(F); |
2974 | |
2975 | FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); |
2976 | |
2977 | // We can't instrument allocas used with llvm.localescape. Only static allocas |
2978 | // can be passed to that intrinsic. |
2979 | markEscapedLocalAllocas(F); |
2980 | |
2981 | // We want to instrument every address only once per basic block (unless there |
2982 | // are calls between uses). |
2983 | SmallPtrSet<Value *, 16> TempsToInstrument; |
2984 | SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; |
2985 | SmallVector<MemIntrinsic *, 16> IntrinToInstrument; |
2986 | SmallVector<Instruction *, 8> NoReturnCalls; |
2987 | SmallVector<BasicBlock *, 16> AllBlocks; |
2988 | SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; |
2989 | |
2990 | // Fill the set of memory operations to instrument. |
2991 | for (auto &BB : F) { |
2992 | AllBlocks.push_back(Elt: &BB); |
2993 | TempsToInstrument.clear(); |
2994 | int NumInsnsPerBB = 0; |
2995 | for (auto &Inst : BB) { |
2996 | if (LooksLikeCodeInBug11395(I: &Inst)) return false; |
2997 | // Skip instructions inserted by another instrumentation. |
2998 | if (Inst.hasMetadata(KindID: LLVMContext::MD_nosanitize)) |
2999 | continue; |
3000 | SmallVector<InterestingMemoryOperand, 1> InterestingOperands; |
3001 | getInterestingMemoryOperands(I: &Inst, Interesting&: InterestingOperands); |
3002 | |
3003 | if (!InterestingOperands.empty()) { |
3004 | for (auto &Operand : InterestingOperands) { |
3005 | if (ClOpt && ClOptSameTemp) { |
3006 | Value *Ptr = Operand.getPtr(); |
3007 | // If we have a mask, skip instrumentation if we've already |
3008 | // instrumented the full object. But don't add to TempsToInstrument |
3009 | // because we might get another load/store with a different mask. |
3010 | if (Operand.MaybeMask) { |
3011 | if (TempsToInstrument.count(Ptr)) |
3012 | continue; // We've seen this (whole) temp in the current BB. |
3013 | } else { |
3014 | if (!TempsToInstrument.insert(Ptr).second) |
3015 | continue; // We've seen this temp in the current BB. |
3016 | } |
3017 | } |
3018 | OperandsToInstrument.push_back(Elt: Operand); |
3019 | NumInsnsPerBB++; |
3020 | } |
3021 | } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && |
3022 | isInterestingPointerComparison(I: &Inst)) || |
3023 | ((ClInvalidPointerPairs || ClInvalidPointerSub) && |
3024 | isInterestingPointerSubtraction(I: &Inst))) { |
3025 | PointerComparisonsOrSubtracts.push_back(Elt: &Inst); |
3026 | } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Val: &Inst)) { |
3027 | // ok, take it. |
3028 | IntrinToInstrument.push_back(Elt: MI); |
3029 | NumInsnsPerBB++; |
3030 | } else { |
3031 | if (auto *CB = dyn_cast<CallBase>(Val: &Inst)) { |
3032 | // A call inside BB. |
3033 | TempsToInstrument.clear(); |
3034 | if (CB->doesNotReturn()) |
3035 | NoReturnCalls.push_back(Elt: CB); |
3036 | } |
3037 | if (CallInst *CI = dyn_cast<CallInst>(Val: &Inst)) |
3038 | maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); |
3039 | } |
3040 | if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; |
3041 | } |
3042 | } |
3043 | |
3044 | bool UseCalls = (InstrumentationWithCallsThreshold >= 0 && |
3045 | OperandsToInstrument.size() + IntrinToInstrument.size() > |
3046 | (unsigned)InstrumentationWithCallsThreshold); |
3047 | const DataLayout &DL = F.getDataLayout(); |
3048 | ObjectSizeOpts ObjSizeOpts; |
3049 | ObjSizeOpts.RoundToAlign = true; |
3050 | ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); |
3051 | |
3052 | // Instrument. |
3053 | int NumInstrumented = 0; |
3054 | for (auto &Operand : OperandsToInstrument) { |
3055 | if (!suppressInstrumentationSiteForDebug(Instrumented&: NumInstrumented)) |
3056 | instrumentMop(ObjSizeVis, O&: Operand, UseCalls, |
3057 | DL: F.getDataLayout(), RTCI); |
3058 | FunctionModified = true; |
3059 | } |
3060 | for (auto *Inst : IntrinToInstrument) { |
3061 | if (!suppressInstrumentationSiteForDebug(Instrumented&: NumInstrumented)) |
3062 | instrumentMemIntrinsic(MI: Inst, RTCI); |
3063 | FunctionModified = true; |
3064 | } |
3065 | |
3066 | FunctionStackPoisoner FSP(F, *this, RTCI); |
3067 | bool ChangedStack = FSP.runOnFunction(); |
3068 | |
3069 | // We must unpoison the stack before NoReturn calls (throw, _exit, etc). |
3070 | // See e.g. https://github.com/google/sanitizers/issues/37 |
3071 | for (auto *CI : NoReturnCalls) { |
3072 | IRBuilder<> IRB(CI); |
3073 | RTCI.createRuntimeCall(IRB, Callee: AsanHandleNoReturnFunc, Args: {}); |
3074 | } |
3075 | |
3076 | for (auto *Inst : PointerComparisonsOrSubtracts) { |
3077 | instrumentPointerComparisonOrSubtraction(I: Inst, RTCI); |
3078 | FunctionModified = true; |
3079 | } |
3080 | |
3081 | if (ChangedStack || !NoReturnCalls.empty()) |
3082 | FunctionModified = true; |
3083 | |
3084 | LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " |
3085 | << F << "\n" ); |
3086 | |
3087 | return FunctionModified; |
3088 | } |
3089 | |
3090 | // Workaround for bug 11395: we don't want to instrument stack in functions |
3091 | // with large assembly blobs (32-bit only), otherwise reg alloc may crash. |
3092 | // FIXME: remove once the bug 11395 is fixed. |
3093 | bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { |
3094 | if (LongSize != 32) return false; |
3095 | CallInst *CI = dyn_cast<CallInst>(Val: I); |
3096 | if (!CI || !CI->isInlineAsm()) return false; |
3097 | if (CI->arg_size() <= 5) |
3098 | return false; |
3099 | // We have inline assembly with quite a few arguments. |
3100 | return true; |
3101 | } |
3102 | |
3103 | void FunctionStackPoisoner::initializeCallbacks(Module &M) { |
3104 | IRBuilder<> IRB(*C); |
3105 | if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always || |
3106 | ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { |
3107 | const char *MallocNameTemplate = |
3108 | ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always |
3109 | ? kAsanStackMallocAlwaysNameTemplate |
3110 | : kAsanStackMallocNameTemplate; |
3111 | for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) { |
3112 | std::string Suffix = itostr(X: Index); |
3113 | AsanStackMallocFunc[Index] = M.getOrInsertFunction( |
3114 | Name: MallocNameTemplate + Suffix, RetTy: IntptrTy, Args: IntptrTy); |
3115 | AsanStackFreeFunc[Index] = |
3116 | M.getOrInsertFunction(Name: kAsanStackFreeNameTemplate + Suffix, |
3117 | RetTy: IRB.getVoidTy(), Args: IntptrTy, Args: IntptrTy); |
3118 | } |
3119 | } |
3120 | if (ASan.UseAfterScope) { |
3121 | AsanPoisonStackMemoryFunc = M.getOrInsertFunction( |
3122 | Name: kAsanPoisonStackMemoryName, RetTy: IRB.getVoidTy(), Args: IntptrTy, Args: IntptrTy); |
3123 | AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( |
3124 | Name: kAsanUnpoisonStackMemoryName, RetTy: IRB.getVoidTy(), Args: IntptrTy, Args: IntptrTy); |
3125 | } |
3126 | |
3127 | for (size_t Val : {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0xf1, 0xf2, |
3128 | 0xf3, 0xf5, 0xf8}) { |
3129 | std::ostringstream Name; |
3130 | Name << kAsanSetShadowPrefix; |
3131 | Name << std::setw(2) << std::setfill('0') << std::hex << Val; |
3132 | AsanSetShadowFunc[Val] = |
3133 | M.getOrInsertFunction(Name: Name.str(), RetTy: IRB.getVoidTy(), Args: IntptrTy, Args: IntptrTy); |
3134 | } |
3135 | |
3136 | AsanAllocaPoisonFunc = M.getOrInsertFunction( |
3137 | Name: kAsanAllocaPoison, RetTy: IRB.getVoidTy(), Args: IntptrTy, Args: IntptrTy); |
3138 | AsanAllocasUnpoisonFunc = M.getOrInsertFunction( |
3139 | Name: kAsanAllocasUnpoison, RetTy: IRB.getVoidTy(), Args: IntptrTy, Args: IntptrTy); |
3140 | } |
3141 | |
3142 | void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, |
3143 | ArrayRef<uint8_t> ShadowBytes, |
3144 | size_t Begin, size_t End, |
3145 | IRBuilder<> &IRB, |
3146 | Value *ShadowBase) { |
3147 | if (Begin >= End) |
3148 | return; |
3149 | |
3150 | const size_t LargestStoreSizeInBytes = |
3151 | std::min<size_t>(a: sizeof(uint64_t), b: ASan.LongSize / 8); |
3152 | |
3153 | const bool IsLittleEndian = F.getDataLayout().isLittleEndian(); |
3154 | |
3155 | // Poison given range in shadow using larges store size with out leading and |
3156 | // trailing zeros in ShadowMask. Zeros never change, so they need neither |
3157 | // poisoning nor up-poisoning. Still we don't mind if some of them get into a |
3158 | // middle of a store. |
3159 | for (size_t i = Begin; i < End;) { |
3160 | if (!ShadowMask[i]) { |
3161 | assert(!ShadowBytes[i]); |
3162 | ++i; |
3163 | continue; |
3164 | } |
3165 | |
3166 | size_t StoreSizeInBytes = LargestStoreSizeInBytes; |
3167 | // Fit store size into the range. |
3168 | while (StoreSizeInBytes > End - i) |
3169 | StoreSizeInBytes /= 2; |
3170 | |
3171 | // Minimize store size by trimming trailing zeros. |
3172 | for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { |
3173 | while (j <= StoreSizeInBytes / 2) |
3174 | StoreSizeInBytes /= 2; |
3175 | } |
3176 | |
3177 | uint64_t Val = 0; |
3178 | for (size_t j = 0; j < StoreSizeInBytes; j++) { |
3179 | if (IsLittleEndian) |
3180 | Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); |
3181 | else |
3182 | Val = (Val << 8) | ShadowBytes[i + j]; |
3183 | } |
3184 | |
3185 | Value *Ptr = IRB.CreateAdd(LHS: ShadowBase, RHS: ConstantInt::get(Ty: IntptrTy, V: i)); |
3186 | Value *Poison = IRB.getIntN(N: StoreSizeInBytes * 8, C: Val); |
3187 | IRB.CreateAlignedStore( |
3188 | Val: Poison, Ptr: IRB.CreateIntToPtr(V: Ptr, DestTy: PointerType::getUnqual(C&: Poison->getContext())), |
3189 | Align: Align(1)); |
3190 | |
3191 | i += StoreSizeInBytes; |
3192 | } |
3193 | } |
3194 | |
3195 | void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, |
3196 | ArrayRef<uint8_t> ShadowBytes, |
3197 | IRBuilder<> &IRB, Value *ShadowBase) { |
3198 | copyToShadow(ShadowMask, ShadowBytes, Begin: 0, End: ShadowMask.size(), IRB, ShadowBase); |
3199 | } |
3200 | |
3201 | void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, |
3202 | ArrayRef<uint8_t> ShadowBytes, |
3203 | size_t Begin, size_t End, |
3204 | IRBuilder<> &IRB, Value *ShadowBase) { |
3205 | assert(ShadowMask.size() == ShadowBytes.size()); |
3206 | size_t Done = Begin; |
3207 | for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { |
3208 | if (!ShadowMask[i]) { |
3209 | assert(!ShadowBytes[i]); |
3210 | continue; |
3211 | } |
3212 | uint8_t Val = ShadowBytes[i]; |
3213 | if (!AsanSetShadowFunc[Val]) |
3214 | continue; |
3215 | |
3216 | // Skip same values. |
3217 | for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { |
3218 | } |
3219 | |
3220 | if (j - i >= ASan.MaxInlinePoisoningSize) { |
3221 | copyToShadowInline(ShadowMask, ShadowBytes, Begin: Done, End: i, IRB, ShadowBase); |
3222 | RTCI.createRuntimeCall( |
3223 | IRB, Callee: AsanSetShadowFunc[Val], |
3224 | Args: {IRB.CreateAdd(LHS: ShadowBase, RHS: ConstantInt::get(Ty: IntptrTy, V: i)), |
3225 | ConstantInt::get(Ty: IntptrTy, V: j - i)}); |
3226 | Done = j; |
3227 | } |
3228 | } |
3229 | |
3230 | copyToShadowInline(ShadowMask, ShadowBytes, Begin: Done, End, IRB, ShadowBase); |
3231 | } |
3232 | |
3233 | // Fake stack allocator (asan_fake_stack.h) has 11 size classes |
3234 | // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass |
3235 | static int StackMallocSizeClass(uint64_t LocalStackSize) { |
3236 | assert(LocalStackSize <= kMaxStackMallocSize); |
3237 | uint64_t MaxSize = kMinStackMallocSize; |
3238 | for (int i = 0;; i++, MaxSize *= 2) |
3239 | if (LocalStackSize <= MaxSize) return i; |
3240 | llvm_unreachable("impossible LocalStackSize" ); |
3241 | } |
3242 | |
3243 | void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { |
3244 | Instruction *CopyInsertPoint = &F.front().front(); |
3245 | if (CopyInsertPoint == ASan.LocalDynamicShadow) { |
3246 | // Insert after the dynamic shadow location is determined |
3247 | CopyInsertPoint = CopyInsertPoint->getNextNode(); |
3248 | assert(CopyInsertPoint); |
3249 | } |
3250 | IRBuilder<> IRB(CopyInsertPoint); |
3251 | const DataLayout &DL = F.getDataLayout(); |
3252 | for (Argument &Arg : F.args()) { |
3253 | if (Arg.hasByValAttr()) { |
3254 | Type *Ty = Arg.getParamByValType(); |
3255 | const Align Alignment = |
3256 | DL.getValueOrABITypeAlignment(Alignment: Arg.getParamAlign(), Ty); |
3257 | |
3258 | AllocaInst *AI = IRB.CreateAlloca( |
3259 | Ty, ArraySize: nullptr, |
3260 | Name: (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + |
3261 | ".byval" ); |
3262 | AI->setAlignment(Alignment); |
3263 | Arg.replaceAllUsesWith(V: AI); |
3264 | |
3265 | uint64_t AllocSize = DL.getTypeAllocSize(Ty); |
3266 | IRB.CreateMemCpy(Dst: AI, DstAlign: Alignment, Src: &Arg, SrcAlign: Alignment, Size: AllocSize); |
3267 | } |
3268 | } |
3269 | } |
3270 | |
3271 | PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, |
3272 | Value *ValueIfTrue, |
3273 | Instruction *ThenTerm, |
3274 | Value *ValueIfFalse) { |
3275 | PHINode *PHI = IRB.CreatePHI(Ty: IntptrTy, NumReservedValues: 2); |
3276 | BasicBlock *CondBlock = cast<Instruction>(Val: Cond)->getParent(); |
3277 | PHI->addIncoming(V: ValueIfFalse, BB: CondBlock); |
3278 | BasicBlock *ThenBlock = ThenTerm->getParent(); |
3279 | PHI->addIncoming(V: ValueIfTrue, BB: ThenBlock); |
3280 | return PHI; |
3281 | } |
3282 | |
3283 | Value *FunctionStackPoisoner::createAllocaForLayout( |
3284 | IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { |
3285 | AllocaInst *Alloca; |
3286 | if (Dynamic) { |
3287 | Alloca = IRB.CreateAlloca(Ty: IRB.getInt8Ty(), |
3288 | ArraySize: ConstantInt::get(Ty: IRB.getInt64Ty(), V: L.FrameSize), |
3289 | Name: "MyAlloca" ); |
3290 | } else { |
3291 | Alloca = IRB.CreateAlloca(Ty: ArrayType::get(ElementType: IRB.getInt8Ty(), NumElements: L.FrameSize), |
3292 | ArraySize: nullptr, Name: "MyAlloca" ); |
3293 | assert(Alloca->isStaticAlloca()); |
3294 | } |
3295 | assert((ClRealignStack & (ClRealignStack - 1)) == 0); |
3296 | uint64_t FrameAlignment = std::max(a: L.FrameAlignment, b: uint64_t(ClRealignStack)); |
3297 | Alloca->setAlignment(Align(FrameAlignment)); |
3298 | return IRB.CreatePointerCast(V: Alloca, DestTy: IntptrTy); |
3299 | } |
3300 | |
3301 | void FunctionStackPoisoner::createDynamicAllocasInitStorage() { |
3302 | BasicBlock &FirstBB = *F.begin(); |
3303 | IRBuilder<> IRB(dyn_cast<Instruction>(Val: FirstBB.begin())); |
3304 | DynamicAllocaLayout = IRB.CreateAlloca(Ty: IntptrTy, ArraySize: nullptr); |
3305 | IRB.CreateStore(Val: Constant::getNullValue(Ty: IntptrTy), Ptr: DynamicAllocaLayout); |
3306 | DynamicAllocaLayout->setAlignment(Align(32)); |
3307 | } |
3308 | |
3309 | void FunctionStackPoisoner::processDynamicAllocas() { |
3310 | if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { |
3311 | assert(DynamicAllocaPoisonCallVec.empty()); |
3312 | return; |
3313 | } |
3314 | |
3315 | // Insert poison calls for lifetime intrinsics for dynamic allocas. |
3316 | for (const auto &APC : DynamicAllocaPoisonCallVec) { |
3317 | assert(APC.InsBefore); |
3318 | assert(APC.AI); |
3319 | assert(ASan.isInterestingAlloca(*APC.AI)); |
3320 | assert(!APC.AI->isStaticAlloca()); |
3321 | |
3322 | IRBuilder<> IRB(APC.InsBefore); |
3323 | poisonAlloca(V: APC.AI, Size: APC.Size, IRB, DoPoison: APC.DoPoison); |
3324 | // Dynamic allocas will be unpoisoned unconditionally below in |
3325 | // unpoisonDynamicAllocas. |
3326 | // Flag that we need unpoison static allocas. |
3327 | } |
3328 | |
3329 | // Handle dynamic allocas. |
3330 | createDynamicAllocasInitStorage(); |
3331 | for (auto &AI : DynamicAllocaVec) |
3332 | handleDynamicAllocaCall(AI); |
3333 | unpoisonDynamicAllocas(); |
3334 | } |
3335 | |
3336 | /// Collect instructions in the entry block after \p InsBefore which initialize |
3337 | /// permanent storage for a function argument. These instructions must remain in |
3338 | /// the entry block so that uninitialized values do not appear in backtraces. An |
3339 | /// added benefit is that this conserves spill slots. This does not move stores |
3340 | /// before instrumented / "interesting" allocas. |
3341 | static void findStoresToUninstrumentedArgAllocas( |
3342 | AddressSanitizer &ASan, Instruction &InsBefore, |
3343 | SmallVectorImpl<Instruction *> &InitInsts) { |
3344 | Instruction *Start = InsBefore.getNextNonDebugInstruction(); |
3345 | for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { |
3346 | // Argument initialization looks like: |
3347 | // 1) store <Argument>, <Alloca> OR |
3348 | // 2) <CastArgument> = cast <Argument> to ... |
3349 | // store <CastArgument> to <Alloca> |
3350 | // Do not consider any other kind of instruction. |
3351 | // |
3352 | // Note: This covers all known cases, but may not be exhaustive. An |
3353 | // alternative to pattern-matching stores is to DFS over all Argument uses: |
3354 | // this might be more general, but is probably much more complicated. |
3355 | if (isa<AllocaInst>(Val: It) || isa<CastInst>(Val: It)) |
3356 | continue; |
3357 | if (auto *Store = dyn_cast<StoreInst>(Val: It)) { |
3358 | // The store destination must be an alloca that isn't interesting for |
3359 | // ASan to instrument. These are moved up before InsBefore, and they're |
3360 | // not interesting because allocas for arguments can be mem2reg'd. |
3361 | auto *Alloca = dyn_cast<AllocaInst>(Val: Store->getPointerOperand()); |
3362 | if (!Alloca || ASan.isInterestingAlloca(AI: *Alloca)) |
3363 | continue; |
3364 | |
3365 | Value *Val = Store->getValueOperand(); |
3366 | bool IsDirectArgInit = isa<Argument>(Val); |
3367 | bool IsArgInitViaCast = |
3368 | isa<CastInst>(Val) && |
3369 | isa<Argument>(Val: cast<CastInst>(Val)->getOperand(i_nocapture: 0)) && |
3370 | // Check that the cast appears directly before the store. Otherwise |
3371 | // moving the cast before InsBefore may break the IR. |
3372 | Val == It->getPrevNonDebugInstruction(); |
3373 | bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; |
3374 | if (!IsArgInit) |
3375 | continue; |
3376 | |
3377 | if (IsArgInitViaCast) |
3378 | InitInsts.push_back(Elt: cast<Instruction>(Val)); |
3379 | InitInsts.push_back(Elt: Store); |
3380 | continue; |
3381 | } |
3382 | |
3383 | // Do not reorder past unknown instructions: argument initialization should |
3384 | // only involve casts and stores. |
3385 | return; |
3386 | } |
3387 | } |
3388 | |
3389 | void FunctionStackPoisoner::processStaticAllocas() { |
3390 | if (AllocaVec.empty()) { |
3391 | assert(StaticAllocaPoisonCallVec.empty()); |
3392 | return; |
3393 | } |
3394 | |
3395 | int StackMallocIdx = -1; |
3396 | DebugLoc EntryDebugLocation; |
3397 | if (auto SP = F.getSubprogram()) |
3398 | EntryDebugLocation = |
3399 | DILocation::get(Context&: SP->getContext(), Line: SP->getScopeLine(), Column: 0, Scope: SP); |
3400 | |
3401 | Instruction *InsBefore = AllocaVec[0]; |
3402 | IRBuilder<> IRB(InsBefore); |
3403 | |
3404 | // Make sure non-instrumented allocas stay in the entry block. Otherwise, |
3405 | // debug info is broken, because only entry-block allocas are treated as |
3406 | // regular stack slots. |
3407 | auto InsBeforeB = InsBefore->getParent(); |
3408 | assert(InsBeforeB == &F.getEntryBlock()); |
3409 | for (auto *AI : StaticAllocasToMoveUp) |
3410 | if (AI->getParent() == InsBeforeB) |
3411 | AI->moveBefore(MovePos: InsBefore); |
3412 | |
3413 | // Move stores of arguments into entry-block allocas as well. This prevents |
3414 | // extra stack slots from being generated (to house the argument values until |
3415 | // they can be stored into the allocas). This also prevents uninitialized |
3416 | // values from being shown in backtraces. |
3417 | SmallVector<Instruction *, 8> ArgInitInsts; |
3418 | findStoresToUninstrumentedArgAllocas(ASan, InsBefore&: *InsBefore, InitInsts&: ArgInitInsts); |
3419 | for (Instruction *ArgInitInst : ArgInitInsts) |
3420 | ArgInitInst->moveBefore(MovePos: InsBefore); |
3421 | |
3422 | // If we have a call to llvm.localescape, keep it in the entry block. |
3423 | if (LocalEscapeCall) LocalEscapeCall->moveBefore(MovePos: InsBefore); |
3424 | |
3425 | SmallVector<ASanStackVariableDescription, 16> SVD; |
3426 | SVD.reserve(N: AllocaVec.size()); |
3427 | for (AllocaInst *AI : AllocaVec) { |
3428 | ASanStackVariableDescription D = {.Name: AI->getName().data(), |
3429 | .Size: ASan.getAllocaSizeInBytes(AI: *AI), |
3430 | .LifetimeSize: 0, |
3431 | .Alignment: AI->getAlign().value(), |
3432 | .AI: AI, |
3433 | .Offset: 0, |
3434 | .Line: 0}; |
3435 | SVD.push_back(Elt: D); |
3436 | } |
3437 | |
3438 | // Minimal header size (left redzone) is 4 pointers, |
3439 | // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. |
3440 | uint64_t Granularity = 1ULL << Mapping.Scale; |
3441 | uint64_t = std::max(a: (uint64_t)ASan.LongSize / 2, b: Granularity); |
3442 | const ASanStackFrameLayout &L = |
3443 | ComputeASanStackFrameLayout(Vars&: SVD, Granularity, MinHeaderSize); |
3444 | |
3445 | // Build AllocaToSVDMap for ASanStackVariableDescription lookup. |
3446 | DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; |
3447 | for (auto &Desc : SVD) |
3448 | AllocaToSVDMap[Desc.AI] = &Desc; |
3449 | |
3450 | // Update SVD with information from lifetime intrinsics. |
3451 | for (const auto &APC : StaticAllocaPoisonCallVec) { |
3452 | assert(APC.InsBefore); |
3453 | assert(APC.AI); |
3454 | assert(ASan.isInterestingAlloca(*APC.AI)); |
3455 | assert(APC.AI->isStaticAlloca()); |
3456 | |
3457 | ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; |
3458 | Desc.LifetimeSize = Desc.Size; |
3459 | if (const DILocation *FnLoc = EntryDebugLocation.get()) { |
3460 | if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { |
3461 | if (LifetimeLoc->getFile() == FnLoc->getFile()) |
3462 | if (unsigned Line = LifetimeLoc->getLine()) |
3463 | Desc.Line = std::min(a: Desc.Line ? Desc.Line : Line, b: Line); |
3464 | } |
3465 | } |
3466 | } |
3467 | |
3468 | auto DescriptionString = ComputeASanStackFrameDescription(Vars: SVD); |
3469 | LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n" ); |
3470 | uint64_t LocalStackSize = L.FrameSize; |
3471 | bool DoStackMalloc = |
3472 | ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never && |
3473 | !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize; |
3474 | bool DoDynamicAlloca = ClDynamicAllocaStack; |
3475 | // Don't do dynamic alloca or stack malloc if: |
3476 | // 1) There is inline asm: too often it makes assumptions on which registers |
3477 | // are available. |
3478 | // 2) There is a returns_twice call (typically setjmp), which is |
3479 | // optimization-hostile, and doesn't play well with introduced indirect |
3480 | // register-relative calculation of local variable addresses. |
3481 | DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; |
3482 | DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; |
3483 | |
3484 | Value *StaticAlloca = |
3485 | DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, Dynamic: false); |
3486 | |
3487 | Value *FakeStack; |
3488 | Value *LocalStackBase; |
3489 | Value *LocalStackBaseAlloca; |
3490 | uint8_t DIExprFlags = DIExpression::ApplyOffset; |
3491 | |
3492 | if (DoStackMalloc) { |
3493 | LocalStackBaseAlloca = |
3494 | IRB.CreateAlloca(Ty: IntptrTy, ArraySize: nullptr, Name: "asan_local_stack_base" ); |
3495 | if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { |
3496 | // void *FakeStack = __asan_option_detect_stack_use_after_return |
3497 | // ? __asan_stack_malloc_N(LocalStackSize) |
3498 | // : nullptr; |
3499 | // void *LocalStackBase = (FakeStack) ? FakeStack : |
3500 | // alloca(LocalStackSize); |
3501 | Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( |
3502 | Name: kAsanOptionDetectUseAfterReturn, Ty: IRB.getInt32Ty()); |
3503 | Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( |
3504 | LHS: IRB.CreateLoad(Ty: IRB.getInt32Ty(), Ptr: OptionDetectUseAfterReturn), |
3505 | RHS: Constant::getNullValue(Ty: IRB.getInt32Ty())); |
3506 | Instruction *Term = |
3507 | SplitBlockAndInsertIfThen(Cond: UseAfterReturnIsEnabled, SplitBefore: InsBefore, Unreachable: false); |
3508 | IRBuilder<> IRBIf(Term); |
3509 | StackMallocIdx = StackMallocSizeClass(LocalStackSize); |
3510 | assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); |
3511 | Value *FakeStackValue = |
3512 | RTCI.createRuntimeCall(IRB&: IRBIf, Callee: AsanStackMallocFunc[StackMallocIdx], |
3513 | Args: ConstantInt::get(Ty: IntptrTy, V: LocalStackSize)); |
3514 | IRB.SetInsertPoint(InsBefore); |
3515 | FakeStack = createPHI(IRB, Cond: UseAfterReturnIsEnabled, ValueIfTrue: FakeStackValue, ThenTerm: Term, |
3516 | ValueIfFalse: ConstantInt::get(Ty: IntptrTy, V: 0)); |
3517 | } else { |
3518 | // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always) |
3519 | // void *FakeStack = __asan_stack_malloc_N(LocalStackSize); |
3520 | // void *LocalStackBase = (FakeStack) ? FakeStack : |
3521 | // alloca(LocalStackSize); |
3522 | StackMallocIdx = StackMallocSizeClass(LocalStackSize); |
3523 | FakeStack = |
3524 | RTCI.createRuntimeCall(IRB, Callee: AsanStackMallocFunc[StackMallocIdx], |
3525 | Args: ConstantInt::get(Ty: IntptrTy, V: LocalStackSize)); |
3526 | } |
3527 | Value *NoFakeStack = |
3528 | IRB.CreateICmpEQ(LHS: FakeStack, RHS: Constant::getNullValue(Ty: IntptrTy)); |
3529 | Instruction *Term = |
3530 | SplitBlockAndInsertIfThen(Cond: NoFakeStack, SplitBefore: InsBefore, Unreachable: false); |
3531 | IRBuilder<> IRBIf(Term); |
3532 | Value *AllocaValue = |
3533 | DoDynamicAlloca ? createAllocaForLayout(IRB&: IRBIf, L, Dynamic: true) : StaticAlloca; |
3534 | |
3535 | IRB.SetInsertPoint(InsBefore); |
3536 | LocalStackBase = createPHI(IRB, Cond: NoFakeStack, ValueIfTrue: AllocaValue, ThenTerm: Term, ValueIfFalse: FakeStack); |
3537 | IRB.CreateStore(Val: LocalStackBase, Ptr: LocalStackBaseAlloca); |
3538 | DIExprFlags |= DIExpression::DerefBefore; |
3539 | } else { |
3540 | // void *FakeStack = nullptr; |
3541 | // void *LocalStackBase = alloca(LocalStackSize); |
3542 | FakeStack = ConstantInt::get(Ty: IntptrTy, V: 0); |
3543 | LocalStackBase = |
3544 | DoDynamicAlloca ? createAllocaForLayout(IRB, L, Dynamic: true) : StaticAlloca; |
3545 | LocalStackBaseAlloca = LocalStackBase; |
3546 | } |
3547 | |
3548 | // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the |
3549 | // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse |
3550 | // later passes and can result in dropped variable coverage in debug info. |
3551 | Value *LocalStackBaseAllocaPtr = |
3552 | isa<PtrToIntInst>(Val: LocalStackBaseAlloca) |
3553 | ? cast<PtrToIntInst>(Val: LocalStackBaseAlloca)->getPointerOperand() |
3554 | : LocalStackBaseAlloca; |
3555 | assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && |
3556 | "Variable descriptions relative to ASan stack base will be dropped" ); |
3557 | |
3558 | // Replace Alloca instructions with base+offset. |
3559 | for (const auto &Desc : SVD) { |
3560 | AllocaInst *AI = Desc.AI; |
3561 | replaceDbgDeclare(Address: AI, NewAddress: LocalStackBaseAllocaPtr, Builder&: DIB, DIExprFlags, |
3562 | Offset: Desc.Offset); |
3563 | Value *NewAllocaPtr = IRB.CreateIntToPtr( |
3564 | V: IRB.CreateAdd(LHS: LocalStackBase, RHS: ConstantInt::get(Ty: IntptrTy, V: Desc.Offset)), |
3565 | DestTy: AI->getType()); |
3566 | AI->replaceAllUsesWith(V: NewAllocaPtr); |
3567 | } |
3568 | |
3569 | // The left-most redzone has enough space for at least 4 pointers. |
3570 | // Write the Magic value to redzone[0]. |
3571 | Value *BasePlus0 = IRB.CreateIntToPtr(V: LocalStackBase, DestTy: IntptrPtrTy); |
3572 | IRB.CreateStore(Val: ConstantInt::get(Ty: IntptrTy, V: kCurrentStackFrameMagic), |
3573 | Ptr: BasePlus0); |
3574 | // Write the frame description constant to redzone[1]. |
3575 | Value *BasePlus1 = IRB.CreateIntToPtr( |
3576 | V: IRB.CreateAdd(LHS: LocalStackBase, |
3577 | RHS: ConstantInt::get(Ty: IntptrTy, V: ASan.LongSize / 8)), |
3578 | DestTy: IntptrPtrTy); |
3579 | GlobalVariable *StackDescriptionGlobal = |
3580 | createPrivateGlobalForString(M&: *F.getParent(), Str: DescriptionString, |
3581 | /*AllowMerging*/ true, NamePrefix: kAsanGenPrefix); |
3582 | Value *Description = IRB.CreatePointerCast(V: StackDescriptionGlobal, DestTy: IntptrTy); |
3583 | IRB.CreateStore(Val: Description, Ptr: BasePlus1); |
3584 | // Write the PC to redzone[2]. |
3585 | Value *BasePlus2 = IRB.CreateIntToPtr( |
3586 | V: IRB.CreateAdd(LHS: LocalStackBase, |
3587 | RHS: ConstantInt::get(Ty: IntptrTy, V: 2 * ASan.LongSize / 8)), |
3588 | DestTy: IntptrPtrTy); |
3589 | IRB.CreateStore(Val: IRB.CreatePointerCast(V: &F, DestTy: IntptrTy), Ptr: BasePlus2); |
3590 | |
3591 | const auto &ShadowAfterScope = GetShadowBytesAfterScope(Vars: SVD, Layout: L); |
3592 | |
3593 | // Poison the stack red zones at the entry. |
3594 | Value *ShadowBase = ASan.memToShadow(Shadow: LocalStackBase, IRB); |
3595 | // As mask we must use most poisoned case: red zones and after scope. |
3596 | // As bytes we can use either the same or just red zones only. |
3597 | copyToShadow(ShadowMask: ShadowAfterScope, ShadowBytes: ShadowAfterScope, IRB, ShadowBase); |
3598 | |
3599 | if (!StaticAllocaPoisonCallVec.empty()) { |
3600 | const auto &ShadowInScope = GetShadowBytes(Vars: SVD, Layout: L); |
3601 | |
3602 | // Poison static allocas near lifetime intrinsics. |
3603 | for (const auto &APC : StaticAllocaPoisonCallVec) { |
3604 | const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; |
3605 | assert(Desc.Offset % L.Granularity == 0); |
3606 | size_t Begin = Desc.Offset / L.Granularity; |
3607 | size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; |
3608 | |
3609 | IRBuilder<> IRB(APC.InsBefore); |
3610 | copyToShadow(ShadowMask: ShadowAfterScope, |
3611 | ShadowBytes: APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, |
3612 | IRB, ShadowBase); |
3613 | } |
3614 | } |
3615 | |
3616 | SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); |
3617 | SmallVector<uint8_t, 64> ShadowAfterReturn; |
3618 | |
3619 | // (Un)poison the stack before all ret instructions. |
3620 | for (Instruction *Ret : RetVec) { |
3621 | IRBuilder<> IRBRet(Ret); |
3622 | // Mark the current frame as retired. |
3623 | IRBRet.CreateStore(Val: ConstantInt::get(Ty: IntptrTy, V: kRetiredStackFrameMagic), |
3624 | Ptr: BasePlus0); |
3625 | if (DoStackMalloc) { |
3626 | assert(StackMallocIdx >= 0); |
3627 | // if FakeStack != 0 // LocalStackBase == FakeStack |
3628 | // // In use-after-return mode, poison the whole stack frame. |
3629 | // if StackMallocIdx <= 4 |
3630 | // // For small sizes inline the whole thing: |
3631 | // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); |
3632 | // **SavedFlagPtr(FakeStack) = 0 |
3633 | // else |
3634 | // __asan_stack_free_N(FakeStack, LocalStackSize) |
3635 | // else |
3636 | // <This is not a fake stack; unpoison the redzones> |
3637 | Value *Cmp = |
3638 | IRBRet.CreateICmpNE(LHS: FakeStack, RHS: Constant::getNullValue(Ty: IntptrTy)); |
3639 | Instruction *ThenTerm, *ElseTerm; |
3640 | SplitBlockAndInsertIfThenElse(Cond: Cmp, SplitBefore: Ret, ThenTerm: &ThenTerm, ElseTerm: &ElseTerm); |
3641 | |
3642 | IRBuilder<> IRBPoison(ThenTerm); |
3643 | if (ASan.MaxInlinePoisoningSize != 0 && StackMallocIdx <= 4) { |
3644 | int ClassSize = kMinStackMallocSize << StackMallocIdx; |
3645 | ShadowAfterReturn.resize(N: ClassSize / L.Granularity, |
3646 | NV: kAsanStackUseAfterReturnMagic); |
3647 | copyToShadow(ShadowMask: ShadowAfterReturn, ShadowBytes: ShadowAfterReturn, IRB&: IRBPoison, |
3648 | ShadowBase); |
3649 | Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( |
3650 | LHS: FakeStack, |
3651 | RHS: ConstantInt::get(Ty: IntptrTy, V: ClassSize - ASan.LongSize / 8)); |
3652 | Value *SavedFlagPtr = IRBPoison.CreateLoad( |
3653 | Ty: IntptrTy, Ptr: IRBPoison.CreateIntToPtr(V: SavedFlagPtrPtr, DestTy: IntptrPtrTy)); |
3654 | IRBPoison.CreateStore( |
3655 | Val: Constant::getNullValue(Ty: IRBPoison.getInt8Ty()), |
3656 | Ptr: IRBPoison.CreateIntToPtr(V: SavedFlagPtr, DestTy: IRBPoison.getPtrTy())); |
3657 | } else { |
3658 | // For larger frames call __asan_stack_free_*. |
3659 | RTCI.createRuntimeCall( |
3660 | IRB&: IRBPoison, Callee: AsanStackFreeFunc[StackMallocIdx], |
3661 | Args: {FakeStack, ConstantInt::get(Ty: IntptrTy, V: LocalStackSize)}); |
3662 | } |
3663 | |
3664 | IRBuilder<> IRBElse(ElseTerm); |
3665 | copyToShadow(ShadowMask: ShadowAfterScope, ShadowBytes: ShadowClean, IRB&: IRBElse, ShadowBase); |
3666 | } else { |
3667 | copyToShadow(ShadowMask: ShadowAfterScope, ShadowBytes: ShadowClean, IRB&: IRBRet, ShadowBase); |
3668 | } |
3669 | } |
3670 | |
3671 | // We are done. Remove the old unused alloca instructions. |
3672 | for (auto *AI : AllocaVec) |
3673 | AI->eraseFromParent(); |
3674 | } |
3675 | |
3676 | void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, |
3677 | IRBuilder<> &IRB, bool DoPoison) { |
3678 | // For now just insert the call to ASan runtime. |
3679 | Value *AddrArg = IRB.CreatePointerCast(V, DestTy: IntptrTy); |
3680 | Value *SizeArg = ConstantInt::get(Ty: IntptrTy, V: Size); |
3681 | RTCI.createRuntimeCall( |
3682 | IRB, Callee: DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, |
3683 | Args: {AddrArg, SizeArg}); |
3684 | } |
3685 | |
3686 | // Handling llvm.lifetime intrinsics for a given %alloca: |
3687 | // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. |
3688 | // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect |
3689 | // invalid accesses) and unpoison it for llvm.lifetime.start (the memory |
3690 | // could be poisoned by previous llvm.lifetime.end instruction, as the |
3691 | // variable may go in and out of scope several times, e.g. in loops). |
3692 | // (3) if we poisoned at least one %alloca in a function, |
3693 | // unpoison the whole stack frame at function exit. |
3694 | void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { |
3695 | IRBuilder<> IRB(AI); |
3696 | |
3697 | const Align Alignment = std::max(a: Align(kAllocaRzSize), b: AI->getAlign()); |
3698 | const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; |
3699 | |
3700 | Value *Zero = Constant::getNullValue(Ty: IntptrTy); |
3701 | Value *AllocaRzSize = ConstantInt::get(Ty: IntptrTy, V: kAllocaRzSize); |
3702 | Value *AllocaRzMask = ConstantInt::get(Ty: IntptrTy, V: AllocaRedzoneMask); |
3703 | |
3704 | // Since we need to extend alloca with additional memory to locate |
3705 | // redzones, and OldSize is number of allocated blocks with |
3706 | // ElementSize size, get allocated memory size in bytes by |
3707 | // OldSize * ElementSize. |
3708 | const unsigned ElementSize = |
3709 | F.getDataLayout().getTypeAllocSize(Ty: AI->getAllocatedType()); |
3710 | Value *OldSize = |
3711 | IRB.CreateMul(LHS: IRB.CreateIntCast(V: AI->getArraySize(), DestTy: IntptrTy, isSigned: false), |
3712 | RHS: ConstantInt::get(Ty: IntptrTy, V: ElementSize)); |
3713 | |
3714 | // PartialSize = OldSize % 32 |
3715 | Value *PartialSize = IRB.CreateAnd(LHS: OldSize, RHS: AllocaRzMask); |
3716 | |
3717 | // Misalign = kAllocaRzSize - PartialSize; |
3718 | Value *Misalign = IRB.CreateSub(LHS: AllocaRzSize, RHS: PartialSize); |
3719 | |
3720 | // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; |
3721 | Value *Cond = IRB.CreateICmpNE(LHS: Misalign, RHS: AllocaRzSize); |
3722 | Value *PartialPadding = IRB.CreateSelect(C: Cond, True: Misalign, False: Zero); |
3723 | |
3724 | // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize |
3725 | // Alignment is added to locate left redzone, PartialPadding for possible |
3726 | // partial redzone and kAllocaRzSize for right redzone respectively. |
3727 | Value *AdditionalChunkSize = IRB.CreateAdd( |
3728 | LHS: ConstantInt::get(Ty: IntptrTy, V: Alignment.value() + kAllocaRzSize), |
3729 | RHS: PartialPadding); |
3730 | |
3731 | Value *NewSize = IRB.CreateAdd(LHS: OldSize, RHS: AdditionalChunkSize); |
3732 | |
3733 | // Insert new alloca with new NewSize and Alignment params. |
3734 | AllocaInst *NewAlloca = IRB.CreateAlloca(Ty: IRB.getInt8Ty(), ArraySize: NewSize); |
3735 | NewAlloca->setAlignment(Alignment); |
3736 | |
3737 | // NewAddress = Address + Alignment |
3738 | Value *NewAddress = |
3739 | IRB.CreateAdd(LHS: IRB.CreatePtrToInt(V: NewAlloca, DestTy: IntptrTy), |
3740 | RHS: ConstantInt::get(Ty: IntptrTy, V: Alignment.value())); |
3741 | |
3742 | // Insert __asan_alloca_poison call for new created alloca. |
3743 | RTCI.createRuntimeCall(IRB, Callee: AsanAllocaPoisonFunc, Args: {NewAddress, OldSize}); |
3744 | |
3745 | // Store the last alloca's address to DynamicAllocaLayout. We'll need this |
3746 | // for unpoisoning stuff. |
3747 | IRB.CreateStore(Val: IRB.CreatePtrToInt(V: NewAlloca, DestTy: IntptrTy), Ptr: DynamicAllocaLayout); |
3748 | |
3749 | Value *NewAddressPtr = IRB.CreateIntToPtr(V: NewAddress, DestTy: AI->getType()); |
3750 | |
3751 | // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. |
3752 | AI->replaceAllUsesWith(V: NewAddressPtr); |
3753 | |
3754 | // We are done. Erase old alloca from parent. |
3755 | AI->eraseFromParent(); |
3756 | } |
3757 | |
3758 | // isSafeAccess returns true if Addr is always inbounds with respect to its |
3759 | // base object. For example, it is a field access or an array access with |
3760 | // constant inbounds index. |
3761 | bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, |
3762 | Value *Addr, TypeSize TypeStoreSize) const { |
3763 | if (TypeStoreSize.isScalable()) |
3764 | // TODO: We can use vscale_range to convert a scalable value to an |
3765 | // upper bound on the access size. |
3766 | return false; |
3767 | |
3768 | SizeOffsetAPInt SizeOffset = ObjSizeVis.compute(V: Addr); |
3769 | if (!SizeOffset.bothKnown()) |
3770 | return false; |
3771 | |
3772 | uint64_t Size = SizeOffset.Size.getZExtValue(); |
3773 | int64_t Offset = SizeOffset.Offset.getSExtValue(); |
3774 | |
3775 | // Three checks are required to ensure safety: |
3776 | // . Offset >= 0 (since the offset is given from the base ptr) |
3777 | // . Size >= Offset (unsigned) |
3778 | // . Size - Offset >= NeededSize (unsigned) |
3779 | return Offset >= 0 && Size >= uint64_t(Offset) && |
3780 | Size - uint64_t(Offset) >= TypeStoreSize / 8; |
3781 | } |
3782 | |