1 | //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file |
10 | /// This file is a part of MemorySanitizer, a detector of uninitialized |
11 | /// reads. |
12 | /// |
13 | /// The algorithm of the tool is similar to Memcheck |
14 | /// (https://static.usenix.org/event/usenix05/tech/general/full_papers/seward/seward_html/usenix2005.html) |
15 | /// We associate a few shadow bits with every byte of the application memory, |
16 | /// poison the shadow of the malloc-ed or alloca-ed memory, load the shadow, |
17 | /// bits on every memory read, propagate the shadow bits through some of the |
18 | /// arithmetic instruction (including MOV), store the shadow bits on every memory |
19 | /// write, report a bug on some other instructions (e.g. JMP) if the |
20 | /// associated shadow is poisoned. |
21 | /// |
22 | /// But there are differences too. The first and the major one: |
23 | /// compiler instrumentation instead of binary instrumentation. This |
24 | /// gives us much better register allocation, possible compiler |
25 | /// optimizations and a fast start-up. But this brings the major issue |
26 | /// as well: msan needs to see all program events, including system |
27 | /// calls and reads/writes in system libraries, so we either need to |
28 | /// compile *everything* with msan or use a binary translation |
29 | /// component (e.g. DynamoRIO) to instrument pre-built libraries. |
30 | /// Another difference from Memcheck is that we use 8 shadow bits per |
31 | /// byte of application memory and use a direct shadow mapping. This |
32 | /// greatly simplifies the instrumentation code and avoids races on |
33 | /// shadow updates (Memcheck is single-threaded so races are not a |
34 | /// concern there. Memcheck uses 2 shadow bits per byte with a slow |
35 | /// path storage that uses 8 bits per byte). |
36 | /// |
37 | /// The default value of shadow is 0, which means "clean" (not poisoned). |
38 | /// |
39 | /// Every module initializer should call __msan_init to ensure that the |
40 | /// shadow memory is ready. On error, __msan_warning is called. Since |
41 | /// parameters and return values may be passed via registers, we have a |
42 | /// specialized thread-local shadow for return values |
43 | /// (__msan_retval_tls) and parameters (__msan_param_tls). |
44 | /// |
45 | /// Origin tracking. |
46 | /// |
47 | /// MemorySanitizer can track origins (allocation points) of all uninitialized |
48 | /// values. This behavior is controlled with a flag (msan-track-origins) and is |
49 | /// disabled by default. |
50 | /// |
51 | /// Origins are 4-byte values created and interpreted by the runtime library. |
52 | /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes |
53 | /// of application memory. Propagation of origins is basically a bunch of |
54 | /// "select" instructions that pick the origin of a dirty argument, if an |
55 | /// instruction has one. |
56 | /// |
57 | /// Every 4 aligned, consecutive bytes of application memory have one origin |
58 | /// value associated with them. If these bytes contain uninitialized data |
59 | /// coming from 2 different allocations, the last store wins. Because of this, |
60 | /// MemorySanitizer reports can show unrelated origins, but this is unlikely in |
61 | /// practice. |
62 | /// |
63 | /// Origins are meaningless for fully initialized values, so MemorySanitizer |
64 | /// avoids storing origin to memory when a fully initialized value is stored. |
65 | /// This way it avoids needless overwriting origin of the 4-byte region on |
66 | /// a short (i.e. 1 byte) clean store, and it is also good for performance. |
67 | /// |
68 | /// Atomic handling. |
69 | /// |
70 | /// Ideally, every atomic store of application value should update the |
71 | /// corresponding shadow location in an atomic way. Unfortunately, atomic store |
72 | /// of two disjoint locations can not be done without severe slowdown. |
73 | /// |
74 | /// Therefore, we implement an approximation that may err on the safe side. |
75 | /// In this implementation, every atomically accessed location in the program |
76 | /// may only change from (partially) uninitialized to fully initialized, but |
77 | /// not the other way around. We load the shadow _after_ the application load, |
78 | /// and we store the shadow _before_ the app store. Also, we always store clean |
79 | /// shadow (if the application store is atomic). This way, if the store-load |
80 | /// pair constitutes a happens-before arc, shadow store and load are correctly |
81 | /// ordered such that the load will get either the value that was stored, or |
82 | /// some later value (which is always clean). |
83 | /// |
84 | /// This does not work very well with Compare-And-Swap (CAS) and |
85 | /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW |
86 | /// must store the new shadow before the app operation, and load the shadow |
87 | /// after the app operation. Computers don't work this way. Current |
88 | /// implementation ignores the load aspect of CAS/RMW, always returning a clean |
89 | /// value. It implements the store part as a simple atomic store by storing a |
90 | /// clean shadow. |
91 | /// |
92 | /// Instrumenting inline assembly. |
93 | /// |
94 | /// For inline assembly code LLVM has little idea about which memory locations |
95 | /// become initialized depending on the arguments. It can be possible to figure |
96 | /// out which arguments are meant to point to inputs and outputs, but the |
97 | /// actual semantics can be only visible at runtime. In the Linux kernel it's |
98 | /// also possible that the arguments only indicate the offset for a base taken |
99 | /// from a segment register, so it's dangerous to treat any asm() arguments as |
100 | /// pointers. We take a conservative approach generating calls to |
101 | /// __msan_instrument_asm_store(ptr, size) |
102 | /// , which defer the memory unpoisoning to the runtime library. |
103 | /// The latter can perform more complex address checks to figure out whether |
104 | /// it's safe to touch the shadow memory. |
105 | /// Like with atomic operations, we call __msan_instrument_asm_store() before |
106 | /// the assembly call, so that changes to the shadow memory will be seen by |
107 | /// other threads together with main memory initialization. |
108 | /// |
109 | /// KernelMemorySanitizer (KMSAN) implementation. |
110 | /// |
111 | /// The major differences between KMSAN and MSan instrumentation are: |
112 | /// - KMSAN always tracks the origins and implies msan-keep-going=true; |
113 | /// - KMSAN allocates shadow and origin memory for each page separately, so |
114 | /// there are no explicit accesses to shadow and origin in the |
115 | /// instrumentation. |
116 | /// Shadow and origin values for a particular X-byte memory location |
117 | /// (X=1,2,4,8) are accessed through pointers obtained via the |
118 | /// __msan_metadata_ptr_for_load_X(ptr) |
119 | /// __msan_metadata_ptr_for_store_X(ptr) |
120 | /// functions. The corresponding functions check that the X-byte accesses |
121 | /// are possible and returns the pointers to shadow and origin memory. |
122 | /// Arbitrary sized accesses are handled with: |
123 | /// __msan_metadata_ptr_for_load_n(ptr, size) |
124 | /// __msan_metadata_ptr_for_store_n(ptr, size); |
125 | /// Note that the sanitizer code has to deal with how shadow/origin pairs |
126 | /// returned by the these functions are represented in different ABIs. In |
127 | /// the X86_64 ABI they are returned in RDX:RAX, in PowerPC64 they are |
128 | /// returned in r3 and r4, and in the SystemZ ABI they are written to memory |
129 | /// pointed to by a hidden parameter. |
130 | /// - TLS variables are stored in a single per-task struct. A call to a |
131 | /// function __msan_get_context_state() returning a pointer to that struct |
132 | /// is inserted into every instrumented function before the entry block; |
133 | /// - __msan_warning() takes a 32-bit origin parameter; |
134 | /// - local variables are poisoned with __msan_poison_alloca() upon function |
135 | /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the |
136 | /// function; |
137 | /// - the pass doesn't declare any global variables or add global constructors |
138 | /// to the translation unit. |
139 | /// |
140 | /// Also, KMSAN currently ignores uninitialized memory passed into inline asm |
141 | /// calls, making sure we're on the safe side wrt. possible false positives. |
142 | /// |
143 | /// KernelMemorySanitizer only supports X86_64, SystemZ and PowerPC64 at the |
144 | /// moment. |
145 | /// |
146 | // |
147 | // FIXME: This sanitizer does not yet handle scalable vectors |
148 | // |
149 | //===----------------------------------------------------------------------===// |
150 | |
151 | #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" |
152 | #include "llvm/ADT/APInt.h" |
153 | #include "llvm/ADT/ArrayRef.h" |
154 | #include "llvm/ADT/DenseMap.h" |
155 | #include "llvm/ADT/DepthFirstIterator.h" |
156 | #include "llvm/ADT/SetVector.h" |
157 | #include "llvm/ADT/SmallPtrSet.h" |
158 | #include "llvm/ADT/SmallVector.h" |
159 | #include "llvm/ADT/StringExtras.h" |
160 | #include "llvm/ADT/StringRef.h" |
161 | #include "llvm/Analysis/GlobalsModRef.h" |
162 | #include "llvm/Analysis/TargetLibraryInfo.h" |
163 | #include "llvm/Analysis/ValueTracking.h" |
164 | #include "llvm/IR/Argument.h" |
165 | #include "llvm/IR/AttributeMask.h" |
166 | #include "llvm/IR/Attributes.h" |
167 | #include "llvm/IR/BasicBlock.h" |
168 | #include "llvm/IR/CallingConv.h" |
169 | #include "llvm/IR/Constant.h" |
170 | #include "llvm/IR/Constants.h" |
171 | #include "llvm/IR/DataLayout.h" |
172 | #include "llvm/IR/DerivedTypes.h" |
173 | #include "llvm/IR/Function.h" |
174 | #include "llvm/IR/GlobalValue.h" |
175 | #include "llvm/IR/GlobalVariable.h" |
176 | #include "llvm/IR/IRBuilder.h" |
177 | #include "llvm/IR/InlineAsm.h" |
178 | #include "llvm/IR/InstVisitor.h" |
179 | #include "llvm/IR/InstrTypes.h" |
180 | #include "llvm/IR/Instruction.h" |
181 | #include "llvm/IR/Instructions.h" |
182 | #include "llvm/IR/IntrinsicInst.h" |
183 | #include "llvm/IR/Intrinsics.h" |
184 | #include "llvm/IR/IntrinsicsAArch64.h" |
185 | #include "llvm/IR/IntrinsicsX86.h" |
186 | #include "llvm/IR/MDBuilder.h" |
187 | #include "llvm/IR/Module.h" |
188 | #include "llvm/IR/Type.h" |
189 | #include "llvm/IR/Value.h" |
190 | #include "llvm/IR/ValueMap.h" |
191 | #include "llvm/Support/Alignment.h" |
192 | #include "llvm/Support/AtomicOrdering.h" |
193 | #include "llvm/Support/Casting.h" |
194 | #include "llvm/Support/CommandLine.h" |
195 | #include "llvm/Support/Debug.h" |
196 | #include "llvm/Support/DebugCounter.h" |
197 | #include "llvm/Support/ErrorHandling.h" |
198 | #include "llvm/Support/MathExtras.h" |
199 | #include "llvm/Support/raw_ostream.h" |
200 | #include "llvm/TargetParser/Triple.h" |
201 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
202 | #include "llvm/Transforms/Utils/Local.h" |
203 | #include "llvm/Transforms/Utils/ModuleUtils.h" |
204 | #include <algorithm> |
205 | #include <cassert> |
206 | #include <cstddef> |
207 | #include <cstdint> |
208 | #include <memory> |
209 | #include <string> |
210 | #include <tuple> |
211 | |
212 | using namespace llvm; |
213 | |
214 | #define DEBUG_TYPE "msan" |
215 | |
216 | DEBUG_COUNTER(DebugInsertCheck, "msan-insert-check" , |
217 | "Controls which checks to insert" ); |
218 | |
219 | DEBUG_COUNTER(DebugInstrumentInstruction, "msan-instrument-instruction" , |
220 | "Controls which instruction to instrument" ); |
221 | |
222 | static const unsigned kOriginSize = 4; |
223 | static const Align kMinOriginAlignment = Align(4); |
224 | static const Align kShadowTLSAlignment = Align(8); |
225 | |
226 | // These constants must be kept in sync with the ones in msan.h. |
227 | static const unsigned kParamTLSSize = 800; |
228 | static const unsigned kRetvalTLSSize = 800; |
229 | |
230 | // Accesses sizes are powers of two: 1, 2, 4, 8. |
231 | static const size_t kNumberOfAccessSizes = 4; |
232 | |
233 | /// Track origins of uninitialized values. |
234 | /// |
235 | /// Adds a section to MemorySanitizer report that points to the allocation |
236 | /// (stack or heap) the uninitialized bits came from originally. |
237 | static cl::opt<int> ClTrackOrigins( |
238 | "msan-track-origins" , |
239 | cl::desc("Track origins (allocation sites) of poisoned memory" ), cl::Hidden, |
240 | cl::init(Val: 0)); |
241 | |
242 | static cl::opt<bool> ClKeepGoing("msan-keep-going" , |
243 | cl::desc("keep going after reporting a UMR" ), |
244 | cl::Hidden, cl::init(Val: false)); |
245 | |
246 | static cl::opt<bool> |
247 | ClPoisonStack("msan-poison-stack" , |
248 | cl::desc("poison uninitialized stack variables" ), cl::Hidden, |
249 | cl::init(Val: true)); |
250 | |
251 | static cl::opt<bool> ClPoisonStackWithCall( |
252 | "msan-poison-stack-with-call" , |
253 | cl::desc("poison uninitialized stack variables with a call" ), cl::Hidden, |
254 | cl::init(Val: false)); |
255 | |
256 | static cl::opt<int> ClPoisonStackPattern( |
257 | "msan-poison-stack-pattern" , |
258 | cl::desc("poison uninitialized stack variables with the given pattern" ), |
259 | cl::Hidden, cl::init(Val: 0xff)); |
260 | |
261 | static cl::opt<bool> |
262 | ClPrintStackNames("msan-print-stack-names" , |
263 | cl::desc("Print name of local stack variable" ), |
264 | cl::Hidden, cl::init(Val: true)); |
265 | |
266 | static cl::opt<bool> ClPoisonUndef("msan-poison-undef" , |
267 | cl::desc("poison undef temps" ), cl::Hidden, |
268 | cl::init(Val: true)); |
269 | |
270 | static cl::opt<bool> |
271 | ClHandleICmp("msan-handle-icmp" , |
272 | cl::desc("propagate shadow through ICmpEQ and ICmpNE" ), |
273 | cl::Hidden, cl::init(Val: true)); |
274 | |
275 | static cl::opt<bool> |
276 | ClHandleICmpExact("msan-handle-icmp-exact" , |
277 | cl::desc("exact handling of relational integer ICmp" ), |
278 | cl::Hidden, cl::init(Val: false)); |
279 | |
280 | static cl::opt<bool> ClHandleLifetimeIntrinsics( |
281 | "msan-handle-lifetime-intrinsics" , |
282 | cl::desc( |
283 | "when possible, poison scoped variables at the beginning of the scope " |
284 | "(slower, but more precise)" ), |
285 | cl::Hidden, cl::init(Val: true)); |
286 | |
287 | // When compiling the Linux kernel, we sometimes see false positives related to |
288 | // MSan being unable to understand that inline assembly calls may initialize |
289 | // local variables. |
290 | // This flag makes the compiler conservatively unpoison every memory location |
291 | // passed into an assembly call. Note that this may cause false positives. |
292 | // Because it's impossible to figure out the array sizes, we can only unpoison |
293 | // the first sizeof(type) bytes for each type* pointer. |
294 | static cl::opt<bool> ClHandleAsmConservative( |
295 | "msan-handle-asm-conservative" , |
296 | cl::desc("conservative handling of inline assembly" ), cl::Hidden, |
297 | cl::init(Val: true)); |
298 | |
299 | // This flag controls whether we check the shadow of the address |
300 | // operand of load or store. Such bugs are very rare, since load from |
301 | // a garbage address typically results in SEGV, but still happen |
302 | // (e.g. only lower bits of address are garbage, or the access happens |
303 | // early at program startup where malloc-ed memory is more likely to |
304 | // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. |
305 | static cl::opt<bool> ClCheckAccessAddress( |
306 | "msan-check-access-address" , |
307 | cl::desc("report accesses through a pointer which has poisoned shadow" ), |
308 | cl::Hidden, cl::init(Val: true)); |
309 | |
310 | static cl::opt<bool> ClEagerChecks( |
311 | "msan-eager-checks" , |
312 | cl::desc("check arguments and return values at function call boundaries" ), |
313 | cl::Hidden, cl::init(Val: false)); |
314 | |
315 | static cl::opt<bool> ClDumpStrictInstructions( |
316 | "msan-dump-strict-instructions" , |
317 | cl::desc("print out instructions with default strict semantics" ), |
318 | cl::Hidden, cl::init(Val: false)); |
319 | |
320 | static cl::opt<int> ClInstrumentationWithCallThreshold( |
321 | "msan-instrumentation-with-call-threshold" , |
322 | cl::desc( |
323 | "If the function being instrumented requires more than " |
324 | "this number of checks and origin stores, use callbacks instead of " |
325 | "inline checks (-1 means never use callbacks)." ), |
326 | cl::Hidden, cl::init(Val: 3500)); |
327 | |
328 | static cl::opt<bool> |
329 | ClEnableKmsan("msan-kernel" , |
330 | cl::desc("Enable KernelMemorySanitizer instrumentation" ), |
331 | cl::Hidden, cl::init(Val: false)); |
332 | |
333 | static cl::opt<bool> |
334 | ClDisableChecks("msan-disable-checks" , |
335 | cl::desc("Apply no_sanitize to the whole file" ), cl::Hidden, |
336 | cl::init(Val: false)); |
337 | |
338 | static cl::opt<bool> |
339 | ClCheckConstantShadow("msan-check-constant-shadow" , |
340 | cl::desc("Insert checks for constant shadow values" ), |
341 | cl::Hidden, cl::init(Val: true)); |
342 | |
343 | // This is off by default because of a bug in gold: |
344 | // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 |
345 | static cl::opt<bool> |
346 | ClWithComdat("msan-with-comdat" , |
347 | cl::desc("Place MSan constructors in comdat sections" ), |
348 | cl::Hidden, cl::init(Val: false)); |
349 | |
350 | // These options allow to specify custom memory map parameters |
351 | // See MemoryMapParams for details. |
352 | static cl::opt<uint64_t> ClAndMask("msan-and-mask" , |
353 | cl::desc("Define custom MSan AndMask" ), |
354 | cl::Hidden, cl::init(Val: 0)); |
355 | |
356 | static cl::opt<uint64_t> ClXorMask("msan-xor-mask" , |
357 | cl::desc("Define custom MSan XorMask" ), |
358 | cl::Hidden, cl::init(Val: 0)); |
359 | |
360 | static cl::opt<uint64_t> ClShadowBase("msan-shadow-base" , |
361 | cl::desc("Define custom MSan ShadowBase" ), |
362 | cl::Hidden, cl::init(Val: 0)); |
363 | |
364 | static cl::opt<uint64_t> ClOriginBase("msan-origin-base" , |
365 | cl::desc("Define custom MSan OriginBase" ), |
366 | cl::Hidden, cl::init(Val: 0)); |
367 | |
368 | static cl::opt<int> |
369 | ClDisambiguateWarning("msan-disambiguate-warning-threshold" , |
370 | cl::desc("Define threshold for number of checks per " |
371 | "debug location to force origin update." ), |
372 | cl::Hidden, cl::init(Val: 3)); |
373 | |
374 | const char kMsanModuleCtorName[] = "msan.module_ctor" ; |
375 | const char kMsanInitName[] = "__msan_init" ; |
376 | |
377 | namespace { |
378 | |
379 | // Memory map parameters used in application-to-shadow address calculation. |
380 | // Offset = (Addr & ~AndMask) ^ XorMask |
381 | // Shadow = ShadowBase + Offset |
382 | // Origin = OriginBase + Offset |
383 | struct MemoryMapParams { |
384 | uint64_t AndMask; |
385 | uint64_t XorMask; |
386 | uint64_t ShadowBase; |
387 | uint64_t OriginBase; |
388 | }; |
389 | |
390 | struct PlatformMemoryMapParams { |
391 | const MemoryMapParams *bits32; |
392 | const MemoryMapParams *bits64; |
393 | }; |
394 | |
395 | } // end anonymous namespace |
396 | |
397 | // i386 Linux |
398 | static const MemoryMapParams Linux_I386_MemoryMapParams = { |
399 | .AndMask: 0x000080000000, // AndMask |
400 | .XorMask: 0, // XorMask (not used) |
401 | .ShadowBase: 0, // ShadowBase (not used) |
402 | .OriginBase: 0x000040000000, // OriginBase |
403 | }; |
404 | |
405 | // x86_64 Linux |
406 | static const MemoryMapParams Linux_X86_64_MemoryMapParams = { |
407 | .AndMask: 0, // AndMask (not used) |
408 | .XorMask: 0x500000000000, // XorMask |
409 | .ShadowBase: 0, // ShadowBase (not used) |
410 | .OriginBase: 0x100000000000, // OriginBase |
411 | }; |
412 | |
413 | // mips64 Linux |
414 | static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { |
415 | .AndMask: 0, // AndMask (not used) |
416 | .XorMask: 0x008000000000, // XorMask |
417 | .ShadowBase: 0, // ShadowBase (not used) |
418 | .OriginBase: 0x002000000000, // OriginBase |
419 | }; |
420 | |
421 | // ppc64 Linux |
422 | static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { |
423 | .AndMask: 0xE00000000000, // AndMask |
424 | .XorMask: 0x100000000000, // XorMask |
425 | .ShadowBase: 0x080000000000, // ShadowBase |
426 | .OriginBase: 0x1C0000000000, // OriginBase |
427 | }; |
428 | |
429 | // s390x Linux |
430 | static const MemoryMapParams Linux_S390X_MemoryMapParams = { |
431 | .AndMask: 0xC00000000000, // AndMask |
432 | .XorMask: 0, // XorMask (not used) |
433 | .ShadowBase: 0x080000000000, // ShadowBase |
434 | .OriginBase: 0x1C0000000000, // OriginBase |
435 | }; |
436 | |
437 | // aarch64 Linux |
438 | static const MemoryMapParams Linux_AArch64_MemoryMapParams = { |
439 | .AndMask: 0, // AndMask (not used) |
440 | .XorMask: 0x0B00000000000, // XorMask |
441 | .ShadowBase: 0, // ShadowBase (not used) |
442 | .OriginBase: 0x0200000000000, // OriginBase |
443 | }; |
444 | |
445 | // loongarch64 Linux |
446 | static const MemoryMapParams Linux_LoongArch64_MemoryMapParams = { |
447 | .AndMask: 0, // AndMask (not used) |
448 | .XorMask: 0x500000000000, // XorMask |
449 | .ShadowBase: 0, // ShadowBase (not used) |
450 | .OriginBase: 0x100000000000, // OriginBase |
451 | }; |
452 | |
453 | // aarch64 FreeBSD |
454 | static const MemoryMapParams FreeBSD_AArch64_MemoryMapParams = { |
455 | .AndMask: 0x1800000000000, // AndMask |
456 | .XorMask: 0x0400000000000, // XorMask |
457 | .ShadowBase: 0x0200000000000, // ShadowBase |
458 | .OriginBase: 0x0700000000000, // OriginBase |
459 | }; |
460 | |
461 | // i386 FreeBSD |
462 | static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { |
463 | .AndMask: 0x000180000000, // AndMask |
464 | .XorMask: 0x000040000000, // XorMask |
465 | .ShadowBase: 0x000020000000, // ShadowBase |
466 | .OriginBase: 0x000700000000, // OriginBase |
467 | }; |
468 | |
469 | // x86_64 FreeBSD |
470 | static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { |
471 | .AndMask: 0xc00000000000, // AndMask |
472 | .XorMask: 0x200000000000, // XorMask |
473 | .ShadowBase: 0x100000000000, // ShadowBase |
474 | .OriginBase: 0x380000000000, // OriginBase |
475 | }; |
476 | |
477 | // x86_64 NetBSD |
478 | static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { |
479 | .AndMask: 0, // AndMask |
480 | .XorMask: 0x500000000000, // XorMask |
481 | .ShadowBase: 0, // ShadowBase |
482 | .OriginBase: 0x100000000000, // OriginBase |
483 | }; |
484 | |
485 | static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { |
486 | .bits32: &Linux_I386_MemoryMapParams, |
487 | .bits64: &Linux_X86_64_MemoryMapParams, |
488 | }; |
489 | |
490 | static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { |
491 | .bits32: nullptr, |
492 | .bits64: &Linux_MIPS64_MemoryMapParams, |
493 | }; |
494 | |
495 | static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { |
496 | .bits32: nullptr, |
497 | .bits64: &Linux_PowerPC64_MemoryMapParams, |
498 | }; |
499 | |
500 | static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { |
501 | .bits32: nullptr, |
502 | .bits64: &Linux_S390X_MemoryMapParams, |
503 | }; |
504 | |
505 | static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { |
506 | .bits32: nullptr, |
507 | .bits64: &Linux_AArch64_MemoryMapParams, |
508 | }; |
509 | |
510 | static const PlatformMemoryMapParams Linux_LoongArch_MemoryMapParams = { |
511 | .bits32: nullptr, |
512 | .bits64: &Linux_LoongArch64_MemoryMapParams, |
513 | }; |
514 | |
515 | static const PlatformMemoryMapParams FreeBSD_ARM_MemoryMapParams = { |
516 | .bits32: nullptr, |
517 | .bits64: &FreeBSD_AArch64_MemoryMapParams, |
518 | }; |
519 | |
520 | static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { |
521 | .bits32: &FreeBSD_I386_MemoryMapParams, |
522 | .bits64: &FreeBSD_X86_64_MemoryMapParams, |
523 | }; |
524 | |
525 | static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { |
526 | .bits32: nullptr, |
527 | .bits64: &NetBSD_X86_64_MemoryMapParams, |
528 | }; |
529 | |
530 | namespace { |
531 | |
532 | /// Instrument functions of a module to detect uninitialized reads. |
533 | /// |
534 | /// Instantiating MemorySanitizer inserts the msan runtime library API function |
535 | /// declarations into the module if they don't exist already. Instantiating |
536 | /// ensures the __msan_init function is in the list of global constructors for |
537 | /// the module. |
538 | class MemorySanitizer { |
539 | public: |
540 | MemorySanitizer(Module &M, MemorySanitizerOptions Options) |
541 | : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), |
542 | Recover(Options.Recover), EagerChecks(Options.EagerChecks) { |
543 | initializeModule(M); |
544 | } |
545 | |
546 | // MSan cannot be moved or copied because of MapParams. |
547 | MemorySanitizer(MemorySanitizer &&) = delete; |
548 | MemorySanitizer &operator=(MemorySanitizer &&) = delete; |
549 | MemorySanitizer(const MemorySanitizer &) = delete; |
550 | MemorySanitizer &operator=(const MemorySanitizer &) = delete; |
551 | |
552 | bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); |
553 | |
554 | private: |
555 | friend struct MemorySanitizerVisitor; |
556 | friend struct VarArgHelperBase; |
557 | friend struct VarArgAMD64Helper; |
558 | friend struct VarArgMIPS64Helper; |
559 | friend struct VarArgAArch64Helper; |
560 | friend struct VarArgPowerPC64Helper; |
561 | friend struct VarArgSystemZHelper; |
562 | |
563 | void initializeModule(Module &M); |
564 | void initializeCallbacks(Module &M, const TargetLibraryInfo &TLI); |
565 | void createKernelApi(Module &M, const TargetLibraryInfo &TLI); |
566 | void createUserspaceApi(Module &M, const TargetLibraryInfo &TLI); |
567 | |
568 | template <typename... ArgsTy> |
569 | FunctionCallee getOrInsertMsanMetadataFunction(Module &M, StringRef Name, |
570 | ArgsTy... Args); |
571 | |
572 | /// True if we're compiling the Linux kernel. |
573 | bool CompileKernel; |
574 | /// Track origins (allocation points) of uninitialized values. |
575 | int TrackOrigins; |
576 | bool Recover; |
577 | bool EagerChecks; |
578 | |
579 | Triple TargetTriple; |
580 | LLVMContext *C; |
581 | Type *IntptrTy; ///< Integer type with the size of a ptr in default AS. |
582 | Type *OriginTy; |
583 | PointerType *PtrTy; ///< Integer type with the size of a ptr in default AS. |
584 | |
585 | // XxxTLS variables represent the per-thread state in MSan and per-task state |
586 | // in KMSAN. |
587 | // For the userspace these point to thread-local globals. In the kernel land |
588 | // they point to the members of a per-task struct obtained via a call to |
589 | // __msan_get_context_state(). |
590 | |
591 | /// Thread-local shadow storage for function parameters. |
592 | Value *ParamTLS; |
593 | |
594 | /// Thread-local origin storage for function parameters. |
595 | Value *ParamOriginTLS; |
596 | |
597 | /// Thread-local shadow storage for function return value. |
598 | Value *RetvalTLS; |
599 | |
600 | /// Thread-local origin storage for function return value. |
601 | Value *RetvalOriginTLS; |
602 | |
603 | /// Thread-local shadow storage for in-register va_arg function. |
604 | Value *VAArgTLS; |
605 | |
606 | /// Thread-local shadow storage for in-register va_arg function. |
607 | Value *VAArgOriginTLS; |
608 | |
609 | /// Thread-local shadow storage for va_arg overflow area. |
610 | Value *VAArgOverflowSizeTLS; |
611 | |
612 | /// Are the instrumentation callbacks set up? |
613 | bool CallbacksInitialized = false; |
614 | |
615 | /// The run-time callback to print a warning. |
616 | FunctionCallee WarningFn; |
617 | |
618 | // These arrays are indexed by log2(AccessSize). |
619 | FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; |
620 | FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; |
621 | |
622 | /// Run-time helper that generates a new origin value for a stack |
623 | /// allocation. |
624 | FunctionCallee MsanSetAllocaOriginWithDescriptionFn; |
625 | // No description version |
626 | FunctionCallee MsanSetAllocaOriginNoDescriptionFn; |
627 | |
628 | /// Run-time helper that poisons stack on function entry. |
629 | FunctionCallee MsanPoisonStackFn; |
630 | |
631 | /// Run-time helper that records a store (or any event) of an |
632 | /// uninitialized value and returns an updated origin id encoding this info. |
633 | FunctionCallee MsanChainOriginFn; |
634 | |
635 | /// Run-time helper that paints an origin over a region. |
636 | FunctionCallee MsanSetOriginFn; |
637 | |
638 | /// MSan runtime replacements for memmove, memcpy and memset. |
639 | FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; |
640 | |
641 | /// KMSAN callback for task-local function argument shadow. |
642 | StructType *MsanContextStateTy; |
643 | FunctionCallee MsanGetContextStateFn; |
644 | |
645 | /// Functions for poisoning/unpoisoning local variables |
646 | FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; |
647 | |
648 | /// Pair of shadow/origin pointers. |
649 | Type *MsanMetadata; |
650 | |
651 | /// Each of the MsanMetadataPtrXxx functions returns a MsanMetadata. |
652 | FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; |
653 | FunctionCallee MsanMetadataPtrForLoad_1_8[4]; |
654 | FunctionCallee MsanMetadataPtrForStore_1_8[4]; |
655 | FunctionCallee MsanInstrumentAsmStoreFn; |
656 | |
657 | /// Storage for return values of the MsanMetadataPtrXxx functions. |
658 | Value *MsanMetadataAlloca; |
659 | |
660 | /// Helper to choose between different MsanMetadataPtrXxx(). |
661 | FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); |
662 | |
663 | /// Memory map parameters used in application-to-shadow calculation. |
664 | const MemoryMapParams *MapParams; |
665 | |
666 | /// Custom memory map parameters used when -msan-shadow-base or |
667 | // -msan-origin-base is provided. |
668 | MemoryMapParams CustomMapParams; |
669 | |
670 | MDNode *ColdCallWeights; |
671 | |
672 | /// Branch weights for origin store. |
673 | MDNode *OriginStoreWeights; |
674 | }; |
675 | |
676 | void insertModuleCtor(Module &M) { |
677 | getOrCreateSanitizerCtorAndInitFunctions( |
678 | M, CtorName: kMsanModuleCtorName, InitName: kMsanInitName, |
679 | /*InitArgTypes=*/{}, |
680 | /*InitArgs=*/{}, |
681 | // This callback is invoked when the functions are created the first |
682 | // time. Hook them into the global ctors list in that case: |
683 | FunctionsCreatedCallback: [&](Function *Ctor, FunctionCallee) { |
684 | if (!ClWithComdat) { |
685 | appendToGlobalCtors(M, F: Ctor, Priority: 0); |
686 | return; |
687 | } |
688 | Comdat *MsanCtorComdat = M.getOrInsertComdat(Name: kMsanModuleCtorName); |
689 | Ctor->setComdat(MsanCtorComdat); |
690 | appendToGlobalCtors(M, F: Ctor, Priority: 0, Data: Ctor); |
691 | }); |
692 | } |
693 | |
694 | template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { |
695 | return (Opt.getNumOccurrences() > 0) ? Opt : Default; |
696 | } |
697 | |
698 | } // end anonymous namespace |
699 | |
700 | MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K, |
701 | bool EagerChecks) |
702 | : Kernel(getOptOrDefault(Opt: ClEnableKmsan, Default: K)), |
703 | TrackOrigins(getOptOrDefault(Opt: ClTrackOrigins, Default: Kernel ? 2 : TO)), |
704 | Recover(getOptOrDefault(Opt: ClKeepGoing, Default: Kernel || R)), |
705 | EagerChecks(getOptOrDefault(Opt: ClEagerChecks, Default: EagerChecks)) {} |
706 | |
707 | PreservedAnalyses MemorySanitizerPass::run(Module &M, |
708 | ModuleAnalysisManager &AM) { |
709 | bool Modified = false; |
710 | if (!Options.Kernel) { |
711 | insertModuleCtor(M); |
712 | Modified = true; |
713 | } |
714 | |
715 | auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
716 | for (Function &F : M) { |
717 | if (F.empty()) |
718 | continue; |
719 | MemorySanitizer Msan(*F.getParent(), Options); |
720 | Modified |= |
721 | Msan.sanitizeFunction(F, TLI&: FAM.getResult<TargetLibraryAnalysis>(IR&: F)); |
722 | } |
723 | |
724 | if (!Modified) |
725 | return PreservedAnalyses::all(); |
726 | |
727 | PreservedAnalyses PA = PreservedAnalyses::none(); |
728 | // GlobalsAA is considered stateless and does not get invalidated unless |
729 | // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers |
730 | // make changes that require GlobalsAA to be invalidated. |
731 | PA.abandon<GlobalsAA>(); |
732 | return PA; |
733 | } |
734 | |
735 | void MemorySanitizerPass::printPipeline( |
736 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
737 | static_cast<PassInfoMixin<MemorySanitizerPass> *>(this)->printPipeline( |
738 | OS, MapClassName2PassName); |
739 | OS << '<'; |
740 | if (Options.Recover) |
741 | OS << "recover;" ; |
742 | if (Options.Kernel) |
743 | OS << "kernel;" ; |
744 | if (Options.EagerChecks) |
745 | OS << "eager-checks;" ; |
746 | OS << "track-origins=" << Options.TrackOrigins; |
747 | OS << '>'; |
748 | } |
749 | |
750 | /// Create a non-const global initialized with the given string. |
751 | /// |
752 | /// Creates a writable global for Str so that we can pass it to the |
753 | /// run-time lib. Runtime uses first 4 bytes of the string to store the |
754 | /// frame ID, so the string needs to be mutable. |
755 | static GlobalVariable *createPrivateConstGlobalForString(Module &M, |
756 | StringRef Str) { |
757 | Constant *StrConst = ConstantDataArray::getString(Context&: M.getContext(), Initializer: Str); |
758 | return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/true, |
759 | GlobalValue::PrivateLinkage, StrConst, "" ); |
760 | } |
761 | |
762 | template <typename... ArgsTy> |
763 | FunctionCallee |
764 | MemorySanitizer::getOrInsertMsanMetadataFunction(Module &M, StringRef Name, |
765 | ArgsTy... Args) { |
766 | if (TargetTriple.getArch() == Triple::systemz) { |
767 | // SystemZ ABI: shadow/origin pair is returned via a hidden parameter. |
768 | return M.getOrInsertFunction(Name, Type::getVoidTy(C&: *C), |
769 | PointerType::get(ElementType: MsanMetadata, AddressSpace: 0), |
770 | std::forward<ArgsTy>(Args)...); |
771 | } |
772 | |
773 | return M.getOrInsertFunction(Name, MsanMetadata, |
774 | std::forward<ArgsTy>(Args)...); |
775 | } |
776 | |
777 | /// Create KMSAN API callbacks. |
778 | void MemorySanitizer::createKernelApi(Module &M, const TargetLibraryInfo &TLI) { |
779 | IRBuilder<> IRB(*C); |
780 | |
781 | // These will be initialized in insertKmsanPrologue(). |
782 | RetvalTLS = nullptr; |
783 | RetvalOriginTLS = nullptr; |
784 | ParamTLS = nullptr; |
785 | ParamOriginTLS = nullptr; |
786 | VAArgTLS = nullptr; |
787 | VAArgOriginTLS = nullptr; |
788 | VAArgOverflowSizeTLS = nullptr; |
789 | |
790 | WarningFn = M.getOrInsertFunction(Name: "__msan_warning" , |
791 | AttributeList: TLI.getAttrList(C, ArgNos: {0}, /*Signed=*/false), |
792 | RetTy: IRB.getVoidTy(), Args: IRB.getInt32Ty()); |
793 | |
794 | // Requests the per-task context state (kmsan_context_state*) from the |
795 | // runtime library. |
796 | MsanContextStateTy = StructType::get( |
797 | elt1: ArrayType::get(ElementType: IRB.getInt64Ty(), NumElements: kParamTLSSize / 8), |
798 | elts: ArrayType::get(ElementType: IRB.getInt64Ty(), NumElements: kRetvalTLSSize / 8), |
799 | elts: ArrayType::get(ElementType: IRB.getInt64Ty(), NumElements: kParamTLSSize / 8), |
800 | elts: ArrayType::get(ElementType: IRB.getInt64Ty(), NumElements: kParamTLSSize / 8), /* va_arg_origin */ |
801 | elts: IRB.getInt64Ty(), elts: ArrayType::get(ElementType: OriginTy, NumElements: kParamTLSSize / 4), elts: OriginTy, |
802 | elts: OriginTy); |
803 | MsanGetContextStateFn = M.getOrInsertFunction( |
804 | Name: "__msan_get_context_state" , RetTy: PointerType::get(ElementType: MsanContextStateTy, AddressSpace: 0)); |
805 | |
806 | MsanMetadata = StructType::get(elt1: PointerType::get(ElementType: IRB.getInt8Ty(), AddressSpace: 0), |
807 | elts: PointerType::get(ElementType: IRB.getInt32Ty(), AddressSpace: 0)); |
808 | |
809 | for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { |
810 | std::string name_load = |
811 | "__msan_metadata_ptr_for_load_" + std::to_string(val: size); |
812 | std::string name_store = |
813 | "__msan_metadata_ptr_for_store_" + std::to_string(val: size); |
814 | MsanMetadataPtrForLoad_1_8[ind] = getOrInsertMsanMetadataFunction( |
815 | M, Name: name_load, Args: PointerType::get(ElementType: IRB.getInt8Ty(), AddressSpace: 0)); |
816 | MsanMetadataPtrForStore_1_8[ind] = getOrInsertMsanMetadataFunction( |
817 | M, Name: name_store, Args: PointerType::get(ElementType: IRB.getInt8Ty(), AddressSpace: 0)); |
818 | } |
819 | |
820 | MsanMetadataPtrForLoadN = getOrInsertMsanMetadataFunction( |
821 | M, Name: "__msan_metadata_ptr_for_load_n" , Args: PointerType::get(ElementType: IRB.getInt8Ty(), AddressSpace: 0), |
822 | Args: IRB.getInt64Ty()); |
823 | MsanMetadataPtrForStoreN = getOrInsertMsanMetadataFunction( |
824 | M, Name: "__msan_metadata_ptr_for_store_n" , |
825 | Args: PointerType::get(ElementType: IRB.getInt8Ty(), AddressSpace: 0), Args: IRB.getInt64Ty()); |
826 | |
827 | // Functions for poisoning and unpoisoning memory. |
828 | MsanPoisonAllocaFn = M.getOrInsertFunction( |
829 | Name: "__msan_poison_alloca" , RetTy: IRB.getVoidTy(), Args: PtrTy, Args: IntptrTy, Args: PtrTy); |
830 | MsanUnpoisonAllocaFn = M.getOrInsertFunction( |
831 | Name: "__msan_unpoison_alloca" , RetTy: IRB.getVoidTy(), Args: PtrTy, Args: IntptrTy); |
832 | } |
833 | |
834 | static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { |
835 | return M.getOrInsertGlobal(Name, Ty, CreateGlobalCallback: [&] { |
836 | return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, |
837 | nullptr, Name, nullptr, |
838 | GlobalVariable::InitialExecTLSModel); |
839 | }); |
840 | } |
841 | |
842 | /// Insert declarations for userspace-specific functions and globals. |
843 | void MemorySanitizer::createUserspaceApi(Module &M, const TargetLibraryInfo &TLI) { |
844 | IRBuilder<> IRB(*C); |
845 | |
846 | // Create the callback. |
847 | // FIXME: this function should have "Cold" calling conv, |
848 | // which is not yet implemented. |
849 | if (TrackOrigins) { |
850 | StringRef WarningFnName = Recover ? "__msan_warning_with_origin" |
851 | : "__msan_warning_with_origin_noreturn" ; |
852 | WarningFn = M.getOrInsertFunction(Name: WarningFnName, |
853 | AttributeList: TLI.getAttrList(C, ArgNos: {0}, /*Signed=*/false), |
854 | RetTy: IRB.getVoidTy(), Args: IRB.getInt32Ty()); |
855 | } else { |
856 | StringRef WarningFnName = |
857 | Recover ? "__msan_warning" : "__msan_warning_noreturn" ; |
858 | WarningFn = M.getOrInsertFunction(Name: WarningFnName, RetTy: IRB.getVoidTy()); |
859 | } |
860 | |
861 | // Create the global TLS variables. |
862 | RetvalTLS = |
863 | getOrInsertGlobal(M, Name: "__msan_retval_tls" , |
864 | Ty: ArrayType::get(ElementType: IRB.getInt64Ty(), NumElements: kRetvalTLSSize / 8)); |
865 | |
866 | RetvalOriginTLS = getOrInsertGlobal(M, Name: "__msan_retval_origin_tls" , Ty: OriginTy); |
867 | |
868 | ParamTLS = |
869 | getOrInsertGlobal(M, Name: "__msan_param_tls" , |
870 | Ty: ArrayType::get(ElementType: IRB.getInt64Ty(), NumElements: kParamTLSSize / 8)); |
871 | |
872 | ParamOriginTLS = |
873 | getOrInsertGlobal(M, Name: "__msan_param_origin_tls" , |
874 | Ty: ArrayType::get(ElementType: OriginTy, NumElements: kParamTLSSize / 4)); |
875 | |
876 | VAArgTLS = |
877 | getOrInsertGlobal(M, Name: "__msan_va_arg_tls" , |
878 | Ty: ArrayType::get(ElementType: IRB.getInt64Ty(), NumElements: kParamTLSSize / 8)); |
879 | |
880 | VAArgOriginTLS = |
881 | getOrInsertGlobal(M, Name: "__msan_va_arg_origin_tls" , |
882 | Ty: ArrayType::get(ElementType: OriginTy, NumElements: kParamTLSSize / 4)); |
883 | |
884 | VAArgOverflowSizeTLS = |
885 | getOrInsertGlobal(M, Name: "__msan_va_arg_overflow_size_tls" , Ty: IRB.getInt64Ty()); |
886 | |
887 | for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; |
888 | AccessSizeIndex++) { |
889 | unsigned AccessSize = 1 << AccessSizeIndex; |
890 | std::string FunctionName = "__msan_maybe_warning_" + itostr(X: AccessSize); |
891 | MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( |
892 | Name: FunctionName, AttributeList: TLI.getAttrList(C, ArgNos: {0, 1}, /*Signed=*/false), |
893 | RetTy: IRB.getVoidTy(), Args: IRB.getIntNTy(N: AccessSize * 8), Args: IRB.getInt32Ty()); |
894 | |
895 | FunctionName = "__msan_maybe_store_origin_" + itostr(X: AccessSize); |
896 | MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( |
897 | Name: FunctionName, AttributeList: TLI.getAttrList(C, ArgNos: {0, 2}, /*Signed=*/false), |
898 | RetTy: IRB.getVoidTy(), Args: IRB.getIntNTy(N: AccessSize * 8), Args: PtrTy, |
899 | Args: IRB.getInt32Ty()); |
900 | } |
901 | |
902 | MsanSetAllocaOriginWithDescriptionFn = |
903 | M.getOrInsertFunction(Name: "__msan_set_alloca_origin_with_descr" , |
904 | RetTy: IRB.getVoidTy(), Args: PtrTy, Args: IntptrTy, Args: PtrTy, Args: PtrTy); |
905 | MsanSetAllocaOriginNoDescriptionFn = |
906 | M.getOrInsertFunction(Name: "__msan_set_alloca_origin_no_descr" , |
907 | RetTy: IRB.getVoidTy(), Args: PtrTy, Args: IntptrTy, Args: PtrTy); |
908 | MsanPoisonStackFn = M.getOrInsertFunction(Name: "__msan_poison_stack" , |
909 | RetTy: IRB.getVoidTy(), Args: PtrTy, Args: IntptrTy); |
910 | } |
911 | |
912 | /// Insert extern declaration of runtime-provided functions and globals. |
913 | void MemorySanitizer::initializeCallbacks(Module &M, const TargetLibraryInfo &TLI) { |
914 | // Only do this once. |
915 | if (CallbacksInitialized) |
916 | return; |
917 | |
918 | IRBuilder<> IRB(*C); |
919 | // Initialize callbacks that are common for kernel and userspace |
920 | // instrumentation. |
921 | MsanChainOriginFn = M.getOrInsertFunction( |
922 | Name: "__msan_chain_origin" , |
923 | AttributeList: TLI.getAttrList(C, ArgNos: {0}, /*Signed=*/false, /*Ret=*/true), RetTy: IRB.getInt32Ty(), |
924 | Args: IRB.getInt32Ty()); |
925 | MsanSetOriginFn = M.getOrInsertFunction( |
926 | Name: "__msan_set_origin" , AttributeList: TLI.getAttrList(C, ArgNos: {2}, /*Signed=*/false), |
927 | RetTy: IRB.getVoidTy(), Args: PtrTy, Args: IntptrTy, Args: IRB.getInt32Ty()); |
928 | MemmoveFn = |
929 | M.getOrInsertFunction(Name: "__msan_memmove" , RetTy: PtrTy, Args: PtrTy, Args: PtrTy, Args: IntptrTy); |
930 | MemcpyFn = |
931 | M.getOrInsertFunction(Name: "__msan_memcpy" , RetTy: PtrTy, Args: PtrTy, Args: PtrTy, Args: IntptrTy); |
932 | MemsetFn = M.getOrInsertFunction(Name: "__msan_memset" , |
933 | AttributeList: TLI.getAttrList(C, ArgNos: {1}, /*Signed=*/true), |
934 | RetTy: PtrTy, Args: PtrTy, Args: IRB.getInt32Ty(), Args: IntptrTy); |
935 | |
936 | MsanInstrumentAsmStoreFn = |
937 | M.getOrInsertFunction(Name: "__msan_instrument_asm_store" , RetTy: IRB.getVoidTy(), |
938 | Args: PointerType::get(ElementType: IRB.getInt8Ty(), AddressSpace: 0), Args: IntptrTy); |
939 | |
940 | if (CompileKernel) { |
941 | createKernelApi(M, TLI); |
942 | } else { |
943 | createUserspaceApi(M, TLI); |
944 | } |
945 | CallbacksInitialized = true; |
946 | } |
947 | |
948 | FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, |
949 | int size) { |
950 | FunctionCallee *Fns = |
951 | isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; |
952 | switch (size) { |
953 | case 1: |
954 | return Fns[0]; |
955 | case 2: |
956 | return Fns[1]; |
957 | case 4: |
958 | return Fns[2]; |
959 | case 8: |
960 | return Fns[3]; |
961 | default: |
962 | return nullptr; |
963 | } |
964 | } |
965 | |
966 | /// Module-level initialization. |
967 | /// |
968 | /// inserts a call to __msan_init to the module's constructor list. |
969 | void MemorySanitizer::initializeModule(Module &M) { |
970 | auto &DL = M.getDataLayout(); |
971 | |
972 | TargetTriple = Triple(M.getTargetTriple()); |
973 | |
974 | bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; |
975 | bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; |
976 | // Check the overrides first |
977 | if (ShadowPassed || OriginPassed) { |
978 | CustomMapParams.AndMask = ClAndMask; |
979 | CustomMapParams.XorMask = ClXorMask; |
980 | CustomMapParams.ShadowBase = ClShadowBase; |
981 | CustomMapParams.OriginBase = ClOriginBase; |
982 | MapParams = &CustomMapParams; |
983 | } else { |
984 | switch (TargetTriple.getOS()) { |
985 | case Triple::FreeBSD: |
986 | switch (TargetTriple.getArch()) { |
987 | case Triple::aarch64: |
988 | MapParams = FreeBSD_ARM_MemoryMapParams.bits64; |
989 | break; |
990 | case Triple::x86_64: |
991 | MapParams = FreeBSD_X86_MemoryMapParams.bits64; |
992 | break; |
993 | case Triple::x86: |
994 | MapParams = FreeBSD_X86_MemoryMapParams.bits32; |
995 | break; |
996 | default: |
997 | report_fatal_error(reason: "unsupported architecture" ); |
998 | } |
999 | break; |
1000 | case Triple::NetBSD: |
1001 | switch (TargetTriple.getArch()) { |
1002 | case Triple::x86_64: |
1003 | MapParams = NetBSD_X86_MemoryMapParams.bits64; |
1004 | break; |
1005 | default: |
1006 | report_fatal_error(reason: "unsupported architecture" ); |
1007 | } |
1008 | break; |
1009 | case Triple::Linux: |
1010 | switch (TargetTriple.getArch()) { |
1011 | case Triple::x86_64: |
1012 | MapParams = Linux_X86_MemoryMapParams.bits64; |
1013 | break; |
1014 | case Triple::x86: |
1015 | MapParams = Linux_X86_MemoryMapParams.bits32; |
1016 | break; |
1017 | case Triple::mips64: |
1018 | case Triple::mips64el: |
1019 | MapParams = Linux_MIPS_MemoryMapParams.bits64; |
1020 | break; |
1021 | case Triple::ppc64: |
1022 | case Triple::ppc64le: |
1023 | MapParams = Linux_PowerPC_MemoryMapParams.bits64; |
1024 | break; |
1025 | case Triple::systemz: |
1026 | MapParams = Linux_S390_MemoryMapParams.bits64; |
1027 | break; |
1028 | case Triple::aarch64: |
1029 | case Triple::aarch64_be: |
1030 | MapParams = Linux_ARM_MemoryMapParams.bits64; |
1031 | break; |
1032 | case Triple::loongarch64: |
1033 | MapParams = Linux_LoongArch_MemoryMapParams.bits64; |
1034 | break; |
1035 | default: |
1036 | report_fatal_error(reason: "unsupported architecture" ); |
1037 | } |
1038 | break; |
1039 | default: |
1040 | report_fatal_error(reason: "unsupported operating system" ); |
1041 | } |
1042 | } |
1043 | |
1044 | C = &(M.getContext()); |
1045 | IRBuilder<> IRB(*C); |
1046 | IntptrTy = IRB.getIntPtrTy(DL); |
1047 | OriginTy = IRB.getInt32Ty(); |
1048 | PtrTy = IRB.getPtrTy(); |
1049 | |
1050 | ColdCallWeights = MDBuilder(*C).createUnlikelyBranchWeights(); |
1051 | OriginStoreWeights = MDBuilder(*C).createUnlikelyBranchWeights(); |
1052 | |
1053 | if (!CompileKernel) { |
1054 | if (TrackOrigins) |
1055 | M.getOrInsertGlobal(Name: "__msan_track_origins" , Ty: IRB.getInt32Ty(), CreateGlobalCallback: [&] { |
1056 | return new GlobalVariable( |
1057 | M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, |
1058 | IRB.getInt32(C: TrackOrigins), "__msan_track_origins" ); |
1059 | }); |
1060 | |
1061 | if (Recover) |
1062 | M.getOrInsertGlobal(Name: "__msan_keep_going" , Ty: IRB.getInt32Ty(), CreateGlobalCallback: [&] { |
1063 | return new GlobalVariable(M, IRB.getInt32Ty(), true, |
1064 | GlobalValue::WeakODRLinkage, |
1065 | IRB.getInt32(C: Recover), "__msan_keep_going" ); |
1066 | }); |
1067 | } |
1068 | } |
1069 | |
1070 | namespace { |
1071 | |
1072 | /// A helper class that handles instrumentation of VarArg |
1073 | /// functions on a particular platform. |
1074 | /// |
1075 | /// Implementations are expected to insert the instrumentation |
1076 | /// necessary to propagate argument shadow through VarArg function |
1077 | /// calls. Visit* methods are called during an InstVisitor pass over |
1078 | /// the function, and should avoid creating new basic blocks. A new |
1079 | /// instance of this class is created for each instrumented function. |
1080 | struct VarArgHelper { |
1081 | virtual ~VarArgHelper() = default; |
1082 | |
1083 | /// Visit a CallBase. |
1084 | virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; |
1085 | |
1086 | /// Visit a va_start call. |
1087 | virtual void visitVAStartInst(VAStartInst &I) = 0; |
1088 | |
1089 | /// Visit a va_copy call. |
1090 | virtual void visitVACopyInst(VACopyInst &I) = 0; |
1091 | |
1092 | /// Finalize function instrumentation. |
1093 | /// |
1094 | /// This method is called after visiting all interesting (see above) |
1095 | /// instructions in a function. |
1096 | virtual void finalizeInstrumentation() = 0; |
1097 | }; |
1098 | |
1099 | struct MemorySanitizerVisitor; |
1100 | |
1101 | } // end anonymous namespace |
1102 | |
1103 | static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, |
1104 | MemorySanitizerVisitor &Visitor); |
1105 | |
1106 | static unsigned TypeSizeToSizeIndex(TypeSize TS) { |
1107 | if (TS.isScalable()) |
1108 | // Scalable types unconditionally take slowpaths. |
1109 | return kNumberOfAccessSizes; |
1110 | unsigned TypeSizeFixed = TS.getFixedValue(); |
1111 | if (TypeSizeFixed <= 8) |
1112 | return 0; |
1113 | return Log2_32_Ceil(Value: (TypeSizeFixed + 7) / 8); |
1114 | } |
1115 | |
1116 | namespace { |
1117 | |
1118 | /// Helper class to attach debug information of the given instruction onto new |
1119 | /// instructions inserted after. |
1120 | class NextNodeIRBuilder : public IRBuilder<> { |
1121 | public: |
1122 | explicit NextNodeIRBuilder(Instruction *IP) : IRBuilder<>(IP->getNextNode()) { |
1123 | SetCurrentDebugLocation(IP->getDebugLoc()); |
1124 | } |
1125 | }; |
1126 | |
1127 | /// This class does all the work for a given function. Store and Load |
1128 | /// instructions store and load corresponding shadow and origin |
1129 | /// values. Most instructions propagate shadow from arguments to their |
1130 | /// return values. Certain instructions (most importantly, BranchInst) |
1131 | /// test their argument shadow and print reports (with a runtime call) if it's |
1132 | /// non-zero. |
1133 | struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { |
1134 | Function &F; |
1135 | MemorySanitizer &MS; |
1136 | SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; |
1137 | ValueMap<Value *, Value *> ShadowMap, OriginMap; |
1138 | std::unique_ptr<VarArgHelper> VAHelper; |
1139 | const TargetLibraryInfo *TLI; |
1140 | Instruction *FnPrologueEnd; |
1141 | SmallVector<Instruction *, 16> Instructions; |
1142 | |
1143 | // The following flags disable parts of MSan instrumentation based on |
1144 | // exclusion list contents and command-line options. |
1145 | bool InsertChecks; |
1146 | bool PropagateShadow; |
1147 | bool PoisonStack; |
1148 | bool PoisonUndef; |
1149 | |
1150 | struct ShadowOriginAndInsertPoint { |
1151 | Value *Shadow; |
1152 | Value *Origin; |
1153 | Instruction *OrigIns; |
1154 | |
1155 | ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) |
1156 | : Shadow(S), Origin(O), OrigIns(I) {} |
1157 | }; |
1158 | SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; |
1159 | DenseMap<const DILocation *, int> LazyWarningDebugLocationCount; |
1160 | bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; |
1161 | SmallSetVector<AllocaInst *, 16> AllocaSet; |
1162 | SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; |
1163 | SmallVector<StoreInst *, 16> StoreList; |
1164 | int64_t SplittableBlocksCount = 0; |
1165 | |
1166 | MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, |
1167 | const TargetLibraryInfo &TLI) |
1168 | : F(F), MS(MS), VAHelper(CreateVarArgHelper(Func&: F, Msan&: MS, Visitor&: *this)), TLI(&TLI) { |
1169 | bool SanitizeFunction = |
1170 | F.hasFnAttribute(Kind: Attribute::SanitizeMemory) && !ClDisableChecks; |
1171 | InsertChecks = SanitizeFunction; |
1172 | PropagateShadow = SanitizeFunction; |
1173 | PoisonStack = SanitizeFunction && ClPoisonStack; |
1174 | PoisonUndef = SanitizeFunction && ClPoisonUndef; |
1175 | |
1176 | // In the presence of unreachable blocks, we may see Phi nodes with |
1177 | // incoming nodes from such blocks. Since InstVisitor skips unreachable |
1178 | // blocks, such nodes will not have any shadow value associated with them. |
1179 | // It's easier to remove unreachable blocks than deal with missing shadow. |
1180 | removeUnreachableBlocks(F); |
1181 | |
1182 | MS.initializeCallbacks(M&: *F.getParent(), TLI); |
1183 | FnPrologueEnd = IRBuilder<>(F.getEntryBlock().getFirstNonPHI()) |
1184 | .CreateIntrinsic(ID: Intrinsic::donothing, Types: {}, Args: {}); |
1185 | |
1186 | if (MS.CompileKernel) { |
1187 | IRBuilder<> IRB(FnPrologueEnd); |
1188 | insertKmsanPrologue(IRB); |
1189 | } |
1190 | |
1191 | LLVM_DEBUG(if (!InsertChecks) dbgs() |
1192 | << "MemorySanitizer is not inserting checks into '" |
1193 | << F.getName() << "'\n" ); |
1194 | } |
1195 | |
1196 | bool instrumentWithCalls(Value *V) { |
1197 | // Constants likely will be eliminated by follow-up passes. |
1198 | if (isa<Constant>(Val: V)) |
1199 | return false; |
1200 | |
1201 | ++SplittableBlocksCount; |
1202 | return ClInstrumentationWithCallThreshold >= 0 && |
1203 | SplittableBlocksCount > ClInstrumentationWithCallThreshold; |
1204 | } |
1205 | |
1206 | bool isInPrologue(Instruction &I) { |
1207 | return I.getParent() == FnPrologueEnd->getParent() && |
1208 | (&I == FnPrologueEnd || I.comesBefore(Other: FnPrologueEnd)); |
1209 | } |
1210 | |
1211 | // Creates a new origin and records the stack trace. In general we can call |
1212 | // this function for any origin manipulation we like. However it will cost |
1213 | // runtime resources. So use this wisely only if it can provide additional |
1214 | // information helpful to a user. |
1215 | Value *updateOrigin(Value *V, IRBuilder<> &IRB) { |
1216 | if (MS.TrackOrigins <= 1) |
1217 | return V; |
1218 | return IRB.CreateCall(Callee: MS.MsanChainOriginFn, Args: V); |
1219 | } |
1220 | |
1221 | Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { |
1222 | const DataLayout &DL = F.getDataLayout(); |
1223 | unsigned IntptrSize = DL.getTypeStoreSize(Ty: MS.IntptrTy); |
1224 | if (IntptrSize == kOriginSize) |
1225 | return Origin; |
1226 | assert(IntptrSize == kOriginSize * 2); |
1227 | Origin = IRB.CreateIntCast(V: Origin, DestTy: MS.IntptrTy, /* isSigned */ false); |
1228 | return IRB.CreateOr(LHS: Origin, RHS: IRB.CreateShl(LHS: Origin, RHS: kOriginSize * 8)); |
1229 | } |
1230 | |
1231 | /// Fill memory range with the given origin value. |
1232 | void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, |
1233 | TypeSize TS, Align Alignment) { |
1234 | const DataLayout &DL = F.getDataLayout(); |
1235 | const Align IntptrAlignment = DL.getABITypeAlign(Ty: MS.IntptrTy); |
1236 | unsigned IntptrSize = DL.getTypeStoreSize(Ty: MS.IntptrTy); |
1237 | assert(IntptrAlignment >= kMinOriginAlignment); |
1238 | assert(IntptrSize >= kOriginSize); |
1239 | |
1240 | // Note: The loop based formation works for fixed length vectors too, |
1241 | // however we prefer to unroll and specialize alignment below. |
1242 | if (TS.isScalable()) { |
1243 | Value *Size = IRB.CreateTypeSize(DstType: MS.IntptrTy, Size: TS); |
1244 | Value *RoundUp = |
1245 | IRB.CreateAdd(LHS: Size, RHS: ConstantInt::get(Ty: MS.IntptrTy, V: kOriginSize - 1)); |
1246 | Value *End = |
1247 | IRB.CreateUDiv(LHS: RoundUp, RHS: ConstantInt::get(Ty: MS.IntptrTy, V: kOriginSize)); |
1248 | auto [InsertPt, Index] = |
1249 | SplitBlockAndInsertSimpleForLoop(End, SplitBefore: &*IRB.GetInsertPoint()); |
1250 | IRB.SetInsertPoint(InsertPt); |
1251 | |
1252 | Value *GEP = IRB.CreateGEP(Ty: MS.OriginTy, Ptr: OriginPtr, IdxList: Index); |
1253 | IRB.CreateAlignedStore(Val: Origin, Ptr: GEP, Align: kMinOriginAlignment); |
1254 | return; |
1255 | } |
1256 | |
1257 | unsigned Size = TS.getFixedValue(); |
1258 | |
1259 | unsigned Ofs = 0; |
1260 | Align CurrentAlignment = Alignment; |
1261 | if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { |
1262 | Value *IntptrOrigin = originToIntptr(IRB, Origin); |
1263 | Value *IntptrOriginPtr = |
1264 | IRB.CreatePointerCast(V: OriginPtr, DestTy: PointerType::get(ElementType: MS.IntptrTy, AddressSpace: 0)); |
1265 | for (unsigned i = 0; i < Size / IntptrSize; ++i) { |
1266 | Value *Ptr = i ? IRB.CreateConstGEP1_32(Ty: MS.IntptrTy, Ptr: IntptrOriginPtr, Idx0: i) |
1267 | : IntptrOriginPtr; |
1268 | IRB.CreateAlignedStore(Val: IntptrOrigin, Ptr, Align: CurrentAlignment); |
1269 | Ofs += IntptrSize / kOriginSize; |
1270 | CurrentAlignment = IntptrAlignment; |
1271 | } |
1272 | } |
1273 | |
1274 | for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { |
1275 | Value *GEP = |
1276 | i ? IRB.CreateConstGEP1_32(Ty: MS.OriginTy, Ptr: OriginPtr, Idx0: i) : OriginPtr; |
1277 | IRB.CreateAlignedStore(Val: Origin, Ptr: GEP, Align: CurrentAlignment); |
1278 | CurrentAlignment = kMinOriginAlignment; |
1279 | } |
1280 | } |
1281 | |
1282 | void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, |
1283 | Value *OriginPtr, Align Alignment) { |
1284 | const DataLayout &DL = F.getDataLayout(); |
1285 | const Align OriginAlignment = std::max(a: kMinOriginAlignment, b: Alignment); |
1286 | TypeSize StoreSize = DL.getTypeStoreSize(Ty: Shadow->getType()); |
1287 | // ZExt cannot convert between vector and scalar |
1288 | Value *ConvertedShadow = convertShadowToScalar(V: Shadow, IRB); |
1289 | if (auto *ConstantShadow = dyn_cast<Constant>(Val: ConvertedShadow)) { |
1290 | if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) { |
1291 | // Origin is not needed: value is initialized or const shadow is |
1292 | // ignored. |
1293 | return; |
1294 | } |
1295 | if (llvm::isKnownNonZero(V: ConvertedShadow, Q: DL)) { |
1296 | // Copy origin as the value is definitely uninitialized. |
1297 | paintOrigin(IRB, Origin: updateOrigin(V: Origin, IRB), OriginPtr, TS: StoreSize, |
1298 | Alignment: OriginAlignment); |
1299 | return; |
1300 | } |
1301 | // Fallback to runtime check, which still can be optimized out later. |
1302 | } |
1303 | |
1304 | TypeSize TypeSizeInBits = DL.getTypeSizeInBits(Ty: ConvertedShadow->getType()); |
1305 | unsigned SizeIndex = TypeSizeToSizeIndex(TS: TypeSizeInBits); |
1306 | if (instrumentWithCalls(V: ConvertedShadow) && |
1307 | SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { |
1308 | FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; |
1309 | Value *ConvertedShadow2 = |
1310 | IRB.CreateZExt(V: ConvertedShadow, DestTy: IRB.getIntNTy(N: 8 * (1 << SizeIndex))); |
1311 | CallBase *CB = IRB.CreateCall(Callee: Fn, Args: {ConvertedShadow2, Addr, Origin}); |
1312 | CB->addParamAttr(ArgNo: 0, Kind: Attribute::ZExt); |
1313 | CB->addParamAttr(ArgNo: 2, Kind: Attribute::ZExt); |
1314 | } else { |
1315 | Value *Cmp = convertToBool(V: ConvertedShadow, IRB, name: "_mscmp" ); |
1316 | Instruction *CheckTerm = SplitBlockAndInsertIfThen( |
1317 | Cond: Cmp, SplitBefore: &*IRB.GetInsertPoint(), Unreachable: false, BranchWeights: MS.OriginStoreWeights); |
1318 | IRBuilder<> IRBNew(CheckTerm); |
1319 | paintOrigin(IRB&: IRBNew, Origin: updateOrigin(V: Origin, IRB&: IRBNew), OriginPtr, TS: StoreSize, |
1320 | Alignment: OriginAlignment); |
1321 | } |
1322 | } |
1323 | |
1324 | void materializeStores() { |
1325 | for (StoreInst *SI : StoreList) { |
1326 | IRBuilder<> IRB(SI); |
1327 | Value *Val = SI->getValueOperand(); |
1328 | Value *Addr = SI->getPointerOperand(); |
1329 | Value *Shadow = SI->isAtomic() ? getCleanShadow(V: Val) : getShadow(V: Val); |
1330 | Value *ShadowPtr, *OriginPtr; |
1331 | Type *ShadowTy = Shadow->getType(); |
1332 | const Align Alignment = SI->getAlign(); |
1333 | const Align OriginAlignment = std::max(a: kMinOriginAlignment, b: Alignment); |
1334 | std::tie(args&: ShadowPtr, args&: OriginPtr) = |
1335 | getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); |
1336 | |
1337 | StoreInst *NewSI = IRB.CreateAlignedStore(Val: Shadow, Ptr: ShadowPtr, Align: Alignment); |
1338 | LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n" ); |
1339 | (void)NewSI; |
1340 | |
1341 | if (SI->isAtomic()) |
1342 | SI->setOrdering(addReleaseOrdering(a: SI->getOrdering())); |
1343 | |
1344 | if (MS.TrackOrigins && !SI->isAtomic()) |
1345 | storeOrigin(IRB, Addr, Shadow, Origin: getOrigin(V: Val), OriginPtr, |
1346 | Alignment: OriginAlignment); |
1347 | } |
1348 | } |
1349 | |
1350 | // Returns true if Debug Location corresponds to multiple warnings. |
1351 | bool shouldDisambiguateWarningLocation(const DebugLoc &DebugLoc) { |
1352 | if (MS.TrackOrigins < 2) |
1353 | return false; |
1354 | |
1355 | if (LazyWarningDebugLocationCount.empty()) |
1356 | for (const auto &I : InstrumentationList) |
1357 | ++LazyWarningDebugLocationCount[I.OrigIns->getDebugLoc()]; |
1358 | |
1359 | return LazyWarningDebugLocationCount[DebugLoc] >= ClDisambiguateWarning; |
1360 | } |
1361 | |
1362 | /// Helper function to insert a warning at IRB's current insert point. |
1363 | void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { |
1364 | if (!Origin) |
1365 | Origin = (Value *)IRB.getInt32(C: 0); |
1366 | assert(Origin->getType()->isIntegerTy()); |
1367 | |
1368 | if (shouldDisambiguateWarningLocation(DebugLoc: IRB.getCurrentDebugLocation())) { |
1369 | // Try to create additional origin with debug info of the last origin |
1370 | // instruction. It may provide additional information to the user. |
1371 | if (Instruction *OI = dyn_cast_or_null<Instruction>(Val: Origin)) { |
1372 | assert(MS.TrackOrigins); |
1373 | auto NewDebugLoc = OI->getDebugLoc(); |
1374 | // Origin update with missing or the same debug location provides no |
1375 | // additional value. |
1376 | if (NewDebugLoc && NewDebugLoc != IRB.getCurrentDebugLocation()) { |
1377 | // Insert update just before the check, so we call runtime only just |
1378 | // before the report. |
1379 | IRBuilder<> IRBOrigin(&*IRB.GetInsertPoint()); |
1380 | IRBOrigin.SetCurrentDebugLocation(NewDebugLoc); |
1381 | Origin = updateOrigin(V: Origin, IRB&: IRBOrigin); |
1382 | } |
1383 | } |
1384 | } |
1385 | |
1386 | if (MS.CompileKernel || MS.TrackOrigins) |
1387 | IRB.CreateCall(Callee: MS.WarningFn, Args: Origin)->setCannotMerge(); |
1388 | else |
1389 | IRB.CreateCall(Callee: MS.WarningFn)->setCannotMerge(); |
1390 | // FIXME: Insert UnreachableInst if !MS.Recover? |
1391 | // This may invalidate some of the following checks and needs to be done |
1392 | // at the very end. |
1393 | } |
1394 | |
1395 | void materializeOneCheck(IRBuilder<> &IRB, Value *ConvertedShadow, |
1396 | Value *Origin) { |
1397 | const DataLayout &DL = F.getDataLayout(); |
1398 | TypeSize TypeSizeInBits = DL.getTypeSizeInBits(Ty: ConvertedShadow->getType()); |
1399 | unsigned SizeIndex = TypeSizeToSizeIndex(TS: TypeSizeInBits); |
1400 | if (instrumentWithCalls(V: ConvertedShadow) && |
1401 | SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { |
1402 | FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; |
1403 | // ZExt cannot convert between vector and scalar |
1404 | ConvertedShadow = convertShadowToScalar(V: ConvertedShadow, IRB); |
1405 | Value *ConvertedShadow2 = |
1406 | IRB.CreateZExt(V: ConvertedShadow, DestTy: IRB.getIntNTy(N: 8 * (1 << SizeIndex))); |
1407 | CallBase *CB = IRB.CreateCall( |
1408 | Callee: Fn, Args: {ConvertedShadow2, |
1409 | MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(C: 0)}); |
1410 | CB->addParamAttr(ArgNo: 0, Kind: Attribute::ZExt); |
1411 | CB->addParamAttr(ArgNo: 1, Kind: Attribute::ZExt); |
1412 | } else { |
1413 | Value *Cmp = convertToBool(V: ConvertedShadow, IRB, name: "_mscmp" ); |
1414 | Instruction *CheckTerm = SplitBlockAndInsertIfThen( |
1415 | Cond: Cmp, SplitBefore: &*IRB.GetInsertPoint(), |
1416 | /* Unreachable */ !MS.Recover, BranchWeights: MS.ColdCallWeights); |
1417 | |
1418 | IRB.SetInsertPoint(CheckTerm); |
1419 | insertWarningFn(IRB, Origin); |
1420 | LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n" ); |
1421 | } |
1422 | } |
1423 | |
1424 | void materializeInstructionChecks( |
1425 | ArrayRef<ShadowOriginAndInsertPoint> InstructionChecks) { |
1426 | const DataLayout &DL = F.getDataLayout(); |
1427 | // Disable combining in some cases. TrackOrigins checks each shadow to pick |
1428 | // correct origin. |
1429 | bool Combine = !MS.TrackOrigins; |
1430 | Instruction *Instruction = InstructionChecks.front().OrigIns; |
1431 | Value *Shadow = nullptr; |
1432 | for (const auto &ShadowData : InstructionChecks) { |
1433 | assert(ShadowData.OrigIns == Instruction); |
1434 | IRBuilder<> IRB(Instruction); |
1435 | |
1436 | Value *ConvertedShadow = ShadowData.Shadow; |
1437 | |
1438 | if (auto *ConstantShadow = dyn_cast<Constant>(Val: ConvertedShadow)) { |
1439 | if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) { |
1440 | // Skip, value is initialized or const shadow is ignored. |
1441 | continue; |
1442 | } |
1443 | if (llvm::isKnownNonZero(V: ConvertedShadow, Q: DL)) { |
1444 | // Report as the value is definitely uninitialized. |
1445 | insertWarningFn(IRB, Origin: ShadowData.Origin); |
1446 | if (!MS.Recover) |
1447 | return; // Always fail and stop here, not need to check the rest. |
1448 | // Skip entire instruction, |
1449 | continue; |
1450 | } |
1451 | // Fallback to runtime check, which still can be optimized out later. |
1452 | } |
1453 | |
1454 | if (!Combine) { |
1455 | materializeOneCheck(IRB, ConvertedShadow, Origin: ShadowData.Origin); |
1456 | continue; |
1457 | } |
1458 | |
1459 | if (!Shadow) { |
1460 | Shadow = ConvertedShadow; |
1461 | continue; |
1462 | } |
1463 | |
1464 | Shadow = convertToBool(V: Shadow, IRB, name: "_mscmp" ); |
1465 | ConvertedShadow = convertToBool(V: ConvertedShadow, IRB, name: "_mscmp" ); |
1466 | Shadow = IRB.CreateOr(LHS: Shadow, RHS: ConvertedShadow, Name: "_msor" ); |
1467 | } |
1468 | |
1469 | if (Shadow) { |
1470 | assert(Combine); |
1471 | IRBuilder<> IRB(Instruction); |
1472 | materializeOneCheck(IRB, ConvertedShadow: Shadow, Origin: nullptr); |
1473 | } |
1474 | } |
1475 | |
1476 | void materializeChecks() { |
1477 | #ifndef NDEBUG |
1478 | // For assert below. |
1479 | SmallPtrSet<Instruction *, 16> Done; |
1480 | #endif |
1481 | |
1482 | for (auto I = InstrumentationList.begin(); |
1483 | I != InstrumentationList.end();) { |
1484 | auto OrigIns = I->OrigIns; |
1485 | // Checks are grouped by the original instruction. We call all |
1486 | // `insertShadowCheck` for an instruction at once. |
1487 | assert(Done.insert(OrigIns).second); |
1488 | auto J = std::find_if(first: I + 1, last: InstrumentationList.end(), |
1489 | pred: [OrigIns](const ShadowOriginAndInsertPoint &R) { |
1490 | return OrigIns != R.OrigIns; |
1491 | }); |
1492 | // Process all checks of instruction at once. |
1493 | materializeInstructionChecks(InstructionChecks: ArrayRef<ShadowOriginAndInsertPoint>(I, J)); |
1494 | I = J; |
1495 | } |
1496 | |
1497 | LLVM_DEBUG(dbgs() << "DONE:\n" << F); |
1498 | } |
1499 | |
1500 | // Returns the last instruction in the new prologue |
1501 | void insertKmsanPrologue(IRBuilder<> &IRB) { |
1502 | Value *ContextState = IRB.CreateCall(Callee: MS.MsanGetContextStateFn, Args: {}); |
1503 | Constant *Zero = IRB.getInt32(C: 0); |
1504 | MS.ParamTLS = IRB.CreateGEP(Ty: MS.MsanContextStateTy, Ptr: ContextState, |
1505 | IdxList: {Zero, IRB.getInt32(C: 0)}, Name: "param_shadow" ); |
1506 | MS.RetvalTLS = IRB.CreateGEP(Ty: MS.MsanContextStateTy, Ptr: ContextState, |
1507 | IdxList: {Zero, IRB.getInt32(C: 1)}, Name: "retval_shadow" ); |
1508 | MS.VAArgTLS = IRB.CreateGEP(Ty: MS.MsanContextStateTy, Ptr: ContextState, |
1509 | IdxList: {Zero, IRB.getInt32(C: 2)}, Name: "va_arg_shadow" ); |
1510 | MS.VAArgOriginTLS = IRB.CreateGEP(Ty: MS.MsanContextStateTy, Ptr: ContextState, |
1511 | IdxList: {Zero, IRB.getInt32(C: 3)}, Name: "va_arg_origin" ); |
1512 | MS.VAArgOverflowSizeTLS = |
1513 | IRB.CreateGEP(Ty: MS.MsanContextStateTy, Ptr: ContextState, |
1514 | IdxList: {Zero, IRB.getInt32(C: 4)}, Name: "va_arg_overflow_size" ); |
1515 | MS.ParamOriginTLS = IRB.CreateGEP(Ty: MS.MsanContextStateTy, Ptr: ContextState, |
1516 | IdxList: {Zero, IRB.getInt32(C: 5)}, Name: "param_origin" ); |
1517 | MS.RetvalOriginTLS = |
1518 | IRB.CreateGEP(Ty: MS.MsanContextStateTy, Ptr: ContextState, |
1519 | IdxList: {Zero, IRB.getInt32(C: 6)}, Name: "retval_origin" ); |
1520 | if (MS.TargetTriple.getArch() == Triple::systemz) |
1521 | MS.MsanMetadataAlloca = IRB.CreateAlloca(Ty: MS.MsanMetadata, AddrSpace: 0u); |
1522 | } |
1523 | |
1524 | /// Add MemorySanitizer instrumentation to a function. |
1525 | bool runOnFunction() { |
1526 | // Iterate all BBs in depth-first order and create shadow instructions |
1527 | // for all instructions (where applicable). |
1528 | // For PHI nodes we create dummy shadow PHIs which will be finalized later. |
1529 | for (BasicBlock *BB : depth_first(G: FnPrologueEnd->getParent())) |
1530 | visit(BB&: *BB); |
1531 | |
1532 | // `visit` above only collects instructions. Process them after iterating |
1533 | // CFG to avoid requirement on CFG transformations. |
1534 | for (Instruction *I : Instructions) |
1535 | InstVisitor<MemorySanitizerVisitor>::visit(I&: *I); |
1536 | |
1537 | // Finalize PHI nodes. |
1538 | for (PHINode *PN : ShadowPHINodes) { |
1539 | PHINode *PNS = cast<PHINode>(Val: getShadow(V: PN)); |
1540 | PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(Val: getOrigin(V: PN)) : nullptr; |
1541 | size_t NumValues = PN->getNumIncomingValues(); |
1542 | for (size_t v = 0; v < NumValues; v++) { |
1543 | PNS->addIncoming(V: getShadow(I: PN, i: v), BB: PN->getIncomingBlock(i: v)); |
1544 | if (PNO) |
1545 | PNO->addIncoming(V: getOrigin(I: PN, i: v), BB: PN->getIncomingBlock(i: v)); |
1546 | } |
1547 | } |
1548 | |
1549 | VAHelper->finalizeInstrumentation(); |
1550 | |
1551 | // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to |
1552 | // instrumenting only allocas. |
1553 | if (InstrumentLifetimeStart) { |
1554 | for (auto Item : LifetimeStartList) { |
1555 | instrumentAlloca(I&: *Item.second, InsPoint: Item.first); |
1556 | AllocaSet.remove(X: Item.second); |
1557 | } |
1558 | } |
1559 | // Poison the allocas for which we didn't instrument the corresponding |
1560 | // lifetime intrinsics. |
1561 | for (AllocaInst *AI : AllocaSet) |
1562 | instrumentAlloca(I&: *AI); |
1563 | |
1564 | // Insert shadow value checks. |
1565 | materializeChecks(); |
1566 | |
1567 | // Delayed instrumentation of StoreInst. |
1568 | // This may not add new address checks. |
1569 | materializeStores(); |
1570 | |
1571 | return true; |
1572 | } |
1573 | |
1574 | /// Compute the shadow type that corresponds to a given Value. |
1575 | Type *getShadowTy(Value *V) { return getShadowTy(OrigTy: V->getType()); } |
1576 | |
1577 | /// Compute the shadow type that corresponds to a given Type. |
1578 | Type *getShadowTy(Type *OrigTy) { |
1579 | if (!OrigTy->isSized()) { |
1580 | return nullptr; |
1581 | } |
1582 | // For integer type, shadow is the same as the original type. |
1583 | // This may return weird-sized types like i1. |
1584 | if (IntegerType *IT = dyn_cast<IntegerType>(Val: OrigTy)) |
1585 | return IT; |
1586 | const DataLayout &DL = F.getDataLayout(); |
1587 | if (VectorType *VT = dyn_cast<VectorType>(Val: OrigTy)) { |
1588 | uint32_t EltSize = DL.getTypeSizeInBits(Ty: VT->getElementType()); |
1589 | return VectorType::get(ElementType: IntegerType::get(C&: *MS.C, NumBits: EltSize), |
1590 | EC: VT->getElementCount()); |
1591 | } |
1592 | if (ArrayType *AT = dyn_cast<ArrayType>(Val: OrigTy)) { |
1593 | return ArrayType::get(ElementType: getShadowTy(OrigTy: AT->getElementType()), |
1594 | NumElements: AT->getNumElements()); |
1595 | } |
1596 | if (StructType *ST = dyn_cast<StructType>(Val: OrigTy)) { |
1597 | SmallVector<Type *, 4> Elements; |
1598 | for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) |
1599 | Elements.push_back(Elt: getShadowTy(OrigTy: ST->getElementType(N: i))); |
1600 | StructType *Res = StructType::get(Context&: *MS.C, Elements, isPacked: ST->isPacked()); |
1601 | LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n" ); |
1602 | return Res; |
1603 | } |
1604 | uint32_t TypeSize = DL.getTypeSizeInBits(Ty: OrigTy); |
1605 | return IntegerType::get(C&: *MS.C, NumBits: TypeSize); |
1606 | } |
1607 | |
1608 | /// Extract combined shadow of struct elements as a bool |
1609 | Value *collapseStructShadow(StructType *Struct, Value *Shadow, |
1610 | IRBuilder<> &IRB) { |
1611 | Value *FalseVal = IRB.getIntN(/* width */ N: 1, /* value */ C: 0); |
1612 | Value *Aggregator = FalseVal; |
1613 | |
1614 | for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) { |
1615 | // Combine by ORing together each element's bool shadow |
1616 | Value *ShadowItem = IRB.CreateExtractValue(Agg: Shadow, Idxs: Idx); |
1617 | Value *ShadowBool = convertToBool(V: ShadowItem, IRB); |
1618 | |
1619 | if (Aggregator != FalseVal) |
1620 | Aggregator = IRB.CreateOr(LHS: Aggregator, RHS: ShadowBool); |
1621 | else |
1622 | Aggregator = ShadowBool; |
1623 | } |
1624 | |
1625 | return Aggregator; |
1626 | } |
1627 | |
1628 | // Extract combined shadow of array elements |
1629 | Value *collapseArrayShadow(ArrayType *Array, Value *Shadow, |
1630 | IRBuilder<> &IRB) { |
1631 | if (!Array->getNumElements()) |
1632 | return IRB.getIntN(/* width */ N: 1, /* value */ C: 0); |
1633 | |
1634 | Value *FirstItem = IRB.CreateExtractValue(Agg: Shadow, Idxs: 0); |
1635 | Value *Aggregator = convertShadowToScalar(V: FirstItem, IRB); |
1636 | |
1637 | for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) { |
1638 | Value *ShadowItem = IRB.CreateExtractValue(Agg: Shadow, Idxs: Idx); |
1639 | Value *ShadowInner = convertShadowToScalar(V: ShadowItem, IRB); |
1640 | Aggregator = IRB.CreateOr(LHS: Aggregator, RHS: ShadowInner); |
1641 | } |
1642 | return Aggregator; |
1643 | } |
1644 | |
1645 | /// Convert a shadow value to it's flattened variant. The resulting |
1646 | /// shadow may not necessarily have the same bit width as the input |
1647 | /// value, but it will always be comparable to zero. |
1648 | Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) { |
1649 | if (StructType *Struct = dyn_cast<StructType>(Val: V->getType())) |
1650 | return collapseStructShadow(Struct, Shadow: V, IRB); |
1651 | if (ArrayType *Array = dyn_cast<ArrayType>(Val: V->getType())) |
1652 | return collapseArrayShadow(Array, Shadow: V, IRB); |
1653 | if (isa<VectorType>(Val: V->getType())) { |
1654 | if (isa<ScalableVectorType>(Val: V->getType())) |
1655 | return convertShadowToScalar(V: IRB.CreateOrReduce(Src: V), IRB); |
1656 | unsigned BitWidth = |
1657 | V->getType()->getPrimitiveSizeInBits().getFixedValue(); |
1658 | return IRB.CreateBitCast(V, DestTy: IntegerType::get(C&: *MS.C, NumBits: BitWidth)); |
1659 | } |
1660 | return V; |
1661 | } |
1662 | |
1663 | // Convert a scalar value to an i1 by comparing with 0 |
1664 | Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "" ) { |
1665 | Type *VTy = V->getType(); |
1666 | if (!VTy->isIntegerTy()) |
1667 | return convertToBool(V: convertShadowToScalar(V, IRB), IRB, name); |
1668 | if (VTy->getIntegerBitWidth() == 1) |
1669 | // Just converting a bool to a bool, so do nothing. |
1670 | return V; |
1671 | return IRB.CreateICmpNE(LHS: V, RHS: ConstantInt::get(Ty: VTy, V: 0), Name: name); |
1672 | } |
1673 | |
1674 | Type *ptrToIntPtrType(Type *PtrTy) const { |
1675 | if (VectorType *VectTy = dyn_cast<VectorType>(Val: PtrTy)) { |
1676 | return VectorType::get(ElementType: ptrToIntPtrType(PtrTy: VectTy->getElementType()), |
1677 | EC: VectTy->getElementCount()); |
1678 | } |
1679 | assert(PtrTy->isIntOrPtrTy()); |
1680 | return MS.IntptrTy; |
1681 | } |
1682 | |
1683 | Type *getPtrToShadowPtrType(Type *IntPtrTy, Type *ShadowTy) const { |
1684 | if (VectorType *VectTy = dyn_cast<VectorType>(Val: IntPtrTy)) { |
1685 | return VectorType::get( |
1686 | ElementType: getPtrToShadowPtrType(IntPtrTy: VectTy->getElementType(), ShadowTy), |
1687 | EC: VectTy->getElementCount()); |
1688 | } |
1689 | assert(IntPtrTy == MS.IntptrTy); |
1690 | return PointerType::get(C&: *MS.C, AddressSpace: 0); |
1691 | } |
1692 | |
1693 | Constant *constToIntPtr(Type *IntPtrTy, uint64_t C) const { |
1694 | if (VectorType *VectTy = dyn_cast<VectorType>(Val: IntPtrTy)) { |
1695 | return ConstantVector::getSplat( |
1696 | EC: VectTy->getElementCount(), Elt: constToIntPtr(IntPtrTy: VectTy->getElementType(), C)); |
1697 | } |
1698 | assert(IntPtrTy == MS.IntptrTy); |
1699 | return ConstantInt::get(Ty: MS.IntptrTy, V: C); |
1700 | } |
1701 | |
1702 | /// Compute the integer shadow offset that corresponds to a given |
1703 | /// application address. |
1704 | /// |
1705 | /// Offset = (Addr & ~AndMask) ^ XorMask |
1706 | /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of |
1707 | /// a single pointee. |
1708 | /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>. |
1709 | Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { |
1710 | Type *IntptrTy = ptrToIntPtrType(PtrTy: Addr->getType()); |
1711 | Value *OffsetLong = IRB.CreatePointerCast(V: Addr, DestTy: IntptrTy); |
1712 | |
1713 | if (uint64_t AndMask = MS.MapParams->AndMask) |
1714 | OffsetLong = IRB.CreateAnd(LHS: OffsetLong, RHS: constToIntPtr(IntPtrTy: IntptrTy, C: ~AndMask)); |
1715 | |
1716 | if (uint64_t XorMask = MS.MapParams->XorMask) |
1717 | OffsetLong = IRB.CreateXor(LHS: OffsetLong, RHS: constToIntPtr(IntPtrTy: IntptrTy, C: XorMask)); |
1718 | return OffsetLong; |
1719 | } |
1720 | |
1721 | /// Compute the shadow and origin addresses corresponding to a given |
1722 | /// application address. |
1723 | /// |
1724 | /// Shadow = ShadowBase + Offset |
1725 | /// Origin = (OriginBase + Offset) & ~3ULL |
1726 | /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of |
1727 | /// a single pointee. |
1728 | /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>. |
1729 | std::pair<Value *, Value *> |
1730 | getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, |
1731 | MaybeAlign Alignment) { |
1732 | VectorType *VectTy = dyn_cast<VectorType>(Val: Addr->getType()); |
1733 | if (!VectTy) { |
1734 | assert(Addr->getType()->isPointerTy()); |
1735 | } else { |
1736 | assert(VectTy->getElementType()->isPointerTy()); |
1737 | } |
1738 | Type *IntptrTy = ptrToIntPtrType(PtrTy: Addr->getType()); |
1739 | Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); |
1740 | Value *ShadowLong = ShadowOffset; |
1741 | if (uint64_t ShadowBase = MS.MapParams->ShadowBase) { |
1742 | ShadowLong = |
1743 | IRB.CreateAdd(LHS: ShadowLong, RHS: constToIntPtr(IntPtrTy: IntptrTy, C: ShadowBase)); |
1744 | } |
1745 | Value *ShadowPtr = IRB.CreateIntToPtr( |
1746 | V: ShadowLong, DestTy: getPtrToShadowPtrType(IntPtrTy: IntptrTy, ShadowTy)); |
1747 | |
1748 | Value *OriginPtr = nullptr; |
1749 | if (MS.TrackOrigins) { |
1750 | Value *OriginLong = ShadowOffset; |
1751 | uint64_t OriginBase = MS.MapParams->OriginBase; |
1752 | if (OriginBase != 0) |
1753 | OriginLong = |
1754 | IRB.CreateAdd(LHS: OriginLong, RHS: constToIntPtr(IntPtrTy: IntptrTy, C: OriginBase)); |
1755 | if (!Alignment || *Alignment < kMinOriginAlignment) { |
1756 | uint64_t Mask = kMinOriginAlignment.value() - 1; |
1757 | OriginLong = IRB.CreateAnd(LHS: OriginLong, RHS: constToIntPtr(IntPtrTy: IntptrTy, C: ~Mask)); |
1758 | } |
1759 | OriginPtr = IRB.CreateIntToPtr( |
1760 | V: OriginLong, DestTy: getPtrToShadowPtrType(IntPtrTy: IntptrTy, ShadowTy: MS.OriginTy)); |
1761 | } |
1762 | return std::make_pair(x&: ShadowPtr, y&: OriginPtr); |
1763 | } |
1764 | |
1765 | template <typename... ArgsTy> |
1766 | Value *createMetadataCall(IRBuilder<> &IRB, FunctionCallee Callee, |
1767 | ArgsTy... Args) { |
1768 | if (MS.TargetTriple.getArch() == Triple::systemz) { |
1769 | IRB.CreateCall(Callee, |
1770 | {MS.MsanMetadataAlloca, std::forward<ArgsTy>(Args)...}); |
1771 | return IRB.CreateLoad(Ty: MS.MsanMetadata, Ptr: MS.MsanMetadataAlloca); |
1772 | } |
1773 | |
1774 | return IRB.CreateCall(Callee, {std::forward<ArgsTy>(Args)...}); |
1775 | } |
1776 | |
1777 | std::pair<Value *, Value *> getShadowOriginPtrKernelNoVec(Value *Addr, |
1778 | IRBuilder<> &IRB, |
1779 | Type *ShadowTy, |
1780 | bool isStore) { |
1781 | Value *ShadowOriginPtrs; |
1782 | const DataLayout &DL = F.getDataLayout(); |
1783 | TypeSize Size = DL.getTypeStoreSize(Ty: ShadowTy); |
1784 | |
1785 | FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, size: Size); |
1786 | Value *AddrCast = |
1787 | IRB.CreatePointerCast(V: Addr, DestTy: PointerType::get(ElementType: IRB.getInt8Ty(), AddressSpace: 0)); |
1788 | if (Getter) { |
1789 | ShadowOriginPtrs = createMetadataCall(IRB, Callee: Getter, Args: AddrCast); |
1790 | } else { |
1791 | Value *SizeVal = ConstantInt::get(Ty: MS.IntptrTy, V: Size); |
1792 | ShadowOriginPtrs = createMetadataCall( |
1793 | IRB, |
1794 | Callee: isStore ? MS.MsanMetadataPtrForStoreN : MS.MsanMetadataPtrForLoadN, |
1795 | Args: AddrCast, Args: SizeVal); |
1796 | } |
1797 | Value *ShadowPtr = IRB.CreateExtractValue(Agg: ShadowOriginPtrs, Idxs: 0); |
1798 | ShadowPtr = IRB.CreatePointerCast(V: ShadowPtr, DestTy: PointerType::get(ElementType: ShadowTy, AddressSpace: 0)); |
1799 | Value *OriginPtr = IRB.CreateExtractValue(Agg: ShadowOriginPtrs, Idxs: 1); |
1800 | |
1801 | return std::make_pair(x&: ShadowPtr, y&: OriginPtr); |
1802 | } |
1803 | |
1804 | /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of |
1805 | /// a single pointee. |
1806 | /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>. |
1807 | std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, |
1808 | IRBuilder<> &IRB, |
1809 | Type *ShadowTy, |
1810 | bool isStore) { |
1811 | VectorType *VectTy = dyn_cast<VectorType>(Val: Addr->getType()); |
1812 | if (!VectTy) { |
1813 | assert(Addr->getType()->isPointerTy()); |
1814 | return getShadowOriginPtrKernelNoVec(Addr, IRB, ShadowTy, isStore); |
1815 | } |
1816 | |
1817 | // TODO: Support callbacs with vectors of addresses. |
1818 | unsigned NumElements = cast<FixedVectorType>(Val: VectTy)->getNumElements(); |
1819 | Value *ShadowPtrs = ConstantInt::getNullValue( |
1820 | Ty: FixedVectorType::get(ElementType: IRB.getPtrTy(), NumElts: NumElements)); |
1821 | Value *OriginPtrs = nullptr; |
1822 | if (MS.TrackOrigins) |
1823 | OriginPtrs = ConstantInt::getNullValue( |
1824 | Ty: FixedVectorType::get(ElementType: IRB.getPtrTy(), NumElts: NumElements)); |
1825 | for (unsigned i = 0; i < NumElements; ++i) { |
1826 | Value *OneAddr = |
1827 | IRB.CreateExtractElement(Vec: Addr, Idx: ConstantInt::get(Ty: IRB.getInt32Ty(), V: i)); |
1828 | auto [ShadowPtr, OriginPtr] = |
1829 | getShadowOriginPtrKernelNoVec(Addr: OneAddr, IRB, ShadowTy, isStore); |
1830 | |
1831 | ShadowPtrs = IRB.CreateInsertElement( |
1832 | Vec: ShadowPtrs, NewElt: ShadowPtr, Idx: ConstantInt::get(Ty: IRB.getInt32Ty(), V: i)); |
1833 | if (MS.TrackOrigins) |
1834 | OriginPtrs = IRB.CreateInsertElement( |
1835 | Vec: OriginPtrs, NewElt: OriginPtr, Idx: ConstantInt::get(Ty: IRB.getInt32Ty(), V: i)); |
1836 | } |
1837 | return {ShadowPtrs, OriginPtrs}; |
1838 | } |
1839 | |
1840 | std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, |
1841 | Type *ShadowTy, |
1842 | MaybeAlign Alignment, |
1843 | bool isStore) { |
1844 | if (MS.CompileKernel) |
1845 | return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); |
1846 | return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); |
1847 | } |
1848 | |
1849 | /// Compute the shadow address for a given function argument. |
1850 | /// |
1851 | /// Shadow = ParamTLS+ArgOffset. |
1852 | Value *getShadowPtrForArgument(IRBuilder<> &IRB, int ArgOffset) { |
1853 | Value *Base = IRB.CreatePointerCast(V: MS.ParamTLS, DestTy: MS.IntptrTy); |
1854 | if (ArgOffset) |
1855 | Base = IRB.CreateAdd(LHS: Base, RHS: ConstantInt::get(Ty: MS.IntptrTy, V: ArgOffset)); |
1856 | return IRB.CreateIntToPtr(V: Base, DestTy: IRB.getPtrTy(AddrSpace: 0), Name: "_msarg" ); |
1857 | } |
1858 | |
1859 | /// Compute the origin address for a given function argument. |
1860 | Value *getOriginPtrForArgument(IRBuilder<> &IRB, int ArgOffset) { |
1861 | if (!MS.TrackOrigins) |
1862 | return nullptr; |
1863 | Value *Base = IRB.CreatePointerCast(V: MS.ParamOriginTLS, DestTy: MS.IntptrTy); |
1864 | if (ArgOffset) |
1865 | Base = IRB.CreateAdd(LHS: Base, RHS: ConstantInt::get(Ty: MS.IntptrTy, V: ArgOffset)); |
1866 | return IRB.CreateIntToPtr(V: Base, DestTy: IRB.getPtrTy(AddrSpace: 0), Name: "_msarg_o" ); |
1867 | } |
1868 | |
1869 | /// Compute the shadow address for a retval. |
1870 | Value *getShadowPtrForRetval(IRBuilder<> &IRB) { |
1871 | return IRB.CreatePointerCast(V: MS.RetvalTLS, DestTy: IRB.getPtrTy(AddrSpace: 0), Name: "_msret" ); |
1872 | } |
1873 | |
1874 | /// Compute the origin address for a retval. |
1875 | Value *getOriginPtrForRetval() { |
1876 | // We keep a single origin for the entire retval. Might be too optimistic. |
1877 | return MS.RetvalOriginTLS; |
1878 | } |
1879 | |
1880 | /// Set SV to be the shadow value for V. |
1881 | void setShadow(Value *V, Value *SV) { |
1882 | assert(!ShadowMap.count(V) && "Values may only have one shadow" ); |
1883 | ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); |
1884 | } |
1885 | |
1886 | /// Set Origin to be the origin value for V. |
1887 | void setOrigin(Value *V, Value *Origin) { |
1888 | if (!MS.TrackOrigins) |
1889 | return; |
1890 | assert(!OriginMap.count(V) && "Values may only have one origin" ); |
1891 | LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n" ); |
1892 | OriginMap[V] = Origin; |
1893 | } |
1894 | |
1895 | Constant *getCleanShadow(Type *OrigTy) { |
1896 | Type *ShadowTy = getShadowTy(OrigTy); |
1897 | if (!ShadowTy) |
1898 | return nullptr; |
1899 | return Constant::getNullValue(Ty: ShadowTy); |
1900 | } |
1901 | |
1902 | /// Create a clean shadow value for a given value. |
1903 | /// |
1904 | /// Clean shadow (all zeroes) means all bits of the value are defined |
1905 | /// (initialized). |
1906 | Constant *getCleanShadow(Value *V) { return getCleanShadow(OrigTy: V->getType()); } |
1907 | |
1908 | /// Create a dirty shadow of a given shadow type. |
1909 | Constant *getPoisonedShadow(Type *ShadowTy) { |
1910 | assert(ShadowTy); |
1911 | if (isa<IntegerType>(Val: ShadowTy) || isa<VectorType>(Val: ShadowTy)) |
1912 | return Constant::getAllOnesValue(Ty: ShadowTy); |
1913 | if (ArrayType *AT = dyn_cast<ArrayType>(Val: ShadowTy)) { |
1914 | SmallVector<Constant *, 4> Vals(AT->getNumElements(), |
1915 | getPoisonedShadow(ShadowTy: AT->getElementType())); |
1916 | return ConstantArray::get(T: AT, V: Vals); |
1917 | } |
1918 | if (StructType *ST = dyn_cast<StructType>(Val: ShadowTy)) { |
1919 | SmallVector<Constant *, 4> Vals; |
1920 | for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) |
1921 | Vals.push_back(Elt: getPoisonedShadow(ShadowTy: ST->getElementType(N: i))); |
1922 | return ConstantStruct::get(T: ST, V: Vals); |
1923 | } |
1924 | llvm_unreachable("Unexpected shadow type" ); |
1925 | } |
1926 | |
1927 | /// Create a dirty shadow for a given value. |
1928 | Constant *getPoisonedShadow(Value *V) { |
1929 | Type *ShadowTy = getShadowTy(V); |
1930 | if (!ShadowTy) |
1931 | return nullptr; |
1932 | return getPoisonedShadow(ShadowTy); |
1933 | } |
1934 | |
1935 | /// Create a clean (zero) origin. |
1936 | Value *getCleanOrigin() { return Constant::getNullValue(Ty: MS.OriginTy); } |
1937 | |
1938 | /// Get the shadow value for a given Value. |
1939 | /// |
1940 | /// This function either returns the value set earlier with setShadow, |
1941 | /// or extracts if from ParamTLS (for function arguments). |
1942 | Value *getShadow(Value *V) { |
1943 | if (Instruction *I = dyn_cast<Instruction>(Val: V)) { |
1944 | if (!PropagateShadow || I->getMetadata(KindID: LLVMContext::MD_nosanitize)) |
1945 | return getCleanShadow(V); |
1946 | // For instructions the shadow is already stored in the map. |
1947 | Value *Shadow = ShadowMap[V]; |
1948 | if (!Shadow) { |
1949 | LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); |
1950 | (void)I; |
1951 | assert(Shadow && "No shadow for a value" ); |
1952 | } |
1953 | return Shadow; |
1954 | } |
1955 | if (UndefValue *U = dyn_cast<UndefValue>(Val: V)) { |
1956 | Value *AllOnes = (PropagateShadow && PoisonUndef) ? getPoisonedShadow(V) |
1957 | : getCleanShadow(V); |
1958 | LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n" ); |
1959 | (void)U; |
1960 | return AllOnes; |
1961 | } |
1962 | if (Argument *A = dyn_cast<Argument>(Val: V)) { |
1963 | // For arguments we compute the shadow on demand and store it in the map. |
1964 | Value *&ShadowPtr = ShadowMap[V]; |
1965 | if (ShadowPtr) |
1966 | return ShadowPtr; |
1967 | Function *F = A->getParent(); |
1968 | IRBuilder<> EntryIRB(FnPrologueEnd); |
1969 | unsigned ArgOffset = 0; |
1970 | const DataLayout &DL = F->getDataLayout(); |
1971 | for (auto &FArg : F->args()) { |
1972 | if (!FArg.getType()->isSized() || FArg.getType()->isScalableTy()) { |
1973 | LLVM_DEBUG(dbgs() << (FArg.getType()->isScalableTy() |
1974 | ? "vscale not fully supported\n" |
1975 | : "Arg is not sized\n" )); |
1976 | if (A == &FArg) { |
1977 | ShadowPtr = getCleanShadow(V); |
1978 | setOrigin(V: A, Origin: getCleanOrigin()); |
1979 | break; |
1980 | } |
1981 | continue; |
1982 | } |
1983 | |
1984 | unsigned Size = FArg.hasByValAttr() |
1985 | ? DL.getTypeAllocSize(Ty: FArg.getParamByValType()) |
1986 | : DL.getTypeAllocSize(Ty: FArg.getType()); |
1987 | |
1988 | if (A == &FArg) { |
1989 | bool Overflow = ArgOffset + Size > kParamTLSSize; |
1990 | if (FArg.hasByValAttr()) { |
1991 | // ByVal pointer itself has clean shadow. We copy the actual |
1992 | // argument shadow to the underlying memory. |
1993 | // Figure out maximal valid memcpy alignment. |
1994 | const Align ArgAlign = DL.getValueOrABITypeAlignment( |
1995 | Alignment: FArg.getParamAlign(), Ty: FArg.getParamByValType()); |
1996 | Value *CpShadowPtr, *CpOriginPtr; |
1997 | std::tie(args&: CpShadowPtr, args&: CpOriginPtr) = |
1998 | getShadowOriginPtr(Addr: V, IRB&: EntryIRB, ShadowTy: EntryIRB.getInt8Ty(), Alignment: ArgAlign, |
1999 | /*isStore*/ true); |
2000 | if (!PropagateShadow || Overflow) { |
2001 | // ParamTLS overflow. |
2002 | EntryIRB.CreateMemSet( |
2003 | Ptr: CpShadowPtr, Val: Constant::getNullValue(Ty: EntryIRB.getInt8Ty()), |
2004 | Size, Align: ArgAlign); |
2005 | } else { |
2006 | Value *Base = getShadowPtrForArgument(IRB&: EntryIRB, ArgOffset); |
2007 | const Align CopyAlign = std::min(a: ArgAlign, b: kShadowTLSAlignment); |
2008 | Value *Cpy = EntryIRB.CreateMemCpy(Dst: CpShadowPtr, DstAlign: CopyAlign, Src: Base, |
2009 | SrcAlign: CopyAlign, Size); |
2010 | LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n" ); |
2011 | (void)Cpy; |
2012 | |
2013 | if (MS.TrackOrigins) { |
2014 | Value *OriginPtr = |
2015 | getOriginPtrForArgument(IRB&: EntryIRB, ArgOffset); |
2016 | // FIXME: OriginSize should be: |
2017 | // alignTo(V % kMinOriginAlignment + Size, kMinOriginAlignment) |
2018 | unsigned OriginSize = alignTo(Size, A: kMinOriginAlignment); |
2019 | EntryIRB.CreateMemCpy( |
2020 | Dst: CpOriginPtr, |
2021 | /* by getShadowOriginPtr */ DstAlign: kMinOriginAlignment, Src: OriginPtr, |
2022 | /* by origin_tls[ArgOffset] */ SrcAlign: kMinOriginAlignment, |
2023 | Size: OriginSize); |
2024 | } |
2025 | } |
2026 | } |
2027 | |
2028 | if (!PropagateShadow || Overflow || FArg.hasByValAttr() || |
2029 | (MS.EagerChecks && FArg.hasAttribute(Kind: Attribute::NoUndef))) { |
2030 | ShadowPtr = getCleanShadow(V); |
2031 | setOrigin(V: A, Origin: getCleanOrigin()); |
2032 | } else { |
2033 | // Shadow over TLS |
2034 | Value *Base = getShadowPtrForArgument(IRB&: EntryIRB, ArgOffset); |
2035 | ShadowPtr = EntryIRB.CreateAlignedLoad(Ty: getShadowTy(V: &FArg), Ptr: Base, |
2036 | Align: kShadowTLSAlignment); |
2037 | if (MS.TrackOrigins) { |
2038 | Value *OriginPtr = |
2039 | getOriginPtrForArgument(IRB&: EntryIRB, ArgOffset); |
2040 | setOrigin(V: A, Origin: EntryIRB.CreateLoad(Ty: MS.OriginTy, Ptr: OriginPtr)); |
2041 | } |
2042 | } |
2043 | LLVM_DEBUG(dbgs() |
2044 | << " ARG: " << FArg << " ==> " << *ShadowPtr << "\n" ); |
2045 | break; |
2046 | } |
2047 | |
2048 | ArgOffset += alignTo(Size, A: kShadowTLSAlignment); |
2049 | } |
2050 | assert(ShadowPtr && "Could not find shadow for an argument" ); |
2051 | return ShadowPtr; |
2052 | } |
2053 | // For everything else the shadow is zero. |
2054 | return getCleanShadow(V); |
2055 | } |
2056 | |
2057 | /// Get the shadow for i-th argument of the instruction I. |
2058 | Value *getShadow(Instruction *I, int i) { |
2059 | return getShadow(V: I->getOperand(i)); |
2060 | } |
2061 | |
2062 | /// Get the origin for a value. |
2063 | Value *getOrigin(Value *V) { |
2064 | if (!MS.TrackOrigins) |
2065 | return nullptr; |
2066 | if (!PropagateShadow || isa<Constant>(Val: V) || isa<InlineAsm>(Val: V)) |
2067 | return getCleanOrigin(); |
2068 | assert((isa<Instruction>(V) || isa<Argument>(V)) && |
2069 | "Unexpected value type in getOrigin()" ); |
2070 | if (Instruction *I = dyn_cast<Instruction>(Val: V)) { |
2071 | if (I->getMetadata(KindID: LLVMContext::MD_nosanitize)) |
2072 | return getCleanOrigin(); |
2073 | } |
2074 | Value *Origin = OriginMap[V]; |
2075 | assert(Origin && "Missing origin" ); |
2076 | return Origin; |
2077 | } |
2078 | |
2079 | /// Get the origin for i-th argument of the instruction I. |
2080 | Value *getOrigin(Instruction *I, int i) { |
2081 | return getOrigin(V: I->getOperand(i)); |
2082 | } |
2083 | |
2084 | /// Remember the place where a shadow check should be inserted. |
2085 | /// |
2086 | /// This location will be later instrumented with a check that will print a |
2087 | /// UMR warning in runtime if the shadow value is not 0. |
2088 | void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { |
2089 | assert(Shadow); |
2090 | if (!InsertChecks) |
2091 | return; |
2092 | |
2093 | if (!DebugCounter::shouldExecute(CounterName: DebugInsertCheck)) { |
2094 | LLVM_DEBUG(dbgs() << "Skipping check of " << *Shadow << " before " |
2095 | << *OrigIns << "\n" ); |
2096 | return; |
2097 | } |
2098 | #ifndef NDEBUG |
2099 | Type *ShadowTy = Shadow->getType(); |
2100 | assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || |
2101 | isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && |
2102 | "Can only insert checks for integer, vector, and aggregate shadow " |
2103 | "types" ); |
2104 | #endif |
2105 | InstrumentationList.push_back( |
2106 | Elt: ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); |
2107 | } |
2108 | |
2109 | /// Remember the place where a shadow check should be inserted. |
2110 | /// |
2111 | /// This location will be later instrumented with a check that will print a |
2112 | /// UMR warning in runtime if the value is not fully defined. |
2113 | void insertShadowCheck(Value *Val, Instruction *OrigIns) { |
2114 | assert(Val); |
2115 | Value *Shadow, *Origin; |
2116 | if (ClCheckConstantShadow) { |
2117 | Shadow = getShadow(V: Val); |
2118 | if (!Shadow) |
2119 | return; |
2120 | Origin = getOrigin(V: Val); |
2121 | } else { |
2122 | Shadow = dyn_cast_or_null<Instruction>(Val: getShadow(V: Val)); |
2123 | if (!Shadow) |
2124 | return; |
2125 | Origin = dyn_cast_or_null<Instruction>(Val: getOrigin(V: Val)); |
2126 | } |
2127 | insertShadowCheck(Shadow, Origin, OrigIns); |
2128 | } |
2129 | |
2130 | AtomicOrdering addReleaseOrdering(AtomicOrdering a) { |
2131 | switch (a) { |
2132 | case AtomicOrdering::NotAtomic: |
2133 | return AtomicOrdering::NotAtomic; |
2134 | case AtomicOrdering::Unordered: |
2135 | case AtomicOrdering::Monotonic: |
2136 | case AtomicOrdering::Release: |
2137 | return AtomicOrdering::Release; |
2138 | case AtomicOrdering::Acquire: |
2139 | case AtomicOrdering::AcquireRelease: |
2140 | return AtomicOrdering::AcquireRelease; |
2141 | case AtomicOrdering::SequentiallyConsistent: |
2142 | return AtomicOrdering::SequentiallyConsistent; |
2143 | } |
2144 | llvm_unreachable("Unknown ordering" ); |
2145 | } |
2146 | |
2147 | Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) { |
2148 | constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; |
2149 | uint32_t OrderingTable[NumOrderings] = {}; |
2150 | |
2151 | OrderingTable[(int)AtomicOrderingCABI::relaxed] = |
2152 | OrderingTable[(int)AtomicOrderingCABI::release] = |
2153 | (int)AtomicOrderingCABI::release; |
2154 | OrderingTable[(int)AtomicOrderingCABI::consume] = |
2155 | OrderingTable[(int)AtomicOrderingCABI::acquire] = |
2156 | OrderingTable[(int)AtomicOrderingCABI::acq_rel] = |
2157 | (int)AtomicOrderingCABI::acq_rel; |
2158 | OrderingTable[(int)AtomicOrderingCABI::seq_cst] = |
2159 | (int)AtomicOrderingCABI::seq_cst; |
2160 | |
2161 | return ConstantDataVector::get(Context&: IRB.getContext(), Elts: OrderingTable); |
2162 | } |
2163 | |
2164 | AtomicOrdering addAcquireOrdering(AtomicOrdering a) { |
2165 | switch (a) { |
2166 | case AtomicOrdering::NotAtomic: |
2167 | return AtomicOrdering::NotAtomic; |
2168 | case AtomicOrdering::Unordered: |
2169 | case AtomicOrdering::Monotonic: |
2170 | case AtomicOrdering::Acquire: |
2171 | return AtomicOrdering::Acquire; |
2172 | case AtomicOrdering::Release: |
2173 | case AtomicOrdering::AcquireRelease: |
2174 | return AtomicOrdering::AcquireRelease; |
2175 | case AtomicOrdering::SequentiallyConsistent: |
2176 | return AtomicOrdering::SequentiallyConsistent; |
2177 | } |
2178 | llvm_unreachable("Unknown ordering" ); |
2179 | } |
2180 | |
2181 | Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) { |
2182 | constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; |
2183 | uint32_t OrderingTable[NumOrderings] = {}; |
2184 | |
2185 | OrderingTable[(int)AtomicOrderingCABI::relaxed] = |
2186 | OrderingTable[(int)AtomicOrderingCABI::acquire] = |
2187 | OrderingTable[(int)AtomicOrderingCABI::consume] = |
2188 | (int)AtomicOrderingCABI::acquire; |
2189 | OrderingTable[(int)AtomicOrderingCABI::release] = |
2190 | OrderingTable[(int)AtomicOrderingCABI::acq_rel] = |
2191 | (int)AtomicOrderingCABI::acq_rel; |
2192 | OrderingTable[(int)AtomicOrderingCABI::seq_cst] = |
2193 | (int)AtomicOrderingCABI::seq_cst; |
2194 | |
2195 | return ConstantDataVector::get(Context&: IRB.getContext(), Elts: OrderingTable); |
2196 | } |
2197 | |
2198 | // ------------------- Visitors. |
2199 | using InstVisitor<MemorySanitizerVisitor>::visit; |
2200 | void visit(Instruction &I) { |
2201 | if (I.getMetadata(KindID: LLVMContext::MD_nosanitize)) |
2202 | return; |
2203 | // Don't want to visit if we're in the prologue |
2204 | if (isInPrologue(I)) |
2205 | return; |
2206 | if (!DebugCounter::shouldExecute(CounterName: DebugInstrumentInstruction)) { |
2207 | LLVM_DEBUG(dbgs() << "Skipping instruction: " << I << "\n" ); |
2208 | // We still need to set the shadow and origin to clean values. |
2209 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
2210 | setOrigin(V: &I, Origin: getCleanOrigin()); |
2211 | return; |
2212 | } |
2213 | |
2214 | Instructions.push_back(Elt: &I); |
2215 | } |
2216 | |
2217 | /// Instrument LoadInst |
2218 | /// |
2219 | /// Loads the corresponding shadow and (optionally) origin. |
2220 | /// Optionally, checks that the load address is fully defined. |
2221 | void visitLoadInst(LoadInst &I) { |
2222 | assert(I.getType()->isSized() && "Load type must have size" ); |
2223 | assert(!I.getMetadata(LLVMContext::MD_nosanitize)); |
2224 | NextNodeIRBuilder IRB(&I); |
2225 | Type *ShadowTy = getShadowTy(V: &I); |
2226 | Value *Addr = I.getPointerOperand(); |
2227 | Value *ShadowPtr = nullptr, *OriginPtr = nullptr; |
2228 | const Align Alignment = I.getAlign(); |
2229 | if (PropagateShadow) { |
2230 | std::tie(args&: ShadowPtr, args&: OriginPtr) = |
2231 | getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); |
2232 | setShadow(V: &I, |
2233 | SV: IRB.CreateAlignedLoad(Ty: ShadowTy, Ptr: ShadowPtr, Align: Alignment, Name: "_msld" )); |
2234 | } else { |
2235 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
2236 | } |
2237 | |
2238 | if (ClCheckAccessAddress) |
2239 | insertShadowCheck(Val: I.getPointerOperand(), OrigIns: &I); |
2240 | |
2241 | if (I.isAtomic()) |
2242 | I.setOrdering(addAcquireOrdering(a: I.getOrdering())); |
2243 | |
2244 | if (MS.TrackOrigins) { |
2245 | if (PropagateShadow) { |
2246 | const Align OriginAlignment = std::max(a: kMinOriginAlignment, b: Alignment); |
2247 | setOrigin( |
2248 | V: &I, Origin: IRB.CreateAlignedLoad(Ty: MS.OriginTy, Ptr: OriginPtr, Align: OriginAlignment)); |
2249 | } else { |
2250 | setOrigin(V: &I, Origin: getCleanOrigin()); |
2251 | } |
2252 | } |
2253 | } |
2254 | |
2255 | /// Instrument StoreInst |
2256 | /// |
2257 | /// Stores the corresponding shadow and (optionally) origin. |
2258 | /// Optionally, checks that the store address is fully defined. |
2259 | void visitStoreInst(StoreInst &I) { |
2260 | StoreList.push_back(Elt: &I); |
2261 | if (ClCheckAccessAddress) |
2262 | insertShadowCheck(Val: I.getPointerOperand(), OrigIns: &I); |
2263 | } |
2264 | |
2265 | void handleCASOrRMW(Instruction &I) { |
2266 | assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); |
2267 | |
2268 | IRBuilder<> IRB(&I); |
2269 | Value *Addr = I.getOperand(i: 0); |
2270 | Value *Val = I.getOperand(i: 1); |
2271 | Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, ShadowTy: getShadowTy(V: Val), Alignment: Align(1), |
2272 | /*isStore*/ true) |
2273 | .first; |
2274 | |
2275 | if (ClCheckAccessAddress) |
2276 | insertShadowCheck(Val: Addr, OrigIns: &I); |
2277 | |
2278 | // Only test the conditional argument of cmpxchg instruction. |
2279 | // The other argument can potentially be uninitialized, but we can not |
2280 | // detect this situation reliably without possible false positives. |
2281 | if (isa<AtomicCmpXchgInst>(Val: I)) |
2282 | insertShadowCheck(Val, OrigIns: &I); |
2283 | |
2284 | IRB.CreateStore(Val: getCleanShadow(V: Val), Ptr: ShadowPtr); |
2285 | |
2286 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
2287 | setOrigin(V: &I, Origin: getCleanOrigin()); |
2288 | } |
2289 | |
2290 | void visitAtomicRMWInst(AtomicRMWInst &I) { |
2291 | handleCASOrRMW(I); |
2292 | I.setOrdering(addReleaseOrdering(a: I.getOrdering())); |
2293 | } |
2294 | |
2295 | void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { |
2296 | handleCASOrRMW(I); |
2297 | I.setSuccessOrdering(addReleaseOrdering(a: I.getSuccessOrdering())); |
2298 | } |
2299 | |
2300 | // Vector manipulation. |
2301 | void (ExtractElementInst &I) { |
2302 | insertShadowCheck(Val: I.getOperand(i_nocapture: 1), OrigIns: &I); |
2303 | IRBuilder<> IRB(&I); |
2304 | setShadow(V: &I, SV: IRB.CreateExtractElement(Vec: getShadow(I: &I, i: 0), Idx: I.getOperand(i_nocapture: 1), |
2305 | Name: "_msprop" )); |
2306 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
2307 | } |
2308 | |
2309 | void visitInsertElementInst(InsertElementInst &I) { |
2310 | insertShadowCheck(Val: I.getOperand(i_nocapture: 2), OrigIns: &I); |
2311 | IRBuilder<> IRB(&I); |
2312 | auto *Shadow0 = getShadow(I: &I, i: 0); |
2313 | auto *Shadow1 = getShadow(I: &I, i: 1); |
2314 | setShadow(V: &I, SV: IRB.CreateInsertElement(Vec: Shadow0, NewElt: Shadow1, Idx: I.getOperand(i_nocapture: 2), |
2315 | Name: "_msprop" )); |
2316 | setOriginForNaryOp(I); |
2317 | } |
2318 | |
2319 | void visitShuffleVectorInst(ShuffleVectorInst &I) { |
2320 | IRBuilder<> IRB(&I); |
2321 | auto *Shadow0 = getShadow(I: &I, i: 0); |
2322 | auto *Shadow1 = getShadow(I: &I, i: 1); |
2323 | setShadow(V: &I, SV: IRB.CreateShuffleVector(V1: Shadow0, V2: Shadow1, Mask: I.getShuffleMask(), |
2324 | Name: "_msprop" )); |
2325 | setOriginForNaryOp(I); |
2326 | } |
2327 | |
2328 | // Casts. |
2329 | void visitSExtInst(SExtInst &I) { |
2330 | IRBuilder<> IRB(&I); |
2331 | setShadow(V: &I, SV: IRB.CreateSExt(V: getShadow(I: &I, i: 0), DestTy: I.getType(), Name: "_msprop" )); |
2332 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
2333 | } |
2334 | |
2335 | void visitZExtInst(ZExtInst &I) { |
2336 | IRBuilder<> IRB(&I); |
2337 | setShadow(V: &I, SV: IRB.CreateZExt(V: getShadow(I: &I, i: 0), DestTy: I.getType(), Name: "_msprop" )); |
2338 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
2339 | } |
2340 | |
2341 | void visitTruncInst(TruncInst &I) { |
2342 | IRBuilder<> IRB(&I); |
2343 | setShadow(V: &I, SV: IRB.CreateTrunc(V: getShadow(I: &I, i: 0), DestTy: I.getType(), Name: "_msprop" )); |
2344 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
2345 | } |
2346 | |
2347 | void visitBitCastInst(BitCastInst &I) { |
2348 | // Special case: if this is the bitcast (there is exactly 1 allowed) between |
2349 | // a musttail call and a ret, don't instrument. New instructions are not |
2350 | // allowed after a musttail call. |
2351 | if (auto *CI = dyn_cast<CallInst>(Val: I.getOperand(i_nocapture: 0))) |
2352 | if (CI->isMustTailCall()) |
2353 | return; |
2354 | IRBuilder<> IRB(&I); |
2355 | setShadow(V: &I, SV: IRB.CreateBitCast(V: getShadow(I: &I, i: 0), DestTy: getShadowTy(V: &I))); |
2356 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
2357 | } |
2358 | |
2359 | void visitPtrToIntInst(PtrToIntInst &I) { |
2360 | IRBuilder<> IRB(&I); |
2361 | setShadow(V: &I, SV: IRB.CreateIntCast(V: getShadow(I: &I, i: 0), DestTy: getShadowTy(V: &I), isSigned: false, |
2362 | Name: "_msprop_ptrtoint" )); |
2363 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
2364 | } |
2365 | |
2366 | void visitIntToPtrInst(IntToPtrInst &I) { |
2367 | IRBuilder<> IRB(&I); |
2368 | setShadow(V: &I, SV: IRB.CreateIntCast(V: getShadow(I: &I, i: 0), DestTy: getShadowTy(V: &I), isSigned: false, |
2369 | Name: "_msprop_inttoptr" )); |
2370 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
2371 | } |
2372 | |
2373 | void visitFPToSIInst(CastInst &I) { handleShadowOr(I); } |
2374 | void visitFPToUIInst(CastInst &I) { handleShadowOr(I); } |
2375 | void visitSIToFPInst(CastInst &I) { handleShadowOr(I); } |
2376 | void visitUIToFPInst(CastInst &I) { handleShadowOr(I); } |
2377 | void visitFPExtInst(CastInst &I) { handleShadowOr(I); } |
2378 | void visitFPTruncInst(CastInst &I) { handleShadowOr(I); } |
2379 | |
2380 | /// Propagate shadow for bitwise AND. |
2381 | /// |
2382 | /// This code is exact, i.e. if, for example, a bit in the left argument |
2383 | /// is defined and 0, then neither the value not definedness of the |
2384 | /// corresponding bit in B don't affect the resulting shadow. |
2385 | void visitAnd(BinaryOperator &I) { |
2386 | IRBuilder<> IRB(&I); |
2387 | // "And" of 0 and a poisoned value results in unpoisoned value. |
2388 | // 1&1 => 1; 0&1 => 0; p&1 => p; |
2389 | // 1&0 => 0; 0&0 => 0; p&0 => 0; |
2390 | // 1&p => p; 0&p => 0; p&p => p; |
2391 | // S = (S1 & S2) | (V1 & S2) | (S1 & V2) |
2392 | Value *S1 = getShadow(I: &I, i: 0); |
2393 | Value *S2 = getShadow(I: &I, i: 1); |
2394 | Value *V1 = I.getOperand(i_nocapture: 0); |
2395 | Value *V2 = I.getOperand(i_nocapture: 1); |
2396 | if (V1->getType() != S1->getType()) { |
2397 | V1 = IRB.CreateIntCast(V: V1, DestTy: S1->getType(), isSigned: false); |
2398 | V2 = IRB.CreateIntCast(V: V2, DestTy: S2->getType(), isSigned: false); |
2399 | } |
2400 | Value *S1S2 = IRB.CreateAnd(LHS: S1, RHS: S2); |
2401 | Value *V1S2 = IRB.CreateAnd(LHS: V1, RHS: S2); |
2402 | Value *S1V2 = IRB.CreateAnd(LHS: S1, RHS: V2); |
2403 | setShadow(V: &I, SV: IRB.CreateOr(Ops: {S1S2, V1S2, S1V2})); |
2404 | setOriginForNaryOp(I); |
2405 | } |
2406 | |
2407 | void visitOr(BinaryOperator &I) { |
2408 | IRBuilder<> IRB(&I); |
2409 | // "Or" of 1 and a poisoned value results in unpoisoned value. |
2410 | // 1|1 => 1; 0|1 => 1; p|1 => 1; |
2411 | // 1|0 => 1; 0|0 => 0; p|0 => p; |
2412 | // 1|p => 1; 0|p => p; p|p => p; |
2413 | // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) |
2414 | Value *S1 = getShadow(I: &I, i: 0); |
2415 | Value *S2 = getShadow(I: &I, i: 1); |
2416 | Value *V1 = IRB.CreateNot(V: I.getOperand(i_nocapture: 0)); |
2417 | Value *V2 = IRB.CreateNot(V: I.getOperand(i_nocapture: 1)); |
2418 | if (V1->getType() != S1->getType()) { |
2419 | V1 = IRB.CreateIntCast(V: V1, DestTy: S1->getType(), isSigned: false); |
2420 | V2 = IRB.CreateIntCast(V: V2, DestTy: S2->getType(), isSigned: false); |
2421 | } |
2422 | Value *S1S2 = IRB.CreateAnd(LHS: S1, RHS: S2); |
2423 | Value *V1S2 = IRB.CreateAnd(LHS: V1, RHS: S2); |
2424 | Value *S1V2 = IRB.CreateAnd(LHS: S1, RHS: V2); |
2425 | setShadow(V: &I, SV: IRB.CreateOr(Ops: {S1S2, V1S2, S1V2})); |
2426 | setOriginForNaryOp(I); |
2427 | } |
2428 | |
2429 | /// Default propagation of shadow and/or origin. |
2430 | /// |
2431 | /// This class implements the general case of shadow propagation, used in all |
2432 | /// cases where we don't know and/or don't care about what the operation |
2433 | /// actually does. It converts all input shadow values to a common type |
2434 | /// (extending or truncating as necessary), and bitwise OR's them. |
2435 | /// |
2436 | /// This is much cheaper than inserting checks (i.e. requiring inputs to be |
2437 | /// fully initialized), and less prone to false positives. |
2438 | /// |
2439 | /// This class also implements the general case of origin propagation. For a |
2440 | /// Nary operation, result origin is set to the origin of an argument that is |
2441 | /// not entirely initialized. If there is more than one such arguments, the |
2442 | /// rightmost of them is picked. It does not matter which one is picked if all |
2443 | /// arguments are initialized. |
2444 | template <bool CombineShadow> class Combiner { |
2445 | Value *Shadow = nullptr; |
2446 | Value *Origin = nullptr; |
2447 | IRBuilder<> &IRB; |
2448 | MemorySanitizerVisitor *MSV; |
2449 | |
2450 | public: |
2451 | Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) |
2452 | : IRB(IRB), MSV(MSV) {} |
2453 | |
2454 | /// Add a pair of shadow and origin values to the mix. |
2455 | Combiner &Add(Value *OpShadow, Value *OpOrigin) { |
2456 | if (CombineShadow) { |
2457 | assert(OpShadow); |
2458 | if (!Shadow) |
2459 | Shadow = OpShadow; |
2460 | else { |
2461 | OpShadow = MSV->CreateShadowCast(IRB, V: OpShadow, dstTy: Shadow->getType()); |
2462 | Shadow = IRB.CreateOr(LHS: Shadow, RHS: OpShadow, Name: "_msprop" ); |
2463 | } |
2464 | } |
2465 | |
2466 | if (MSV->MS.TrackOrigins) { |
2467 | assert(OpOrigin); |
2468 | if (!Origin) { |
2469 | Origin = OpOrigin; |
2470 | } else { |
2471 | Constant *ConstOrigin = dyn_cast<Constant>(Val: OpOrigin); |
2472 | // No point in adding something that might result in 0 origin value. |
2473 | if (!ConstOrigin || !ConstOrigin->isNullValue()) { |
2474 | Value *Cond = MSV->convertToBool(V: OpShadow, IRB); |
2475 | Origin = IRB.CreateSelect(C: Cond, True: OpOrigin, False: Origin); |
2476 | } |
2477 | } |
2478 | } |
2479 | return *this; |
2480 | } |
2481 | |
2482 | /// Add an application value to the mix. |
2483 | Combiner &Add(Value *V) { |
2484 | Value *OpShadow = MSV->getShadow(V); |
2485 | Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; |
2486 | return Add(OpShadow, OpOrigin); |
2487 | } |
2488 | |
2489 | /// Set the current combined values as the given instruction's shadow |
2490 | /// and origin. |
2491 | void Done(Instruction *I) { |
2492 | if (CombineShadow) { |
2493 | assert(Shadow); |
2494 | Shadow = MSV->CreateShadowCast(IRB, V: Shadow, dstTy: MSV->getShadowTy(V: I)); |
2495 | MSV->setShadow(V: I, SV: Shadow); |
2496 | } |
2497 | if (MSV->MS.TrackOrigins) { |
2498 | assert(Origin); |
2499 | MSV->setOrigin(V: I, Origin); |
2500 | } |
2501 | } |
2502 | |
2503 | /// Store the current combined value at the specified origin |
2504 | /// location. |
2505 | void DoneAndStoreOrigin(TypeSize TS, Value *OriginPtr) { |
2506 | if (MSV->MS.TrackOrigins) { |
2507 | assert(Origin); |
2508 | MSV->paintOrigin(IRB, Origin, OriginPtr, TS, Alignment: kMinOriginAlignment); |
2509 | } |
2510 | } |
2511 | }; |
2512 | |
2513 | using ShadowAndOriginCombiner = Combiner<true>; |
2514 | using OriginCombiner = Combiner<false>; |
2515 | |
2516 | /// Propagate origin for arbitrary operation. |
2517 | void setOriginForNaryOp(Instruction &I) { |
2518 | if (!MS.TrackOrigins) |
2519 | return; |
2520 | IRBuilder<> IRB(&I); |
2521 | OriginCombiner OC(this, IRB); |
2522 | for (Use &Op : I.operands()) |
2523 | OC.Add(V: Op.get()); |
2524 | OC.Done(I: &I); |
2525 | } |
2526 | |
2527 | size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { |
2528 | assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && |
2529 | "Vector of pointers is not a valid shadow type" ); |
2530 | return Ty->isVectorTy() ? cast<FixedVectorType>(Val: Ty)->getNumElements() * |
2531 | Ty->getScalarSizeInBits() |
2532 | : Ty->getPrimitiveSizeInBits(); |
2533 | } |
2534 | |
2535 | /// Cast between two shadow types, extending or truncating as |
2536 | /// necessary. |
2537 | Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, |
2538 | bool Signed = false) { |
2539 | Type *srcTy = V->getType(); |
2540 | if (srcTy == dstTy) |
2541 | return V; |
2542 | size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(Ty: srcTy); |
2543 | size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(Ty: dstTy); |
2544 | if (srcSizeInBits > 1 && dstSizeInBits == 1) |
2545 | return IRB.CreateICmpNE(LHS: V, RHS: getCleanShadow(V)); |
2546 | |
2547 | if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) |
2548 | return IRB.CreateIntCast(V, DestTy: dstTy, isSigned: Signed); |
2549 | if (dstTy->isVectorTy() && srcTy->isVectorTy() && |
2550 | cast<VectorType>(Val: dstTy)->getElementCount() == |
2551 | cast<VectorType>(Val: srcTy)->getElementCount()) |
2552 | return IRB.CreateIntCast(V, DestTy: dstTy, isSigned: Signed); |
2553 | Value *V1 = IRB.CreateBitCast(V, DestTy: Type::getIntNTy(C&: *MS.C, N: srcSizeInBits)); |
2554 | Value *V2 = |
2555 | IRB.CreateIntCast(V: V1, DestTy: Type::getIntNTy(C&: *MS.C, N: dstSizeInBits), isSigned: Signed); |
2556 | return IRB.CreateBitCast(V: V2, DestTy: dstTy); |
2557 | // TODO: handle struct types. |
2558 | } |
2559 | |
2560 | /// Cast an application value to the type of its own shadow. |
2561 | Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { |
2562 | Type *ShadowTy = getShadowTy(V); |
2563 | if (V->getType() == ShadowTy) |
2564 | return V; |
2565 | if (V->getType()->isPtrOrPtrVectorTy()) |
2566 | return IRB.CreatePtrToInt(V, DestTy: ShadowTy); |
2567 | else |
2568 | return IRB.CreateBitCast(V, DestTy: ShadowTy); |
2569 | } |
2570 | |
2571 | /// Propagate shadow for arbitrary operation. |
2572 | void handleShadowOr(Instruction &I) { |
2573 | IRBuilder<> IRB(&I); |
2574 | ShadowAndOriginCombiner SC(this, IRB); |
2575 | for (Use &Op : I.operands()) |
2576 | SC.Add(V: Op.get()); |
2577 | SC.Done(I: &I); |
2578 | } |
2579 | |
2580 | void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } |
2581 | |
2582 | // Handle multiplication by constant. |
2583 | // |
2584 | // Handle a special case of multiplication by constant that may have one or |
2585 | // more zeros in the lower bits. This makes corresponding number of lower bits |
2586 | // of the result zero as well. We model it by shifting the other operand |
2587 | // shadow left by the required number of bits. Effectively, we transform |
2588 | // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). |
2589 | // We use multiplication by 2**N instead of shift to cover the case of |
2590 | // multiplication by 0, which may occur in some elements of a vector operand. |
2591 | void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, |
2592 | Value *OtherArg) { |
2593 | Constant *ShadowMul; |
2594 | Type *Ty = ConstArg->getType(); |
2595 | if (auto *VTy = dyn_cast<VectorType>(Val: Ty)) { |
2596 | unsigned NumElements = cast<FixedVectorType>(Val: VTy)->getNumElements(); |
2597 | Type *EltTy = VTy->getElementType(); |
2598 | SmallVector<Constant *, 16> Elements; |
2599 | for (unsigned Idx = 0; Idx < NumElements; ++Idx) { |
2600 | if (ConstantInt *Elt = |
2601 | dyn_cast<ConstantInt>(Val: ConstArg->getAggregateElement(Elt: Idx))) { |
2602 | const APInt &V = Elt->getValue(); |
2603 | APInt V2 = APInt(V.getBitWidth(), 1) << V.countr_zero(); |
2604 | Elements.push_back(Elt: ConstantInt::get(Ty: EltTy, V: V2)); |
2605 | } else { |
2606 | Elements.push_back(Elt: ConstantInt::get(Ty: EltTy, V: 1)); |
2607 | } |
2608 | } |
2609 | ShadowMul = ConstantVector::get(V: Elements); |
2610 | } else { |
2611 | if (ConstantInt *Elt = dyn_cast<ConstantInt>(Val: ConstArg)) { |
2612 | const APInt &V = Elt->getValue(); |
2613 | APInt V2 = APInt(V.getBitWidth(), 1) << V.countr_zero(); |
2614 | ShadowMul = ConstantInt::get(Ty, V: V2); |
2615 | } else { |
2616 | ShadowMul = ConstantInt::get(Ty, V: 1); |
2617 | } |
2618 | } |
2619 | |
2620 | IRBuilder<> IRB(&I); |
2621 | setShadow(V: &I, |
2622 | SV: IRB.CreateMul(LHS: getShadow(V: OtherArg), RHS: ShadowMul, Name: "msprop_mul_cst" )); |
2623 | setOrigin(V: &I, Origin: getOrigin(V: OtherArg)); |
2624 | } |
2625 | |
2626 | void visitMul(BinaryOperator &I) { |
2627 | Constant *constOp0 = dyn_cast<Constant>(Val: I.getOperand(i_nocapture: 0)); |
2628 | Constant *constOp1 = dyn_cast<Constant>(Val: I.getOperand(i_nocapture: 1)); |
2629 | if (constOp0 && !constOp1) |
2630 | handleMulByConstant(I, ConstArg: constOp0, OtherArg: I.getOperand(i_nocapture: 1)); |
2631 | else if (constOp1 && !constOp0) |
2632 | handleMulByConstant(I, ConstArg: constOp1, OtherArg: I.getOperand(i_nocapture: 0)); |
2633 | else |
2634 | handleShadowOr(I); |
2635 | } |
2636 | |
2637 | void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } |
2638 | void visitFSub(BinaryOperator &I) { handleShadowOr(I); } |
2639 | void visitFMul(BinaryOperator &I) { handleShadowOr(I); } |
2640 | void visitAdd(BinaryOperator &I) { handleShadowOr(I); } |
2641 | void visitSub(BinaryOperator &I) { handleShadowOr(I); } |
2642 | void visitXor(BinaryOperator &I) { handleShadowOr(I); } |
2643 | |
2644 | void handleIntegerDiv(Instruction &I) { |
2645 | IRBuilder<> IRB(&I); |
2646 | // Strict on the second argument. |
2647 | insertShadowCheck(Val: I.getOperand(i: 1), OrigIns: &I); |
2648 | setShadow(V: &I, SV: getShadow(I: &I, i: 0)); |
2649 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
2650 | } |
2651 | |
2652 | void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } |
2653 | void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } |
2654 | void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } |
2655 | void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } |
2656 | |
2657 | // Floating point division is side-effect free. We can not require that the |
2658 | // divisor is fully initialized and must propagate shadow. See PR37523. |
2659 | void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } |
2660 | void visitFRem(BinaryOperator &I) { handleShadowOr(I); } |
2661 | |
2662 | /// Instrument == and != comparisons. |
2663 | /// |
2664 | /// Sometimes the comparison result is known even if some of the bits of the |
2665 | /// arguments are not. |
2666 | void handleEqualityComparison(ICmpInst &I) { |
2667 | IRBuilder<> IRB(&I); |
2668 | Value *A = I.getOperand(i_nocapture: 0); |
2669 | Value *B = I.getOperand(i_nocapture: 1); |
2670 | Value *Sa = getShadow(V: A); |
2671 | Value *Sb = getShadow(V: B); |
2672 | |
2673 | // Get rid of pointers and vectors of pointers. |
2674 | // For ints (and vectors of ints), types of A and Sa match, |
2675 | // and this is a no-op. |
2676 | A = IRB.CreatePointerCast(V: A, DestTy: Sa->getType()); |
2677 | B = IRB.CreatePointerCast(V: B, DestTy: Sb->getType()); |
2678 | |
2679 | // A == B <==> (C = A^B) == 0 |
2680 | // A != B <==> (C = A^B) != 0 |
2681 | // Sc = Sa | Sb |
2682 | Value *C = IRB.CreateXor(LHS: A, RHS: B); |
2683 | Value *Sc = IRB.CreateOr(LHS: Sa, RHS: Sb); |
2684 | // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) |
2685 | // Result is defined if one of the following is true |
2686 | // * there is a defined 1 bit in C |
2687 | // * C is fully defined |
2688 | // Si = !(C & ~Sc) && Sc |
2689 | Value *Zero = Constant::getNullValue(Ty: Sc->getType()); |
2690 | Value *MinusOne = Constant::getAllOnesValue(Ty: Sc->getType()); |
2691 | Value *LHS = IRB.CreateICmpNE(LHS: Sc, RHS: Zero); |
2692 | Value *RHS = |
2693 | IRB.CreateICmpEQ(LHS: IRB.CreateAnd(LHS: IRB.CreateXor(LHS: Sc, RHS: MinusOne), RHS: C), RHS: Zero); |
2694 | Value *Si = IRB.CreateAnd(LHS, RHS); |
2695 | Si->setName("_msprop_icmp" ); |
2696 | setShadow(V: &I, SV: Si); |
2697 | setOriginForNaryOp(I); |
2698 | } |
2699 | |
2700 | /// Build the lowest possible value of V, taking into account V's |
2701 | /// uninitialized bits. |
2702 | Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, |
2703 | bool isSigned) { |
2704 | if (isSigned) { |
2705 | // Split shadow into sign bit and other bits. |
2706 | Value *SaOtherBits = IRB.CreateLShr(LHS: IRB.CreateShl(LHS: Sa, RHS: 1), RHS: 1); |
2707 | Value *SaSignBit = IRB.CreateXor(LHS: Sa, RHS: SaOtherBits); |
2708 | // Maximise the undefined shadow bit, minimize other undefined bits. |
2709 | return IRB.CreateOr(LHS: IRB.CreateAnd(LHS: A, RHS: IRB.CreateNot(V: SaOtherBits)), |
2710 | RHS: SaSignBit); |
2711 | } else { |
2712 | // Minimize undefined bits. |
2713 | return IRB.CreateAnd(LHS: A, RHS: IRB.CreateNot(V: Sa)); |
2714 | } |
2715 | } |
2716 | |
2717 | /// Build the highest possible value of V, taking into account V's |
2718 | /// uninitialized bits. |
2719 | Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, |
2720 | bool isSigned) { |
2721 | if (isSigned) { |
2722 | // Split shadow into sign bit and other bits. |
2723 | Value *SaOtherBits = IRB.CreateLShr(LHS: IRB.CreateShl(LHS: Sa, RHS: 1), RHS: 1); |
2724 | Value *SaSignBit = IRB.CreateXor(LHS: Sa, RHS: SaOtherBits); |
2725 | // Minimise the undefined shadow bit, maximise other undefined bits. |
2726 | return IRB.CreateOr(LHS: IRB.CreateAnd(LHS: A, RHS: IRB.CreateNot(V: SaSignBit)), |
2727 | RHS: SaOtherBits); |
2728 | } else { |
2729 | // Maximize undefined bits. |
2730 | return IRB.CreateOr(LHS: A, RHS: Sa); |
2731 | } |
2732 | } |
2733 | |
2734 | /// Instrument relational comparisons. |
2735 | /// |
2736 | /// This function does exact shadow propagation for all relational |
2737 | /// comparisons of integers, pointers and vectors of those. |
2738 | /// FIXME: output seems suboptimal when one of the operands is a constant |
2739 | void handleRelationalComparisonExact(ICmpInst &I) { |
2740 | IRBuilder<> IRB(&I); |
2741 | Value *A = I.getOperand(i_nocapture: 0); |
2742 | Value *B = I.getOperand(i_nocapture: 1); |
2743 | Value *Sa = getShadow(V: A); |
2744 | Value *Sb = getShadow(V: B); |
2745 | |
2746 | // Get rid of pointers and vectors of pointers. |
2747 | // For ints (and vectors of ints), types of A and Sa match, |
2748 | // and this is a no-op. |
2749 | A = IRB.CreatePointerCast(V: A, DestTy: Sa->getType()); |
2750 | B = IRB.CreatePointerCast(V: B, DestTy: Sb->getType()); |
2751 | |
2752 | // Let [a0, a1] be the interval of possible values of A, taking into account |
2753 | // its undefined bits. Let [b0, b1] be the interval of possible values of B. |
2754 | // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). |
2755 | bool IsSigned = I.isSigned(); |
2756 | Value *S1 = IRB.CreateICmp(P: I.getPredicate(), |
2757 | LHS: getLowestPossibleValue(IRB, A, Sa, isSigned: IsSigned), |
2758 | RHS: getHighestPossibleValue(IRB, A: B, Sa: Sb, isSigned: IsSigned)); |
2759 | Value *S2 = IRB.CreateICmp(P: I.getPredicate(), |
2760 | LHS: getHighestPossibleValue(IRB, A, Sa, isSigned: IsSigned), |
2761 | RHS: getLowestPossibleValue(IRB, A: B, Sa: Sb, isSigned: IsSigned)); |
2762 | Value *Si = IRB.CreateXor(LHS: S1, RHS: S2); |
2763 | setShadow(V: &I, SV: Si); |
2764 | setOriginForNaryOp(I); |
2765 | } |
2766 | |
2767 | /// Instrument signed relational comparisons. |
2768 | /// |
2769 | /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest |
2770 | /// bit of the shadow. Everything else is delegated to handleShadowOr(). |
2771 | void handleSignedRelationalComparison(ICmpInst &I) { |
2772 | Constant *constOp; |
2773 | Value *op = nullptr; |
2774 | CmpInst::Predicate pre; |
2775 | if ((constOp = dyn_cast<Constant>(Val: I.getOperand(i_nocapture: 1)))) { |
2776 | op = I.getOperand(i_nocapture: 0); |
2777 | pre = I.getPredicate(); |
2778 | } else if ((constOp = dyn_cast<Constant>(Val: I.getOperand(i_nocapture: 0)))) { |
2779 | op = I.getOperand(i_nocapture: 1); |
2780 | pre = I.getSwappedPredicate(); |
2781 | } else { |
2782 | handleShadowOr(I); |
2783 | return; |
2784 | } |
2785 | |
2786 | if ((constOp->isNullValue() && |
2787 | (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || |
2788 | (constOp->isAllOnesValue() && |
2789 | (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { |
2790 | IRBuilder<> IRB(&I); |
2791 | Value *Shadow = IRB.CreateICmpSLT(LHS: getShadow(V: op), RHS: getCleanShadow(V: op), |
2792 | Name: "_msprop_icmp_s" ); |
2793 | setShadow(V: &I, SV: Shadow); |
2794 | setOrigin(V: &I, Origin: getOrigin(V: op)); |
2795 | } else { |
2796 | handleShadowOr(I); |
2797 | } |
2798 | } |
2799 | |
2800 | void visitICmpInst(ICmpInst &I) { |
2801 | if (!ClHandleICmp) { |
2802 | handleShadowOr(I); |
2803 | return; |
2804 | } |
2805 | if (I.isEquality()) { |
2806 | handleEqualityComparison(I); |
2807 | return; |
2808 | } |
2809 | |
2810 | assert(I.isRelational()); |
2811 | if (ClHandleICmpExact) { |
2812 | handleRelationalComparisonExact(I); |
2813 | return; |
2814 | } |
2815 | if (I.isSigned()) { |
2816 | handleSignedRelationalComparison(I); |
2817 | return; |
2818 | } |
2819 | |
2820 | assert(I.isUnsigned()); |
2821 | if ((isa<Constant>(Val: I.getOperand(i_nocapture: 0)) || isa<Constant>(Val: I.getOperand(i_nocapture: 1)))) { |
2822 | handleRelationalComparisonExact(I); |
2823 | return; |
2824 | } |
2825 | |
2826 | handleShadowOr(I); |
2827 | } |
2828 | |
2829 | void visitFCmpInst(FCmpInst &I) { handleShadowOr(I); } |
2830 | |
2831 | void handleShift(BinaryOperator &I) { |
2832 | IRBuilder<> IRB(&I); |
2833 | // If any of the S2 bits are poisoned, the whole thing is poisoned. |
2834 | // Otherwise perform the same shift on S1. |
2835 | Value *S1 = getShadow(I: &I, i: 0); |
2836 | Value *S2 = getShadow(I: &I, i: 1); |
2837 | Value *S2Conv = |
2838 | IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: S2, RHS: getCleanShadow(V: S2)), DestTy: S2->getType()); |
2839 | Value *V2 = I.getOperand(i_nocapture: 1); |
2840 | Value *Shift = IRB.CreateBinOp(Opc: I.getOpcode(), LHS: S1, RHS: V2); |
2841 | setShadow(V: &I, SV: IRB.CreateOr(LHS: Shift, RHS: S2Conv)); |
2842 | setOriginForNaryOp(I); |
2843 | } |
2844 | |
2845 | void visitShl(BinaryOperator &I) { handleShift(I); } |
2846 | void visitAShr(BinaryOperator &I) { handleShift(I); } |
2847 | void visitLShr(BinaryOperator &I) { handleShift(I); } |
2848 | |
2849 | void handleFunnelShift(IntrinsicInst &I) { |
2850 | IRBuilder<> IRB(&I); |
2851 | // If any of the S2 bits are poisoned, the whole thing is poisoned. |
2852 | // Otherwise perform the same shift on S0 and S1. |
2853 | Value *S0 = getShadow(I: &I, i: 0); |
2854 | Value *S1 = getShadow(I: &I, i: 1); |
2855 | Value *S2 = getShadow(I: &I, i: 2); |
2856 | Value *S2Conv = |
2857 | IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: S2, RHS: getCleanShadow(V: S2)), DestTy: S2->getType()); |
2858 | Value *V2 = I.getOperand(i_nocapture: 2); |
2859 | Function *Intrin = Intrinsic::getDeclaration( |
2860 | M: I.getModule(), id: I.getIntrinsicID(), Tys: S2Conv->getType()); |
2861 | Value *Shift = IRB.CreateCall(Callee: Intrin, Args: {S0, S1, V2}); |
2862 | setShadow(V: &I, SV: IRB.CreateOr(LHS: Shift, RHS: S2Conv)); |
2863 | setOriginForNaryOp(I); |
2864 | } |
2865 | |
2866 | /// Instrument llvm.memmove |
2867 | /// |
2868 | /// At this point we don't know if llvm.memmove will be inlined or not. |
2869 | /// If we don't instrument it and it gets inlined, |
2870 | /// our interceptor will not kick in and we will lose the memmove. |
2871 | /// If we instrument the call here, but it does not get inlined, |
2872 | /// we will memove the shadow twice: which is bad in case |
2873 | /// of overlapping regions. So, we simply lower the intrinsic to a call. |
2874 | /// |
2875 | /// Similar situation exists for memcpy and memset. |
2876 | void visitMemMoveInst(MemMoveInst &I) { |
2877 | getShadow(V: I.getArgOperand(i: 1)); // Ensure shadow initialized |
2878 | IRBuilder<> IRB(&I); |
2879 | IRB.CreateCall(Callee: MS.MemmoveFn, |
2880 | Args: {I.getArgOperand(i: 0), I.getArgOperand(i: 1), |
2881 | IRB.CreateIntCast(V: I.getArgOperand(i: 2), DestTy: MS.IntptrTy, isSigned: false)}); |
2882 | I.eraseFromParent(); |
2883 | } |
2884 | |
2885 | /// Instrument memcpy |
2886 | /// |
2887 | /// Similar to memmove: avoid copying shadow twice. This is somewhat |
2888 | /// unfortunate as it may slowdown small constant memcpys. |
2889 | /// FIXME: consider doing manual inline for small constant sizes and proper |
2890 | /// alignment. |
2891 | /// |
2892 | /// Note: This also handles memcpy.inline, which promises no calls to external |
2893 | /// functions as an optimization. However, with instrumentation enabled this |
2894 | /// is difficult to promise; additionally, we know that the MSan runtime |
2895 | /// exists and provides __msan_memcpy(). Therefore, we assume that with |
2896 | /// instrumentation it's safe to turn memcpy.inline into a call to |
2897 | /// __msan_memcpy(). Should this be wrong, such as when implementing memcpy() |
2898 | /// itself, instrumentation should be disabled with the no_sanitize attribute. |
2899 | void visitMemCpyInst(MemCpyInst &I) { |
2900 | getShadow(V: I.getArgOperand(i: 1)); // Ensure shadow initialized |
2901 | IRBuilder<> IRB(&I); |
2902 | IRB.CreateCall(Callee: MS.MemcpyFn, |
2903 | Args: {I.getArgOperand(i: 0), I.getArgOperand(i: 1), |
2904 | IRB.CreateIntCast(V: I.getArgOperand(i: 2), DestTy: MS.IntptrTy, isSigned: false)}); |
2905 | I.eraseFromParent(); |
2906 | } |
2907 | |
2908 | // Same as memcpy. |
2909 | void visitMemSetInst(MemSetInst &I) { |
2910 | IRBuilder<> IRB(&I); |
2911 | IRB.CreateCall( |
2912 | Callee: MS.MemsetFn, |
2913 | Args: {I.getArgOperand(i: 0), |
2914 | IRB.CreateIntCast(V: I.getArgOperand(i: 1), DestTy: IRB.getInt32Ty(), isSigned: false), |
2915 | IRB.CreateIntCast(V: I.getArgOperand(i: 2), DestTy: MS.IntptrTy, isSigned: false)}); |
2916 | I.eraseFromParent(); |
2917 | } |
2918 | |
2919 | void visitVAStartInst(VAStartInst &I) { VAHelper->visitVAStartInst(I); } |
2920 | |
2921 | void visitVACopyInst(VACopyInst &I) { VAHelper->visitVACopyInst(I); } |
2922 | |
2923 | /// Handle vector store-like intrinsics. |
2924 | /// |
2925 | /// Instrument intrinsics that look like a simple SIMD store: writes memory, |
2926 | /// has 1 pointer argument and 1 vector argument, returns void. |
2927 | bool handleVectorStoreIntrinsic(IntrinsicInst &I) { |
2928 | IRBuilder<> IRB(&I); |
2929 | Value *Addr = I.getArgOperand(i: 0); |
2930 | Value *Shadow = getShadow(I: &I, i: 1); |
2931 | Value *ShadowPtr, *OriginPtr; |
2932 | |
2933 | // We don't know the pointer alignment (could be unaligned SSE store!). |
2934 | // Have to assume to worst case. |
2935 | std::tie(args&: ShadowPtr, args&: OriginPtr) = getShadowOriginPtr( |
2936 | Addr, IRB, ShadowTy: Shadow->getType(), Alignment: Align(1), /*isStore*/ true); |
2937 | IRB.CreateAlignedStore(Val: Shadow, Ptr: ShadowPtr, Align: Align(1)); |
2938 | |
2939 | if (ClCheckAccessAddress) |
2940 | insertShadowCheck(Val: Addr, OrigIns: &I); |
2941 | |
2942 | // FIXME: factor out common code from materializeStores |
2943 | if (MS.TrackOrigins) |
2944 | IRB.CreateStore(Val: getOrigin(I: &I, i: 1), Ptr: OriginPtr); |
2945 | return true; |
2946 | } |
2947 | |
2948 | /// Handle vector load-like intrinsics. |
2949 | /// |
2950 | /// Instrument intrinsics that look like a simple SIMD load: reads memory, |
2951 | /// has 1 pointer argument, returns a vector. |
2952 | bool handleVectorLoadIntrinsic(IntrinsicInst &I) { |
2953 | IRBuilder<> IRB(&I); |
2954 | Value *Addr = I.getArgOperand(i: 0); |
2955 | |
2956 | Type *ShadowTy = getShadowTy(V: &I); |
2957 | Value *ShadowPtr = nullptr, *OriginPtr = nullptr; |
2958 | if (PropagateShadow) { |
2959 | // We don't know the pointer alignment (could be unaligned SSE load!). |
2960 | // Have to assume to worst case. |
2961 | const Align Alignment = Align(1); |
2962 | std::tie(args&: ShadowPtr, args&: OriginPtr) = |
2963 | getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); |
2964 | setShadow(V: &I, |
2965 | SV: IRB.CreateAlignedLoad(Ty: ShadowTy, Ptr: ShadowPtr, Align: Alignment, Name: "_msld" )); |
2966 | } else { |
2967 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
2968 | } |
2969 | |
2970 | if (ClCheckAccessAddress) |
2971 | insertShadowCheck(Val: Addr, OrigIns: &I); |
2972 | |
2973 | if (MS.TrackOrigins) { |
2974 | if (PropagateShadow) |
2975 | setOrigin(V: &I, Origin: IRB.CreateLoad(Ty: MS.OriginTy, Ptr: OriginPtr)); |
2976 | else |
2977 | setOrigin(V: &I, Origin: getCleanOrigin()); |
2978 | } |
2979 | return true; |
2980 | } |
2981 | |
2982 | /// Handle (SIMD arithmetic)-like intrinsics. |
2983 | /// |
2984 | /// Instrument intrinsics with any number of arguments of the same type, |
2985 | /// equal to the return type. The type should be simple (no aggregates or |
2986 | /// pointers; vectors are fine). |
2987 | /// Caller guarantees that this intrinsic does not access memory. |
2988 | bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { |
2989 | Type *RetTy = I.getType(); |
2990 | if (!(RetTy->isIntOrIntVectorTy() || RetTy->isFPOrFPVectorTy() || |
2991 | RetTy->isX86_MMXTy())) |
2992 | return false; |
2993 | |
2994 | unsigned NumArgOperands = I.arg_size(); |
2995 | for (unsigned i = 0; i < NumArgOperands; ++i) { |
2996 | Type *Ty = I.getArgOperand(i)->getType(); |
2997 | if (Ty != RetTy) |
2998 | return false; |
2999 | } |
3000 | |
3001 | IRBuilder<> IRB(&I); |
3002 | ShadowAndOriginCombiner SC(this, IRB); |
3003 | for (unsigned i = 0; i < NumArgOperands; ++i) |
3004 | SC.Add(V: I.getArgOperand(i)); |
3005 | SC.Done(I: &I); |
3006 | |
3007 | return true; |
3008 | } |
3009 | |
3010 | /// Heuristically instrument unknown intrinsics. |
3011 | /// |
3012 | /// The main purpose of this code is to do something reasonable with all |
3013 | /// random intrinsics we might encounter, most importantly - SIMD intrinsics. |
3014 | /// We recognize several classes of intrinsics by their argument types and |
3015 | /// ModRefBehaviour and apply special instrumentation when we are reasonably |
3016 | /// sure that we know what the intrinsic does. |
3017 | /// |
3018 | /// We special-case intrinsics where this approach fails. See llvm.bswap |
3019 | /// handling as an example of that. |
3020 | bool handleUnknownIntrinsic(IntrinsicInst &I) { |
3021 | unsigned NumArgOperands = I.arg_size(); |
3022 | if (NumArgOperands == 0) |
3023 | return false; |
3024 | |
3025 | if (NumArgOperands == 2 && I.getArgOperand(i: 0)->getType()->isPointerTy() && |
3026 | I.getArgOperand(i: 1)->getType()->isVectorTy() && |
3027 | I.getType()->isVoidTy() && !I.onlyReadsMemory()) { |
3028 | // This looks like a vector store. |
3029 | return handleVectorStoreIntrinsic(I); |
3030 | } |
3031 | |
3032 | if (NumArgOperands == 1 && I.getArgOperand(i: 0)->getType()->isPointerTy() && |
3033 | I.getType()->isVectorTy() && I.onlyReadsMemory()) { |
3034 | // This looks like a vector load. |
3035 | return handleVectorLoadIntrinsic(I); |
3036 | } |
3037 | |
3038 | if (I.doesNotAccessMemory()) |
3039 | if (maybeHandleSimpleNomemIntrinsic(I)) |
3040 | return true; |
3041 | |
3042 | // FIXME: detect and handle SSE maskstore/maskload |
3043 | return false; |
3044 | } |
3045 | |
3046 | void handleInvariantGroup(IntrinsicInst &I) { |
3047 | setShadow(V: &I, SV: getShadow(I: &I, i: 0)); |
3048 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
3049 | } |
3050 | |
3051 | void handleLifetimeStart(IntrinsicInst &I) { |
3052 | if (!PoisonStack) |
3053 | return; |
3054 | AllocaInst *AI = llvm::findAllocaForValue(V: I.getArgOperand(i: 1)); |
3055 | if (!AI) |
3056 | InstrumentLifetimeStart = false; |
3057 | LifetimeStartList.push_back(Elt: std::make_pair(x: &I, y&: AI)); |
3058 | } |
3059 | |
3060 | void handleBswap(IntrinsicInst &I) { |
3061 | IRBuilder<> IRB(&I); |
3062 | Value *Op = I.getArgOperand(i: 0); |
3063 | Type *OpType = Op->getType(); |
3064 | Function *BswapFunc = Intrinsic::getDeclaration( |
3065 | M: F.getParent(), id: Intrinsic::bswap, Tys: ArrayRef(&OpType, 1)); |
3066 | setShadow(V: &I, SV: IRB.CreateCall(Callee: BswapFunc, Args: getShadow(V: Op))); |
3067 | setOrigin(V: &I, Origin: getOrigin(V: Op)); |
3068 | } |
3069 | |
3070 | void handleCountZeroes(IntrinsicInst &I) { |
3071 | IRBuilder<> IRB(&I); |
3072 | Value *Src = I.getArgOperand(i: 0); |
3073 | |
3074 | // Set the Output shadow based on input Shadow |
3075 | Value *BoolShadow = IRB.CreateIsNotNull(Arg: getShadow(V: Src), Name: "_mscz_bs" ); |
3076 | |
3077 | // If zero poison is requested, mix in with the shadow |
3078 | Constant *IsZeroPoison = cast<Constant>(Val: I.getOperand(i_nocapture: 1)); |
3079 | if (!IsZeroPoison->isZeroValue()) { |
3080 | Value *BoolZeroPoison = IRB.CreateIsNull(Arg: Src, Name: "_mscz_bzp" ); |
3081 | BoolShadow = IRB.CreateOr(LHS: BoolShadow, RHS: BoolZeroPoison, Name: "_mscz_bs" ); |
3082 | } |
3083 | |
3084 | Value *OutputShadow = |
3085 | IRB.CreateSExt(V: BoolShadow, DestTy: getShadowTy(V: Src), Name: "_mscz_os" ); |
3086 | |
3087 | setShadow(V: &I, SV: OutputShadow); |
3088 | setOriginForNaryOp(I); |
3089 | } |
3090 | |
3091 | // Instrument vector convert intrinsic. |
3092 | // |
3093 | // This function instruments intrinsics like cvtsi2ss: |
3094 | // %Out = int_xxx_cvtyyy(%ConvertOp) |
3095 | // or |
3096 | // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) |
3097 | // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same |
3098 | // number \p Out elements, and (if has 2 arguments) copies the rest of the |
3099 | // elements from \p CopyOp. |
3100 | // In most cases conversion involves floating-point value which may trigger a |
3101 | // hardware exception when not fully initialized. For this reason we require |
3102 | // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. |
3103 | // We copy the shadow of \p CopyOp[NumUsedElements:] to \p |
3104 | // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always |
3105 | // return a fully initialized value. |
3106 | void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements, |
3107 | bool HasRoundingMode = false) { |
3108 | IRBuilder<> IRB(&I); |
3109 | Value *CopyOp, *ConvertOp; |
3110 | |
3111 | assert((!HasRoundingMode || |
3112 | isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) && |
3113 | "Invalid rounding mode" ); |
3114 | |
3115 | switch (I.arg_size() - HasRoundingMode) { |
3116 | case 2: |
3117 | CopyOp = I.getArgOperand(i: 0); |
3118 | ConvertOp = I.getArgOperand(i: 1); |
3119 | break; |
3120 | case 1: |
3121 | ConvertOp = I.getArgOperand(i: 0); |
3122 | CopyOp = nullptr; |
3123 | break; |
3124 | default: |
3125 | llvm_unreachable("Cvt intrinsic with unsupported number of arguments." ); |
3126 | } |
3127 | |
3128 | // The first *NumUsedElements* elements of ConvertOp are converted to the |
3129 | // same number of output elements. The rest of the output is copied from |
3130 | // CopyOp, or (if not available) filled with zeroes. |
3131 | // Combine shadow for elements of ConvertOp that are used in this operation, |
3132 | // and insert a check. |
3133 | // FIXME: consider propagating shadow of ConvertOp, at least in the case of |
3134 | // int->any conversion. |
3135 | Value *ConvertShadow = getShadow(V: ConvertOp); |
3136 | Value *AggShadow = nullptr; |
3137 | if (ConvertOp->getType()->isVectorTy()) { |
3138 | AggShadow = IRB.CreateExtractElement( |
3139 | Vec: ConvertShadow, Idx: ConstantInt::get(Ty: IRB.getInt32Ty(), V: 0)); |
3140 | for (int i = 1; i < NumUsedElements; ++i) { |
3141 | Value *MoreShadow = IRB.CreateExtractElement( |
3142 | Vec: ConvertShadow, Idx: ConstantInt::get(Ty: IRB.getInt32Ty(), V: i)); |
3143 | AggShadow = IRB.CreateOr(LHS: AggShadow, RHS: MoreShadow); |
3144 | } |
3145 | } else { |
3146 | AggShadow = ConvertShadow; |
3147 | } |
3148 | assert(AggShadow->getType()->isIntegerTy()); |
3149 | insertShadowCheck(Shadow: AggShadow, Origin: getOrigin(V: ConvertOp), OrigIns: &I); |
3150 | |
3151 | // Build result shadow by zero-filling parts of CopyOp shadow that come from |
3152 | // ConvertOp. |
3153 | if (CopyOp) { |
3154 | assert(CopyOp->getType() == I.getType()); |
3155 | assert(CopyOp->getType()->isVectorTy()); |
3156 | Value *ResultShadow = getShadow(V: CopyOp); |
3157 | Type *EltTy = cast<VectorType>(Val: ResultShadow->getType())->getElementType(); |
3158 | for (int i = 0; i < NumUsedElements; ++i) { |
3159 | ResultShadow = IRB.CreateInsertElement( |
3160 | Vec: ResultShadow, NewElt: ConstantInt::getNullValue(Ty: EltTy), |
3161 | Idx: ConstantInt::get(Ty: IRB.getInt32Ty(), V: i)); |
3162 | } |
3163 | setShadow(V: &I, SV: ResultShadow); |
3164 | setOrigin(V: &I, Origin: getOrigin(V: CopyOp)); |
3165 | } else { |
3166 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
3167 | setOrigin(V: &I, Origin: getCleanOrigin()); |
3168 | } |
3169 | } |
3170 | |
3171 | // Given a scalar or vector, extract lower 64 bits (or less), and return all |
3172 | // zeroes if it is zero, and all ones otherwise. |
3173 | Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { |
3174 | if (S->getType()->isVectorTy()) |
3175 | S = CreateShadowCast(IRB, V: S, dstTy: IRB.getInt64Ty(), /* Signed */ true); |
3176 | assert(S->getType()->getPrimitiveSizeInBits() <= 64); |
3177 | Value *S2 = IRB.CreateICmpNE(LHS: S, RHS: getCleanShadow(V: S)); |
3178 | return CreateShadowCast(IRB, V: S2, dstTy: T, /* Signed */ true); |
3179 | } |
3180 | |
3181 | // Given a vector, extract its first element, and return all |
3182 | // zeroes if it is zero, and all ones otherwise. |
3183 | Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { |
3184 | Value *S1 = IRB.CreateExtractElement(Vec: S, Idx: (uint64_t)0); |
3185 | Value *S2 = IRB.CreateICmpNE(LHS: S1, RHS: getCleanShadow(V: S1)); |
3186 | return CreateShadowCast(IRB, V: S2, dstTy: T, /* Signed */ true); |
3187 | } |
3188 | |
3189 | Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { |
3190 | Type *T = S->getType(); |
3191 | assert(T->isVectorTy()); |
3192 | Value *S2 = IRB.CreateICmpNE(LHS: S, RHS: getCleanShadow(V: S)); |
3193 | return IRB.CreateSExt(V: S2, DestTy: T); |
3194 | } |
3195 | |
3196 | // Instrument vector shift intrinsic. |
3197 | // |
3198 | // This function instruments intrinsics like int_x86_avx2_psll_w. |
3199 | // Intrinsic shifts %In by %ShiftSize bits. |
3200 | // %ShiftSize may be a vector. In that case the lower 64 bits determine shift |
3201 | // size, and the rest is ignored. Behavior is defined even if shift size is |
3202 | // greater than register (or field) width. |
3203 | void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { |
3204 | assert(I.arg_size() == 2); |
3205 | IRBuilder<> IRB(&I); |
3206 | // If any of the S2 bits are poisoned, the whole thing is poisoned. |
3207 | // Otherwise perform the same shift on S1. |
3208 | Value *S1 = getShadow(I: &I, i: 0); |
3209 | Value *S2 = getShadow(I: &I, i: 1); |
3210 | Value *S2Conv = Variable ? VariableShadowExtend(IRB, S: S2) |
3211 | : Lower64ShadowExtend(IRB, S: S2, T: getShadowTy(V: &I)); |
3212 | Value *V1 = I.getOperand(i_nocapture: 0); |
3213 | Value *V2 = I.getOperand(i_nocapture: 1); |
3214 | Value *Shift = IRB.CreateCall(FTy: I.getFunctionType(), Callee: I.getCalledOperand(), |
3215 | Args: {IRB.CreateBitCast(V: S1, DestTy: V1->getType()), V2}); |
3216 | Shift = IRB.CreateBitCast(V: Shift, DestTy: getShadowTy(V: &I)); |
3217 | setShadow(V: &I, SV: IRB.CreateOr(LHS: Shift, RHS: S2Conv)); |
3218 | setOriginForNaryOp(I); |
3219 | } |
3220 | |
3221 | // Get an X86_MMX-sized vector type. |
3222 | Type *getMMXVectorTy(unsigned EltSizeInBits) { |
3223 | const unsigned X86_MMXSizeInBits = 64; |
3224 | assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && |
3225 | "Illegal MMX vector element size" ); |
3226 | return FixedVectorType::get(ElementType: IntegerType::get(C&: *MS.C, NumBits: EltSizeInBits), |
3227 | NumElts: X86_MMXSizeInBits / EltSizeInBits); |
3228 | } |
3229 | |
3230 | // Returns a signed counterpart for an (un)signed-saturate-and-pack |
3231 | // intrinsic. |
3232 | Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { |
3233 | switch (id) { |
3234 | case Intrinsic::x86_sse2_packsswb_128: |
3235 | case Intrinsic::x86_sse2_packuswb_128: |
3236 | return Intrinsic::x86_sse2_packsswb_128; |
3237 | |
3238 | case Intrinsic::x86_sse2_packssdw_128: |
3239 | case Intrinsic::x86_sse41_packusdw: |
3240 | return Intrinsic::x86_sse2_packssdw_128; |
3241 | |
3242 | case Intrinsic::x86_avx2_packsswb: |
3243 | case Intrinsic::x86_avx2_packuswb: |
3244 | return Intrinsic::x86_avx2_packsswb; |
3245 | |
3246 | case Intrinsic::x86_avx2_packssdw: |
3247 | case Intrinsic::x86_avx2_packusdw: |
3248 | return Intrinsic::x86_avx2_packssdw; |
3249 | |
3250 | case Intrinsic::x86_mmx_packsswb: |
3251 | case Intrinsic::x86_mmx_packuswb: |
3252 | return Intrinsic::x86_mmx_packsswb; |
3253 | |
3254 | case Intrinsic::x86_mmx_packssdw: |
3255 | return Intrinsic::x86_mmx_packssdw; |
3256 | default: |
3257 | llvm_unreachable("unexpected intrinsic id" ); |
3258 | } |
3259 | } |
3260 | |
3261 | // Instrument vector pack intrinsic. |
3262 | // |
3263 | // This function instruments intrinsics like x86_mmx_packsswb, that |
3264 | // packs elements of 2 input vectors into half as many bits with saturation. |
3265 | // Shadow is propagated with the signed variant of the same intrinsic applied |
3266 | // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). |
3267 | // EltSizeInBits is used only for x86mmx arguments. |
3268 | void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { |
3269 | assert(I.arg_size() == 2); |
3270 | bool isX86_MMX = I.getOperand(i_nocapture: 0)->getType()->isX86_MMXTy(); |
3271 | IRBuilder<> IRB(&I); |
3272 | Value *S1 = getShadow(I: &I, i: 0); |
3273 | Value *S2 = getShadow(I: &I, i: 1); |
3274 | assert(isX86_MMX || S1->getType()->isVectorTy()); |
3275 | |
3276 | // SExt and ICmpNE below must apply to individual elements of input vectors. |
3277 | // In case of x86mmx arguments, cast them to appropriate vector types and |
3278 | // back. |
3279 | Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); |
3280 | if (isX86_MMX) { |
3281 | S1 = IRB.CreateBitCast(V: S1, DestTy: T); |
3282 | S2 = IRB.CreateBitCast(V: S2, DestTy: T); |
3283 | } |
3284 | Value *S1_ext = |
3285 | IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: S1, RHS: Constant::getNullValue(Ty: T)), DestTy: T); |
3286 | Value *S2_ext = |
3287 | IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: S2, RHS: Constant::getNullValue(Ty: T)), DestTy: T); |
3288 | if (isX86_MMX) { |
3289 | Type *X86_MMXTy = Type::getX86_MMXTy(C&: *MS.C); |
3290 | S1_ext = IRB.CreateBitCast(V: S1_ext, DestTy: X86_MMXTy); |
3291 | S2_ext = IRB.CreateBitCast(V: S2_ext, DestTy: X86_MMXTy); |
3292 | } |
3293 | |
3294 | Function *ShadowFn = Intrinsic::getDeclaration( |
3295 | M: F.getParent(), id: getSignedPackIntrinsic(id: I.getIntrinsicID())); |
3296 | |
3297 | Value *S = |
3298 | IRB.CreateCall(Callee: ShadowFn, Args: {S1_ext, S2_ext}, Name: "_msprop_vector_pack" ); |
3299 | if (isX86_MMX) |
3300 | S = IRB.CreateBitCast(V: S, DestTy: getShadowTy(V: &I)); |
3301 | setShadow(V: &I, SV: S); |
3302 | setOriginForNaryOp(I); |
3303 | } |
3304 | |
3305 | // Convert `Mask` into `<n x i1>`. |
3306 | Constant *createDppMask(unsigned Width, unsigned Mask) { |
3307 | SmallVector<Constant *, 4> R(Width); |
3308 | for (auto &M : R) { |
3309 | M = ConstantInt::getBool(Context&: F.getContext(), V: Mask & 1); |
3310 | Mask >>= 1; |
3311 | } |
3312 | return ConstantVector::get(V: R); |
3313 | } |
3314 | |
3315 | // Calculate output shadow as array of booleans `<n x i1>`, assuming if any |
3316 | // arg is poisoned, entire dot product is poisoned. |
3317 | Value *findDppPoisonedOutput(IRBuilder<> &IRB, Value *S, unsigned SrcMask, |
3318 | unsigned DstMask) { |
3319 | const unsigned Width = |
3320 | cast<FixedVectorType>(Val: S->getType())->getNumElements(); |
3321 | |
3322 | S = IRB.CreateSelect(C: createDppMask(Width, Mask: SrcMask), True: S, |
3323 | False: Constant::getNullValue(Ty: S->getType())); |
3324 | Value *SElem = IRB.CreateOrReduce(Src: S); |
3325 | Value *IsClean = IRB.CreateIsNull(Arg: SElem, Name: "_msdpp" ); |
3326 | Value *DstMaskV = createDppMask(Width, Mask: DstMask); |
3327 | |
3328 | return IRB.CreateSelect( |
3329 | C: IsClean, True: Constant::getNullValue(Ty: DstMaskV->getType()), False: DstMaskV); |
3330 | } |
3331 | |
3332 | // See `Intel Intrinsics Guide` for `_dp_p*` instructions. |
3333 | // |
3334 | // 2 and 4 element versions produce single scalar of dot product, and then |
3335 | // puts it into elements of output vector, selected by 4 lowest bits of the |
3336 | // mask. Top 4 bits of the mask control which elements of input to use for dot |
3337 | // product. |
3338 | // |
3339 | // 8 element version mask still has only 4 bit for input, and 4 bit for output |
3340 | // mask. According to the spec it just operates as 4 element version on first |
3341 | // 4 elements of inputs and output, and then on last 4 elements of inputs and |
3342 | // output. |
3343 | void handleDppIntrinsic(IntrinsicInst &I) { |
3344 | IRBuilder<> IRB(&I); |
3345 | |
3346 | Value *S0 = getShadow(I: &I, i: 0); |
3347 | Value *S1 = getShadow(I: &I, i: 1); |
3348 | Value *S = IRB.CreateOr(LHS: S0, RHS: S1); |
3349 | |
3350 | const unsigned Width = |
3351 | cast<FixedVectorType>(Val: S->getType())->getNumElements(); |
3352 | assert(Width == 2 || Width == 4 || Width == 8); |
3353 | |
3354 | const unsigned Mask = cast<ConstantInt>(Val: I.getArgOperand(i: 2))->getZExtValue(); |
3355 | const unsigned SrcMask = Mask >> 4; |
3356 | const unsigned DstMask = Mask & 0xf; |
3357 | |
3358 | // Calculate shadow as `<n x i1>`. |
3359 | Value *SI1 = findDppPoisonedOutput(IRB, S, SrcMask, DstMask); |
3360 | if (Width == 8) { |
3361 | // First 4 elements of shadow are already calculated. `makeDppShadow` |
3362 | // operats on 32 bit masks, so we can just shift masks, and repeat. |
3363 | SI1 = IRB.CreateOr( |
3364 | LHS: SI1, RHS: findDppPoisonedOutput(IRB, S, SrcMask: SrcMask << 4, DstMask: DstMask << 4)); |
3365 | } |
3366 | // Extend to real size of shadow, poisoning either all or none bits of an |
3367 | // element. |
3368 | S = IRB.CreateSExt(V: SI1, DestTy: S->getType(), Name: "_msdpp" ); |
3369 | |
3370 | setShadow(V: &I, SV: S); |
3371 | setOriginForNaryOp(I); |
3372 | } |
3373 | |
3374 | Value *convertBlendvToSelectMask(IRBuilder<> &IRB, Value *C) { |
3375 | C = CreateAppToShadowCast(IRB, V: C); |
3376 | FixedVectorType *FVT = cast<FixedVectorType>(Val: C->getType()); |
3377 | unsigned ElSize = FVT->getElementType()->getPrimitiveSizeInBits(); |
3378 | C = IRB.CreateAShr(LHS: C, RHS: ElSize - 1); |
3379 | FVT = FixedVectorType::get(ElementType: IRB.getInt1Ty(), NumElts: FVT->getNumElements()); |
3380 | return IRB.CreateTrunc(V: C, DestTy: FVT); |
3381 | } |
3382 | |
3383 | // `blendv(f, t, c)` is effectively `select(c[top_bit], t, f)`. |
3384 | void handleBlendvIntrinsic(IntrinsicInst &I) { |
3385 | Value *C = I.getOperand(i_nocapture: 2); |
3386 | Value *T = I.getOperand(i_nocapture: 1); |
3387 | Value *F = I.getOperand(i_nocapture: 0); |
3388 | |
3389 | Value *Sc = getShadow(I: &I, i: 2); |
3390 | Value *Oc = MS.TrackOrigins ? getOrigin(V: C) : nullptr; |
3391 | |
3392 | { |
3393 | IRBuilder<> IRB(&I); |
3394 | // Extract top bit from condition and its shadow. |
3395 | C = convertBlendvToSelectMask(IRB, C); |
3396 | Sc = convertBlendvToSelectMask(IRB, C: Sc); |
3397 | |
3398 | setShadow(V: C, SV: Sc); |
3399 | setOrigin(V: C, Origin: Oc); |
3400 | } |
3401 | |
3402 | handleSelectLikeInst(I, B: C, C: T, D: F); |
3403 | } |
3404 | |
3405 | // Instrument sum-of-absolute-differences intrinsic. |
3406 | void handleVectorSadIntrinsic(IntrinsicInst &I) { |
3407 | const unsigned SignificantBitsPerResultElement = 16; |
3408 | bool isX86_MMX = I.getOperand(i_nocapture: 0)->getType()->isX86_MMXTy(); |
3409 | Type *ResTy = isX86_MMX ? IntegerType::get(C&: *MS.C, NumBits: 64) : I.getType(); |
3410 | unsigned ZeroBitsPerResultElement = |
3411 | ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; |
3412 | |
3413 | IRBuilder<> IRB(&I); |
3414 | auto *Shadow0 = getShadow(I: &I, i: 0); |
3415 | auto *Shadow1 = getShadow(I: &I, i: 1); |
3416 | Value *S = IRB.CreateOr(LHS: Shadow0, RHS: Shadow1); |
3417 | S = IRB.CreateBitCast(V: S, DestTy: ResTy); |
3418 | S = IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: S, RHS: Constant::getNullValue(Ty: ResTy)), |
3419 | DestTy: ResTy); |
3420 | S = IRB.CreateLShr(LHS: S, RHS: ZeroBitsPerResultElement); |
3421 | S = IRB.CreateBitCast(V: S, DestTy: getShadowTy(V: &I)); |
3422 | setShadow(V: &I, SV: S); |
3423 | setOriginForNaryOp(I); |
3424 | } |
3425 | |
3426 | // Instrument multiply-add intrinsic. |
3427 | void handleVectorPmaddIntrinsic(IntrinsicInst &I, |
3428 | unsigned EltSizeInBits = 0) { |
3429 | bool isX86_MMX = I.getOperand(i_nocapture: 0)->getType()->isX86_MMXTy(); |
3430 | Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits: EltSizeInBits * 2) : I.getType(); |
3431 | IRBuilder<> IRB(&I); |
3432 | auto *Shadow0 = getShadow(I: &I, i: 0); |
3433 | auto *Shadow1 = getShadow(I: &I, i: 1); |
3434 | Value *S = IRB.CreateOr(LHS: Shadow0, RHS: Shadow1); |
3435 | S = IRB.CreateBitCast(V: S, DestTy: ResTy); |
3436 | S = IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: S, RHS: Constant::getNullValue(Ty: ResTy)), |
3437 | DestTy: ResTy); |
3438 | S = IRB.CreateBitCast(V: S, DestTy: getShadowTy(V: &I)); |
3439 | setShadow(V: &I, SV: S); |
3440 | setOriginForNaryOp(I); |
3441 | } |
3442 | |
3443 | // Instrument compare-packed intrinsic. |
3444 | // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or |
3445 | // all-ones shadow. |
3446 | void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { |
3447 | IRBuilder<> IRB(&I); |
3448 | Type *ResTy = getShadowTy(V: &I); |
3449 | auto *Shadow0 = getShadow(I: &I, i: 0); |
3450 | auto *Shadow1 = getShadow(I: &I, i: 1); |
3451 | Value *S0 = IRB.CreateOr(LHS: Shadow0, RHS: Shadow1); |
3452 | Value *S = IRB.CreateSExt( |
3453 | V: IRB.CreateICmpNE(LHS: S0, RHS: Constant::getNullValue(Ty: ResTy)), DestTy: ResTy); |
3454 | setShadow(V: &I, SV: S); |
3455 | setOriginForNaryOp(I); |
3456 | } |
3457 | |
3458 | // Instrument compare-scalar intrinsic. |
3459 | // This handles both cmp* intrinsics which return the result in the first |
3460 | // element of a vector, and comi* which return the result as i32. |
3461 | void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { |
3462 | IRBuilder<> IRB(&I); |
3463 | auto *Shadow0 = getShadow(I: &I, i: 0); |
3464 | auto *Shadow1 = getShadow(I: &I, i: 1); |
3465 | Value *S0 = IRB.CreateOr(LHS: Shadow0, RHS: Shadow1); |
3466 | Value *S = LowerElementShadowExtend(IRB, S: S0, T: getShadowTy(V: &I)); |
3467 | setShadow(V: &I, SV: S); |
3468 | setOriginForNaryOp(I); |
3469 | } |
3470 | |
3471 | // Instrument generic vector reduction intrinsics |
3472 | // by ORing together all their fields. |
3473 | void handleVectorReduceIntrinsic(IntrinsicInst &I) { |
3474 | IRBuilder<> IRB(&I); |
3475 | Value *S = IRB.CreateOrReduce(Src: getShadow(I: &I, i: 0)); |
3476 | setShadow(V: &I, SV: S); |
3477 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
3478 | } |
3479 | |
3480 | // Instrument vector.reduce.or intrinsic. |
3481 | // Valid (non-poisoned) set bits in the operand pull low the |
3482 | // corresponding shadow bits. |
3483 | void handleVectorReduceOrIntrinsic(IntrinsicInst &I) { |
3484 | IRBuilder<> IRB(&I); |
3485 | Value *OperandShadow = getShadow(I: &I, i: 0); |
3486 | Value *OperandUnsetBits = IRB.CreateNot(V: I.getOperand(i_nocapture: 0)); |
3487 | Value *OperandUnsetOrPoison = IRB.CreateOr(LHS: OperandUnsetBits, RHS: OperandShadow); |
3488 | // Bit N is clean if any field's bit N is 1 and unpoison |
3489 | Value *OutShadowMask = IRB.CreateAndReduce(Src: OperandUnsetOrPoison); |
3490 | // Otherwise, it is clean if every field's bit N is unpoison |
3491 | Value *OrShadow = IRB.CreateOrReduce(Src: OperandShadow); |
3492 | Value *S = IRB.CreateAnd(LHS: OutShadowMask, RHS: OrShadow); |
3493 | |
3494 | setShadow(V: &I, SV: S); |
3495 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
3496 | } |
3497 | |
3498 | // Instrument vector.reduce.and intrinsic. |
3499 | // Valid (non-poisoned) unset bits in the operand pull down the |
3500 | // corresponding shadow bits. |
3501 | void handleVectorReduceAndIntrinsic(IntrinsicInst &I) { |
3502 | IRBuilder<> IRB(&I); |
3503 | Value *OperandShadow = getShadow(I: &I, i: 0); |
3504 | Value *OperandSetOrPoison = IRB.CreateOr(LHS: I.getOperand(i_nocapture: 0), RHS: OperandShadow); |
3505 | // Bit N is clean if any field's bit N is 0 and unpoison |
3506 | Value *OutShadowMask = IRB.CreateAndReduce(Src: OperandSetOrPoison); |
3507 | // Otherwise, it is clean if every field's bit N is unpoison |
3508 | Value *OrShadow = IRB.CreateOrReduce(Src: OperandShadow); |
3509 | Value *S = IRB.CreateAnd(LHS: OutShadowMask, RHS: OrShadow); |
3510 | |
3511 | setShadow(V: &I, SV: S); |
3512 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
3513 | } |
3514 | |
3515 | void handleStmxcsr(IntrinsicInst &I) { |
3516 | IRBuilder<> IRB(&I); |
3517 | Value *Addr = I.getArgOperand(i: 0); |
3518 | Type *Ty = IRB.getInt32Ty(); |
3519 | Value *ShadowPtr = |
3520 | getShadowOriginPtr(Addr, IRB, ShadowTy: Ty, Alignment: Align(1), /*isStore*/ true).first; |
3521 | |
3522 | IRB.CreateStore(Val: getCleanShadow(OrigTy: Ty), Ptr: ShadowPtr); |
3523 | |
3524 | if (ClCheckAccessAddress) |
3525 | insertShadowCheck(Val: Addr, OrigIns: &I); |
3526 | } |
3527 | |
3528 | void handleLdmxcsr(IntrinsicInst &I) { |
3529 | if (!InsertChecks) |
3530 | return; |
3531 | |
3532 | IRBuilder<> IRB(&I); |
3533 | Value *Addr = I.getArgOperand(i: 0); |
3534 | Type *Ty = IRB.getInt32Ty(); |
3535 | const Align Alignment = Align(1); |
3536 | Value *ShadowPtr, *OriginPtr; |
3537 | std::tie(args&: ShadowPtr, args&: OriginPtr) = |
3538 | getShadowOriginPtr(Addr, IRB, ShadowTy: Ty, Alignment, /*isStore*/ false); |
3539 | |
3540 | if (ClCheckAccessAddress) |
3541 | insertShadowCheck(Val: Addr, OrigIns: &I); |
3542 | |
3543 | Value *Shadow = IRB.CreateAlignedLoad(Ty, Ptr: ShadowPtr, Align: Alignment, Name: "_ldmxcsr" ); |
3544 | Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(Ty: MS.OriginTy, Ptr: OriginPtr) |
3545 | : getCleanOrigin(); |
3546 | insertShadowCheck(Shadow, Origin, OrigIns: &I); |
3547 | } |
3548 | |
3549 | void handleMaskedExpandLoad(IntrinsicInst &I) { |
3550 | IRBuilder<> IRB(&I); |
3551 | Value *Ptr = I.getArgOperand(i: 0); |
3552 | Value *Mask = I.getArgOperand(i: 1); |
3553 | Value *PassThru = I.getArgOperand(i: 2); |
3554 | |
3555 | if (ClCheckAccessAddress) { |
3556 | insertShadowCheck(Val: Ptr, OrigIns: &I); |
3557 | insertShadowCheck(Val: Mask, OrigIns: &I); |
3558 | } |
3559 | |
3560 | if (!PropagateShadow) { |
3561 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
3562 | setOrigin(V: &I, Origin: getCleanOrigin()); |
3563 | return; |
3564 | } |
3565 | |
3566 | Type *ShadowTy = getShadowTy(V: &I); |
3567 | Type *ElementShadowTy = cast<VectorType>(Val: ShadowTy)->getElementType(); |
3568 | auto [ShadowPtr, OriginPtr] = |
3569 | getShadowOriginPtr(Addr: Ptr, IRB, ShadowTy: ElementShadowTy, Alignment: {}, /*isStore*/ false); |
3570 | |
3571 | Value *Shadow = IRB.CreateMaskedExpandLoad( |
3572 | Ty: ShadowTy, Ptr: ShadowPtr, Mask, PassThru: getShadow(V: PassThru), Name: "_msmaskedexpload" ); |
3573 | |
3574 | setShadow(V: &I, SV: Shadow); |
3575 | |
3576 | // TODO: Store origins. |
3577 | setOrigin(V: &I, Origin: getCleanOrigin()); |
3578 | } |
3579 | |
3580 | void handleMaskedCompressStore(IntrinsicInst &I) { |
3581 | IRBuilder<> IRB(&I); |
3582 | Value *Values = I.getArgOperand(i: 0); |
3583 | Value *Ptr = I.getArgOperand(i: 1); |
3584 | Value *Mask = I.getArgOperand(i: 2); |
3585 | |
3586 | if (ClCheckAccessAddress) { |
3587 | insertShadowCheck(Val: Ptr, OrigIns: &I); |
3588 | insertShadowCheck(Val: Mask, OrigIns: &I); |
3589 | } |
3590 | |
3591 | Value *Shadow = getShadow(V: Values); |
3592 | Type *ElementShadowTy = |
3593 | getShadowTy(OrigTy: cast<VectorType>(Val: Values->getType())->getElementType()); |
3594 | auto [ShadowPtr, OriginPtrs] = |
3595 | getShadowOriginPtr(Addr: Ptr, IRB, ShadowTy: ElementShadowTy, Alignment: {}, /*isStore*/ true); |
3596 | |
3597 | IRB.CreateMaskedCompressStore(Val: Shadow, Ptr: ShadowPtr, Mask); |
3598 | |
3599 | // TODO: Store origins. |
3600 | } |
3601 | |
3602 | void handleMaskedGather(IntrinsicInst &I) { |
3603 | IRBuilder<> IRB(&I); |
3604 | Value *Ptrs = I.getArgOperand(i: 0); |
3605 | const Align Alignment( |
3606 | cast<ConstantInt>(Val: I.getArgOperand(i: 1))->getZExtValue()); |
3607 | Value *Mask = I.getArgOperand(i: 2); |
3608 | Value *PassThru = I.getArgOperand(i: 3); |
3609 | |
3610 | Type *PtrsShadowTy = getShadowTy(V: Ptrs); |
3611 | if (ClCheckAccessAddress) { |
3612 | insertShadowCheck(Val: Mask, OrigIns: &I); |
3613 | Value *MaskedPtrShadow = IRB.CreateSelect( |
3614 | C: Mask, True: getShadow(V: Ptrs), False: Constant::getNullValue(Ty: (PtrsShadowTy)), |
3615 | Name: "_msmaskedptrs" ); |
3616 | insertShadowCheck(Shadow: MaskedPtrShadow, Origin: getOrigin(V: Ptrs), OrigIns: &I); |
3617 | } |
3618 | |
3619 | if (!PropagateShadow) { |
3620 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
3621 | setOrigin(V: &I, Origin: getCleanOrigin()); |
3622 | return; |
3623 | } |
3624 | |
3625 | Type *ShadowTy = getShadowTy(V: &I); |
3626 | Type *ElementShadowTy = cast<VectorType>(Val: ShadowTy)->getElementType(); |
3627 | auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr( |
3628 | Addr: Ptrs, IRB, ShadowTy: ElementShadowTy, Alignment, /*isStore*/ false); |
3629 | |
3630 | Value *Shadow = |
3631 | IRB.CreateMaskedGather(Ty: ShadowTy, Ptrs: ShadowPtrs, Alignment, Mask, |
3632 | PassThru: getShadow(V: PassThru), Name: "_msmaskedgather" ); |
3633 | |
3634 | setShadow(V: &I, SV: Shadow); |
3635 | |
3636 | // TODO: Store origins. |
3637 | setOrigin(V: &I, Origin: getCleanOrigin()); |
3638 | } |
3639 | |
3640 | void handleMaskedScatter(IntrinsicInst &I) { |
3641 | IRBuilder<> IRB(&I); |
3642 | Value *Values = I.getArgOperand(i: 0); |
3643 | Value *Ptrs = I.getArgOperand(i: 1); |
3644 | const Align Alignment( |
3645 | cast<ConstantInt>(Val: I.getArgOperand(i: 2))->getZExtValue()); |
3646 | Value *Mask = I.getArgOperand(i: 3); |
3647 | |
3648 | Type *PtrsShadowTy = getShadowTy(V: Ptrs); |
3649 | if (ClCheckAccessAddress) { |
3650 | insertShadowCheck(Val: Mask, OrigIns: &I); |
3651 | Value *MaskedPtrShadow = IRB.CreateSelect( |
3652 | C: Mask, True: getShadow(V: Ptrs), False: Constant::getNullValue(Ty: (PtrsShadowTy)), |
3653 | Name: "_msmaskedptrs" ); |
3654 | insertShadowCheck(Shadow: MaskedPtrShadow, Origin: getOrigin(V: Ptrs), OrigIns: &I); |
3655 | } |
3656 | |
3657 | Value *Shadow = getShadow(V: Values); |
3658 | Type *ElementShadowTy = |
3659 | getShadowTy(OrigTy: cast<VectorType>(Val: Values->getType())->getElementType()); |
3660 | auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr( |
3661 | Addr: Ptrs, IRB, ShadowTy: ElementShadowTy, Alignment, /*isStore*/ true); |
3662 | |
3663 | IRB.CreateMaskedScatter(Val: Shadow, Ptrs: ShadowPtrs, Alignment, Mask); |
3664 | |
3665 | // TODO: Store origin. |
3666 | } |
3667 | |
3668 | void handleMaskedStore(IntrinsicInst &I) { |
3669 | IRBuilder<> IRB(&I); |
3670 | Value *V = I.getArgOperand(i: 0); |
3671 | Value *Ptr = I.getArgOperand(i: 1); |
3672 | const Align Alignment( |
3673 | cast<ConstantInt>(Val: I.getArgOperand(i: 2))->getZExtValue()); |
3674 | Value *Mask = I.getArgOperand(i: 3); |
3675 | Value *Shadow = getShadow(V); |
3676 | |
3677 | if (ClCheckAccessAddress) { |
3678 | insertShadowCheck(Val: Ptr, OrigIns: &I); |
3679 | insertShadowCheck(Val: Mask, OrigIns: &I); |
3680 | } |
3681 | |
3682 | Value *ShadowPtr; |
3683 | Value *OriginPtr; |
3684 | std::tie(args&: ShadowPtr, args&: OriginPtr) = getShadowOriginPtr( |
3685 | Addr: Ptr, IRB, ShadowTy: Shadow->getType(), Alignment, /*isStore*/ true); |
3686 | |
3687 | IRB.CreateMaskedStore(Val: Shadow, Ptr: ShadowPtr, Alignment, Mask); |
3688 | |
3689 | if (!MS.TrackOrigins) |
3690 | return; |
3691 | |
3692 | auto &DL = F.getDataLayout(); |
3693 | paintOrigin(IRB, Origin: getOrigin(V), OriginPtr, |
3694 | TS: DL.getTypeStoreSize(Ty: Shadow->getType()), |
3695 | Alignment: std::max(a: Alignment, b: kMinOriginAlignment)); |
3696 | } |
3697 | |
3698 | void handleMaskedLoad(IntrinsicInst &I) { |
3699 | IRBuilder<> IRB(&I); |
3700 | Value *Ptr = I.getArgOperand(i: 0); |
3701 | const Align Alignment( |
3702 | cast<ConstantInt>(Val: I.getArgOperand(i: 1))->getZExtValue()); |
3703 | Value *Mask = I.getArgOperand(i: 2); |
3704 | Value *PassThru = I.getArgOperand(i: 3); |
3705 | |
3706 | if (ClCheckAccessAddress) { |
3707 | insertShadowCheck(Val: Ptr, OrigIns: &I); |
3708 | insertShadowCheck(Val: Mask, OrigIns: &I); |
3709 | } |
3710 | |
3711 | if (!PropagateShadow) { |
3712 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
3713 | setOrigin(V: &I, Origin: getCleanOrigin()); |
3714 | return; |
3715 | } |
3716 | |
3717 | Type *ShadowTy = getShadowTy(V: &I); |
3718 | Value *ShadowPtr, *OriginPtr; |
3719 | std::tie(args&: ShadowPtr, args&: OriginPtr) = |
3720 | getShadowOriginPtr(Addr: Ptr, IRB, ShadowTy, Alignment, /*isStore*/ false); |
3721 | setShadow(V: &I, SV: IRB.CreateMaskedLoad(Ty: ShadowTy, Ptr: ShadowPtr, Alignment, Mask, |
3722 | PassThru: getShadow(V: PassThru), Name: "_msmaskedld" )); |
3723 | |
3724 | if (!MS.TrackOrigins) |
3725 | return; |
3726 | |
3727 | // Choose between PassThru's and the loaded value's origins. |
3728 | Value *MaskedPassThruShadow = IRB.CreateAnd( |
3729 | LHS: getShadow(V: PassThru), RHS: IRB.CreateSExt(V: IRB.CreateNeg(V: Mask), DestTy: ShadowTy)); |
3730 | |
3731 | Value *NotNull = convertToBool(V: MaskedPassThruShadow, IRB, name: "_mscmp" ); |
3732 | |
3733 | Value *PtrOrigin = IRB.CreateLoad(Ty: MS.OriginTy, Ptr: OriginPtr); |
3734 | Value *Origin = IRB.CreateSelect(C: NotNull, True: getOrigin(V: PassThru), False: PtrOrigin); |
3735 | |
3736 | setOrigin(V: &I, Origin); |
3737 | } |
3738 | |
3739 | // Instrument BMI / BMI2 intrinsics. |
3740 | // All of these intrinsics are Z = I(X, Y) |
3741 | // where the types of all operands and the result match, and are either i32 or |
3742 | // i64. The following instrumentation happens to work for all of them: |
3743 | // Sz = I(Sx, Y) | (sext (Sy != 0)) |
3744 | void handleBmiIntrinsic(IntrinsicInst &I) { |
3745 | IRBuilder<> IRB(&I); |
3746 | Type *ShadowTy = getShadowTy(V: &I); |
3747 | |
3748 | // If any bit of the mask operand is poisoned, then the whole thing is. |
3749 | Value *SMask = getShadow(I: &I, i: 1); |
3750 | SMask = IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: SMask, RHS: getCleanShadow(OrigTy: ShadowTy)), |
3751 | DestTy: ShadowTy); |
3752 | // Apply the same intrinsic to the shadow of the first operand. |
3753 | Value *S = IRB.CreateCall(Callee: I.getCalledFunction(), |
3754 | Args: {getShadow(I: &I, i: 0), I.getOperand(i_nocapture: 1)}); |
3755 | S = IRB.CreateOr(LHS: SMask, RHS: S); |
3756 | setShadow(V: &I, SV: S); |
3757 | setOriginForNaryOp(I); |
3758 | } |
3759 | |
3760 | static SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { |
3761 | SmallVector<int, 8> Mask; |
3762 | for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { |
3763 | Mask.append(NumInputs: 2, Elt: X); |
3764 | } |
3765 | return Mask; |
3766 | } |
3767 | |
3768 | // Instrument pclmul intrinsics. |
3769 | // These intrinsics operate either on odd or on even elements of the input |
3770 | // vectors, depending on the constant in the 3rd argument, ignoring the rest. |
3771 | // Replace the unused elements with copies of the used ones, ex: |
3772 | // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) |
3773 | // or |
3774 | // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) |
3775 | // and then apply the usual shadow combining logic. |
3776 | void handlePclmulIntrinsic(IntrinsicInst &I) { |
3777 | IRBuilder<> IRB(&I); |
3778 | unsigned Width = |
3779 | cast<FixedVectorType>(Val: I.getArgOperand(i: 0)->getType())->getNumElements(); |
3780 | assert(isa<ConstantInt>(I.getArgOperand(2)) && |
3781 | "pclmul 3rd operand must be a constant" ); |
3782 | unsigned Imm = cast<ConstantInt>(Val: I.getArgOperand(i: 2))->getZExtValue(); |
3783 | Value *Shuf0 = IRB.CreateShuffleVector(V: getShadow(I: &I, i: 0), |
3784 | Mask: getPclmulMask(Width, OddElements: Imm & 0x01)); |
3785 | Value *Shuf1 = IRB.CreateShuffleVector(V: getShadow(I: &I, i: 1), |
3786 | Mask: getPclmulMask(Width, OddElements: Imm & 0x10)); |
3787 | ShadowAndOriginCombiner SOC(this, IRB); |
3788 | SOC.Add(OpShadow: Shuf0, OpOrigin: getOrigin(I: &I, i: 0)); |
3789 | SOC.Add(OpShadow: Shuf1, OpOrigin: getOrigin(I: &I, i: 1)); |
3790 | SOC.Done(I: &I); |
3791 | } |
3792 | |
3793 | // Instrument _mm_*_sd|ss intrinsics |
3794 | void handleUnarySdSsIntrinsic(IntrinsicInst &I) { |
3795 | IRBuilder<> IRB(&I); |
3796 | unsigned Width = |
3797 | cast<FixedVectorType>(Val: I.getArgOperand(i: 0)->getType())->getNumElements(); |
3798 | Value *First = getShadow(I: &I, i: 0); |
3799 | Value *Second = getShadow(I: &I, i: 1); |
3800 | // First element of second operand, remaining elements of first operand |
3801 | SmallVector<int, 16> Mask; |
3802 | Mask.push_back(Elt: Width); |
3803 | for (unsigned i = 1; i < Width; i++) |
3804 | Mask.push_back(Elt: i); |
3805 | Value *Shadow = IRB.CreateShuffleVector(V1: First, V2: Second, Mask); |
3806 | |
3807 | setShadow(V: &I, SV: Shadow); |
3808 | setOriginForNaryOp(I); |
3809 | } |
3810 | |
3811 | void handleVtestIntrinsic(IntrinsicInst &I) { |
3812 | IRBuilder<> IRB(&I); |
3813 | Value *Shadow0 = getShadow(I: &I, i: 0); |
3814 | Value *Shadow1 = getShadow(I: &I, i: 1); |
3815 | Value *Or = IRB.CreateOr(LHS: Shadow0, RHS: Shadow1); |
3816 | Value *NZ = IRB.CreateICmpNE(LHS: Or, RHS: Constant::getNullValue(Ty: Or->getType())); |
3817 | Value *Scalar = convertShadowToScalar(V: NZ, IRB); |
3818 | Value *Shadow = IRB.CreateZExt(V: Scalar, DestTy: getShadowTy(V: &I)); |
3819 | |
3820 | setShadow(V: &I, SV: Shadow); |
3821 | setOriginForNaryOp(I); |
3822 | } |
3823 | |
3824 | void handleBinarySdSsIntrinsic(IntrinsicInst &I) { |
3825 | IRBuilder<> IRB(&I); |
3826 | unsigned Width = |
3827 | cast<FixedVectorType>(Val: I.getArgOperand(i: 0)->getType())->getNumElements(); |
3828 | Value *First = getShadow(I: &I, i: 0); |
3829 | Value *Second = getShadow(I: &I, i: 1); |
3830 | Value *OrShadow = IRB.CreateOr(LHS: First, RHS: Second); |
3831 | // First element of both OR'd together, remaining elements of first operand |
3832 | SmallVector<int, 16> Mask; |
3833 | Mask.push_back(Elt: Width); |
3834 | for (unsigned i = 1; i < Width; i++) |
3835 | Mask.push_back(Elt: i); |
3836 | Value *Shadow = IRB.CreateShuffleVector(V1: First, V2: OrShadow, Mask); |
3837 | |
3838 | setShadow(V: &I, SV: Shadow); |
3839 | setOriginForNaryOp(I); |
3840 | } |
3841 | |
3842 | // Instrument abs intrinsic. |
3843 | // handleUnknownIntrinsic can't handle it because of the last |
3844 | // is_int_min_poison argument which does not match the result type. |
3845 | void handleAbsIntrinsic(IntrinsicInst &I) { |
3846 | assert(I.getType()->isIntOrIntVectorTy()); |
3847 | assert(I.getArgOperand(0)->getType() == I.getType()); |
3848 | |
3849 | // FIXME: Handle is_int_min_poison. |
3850 | IRBuilder<> IRB(&I); |
3851 | setShadow(V: &I, SV: getShadow(I: &I, i: 0)); |
3852 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
3853 | } |
3854 | |
3855 | void handleIsFpClass(IntrinsicInst &I) { |
3856 | IRBuilder<> IRB(&I); |
3857 | Value *Shadow = getShadow(I: &I, i: 0); |
3858 | setShadow(V: &I, SV: IRB.CreateICmpNE(LHS: Shadow, RHS: getCleanShadow(V: Shadow))); |
3859 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
3860 | } |
3861 | |
3862 | void handleArithmeticWithOverflow(IntrinsicInst &I) { |
3863 | IRBuilder<> IRB(&I); |
3864 | Value *Shadow0 = getShadow(I: &I, i: 0); |
3865 | Value *Shadow1 = getShadow(I: &I, i: 1); |
3866 | Value *ShadowElt0 = IRB.CreateOr(LHS: Shadow0, RHS: Shadow1); |
3867 | Value *ShadowElt1 = |
3868 | IRB.CreateICmpNE(LHS: ShadowElt0, RHS: getCleanShadow(V: ShadowElt0)); |
3869 | |
3870 | Value *Shadow = PoisonValue::get(T: getShadowTy(V: &I)); |
3871 | Shadow = IRB.CreateInsertValue(Agg: Shadow, Val: ShadowElt0, Idxs: 0); |
3872 | Shadow = IRB.CreateInsertValue(Agg: Shadow, Val: ShadowElt1, Idxs: 1); |
3873 | |
3874 | setShadow(V: &I, SV: Shadow); |
3875 | setOriginForNaryOp(I); |
3876 | } |
3877 | |
3878 | /// Handle Arm NEON vector store intrinsics (vst{2,3,4}). |
3879 | /// |
3880 | /// Arm NEON vector store intrinsics have the output address (pointer) as the |
3881 | /// last argument, with the initial arguments being the inputs. They return |
3882 | /// void. |
3883 | void handleNEONVectorStoreIntrinsic(IntrinsicInst &I) { |
3884 | IRBuilder<> IRB(&I); |
3885 | |
3886 | // Don't use getNumOperands() because it includes the callee |
3887 | int numArgOperands = I.arg_size(); |
3888 | assert(numArgOperands >= 1); |
3889 | |
3890 | // The last arg operand is the output |
3891 | Value *Addr = I.getArgOperand(i: numArgOperands - 1); |
3892 | assert(Addr->getType()->isPointerTy()); |
3893 | |
3894 | if (ClCheckAccessAddress) |
3895 | insertShadowCheck(Val: Addr, OrigIns: &I); |
3896 | |
3897 | // Every arg operand, other than the last one, is an input vector |
3898 | IntrinsicInst *ShadowI = cast<IntrinsicInst>(Val: I.clone()); |
3899 | for (int i = 0; i < numArgOperands - 1; i++) { |
3900 | assert(isa<FixedVectorType>(I.getArgOperand(i)->getType())); |
3901 | ShadowI->setArgOperand(i, v: getShadow(I: &I, i)); |
3902 | } |
3903 | |
3904 | // MSan's GetShadowTy assumes the LHS is the type we want the shadow for |
3905 | // e.g., for: |
3906 | // [[TMP5:%.*]] = bitcast <16 x i8> [[TMP2]] to i128 |
3907 | // we know the type of the output (and its shadow) is <16 x i8>. |
3908 | // |
3909 | // Arm NEON VST is unusual because the last argument is the output address: |
3910 | // define void @st2_16b(<16 x i8> %A, <16 x i8> %B, ptr %P) { |
3911 | // call void @llvm.aarch64.neon.st2.v16i8.p0 |
3912 | // (<16 x i8> [[A]], <16 x i8> [[B]], ptr [[P]]) |
3913 | // and we have no type information about P's operand. We must manually |
3914 | // compute the type (<16 x i8> x 2). |
3915 | FixedVectorType *OutputVectorTy = FixedVectorType::get( |
3916 | ElementType: cast<FixedVectorType>(Val: I.getArgOperand(i: 0)->getType())->getElementType(), |
3917 | NumElts: cast<FixedVectorType>(Val: I.getArgOperand(i: 0)->getType())->getNumElements() * |
3918 | (numArgOperands - 1)); |
3919 | Type *ShadowTy = getShadowTy(OrigTy: OutputVectorTy); |
3920 | Value *ShadowPtr, *OriginPtr; |
3921 | // AArch64 NEON does not need alignment (unless OS requires it) |
3922 | std::tie(args&: ShadowPtr, args&: OriginPtr) = |
3923 | getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment: Align(1), /*isStore*/ true); |
3924 | ShadowI->setArgOperand(i: numArgOperands - 1, v: ShadowPtr); |
3925 | ShadowI->insertAfter(InsertPos: &I); |
3926 | |
3927 | if (MS.TrackOrigins) { |
3928 | // TODO: if we modelled the vst* instruction more precisely, we could |
3929 | // more accurately track the origins (e.g., if both inputs are |
3930 | // uninitialized for vst2, we currently blame the second input, even |
3931 | // though part of the output depends only on the first input). |
3932 | OriginCombiner OC(this, IRB); |
3933 | for (int i = 0; i < numArgOperands - 1; i++) |
3934 | OC.Add(V: I.getArgOperand(i)); |
3935 | |
3936 | const DataLayout &DL = F.getDataLayout(); |
3937 | OC.DoneAndStoreOrigin(TS: DL.getTypeStoreSize(Ty: OutputVectorTy), OriginPtr); |
3938 | } |
3939 | } |
3940 | |
3941 | void visitIntrinsicInst(IntrinsicInst &I) { |
3942 | switch (I.getIntrinsicID()) { |
3943 | case Intrinsic::uadd_with_overflow: |
3944 | case Intrinsic::sadd_with_overflow: |
3945 | case Intrinsic::usub_with_overflow: |
3946 | case Intrinsic::ssub_with_overflow: |
3947 | case Intrinsic::umul_with_overflow: |
3948 | case Intrinsic::smul_with_overflow: |
3949 | handleArithmeticWithOverflow(I); |
3950 | break; |
3951 | case Intrinsic::abs: |
3952 | handleAbsIntrinsic(I); |
3953 | break; |
3954 | case Intrinsic::is_fpclass: |
3955 | handleIsFpClass(I); |
3956 | break; |
3957 | case Intrinsic::lifetime_start: |
3958 | handleLifetimeStart(I); |
3959 | break; |
3960 | case Intrinsic::launder_invariant_group: |
3961 | case Intrinsic::strip_invariant_group: |
3962 | handleInvariantGroup(I); |
3963 | break; |
3964 | case Intrinsic::bswap: |
3965 | handleBswap(I); |
3966 | break; |
3967 | case Intrinsic::ctlz: |
3968 | case Intrinsic::cttz: |
3969 | handleCountZeroes(I); |
3970 | break; |
3971 | case Intrinsic::masked_compressstore: |
3972 | handleMaskedCompressStore(I); |
3973 | break; |
3974 | case Intrinsic::masked_expandload: |
3975 | handleMaskedExpandLoad(I); |
3976 | break; |
3977 | case Intrinsic::masked_gather: |
3978 | handleMaskedGather(I); |
3979 | break; |
3980 | case Intrinsic::masked_scatter: |
3981 | handleMaskedScatter(I); |
3982 | break; |
3983 | case Intrinsic::masked_store: |
3984 | handleMaskedStore(I); |
3985 | break; |
3986 | case Intrinsic::masked_load: |
3987 | handleMaskedLoad(I); |
3988 | break; |
3989 | case Intrinsic::vector_reduce_and: |
3990 | handleVectorReduceAndIntrinsic(I); |
3991 | break; |
3992 | case Intrinsic::vector_reduce_or: |
3993 | handleVectorReduceOrIntrinsic(I); |
3994 | break; |
3995 | case Intrinsic::vector_reduce_add: |
3996 | case Intrinsic::vector_reduce_xor: |
3997 | case Intrinsic::vector_reduce_mul: |
3998 | handleVectorReduceIntrinsic(I); |
3999 | break; |
4000 | case Intrinsic::x86_sse_stmxcsr: |
4001 | handleStmxcsr(I); |
4002 | break; |
4003 | case Intrinsic::x86_sse_ldmxcsr: |
4004 | handleLdmxcsr(I); |
4005 | break; |
4006 | case Intrinsic::x86_avx512_vcvtsd2usi64: |
4007 | case Intrinsic::x86_avx512_vcvtsd2usi32: |
4008 | case Intrinsic::x86_avx512_vcvtss2usi64: |
4009 | case Intrinsic::x86_avx512_vcvtss2usi32: |
4010 | case Intrinsic::x86_avx512_cvttss2usi64: |
4011 | case Intrinsic::x86_avx512_cvttss2usi: |
4012 | case Intrinsic::x86_avx512_cvttsd2usi64: |
4013 | case Intrinsic::x86_avx512_cvttsd2usi: |
4014 | case Intrinsic::x86_avx512_cvtusi2ss: |
4015 | case Intrinsic::x86_avx512_cvtusi642sd: |
4016 | case Intrinsic::x86_avx512_cvtusi642ss: |
4017 | handleVectorConvertIntrinsic(I, NumUsedElements: 1, HasRoundingMode: true); |
4018 | break; |
4019 | case Intrinsic::x86_sse2_cvtsd2si64: |
4020 | case Intrinsic::x86_sse2_cvtsd2si: |
4021 | case Intrinsic::x86_sse2_cvtsd2ss: |
4022 | case Intrinsic::x86_sse2_cvttsd2si64: |
4023 | case Intrinsic::x86_sse2_cvttsd2si: |
4024 | case Intrinsic::x86_sse_cvtss2si64: |
4025 | case Intrinsic::x86_sse_cvtss2si: |
4026 | case Intrinsic::x86_sse_cvttss2si64: |
4027 | case Intrinsic::x86_sse_cvttss2si: |
4028 | handleVectorConvertIntrinsic(I, NumUsedElements: 1); |
4029 | break; |
4030 | case Intrinsic::x86_sse_cvtps2pi: |
4031 | case Intrinsic::x86_sse_cvttps2pi: |
4032 | handleVectorConvertIntrinsic(I, NumUsedElements: 2); |
4033 | break; |
4034 | |
4035 | case Intrinsic::x86_avx512_psll_w_512: |
4036 | case Intrinsic::x86_avx512_psll_d_512: |
4037 | case Intrinsic::x86_avx512_psll_q_512: |
4038 | case Intrinsic::x86_avx512_pslli_w_512: |
4039 | case Intrinsic::x86_avx512_pslli_d_512: |
4040 | case Intrinsic::x86_avx512_pslli_q_512: |
4041 | case Intrinsic::x86_avx512_psrl_w_512: |
4042 | case Intrinsic::x86_avx512_psrl_d_512: |
4043 | case Intrinsic::x86_avx512_psrl_q_512: |
4044 | case Intrinsic::x86_avx512_psra_w_512: |
4045 | case Intrinsic::x86_avx512_psra_d_512: |
4046 | case Intrinsic::x86_avx512_psra_q_512: |
4047 | case Intrinsic::x86_avx512_psrli_w_512: |
4048 | case Intrinsic::x86_avx512_psrli_d_512: |
4049 | case Intrinsic::x86_avx512_psrli_q_512: |
4050 | case Intrinsic::x86_avx512_psrai_w_512: |
4051 | case Intrinsic::x86_avx512_psrai_d_512: |
4052 | case Intrinsic::x86_avx512_psrai_q_512: |
4053 | case Intrinsic::x86_avx512_psra_q_256: |
4054 | case Intrinsic::x86_avx512_psra_q_128: |
4055 | case Intrinsic::x86_avx512_psrai_q_256: |
4056 | case Intrinsic::x86_avx512_psrai_q_128: |
4057 | case Intrinsic::x86_avx2_psll_w: |
4058 | case Intrinsic::x86_avx2_psll_d: |
4059 | case Intrinsic::x86_avx2_psll_q: |
4060 | case Intrinsic::x86_avx2_pslli_w: |
4061 | case Intrinsic::x86_avx2_pslli_d: |
4062 | case Intrinsic::x86_avx2_pslli_q: |
4063 | case Intrinsic::x86_avx2_psrl_w: |
4064 | case Intrinsic::x86_avx2_psrl_d: |
4065 | case Intrinsic::x86_avx2_psrl_q: |
4066 | case Intrinsic::x86_avx2_psra_w: |
4067 | case Intrinsic::x86_avx2_psra_d: |
4068 | case Intrinsic::x86_avx2_psrli_w: |
4069 | case Intrinsic::x86_avx2_psrli_d: |
4070 | case Intrinsic::x86_avx2_psrli_q: |
4071 | case Intrinsic::x86_avx2_psrai_w: |
4072 | case Intrinsic::x86_avx2_psrai_d: |
4073 | case Intrinsic::x86_sse2_psll_w: |
4074 | case Intrinsic::x86_sse2_psll_d: |
4075 | case Intrinsic::x86_sse2_psll_q: |
4076 | case Intrinsic::x86_sse2_pslli_w: |
4077 | case Intrinsic::x86_sse2_pslli_d: |
4078 | case Intrinsic::x86_sse2_pslli_q: |
4079 | case Intrinsic::x86_sse2_psrl_w: |
4080 | case Intrinsic::x86_sse2_psrl_d: |
4081 | case Intrinsic::x86_sse2_psrl_q: |
4082 | case Intrinsic::x86_sse2_psra_w: |
4083 | case Intrinsic::x86_sse2_psra_d: |
4084 | case Intrinsic::x86_sse2_psrli_w: |
4085 | case Intrinsic::x86_sse2_psrli_d: |
4086 | case Intrinsic::x86_sse2_psrli_q: |
4087 | case Intrinsic::x86_sse2_psrai_w: |
4088 | case Intrinsic::x86_sse2_psrai_d: |
4089 | case Intrinsic::x86_mmx_psll_w: |
4090 | case Intrinsic::x86_mmx_psll_d: |
4091 | case Intrinsic::x86_mmx_psll_q: |
4092 | case Intrinsic::x86_mmx_pslli_w: |
4093 | case Intrinsic::x86_mmx_pslli_d: |
4094 | case Intrinsic::x86_mmx_pslli_q: |
4095 | case Intrinsic::x86_mmx_psrl_w: |
4096 | case Intrinsic::x86_mmx_psrl_d: |
4097 | case Intrinsic::x86_mmx_psrl_q: |
4098 | case Intrinsic::x86_mmx_psra_w: |
4099 | case Intrinsic::x86_mmx_psra_d: |
4100 | case Intrinsic::x86_mmx_psrli_w: |
4101 | case Intrinsic::x86_mmx_psrli_d: |
4102 | case Intrinsic::x86_mmx_psrli_q: |
4103 | case Intrinsic::x86_mmx_psrai_w: |
4104 | case Intrinsic::x86_mmx_psrai_d: |
4105 | handleVectorShiftIntrinsic(I, /* Variable */ false); |
4106 | break; |
4107 | case Intrinsic::x86_avx2_psllv_d: |
4108 | case Intrinsic::x86_avx2_psllv_d_256: |
4109 | case Intrinsic::x86_avx512_psllv_d_512: |
4110 | case Intrinsic::x86_avx2_psllv_q: |
4111 | case Intrinsic::x86_avx2_psllv_q_256: |
4112 | case Intrinsic::x86_avx512_psllv_q_512: |
4113 | case Intrinsic::x86_avx2_psrlv_d: |
4114 | case Intrinsic::x86_avx2_psrlv_d_256: |
4115 | case Intrinsic::x86_avx512_psrlv_d_512: |
4116 | case Intrinsic::x86_avx2_psrlv_q: |
4117 | case Intrinsic::x86_avx2_psrlv_q_256: |
4118 | case Intrinsic::x86_avx512_psrlv_q_512: |
4119 | case Intrinsic::x86_avx2_psrav_d: |
4120 | case Intrinsic::x86_avx2_psrav_d_256: |
4121 | case Intrinsic::x86_avx512_psrav_d_512: |
4122 | case Intrinsic::x86_avx512_psrav_q_128: |
4123 | case Intrinsic::x86_avx512_psrav_q_256: |
4124 | case Intrinsic::x86_avx512_psrav_q_512: |
4125 | handleVectorShiftIntrinsic(I, /* Variable */ true); |
4126 | break; |
4127 | |
4128 | case Intrinsic::x86_sse2_packsswb_128: |
4129 | case Intrinsic::x86_sse2_packssdw_128: |
4130 | case Intrinsic::x86_sse2_packuswb_128: |
4131 | case Intrinsic::x86_sse41_packusdw: |
4132 | case Intrinsic::x86_avx2_packsswb: |
4133 | case Intrinsic::x86_avx2_packssdw: |
4134 | case Intrinsic::x86_avx2_packuswb: |
4135 | case Intrinsic::x86_avx2_packusdw: |
4136 | handleVectorPackIntrinsic(I); |
4137 | break; |
4138 | |
4139 | case Intrinsic::x86_sse41_pblendvb: |
4140 | case Intrinsic::x86_sse41_blendvpd: |
4141 | case Intrinsic::x86_sse41_blendvps: |
4142 | case Intrinsic::x86_avx_blendv_pd_256: |
4143 | case Intrinsic::x86_avx_blendv_ps_256: |
4144 | case Intrinsic::x86_avx2_pblendvb: |
4145 | handleBlendvIntrinsic(I); |
4146 | break; |
4147 | |
4148 | case Intrinsic::x86_avx_dp_ps_256: |
4149 | case Intrinsic::x86_sse41_dppd: |
4150 | case Intrinsic::x86_sse41_dpps: |
4151 | handleDppIntrinsic(I); |
4152 | break; |
4153 | |
4154 | case Intrinsic::x86_mmx_packsswb: |
4155 | case Intrinsic::x86_mmx_packuswb: |
4156 | handleVectorPackIntrinsic(I, EltSizeInBits: 16); |
4157 | break; |
4158 | |
4159 | case Intrinsic::x86_mmx_packssdw: |
4160 | handleVectorPackIntrinsic(I, EltSizeInBits: 32); |
4161 | break; |
4162 | |
4163 | case Intrinsic::x86_mmx_psad_bw: |
4164 | case Intrinsic::x86_sse2_psad_bw: |
4165 | case Intrinsic::x86_avx2_psad_bw: |
4166 | handleVectorSadIntrinsic(I); |
4167 | break; |
4168 | |
4169 | case Intrinsic::x86_sse2_pmadd_wd: |
4170 | case Intrinsic::x86_avx2_pmadd_wd: |
4171 | case Intrinsic::x86_ssse3_pmadd_ub_sw_128: |
4172 | case Intrinsic::x86_avx2_pmadd_ub_sw: |
4173 | handleVectorPmaddIntrinsic(I); |
4174 | break; |
4175 | |
4176 | case Intrinsic::x86_ssse3_pmadd_ub_sw: |
4177 | handleVectorPmaddIntrinsic(I, EltSizeInBits: 8); |
4178 | break; |
4179 | |
4180 | case Intrinsic::x86_mmx_pmadd_wd: |
4181 | handleVectorPmaddIntrinsic(I, EltSizeInBits: 16); |
4182 | break; |
4183 | |
4184 | case Intrinsic::x86_sse_cmp_ss: |
4185 | case Intrinsic::x86_sse2_cmp_sd: |
4186 | case Intrinsic::x86_sse_comieq_ss: |
4187 | case Intrinsic::x86_sse_comilt_ss: |
4188 | case Intrinsic::x86_sse_comile_ss: |
4189 | case Intrinsic::x86_sse_comigt_ss: |
4190 | case Intrinsic::x86_sse_comige_ss: |
4191 | case Intrinsic::x86_sse_comineq_ss: |
4192 | case Intrinsic::x86_sse_ucomieq_ss: |
4193 | case Intrinsic::x86_sse_ucomilt_ss: |
4194 | case Intrinsic::x86_sse_ucomile_ss: |
4195 | case Intrinsic::x86_sse_ucomigt_ss: |
4196 | case Intrinsic::x86_sse_ucomige_ss: |
4197 | case Intrinsic::x86_sse_ucomineq_ss: |
4198 | case Intrinsic::x86_sse2_comieq_sd: |
4199 | case Intrinsic::x86_sse2_comilt_sd: |
4200 | case Intrinsic::x86_sse2_comile_sd: |
4201 | case Intrinsic::x86_sse2_comigt_sd: |
4202 | case Intrinsic::x86_sse2_comige_sd: |
4203 | case Intrinsic::x86_sse2_comineq_sd: |
4204 | case Intrinsic::x86_sse2_ucomieq_sd: |
4205 | case Intrinsic::x86_sse2_ucomilt_sd: |
4206 | case Intrinsic::x86_sse2_ucomile_sd: |
4207 | case Intrinsic::x86_sse2_ucomigt_sd: |
4208 | case Intrinsic::x86_sse2_ucomige_sd: |
4209 | case Intrinsic::x86_sse2_ucomineq_sd: |
4210 | handleVectorCompareScalarIntrinsic(I); |
4211 | break; |
4212 | |
4213 | case Intrinsic::x86_avx_cmp_pd_256: |
4214 | case Intrinsic::x86_avx_cmp_ps_256: |
4215 | case Intrinsic::x86_sse2_cmp_pd: |
4216 | case Intrinsic::x86_sse_cmp_ps: |
4217 | handleVectorComparePackedIntrinsic(I); |
4218 | break; |
4219 | |
4220 | case Intrinsic::x86_bmi_bextr_32: |
4221 | case Intrinsic::x86_bmi_bextr_64: |
4222 | case Intrinsic::x86_bmi_bzhi_32: |
4223 | case Intrinsic::x86_bmi_bzhi_64: |
4224 | case Intrinsic::x86_bmi_pdep_32: |
4225 | case Intrinsic::x86_bmi_pdep_64: |
4226 | case Intrinsic::x86_bmi_pext_32: |
4227 | case Intrinsic::x86_bmi_pext_64: |
4228 | handleBmiIntrinsic(I); |
4229 | break; |
4230 | |
4231 | case Intrinsic::x86_pclmulqdq: |
4232 | case Intrinsic::x86_pclmulqdq_256: |
4233 | case Intrinsic::x86_pclmulqdq_512: |
4234 | handlePclmulIntrinsic(I); |
4235 | break; |
4236 | |
4237 | case Intrinsic::x86_sse41_round_sd: |
4238 | case Intrinsic::x86_sse41_round_ss: |
4239 | handleUnarySdSsIntrinsic(I); |
4240 | break; |
4241 | case Intrinsic::x86_sse2_max_sd: |
4242 | case Intrinsic::x86_sse_max_ss: |
4243 | case Intrinsic::x86_sse2_min_sd: |
4244 | case Intrinsic::x86_sse_min_ss: |
4245 | handleBinarySdSsIntrinsic(I); |
4246 | break; |
4247 | |
4248 | case Intrinsic::x86_avx_vtestc_pd: |
4249 | case Intrinsic::x86_avx_vtestc_pd_256: |
4250 | case Intrinsic::x86_avx_vtestc_ps: |
4251 | case Intrinsic::x86_avx_vtestc_ps_256: |
4252 | case Intrinsic::x86_avx_vtestnzc_pd: |
4253 | case Intrinsic::x86_avx_vtestnzc_pd_256: |
4254 | case Intrinsic::x86_avx_vtestnzc_ps: |
4255 | case Intrinsic::x86_avx_vtestnzc_ps_256: |
4256 | case Intrinsic::x86_avx_vtestz_pd: |
4257 | case Intrinsic::x86_avx_vtestz_pd_256: |
4258 | case Intrinsic::x86_avx_vtestz_ps: |
4259 | case Intrinsic::x86_avx_vtestz_ps_256: |
4260 | case Intrinsic::x86_avx_ptestc_256: |
4261 | case Intrinsic::x86_avx_ptestnzc_256: |
4262 | case Intrinsic::x86_avx_ptestz_256: |
4263 | case Intrinsic::x86_sse41_ptestc: |
4264 | case Intrinsic::x86_sse41_ptestnzc: |
4265 | case Intrinsic::x86_sse41_ptestz: |
4266 | handleVtestIntrinsic(I); |
4267 | break; |
4268 | |
4269 | case Intrinsic::fshl: |
4270 | case Intrinsic::fshr: |
4271 | handleFunnelShift(I); |
4272 | break; |
4273 | |
4274 | case Intrinsic::is_constant: |
4275 | // The result of llvm.is.constant() is always defined. |
4276 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
4277 | setOrigin(V: &I, Origin: getCleanOrigin()); |
4278 | break; |
4279 | |
4280 | case Intrinsic::aarch64_neon_st2: |
4281 | case Intrinsic::aarch64_neon_st3: |
4282 | case Intrinsic::aarch64_neon_st4: { |
4283 | handleNEONVectorStoreIntrinsic(I); |
4284 | break; |
4285 | } |
4286 | |
4287 | default: |
4288 | if (!handleUnknownIntrinsic(I)) |
4289 | visitInstruction(I); |
4290 | break; |
4291 | } |
4292 | } |
4293 | |
4294 | void visitLibAtomicLoad(CallBase &CB) { |
4295 | // Since we use getNextNode here, we can't have CB terminate the BB. |
4296 | assert(isa<CallInst>(CB)); |
4297 | |
4298 | IRBuilder<> IRB(&CB); |
4299 | Value *Size = CB.getArgOperand(i: 0); |
4300 | Value *SrcPtr = CB.getArgOperand(i: 1); |
4301 | Value *DstPtr = CB.getArgOperand(i: 2); |
4302 | Value *Ordering = CB.getArgOperand(i: 3); |
4303 | // Convert the call to have at least Acquire ordering to make sure |
4304 | // the shadow operations aren't reordered before it. |
4305 | Value *NewOrdering = |
4306 | IRB.CreateExtractElement(Vec: makeAddAcquireOrderingTable(IRB), Idx: Ordering); |
4307 | CB.setArgOperand(i: 3, v: NewOrdering); |
4308 | |
4309 | NextNodeIRBuilder NextIRB(&CB); |
4310 | Value *SrcShadowPtr, *SrcOriginPtr; |
4311 | std::tie(args&: SrcShadowPtr, args&: SrcOriginPtr) = |
4312 | getShadowOriginPtr(Addr: SrcPtr, IRB&: NextIRB, ShadowTy: NextIRB.getInt8Ty(), Alignment: Align(1), |
4313 | /*isStore*/ false); |
4314 | Value *DstShadowPtr = |
4315 | getShadowOriginPtr(Addr: DstPtr, IRB&: NextIRB, ShadowTy: NextIRB.getInt8Ty(), Alignment: Align(1), |
4316 | /*isStore*/ true) |
4317 | .first; |
4318 | |
4319 | NextIRB.CreateMemCpy(Dst: DstShadowPtr, DstAlign: Align(1), Src: SrcShadowPtr, SrcAlign: Align(1), Size); |
4320 | if (MS.TrackOrigins) { |
4321 | Value *SrcOrigin = NextIRB.CreateAlignedLoad(Ty: MS.OriginTy, Ptr: SrcOriginPtr, |
4322 | Align: kMinOriginAlignment); |
4323 | Value *NewOrigin = updateOrigin(V: SrcOrigin, IRB&: NextIRB); |
4324 | NextIRB.CreateCall(Callee: MS.MsanSetOriginFn, Args: {DstPtr, Size, NewOrigin}); |
4325 | } |
4326 | } |
4327 | |
4328 | void visitLibAtomicStore(CallBase &CB) { |
4329 | IRBuilder<> IRB(&CB); |
4330 | Value *Size = CB.getArgOperand(i: 0); |
4331 | Value *DstPtr = CB.getArgOperand(i: 2); |
4332 | Value *Ordering = CB.getArgOperand(i: 3); |
4333 | // Convert the call to have at least Release ordering to make sure |
4334 | // the shadow operations aren't reordered after it. |
4335 | Value *NewOrdering = |
4336 | IRB.CreateExtractElement(Vec: makeAddReleaseOrderingTable(IRB), Idx: Ordering); |
4337 | CB.setArgOperand(i: 3, v: NewOrdering); |
4338 | |
4339 | Value *DstShadowPtr = |
4340 | getShadowOriginPtr(Addr: DstPtr, IRB, ShadowTy: IRB.getInt8Ty(), Alignment: Align(1), |
4341 | /*isStore*/ true) |
4342 | .first; |
4343 | |
4344 | // Atomic store always paints clean shadow/origin. See file header. |
4345 | IRB.CreateMemSet(Ptr: DstShadowPtr, Val: getCleanShadow(OrigTy: IRB.getInt8Ty()), Size, |
4346 | Align: Align(1)); |
4347 | } |
4348 | |
4349 | void visitCallBase(CallBase &CB) { |
4350 | assert(!CB.getMetadata(LLVMContext::MD_nosanitize)); |
4351 | if (CB.isInlineAsm()) { |
4352 | // For inline asm (either a call to asm function, or callbr instruction), |
4353 | // do the usual thing: check argument shadow and mark all outputs as |
4354 | // clean. Note that any side effects of the inline asm that are not |
4355 | // immediately visible in its constraints are not handled. |
4356 | if (ClHandleAsmConservative) |
4357 | visitAsmInstruction(I&: CB); |
4358 | else |
4359 | visitInstruction(I&: CB); |
4360 | return; |
4361 | } |
4362 | LibFunc LF; |
4363 | if (TLI->getLibFunc(CB, F&: LF)) { |
4364 | // libatomic.a functions need to have special handling because there isn't |
4365 | // a good way to intercept them or compile the library with |
4366 | // instrumentation. |
4367 | switch (LF) { |
4368 | case LibFunc_atomic_load: |
4369 | if (!isa<CallInst>(Val: CB)) { |
4370 | llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load." |
4371 | "Ignoring!\n" ; |
4372 | break; |
4373 | } |
4374 | visitLibAtomicLoad(CB); |
4375 | return; |
4376 | case LibFunc_atomic_store: |
4377 | visitLibAtomicStore(CB); |
4378 | return; |
4379 | default: |
4380 | break; |
4381 | } |
4382 | } |
4383 | |
4384 | if (auto *Call = dyn_cast<CallInst>(Val: &CB)) { |
4385 | assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere" ); |
4386 | |
4387 | // We are going to insert code that relies on the fact that the callee |
4388 | // will become a non-readonly function after it is instrumented by us. To |
4389 | // prevent this code from being optimized out, mark that function |
4390 | // non-readonly in advance. |
4391 | // TODO: We can likely do better than dropping memory() completely here. |
4392 | AttributeMask B; |
4393 | B.addAttribute(Val: Attribute::Memory).addAttribute(Val: Attribute::Speculatable); |
4394 | |
4395 | Call->removeFnAttrs(AttrsToRemove: B); |
4396 | if (Function *Func = Call->getCalledFunction()) { |
4397 | Func->removeFnAttrs(Attrs: B); |
4398 | } |
4399 | |
4400 | maybeMarkSanitizerLibraryCallNoBuiltin(CI: Call, TLI); |
4401 | } |
4402 | IRBuilder<> IRB(&CB); |
4403 | bool MayCheckCall = MS.EagerChecks; |
4404 | if (Function *Func = CB.getCalledFunction()) { |
4405 | // __sanitizer_unaligned_{load,store} functions may be called by users |
4406 | // and always expects shadows in the TLS. So don't check them. |
4407 | MayCheckCall &= !Func->getName().starts_with(Prefix: "__sanitizer_unaligned_" ); |
4408 | } |
4409 | |
4410 | unsigned ArgOffset = 0; |
4411 | LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n" ); |
4412 | for (const auto &[i, A] : llvm::enumerate(First: CB.args())) { |
4413 | if (!A->getType()->isSized()) { |
4414 | LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n" ); |
4415 | continue; |
4416 | } |
4417 | |
4418 | if (A->getType()->isScalableTy()) { |
4419 | LLVM_DEBUG(dbgs() << "Arg " << i << " is vscale: " << CB << "\n" ); |
4420 | // Handle as noundef, but don't reserve tls slots. |
4421 | insertShadowCheck(Val: A, OrigIns: &CB); |
4422 | continue; |
4423 | } |
4424 | |
4425 | unsigned Size = 0; |
4426 | const DataLayout &DL = F.getDataLayout(); |
4427 | |
4428 | bool ByVal = CB.paramHasAttr(ArgNo: i, Kind: Attribute::ByVal); |
4429 | bool NoUndef = CB.paramHasAttr(ArgNo: i, Kind: Attribute::NoUndef); |
4430 | bool EagerCheck = MayCheckCall && !ByVal && NoUndef; |
4431 | |
4432 | if (EagerCheck) { |
4433 | insertShadowCheck(Val: A, OrigIns: &CB); |
4434 | Size = DL.getTypeAllocSize(Ty: A->getType()); |
4435 | } else { |
4436 | Value *Store = nullptr; |
4437 | // Compute the Shadow for arg even if it is ByVal, because |
4438 | // in that case getShadow() will copy the actual arg shadow to |
4439 | // __msan_param_tls. |
4440 | Value *ArgShadow = getShadow(V: A); |
4441 | Value *ArgShadowBase = getShadowPtrForArgument(IRB, ArgOffset); |
4442 | LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A |
4443 | << " Shadow: " << *ArgShadow << "\n" ); |
4444 | if (ByVal) { |
4445 | // ByVal requires some special handling as it's too big for a single |
4446 | // load |
4447 | assert(A->getType()->isPointerTy() && |
4448 | "ByVal argument is not a pointer!" ); |
4449 | Size = DL.getTypeAllocSize(Ty: CB.getParamByValType(ArgNo: i)); |
4450 | if (ArgOffset + Size > kParamTLSSize) |
4451 | break; |
4452 | const MaybeAlign ParamAlignment(CB.getParamAlign(ArgNo: i)); |
4453 | MaybeAlign Alignment = std::nullopt; |
4454 | if (ParamAlignment) |
4455 | Alignment = std::min(a: *ParamAlignment, b: kShadowTLSAlignment); |
4456 | Value *AShadowPtr, *AOriginPtr; |
4457 | std::tie(args&: AShadowPtr, args&: AOriginPtr) = |
4458 | getShadowOriginPtr(Addr: A, IRB, ShadowTy: IRB.getInt8Ty(), Alignment, |
4459 | /*isStore*/ false); |
4460 | if (!PropagateShadow) { |
4461 | Store = IRB.CreateMemSet(Ptr: ArgShadowBase, |
4462 | Val: Constant::getNullValue(Ty: IRB.getInt8Ty()), |
4463 | Size, Align: Alignment); |
4464 | } else { |
4465 | Store = IRB.CreateMemCpy(Dst: ArgShadowBase, DstAlign: Alignment, Src: AShadowPtr, |
4466 | SrcAlign: Alignment, Size); |
4467 | if (MS.TrackOrigins) { |
4468 | Value *ArgOriginBase = getOriginPtrForArgument(IRB, ArgOffset); |
4469 | // FIXME: OriginSize should be: |
4470 | // alignTo(A % kMinOriginAlignment + Size, kMinOriginAlignment) |
4471 | unsigned OriginSize = alignTo(Size, A: kMinOriginAlignment); |
4472 | IRB.CreateMemCpy( |
4473 | Dst: ArgOriginBase, |
4474 | /* by origin_tls[ArgOffset] */ DstAlign: kMinOriginAlignment, |
4475 | Src: AOriginPtr, |
4476 | /* by getShadowOriginPtr */ SrcAlign: kMinOriginAlignment, Size: OriginSize); |
4477 | } |
4478 | } |
4479 | } else { |
4480 | // Any other parameters mean we need bit-grained tracking of uninit |
4481 | // data |
4482 | Size = DL.getTypeAllocSize(Ty: A->getType()); |
4483 | if (ArgOffset + Size > kParamTLSSize) |
4484 | break; |
4485 | Store = IRB.CreateAlignedStore(Val: ArgShadow, Ptr: ArgShadowBase, |
4486 | Align: kShadowTLSAlignment); |
4487 | Constant *Cst = dyn_cast<Constant>(Val: ArgShadow); |
4488 | if (MS.TrackOrigins && !(Cst && Cst->isNullValue())) { |
4489 | IRB.CreateStore(Val: getOrigin(V: A), |
4490 | Ptr: getOriginPtrForArgument(IRB, ArgOffset)); |
4491 | } |
4492 | } |
4493 | (void)Store; |
4494 | assert(Store != nullptr); |
4495 | LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n" ); |
4496 | } |
4497 | assert(Size != 0); |
4498 | ArgOffset += alignTo(Size, A: kShadowTLSAlignment); |
4499 | } |
4500 | LLVM_DEBUG(dbgs() << " done with call args\n" ); |
4501 | |
4502 | FunctionType *FT = CB.getFunctionType(); |
4503 | if (FT->isVarArg()) { |
4504 | VAHelper->visitCallBase(CB, IRB); |
4505 | } |
4506 | |
4507 | // Now, get the shadow for the RetVal. |
4508 | if (!CB.getType()->isSized()) |
4509 | return; |
4510 | // Don't emit the epilogue for musttail call returns. |
4511 | if (isa<CallInst>(Val: CB) && cast<CallInst>(Val&: CB).isMustTailCall()) |
4512 | return; |
4513 | |
4514 | if (MayCheckCall && CB.hasRetAttr(Kind: Attribute::NoUndef)) { |
4515 | setShadow(V: &CB, SV: getCleanShadow(V: &CB)); |
4516 | setOrigin(V: &CB, Origin: getCleanOrigin()); |
4517 | return; |
4518 | } |
4519 | |
4520 | IRBuilder<> IRBBefore(&CB); |
4521 | // Until we have full dynamic coverage, make sure the retval shadow is 0. |
4522 | Value *Base = getShadowPtrForRetval(IRB&: IRBBefore); |
4523 | IRBBefore.CreateAlignedStore(Val: getCleanShadow(V: &CB), Ptr: Base, |
4524 | Align: kShadowTLSAlignment); |
4525 | BasicBlock::iterator NextInsn; |
4526 | if (isa<CallInst>(Val: CB)) { |
4527 | NextInsn = ++CB.getIterator(); |
4528 | assert(NextInsn != CB.getParent()->end()); |
4529 | } else { |
4530 | BasicBlock *NormalDest = cast<InvokeInst>(Val&: CB).getNormalDest(); |
4531 | if (!NormalDest->getSinglePredecessor()) { |
4532 | // FIXME: this case is tricky, so we are just conservative here. |
4533 | // Perhaps we need to split the edge between this BB and NormalDest, |
4534 | // but a naive attempt to use SplitEdge leads to a crash. |
4535 | setShadow(V: &CB, SV: getCleanShadow(V: &CB)); |
4536 | setOrigin(V: &CB, Origin: getCleanOrigin()); |
4537 | return; |
4538 | } |
4539 | // FIXME: NextInsn is likely in a basic block that has not been visited |
4540 | // yet. Anything inserted there will be instrumented by MSan later! |
4541 | NextInsn = NormalDest->getFirstInsertionPt(); |
4542 | assert(NextInsn != NormalDest->end() && |
4543 | "Could not find insertion point for retval shadow load" ); |
4544 | } |
4545 | IRBuilder<> IRBAfter(&*NextInsn); |
4546 | Value *RetvalShadow = IRBAfter.CreateAlignedLoad( |
4547 | Ty: getShadowTy(V: &CB), Ptr: getShadowPtrForRetval(IRB&: IRBAfter), |
4548 | Align: kShadowTLSAlignment, Name: "_msret" ); |
4549 | setShadow(V: &CB, SV: RetvalShadow); |
4550 | if (MS.TrackOrigins) |
4551 | setOrigin(V: &CB, Origin: IRBAfter.CreateLoad(Ty: MS.OriginTy, |
4552 | Ptr: getOriginPtrForRetval())); |
4553 | } |
4554 | |
4555 | bool isAMustTailRetVal(Value *RetVal) { |
4556 | if (auto *I = dyn_cast<BitCastInst>(Val: RetVal)) { |
4557 | RetVal = I->getOperand(i_nocapture: 0); |
4558 | } |
4559 | if (auto *I = dyn_cast<CallInst>(Val: RetVal)) { |
4560 | return I->isMustTailCall(); |
4561 | } |
4562 | return false; |
4563 | } |
4564 | |
4565 | void visitReturnInst(ReturnInst &I) { |
4566 | IRBuilder<> IRB(&I); |
4567 | Value *RetVal = I.getReturnValue(); |
4568 | if (!RetVal) |
4569 | return; |
4570 | // Don't emit the epilogue for musttail call returns. |
4571 | if (isAMustTailRetVal(RetVal)) |
4572 | return; |
4573 | Value *ShadowPtr = getShadowPtrForRetval(IRB); |
4574 | bool HasNoUndef = F.hasRetAttribute(Kind: Attribute::NoUndef); |
4575 | bool StoreShadow = !(MS.EagerChecks && HasNoUndef); |
4576 | // FIXME: Consider using SpecialCaseList to specify a list of functions that |
4577 | // must always return fully initialized values. For now, we hardcode "main". |
4578 | bool EagerCheck = (MS.EagerChecks && HasNoUndef) || (F.getName() == "main" ); |
4579 | |
4580 | Value *Shadow = getShadow(V: RetVal); |
4581 | bool StoreOrigin = true; |
4582 | if (EagerCheck) { |
4583 | insertShadowCheck(Val: RetVal, OrigIns: &I); |
4584 | Shadow = getCleanShadow(V: RetVal); |
4585 | StoreOrigin = false; |
4586 | } |
4587 | |
4588 | // The caller may still expect information passed over TLS if we pass our |
4589 | // check |
4590 | if (StoreShadow) { |
4591 | IRB.CreateAlignedStore(Val: Shadow, Ptr: ShadowPtr, Align: kShadowTLSAlignment); |
4592 | if (MS.TrackOrigins && StoreOrigin) |
4593 | IRB.CreateStore(Val: getOrigin(V: RetVal), Ptr: getOriginPtrForRetval()); |
4594 | } |
4595 | } |
4596 | |
4597 | void visitPHINode(PHINode &I) { |
4598 | IRBuilder<> IRB(&I); |
4599 | if (!PropagateShadow) { |
4600 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
4601 | setOrigin(V: &I, Origin: getCleanOrigin()); |
4602 | return; |
4603 | } |
4604 | |
4605 | ShadowPHINodes.push_back(Elt: &I); |
4606 | setShadow(V: &I, SV: IRB.CreatePHI(Ty: getShadowTy(V: &I), NumReservedValues: I.getNumIncomingValues(), |
4607 | Name: "_msphi_s" )); |
4608 | if (MS.TrackOrigins) |
4609 | setOrigin( |
4610 | V: &I, Origin: IRB.CreatePHI(Ty: MS.OriginTy, NumReservedValues: I.getNumIncomingValues(), Name: "_msphi_o" )); |
4611 | } |
4612 | |
4613 | Value *getLocalVarIdptr(AllocaInst &I) { |
4614 | ConstantInt *IntConst = |
4615 | ConstantInt::get(Ty: Type::getInt32Ty(C&: (*F.getParent()).getContext()), V: 0); |
4616 | return new GlobalVariable(*F.getParent(), IntConst->getType(), |
4617 | /*isConstant=*/false, GlobalValue::PrivateLinkage, |
4618 | IntConst); |
4619 | } |
4620 | |
4621 | Value *getLocalVarDescription(AllocaInst &I) { |
4622 | return createPrivateConstGlobalForString(M&: *F.getParent(), Str: I.getName()); |
4623 | } |
4624 | |
4625 | void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { |
4626 | if (PoisonStack && ClPoisonStackWithCall) { |
4627 | IRB.CreateCall(Callee: MS.MsanPoisonStackFn, Args: {&I, Len}); |
4628 | } else { |
4629 | Value *ShadowBase, *OriginBase; |
4630 | std::tie(args&: ShadowBase, args&: OriginBase) = getShadowOriginPtr( |
4631 | Addr: &I, IRB, ShadowTy: IRB.getInt8Ty(), Alignment: Align(1), /*isStore*/ true); |
4632 | |
4633 | Value *PoisonValue = IRB.getInt8(C: PoisonStack ? ClPoisonStackPattern : 0); |
4634 | IRB.CreateMemSet(Ptr: ShadowBase, Val: PoisonValue, Size: Len, Align: I.getAlign()); |
4635 | } |
4636 | |
4637 | if (PoisonStack && MS.TrackOrigins) { |
4638 | Value *Idptr = getLocalVarIdptr(I); |
4639 | if (ClPrintStackNames) { |
4640 | Value *Descr = getLocalVarDescription(I); |
4641 | IRB.CreateCall(Callee: MS.MsanSetAllocaOriginWithDescriptionFn, |
4642 | Args: {&I, Len, Idptr, Descr}); |
4643 | } else { |
4644 | IRB.CreateCall(Callee: MS.MsanSetAllocaOriginNoDescriptionFn, Args: {&I, Len, Idptr}); |
4645 | } |
4646 | } |
4647 | } |
4648 | |
4649 | void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { |
4650 | Value *Descr = getLocalVarDescription(I); |
4651 | if (PoisonStack) { |
4652 | IRB.CreateCall(Callee: MS.MsanPoisonAllocaFn, Args: {&I, Len, Descr}); |
4653 | } else { |
4654 | IRB.CreateCall(Callee: MS.MsanUnpoisonAllocaFn, Args: {&I, Len}); |
4655 | } |
4656 | } |
4657 | |
4658 | void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { |
4659 | if (!InsPoint) |
4660 | InsPoint = &I; |
4661 | NextNodeIRBuilder IRB(InsPoint); |
4662 | const DataLayout &DL = F.getDataLayout(); |
4663 | TypeSize TS = DL.getTypeAllocSize(Ty: I.getAllocatedType()); |
4664 | Value *Len = IRB.CreateTypeSize(DstType: MS.IntptrTy, Size: TS); |
4665 | if (I.isArrayAllocation()) |
4666 | Len = IRB.CreateMul(LHS: Len, |
4667 | RHS: IRB.CreateZExtOrTrunc(V: I.getArraySize(), DestTy: MS.IntptrTy)); |
4668 | |
4669 | if (MS.CompileKernel) |
4670 | poisonAllocaKmsan(I, IRB, Len); |
4671 | else |
4672 | poisonAllocaUserspace(I, IRB, Len); |
4673 | } |
4674 | |
4675 | void visitAllocaInst(AllocaInst &I) { |
4676 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
4677 | setOrigin(V: &I, Origin: getCleanOrigin()); |
4678 | // We'll get to this alloca later unless it's poisoned at the corresponding |
4679 | // llvm.lifetime.start. |
4680 | AllocaSet.insert(X: &I); |
4681 | } |
4682 | |
4683 | void visitSelectInst(SelectInst &I) { |
4684 | // a = select b, c, d |
4685 | Value *B = I.getCondition(); |
4686 | Value *C = I.getTrueValue(); |
4687 | Value *D = I.getFalseValue(); |
4688 | |
4689 | handleSelectLikeInst(I, B, C, D); |
4690 | } |
4691 | |
4692 | void handleSelectLikeInst(Instruction &I, Value *B, Value *C, Value *D) { |
4693 | IRBuilder<> IRB(&I); |
4694 | |
4695 | Value *Sb = getShadow(V: B); |
4696 | Value *Sc = getShadow(V: C); |
4697 | Value *Sd = getShadow(V: D); |
4698 | |
4699 | Value *Ob = MS.TrackOrigins ? getOrigin(V: B) : nullptr; |
4700 | Value *Oc = MS.TrackOrigins ? getOrigin(V: C) : nullptr; |
4701 | Value *Od = MS.TrackOrigins ? getOrigin(V: D) : nullptr; |
4702 | |
4703 | // Result shadow if condition shadow is 0. |
4704 | Value *Sa0 = IRB.CreateSelect(C: B, True: Sc, False: Sd); |
4705 | Value *Sa1; |
4706 | if (I.getType()->isAggregateType()) { |
4707 | // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do |
4708 | // an extra "select". This results in much more compact IR. |
4709 | // Sa = select Sb, poisoned, (select b, Sc, Sd) |
4710 | Sa1 = getPoisonedShadow(ShadowTy: getShadowTy(OrigTy: I.getType())); |
4711 | } else { |
4712 | // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] |
4713 | // If Sb (condition is poisoned), look for bits in c and d that are equal |
4714 | // and both unpoisoned. |
4715 | // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. |
4716 | |
4717 | // Cast arguments to shadow-compatible type. |
4718 | C = CreateAppToShadowCast(IRB, V: C); |
4719 | D = CreateAppToShadowCast(IRB, V: D); |
4720 | |
4721 | // Result shadow if condition shadow is 1. |
4722 | Sa1 = IRB.CreateOr(Ops: {IRB.CreateXor(LHS: C, RHS: D), Sc, Sd}); |
4723 | } |
4724 | Value *Sa = IRB.CreateSelect(C: Sb, True: Sa1, False: Sa0, Name: "_msprop_select" ); |
4725 | setShadow(V: &I, SV: Sa); |
4726 | if (MS.TrackOrigins) { |
4727 | // Origins are always i32, so any vector conditions must be flattened. |
4728 | // FIXME: consider tracking vector origins for app vectors? |
4729 | if (B->getType()->isVectorTy()) { |
4730 | B = convertToBool(V: B, IRB); |
4731 | Sb = convertToBool(V: Sb, IRB); |
4732 | } |
4733 | // a = select b, c, d |
4734 | // Oa = Sb ? Ob : (b ? Oc : Od) |
4735 | setOrigin(V: &I, Origin: IRB.CreateSelect(C: Sb, True: Ob, False: IRB.CreateSelect(C: B, True: Oc, False: Od))); |
4736 | } |
4737 | } |
4738 | |
4739 | void visitLandingPadInst(LandingPadInst &I) { |
4740 | // Do nothing. |
4741 | // See https://github.com/google/sanitizers/issues/504 |
4742 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
4743 | setOrigin(V: &I, Origin: getCleanOrigin()); |
4744 | } |
4745 | |
4746 | void visitCatchSwitchInst(CatchSwitchInst &I) { |
4747 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
4748 | setOrigin(V: &I, Origin: getCleanOrigin()); |
4749 | } |
4750 | |
4751 | void visitFuncletPadInst(FuncletPadInst &I) { |
4752 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
4753 | setOrigin(V: &I, Origin: getCleanOrigin()); |
4754 | } |
4755 | |
4756 | void visitGetElementPtrInst(GetElementPtrInst &I) { handleShadowOr(I); } |
4757 | |
4758 | void (ExtractValueInst &I) { |
4759 | IRBuilder<> IRB(&I); |
4760 | Value *Agg = I.getAggregateOperand(); |
4761 | LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n" ); |
4762 | Value *AggShadow = getShadow(V: Agg); |
4763 | LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n" ); |
4764 | Value *ResShadow = IRB.CreateExtractValue(Agg: AggShadow, Idxs: I.getIndices()); |
4765 | LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n" ); |
4766 | setShadow(V: &I, SV: ResShadow); |
4767 | setOriginForNaryOp(I); |
4768 | } |
4769 | |
4770 | void visitInsertValueInst(InsertValueInst &I) { |
4771 | IRBuilder<> IRB(&I); |
4772 | LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n" ); |
4773 | Value *AggShadow = getShadow(V: I.getAggregateOperand()); |
4774 | Value *InsShadow = getShadow(V: I.getInsertedValueOperand()); |
4775 | LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n" ); |
4776 | LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n" ); |
4777 | Value *Res = IRB.CreateInsertValue(Agg: AggShadow, Val: InsShadow, Idxs: I.getIndices()); |
4778 | LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n" ); |
4779 | setShadow(V: &I, SV: Res); |
4780 | setOriginForNaryOp(I); |
4781 | } |
4782 | |
4783 | void dumpInst(Instruction &I) { |
4784 | if (CallInst *CI = dyn_cast<CallInst>(Val: &I)) { |
4785 | errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n" ; |
4786 | } else { |
4787 | errs() << "ZZZ " << I.getOpcodeName() << "\n" ; |
4788 | } |
4789 | errs() << "QQQ " << I << "\n" ; |
4790 | } |
4791 | |
4792 | void visitResumeInst(ResumeInst &I) { |
4793 | LLVM_DEBUG(dbgs() << "Resume: " << I << "\n" ); |
4794 | // Nothing to do here. |
4795 | } |
4796 | |
4797 | void visitCleanupReturnInst(CleanupReturnInst &CRI) { |
4798 | LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n" ); |
4799 | // Nothing to do here. |
4800 | } |
4801 | |
4802 | void visitCatchReturnInst(CatchReturnInst &CRI) { |
4803 | LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n" ); |
4804 | // Nothing to do here. |
4805 | } |
4806 | |
4807 | void instrumentAsmArgument(Value *Operand, Type *ElemTy, Instruction &I, |
4808 | IRBuilder<> &IRB, const DataLayout &DL, |
4809 | bool isOutput) { |
4810 | // For each assembly argument, we check its value for being initialized. |
4811 | // If the argument is a pointer, we assume it points to a single element |
4812 | // of the corresponding type (or to a 8-byte word, if the type is unsized). |
4813 | // Each such pointer is instrumented with a call to the runtime library. |
4814 | Type *OpType = Operand->getType(); |
4815 | // Check the operand value itself. |
4816 | insertShadowCheck(Val: Operand, OrigIns: &I); |
4817 | if (!OpType->isPointerTy() || !isOutput) { |
4818 | assert(!isOutput); |
4819 | return; |
4820 | } |
4821 | if (!ElemTy->isSized()) |
4822 | return; |
4823 | auto Size = DL.getTypeStoreSize(Ty: ElemTy); |
4824 | Value *SizeVal = IRB.CreateTypeSize(DstType: MS.IntptrTy, Size); |
4825 | if (MS.CompileKernel) { |
4826 | IRB.CreateCall(Callee: MS.MsanInstrumentAsmStoreFn, Args: {Operand, SizeVal}); |
4827 | } else { |
4828 | // ElemTy, derived from elementtype(), does not encode the alignment of |
4829 | // the pointer. Conservatively assume that the shadow memory is unaligned. |
4830 | // When Size is large, avoid StoreInst as it would expand to many |
4831 | // instructions. |
4832 | auto [ShadowPtr, _] = |
4833 | getShadowOriginPtrUserspace(Addr: Operand, IRB, ShadowTy: IRB.getInt8Ty(), Alignment: Align(1)); |
4834 | if (Size <= 32) |
4835 | IRB.CreateAlignedStore(Val: getCleanShadow(OrigTy: ElemTy), Ptr: ShadowPtr, Align: Align(1)); |
4836 | else |
4837 | IRB.CreateMemSet(Ptr: ShadowPtr, Val: ConstantInt::getNullValue(Ty: IRB.getInt8Ty()), |
4838 | Size: SizeVal, Align: Align(1)); |
4839 | } |
4840 | } |
4841 | |
4842 | /// Get the number of output arguments returned by pointers. |
4843 | int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { |
4844 | int NumRetOutputs = 0; |
4845 | int NumOutputs = 0; |
4846 | Type *RetTy = cast<Value>(Val: CB)->getType(); |
4847 | if (!RetTy->isVoidTy()) { |
4848 | // Register outputs are returned via the CallInst return value. |
4849 | auto *ST = dyn_cast<StructType>(Val: RetTy); |
4850 | if (ST) |
4851 | NumRetOutputs = ST->getNumElements(); |
4852 | else |
4853 | NumRetOutputs = 1; |
4854 | } |
4855 | InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); |
4856 | for (const InlineAsm::ConstraintInfo &Info : Constraints) { |
4857 | switch (Info.Type) { |
4858 | case InlineAsm::isOutput: |
4859 | NumOutputs++; |
4860 | break; |
4861 | default: |
4862 | break; |
4863 | } |
4864 | } |
4865 | return NumOutputs - NumRetOutputs; |
4866 | } |
4867 | |
4868 | void visitAsmInstruction(Instruction &I) { |
4869 | // Conservative inline assembly handling: check for poisoned shadow of |
4870 | // asm() arguments, then unpoison the result and all the memory locations |
4871 | // pointed to by those arguments. |
4872 | // An inline asm() statement in C++ contains lists of input and output |
4873 | // arguments used by the assembly code. These are mapped to operands of the |
4874 | // CallInst as follows: |
4875 | // - nR register outputs ("=r) are returned by value in a single structure |
4876 | // (SSA value of the CallInst); |
4877 | // - nO other outputs ("=m" and others) are returned by pointer as first |
4878 | // nO operands of the CallInst; |
4879 | // - nI inputs ("r", "m" and others) are passed to CallInst as the |
4880 | // remaining nI operands. |
4881 | // The total number of asm() arguments in the source is nR+nO+nI, and the |
4882 | // corresponding CallInst has nO+nI+1 operands (the last operand is the |
4883 | // function to be called). |
4884 | const DataLayout &DL = F.getDataLayout(); |
4885 | CallBase *CB = cast<CallBase>(Val: &I); |
4886 | IRBuilder<> IRB(&I); |
4887 | InlineAsm *IA = cast<InlineAsm>(Val: CB->getCalledOperand()); |
4888 | int OutputArgs = getNumOutputArgs(IA, CB); |
4889 | // The last operand of a CallInst is the function itself. |
4890 | int NumOperands = CB->getNumOperands() - 1; |
4891 | |
4892 | // Check input arguments. Doing so before unpoisoning output arguments, so |
4893 | // that we won't overwrite uninit values before checking them. |
4894 | for (int i = OutputArgs; i < NumOperands; i++) { |
4895 | Value *Operand = CB->getOperand(i_nocapture: i); |
4896 | instrumentAsmArgument(Operand, ElemTy: CB->getParamElementType(ArgNo: i), I, IRB, DL, |
4897 | /*isOutput*/ false); |
4898 | } |
4899 | // Unpoison output arguments. This must happen before the actual InlineAsm |
4900 | // call, so that the shadow for memory published in the asm() statement |
4901 | // remains valid. |
4902 | for (int i = 0; i < OutputArgs; i++) { |
4903 | Value *Operand = CB->getOperand(i_nocapture: i); |
4904 | instrumentAsmArgument(Operand, ElemTy: CB->getParamElementType(ArgNo: i), I, IRB, DL, |
4905 | /*isOutput*/ true); |
4906 | } |
4907 | |
4908 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
4909 | setOrigin(V: &I, Origin: getCleanOrigin()); |
4910 | } |
4911 | |
4912 | void visitFreezeInst(FreezeInst &I) { |
4913 | // Freeze always returns a fully defined value. |
4914 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
4915 | setOrigin(V: &I, Origin: getCleanOrigin()); |
4916 | } |
4917 | |
4918 | void visitInstruction(Instruction &I) { |
4919 | // Everything else: stop propagating and check for poisoned shadow. |
4920 | if (ClDumpStrictInstructions) |
4921 | dumpInst(I); |
4922 | LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n" ); |
4923 | for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { |
4924 | Value *Operand = I.getOperand(i); |
4925 | if (Operand->getType()->isSized()) |
4926 | insertShadowCheck(Val: Operand, OrigIns: &I); |
4927 | } |
4928 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
4929 | setOrigin(V: &I, Origin: getCleanOrigin()); |
4930 | } |
4931 | }; |
4932 | |
4933 | struct VarArgHelperBase : public VarArgHelper { |
4934 | Function &F; |
4935 | MemorySanitizer &MS; |
4936 | MemorySanitizerVisitor &MSV; |
4937 | SmallVector<CallInst *, 16> VAStartInstrumentationList; |
4938 | const unsigned VAListTagSize; |
4939 | |
4940 | VarArgHelperBase(Function &F, MemorySanitizer &MS, |
4941 | MemorySanitizerVisitor &MSV, unsigned VAListTagSize) |
4942 | : F(F), MS(MS), MSV(MSV), VAListTagSize(VAListTagSize) {} |
4943 | |
4944 | Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { |
4945 | Value *Base = IRB.CreatePointerCast(V: MS.VAArgTLS, DestTy: MS.IntptrTy); |
4946 | return IRB.CreateAdd(LHS: Base, RHS: ConstantInt::get(Ty: MS.IntptrTy, V: ArgOffset)); |
4947 | } |
4948 | |
4949 | /// Compute the shadow address for a given va_arg. |
4950 | Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, |
4951 | unsigned ArgOffset) { |
4952 | Value *Base = IRB.CreatePointerCast(V: MS.VAArgTLS, DestTy: MS.IntptrTy); |
4953 | Base = IRB.CreateAdd(LHS: Base, RHS: ConstantInt::get(Ty: MS.IntptrTy, V: ArgOffset)); |
4954 | return IRB.CreateIntToPtr(V: Base, DestTy: PointerType::get(ElementType: MSV.getShadowTy(OrigTy: Ty), AddressSpace: 0), |
4955 | Name: "_msarg_va_s" ); |
4956 | } |
4957 | |
4958 | /// Compute the shadow address for a given va_arg. |
4959 | Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, |
4960 | unsigned ArgOffset, unsigned ArgSize) { |
4961 | // Make sure we don't overflow __msan_va_arg_tls. |
4962 | if (ArgOffset + ArgSize > kParamTLSSize) |
4963 | return nullptr; |
4964 | return getShadowPtrForVAArgument(Ty, IRB, ArgOffset); |
4965 | } |
4966 | |
4967 | /// Compute the origin address for a given va_arg. |
4968 | Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { |
4969 | Value *Base = IRB.CreatePointerCast(V: MS.VAArgOriginTLS, DestTy: MS.IntptrTy); |
4970 | // getOriginPtrForVAArgument() is always called after |
4971 | // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never |
4972 | // overflow. |
4973 | Base = IRB.CreateAdd(LHS: Base, RHS: ConstantInt::get(Ty: MS.IntptrTy, V: ArgOffset)); |
4974 | return IRB.CreateIntToPtr(V: Base, DestTy: PointerType::get(ElementType: MS.OriginTy, AddressSpace: 0), |
4975 | Name: "_msarg_va_o" ); |
4976 | } |
4977 | |
4978 | void CleanUnusedTLS(IRBuilder<> &IRB, Value *ShadowBase, |
4979 | unsigned BaseOffset) { |
4980 | // The tails of __msan_va_arg_tls is not large enough to fit full |
4981 | // value shadow, but it will be copied to backup anyway. Make it |
4982 | // clean. |
4983 | if (BaseOffset >= kParamTLSSize) |
4984 | return; |
4985 | Value *TailSize = |
4986 | ConstantInt::getSigned(Ty: IRB.getInt32Ty(), V: kParamTLSSize - BaseOffset); |
4987 | IRB.CreateMemSet(Ptr: ShadowBase, Val: ConstantInt::getNullValue(Ty: IRB.getInt8Ty()), |
4988 | Size: TailSize, Align: Align(8)); |
4989 | } |
4990 | |
4991 | void unpoisonVAListTagForInst(IntrinsicInst &I) { |
4992 | IRBuilder<> IRB(&I); |
4993 | Value *VAListTag = I.getArgOperand(i: 0); |
4994 | const Align Alignment = Align(8); |
4995 | auto [ShadowPtr, OriginPtr] = MSV.getShadowOriginPtr( |
4996 | Addr: VAListTag, IRB, ShadowTy: IRB.getInt8Ty(), Alignment, /*isStore*/ true); |
4997 | // Unpoison the whole __va_list_tag. |
4998 | IRB.CreateMemSet(Ptr: ShadowPtr, Val: Constant::getNullValue(Ty: IRB.getInt8Ty()), |
4999 | Size: VAListTagSize, Align: Alignment, isVolatile: false); |
5000 | } |
5001 | |
5002 | void visitVAStartInst(VAStartInst &I) override { |
5003 | if (F.getCallingConv() == CallingConv::Win64) |
5004 | return; |
5005 | VAStartInstrumentationList.push_back(Elt: &I); |
5006 | unpoisonVAListTagForInst(I); |
5007 | } |
5008 | |
5009 | void visitVACopyInst(VACopyInst &I) override { |
5010 | if (F.getCallingConv() == CallingConv::Win64) |
5011 | return; |
5012 | unpoisonVAListTagForInst(I); |
5013 | } |
5014 | }; |
5015 | |
5016 | /// AMD64-specific implementation of VarArgHelper. |
5017 | struct VarArgAMD64Helper : public VarArgHelperBase { |
5018 | // An unfortunate workaround for asymmetric lowering of va_arg stuff. |
5019 | // See a comment in visitCallBase for more details. |
5020 | static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 |
5021 | static const unsigned AMD64FpEndOffsetSSE = 176; |
5022 | // If SSE is disabled, fp_offset in va_list is zero. |
5023 | static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; |
5024 | |
5025 | unsigned AMD64FpEndOffset; |
5026 | AllocaInst *VAArgTLSCopy = nullptr; |
5027 | AllocaInst *VAArgTLSOriginCopy = nullptr; |
5028 | Value *VAArgOverflowSize = nullptr; |
5029 | |
5030 | enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; |
5031 | |
5032 | VarArgAMD64Helper(Function &F, MemorySanitizer &MS, |
5033 | MemorySanitizerVisitor &MSV) |
5034 | : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/24) { |
5035 | AMD64FpEndOffset = AMD64FpEndOffsetSSE; |
5036 | for (const auto &Attr : F.getAttributes().getFnAttrs()) { |
5037 | if (Attr.isStringAttribute() && |
5038 | (Attr.getKindAsString() == "target-features" )) { |
5039 | if (Attr.getValueAsString().contains(Other: "-sse" )) |
5040 | AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; |
5041 | break; |
5042 | } |
5043 | } |
5044 | } |
5045 | |
5046 | ArgKind classifyArgument(Value *arg) { |
5047 | // A very rough approximation of X86_64 argument classification rules. |
5048 | Type *T = arg->getType(); |
5049 | if (T->isX86_FP80Ty()) |
5050 | return AK_Memory; |
5051 | if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) |
5052 | return AK_FloatingPoint; |
5053 | if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) |
5054 | return AK_GeneralPurpose; |
5055 | if (T->isPointerTy()) |
5056 | return AK_GeneralPurpose; |
5057 | return AK_Memory; |
5058 | } |
5059 | |
5060 | // For VarArg functions, store the argument shadow in an ABI-specific format |
5061 | // that corresponds to va_list layout. |
5062 | // We do this because Clang lowers va_arg in the frontend, and this pass |
5063 | // only sees the low level code that deals with va_list internals. |
5064 | // A much easier alternative (provided that Clang emits va_arg instructions) |
5065 | // would have been to associate each live instance of va_list with a copy of |
5066 | // MSanParamTLS, and extract shadow on va_arg() call in the argument list |
5067 | // order. |
5068 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { |
5069 | unsigned GpOffset = 0; |
5070 | unsigned FpOffset = AMD64GpEndOffset; |
5071 | unsigned OverflowOffset = AMD64FpEndOffset; |
5072 | const DataLayout &DL = F.getDataLayout(); |
5073 | |
5074 | for (const auto &[ArgNo, A] : llvm::enumerate(First: CB.args())) { |
5075 | bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); |
5076 | bool IsByVal = CB.paramHasAttr(ArgNo, Kind: Attribute::ByVal); |
5077 | if (IsByVal) { |
5078 | // ByVal arguments always go to the overflow area. |
5079 | // Fixed arguments passed through the overflow area will be stepped |
5080 | // over by va_start, so don't count them towards the offset. |
5081 | if (IsFixed) |
5082 | continue; |
5083 | assert(A->getType()->isPointerTy()); |
5084 | Type *RealTy = CB.getParamByValType(ArgNo); |
5085 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: RealTy); |
5086 | uint64_t AlignedSize = alignTo(Value: ArgSize, Align: 8); |
5087 | unsigned BaseOffset = OverflowOffset; |
5088 | Value *ShadowBase = |
5089 | getShadowPtrForVAArgument(Ty: RealTy, IRB, ArgOffset: OverflowOffset); |
5090 | Value *OriginBase = nullptr; |
5091 | if (MS.TrackOrigins) |
5092 | OriginBase = getOriginPtrForVAArgument(IRB, ArgOffset: OverflowOffset); |
5093 | OverflowOffset += AlignedSize; |
5094 | |
5095 | if (OverflowOffset > kParamTLSSize) { |
5096 | CleanUnusedTLS(IRB, ShadowBase, BaseOffset); |
5097 | continue; // We have no space to copy shadow there. |
5098 | } |
5099 | |
5100 | Value *ShadowPtr, *OriginPtr; |
5101 | std::tie(args&: ShadowPtr, args&: OriginPtr) = |
5102 | MSV.getShadowOriginPtr(Addr: A, IRB, ShadowTy: IRB.getInt8Ty(), Alignment: kShadowTLSAlignment, |
5103 | /*isStore*/ false); |
5104 | IRB.CreateMemCpy(Dst: ShadowBase, DstAlign: kShadowTLSAlignment, Src: ShadowPtr, |
5105 | SrcAlign: kShadowTLSAlignment, Size: ArgSize); |
5106 | if (MS.TrackOrigins) |
5107 | IRB.CreateMemCpy(Dst: OriginBase, DstAlign: kShadowTLSAlignment, Src: OriginPtr, |
5108 | SrcAlign: kShadowTLSAlignment, Size: ArgSize); |
5109 | } else { |
5110 | ArgKind AK = classifyArgument(arg: A); |
5111 | if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) |
5112 | AK = AK_Memory; |
5113 | if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) |
5114 | AK = AK_Memory; |
5115 | Value *ShadowBase, *OriginBase = nullptr; |
5116 | switch (AK) { |
5117 | case AK_GeneralPurpose: |
5118 | ShadowBase = getShadowPtrForVAArgument(Ty: A->getType(), IRB, ArgOffset: GpOffset); |
5119 | if (MS.TrackOrigins) |
5120 | OriginBase = getOriginPtrForVAArgument(IRB, ArgOffset: GpOffset); |
5121 | GpOffset += 8; |
5122 | assert(GpOffset <= kParamTLSSize); |
5123 | break; |
5124 | case AK_FloatingPoint: |
5125 | ShadowBase = getShadowPtrForVAArgument(Ty: A->getType(), IRB, ArgOffset: FpOffset); |
5126 | if (MS.TrackOrigins) |
5127 | OriginBase = getOriginPtrForVAArgument(IRB, ArgOffset: FpOffset); |
5128 | FpOffset += 16; |
5129 | assert(FpOffset <= kParamTLSSize); |
5130 | break; |
5131 | case AK_Memory: |
5132 | if (IsFixed) |
5133 | continue; |
5134 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: A->getType()); |
5135 | uint64_t AlignedSize = alignTo(Value: ArgSize, Align: 8); |
5136 | unsigned BaseOffset = OverflowOffset; |
5137 | ShadowBase = |
5138 | getShadowPtrForVAArgument(Ty: A->getType(), IRB, ArgOffset: OverflowOffset); |
5139 | if (MS.TrackOrigins) { |
5140 | OriginBase = getOriginPtrForVAArgument(IRB, ArgOffset: OverflowOffset); |
5141 | } |
5142 | OverflowOffset += AlignedSize; |
5143 | if (OverflowOffset > kParamTLSSize) { |
5144 | // We have no space to copy shadow there. |
5145 | CleanUnusedTLS(IRB, ShadowBase, BaseOffset); |
5146 | continue; |
5147 | } |
5148 | } |
5149 | // Take fixed arguments into account for GpOffset and FpOffset, |
5150 | // but don't actually store shadows for them. |
5151 | // TODO(glider): don't call get*PtrForVAArgument() for them. |
5152 | if (IsFixed) |
5153 | continue; |
5154 | Value *Shadow = MSV.getShadow(V: A); |
5155 | IRB.CreateAlignedStore(Val: Shadow, Ptr: ShadowBase, Align: kShadowTLSAlignment); |
5156 | if (MS.TrackOrigins) { |
5157 | Value *Origin = MSV.getOrigin(V: A); |
5158 | TypeSize StoreSize = DL.getTypeStoreSize(Ty: Shadow->getType()); |
5159 | MSV.paintOrigin(IRB, Origin, OriginPtr: OriginBase, TS: StoreSize, |
5160 | Alignment: std::max(a: kShadowTLSAlignment, b: kMinOriginAlignment)); |
5161 | } |
5162 | } |
5163 | } |
5164 | Constant *OverflowSize = |
5165 | ConstantInt::get(Ty: IRB.getInt64Ty(), V: OverflowOffset - AMD64FpEndOffset); |
5166 | IRB.CreateStore(Val: OverflowSize, Ptr: MS.VAArgOverflowSizeTLS); |
5167 | } |
5168 | |
5169 | void finalizeInstrumentation() override { |
5170 | assert(!VAArgOverflowSize && !VAArgTLSCopy && |
5171 | "finalizeInstrumentation called twice" ); |
5172 | if (!VAStartInstrumentationList.empty()) { |
5173 | // If there is a va_start in this function, make a backup copy of |
5174 | // va_arg_tls somewhere in the function entry block. |
5175 | IRBuilder<> IRB(MSV.FnPrologueEnd); |
5176 | VAArgOverflowSize = |
5177 | IRB.CreateLoad(Ty: IRB.getInt64Ty(), Ptr: MS.VAArgOverflowSizeTLS); |
5178 | Value *CopySize = IRB.CreateAdd( |
5179 | LHS: ConstantInt::get(Ty: MS.IntptrTy, V: AMD64FpEndOffset), RHS: VAArgOverflowSize); |
5180 | VAArgTLSCopy = IRB.CreateAlloca(Ty: Type::getInt8Ty(C&: *MS.C), ArraySize: CopySize); |
5181 | VAArgTLSCopy->setAlignment(kShadowTLSAlignment); |
5182 | IRB.CreateMemSet(Ptr: VAArgTLSCopy, Val: Constant::getNullValue(Ty: IRB.getInt8Ty()), |
5183 | Size: CopySize, Align: kShadowTLSAlignment, isVolatile: false); |
5184 | |
5185 | Value *SrcSize = IRB.CreateBinaryIntrinsic( |
5186 | ID: Intrinsic::umin, LHS: CopySize, |
5187 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: kParamTLSSize)); |
5188 | IRB.CreateMemCpy(Dst: VAArgTLSCopy, DstAlign: kShadowTLSAlignment, Src: MS.VAArgTLS, |
5189 | SrcAlign: kShadowTLSAlignment, Size: SrcSize); |
5190 | if (MS.TrackOrigins) { |
5191 | VAArgTLSOriginCopy = IRB.CreateAlloca(Ty: Type::getInt8Ty(C&: *MS.C), ArraySize: CopySize); |
5192 | VAArgTLSOriginCopy->setAlignment(kShadowTLSAlignment); |
5193 | IRB.CreateMemCpy(Dst: VAArgTLSOriginCopy, DstAlign: kShadowTLSAlignment, |
5194 | Src: MS.VAArgOriginTLS, SrcAlign: kShadowTLSAlignment, Size: SrcSize); |
5195 | } |
5196 | } |
5197 | |
5198 | // Instrument va_start. |
5199 | // Copy va_list shadow from the backup copy of the TLS contents. |
5200 | for (CallInst *OrigInst : VAStartInstrumentationList) { |
5201 | NextNodeIRBuilder IRB(OrigInst); |
5202 | Value *VAListTag = OrigInst->getArgOperand(i: 0); |
5203 | |
5204 | Type *RegSaveAreaPtrTy = PointerType::getUnqual(C&: *MS.C); // i64* |
5205 | Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( |
5206 | V: IRB.CreateAdd(LHS: IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy), |
5207 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: 16)), |
5208 | DestTy: PointerType::get(ElementType: RegSaveAreaPtrTy, AddressSpace: 0)); |
5209 | Value *RegSaveAreaPtr = |
5210 | IRB.CreateLoad(Ty: RegSaveAreaPtrTy, Ptr: RegSaveAreaPtrPtr); |
5211 | Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; |
5212 | const Align Alignment = Align(16); |
5213 | std::tie(args&: RegSaveAreaShadowPtr, args&: RegSaveAreaOriginPtr) = |
5214 | MSV.getShadowOriginPtr(Addr: RegSaveAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
5215 | Alignment, /*isStore*/ true); |
5216 | IRB.CreateMemCpy(Dst: RegSaveAreaShadowPtr, DstAlign: Alignment, Src: VAArgTLSCopy, SrcAlign: Alignment, |
5217 | Size: AMD64FpEndOffset); |
5218 | if (MS.TrackOrigins) |
5219 | IRB.CreateMemCpy(Dst: RegSaveAreaOriginPtr, DstAlign: Alignment, Src: VAArgTLSOriginCopy, |
5220 | SrcAlign: Alignment, Size: AMD64FpEndOffset); |
5221 | Type *OverflowArgAreaPtrTy = PointerType::getUnqual(C&: *MS.C); // i64* |
5222 | Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( |
5223 | V: IRB.CreateAdd(LHS: IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy), |
5224 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: 8)), |
5225 | DestTy: PointerType::get(ElementType: OverflowArgAreaPtrTy, AddressSpace: 0)); |
5226 | Value *OverflowArgAreaPtr = |
5227 | IRB.CreateLoad(Ty: OverflowArgAreaPtrTy, Ptr: OverflowArgAreaPtrPtr); |
5228 | Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; |
5229 | std::tie(args&: OverflowArgAreaShadowPtr, args&: OverflowArgAreaOriginPtr) = |
5230 | MSV.getShadowOriginPtr(Addr: OverflowArgAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
5231 | Alignment, /*isStore*/ true); |
5232 | Value *SrcPtr = IRB.CreateConstGEP1_32(Ty: IRB.getInt8Ty(), Ptr: VAArgTLSCopy, |
5233 | Idx0: AMD64FpEndOffset); |
5234 | IRB.CreateMemCpy(Dst: OverflowArgAreaShadowPtr, DstAlign: Alignment, Src: SrcPtr, SrcAlign: Alignment, |
5235 | Size: VAArgOverflowSize); |
5236 | if (MS.TrackOrigins) { |
5237 | SrcPtr = IRB.CreateConstGEP1_32(Ty: IRB.getInt8Ty(), Ptr: VAArgTLSOriginCopy, |
5238 | Idx0: AMD64FpEndOffset); |
5239 | IRB.CreateMemCpy(Dst: OverflowArgAreaOriginPtr, DstAlign: Alignment, Src: SrcPtr, SrcAlign: Alignment, |
5240 | Size: VAArgOverflowSize); |
5241 | } |
5242 | } |
5243 | } |
5244 | }; |
5245 | |
5246 | /// MIPS64-specific implementation of VarArgHelper. |
5247 | /// NOTE: This is also used for LoongArch64. |
5248 | struct VarArgMIPS64Helper : public VarArgHelperBase { |
5249 | AllocaInst *VAArgTLSCopy = nullptr; |
5250 | Value *VAArgSize = nullptr; |
5251 | |
5252 | VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, |
5253 | MemorySanitizerVisitor &MSV) |
5254 | : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/8) {} |
5255 | |
5256 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { |
5257 | unsigned VAArgOffset = 0; |
5258 | const DataLayout &DL = F.getDataLayout(); |
5259 | for (Value *A : |
5260 | llvm::drop_begin(RangeOrContainer: CB.args(), N: CB.getFunctionType()->getNumParams())) { |
5261 | Triple TargetTriple(F.getParent()->getTargetTriple()); |
5262 | Value *Base; |
5263 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: A->getType()); |
5264 | if (TargetTriple.getArch() == Triple::mips64) { |
5265 | // Adjusting the shadow for argument with size < 8 to match the |
5266 | // placement of bits in big endian system |
5267 | if (ArgSize < 8) |
5268 | VAArgOffset += (8 - ArgSize); |
5269 | } |
5270 | Base = getShadowPtrForVAArgument(Ty: A->getType(), IRB, ArgOffset: VAArgOffset, ArgSize); |
5271 | VAArgOffset += ArgSize; |
5272 | VAArgOffset = alignTo(Value: VAArgOffset, Align: 8); |
5273 | if (!Base) |
5274 | continue; |
5275 | IRB.CreateAlignedStore(Val: MSV.getShadow(V: A), Ptr: Base, Align: kShadowTLSAlignment); |
5276 | } |
5277 | |
5278 | Constant *TotalVAArgSize = ConstantInt::get(Ty: IRB.getInt64Ty(), V: VAArgOffset); |
5279 | // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of |
5280 | // a new class member i.e. it is the total size of all VarArgs. |
5281 | IRB.CreateStore(Val: TotalVAArgSize, Ptr: MS.VAArgOverflowSizeTLS); |
5282 | } |
5283 | |
5284 | void finalizeInstrumentation() override { |
5285 | assert(!VAArgSize && !VAArgTLSCopy && |
5286 | "finalizeInstrumentation called twice" ); |
5287 | IRBuilder<> IRB(MSV.FnPrologueEnd); |
5288 | VAArgSize = IRB.CreateLoad(Ty: IRB.getInt64Ty(), Ptr: MS.VAArgOverflowSizeTLS); |
5289 | Value *CopySize = |
5290 | IRB.CreateAdd(LHS: ConstantInt::get(Ty: MS.IntptrTy, V: 0), RHS: VAArgSize); |
5291 | |
5292 | if (!VAStartInstrumentationList.empty()) { |
5293 | // If there is a va_start in this function, make a backup copy of |
5294 | // va_arg_tls somewhere in the function entry block. |
5295 | VAArgTLSCopy = IRB.CreateAlloca(Ty: Type::getInt8Ty(C&: *MS.C), ArraySize: CopySize); |
5296 | VAArgTLSCopy->setAlignment(kShadowTLSAlignment); |
5297 | IRB.CreateMemSet(Ptr: VAArgTLSCopy, Val: Constant::getNullValue(Ty: IRB.getInt8Ty()), |
5298 | Size: CopySize, Align: kShadowTLSAlignment, isVolatile: false); |
5299 | |
5300 | Value *SrcSize = IRB.CreateBinaryIntrinsic( |
5301 | ID: Intrinsic::umin, LHS: CopySize, |
5302 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: kParamTLSSize)); |
5303 | IRB.CreateMemCpy(Dst: VAArgTLSCopy, DstAlign: kShadowTLSAlignment, Src: MS.VAArgTLS, |
5304 | SrcAlign: kShadowTLSAlignment, Size: SrcSize); |
5305 | } |
5306 | |
5307 | // Instrument va_start. |
5308 | // Copy va_list shadow from the backup copy of the TLS contents. |
5309 | for (CallInst *OrigInst : VAStartInstrumentationList) { |
5310 | NextNodeIRBuilder IRB(OrigInst); |
5311 | Value *VAListTag = OrigInst->getArgOperand(i: 0); |
5312 | Type *RegSaveAreaPtrTy = PointerType::getUnqual(C&: *MS.C); // i64* |
5313 | Value *RegSaveAreaPtrPtr = |
5314 | IRB.CreateIntToPtr(V: IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy), |
5315 | DestTy: PointerType::get(ElementType: RegSaveAreaPtrTy, AddressSpace: 0)); |
5316 | Value *RegSaveAreaPtr = |
5317 | IRB.CreateLoad(Ty: RegSaveAreaPtrTy, Ptr: RegSaveAreaPtrPtr); |
5318 | Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; |
5319 | const Align Alignment = Align(8); |
5320 | std::tie(args&: RegSaveAreaShadowPtr, args&: RegSaveAreaOriginPtr) = |
5321 | MSV.getShadowOriginPtr(Addr: RegSaveAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
5322 | Alignment, /*isStore*/ true); |
5323 | IRB.CreateMemCpy(Dst: RegSaveAreaShadowPtr, DstAlign: Alignment, Src: VAArgTLSCopy, SrcAlign: Alignment, |
5324 | Size: CopySize); |
5325 | } |
5326 | } |
5327 | }; |
5328 | |
5329 | /// AArch64-specific implementation of VarArgHelper. |
5330 | struct VarArgAArch64Helper : public VarArgHelperBase { |
5331 | static const unsigned kAArch64GrArgSize = 64; |
5332 | static const unsigned kAArch64VrArgSize = 128; |
5333 | |
5334 | static const unsigned AArch64GrBegOffset = 0; |
5335 | static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; |
5336 | // Make VR space aligned to 16 bytes. |
5337 | static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; |
5338 | static const unsigned AArch64VrEndOffset = |
5339 | AArch64VrBegOffset + kAArch64VrArgSize; |
5340 | static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; |
5341 | |
5342 | AllocaInst *VAArgTLSCopy = nullptr; |
5343 | Value *VAArgOverflowSize = nullptr; |
5344 | |
5345 | enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; |
5346 | |
5347 | VarArgAArch64Helper(Function &F, MemorySanitizer &MS, |
5348 | MemorySanitizerVisitor &MSV) |
5349 | : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/32) {} |
5350 | |
5351 | // A very rough approximation of aarch64 argument classification rules. |
5352 | std::pair<ArgKind, uint64_t> classifyArgument(Type *T) { |
5353 | if (T->isIntOrPtrTy() && T->getPrimitiveSizeInBits() <= 64) |
5354 | return {AK_GeneralPurpose, 1}; |
5355 | if (T->isFloatingPointTy() && T->getPrimitiveSizeInBits() <= 128) |
5356 | return {AK_FloatingPoint, 1}; |
5357 | |
5358 | if (T->isArrayTy()) { |
5359 | auto R = classifyArgument(T: T->getArrayElementType()); |
5360 | R.second *= T->getScalarType()->getArrayNumElements(); |
5361 | return R; |
5362 | } |
5363 | |
5364 | if (const FixedVectorType *FV = dyn_cast<FixedVectorType>(Val: T)) { |
5365 | auto R = classifyArgument(T: FV->getScalarType()); |
5366 | R.second *= FV->getNumElements(); |
5367 | return R; |
5368 | } |
5369 | |
5370 | LLVM_DEBUG(errs() << "Unknown vararg type: " << *T << "\n" ); |
5371 | return {AK_Memory, 0}; |
5372 | } |
5373 | |
5374 | // The instrumentation stores the argument shadow in a non ABI-specific |
5375 | // format because it does not know which argument is named (since Clang, |
5376 | // like x86_64 case, lowers the va_args in the frontend and this pass only |
5377 | // sees the low level code that deals with va_list internals). |
5378 | // The first seven GR registers are saved in the first 56 bytes of the |
5379 | // va_arg tls arra, followed by the first 8 FP/SIMD registers, and then |
5380 | // the remaining arguments. |
5381 | // Using constant offset within the va_arg TLS array allows fast copy |
5382 | // in the finalize instrumentation. |
5383 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { |
5384 | unsigned GrOffset = AArch64GrBegOffset; |
5385 | unsigned VrOffset = AArch64VrBegOffset; |
5386 | unsigned OverflowOffset = AArch64VAEndOffset; |
5387 | |
5388 | const DataLayout &DL = F.getDataLayout(); |
5389 | for (const auto &[ArgNo, A] : llvm::enumerate(First: CB.args())) { |
5390 | bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); |
5391 | auto [AK, RegNum] = classifyArgument(T: A->getType()); |
5392 | if (AK == AK_GeneralPurpose && |
5393 | (GrOffset + RegNum * 8) > AArch64GrEndOffset) |
5394 | AK = AK_Memory; |
5395 | if (AK == AK_FloatingPoint && |
5396 | (VrOffset + RegNum * 16) > AArch64VrEndOffset) |
5397 | AK = AK_Memory; |
5398 | Value *Base; |
5399 | switch (AK) { |
5400 | case AK_GeneralPurpose: |
5401 | Base = getShadowPtrForVAArgument(Ty: A->getType(), IRB, ArgOffset: GrOffset); |
5402 | GrOffset += 8 * RegNum; |
5403 | break; |
5404 | case AK_FloatingPoint: |
5405 | Base = getShadowPtrForVAArgument(Ty: A->getType(), IRB, ArgOffset: VrOffset); |
5406 | VrOffset += 16 * RegNum; |
5407 | break; |
5408 | case AK_Memory: |
5409 | // Don't count fixed arguments in the overflow area - va_start will |
5410 | // skip right over them. |
5411 | if (IsFixed) |
5412 | continue; |
5413 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: A->getType()); |
5414 | uint64_t AlignedSize = alignTo(Value: ArgSize, Align: 8); |
5415 | unsigned BaseOffset = OverflowOffset; |
5416 | Base = getShadowPtrForVAArgument(Ty: A->getType(), IRB, ArgOffset: BaseOffset); |
5417 | OverflowOffset += AlignedSize; |
5418 | if (OverflowOffset > kParamTLSSize) { |
5419 | // We have no space to copy shadow there. |
5420 | CleanUnusedTLS(IRB, ShadowBase: Base, BaseOffset); |
5421 | continue; |
5422 | } |
5423 | break; |
5424 | } |
5425 | // Count Gp/Vr fixed arguments to their respective offsets, but don't |
5426 | // bother to actually store a shadow. |
5427 | if (IsFixed) |
5428 | continue; |
5429 | IRB.CreateAlignedStore(Val: MSV.getShadow(V: A), Ptr: Base, Align: kShadowTLSAlignment); |
5430 | } |
5431 | Constant *OverflowSize = |
5432 | ConstantInt::get(Ty: IRB.getInt64Ty(), V: OverflowOffset - AArch64VAEndOffset); |
5433 | IRB.CreateStore(Val: OverflowSize, Ptr: MS.VAArgOverflowSizeTLS); |
5434 | } |
5435 | |
5436 | // Retrieve a va_list field of 'void*' size. |
5437 | Value *getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { |
5438 | Value *SaveAreaPtrPtr = IRB.CreateIntToPtr( |
5439 | V: IRB.CreateAdd(LHS: IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy), |
5440 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: offset)), |
5441 | DestTy: PointerType::get(C&: *MS.C, AddressSpace: 0)); |
5442 | return IRB.CreateLoad(Ty: Type::getInt64Ty(C&: *MS.C), Ptr: SaveAreaPtrPtr); |
5443 | } |
5444 | |
5445 | // Retrieve a va_list field of 'int' size. |
5446 | Value *getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { |
5447 | Value *SaveAreaPtr = IRB.CreateIntToPtr( |
5448 | V: IRB.CreateAdd(LHS: IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy), |
5449 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: offset)), |
5450 | DestTy: PointerType::get(C&: *MS.C, AddressSpace: 0)); |
5451 | Value *SaveArea32 = IRB.CreateLoad(Ty: IRB.getInt32Ty(), Ptr: SaveAreaPtr); |
5452 | return IRB.CreateSExt(V: SaveArea32, DestTy: MS.IntptrTy); |
5453 | } |
5454 | |
5455 | void finalizeInstrumentation() override { |
5456 | assert(!VAArgOverflowSize && !VAArgTLSCopy && |
5457 | "finalizeInstrumentation called twice" ); |
5458 | if (!VAStartInstrumentationList.empty()) { |
5459 | // If there is a va_start in this function, make a backup copy of |
5460 | // va_arg_tls somewhere in the function entry block. |
5461 | IRBuilder<> IRB(MSV.FnPrologueEnd); |
5462 | VAArgOverflowSize = |
5463 | IRB.CreateLoad(Ty: IRB.getInt64Ty(), Ptr: MS.VAArgOverflowSizeTLS); |
5464 | Value *CopySize = IRB.CreateAdd( |
5465 | LHS: ConstantInt::get(Ty: MS.IntptrTy, V: AArch64VAEndOffset), RHS: VAArgOverflowSize); |
5466 | VAArgTLSCopy = IRB.CreateAlloca(Ty: Type::getInt8Ty(C&: *MS.C), ArraySize: CopySize); |
5467 | VAArgTLSCopy->setAlignment(kShadowTLSAlignment); |
5468 | IRB.CreateMemSet(Ptr: VAArgTLSCopy, Val: Constant::getNullValue(Ty: IRB.getInt8Ty()), |
5469 | Size: CopySize, Align: kShadowTLSAlignment, isVolatile: false); |
5470 | |
5471 | Value *SrcSize = IRB.CreateBinaryIntrinsic( |
5472 | ID: Intrinsic::umin, LHS: CopySize, |
5473 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: kParamTLSSize)); |
5474 | IRB.CreateMemCpy(Dst: VAArgTLSCopy, DstAlign: kShadowTLSAlignment, Src: MS.VAArgTLS, |
5475 | SrcAlign: kShadowTLSAlignment, Size: SrcSize); |
5476 | } |
5477 | |
5478 | Value *GrArgSize = ConstantInt::get(Ty: MS.IntptrTy, V: kAArch64GrArgSize); |
5479 | Value *VrArgSize = ConstantInt::get(Ty: MS.IntptrTy, V: kAArch64VrArgSize); |
5480 | |
5481 | // Instrument va_start, copy va_list shadow from the backup copy of |
5482 | // the TLS contents. |
5483 | for (CallInst *OrigInst : VAStartInstrumentationList) { |
5484 | NextNodeIRBuilder IRB(OrigInst); |
5485 | |
5486 | Value *VAListTag = OrigInst->getArgOperand(i: 0); |
5487 | |
5488 | // The variadic ABI for AArch64 creates two areas to save the incoming |
5489 | // argument registers (one for 64-bit general register xn-x7 and another |
5490 | // for 128-bit FP/SIMD vn-v7). |
5491 | // We need then to propagate the shadow arguments on both regions |
5492 | // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. |
5493 | // The remaining arguments are saved on shadow for 'va::stack'. |
5494 | // One caveat is it requires only to propagate the non-named arguments, |
5495 | // however on the call site instrumentation 'all' the arguments are |
5496 | // saved. So to copy the shadow values from the va_arg TLS array |
5497 | // we need to adjust the offset for both GR and VR fields based on |
5498 | // the __{gr,vr}_offs value (since they are stores based on incoming |
5499 | // named arguments). |
5500 | Type *RegSaveAreaPtrTy = IRB.getPtrTy(); |
5501 | |
5502 | // Read the stack pointer from the va_list. |
5503 | Value *StackSaveAreaPtr = |
5504 | IRB.CreateIntToPtr(V: getVAField64(IRB, VAListTag, offset: 0), DestTy: RegSaveAreaPtrTy); |
5505 | |
5506 | // Read both the __gr_top and __gr_off and add them up. |
5507 | Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, offset: 8); |
5508 | Value *GrOffSaveArea = getVAField32(IRB, VAListTag, offset: 24); |
5509 | |
5510 | Value *GrRegSaveAreaPtr = IRB.CreateIntToPtr( |
5511 | V: IRB.CreateAdd(LHS: GrTopSaveAreaPtr, RHS: GrOffSaveArea), DestTy: RegSaveAreaPtrTy); |
5512 | |
5513 | // Read both the __vr_top and __vr_off and add them up. |
5514 | Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, offset: 16); |
5515 | Value *VrOffSaveArea = getVAField32(IRB, VAListTag, offset: 28); |
5516 | |
5517 | Value *VrRegSaveAreaPtr = IRB.CreateIntToPtr( |
5518 | V: IRB.CreateAdd(LHS: VrTopSaveAreaPtr, RHS: VrOffSaveArea), DestTy: RegSaveAreaPtrTy); |
5519 | |
5520 | // It does not know how many named arguments is being used and, on the |
5521 | // callsite all the arguments were saved. Since __gr_off is defined as |
5522 | // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic |
5523 | // argument by ignoring the bytes of shadow from named arguments. |
5524 | Value *GrRegSaveAreaShadowPtrOff = |
5525 | IRB.CreateAdd(LHS: GrArgSize, RHS: GrOffSaveArea); |
5526 | |
5527 | Value *GrRegSaveAreaShadowPtr = |
5528 | MSV.getShadowOriginPtr(Addr: GrRegSaveAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
5529 | Alignment: Align(8), /*isStore*/ true) |
5530 | .first; |
5531 | |
5532 | Value *GrSrcPtr = |
5533 | IRB.CreateInBoundsPtrAdd(Ptr: VAArgTLSCopy, Offset: GrRegSaveAreaShadowPtrOff); |
5534 | Value *GrCopySize = IRB.CreateSub(LHS: GrArgSize, RHS: GrRegSaveAreaShadowPtrOff); |
5535 | |
5536 | IRB.CreateMemCpy(Dst: GrRegSaveAreaShadowPtr, DstAlign: Align(8), Src: GrSrcPtr, SrcAlign: Align(8), |
5537 | Size: GrCopySize); |
5538 | |
5539 | // Again, but for FP/SIMD values. |
5540 | Value *VrRegSaveAreaShadowPtrOff = |
5541 | IRB.CreateAdd(LHS: VrArgSize, RHS: VrOffSaveArea); |
5542 | |
5543 | Value *VrRegSaveAreaShadowPtr = |
5544 | MSV.getShadowOriginPtr(Addr: VrRegSaveAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
5545 | Alignment: Align(8), /*isStore*/ true) |
5546 | .first; |
5547 | |
5548 | Value *VrSrcPtr = IRB.CreateInBoundsPtrAdd( |
5549 | Ptr: IRB.CreateInBoundsPtrAdd(Ptr: VAArgTLSCopy, |
5550 | Offset: IRB.getInt32(C: AArch64VrBegOffset)), |
5551 | Offset: VrRegSaveAreaShadowPtrOff); |
5552 | Value *VrCopySize = IRB.CreateSub(LHS: VrArgSize, RHS: VrRegSaveAreaShadowPtrOff); |
5553 | |
5554 | IRB.CreateMemCpy(Dst: VrRegSaveAreaShadowPtr, DstAlign: Align(8), Src: VrSrcPtr, SrcAlign: Align(8), |
5555 | Size: VrCopySize); |
5556 | |
5557 | // And finally for remaining arguments. |
5558 | Value *StackSaveAreaShadowPtr = |
5559 | MSV.getShadowOriginPtr(Addr: StackSaveAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
5560 | Alignment: Align(16), /*isStore*/ true) |
5561 | .first; |
5562 | |
5563 | Value *StackSrcPtr = IRB.CreateInBoundsPtrAdd( |
5564 | Ptr: VAArgTLSCopy, Offset: IRB.getInt32(C: AArch64VAEndOffset)); |
5565 | |
5566 | IRB.CreateMemCpy(Dst: StackSaveAreaShadowPtr, DstAlign: Align(16), Src: StackSrcPtr, |
5567 | SrcAlign: Align(16), Size: VAArgOverflowSize); |
5568 | } |
5569 | } |
5570 | }; |
5571 | |
5572 | /// PowerPC64-specific implementation of VarArgHelper. |
5573 | struct VarArgPowerPC64Helper : public VarArgHelperBase { |
5574 | AllocaInst *VAArgTLSCopy = nullptr; |
5575 | Value *VAArgSize = nullptr; |
5576 | |
5577 | VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, |
5578 | MemorySanitizerVisitor &MSV) |
5579 | : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/8) {} |
5580 | |
5581 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { |
5582 | // For PowerPC, we need to deal with alignment of stack arguments - |
5583 | // they are mostly aligned to 8 bytes, but vectors and i128 arrays |
5584 | // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, |
5585 | // For that reason, we compute current offset from stack pointer (which is |
5586 | // always properly aligned), and offset for the first vararg, then subtract |
5587 | // them. |
5588 | unsigned VAArgBase; |
5589 | Triple TargetTriple(F.getParent()->getTargetTriple()); |
5590 | // Parameter save area starts at 48 bytes from frame pointer for ABIv1, |
5591 | // and 32 bytes for ABIv2. This is usually determined by target |
5592 | // endianness, but in theory could be overridden by function attribute. |
5593 | if (TargetTriple.getArch() == Triple::ppc64) |
5594 | VAArgBase = 48; |
5595 | else |
5596 | VAArgBase = 32; |
5597 | unsigned VAArgOffset = VAArgBase; |
5598 | const DataLayout &DL = F.getDataLayout(); |
5599 | for (const auto &[ArgNo, A] : llvm::enumerate(First: CB.args())) { |
5600 | bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); |
5601 | bool IsByVal = CB.paramHasAttr(ArgNo, Kind: Attribute::ByVal); |
5602 | if (IsByVal) { |
5603 | assert(A->getType()->isPointerTy()); |
5604 | Type *RealTy = CB.getParamByValType(ArgNo); |
5605 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: RealTy); |
5606 | Align ArgAlign = CB.getParamAlign(ArgNo).value_or(u: Align(8)); |
5607 | if (ArgAlign < 8) |
5608 | ArgAlign = Align(8); |
5609 | VAArgOffset = alignTo(Size: VAArgOffset, A: ArgAlign); |
5610 | if (!IsFixed) { |
5611 | Value *Base = getShadowPtrForVAArgument( |
5612 | Ty: RealTy, IRB, ArgOffset: VAArgOffset - VAArgBase, ArgSize); |
5613 | if (Base) { |
5614 | Value *AShadowPtr, *AOriginPtr; |
5615 | std::tie(args&: AShadowPtr, args&: AOriginPtr) = |
5616 | MSV.getShadowOriginPtr(Addr: A, IRB, ShadowTy: IRB.getInt8Ty(), |
5617 | Alignment: kShadowTLSAlignment, /*isStore*/ false); |
5618 | |
5619 | IRB.CreateMemCpy(Dst: Base, DstAlign: kShadowTLSAlignment, Src: AShadowPtr, |
5620 | SrcAlign: kShadowTLSAlignment, Size: ArgSize); |
5621 | } |
5622 | } |
5623 | VAArgOffset += alignTo(Size: ArgSize, A: Align(8)); |
5624 | } else { |
5625 | Value *Base; |
5626 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: A->getType()); |
5627 | Align ArgAlign = Align(8); |
5628 | if (A->getType()->isArrayTy()) { |
5629 | // Arrays are aligned to element size, except for long double |
5630 | // arrays, which are aligned to 8 bytes. |
5631 | Type *ElementTy = A->getType()->getArrayElementType(); |
5632 | if (!ElementTy->isPPC_FP128Ty()) |
5633 | ArgAlign = Align(DL.getTypeAllocSize(Ty: ElementTy)); |
5634 | } else if (A->getType()->isVectorTy()) { |
5635 | // Vectors are naturally aligned. |
5636 | ArgAlign = Align(ArgSize); |
5637 | } |
5638 | if (ArgAlign < 8) |
5639 | ArgAlign = Align(8); |
5640 | VAArgOffset = alignTo(Size: VAArgOffset, A: ArgAlign); |
5641 | if (DL.isBigEndian()) { |
5642 | // Adjusting the shadow for argument with size < 8 to match the |
5643 | // placement of bits in big endian system |
5644 | if (ArgSize < 8) |
5645 | VAArgOffset += (8 - ArgSize); |
5646 | } |
5647 | if (!IsFixed) { |
5648 | Base = getShadowPtrForVAArgument(Ty: A->getType(), IRB, |
5649 | ArgOffset: VAArgOffset - VAArgBase, ArgSize); |
5650 | if (Base) |
5651 | IRB.CreateAlignedStore(Val: MSV.getShadow(V: A), Ptr: Base, Align: kShadowTLSAlignment); |
5652 | } |
5653 | VAArgOffset += ArgSize; |
5654 | VAArgOffset = alignTo(Size: VAArgOffset, A: Align(8)); |
5655 | } |
5656 | if (IsFixed) |
5657 | VAArgBase = VAArgOffset; |
5658 | } |
5659 | |
5660 | Constant *TotalVAArgSize = |
5661 | ConstantInt::get(Ty: IRB.getInt64Ty(), V: VAArgOffset - VAArgBase); |
5662 | // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of |
5663 | // a new class member i.e. it is the total size of all VarArgs. |
5664 | IRB.CreateStore(Val: TotalVAArgSize, Ptr: MS.VAArgOverflowSizeTLS); |
5665 | } |
5666 | |
5667 | void finalizeInstrumentation() override { |
5668 | assert(!VAArgSize && !VAArgTLSCopy && |
5669 | "finalizeInstrumentation called twice" ); |
5670 | IRBuilder<> IRB(MSV.FnPrologueEnd); |
5671 | VAArgSize = IRB.CreateLoad(Ty: IRB.getInt64Ty(), Ptr: MS.VAArgOverflowSizeTLS); |
5672 | Value *CopySize = |
5673 | IRB.CreateAdd(LHS: ConstantInt::get(Ty: MS.IntptrTy, V: 0), RHS: VAArgSize); |
5674 | |
5675 | if (!VAStartInstrumentationList.empty()) { |
5676 | // If there is a va_start in this function, make a backup copy of |
5677 | // va_arg_tls somewhere in the function entry block. |
5678 | |
5679 | VAArgTLSCopy = IRB.CreateAlloca(Ty: Type::getInt8Ty(C&: *MS.C), ArraySize: CopySize); |
5680 | VAArgTLSCopy->setAlignment(kShadowTLSAlignment); |
5681 | IRB.CreateMemSet(Ptr: VAArgTLSCopy, Val: Constant::getNullValue(Ty: IRB.getInt8Ty()), |
5682 | Size: CopySize, Align: kShadowTLSAlignment, isVolatile: false); |
5683 | |
5684 | Value *SrcSize = IRB.CreateBinaryIntrinsic( |
5685 | ID: Intrinsic::umin, LHS: CopySize, |
5686 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: kParamTLSSize)); |
5687 | IRB.CreateMemCpy(Dst: VAArgTLSCopy, DstAlign: kShadowTLSAlignment, Src: MS.VAArgTLS, |
5688 | SrcAlign: kShadowTLSAlignment, Size: SrcSize); |
5689 | } |
5690 | |
5691 | // Instrument va_start. |
5692 | // Copy va_list shadow from the backup copy of the TLS contents. |
5693 | for (CallInst *OrigInst : VAStartInstrumentationList) { |
5694 | NextNodeIRBuilder IRB(OrigInst); |
5695 | Value *VAListTag = OrigInst->getArgOperand(i: 0); |
5696 | Type *RegSaveAreaPtrTy = PointerType::getUnqual(C&: *MS.C); // i64* |
5697 | Value *RegSaveAreaPtrPtr = |
5698 | IRB.CreateIntToPtr(V: IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy), |
5699 | DestTy: PointerType::get(ElementType: RegSaveAreaPtrTy, AddressSpace: 0)); |
5700 | Value *RegSaveAreaPtr = |
5701 | IRB.CreateLoad(Ty: RegSaveAreaPtrTy, Ptr: RegSaveAreaPtrPtr); |
5702 | Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; |
5703 | const Align Alignment = Align(8); |
5704 | std::tie(args&: RegSaveAreaShadowPtr, args&: RegSaveAreaOriginPtr) = |
5705 | MSV.getShadowOriginPtr(Addr: RegSaveAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
5706 | Alignment, /*isStore*/ true); |
5707 | IRB.CreateMemCpy(Dst: RegSaveAreaShadowPtr, DstAlign: Alignment, Src: VAArgTLSCopy, SrcAlign: Alignment, |
5708 | Size: CopySize); |
5709 | } |
5710 | } |
5711 | }; |
5712 | |
5713 | /// SystemZ-specific implementation of VarArgHelper. |
5714 | struct VarArgSystemZHelper : public VarArgHelperBase { |
5715 | static const unsigned SystemZGpOffset = 16; |
5716 | static const unsigned SystemZGpEndOffset = 56; |
5717 | static const unsigned SystemZFpOffset = 128; |
5718 | static const unsigned SystemZFpEndOffset = 160; |
5719 | static const unsigned SystemZMaxVrArgs = 8; |
5720 | static const unsigned SystemZRegSaveAreaSize = 160; |
5721 | static const unsigned SystemZOverflowOffset = 160; |
5722 | static const unsigned SystemZVAListTagSize = 32; |
5723 | static const unsigned SystemZOverflowArgAreaPtrOffset = 16; |
5724 | static const unsigned SystemZRegSaveAreaPtrOffset = 24; |
5725 | |
5726 | bool IsSoftFloatABI; |
5727 | AllocaInst *VAArgTLSCopy = nullptr; |
5728 | AllocaInst *VAArgTLSOriginCopy = nullptr; |
5729 | Value *VAArgOverflowSize = nullptr; |
5730 | |
5731 | enum class ArgKind { |
5732 | GeneralPurpose, |
5733 | FloatingPoint, |
5734 | Vector, |
5735 | Memory, |
5736 | Indirect, |
5737 | }; |
5738 | |
5739 | enum class ShadowExtension { None, Zero, Sign }; |
5740 | |
5741 | VarArgSystemZHelper(Function &F, MemorySanitizer &MS, |
5742 | MemorySanitizerVisitor &MSV) |
5743 | : VarArgHelperBase(F, MS, MSV, SystemZVAListTagSize), |
5744 | IsSoftFloatABI(F.getFnAttribute(Kind: "use-soft-float" ).getValueAsBool()) {} |
5745 | |
5746 | ArgKind classifyArgument(Type *T) { |
5747 | // T is a SystemZABIInfo::classifyArgumentType() output, and there are |
5748 | // only a few possibilities of what it can be. In particular, enums, single |
5749 | // element structs and large types have already been taken care of. |
5750 | |
5751 | // Some i128 and fp128 arguments are converted to pointers only in the |
5752 | // back end. |
5753 | if (T->isIntegerTy(Bitwidth: 128) || T->isFP128Ty()) |
5754 | return ArgKind::Indirect; |
5755 | if (T->isFloatingPointTy()) |
5756 | return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; |
5757 | if (T->isIntegerTy() || T->isPointerTy()) |
5758 | return ArgKind::GeneralPurpose; |
5759 | if (T->isVectorTy()) |
5760 | return ArgKind::Vector; |
5761 | return ArgKind::Memory; |
5762 | } |
5763 | |
5764 | ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { |
5765 | // ABI says: "One of the simple integer types no more than 64 bits wide. |
5766 | // ... If such an argument is shorter than 64 bits, replace it by a full |
5767 | // 64-bit integer representing the same number, using sign or zero |
5768 | // extension". Shadow for an integer argument has the same type as the |
5769 | // argument itself, so it can be sign or zero extended as well. |
5770 | bool ZExt = CB.paramHasAttr(ArgNo, Kind: Attribute::ZExt); |
5771 | bool SExt = CB.paramHasAttr(ArgNo, Kind: Attribute::SExt); |
5772 | if (ZExt) { |
5773 | assert(!SExt); |
5774 | return ShadowExtension::Zero; |
5775 | } |
5776 | if (SExt) { |
5777 | assert(!ZExt); |
5778 | return ShadowExtension::Sign; |
5779 | } |
5780 | return ShadowExtension::None; |
5781 | } |
5782 | |
5783 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { |
5784 | unsigned GpOffset = SystemZGpOffset; |
5785 | unsigned FpOffset = SystemZFpOffset; |
5786 | unsigned VrIndex = 0; |
5787 | unsigned OverflowOffset = SystemZOverflowOffset; |
5788 | const DataLayout &DL = F.getDataLayout(); |
5789 | for (const auto &[ArgNo, A] : llvm::enumerate(First: CB.args())) { |
5790 | bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); |
5791 | // SystemZABIInfo does not produce ByVal parameters. |
5792 | assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); |
5793 | Type *T = A->getType(); |
5794 | ArgKind AK = classifyArgument(T); |
5795 | if (AK == ArgKind::Indirect) { |
5796 | T = PointerType::get(ElementType: T, AddressSpace: 0); |
5797 | AK = ArgKind::GeneralPurpose; |
5798 | } |
5799 | if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) |
5800 | AK = ArgKind::Memory; |
5801 | if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) |
5802 | AK = ArgKind::Memory; |
5803 | if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) |
5804 | AK = ArgKind::Memory; |
5805 | Value *ShadowBase = nullptr; |
5806 | Value *OriginBase = nullptr; |
5807 | ShadowExtension SE = ShadowExtension::None; |
5808 | switch (AK) { |
5809 | case ArgKind::GeneralPurpose: { |
5810 | // Always keep track of GpOffset, but store shadow only for varargs. |
5811 | uint64_t ArgSize = 8; |
5812 | if (GpOffset + ArgSize <= kParamTLSSize) { |
5813 | if (!IsFixed) { |
5814 | SE = getShadowExtension(CB, ArgNo); |
5815 | uint64_t GapSize = 0; |
5816 | if (SE == ShadowExtension::None) { |
5817 | uint64_t ArgAllocSize = DL.getTypeAllocSize(Ty: T); |
5818 | assert(ArgAllocSize <= ArgSize); |
5819 | GapSize = ArgSize - ArgAllocSize; |
5820 | } |
5821 | ShadowBase = getShadowAddrForVAArgument(IRB, ArgOffset: GpOffset + GapSize); |
5822 | if (MS.TrackOrigins) |
5823 | OriginBase = getOriginPtrForVAArgument(IRB, ArgOffset: GpOffset + GapSize); |
5824 | } |
5825 | GpOffset += ArgSize; |
5826 | } else { |
5827 | GpOffset = kParamTLSSize; |
5828 | } |
5829 | break; |
5830 | } |
5831 | case ArgKind::FloatingPoint: { |
5832 | // Always keep track of FpOffset, but store shadow only for varargs. |
5833 | uint64_t ArgSize = 8; |
5834 | if (FpOffset + ArgSize <= kParamTLSSize) { |
5835 | if (!IsFixed) { |
5836 | // PoP says: "A short floating-point datum requires only the |
5837 | // left-most 32 bit positions of a floating-point register". |
5838 | // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, |
5839 | // don't extend shadow and don't mind the gap. |
5840 | ShadowBase = getShadowAddrForVAArgument(IRB, ArgOffset: FpOffset); |
5841 | if (MS.TrackOrigins) |
5842 | OriginBase = getOriginPtrForVAArgument(IRB, ArgOffset: FpOffset); |
5843 | } |
5844 | FpOffset += ArgSize; |
5845 | } else { |
5846 | FpOffset = kParamTLSSize; |
5847 | } |
5848 | break; |
5849 | } |
5850 | case ArgKind::Vector: { |
5851 | // Keep track of VrIndex. No need to store shadow, since vector varargs |
5852 | // go through AK_Memory. |
5853 | assert(IsFixed); |
5854 | VrIndex++; |
5855 | break; |
5856 | } |
5857 | case ArgKind::Memory: { |
5858 | // Keep track of OverflowOffset and store shadow only for varargs. |
5859 | // Ignore fixed args, since we need to copy only the vararg portion of |
5860 | // the overflow area shadow. |
5861 | if (!IsFixed) { |
5862 | uint64_t ArgAllocSize = DL.getTypeAllocSize(Ty: T); |
5863 | uint64_t ArgSize = alignTo(Value: ArgAllocSize, Align: 8); |
5864 | if (OverflowOffset + ArgSize <= kParamTLSSize) { |
5865 | SE = getShadowExtension(CB, ArgNo); |
5866 | uint64_t GapSize = |
5867 | SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; |
5868 | ShadowBase = |
5869 | getShadowAddrForVAArgument(IRB, ArgOffset: OverflowOffset + GapSize); |
5870 | if (MS.TrackOrigins) |
5871 | OriginBase = |
5872 | getOriginPtrForVAArgument(IRB, ArgOffset: OverflowOffset + GapSize); |
5873 | OverflowOffset += ArgSize; |
5874 | } else { |
5875 | OverflowOffset = kParamTLSSize; |
5876 | } |
5877 | } |
5878 | break; |
5879 | } |
5880 | case ArgKind::Indirect: |
5881 | llvm_unreachable("Indirect must be converted to GeneralPurpose" ); |
5882 | } |
5883 | if (ShadowBase == nullptr) |
5884 | continue; |
5885 | Value *Shadow = MSV.getShadow(V: A); |
5886 | if (SE != ShadowExtension::None) |
5887 | Shadow = MSV.CreateShadowCast(IRB, V: Shadow, dstTy: IRB.getInt64Ty(), |
5888 | /*Signed*/ SE == ShadowExtension::Sign); |
5889 | ShadowBase = IRB.CreateIntToPtr( |
5890 | V: ShadowBase, DestTy: PointerType::get(ElementType: Shadow->getType(), AddressSpace: 0), Name: "_msarg_va_s" ); |
5891 | IRB.CreateStore(Val: Shadow, Ptr: ShadowBase); |
5892 | if (MS.TrackOrigins) { |
5893 | Value *Origin = MSV.getOrigin(V: A); |
5894 | TypeSize StoreSize = DL.getTypeStoreSize(Ty: Shadow->getType()); |
5895 | MSV.paintOrigin(IRB, Origin, OriginPtr: OriginBase, TS: StoreSize, |
5896 | Alignment: kMinOriginAlignment); |
5897 | } |
5898 | } |
5899 | Constant *OverflowSize = ConstantInt::get( |
5900 | Ty: IRB.getInt64Ty(), V: OverflowOffset - SystemZOverflowOffset); |
5901 | IRB.CreateStore(Val: OverflowSize, Ptr: MS.VAArgOverflowSizeTLS); |
5902 | } |
5903 | |
5904 | void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { |
5905 | Type *RegSaveAreaPtrTy = PointerType::getUnqual(C&: *MS.C); // i64* |
5906 | Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( |
5907 | V: IRB.CreateAdd( |
5908 | LHS: IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy), |
5909 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: SystemZRegSaveAreaPtrOffset)), |
5910 | DestTy: PointerType::get(ElementType: RegSaveAreaPtrTy, AddressSpace: 0)); |
5911 | Value *RegSaveAreaPtr = IRB.CreateLoad(Ty: RegSaveAreaPtrTy, Ptr: RegSaveAreaPtrPtr); |
5912 | Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; |
5913 | const Align Alignment = Align(8); |
5914 | std::tie(args&: RegSaveAreaShadowPtr, args&: RegSaveAreaOriginPtr) = |
5915 | MSV.getShadowOriginPtr(Addr: RegSaveAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), Alignment, |
5916 | /*isStore*/ true); |
5917 | // TODO(iii): copy only fragments filled by visitCallBase() |
5918 | // TODO(iii): support packed-stack && !use-soft-float |
5919 | // For use-soft-float functions, it is enough to copy just the GPRs. |
5920 | unsigned RegSaveAreaSize = |
5921 | IsSoftFloatABI ? SystemZGpEndOffset : SystemZRegSaveAreaSize; |
5922 | IRB.CreateMemCpy(Dst: RegSaveAreaShadowPtr, DstAlign: Alignment, Src: VAArgTLSCopy, SrcAlign: Alignment, |
5923 | Size: RegSaveAreaSize); |
5924 | if (MS.TrackOrigins) |
5925 | IRB.CreateMemCpy(Dst: RegSaveAreaOriginPtr, DstAlign: Alignment, Src: VAArgTLSOriginCopy, |
5926 | SrcAlign: Alignment, Size: RegSaveAreaSize); |
5927 | } |
5928 | |
5929 | // FIXME: This implementation limits OverflowOffset to kParamTLSSize, so we |
5930 | // don't know real overflow size and can't clear shadow beyond kParamTLSSize. |
5931 | void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { |
5932 | Type *OverflowArgAreaPtrTy = PointerType::getUnqual(C&: *MS.C); // i64* |
5933 | Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( |
5934 | V: IRB.CreateAdd( |
5935 | LHS: IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy), |
5936 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: SystemZOverflowArgAreaPtrOffset)), |
5937 | DestTy: PointerType::get(ElementType: OverflowArgAreaPtrTy, AddressSpace: 0)); |
5938 | Value *OverflowArgAreaPtr = |
5939 | IRB.CreateLoad(Ty: OverflowArgAreaPtrTy, Ptr: OverflowArgAreaPtrPtr); |
5940 | Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; |
5941 | const Align Alignment = Align(8); |
5942 | std::tie(args&: OverflowArgAreaShadowPtr, args&: OverflowArgAreaOriginPtr) = |
5943 | MSV.getShadowOriginPtr(Addr: OverflowArgAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
5944 | Alignment, /*isStore*/ true); |
5945 | Value *SrcPtr = IRB.CreateConstGEP1_32(Ty: IRB.getInt8Ty(), Ptr: VAArgTLSCopy, |
5946 | Idx0: SystemZOverflowOffset); |
5947 | IRB.CreateMemCpy(Dst: OverflowArgAreaShadowPtr, DstAlign: Alignment, Src: SrcPtr, SrcAlign: Alignment, |
5948 | Size: VAArgOverflowSize); |
5949 | if (MS.TrackOrigins) { |
5950 | SrcPtr = IRB.CreateConstGEP1_32(Ty: IRB.getInt8Ty(), Ptr: VAArgTLSOriginCopy, |
5951 | Idx0: SystemZOverflowOffset); |
5952 | IRB.CreateMemCpy(Dst: OverflowArgAreaOriginPtr, DstAlign: Alignment, Src: SrcPtr, SrcAlign: Alignment, |
5953 | Size: VAArgOverflowSize); |
5954 | } |
5955 | } |
5956 | |
5957 | void finalizeInstrumentation() override { |
5958 | assert(!VAArgOverflowSize && !VAArgTLSCopy && |
5959 | "finalizeInstrumentation called twice" ); |
5960 | if (!VAStartInstrumentationList.empty()) { |
5961 | // If there is a va_start in this function, make a backup copy of |
5962 | // va_arg_tls somewhere in the function entry block. |
5963 | IRBuilder<> IRB(MSV.FnPrologueEnd); |
5964 | VAArgOverflowSize = |
5965 | IRB.CreateLoad(Ty: IRB.getInt64Ty(), Ptr: MS.VAArgOverflowSizeTLS); |
5966 | Value *CopySize = |
5967 | IRB.CreateAdd(LHS: ConstantInt::get(Ty: MS.IntptrTy, V: SystemZOverflowOffset), |
5968 | RHS: VAArgOverflowSize); |
5969 | VAArgTLSCopy = IRB.CreateAlloca(Ty: Type::getInt8Ty(C&: *MS.C), ArraySize: CopySize); |
5970 | VAArgTLSCopy->setAlignment(kShadowTLSAlignment); |
5971 | IRB.CreateMemSet(Ptr: VAArgTLSCopy, Val: Constant::getNullValue(Ty: IRB.getInt8Ty()), |
5972 | Size: CopySize, Align: kShadowTLSAlignment, isVolatile: false); |
5973 | |
5974 | Value *SrcSize = IRB.CreateBinaryIntrinsic( |
5975 | ID: Intrinsic::umin, LHS: CopySize, |
5976 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: kParamTLSSize)); |
5977 | IRB.CreateMemCpy(Dst: VAArgTLSCopy, DstAlign: kShadowTLSAlignment, Src: MS.VAArgTLS, |
5978 | SrcAlign: kShadowTLSAlignment, Size: SrcSize); |
5979 | if (MS.TrackOrigins) { |
5980 | VAArgTLSOriginCopy = IRB.CreateAlloca(Ty: Type::getInt8Ty(C&: *MS.C), ArraySize: CopySize); |
5981 | VAArgTLSOriginCopy->setAlignment(kShadowTLSAlignment); |
5982 | IRB.CreateMemCpy(Dst: VAArgTLSOriginCopy, DstAlign: kShadowTLSAlignment, |
5983 | Src: MS.VAArgOriginTLS, SrcAlign: kShadowTLSAlignment, Size: SrcSize); |
5984 | } |
5985 | } |
5986 | |
5987 | // Instrument va_start. |
5988 | // Copy va_list shadow from the backup copy of the TLS contents. |
5989 | for (CallInst *OrigInst : VAStartInstrumentationList) { |
5990 | NextNodeIRBuilder IRB(OrigInst); |
5991 | Value *VAListTag = OrigInst->getArgOperand(i: 0); |
5992 | copyRegSaveArea(IRB, VAListTag); |
5993 | copyOverflowArea(IRB, VAListTag); |
5994 | } |
5995 | } |
5996 | }; |
5997 | |
5998 | // Loongarch64 is not a MIPS, but the current vargs calling convention matches |
5999 | // the MIPS. |
6000 | using VarArgLoongArch64Helper = VarArgMIPS64Helper; |
6001 | |
6002 | /// A no-op implementation of VarArgHelper. |
6003 | struct VarArgNoOpHelper : public VarArgHelper { |
6004 | VarArgNoOpHelper(Function &F, MemorySanitizer &MS, |
6005 | MemorySanitizerVisitor &MSV) {} |
6006 | |
6007 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} |
6008 | |
6009 | void visitVAStartInst(VAStartInst &I) override {} |
6010 | |
6011 | void visitVACopyInst(VACopyInst &I) override {} |
6012 | |
6013 | void finalizeInstrumentation() override {} |
6014 | }; |
6015 | |
6016 | } // end anonymous namespace |
6017 | |
6018 | static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, |
6019 | MemorySanitizerVisitor &Visitor) { |
6020 | // VarArg handling is only implemented on AMD64. False positives are possible |
6021 | // on other platforms. |
6022 | Triple TargetTriple(Func.getParent()->getTargetTriple()); |
6023 | if (TargetTriple.getArch() == Triple::x86_64) |
6024 | return new VarArgAMD64Helper(Func, Msan, Visitor); |
6025 | else if (TargetTriple.isMIPS64()) |
6026 | return new VarArgMIPS64Helper(Func, Msan, Visitor); |
6027 | else if (TargetTriple.getArch() == Triple::aarch64) |
6028 | return new VarArgAArch64Helper(Func, Msan, Visitor); |
6029 | else if (TargetTriple.getArch() == Triple::ppc64 || |
6030 | TargetTriple.getArch() == Triple::ppc64le) |
6031 | return new VarArgPowerPC64Helper(Func, Msan, Visitor); |
6032 | else if (TargetTriple.getArch() == Triple::systemz) |
6033 | return new VarArgSystemZHelper(Func, Msan, Visitor); |
6034 | else if (TargetTriple.isLoongArch64()) |
6035 | return new VarArgLoongArch64Helper(Func, Msan, Visitor); |
6036 | else |
6037 | return new VarArgNoOpHelper(Func, Msan, Visitor); |
6038 | } |
6039 | |
6040 | bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { |
6041 | if (!CompileKernel && F.getName() == kMsanModuleCtorName) |
6042 | return false; |
6043 | |
6044 | if (F.hasFnAttribute(Kind: Attribute::DisableSanitizerInstrumentation)) |
6045 | return false; |
6046 | |
6047 | MemorySanitizerVisitor Visitor(F, *this, TLI); |
6048 | |
6049 | // Clear out memory attributes. |
6050 | AttributeMask B; |
6051 | B.addAttribute(Val: Attribute::Memory).addAttribute(Val: Attribute::Speculatable); |
6052 | F.removeFnAttrs(Attrs: B); |
6053 | |
6054 | return Visitor.runOnFunction(); |
6055 | } |
6056 | |