1 | //===-- NumericalStabilitySanitizer.cpp -----------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains the instrumentation pass for the numerical sanitizer. |
10 | // Conceptually the pass injects shadow computations using higher precision |
11 | // types and inserts consistency checks. For details see the paper |
12 | // https://arxiv.org/abs/2102.12782. |
13 | // |
14 | //===----------------------------------------------------------------------===// |
15 | |
16 | #include "llvm/Transforms/Instrumentation/NumericalStabilitySanitizer.h" |
17 | |
18 | #include "llvm/ADT/DenseMap.h" |
19 | #include "llvm/ADT/SmallString.h" |
20 | #include "llvm/ADT/SmallVector.h" |
21 | #include "llvm/ADT/Statistic.h" |
22 | #include "llvm/ADT/StringExtras.h" |
23 | #include "llvm/Analysis/TargetLibraryInfo.h" |
24 | #include "llvm/Analysis/ValueTracking.h" |
25 | #include "llvm/IR/DataLayout.h" |
26 | #include "llvm/IR/Function.h" |
27 | #include "llvm/IR/IRBuilder.h" |
28 | #include "llvm/IR/IntrinsicInst.h" |
29 | #include "llvm/IR/Intrinsics.h" |
30 | #include "llvm/IR/LLVMContext.h" |
31 | #include "llvm/IR/MDBuilder.h" |
32 | #include "llvm/IR/Metadata.h" |
33 | #include "llvm/IR/Module.h" |
34 | #include "llvm/IR/Type.h" |
35 | #include "llvm/InitializePasses.h" |
36 | #include "llvm/Support/CommandLine.h" |
37 | #include "llvm/Support/Debug.h" |
38 | #include "llvm/Support/MathExtras.h" |
39 | #include "llvm/Support/Regex.h" |
40 | #include "llvm/Support/raw_ostream.h" |
41 | #include "llvm/Transforms/Instrumentation.h" |
42 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
43 | #include "llvm/Transforms/Utils/EscapeEnumerator.h" |
44 | #include "llvm/Transforms/Utils/Local.h" |
45 | #include "llvm/Transforms/Utils/ModuleUtils.h" |
46 | |
47 | #include <cstdint> |
48 | |
49 | using namespace llvm; |
50 | |
51 | #define DEBUG_TYPE "nsan" |
52 | |
53 | STATISTIC(NumInstrumentedFTLoads, |
54 | "Number of instrumented floating-point loads" ); |
55 | |
56 | STATISTIC(NumInstrumentedFTCalls, |
57 | "Number of instrumented floating-point calls" ); |
58 | STATISTIC(NumInstrumentedFTRets, |
59 | "Number of instrumented floating-point returns" ); |
60 | STATISTIC(NumInstrumentedFTStores, |
61 | "Number of instrumented floating-point stores" ); |
62 | STATISTIC(NumInstrumentedNonFTStores, |
63 | "Number of instrumented non floating-point stores" ); |
64 | STATISTIC( |
65 | NumInstrumentedNonFTMemcpyStores, |
66 | "Number of instrumented non floating-point stores with memcpy semantics" ); |
67 | STATISTIC(NumInstrumentedFCmp, "Number of instrumented fcmps" ); |
68 | |
69 | // Using smaller shadow types types can help improve speed. For example, `dlq` |
70 | // is 3x slower to 5x faster in opt mode and 2-6x faster in dbg mode compared to |
71 | // `dqq`. |
72 | static cl::opt<std::string> ClShadowMapping( |
73 | "nsan-shadow-type-mapping" , cl::init(Val: "dqq" ), |
74 | cl::desc("One shadow type id for each of `float`, `double`, `long double`. " |
75 | "`d`,`l`,`q`,`e` mean double, x86_fp80, fp128 (quad) and " |
76 | "ppc_fp128 (extended double) respectively. The default is to " |
77 | "shadow `float` as `double`, and `double` and `x86_fp80` as " |
78 | "`fp128`" ), |
79 | cl::Hidden); |
80 | |
81 | static cl::opt<bool> |
82 | ClInstrumentFCmp("nsan-instrument-fcmp" , cl::init(Val: true), |
83 | cl::desc("Instrument floating-point comparisons" ), |
84 | cl::Hidden); |
85 | |
86 | static cl::opt<std::string> ClCheckFunctionsFilter( |
87 | "check-functions-filter" , |
88 | cl::desc("Only emit checks for arguments of functions " |
89 | "whose names match the given regular expression" ), |
90 | cl::value_desc("regex" )); |
91 | |
92 | static cl::opt<bool> ClTruncateFCmpEq( |
93 | "nsan-truncate-fcmp-eq" , cl::init(Val: true), |
94 | cl::desc( |
95 | "This flag controls the behaviour of fcmp equality comparisons." |
96 | "For equality comparisons such as `x == 0.0f`, we can perform the " |
97 | "shadow check in the shadow (`x_shadow == 0.0) == (x == 0.0f)`) or app " |
98 | " domain (`(trunc(x_shadow) == 0.0f) == (x == 0.0f)`). This helps " |
99 | "catch the case when `x_shadow` is accurate enough (and therefore " |
100 | "close enough to zero) so that `trunc(x_shadow)` is zero even though " |
101 | "both `x` and `x_shadow` are not" ), |
102 | cl::Hidden); |
103 | |
104 | // When there is external, uninstrumented code writing to memory, the shadow |
105 | // memory can get out of sync with the application memory. Enabling this flag |
106 | // emits consistency checks for loads to catch this situation. |
107 | // When everything is instrumented, this is not strictly necessary because any |
108 | // load should have a corresponding store, but can help debug cases when the |
109 | // framework did a bad job at tracking shadow memory modifications by failing on |
110 | // load rather than store. |
111 | // TODO: provide a way to resume computations from the FT value when the load |
112 | // is inconsistent. This ensures that further computations are not polluted. |
113 | static cl::opt<bool> ClCheckLoads("nsan-check-loads" , |
114 | cl::desc("Check floating-point load" ), |
115 | cl::Hidden); |
116 | |
117 | static cl::opt<bool> ClCheckStores("nsan-check-stores" , cl::init(Val: true), |
118 | cl::desc("Check floating-point stores" ), |
119 | cl::Hidden); |
120 | |
121 | static cl::opt<bool> ClCheckRet("nsan-check-ret" , cl::init(Val: true), |
122 | cl::desc("Check floating-point return values" ), |
123 | cl::Hidden); |
124 | |
125 | // LLVM may store constant floats as bitcasted ints. |
126 | // It's not really necessary to shadow such stores, |
127 | // if the shadow value is unknown the framework will re-extend it on load |
128 | // anyway. Moreover, because of size collisions (e.g. bf16 vs f16) it is |
129 | // impossible to determine the floating-point type based on the size. |
130 | // However, for debugging purposes it can be useful to model such stores. |
131 | static cl::opt<bool> ClPropagateNonFTConstStoresAsFT( |
132 | "nsan-propagate-non-ft-const-stores-as-ft" , |
133 | cl::desc( |
134 | "Propagate non floating-point const stores as floating point values." |
135 | "For debugging purposes only" ), |
136 | cl::Hidden); |
137 | |
138 | constexpr StringLiteral kNsanModuleCtorName("nsan.module_ctor" ); |
139 | constexpr StringLiteral kNsanInitName("__nsan_init" ); |
140 | |
141 | // The following values must be kept in sync with the runtime. |
142 | constexpr int kShadowScale = 2; |
143 | constexpr int kMaxVectorWidth = 8; |
144 | constexpr int kMaxNumArgs = 128; |
145 | constexpr int kMaxShadowTypeSizeBytes = 16; // fp128 |
146 | |
147 | namespace { |
148 | |
149 | // Defines the characteristics (type id, type, and floating-point semantics) |
150 | // attached for all possible shadow types. |
151 | class ShadowTypeConfig { |
152 | public: |
153 | static std::unique_ptr<ShadowTypeConfig> fromNsanTypeId(char TypeId); |
154 | |
155 | // The LLVM Type corresponding to the shadow type. |
156 | virtual Type *getType(LLVMContext &Context) const = 0; |
157 | |
158 | // The nsan type id of the shadow type (`d`, `l`, `q`, ...). |
159 | virtual char getNsanTypeId() const = 0; |
160 | |
161 | virtual ~ShadowTypeConfig() = default; |
162 | }; |
163 | |
164 | template <char NsanTypeId> |
165 | class ShadowTypeConfigImpl : public ShadowTypeConfig { |
166 | public: |
167 | char getNsanTypeId() const override { return NsanTypeId; } |
168 | static constexpr const char kNsanTypeId = NsanTypeId; |
169 | }; |
170 | |
171 | // `double` (`d`) shadow type. |
172 | class F64ShadowConfig : public ShadowTypeConfigImpl<'d'> { |
173 | Type *getType(LLVMContext &Context) const override { |
174 | return Type::getDoubleTy(C&: Context); |
175 | } |
176 | }; |
177 | |
178 | // `x86_fp80` (`l`) shadow type: X86 long double. |
179 | class F80ShadowConfig : public ShadowTypeConfigImpl<'l'> { |
180 | Type *getType(LLVMContext &Context) const override { |
181 | return Type::getX86_FP80Ty(C&: Context); |
182 | } |
183 | }; |
184 | |
185 | // `fp128` (`q`) shadow type. |
186 | class F128ShadowConfig : public ShadowTypeConfigImpl<'q'> { |
187 | Type *getType(LLVMContext &Context) const override { |
188 | return Type::getFP128Ty(C&: Context); |
189 | } |
190 | }; |
191 | |
192 | // `ppc_fp128` (`e`) shadow type: IBM extended double with 106 bits of mantissa. |
193 | class PPC128ShadowConfig : public ShadowTypeConfigImpl<'e'> { |
194 | Type *getType(LLVMContext &Context) const override { |
195 | return Type::getPPC_FP128Ty(C&: Context); |
196 | } |
197 | }; |
198 | |
199 | // Creates a ShadowTypeConfig given its type id. |
200 | std::unique_ptr<ShadowTypeConfig> |
201 | ShadowTypeConfig::fromNsanTypeId(const char TypeId) { |
202 | switch (TypeId) { |
203 | case F64ShadowConfig::kNsanTypeId: |
204 | return std::make_unique<F64ShadowConfig>(); |
205 | case F80ShadowConfig::kNsanTypeId: |
206 | return std::make_unique<F80ShadowConfig>(); |
207 | case F128ShadowConfig::kNsanTypeId: |
208 | return std::make_unique<F128ShadowConfig>(); |
209 | case PPC128ShadowConfig::kNsanTypeId: |
210 | return std::make_unique<PPC128ShadowConfig>(); |
211 | } |
212 | report_fatal_error(reason: "nsan: invalid shadow type id '" + Twine(TypeId) + "'" ); |
213 | } |
214 | |
215 | // An enum corresponding to shadow value types. Used as indices in arrays, so |
216 | // not an `enum class`. |
217 | enum FTValueType { kFloat, kDouble, kLongDouble, kNumValueTypes }; |
218 | |
219 | // If `FT` corresponds to a primitive FTValueType, return it. |
220 | static std::optional<FTValueType> ftValueTypeFromType(Type *FT) { |
221 | if (FT->isFloatTy()) |
222 | return kFloat; |
223 | if (FT->isDoubleTy()) |
224 | return kDouble; |
225 | if (FT->isX86_FP80Ty()) |
226 | return kLongDouble; |
227 | return {}; |
228 | } |
229 | |
230 | // Returns the LLVM type for an FTValueType. |
231 | static Type *typeFromFTValueType(FTValueType VT, LLVMContext &Context) { |
232 | switch (VT) { |
233 | case kFloat: |
234 | return Type::getFloatTy(C&: Context); |
235 | case kDouble: |
236 | return Type::getDoubleTy(C&: Context); |
237 | case kLongDouble: |
238 | return Type::getX86_FP80Ty(C&: Context); |
239 | case kNumValueTypes: |
240 | return nullptr; |
241 | } |
242 | llvm_unreachable("Unhandled FTValueType enum" ); |
243 | } |
244 | |
245 | // Returns the type name for an FTValueType. |
246 | static const char *typeNameFromFTValueType(FTValueType VT) { |
247 | switch (VT) { |
248 | case kFloat: |
249 | return "float" ; |
250 | case kDouble: |
251 | return "double" ; |
252 | case kLongDouble: |
253 | return "longdouble" ; |
254 | case kNumValueTypes: |
255 | return nullptr; |
256 | } |
257 | llvm_unreachable("Unhandled FTValueType enum" ); |
258 | } |
259 | |
260 | // A specific mapping configuration of application type to shadow type for nsan |
261 | // (see -nsan-shadow-mapping flag). |
262 | class MappingConfig { |
263 | public: |
264 | explicit MappingConfig(LLVMContext &C) : Context(C) { |
265 | if (ClShadowMapping.size() != 3) |
266 | report_fatal_error(reason: "Invalid nsan mapping: " + Twine(ClShadowMapping)); |
267 | unsigned ShadowTypeSizeBits[kNumValueTypes]; |
268 | for (int VT = 0; VT < kNumValueTypes; ++VT) { |
269 | auto Config = ShadowTypeConfig::fromNsanTypeId(TypeId: ClShadowMapping[VT]); |
270 | if (!Config) |
271 | report_fatal_error(reason: "Failed to get ShadowTypeConfig for " + |
272 | Twine(ClShadowMapping[VT])); |
273 | const unsigned AppTypeSize = |
274 | typeFromFTValueType(VT: static_cast<FTValueType>(VT), Context) |
275 | ->getScalarSizeInBits(); |
276 | const unsigned ShadowTypeSize = |
277 | Config->getType(Context)->getScalarSizeInBits(); |
278 | // Check that the shadow type size is at most kShadowScale times the |
279 | // application type size, so that shadow memory compoutations are valid. |
280 | if (ShadowTypeSize > kShadowScale * AppTypeSize) |
281 | report_fatal_error(reason: "Invalid nsan mapping f" + Twine(AppTypeSize) + |
282 | "->f" + Twine(ShadowTypeSize) + |
283 | ": The shadow type size should be at most " + |
284 | Twine(kShadowScale) + |
285 | " times the application type size" ); |
286 | ShadowTypeSizeBits[VT] = ShadowTypeSize; |
287 | Configs[VT] = std::move(Config); |
288 | } |
289 | |
290 | // Check that the mapping is monotonous. This is required because if one |
291 | // does an fpextend of `float->long double` in application code, nsan is |
292 | // going to do an fpextend of `shadow(float) -> shadow(long double)` in |
293 | // shadow code. This will fail in `qql` mode, since nsan would be |
294 | // fpextending `f128->long`, which is invalid. |
295 | // TODO: Relax this. |
296 | if (ShadowTypeSizeBits[kFloat] > ShadowTypeSizeBits[kDouble] || |
297 | ShadowTypeSizeBits[kDouble] > ShadowTypeSizeBits[kLongDouble]) |
298 | report_fatal_error(reason: "Invalid nsan mapping: { float->f" + |
299 | Twine(ShadowTypeSizeBits[kFloat]) + "; double->f" + |
300 | Twine(ShadowTypeSizeBits[kDouble]) + |
301 | "; long double->f" + |
302 | Twine(ShadowTypeSizeBits[kLongDouble]) + " }" ); |
303 | } |
304 | |
305 | const ShadowTypeConfig &byValueType(FTValueType VT) const { |
306 | assert(VT < FTValueType::kNumValueTypes && "invalid value type" ); |
307 | return *Configs[VT]; |
308 | } |
309 | |
310 | // Returns the extended shadow type for a given application type. |
311 | Type *getExtendedFPType(Type *FT) const { |
312 | if (const auto VT = ftValueTypeFromType(FT)) |
313 | return Configs[*VT]->getType(Context); |
314 | if (FT->isVectorTy()) { |
315 | auto *VecTy = cast<VectorType>(Val: FT); |
316 | // TODO: add support for scalable vector types. |
317 | if (VecTy->isScalableTy()) |
318 | return nullptr; |
319 | Type *ExtendedScalar = getExtendedFPType(FT: VecTy->getElementType()); |
320 | return ExtendedScalar |
321 | ? VectorType::get(ElementType: ExtendedScalar, EC: VecTy->getElementCount()) |
322 | : nullptr; |
323 | } |
324 | return nullptr; |
325 | } |
326 | |
327 | private: |
328 | LLVMContext &Context; |
329 | std::unique_ptr<ShadowTypeConfig> Configs[FTValueType::kNumValueTypes]; |
330 | }; |
331 | |
332 | // The memory extents of a type specifies how many elements of a given |
333 | // FTValueType needs to be stored when storing this type. |
334 | struct MemoryExtents { |
335 | FTValueType ValueType; |
336 | uint64_t NumElts; |
337 | }; |
338 | |
339 | static MemoryExtents getMemoryExtentsOrDie(Type *FT) { |
340 | if (const auto VT = ftValueTypeFromType(FT)) |
341 | return {.ValueType: *VT, .NumElts: 1}; |
342 | if (auto *VecTy = dyn_cast<VectorType>(Val: FT)) { |
343 | const auto ScalarExtents = getMemoryExtentsOrDie(FT: VecTy->getElementType()); |
344 | return {.ValueType: ScalarExtents.ValueType, |
345 | .NumElts: ScalarExtents.NumElts * VecTy->getElementCount().getFixedValue()}; |
346 | } |
347 | llvm_unreachable("invalid value type" ); |
348 | } |
349 | |
350 | // The location of a check. Passed as parameters to runtime checking functions. |
351 | class CheckLoc { |
352 | public: |
353 | // Creates a location that references an application memory location. |
354 | static CheckLoc makeStore(Value *Address) { |
355 | CheckLoc Result(kStore); |
356 | Result.Address = Address; |
357 | return Result; |
358 | } |
359 | static CheckLoc makeLoad(Value *Address) { |
360 | CheckLoc Result(kLoad); |
361 | Result.Address = Address; |
362 | return Result; |
363 | } |
364 | |
365 | // Creates a location that references an argument, given by id. |
366 | static CheckLoc makeArg(int ArgId) { |
367 | CheckLoc Result(kArg); |
368 | Result.ArgId = ArgId; |
369 | return Result; |
370 | } |
371 | |
372 | // Creates a location that references the return value of a function. |
373 | static CheckLoc makeRet() { return CheckLoc(kRet); } |
374 | |
375 | // Creates a location that references a vector insert. |
376 | static CheckLoc makeInsert() { return CheckLoc(kInsert); } |
377 | |
378 | // Returns the CheckType of location this refers to, as an integer-typed LLVM |
379 | // IR value. |
380 | Value *getType(LLVMContext &C) const { |
381 | return ConstantInt::get(Ty: Type::getInt32Ty(C), V: static_cast<int>(CheckTy)); |
382 | } |
383 | |
384 | // Returns a CheckType-specific value representing details of the location |
385 | // (e.g. application address for loads or stores), as an `IntptrTy`-typed LLVM |
386 | // IR value. |
387 | Value *getValue(Type *IntptrTy, IRBuilder<> &Builder) const { |
388 | switch (CheckTy) { |
389 | case kUnknown: |
390 | llvm_unreachable("unknown type" ); |
391 | case kRet: |
392 | case kInsert: |
393 | return ConstantInt::get(Ty: IntptrTy, V: 0); |
394 | case kArg: |
395 | return ConstantInt::get(Ty: IntptrTy, V: ArgId); |
396 | case kLoad: |
397 | case kStore: |
398 | return Builder.CreatePtrToInt(V: Address, DestTy: IntptrTy); |
399 | } |
400 | llvm_unreachable("Unhandled CheckType enum" ); |
401 | } |
402 | |
403 | private: |
404 | // Must be kept in sync with the runtime, |
405 | // see compiler-rt/lib/nsan/nsan_stats.h |
406 | enum CheckType { |
407 | kUnknown = 0, |
408 | kRet, |
409 | kArg, |
410 | kLoad, |
411 | kStore, |
412 | kInsert, |
413 | }; |
414 | explicit CheckLoc(CheckType CheckTy) : CheckTy(CheckTy) {} |
415 | |
416 | Value *Address = nullptr; |
417 | const CheckType CheckTy; |
418 | int ArgId = -1; |
419 | }; |
420 | |
421 | // A map of LLVM IR values to shadow LLVM IR values. |
422 | class ValueToShadowMap { |
423 | public: |
424 | explicit ValueToShadowMap(const MappingConfig &Config) : Config(Config) {} |
425 | |
426 | ValueToShadowMap(const ValueToShadowMap &) = delete; |
427 | ValueToShadowMap &operator=(const ValueToShadowMap &) = delete; |
428 | |
429 | // Sets the shadow value for a value. Asserts that the value does not already |
430 | // have a value. |
431 | void setShadow(Value &V, Value &Shadow) { |
432 | [[maybe_unused]] const bool Inserted = Map.try_emplace(Key: &V, Args: &Shadow).second; |
433 | LLVM_DEBUG({ |
434 | if (!Inserted) { |
435 | if (auto *I = dyn_cast<Instruction>(&V)) |
436 | errs() << I->getFunction()->getName() << ": " ; |
437 | errs() << "duplicate shadow (" << &V << "): " ; |
438 | V.dump(); |
439 | } |
440 | }); |
441 | assert(Inserted && "duplicate shadow" ); |
442 | } |
443 | |
444 | // Returns true if the value already has a shadow (including if the value is a |
445 | // constant). If true, calling getShadow() is valid. |
446 | bool hasShadow(Value *V) const { |
447 | return isa<Constant>(Val: V) || (Map.find(Val: V) != Map.end()); |
448 | } |
449 | |
450 | // Returns the shadow value for a given value. Asserts that the value has |
451 | // a shadow value. Lazily creates shadows for constant values. |
452 | Value *getShadow(Value *V) const { |
453 | if (Constant *C = dyn_cast<Constant>(Val: V)) |
454 | return getShadowConstant(C); |
455 | return Map.find(Val: V)->second; |
456 | } |
457 | |
458 | bool empty() const { return Map.empty(); } |
459 | |
460 | private: |
461 | // Extends a constant application value to its shadow counterpart. |
462 | APFloat extendConstantFP(APFloat CV, const fltSemantics &To) const { |
463 | bool LosesInfo = false; |
464 | CV.convert(ToSemantics: To, RM: APFloatBase::rmTowardZero, losesInfo: &LosesInfo); |
465 | return CV; |
466 | } |
467 | |
468 | // Returns the shadow constant for the given application constant. |
469 | Constant *getShadowConstant(Constant *C) const { |
470 | if (UndefValue *U = dyn_cast<UndefValue>(Val: C)) { |
471 | return UndefValue::get(T: Config.getExtendedFPType(FT: U->getType())); |
472 | } |
473 | if (ConstantFP *CFP = dyn_cast<ConstantFP>(Val: C)) { |
474 | // Floating-point constants. |
475 | Type *Ty = Config.getExtendedFPType(FT: CFP->getType()); |
476 | return ConstantFP::get( |
477 | Ty, V: extendConstantFP(CV: CFP->getValueAPF(), To: Ty->getFltSemantics())); |
478 | } |
479 | // Vector, array, or aggregate constants. |
480 | if (C->getType()->isVectorTy()) { |
481 | SmallVector<Constant *, 8> Elements; |
482 | for (int I = 0, E = cast<VectorType>(Val: C->getType()) |
483 | ->getElementCount() |
484 | .getFixedValue(); |
485 | I < E; ++I) |
486 | Elements.push_back(Elt: getShadowConstant(C: C->getAggregateElement(Elt: I))); |
487 | return ConstantVector::get(V: Elements); |
488 | } |
489 | llvm_unreachable("unimplemented" ); |
490 | } |
491 | |
492 | const MappingConfig &Config; |
493 | DenseMap<Value *, Value *> Map; |
494 | }; |
495 | |
496 | /// Instantiating NumericalStabilitySanitizer inserts the nsan runtime library |
497 | /// API function declarations into the module if they don't exist already. |
498 | /// Instantiating ensures the __nsan_init function is in the list of global |
499 | /// constructors for the module. |
500 | class NumericalStabilitySanitizer { |
501 | public: |
502 | NumericalStabilitySanitizer(Module &M); |
503 | bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI); |
504 | |
505 | private: |
506 | bool instrumentMemIntrinsic(MemIntrinsic *MI); |
507 | void maybeAddSuffixForNsanInterface(CallBase *CI); |
508 | bool addrPointsToConstantData(Value *Addr); |
509 | void maybeCreateShadowValue(Instruction &Root, const TargetLibraryInfo &TLI, |
510 | ValueToShadowMap &Map); |
511 | Value *createShadowValueWithOperandsAvailable(Instruction &Inst, |
512 | const TargetLibraryInfo &TLI, |
513 | const ValueToShadowMap &Map); |
514 | PHINode *maybeCreateShadowPhi(PHINode &Phi, const TargetLibraryInfo &TLI); |
515 | void createShadowArguments(Function &F, const TargetLibraryInfo &TLI, |
516 | ValueToShadowMap &Map); |
517 | |
518 | void populateShadowStack(CallBase &CI, const TargetLibraryInfo &TLI, |
519 | const ValueToShadowMap &Map); |
520 | |
521 | void propagateShadowValues(Instruction &Inst, const TargetLibraryInfo &TLI, |
522 | const ValueToShadowMap &Map); |
523 | Value *emitCheck(Value *V, Value *ShadowV, IRBuilder<> &Builder, |
524 | CheckLoc Loc); |
525 | Value *emitCheckInternal(Value *V, Value *ShadowV, IRBuilder<> &Builder, |
526 | CheckLoc Loc); |
527 | void emitFCmpCheck(FCmpInst &FCmp, const ValueToShadowMap &Map); |
528 | |
529 | // Value creation handlers. |
530 | Value *handleLoad(LoadInst &Load, Type *VT, Type *ExtendedVT); |
531 | Value *handleCallBase(CallBase &Call, Type *VT, Type *ExtendedVT, |
532 | const TargetLibraryInfo &TLI, |
533 | const ValueToShadowMap &Map, IRBuilder<> &Builder); |
534 | Value *maybeHandleKnownCallBase(CallBase &Call, Type *VT, Type *ExtendedVT, |
535 | const TargetLibraryInfo &TLI, |
536 | const ValueToShadowMap &Map, |
537 | IRBuilder<> &Builder); |
538 | Value *handleTrunc(const FPTruncInst &Trunc, Type *VT, Type *ExtendedVT, |
539 | const ValueToShadowMap &Map, IRBuilder<> &Builder); |
540 | Value *handleExt(const FPExtInst &Ext, Type *VT, Type *ExtendedVT, |
541 | const ValueToShadowMap &Map, IRBuilder<> &Builder); |
542 | |
543 | // Value propagation handlers. |
544 | void propagateFTStore(StoreInst &Store, Type *VT, Type *ExtendedVT, |
545 | const ValueToShadowMap &Map); |
546 | void propagateNonFTStore(StoreInst &Store, Type *VT, |
547 | const ValueToShadowMap &Map); |
548 | |
549 | const DataLayout &DL; |
550 | LLVMContext &Context; |
551 | MappingConfig Config; |
552 | IntegerType *IntptrTy = nullptr; |
553 | FunctionCallee NsanGetShadowPtrForStore[FTValueType::kNumValueTypes] = {}; |
554 | FunctionCallee NsanGetShadowPtrForLoad[FTValueType::kNumValueTypes] = {}; |
555 | FunctionCallee NsanCheckValue[FTValueType::kNumValueTypes] = {}; |
556 | FunctionCallee NsanFCmpFail[FTValueType::kNumValueTypes] = {}; |
557 | FunctionCallee NsanCopyValues; |
558 | FunctionCallee NsanSetValueUnknown; |
559 | FunctionCallee NsanGetRawShadowTypePtr; |
560 | FunctionCallee NsanGetRawShadowPtr; |
561 | GlobalValue *NsanShadowRetTag = nullptr; |
562 | |
563 | Type *NsanShadowRetType = nullptr; |
564 | GlobalValue *NsanShadowRetPtr = nullptr; |
565 | |
566 | GlobalValue *NsanShadowArgsTag = nullptr; |
567 | |
568 | Type *NsanShadowArgsType = nullptr; |
569 | GlobalValue *NsanShadowArgsPtr = nullptr; |
570 | |
571 | std::optional<Regex> CheckFunctionsFilter; |
572 | }; |
573 | } // end anonymous namespace |
574 | |
575 | PreservedAnalyses |
576 | NumericalStabilitySanitizerPass::run(Module &M, ModuleAnalysisManager &MAM) { |
577 | getOrCreateSanitizerCtorAndInitFunctions( |
578 | M, CtorName: kNsanModuleCtorName, InitName: kNsanInitName, /*InitArgTypes=*/{}, |
579 | /*InitArgs=*/{}, |
580 | // This callback is invoked when the functions are created the first |
581 | // time. Hook them into the global ctors list in that case: |
582 | FunctionsCreatedCallback: [&](Function *Ctor, FunctionCallee) { appendToGlobalCtors(M, F: Ctor, Priority: 0); }); |
583 | |
584 | NumericalStabilitySanitizer Nsan(M); |
585 | auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
586 | for (Function &F : M) |
587 | Nsan.sanitizeFunction(F, TLI: FAM.getResult<TargetLibraryAnalysis>(IR&: F)); |
588 | |
589 | return PreservedAnalyses::none(); |
590 | } |
591 | |
592 | static GlobalValue *createThreadLocalGV(const char *Name, Module &M, Type *Ty) { |
593 | return dyn_cast<GlobalValue>(Val: M.getOrInsertGlobal(Name, Ty, CreateGlobalCallback: [&M, Ty, Name] { |
594 | return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, |
595 | nullptr, Name, nullptr, |
596 | GlobalVariable::InitialExecTLSModel); |
597 | })); |
598 | } |
599 | |
600 | NumericalStabilitySanitizer::NumericalStabilitySanitizer(Module &M) |
601 | : DL(M.getDataLayout()), Context(M.getContext()), Config(Context) { |
602 | IntptrTy = DL.getIntPtrType(C&: Context); |
603 | Type *PtrTy = PointerType::getUnqual(C&: Context); |
604 | Type *Int32Ty = Type::getInt32Ty(C&: Context); |
605 | Type *Int1Ty = Type::getInt1Ty(C&: Context); |
606 | Type *VoidTy = Type::getVoidTy(C&: Context); |
607 | |
608 | AttributeList Attr; |
609 | Attr = Attr.addFnAttribute(C&: Context, Kind: Attribute::NoUnwind); |
610 | // Initialize the runtime values (functions and global variables). |
611 | for (int I = 0; I < kNumValueTypes; ++I) { |
612 | const FTValueType VT = static_cast<FTValueType>(I); |
613 | const char *VTName = typeNameFromFTValueType(VT); |
614 | Type *VTTy = typeFromFTValueType(VT, Context); |
615 | |
616 | // Load/store. |
617 | const std::string GetterPrefix = |
618 | std::string("__nsan_get_shadow_ptr_for_" ) + VTName; |
619 | NsanGetShadowPtrForStore[VT] = M.getOrInsertFunction( |
620 | Name: GetterPrefix + "_store" , AttributeList: Attr, RetTy: PtrTy, Args: PtrTy, Args: IntptrTy); |
621 | NsanGetShadowPtrForLoad[VT] = M.getOrInsertFunction( |
622 | Name: GetterPrefix + "_load" , AttributeList: Attr, RetTy: PtrTy, Args: PtrTy, Args: IntptrTy); |
623 | |
624 | // Check. |
625 | const auto &ShadowConfig = Config.byValueType(VT); |
626 | Type *ShadowTy = ShadowConfig.getType(Context); |
627 | NsanCheckValue[VT] = |
628 | M.getOrInsertFunction(Name: std::string("__nsan_internal_check_" ) + VTName + |
629 | "_" + ShadowConfig.getNsanTypeId(), |
630 | AttributeList: Attr, RetTy: Int32Ty, Args: VTTy, Args: ShadowTy, Args: Int32Ty, Args: IntptrTy); |
631 | NsanFCmpFail[VT] = M.getOrInsertFunction( |
632 | Name: std::string("__nsan_fcmp_fail_" ) + VTName + "_" + |
633 | ShadowConfig.getNsanTypeId(), |
634 | AttributeList: Attr, RetTy: VoidTy, Args: VTTy, Args: VTTy, Args: ShadowTy, Args: ShadowTy, Args: Int32Ty, Args: Int1Ty, Args: Int1Ty); |
635 | } |
636 | |
637 | NsanCopyValues = M.getOrInsertFunction(Name: "__nsan_copy_values" , AttributeList: Attr, RetTy: VoidTy, |
638 | Args: PtrTy, Args: PtrTy, Args: IntptrTy); |
639 | NsanSetValueUnknown = M.getOrInsertFunction(Name: "__nsan_set_value_unknown" , AttributeList: Attr, |
640 | RetTy: VoidTy, Args: PtrTy, Args: IntptrTy); |
641 | |
642 | // TODO: Add attributes nofree, nosync, readnone, readonly, |
643 | NsanGetRawShadowTypePtr = M.getOrInsertFunction( |
644 | Name: "__nsan_internal_get_raw_shadow_type_ptr" , AttributeList: Attr, RetTy: PtrTy, Args: PtrTy); |
645 | NsanGetRawShadowPtr = M.getOrInsertFunction( |
646 | Name: "__nsan_internal_get_raw_shadow_ptr" , AttributeList: Attr, RetTy: PtrTy, Args: PtrTy); |
647 | |
648 | NsanShadowRetTag = createThreadLocalGV(Name: "__nsan_shadow_ret_tag" , M, Ty: IntptrTy); |
649 | |
650 | NsanShadowRetType = ArrayType::get(ElementType: Type::getInt8Ty(C&: Context), |
651 | NumElements: kMaxVectorWidth * kMaxShadowTypeSizeBytes); |
652 | NsanShadowRetPtr = |
653 | createThreadLocalGV(Name: "__nsan_shadow_ret_ptr" , M, Ty: NsanShadowRetType); |
654 | |
655 | NsanShadowArgsTag = |
656 | createThreadLocalGV(Name: "__nsan_shadow_args_tag" , M, Ty: IntptrTy); |
657 | |
658 | NsanShadowArgsType = |
659 | ArrayType::get(ElementType: Type::getInt8Ty(C&: Context), |
660 | NumElements: kMaxVectorWidth * kMaxNumArgs * kMaxShadowTypeSizeBytes); |
661 | |
662 | NsanShadowArgsPtr = |
663 | createThreadLocalGV(Name: "__nsan_shadow_args_ptr" , M, Ty: NsanShadowArgsType); |
664 | |
665 | if (!ClCheckFunctionsFilter.empty()) { |
666 | Regex R = Regex(ClCheckFunctionsFilter); |
667 | std::string RegexError; |
668 | assert(R.isValid(RegexError)); |
669 | CheckFunctionsFilter = std::move(R); |
670 | } |
671 | } |
672 | |
673 | // Returns true if the given LLVM Value points to constant data (typically, a |
674 | // global variable reference). |
675 | bool NumericalStabilitySanitizer::addrPointsToConstantData(Value *Addr) { |
676 | // If this is a GEP, just analyze its pointer operand. |
677 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: Addr)) |
678 | Addr = GEP->getPointerOperand(); |
679 | |
680 | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Val: Addr)) |
681 | return GV->isConstant(); |
682 | return false; |
683 | } |
684 | |
685 | // This instruments the function entry to create shadow arguments. |
686 | // Pseudocode: |
687 | // if (this_fn_ptr == __nsan_shadow_args_tag) { |
688 | // s(arg0) = LOAD<sizeof(arg0)>(__nsan_shadow_args); |
689 | // s(arg1) = LOAD<sizeof(arg1)>(__nsan_shadow_args + sizeof(arg0)); |
690 | // ... |
691 | // __nsan_shadow_args_tag = 0; |
692 | // } else { |
693 | // s(arg0) = fext(arg0); |
694 | // s(arg1) = fext(arg1); |
695 | // ... |
696 | // } |
697 | void NumericalStabilitySanitizer::createShadowArguments( |
698 | Function &F, const TargetLibraryInfo &TLI, ValueToShadowMap &Map) { |
699 | assert(!F.getIntrinsicID() && "found a definition of an intrinsic" ); |
700 | |
701 | // Do not bother if there are no FP args. |
702 | if (all_of(Range: F.args(), P: [this](const Argument &Arg) { |
703 | return Config.getExtendedFPType(FT: Arg.getType()) == nullptr; |
704 | })) |
705 | return; |
706 | |
707 | IRBuilder<> Builder(F.getEntryBlock().getFirstNonPHI()); |
708 | // The function has shadow args if the shadow args tag matches the function |
709 | // address. |
710 | Value *HasShadowArgs = Builder.CreateICmpEQ( |
711 | LHS: Builder.CreateLoad(Ty: IntptrTy, Ptr: NsanShadowArgsTag, /*isVolatile=*/false), |
712 | RHS: Builder.CreatePtrToInt(V: &F, DestTy: IntptrTy)); |
713 | |
714 | unsigned ShadowArgsOffsetBytes = 0; |
715 | for (Argument &Arg : F.args()) { |
716 | Type *VT = Arg.getType(); |
717 | Type *ExtendedVT = Config.getExtendedFPType(FT: VT); |
718 | if (ExtendedVT == nullptr) |
719 | continue; // Not an FT value. |
720 | Value *L = Builder.CreateAlignedLoad( |
721 | Ty: ExtendedVT, |
722 | Ptr: Builder.CreateConstGEP2_64(Ty: NsanShadowArgsType, Ptr: NsanShadowArgsPtr, Idx0: 0, |
723 | Idx1: ShadowArgsOffsetBytes), |
724 | Align: Align(1), /*isVolatile=*/false); |
725 | Value *Shadow = Builder.CreateSelect(C: HasShadowArgs, True: L, |
726 | False: Builder.CreateFPExt(V: &Arg, DestTy: ExtendedVT)); |
727 | Map.setShadow(V&: Arg, Shadow&: *Shadow); |
728 | TypeSize SlotSize = DL.getTypeStoreSize(Ty: ExtendedVT); |
729 | assert(!SlotSize.isScalable() && "unsupported" ); |
730 | ShadowArgsOffsetBytes += SlotSize; |
731 | } |
732 | Builder.CreateStore(Val: ConstantInt::get(Ty: IntptrTy, V: 0), Ptr: NsanShadowArgsTag); |
733 | } |
734 | |
735 | // Returns true if the instrumentation should emit code to check arguments |
736 | // before a function call. |
737 | static bool shouldCheckArgs(CallBase &CI, const TargetLibraryInfo &TLI, |
738 | const std::optional<Regex> &CheckFunctionsFilter) { |
739 | |
740 | Function *Fn = CI.getCalledFunction(); |
741 | |
742 | if (CheckFunctionsFilter) { |
743 | // Skip checking args of indirect calls. |
744 | if (Fn == nullptr) |
745 | return false; |
746 | if (CheckFunctionsFilter->match(String: Fn->getName())) |
747 | return true; |
748 | return false; |
749 | } |
750 | |
751 | if (Fn == nullptr) |
752 | return true; // Always check args of indirect calls. |
753 | |
754 | // Never check nsan functions, the user called them for a reason. |
755 | if (Fn->getName().starts_with(Prefix: "__nsan_" )) |
756 | return false; |
757 | |
758 | const auto ID = Fn->getIntrinsicID(); |
759 | LibFunc LFunc = LibFunc::NumLibFuncs; |
760 | // Always check args of unknown functions. |
761 | if (ID == Intrinsic::ID() && !TLI.getLibFunc(FDecl: *Fn, F&: LFunc)) |
762 | return true; |
763 | |
764 | // Do not check args of an `fabs` call that is used for a comparison. |
765 | // This is typically used for `fabs(a-b) < tolerance`, where what matters is |
766 | // the result of the comparison, which is already caught be the fcmp checks. |
767 | if (ID == Intrinsic::fabs || LFunc == LibFunc_fabsf || |
768 | LFunc == LibFunc_fabs || LFunc == LibFunc_fabsl) |
769 | for (const auto &U : CI.users()) |
770 | if (isa<CmpInst>(Val: U)) |
771 | return false; |
772 | |
773 | return true; // Default is check. |
774 | } |
775 | |
776 | // Populates the shadow call stack (which contains shadow values for every |
777 | // floating-point parameter to the function). |
778 | void NumericalStabilitySanitizer::populateShadowStack( |
779 | CallBase &CI, const TargetLibraryInfo &TLI, const ValueToShadowMap &Map) { |
780 | // Do not create a shadow stack for inline asm. |
781 | if (CI.isInlineAsm()) |
782 | return; |
783 | |
784 | // Do not bother if there are no FP args. |
785 | if (all_of(Range: CI.operands(), P: [this](const Value *Arg) { |
786 | return Config.getExtendedFPType(FT: Arg->getType()) == nullptr; |
787 | })) |
788 | return; |
789 | |
790 | IRBuilder<> Builder(&CI); |
791 | SmallVector<Value *, 8> ArgShadows; |
792 | const bool ShouldCheckArgs = shouldCheckArgs(CI, TLI, CheckFunctionsFilter); |
793 | for (auto [ArgIdx, Arg] : enumerate(First: CI.operands())) { |
794 | if (Config.getExtendedFPType(FT: Arg->getType()) == nullptr) |
795 | continue; // Not an FT value. |
796 | Value *ArgShadow = Map.getShadow(V: Arg); |
797 | ArgShadows.push_back(Elt: ShouldCheckArgs ? emitCheck(V: Arg, ShadowV: ArgShadow, Builder, |
798 | Loc: CheckLoc::makeArg(ArgId: ArgIdx)) |
799 | : ArgShadow); |
800 | } |
801 | |
802 | // Do not create shadow stacks for intrinsics/known lib funcs. |
803 | if (Function *Fn = CI.getCalledFunction()) { |
804 | LibFunc LFunc; |
805 | if (Fn->isIntrinsic() || TLI.getLibFunc(FDecl: *Fn, F&: LFunc)) |
806 | return; |
807 | } |
808 | |
809 | // Set the shadow stack tag. |
810 | Builder.CreateStore(Val: CI.getCalledOperand(), Ptr: NsanShadowArgsTag); |
811 | TypeSize ShadowArgsOffsetBytes = TypeSize::getFixed(ExactSize: 0); |
812 | |
813 | unsigned ShadowArgId = 0; |
814 | for (const Value *Arg : CI.operands()) { |
815 | Type *VT = Arg->getType(); |
816 | Type *ExtendedVT = Config.getExtendedFPType(FT: VT); |
817 | if (ExtendedVT == nullptr) |
818 | continue; // Not an FT value. |
819 | Builder.CreateAlignedStore( |
820 | Val: ArgShadows[ShadowArgId++], |
821 | Ptr: Builder.CreateConstGEP2_64(Ty: NsanShadowArgsType, Ptr: NsanShadowArgsPtr, Idx0: 0, |
822 | Idx1: ShadowArgsOffsetBytes), |
823 | Align: Align(1), /*isVolatile=*/false); |
824 | TypeSize SlotSize = DL.getTypeStoreSize(Ty: ExtendedVT); |
825 | assert(!SlotSize.isScalable() && "unsupported" ); |
826 | ShadowArgsOffsetBytes += SlotSize; |
827 | } |
828 | } |
829 | |
830 | // Internal part of emitCheck(). Returns a value that indicates whether |
831 | // computation should continue with the shadow or resume by re-fextending the |
832 | // value. |
833 | enum class ContinuationType { // Keep in sync with runtime. |
834 | ContinueWithShadow = 0, |
835 | ResumeFromValue = 1, |
836 | }; |
837 | |
838 | Value *NumericalStabilitySanitizer::emitCheckInternal(Value *V, Value *ShadowV, |
839 | IRBuilder<> &Builder, |
840 | CheckLoc Loc) { |
841 | // Do not emit checks for constant values, this is redundant. |
842 | if (isa<Constant>(Val: V)) |
843 | return ConstantInt::get( |
844 | Ty: Builder.getInt32Ty(), |
845 | V: static_cast<int>(ContinuationType::ContinueWithShadow)); |
846 | |
847 | Type *Ty = V->getType(); |
848 | if (const auto VT = ftValueTypeFromType(FT: Ty)) |
849 | return Builder.CreateCall( |
850 | Callee: NsanCheckValue[*VT], |
851 | Args: {V, ShadowV, Loc.getType(C&: Context), Loc.getValue(IntptrTy, Builder)}); |
852 | |
853 | if (Ty->isVectorTy()) { |
854 | auto *VecTy = cast<VectorType>(Val: Ty); |
855 | // We currently skip scalable vector types in MappingConfig, |
856 | // thus we should not encounter any such types here. |
857 | assert(!VecTy->isScalableTy() && |
858 | "Scalable vector types are not supported yet" ); |
859 | Value *CheckResult = nullptr; |
860 | for (int I = 0, E = VecTy->getElementCount().getFixedValue(); I < E; ++I) { |
861 | // We resume if any element resumes. Another option would be to create a |
862 | // vector shuffle with the array of ContinueWithShadow, but that is too |
863 | // complex. |
864 | Value * = Builder.CreateExtractElement(Vec: V, Idx: I); |
865 | Value *ExtractShadowV = Builder.CreateExtractElement(Vec: ShadowV, Idx: I); |
866 | Value *ComponentCheckResult = |
867 | emitCheckInternal(V: ExtractV, ShadowV: ExtractShadowV, Builder, Loc); |
868 | CheckResult = CheckResult |
869 | ? Builder.CreateOr(LHS: CheckResult, RHS: ComponentCheckResult) |
870 | : ComponentCheckResult; |
871 | } |
872 | return CheckResult; |
873 | } |
874 | if (Ty->isArrayTy()) { |
875 | Value *CheckResult = nullptr; |
876 | for (auto I : seq(Size: Ty->getArrayNumElements())) { |
877 | Value * = Builder.CreateExtractElement(Vec: V, Idx: I); |
878 | Value *ExtractShadowV = Builder.CreateExtractElement(Vec: ShadowV, Idx: I); |
879 | Value *ComponentCheckResult = |
880 | emitCheckInternal(V: ExtractV, ShadowV: ExtractShadowV, Builder, Loc); |
881 | CheckResult = CheckResult |
882 | ? Builder.CreateOr(LHS: CheckResult, RHS: ComponentCheckResult) |
883 | : ComponentCheckResult; |
884 | } |
885 | return CheckResult; |
886 | } |
887 | if (Ty->isStructTy()) { |
888 | Value *CheckResult = nullptr; |
889 | for (auto I : seq(Size: Ty->getStructNumElements())) { |
890 | if (Config.getExtendedFPType(FT: Ty->getStructElementType(N: I)) == nullptr) |
891 | continue; // Only check FT values. |
892 | Value * = Builder.CreateExtractValue(Agg: V, Idxs: I); |
893 | Value *ExtractShadowV = Builder.CreateExtractElement(Vec: ShadowV, Idx: I); |
894 | Value *ComponentCheckResult = |
895 | emitCheckInternal(V: ExtractV, ShadowV: ExtractShadowV, Builder, Loc); |
896 | CheckResult = CheckResult |
897 | ? Builder.CreateOr(LHS: CheckResult, RHS: ComponentCheckResult) |
898 | : ComponentCheckResult; |
899 | } |
900 | if (!CheckResult) |
901 | return ConstantInt::get( |
902 | Ty: Builder.getInt32Ty(), |
903 | V: static_cast<int>(ContinuationType::ContinueWithShadow)); |
904 | return CheckResult; |
905 | } |
906 | |
907 | llvm_unreachable("not implemented" ); |
908 | } |
909 | |
910 | // Inserts a runtime check of V against its shadow value ShadowV. |
911 | // We check values whenever they escape: on return, call, stores, and |
912 | // insertvalue. |
913 | // Returns the shadow value that should be used to continue the computations, |
914 | // depending on the answer from the runtime. |
915 | // TODO: Should we check on select ? phi ? |
916 | Value *NumericalStabilitySanitizer::emitCheck(Value *V, Value *ShadowV, |
917 | IRBuilder<> &Builder, |
918 | CheckLoc Loc) { |
919 | // Do not emit checks for constant values, this is redundant. |
920 | if (isa<Constant>(Val: V)) |
921 | return ShadowV; |
922 | |
923 | if (Instruction *Inst = dyn_cast<Instruction>(Val: V)) { |
924 | Function *F = Inst->getFunction(); |
925 | if (CheckFunctionsFilter && !CheckFunctionsFilter->match(String: F->getName())) { |
926 | return ShadowV; |
927 | } |
928 | } |
929 | |
930 | Value *CheckResult = emitCheckInternal(V, ShadowV, Builder, Loc); |
931 | Value *ICmpEQ = Builder.CreateICmpEQ( |
932 | LHS: CheckResult, |
933 | RHS: ConstantInt::get(Ty: Builder.getInt32Ty(), |
934 | V: static_cast<int>(ContinuationType::ResumeFromValue))); |
935 | return Builder.CreateSelect( |
936 | C: ICmpEQ, True: Builder.CreateFPExt(V, DestTy: Config.getExtendedFPType(FT: V->getType())), |
937 | False: ShadowV); |
938 | } |
939 | |
940 | // Inserts a check that fcmp on shadow values are consistent with that on base |
941 | // values. |
942 | void NumericalStabilitySanitizer::emitFCmpCheck(FCmpInst &FCmp, |
943 | const ValueToShadowMap &Map) { |
944 | if (!ClInstrumentFCmp) |
945 | return; |
946 | |
947 | Function *F = FCmp.getFunction(); |
948 | if (CheckFunctionsFilter && !CheckFunctionsFilter->match(String: F->getName())) |
949 | return; |
950 | |
951 | Value *LHS = FCmp.getOperand(i_nocapture: 0); |
952 | if (Config.getExtendedFPType(FT: LHS->getType()) == nullptr) |
953 | return; |
954 | Value *RHS = FCmp.getOperand(i_nocapture: 1); |
955 | |
956 | // Split the basic block. On mismatch, we'll jump to the new basic block with |
957 | // a call to the runtime for error reporting. |
958 | BasicBlock *FCmpBB = FCmp.getParent(); |
959 | BasicBlock *NextBB = FCmpBB->splitBasicBlock(I: FCmp.getNextNode()); |
960 | // Remove the newly created terminator unconditional branch. |
961 | FCmpBB->back().eraseFromParent(); |
962 | BasicBlock *FailBB = |
963 | BasicBlock::Create(Context, Name: "" , Parent: FCmpBB->getParent(), InsertBefore: NextBB); |
964 | |
965 | // Create the shadow fcmp and comparison between the fcmps. |
966 | IRBuilder<> FCmpBuilder(FCmpBB); |
967 | FCmpBuilder.SetCurrentDebugLocation(FCmp.getDebugLoc()); |
968 | Value *ShadowLHS = Map.getShadow(V: LHS); |
969 | Value *ShadowRHS = Map.getShadow(V: RHS); |
970 | // See comment on ClTruncateFCmpEq. |
971 | if (FCmp.isEquality() && ClTruncateFCmpEq) { |
972 | Type *Ty = ShadowLHS->getType(); |
973 | ShadowLHS = FCmpBuilder.CreateFPExt( |
974 | V: FCmpBuilder.CreateFPTrunc(V: ShadowLHS, DestTy: LHS->getType()), DestTy: Ty); |
975 | ShadowRHS = FCmpBuilder.CreateFPExt( |
976 | V: FCmpBuilder.CreateFPTrunc(V: ShadowRHS, DestTy: RHS->getType()), DestTy: Ty); |
977 | } |
978 | Value *ShadowFCmp = |
979 | FCmpBuilder.CreateFCmp(P: FCmp.getPredicate(), LHS: ShadowLHS, RHS: ShadowRHS); |
980 | Value *OriginalAndShadowFcmpMatch = |
981 | FCmpBuilder.CreateICmpEQ(LHS: &FCmp, RHS: ShadowFCmp); |
982 | |
983 | if (OriginalAndShadowFcmpMatch->getType()->isVectorTy()) { |
984 | // If we have a vector type, `OriginalAndShadowFcmpMatch` is a vector of i1, |
985 | // where an element is true if the corresponding elements in original and |
986 | // shadow are the same. We want all elements to be 1. |
987 | OriginalAndShadowFcmpMatch = |
988 | FCmpBuilder.CreateAndReduce(Src: OriginalAndShadowFcmpMatch); |
989 | } |
990 | |
991 | // Use MDBuilder(*C).createLikelyBranchWeights() because "match" is the common |
992 | // case. |
993 | FCmpBuilder.CreateCondBr(Cond: OriginalAndShadowFcmpMatch, True: NextBB, False: FailBB, |
994 | BranchWeights: MDBuilder(Context).createLikelyBranchWeights()); |
995 | |
996 | // Fill in FailBB. |
997 | IRBuilder<> FailBuilder(FailBB); |
998 | FailBuilder.SetCurrentDebugLocation(FCmp.getDebugLoc()); |
999 | |
1000 | const auto EmitFailCall = [this, &FCmp, &FCmpBuilder, |
1001 | &FailBuilder](Value *L, Value *R, Value *ShadowL, |
1002 | Value *ShadowR, Value *Result, |
1003 | Value *ShadowResult) { |
1004 | Type *FT = L->getType(); |
1005 | FunctionCallee *Callee = nullptr; |
1006 | if (FT->isFloatTy()) { |
1007 | Callee = &(NsanFCmpFail[kFloat]); |
1008 | } else if (FT->isDoubleTy()) { |
1009 | Callee = &(NsanFCmpFail[kDouble]); |
1010 | } else if (FT->isX86_FP80Ty()) { |
1011 | // TODO: make NsanFCmpFailLongDouble work. |
1012 | Callee = &(NsanFCmpFail[kDouble]); |
1013 | L = FailBuilder.CreateFPTrunc(V: L, DestTy: Type::getDoubleTy(C&: Context)); |
1014 | R = FailBuilder.CreateFPTrunc(V: L, DestTy: Type::getDoubleTy(C&: Context)); |
1015 | } else { |
1016 | llvm_unreachable("not implemented" ); |
1017 | } |
1018 | FailBuilder.CreateCall(Callee: *Callee, Args: {L, R, ShadowL, ShadowR, |
1019 | ConstantInt::get(Ty: FCmpBuilder.getInt32Ty(), |
1020 | V: FCmp.getPredicate()), |
1021 | Result, ShadowResult}); |
1022 | }; |
1023 | if (LHS->getType()->isVectorTy()) { |
1024 | for (int I = 0, E = cast<VectorType>(Val: LHS->getType()) |
1025 | ->getElementCount() |
1026 | .getFixedValue(); |
1027 | I < E; ++I) { |
1028 | Value * = FailBuilder.CreateExtractElement(Vec: LHS, Idx: I); |
1029 | Value * = FailBuilder.CreateExtractElement(Vec: RHS, Idx: I); |
1030 | Value * = FailBuilder.CreateExtractElement(Vec: ShadowLHS, Idx: I); |
1031 | Value * = FailBuilder.CreateExtractElement(Vec: ShadowRHS, Idx: I); |
1032 | Value * = FailBuilder.CreateExtractElement(Vec: &FCmp, Idx: I); |
1033 | Value *ExtractShadowFCmp = |
1034 | FailBuilder.CreateExtractElement(Vec: ShadowFCmp, Idx: I); |
1035 | EmitFailCall(ExtractLHS, ExtractRHS, ExtractShaodwLHS, ExtractShaodwRHS, |
1036 | ExtractFCmp, ExtractShadowFCmp); |
1037 | } |
1038 | } else { |
1039 | EmitFailCall(LHS, RHS, ShadowLHS, ShadowRHS, &FCmp, ShadowFCmp); |
1040 | } |
1041 | FailBuilder.CreateBr(Dest: NextBB); |
1042 | |
1043 | ++NumInstrumentedFCmp; |
1044 | } |
1045 | |
1046 | // Creates a shadow phi value for any phi that defines a value of FT type. |
1047 | PHINode *NumericalStabilitySanitizer::maybeCreateShadowPhi( |
1048 | PHINode &Phi, const TargetLibraryInfo &TLI) { |
1049 | Type *VT = Phi.getType(); |
1050 | Type *ExtendedVT = Config.getExtendedFPType(FT: VT); |
1051 | if (ExtendedVT == nullptr) |
1052 | return nullptr; // Not an FT value. |
1053 | // The phi operands are shadow values and are not available when the phi is |
1054 | // created. They will be populated in a final phase, once all shadow values |
1055 | // have been created. |
1056 | PHINode *Shadow = PHINode::Create(Ty: ExtendedVT, NumReservedValues: Phi.getNumIncomingValues()); |
1057 | Shadow->insertAfter(InsertPos: &Phi); |
1058 | return Shadow; |
1059 | } |
1060 | |
1061 | Value *NumericalStabilitySanitizer::handleLoad(LoadInst &Load, Type *VT, |
1062 | Type *ExtendedVT) { |
1063 | IRBuilder<> Builder(Load.getNextNode()); |
1064 | Builder.SetCurrentDebugLocation(Load.getDebugLoc()); |
1065 | if (addrPointsToConstantData(Addr: Load.getPointerOperand())) { |
1066 | // No need to look into the shadow memory, the value is a constant. Just |
1067 | // convert from FT to 2FT. |
1068 | return Builder.CreateFPExt(V: &Load, DestTy: ExtendedVT); |
1069 | } |
1070 | |
1071 | // if (%shadowptr == &) |
1072 | // %shadow = fpext %v |
1073 | // else |
1074 | // %shadow = load (ptrcast %shadow_ptr)) |
1075 | // Considered options here: |
1076 | // - Have `NsanGetShadowPtrForLoad` return a fixed address |
1077 | // &__nsan_unknown_value_shadow_address that is valid to load from, and |
1078 | // use a select. This has the advantage that the generated IR is simpler. |
1079 | // - Have `NsanGetShadowPtrForLoad` return nullptr. Because `select` does |
1080 | // not short-circuit, dereferencing the returned pointer is no longer an |
1081 | // option, have to split and create a separate basic block. This has the |
1082 | // advantage of being easier to debug because it crashes if we ever mess |
1083 | // up. |
1084 | |
1085 | const auto Extents = getMemoryExtentsOrDie(FT: VT); |
1086 | Value *ShadowPtr = Builder.CreateCall( |
1087 | Callee: NsanGetShadowPtrForLoad[Extents.ValueType], |
1088 | Args: {Load.getPointerOperand(), ConstantInt::get(Ty: IntptrTy, V: Extents.NumElts)}); |
1089 | ++NumInstrumentedFTLoads; |
1090 | |
1091 | // Split the basic block. |
1092 | BasicBlock *LoadBB = Load.getParent(); |
1093 | BasicBlock *NextBB = LoadBB->splitBasicBlock(I: Builder.GetInsertPoint()); |
1094 | // Create the two options for creating the shadow value. |
1095 | BasicBlock *ShadowLoadBB = |
1096 | BasicBlock::Create(Context, Name: "" , Parent: LoadBB->getParent(), InsertBefore: NextBB); |
1097 | BasicBlock *FExtBB = |
1098 | BasicBlock::Create(Context, Name: "" , Parent: LoadBB->getParent(), InsertBefore: NextBB); |
1099 | |
1100 | // Replace the newly created terminator unconditional branch by a conditional |
1101 | // branch to one of the options. |
1102 | { |
1103 | LoadBB->back().eraseFromParent(); |
1104 | IRBuilder<> LoadBBBuilder(LoadBB); // The old builder has been invalidated. |
1105 | LoadBBBuilder.SetCurrentDebugLocation(Load.getDebugLoc()); |
1106 | LoadBBBuilder.CreateCondBr(Cond: LoadBBBuilder.CreateIsNull(Arg: ShadowPtr), True: FExtBB, |
1107 | False: ShadowLoadBB); |
1108 | } |
1109 | |
1110 | // Fill in ShadowLoadBB. |
1111 | IRBuilder<> ShadowLoadBBBuilder(ShadowLoadBB); |
1112 | ShadowLoadBBBuilder.SetCurrentDebugLocation(Load.getDebugLoc()); |
1113 | Value *ShadowLoad = ShadowLoadBBBuilder.CreateAlignedLoad( |
1114 | Ty: ExtendedVT, Ptr: ShadowPtr, Align: Align(1), isVolatile: Load.isVolatile()); |
1115 | if (ClCheckLoads) { |
1116 | ShadowLoad = emitCheck(V: &Load, ShadowV: ShadowLoad, Builder&: ShadowLoadBBBuilder, |
1117 | Loc: CheckLoc::makeLoad(Address: Load.getPointerOperand())); |
1118 | } |
1119 | ShadowLoadBBBuilder.CreateBr(Dest: NextBB); |
1120 | |
1121 | // Fill in FExtBB. |
1122 | IRBuilder<> FExtBBBuilder(FExtBB); |
1123 | FExtBBBuilder.SetCurrentDebugLocation(Load.getDebugLoc()); |
1124 | Value *FExt = FExtBBBuilder.CreateFPExt(V: &Load, DestTy: ExtendedVT); |
1125 | FExtBBBuilder.CreateBr(Dest: NextBB); |
1126 | |
1127 | // The shadow value come from any of the options. |
1128 | IRBuilder<> NextBBBuilder(&*NextBB->begin()); |
1129 | NextBBBuilder.SetCurrentDebugLocation(Load.getDebugLoc()); |
1130 | PHINode *ShadowPhi = NextBBBuilder.CreatePHI(Ty: ExtendedVT, NumReservedValues: 2); |
1131 | ShadowPhi->addIncoming(V: ShadowLoad, BB: ShadowLoadBB); |
1132 | ShadowPhi->addIncoming(V: FExt, BB: FExtBB); |
1133 | return ShadowPhi; |
1134 | } |
1135 | |
1136 | Value *NumericalStabilitySanitizer::handleTrunc(const FPTruncInst &Trunc, |
1137 | Type *VT, Type *ExtendedVT, |
1138 | const ValueToShadowMap &Map, |
1139 | IRBuilder<> &Builder) { |
1140 | Value *OrigSource = Trunc.getOperand(i_nocapture: 0); |
1141 | Type *OrigSourceTy = OrigSource->getType(); |
1142 | Type *ExtendedSourceTy = Config.getExtendedFPType(FT: OrigSourceTy); |
1143 | |
1144 | // When truncating: |
1145 | // - (A) If the source has a shadow, we truncate from the shadow, else we |
1146 | // truncate from the original source. |
1147 | // - (B) If the shadow of the source is larger than the shadow of the dest, |
1148 | // we still need a truncate. Else, the shadow of the source is the same |
1149 | // type as the shadow of the dest (because mappings are non-decreasing), so |
1150 | // we don't need to emit a truncate. |
1151 | // Examples, |
1152 | // with a mapping of {f32->f64;f64->f80;f80->f128} |
1153 | // fptrunc double %1 to float -> fptrunc x86_fp80 s(%1) to double |
1154 | // fptrunc x86_fp80 %1 to float -> fptrunc fp128 s(%1) to double |
1155 | // fptrunc fp128 %1 to float -> fptrunc fp128 %1 to double |
1156 | // fptrunc x86_fp80 %1 to double -> x86_fp80 s(%1) |
1157 | // fptrunc fp128 %1 to double -> fptrunc fp128 %1 to x86_fp80 |
1158 | // fptrunc fp128 %1 to x86_fp80 -> fp128 %1 |
1159 | // with a mapping of {f32->f64;f64->f128;f80->f128} |
1160 | // fptrunc double %1 to float -> fptrunc fp128 s(%1) to double |
1161 | // fptrunc x86_fp80 %1 to float -> fptrunc fp128 s(%1) to double |
1162 | // fptrunc fp128 %1 to float -> fptrunc fp128 %1 to double |
1163 | // fptrunc x86_fp80 %1 to double -> fp128 %1 |
1164 | // fptrunc fp128 %1 to double -> fp128 %1 |
1165 | // fptrunc fp128 %1 to x86_fp80 -> fp128 %1 |
1166 | // with a mapping of {f32->f32;f64->f32;f80->f64} |
1167 | // fptrunc double %1 to float -> float s(%1) |
1168 | // fptrunc x86_fp80 %1 to float -> fptrunc double s(%1) to float |
1169 | // fptrunc fp128 %1 to float -> fptrunc fp128 %1 to float |
1170 | // fptrunc x86_fp80 %1 to double -> fptrunc double s(%1) to float |
1171 | // fptrunc fp128 %1 to double -> fptrunc fp128 %1 to float |
1172 | // fptrunc fp128 %1 to x86_fp80 -> fptrunc fp128 %1 to double |
1173 | |
1174 | // See (A) above. |
1175 | Value *Source = ExtendedSourceTy ? Map.getShadow(V: OrigSource) : OrigSource; |
1176 | Type *SourceTy = ExtendedSourceTy ? ExtendedSourceTy : OrigSourceTy; |
1177 | // See (B) above. |
1178 | if (SourceTy == ExtendedVT) |
1179 | return Source; |
1180 | |
1181 | return Builder.CreateFPTrunc(V: Source, DestTy: ExtendedVT); |
1182 | } |
1183 | |
1184 | Value *NumericalStabilitySanitizer::handleExt(const FPExtInst &Ext, Type *VT, |
1185 | Type *ExtendedVT, |
1186 | const ValueToShadowMap &Map, |
1187 | IRBuilder<> &Builder) { |
1188 | Value *OrigSource = Ext.getOperand(i_nocapture: 0); |
1189 | Type *OrigSourceTy = OrigSource->getType(); |
1190 | Type *ExtendedSourceTy = Config.getExtendedFPType(FT: OrigSourceTy); |
1191 | // When extending: |
1192 | // - (A) If the source has a shadow, we extend from the shadow, else we |
1193 | // extend from the original source. |
1194 | // - (B) If the shadow of the dest is larger than the shadow of the source, |
1195 | // we still need an extend. Else, the shadow of the source is the same |
1196 | // type as the shadow of the dest (because mappings are non-decreasing), so |
1197 | // we don't need to emit an extend. |
1198 | // Examples, |
1199 | // with a mapping of {f32->f64;f64->f80;f80->f128} |
1200 | // fpext half %1 to float -> fpext half %1 to double |
1201 | // fpext half %1 to double -> fpext half %1 to x86_fp80 |
1202 | // fpext half %1 to x86_fp80 -> fpext half %1 to fp128 |
1203 | // fpext float %1 to double -> double s(%1) |
1204 | // fpext float %1 to x86_fp80 -> fpext double s(%1) to fp128 |
1205 | // fpext double %1 to x86_fp80 -> fpext x86_fp80 s(%1) to fp128 |
1206 | // with a mapping of {f32->f64;f64->f128;f80->f128} |
1207 | // fpext half %1 to float -> fpext half %1 to double |
1208 | // fpext half %1 to double -> fpext half %1 to fp128 |
1209 | // fpext half %1 to x86_fp80 -> fpext half %1 to fp128 |
1210 | // fpext float %1 to double -> fpext double s(%1) to fp128 |
1211 | // fpext float %1 to x86_fp80 -> fpext double s(%1) to fp128 |
1212 | // fpext double %1 to x86_fp80 -> fp128 s(%1) |
1213 | // with a mapping of {f32->f32;f64->f32;f80->f64} |
1214 | // fpext half %1 to float -> fpext half %1 to float |
1215 | // fpext half %1 to double -> fpext half %1 to float |
1216 | // fpext half %1 to x86_fp80 -> fpext half %1 to double |
1217 | // fpext float %1 to double -> s(%1) |
1218 | // fpext float %1 to x86_fp80 -> fpext float s(%1) to double |
1219 | // fpext double %1 to x86_fp80 -> fpext float s(%1) to double |
1220 | |
1221 | // See (A) above. |
1222 | Value *Source = ExtendedSourceTy ? Map.getShadow(V: OrigSource) : OrigSource; |
1223 | Type *SourceTy = ExtendedSourceTy ? ExtendedSourceTy : OrigSourceTy; |
1224 | // See (B) above. |
1225 | if (SourceTy == ExtendedVT) |
1226 | return Source; |
1227 | |
1228 | return Builder.CreateFPExt(V: Source, DestTy: ExtendedVT); |
1229 | } |
1230 | |
1231 | namespace { |
1232 | // TODO: This should be tablegen-ed. |
1233 | struct KnownIntrinsic { |
1234 | struct WidenedIntrinsic { |
1235 | const char *NarrowName; |
1236 | Intrinsic::ID ID; // wide id. |
1237 | using FnTypeFactory = FunctionType *(*)(LLVMContext &); |
1238 | FnTypeFactory MakeFnTy; |
1239 | }; |
1240 | |
1241 | static const char *get(LibFunc LFunc); |
1242 | |
1243 | // Given an intrinsic with an `FT` argument, try to find a wider intrinsic |
1244 | // that applies the same operation on the shadow argument. |
1245 | // Options are: |
1246 | // - pass in the ID and full function type, |
1247 | // - pass in the name, which includes the function type through mangling. |
1248 | static const WidenedIntrinsic *widen(StringRef Name); |
1249 | |
1250 | private: |
1251 | struct LFEntry { |
1252 | LibFunc LFunc; |
1253 | const char *IntrinsicName; |
1254 | }; |
1255 | static const LFEntry kLibfuncIntrinsics[]; |
1256 | |
1257 | static const WidenedIntrinsic kWidenedIntrinsics[]; |
1258 | }; |
1259 | } // namespace |
1260 | |
1261 | static FunctionType *makeDoubleDouble(LLVMContext &C) { |
1262 | return FunctionType::get(Result: Type::getDoubleTy(C), Params: {Type::getDoubleTy(C)}, isVarArg: false); |
1263 | } |
1264 | |
1265 | static FunctionType *makeX86FP80X86FP80(LLVMContext &C) { |
1266 | return FunctionType::get(Result: Type::getX86_FP80Ty(C), Params: {Type::getX86_FP80Ty(C)}, |
1267 | isVarArg: false); |
1268 | } |
1269 | |
1270 | static FunctionType *makeDoubleDoubleI32(LLVMContext &C) { |
1271 | return FunctionType::get(Result: Type::getDoubleTy(C), |
1272 | Params: {Type::getDoubleTy(C), Type::getInt32Ty(C)}, isVarArg: false); |
1273 | } |
1274 | |
1275 | static FunctionType *makeX86FP80X86FP80I32(LLVMContext &C) { |
1276 | return FunctionType::get(Result: Type::getX86_FP80Ty(C), |
1277 | Params: {Type::getX86_FP80Ty(C), Type::getInt32Ty(C)}, |
1278 | isVarArg: false); |
1279 | } |
1280 | |
1281 | static FunctionType *makeDoubleDoubleDouble(LLVMContext &C) { |
1282 | return FunctionType::get(Result: Type::getDoubleTy(C), |
1283 | Params: {Type::getDoubleTy(C), Type::getDoubleTy(C)}, isVarArg: false); |
1284 | } |
1285 | |
1286 | static FunctionType *makeX86FP80X86FP80X86FP80(LLVMContext &C) { |
1287 | return FunctionType::get(Result: Type::getX86_FP80Ty(C), |
1288 | Params: {Type::getX86_FP80Ty(C), Type::getX86_FP80Ty(C)}, |
1289 | isVarArg: false); |
1290 | } |
1291 | |
1292 | static FunctionType *makeDoubleDoubleDoubleDouble(LLVMContext &C) { |
1293 | return FunctionType::get( |
1294 | Result: Type::getDoubleTy(C), |
1295 | Params: {Type::getDoubleTy(C), Type::getDoubleTy(C), Type::getDoubleTy(C)}, |
1296 | isVarArg: false); |
1297 | } |
1298 | |
1299 | static FunctionType *makeX86FP80X86FP80X86FP80X86FP80(LLVMContext &C) { |
1300 | return FunctionType::get( |
1301 | Result: Type::getX86_FP80Ty(C), |
1302 | Params: {Type::getX86_FP80Ty(C), Type::getX86_FP80Ty(C), Type::getX86_FP80Ty(C)}, |
1303 | isVarArg: false); |
1304 | } |
1305 | |
1306 | const KnownIntrinsic::WidenedIntrinsic KnownIntrinsic::kWidenedIntrinsics[] = { |
1307 | // TODO: Right now we ignore vector intrinsics. |
1308 | // This is hard because we have to model the semantics of the intrinsics, |
1309 | // e.g. llvm.x86.sse2.min.sd means extract first element, min, insert back. |
1310 | // Intrinsics that take any non-vector FT types: |
1311 | // NOTE: Right now because of |
1312 | // https://github.com/llvm/llvm-project/issues/44744 |
1313 | // for f128 we need to use makeX86FP80X86FP80 (go to a lower precision and |
1314 | // come back). |
1315 | {.NarrowName: "llvm.sqrt.f32" , .ID: Intrinsic::sqrt, .MakeFnTy: makeDoubleDouble}, |
1316 | {.NarrowName: "llvm.sqrt.f64" , .ID: Intrinsic::sqrt, .MakeFnTy: makeX86FP80X86FP80}, |
1317 | {.NarrowName: "llvm.sqrt.f80" , .ID: Intrinsic::sqrt, .MakeFnTy: makeX86FP80X86FP80}, |
1318 | {.NarrowName: "llvm.powi.f32" , .ID: Intrinsic::powi, .MakeFnTy: makeDoubleDoubleI32}, |
1319 | {.NarrowName: "llvm.powi.f64" , .ID: Intrinsic::powi, .MakeFnTy: makeX86FP80X86FP80I32}, |
1320 | {.NarrowName: "llvm.powi.f80" , .ID: Intrinsic::powi, .MakeFnTy: makeX86FP80X86FP80I32}, |
1321 | {.NarrowName: "llvm.sin.f32" , .ID: Intrinsic::sin, .MakeFnTy: makeDoubleDouble}, |
1322 | {.NarrowName: "llvm.sin.f64" , .ID: Intrinsic::sin, .MakeFnTy: makeX86FP80X86FP80}, |
1323 | {.NarrowName: "llvm.sin.f80" , .ID: Intrinsic::sin, .MakeFnTy: makeX86FP80X86FP80}, |
1324 | {.NarrowName: "llvm.cos.f32" , .ID: Intrinsic::cos, .MakeFnTy: makeDoubleDouble}, |
1325 | {.NarrowName: "llvm.cos.f64" , .ID: Intrinsic::cos, .MakeFnTy: makeX86FP80X86FP80}, |
1326 | {.NarrowName: "llvm.cos.f80" , .ID: Intrinsic::cos, .MakeFnTy: makeX86FP80X86FP80}, |
1327 | {.NarrowName: "llvm.pow.f32" , .ID: Intrinsic::pow, .MakeFnTy: makeDoubleDoubleDouble}, |
1328 | {.NarrowName: "llvm.pow.f64" , .ID: Intrinsic::pow, .MakeFnTy: makeX86FP80X86FP80X86FP80}, |
1329 | {.NarrowName: "llvm.pow.f80" , .ID: Intrinsic::pow, .MakeFnTy: makeX86FP80X86FP80X86FP80}, |
1330 | {.NarrowName: "llvm.exp.f32" , .ID: Intrinsic::exp, .MakeFnTy: makeDoubleDouble}, |
1331 | {.NarrowName: "llvm.exp.f64" , .ID: Intrinsic::exp, .MakeFnTy: makeX86FP80X86FP80}, |
1332 | {.NarrowName: "llvm.exp.f80" , .ID: Intrinsic::exp, .MakeFnTy: makeX86FP80X86FP80}, |
1333 | {.NarrowName: "llvm.exp2.f32" , .ID: Intrinsic::exp2, .MakeFnTy: makeDoubleDouble}, |
1334 | {.NarrowName: "llvm.exp2.f64" , .ID: Intrinsic::exp2, .MakeFnTy: makeX86FP80X86FP80}, |
1335 | {.NarrowName: "llvm.exp2.f80" , .ID: Intrinsic::exp2, .MakeFnTy: makeX86FP80X86FP80}, |
1336 | {.NarrowName: "llvm.log.f32" , .ID: Intrinsic::log, .MakeFnTy: makeDoubleDouble}, |
1337 | {.NarrowName: "llvm.log.f64" , .ID: Intrinsic::log, .MakeFnTy: makeX86FP80X86FP80}, |
1338 | {.NarrowName: "llvm.log.f80" , .ID: Intrinsic::log, .MakeFnTy: makeX86FP80X86FP80}, |
1339 | {.NarrowName: "llvm.log10.f32" , .ID: Intrinsic::log10, .MakeFnTy: makeDoubleDouble}, |
1340 | {.NarrowName: "llvm.log10.f64" , .ID: Intrinsic::log10, .MakeFnTy: makeX86FP80X86FP80}, |
1341 | {.NarrowName: "llvm.log10.f80" , .ID: Intrinsic::log10, .MakeFnTy: makeX86FP80X86FP80}, |
1342 | {.NarrowName: "llvm.log2.f32" , .ID: Intrinsic::log2, .MakeFnTy: makeDoubleDouble}, |
1343 | {.NarrowName: "llvm.log2.f64" , .ID: Intrinsic::log2, .MakeFnTy: makeX86FP80X86FP80}, |
1344 | {.NarrowName: "llvm.log2.f80" , .ID: Intrinsic::log2, .MakeFnTy: makeX86FP80X86FP80}, |
1345 | {.NarrowName: "llvm.fma.f32" , .ID: Intrinsic::fma, .MakeFnTy: makeDoubleDoubleDoubleDouble}, |
1346 | |
1347 | {.NarrowName: "llvm.fmuladd.f32" , .ID: Intrinsic::fmuladd, .MakeFnTy: makeDoubleDoubleDoubleDouble}, |
1348 | |
1349 | {.NarrowName: "llvm.fma.f64" , .ID: Intrinsic::fma, .MakeFnTy: makeX86FP80X86FP80X86FP80X86FP80}, |
1350 | |
1351 | {.NarrowName: "llvm.fmuladd.f64" , .ID: Intrinsic::fma, .MakeFnTy: makeX86FP80X86FP80X86FP80X86FP80}, |
1352 | |
1353 | {.NarrowName: "llvm.fma.f80" , .ID: Intrinsic::fma, .MakeFnTy: makeX86FP80X86FP80X86FP80X86FP80}, |
1354 | {.NarrowName: "llvm.fabs.f32" , .ID: Intrinsic::fabs, .MakeFnTy: makeDoubleDouble}, |
1355 | {.NarrowName: "llvm.fabs.f64" , .ID: Intrinsic::fabs, .MakeFnTy: makeX86FP80X86FP80}, |
1356 | {.NarrowName: "llvm.fabs.f80" , .ID: Intrinsic::fabs, .MakeFnTy: makeX86FP80X86FP80}, |
1357 | {.NarrowName: "llvm.minnum.f32" , .ID: Intrinsic::minnum, .MakeFnTy: makeDoubleDoubleDouble}, |
1358 | {.NarrowName: "llvm.minnum.f64" , .ID: Intrinsic::minnum, .MakeFnTy: makeX86FP80X86FP80X86FP80}, |
1359 | {.NarrowName: "llvm.minnum.f80" , .ID: Intrinsic::minnum, .MakeFnTy: makeX86FP80X86FP80X86FP80}, |
1360 | {.NarrowName: "llvm.maxnum.f32" , .ID: Intrinsic::maxnum, .MakeFnTy: makeDoubleDoubleDouble}, |
1361 | {.NarrowName: "llvm.maxnum.f64" , .ID: Intrinsic::maxnum, .MakeFnTy: makeX86FP80X86FP80X86FP80}, |
1362 | {.NarrowName: "llvm.maxnum.f80" , .ID: Intrinsic::maxnum, .MakeFnTy: makeX86FP80X86FP80X86FP80}, |
1363 | {.NarrowName: "llvm.minimum.f32" , .ID: Intrinsic::minimum, .MakeFnTy: makeDoubleDoubleDouble}, |
1364 | {.NarrowName: "llvm.minimum.f64" , .ID: Intrinsic::minimum, .MakeFnTy: makeX86FP80X86FP80X86FP80}, |
1365 | {.NarrowName: "llvm.minimum.f80" , .ID: Intrinsic::minimum, .MakeFnTy: makeX86FP80X86FP80X86FP80}, |
1366 | {.NarrowName: "llvm.maximum.f32" , .ID: Intrinsic::maximum, .MakeFnTy: makeDoubleDoubleDouble}, |
1367 | {.NarrowName: "llvm.maximum.f64" , .ID: Intrinsic::maximum, .MakeFnTy: makeX86FP80X86FP80X86FP80}, |
1368 | {.NarrowName: "llvm.maximum.f80" , .ID: Intrinsic::maximum, .MakeFnTy: makeX86FP80X86FP80X86FP80}, |
1369 | {.NarrowName: "llvm.copysign.f32" , .ID: Intrinsic::copysign, .MakeFnTy: makeDoubleDoubleDouble}, |
1370 | {.NarrowName: "llvm.copysign.f64" , .ID: Intrinsic::copysign, .MakeFnTy: makeX86FP80X86FP80X86FP80}, |
1371 | {.NarrowName: "llvm.copysign.f80" , .ID: Intrinsic::copysign, .MakeFnTy: makeX86FP80X86FP80X86FP80}, |
1372 | {.NarrowName: "llvm.floor.f32" , .ID: Intrinsic::floor, .MakeFnTy: makeDoubleDouble}, |
1373 | {.NarrowName: "llvm.floor.f64" , .ID: Intrinsic::floor, .MakeFnTy: makeX86FP80X86FP80}, |
1374 | {.NarrowName: "llvm.floor.f80" , .ID: Intrinsic::floor, .MakeFnTy: makeX86FP80X86FP80}, |
1375 | {.NarrowName: "llvm.ceil.f32" , .ID: Intrinsic::ceil, .MakeFnTy: makeDoubleDouble}, |
1376 | {.NarrowName: "llvm.ceil.f64" , .ID: Intrinsic::ceil, .MakeFnTy: makeX86FP80X86FP80}, |
1377 | {.NarrowName: "llvm.ceil.f80" , .ID: Intrinsic::ceil, .MakeFnTy: makeX86FP80X86FP80}, |
1378 | {.NarrowName: "llvm.trunc.f32" , .ID: Intrinsic::trunc, .MakeFnTy: makeDoubleDouble}, |
1379 | {.NarrowName: "llvm.trunc.f64" , .ID: Intrinsic::trunc, .MakeFnTy: makeX86FP80X86FP80}, |
1380 | {.NarrowName: "llvm.trunc.f80" , .ID: Intrinsic::trunc, .MakeFnTy: makeX86FP80X86FP80}, |
1381 | {.NarrowName: "llvm.rint.f32" , .ID: Intrinsic::rint, .MakeFnTy: makeDoubleDouble}, |
1382 | {.NarrowName: "llvm.rint.f64" , .ID: Intrinsic::rint, .MakeFnTy: makeX86FP80X86FP80}, |
1383 | {.NarrowName: "llvm.rint.f80" , .ID: Intrinsic::rint, .MakeFnTy: makeX86FP80X86FP80}, |
1384 | {.NarrowName: "llvm.nearbyint.f32" , .ID: Intrinsic::nearbyint, .MakeFnTy: makeDoubleDouble}, |
1385 | {.NarrowName: "llvm.nearbyint.f64" , .ID: Intrinsic::nearbyint, .MakeFnTy: makeX86FP80X86FP80}, |
1386 | {.NarrowName: "llvm.nearbyin80f64" , .ID: Intrinsic::nearbyint, .MakeFnTy: makeX86FP80X86FP80}, |
1387 | {.NarrowName: "llvm.round.f32" , .ID: Intrinsic::round, .MakeFnTy: makeDoubleDouble}, |
1388 | {.NarrowName: "llvm.round.f64" , .ID: Intrinsic::round, .MakeFnTy: makeX86FP80X86FP80}, |
1389 | {.NarrowName: "llvm.round.f80" , .ID: Intrinsic::round, .MakeFnTy: makeX86FP80X86FP80}, |
1390 | {.NarrowName: "llvm.lround.f32" , .ID: Intrinsic::lround, .MakeFnTy: makeDoubleDouble}, |
1391 | {.NarrowName: "llvm.lround.f64" , .ID: Intrinsic::lround, .MakeFnTy: makeX86FP80X86FP80}, |
1392 | {.NarrowName: "llvm.lround.f80" , .ID: Intrinsic::lround, .MakeFnTy: makeX86FP80X86FP80}, |
1393 | {.NarrowName: "llvm.llround.f32" , .ID: Intrinsic::llround, .MakeFnTy: makeDoubleDouble}, |
1394 | {.NarrowName: "llvm.llround.f64" , .ID: Intrinsic::llround, .MakeFnTy: makeX86FP80X86FP80}, |
1395 | {.NarrowName: "llvm.llround.f80" , .ID: Intrinsic::llround, .MakeFnTy: makeX86FP80X86FP80}, |
1396 | {.NarrowName: "llvm.lrint.f32" , .ID: Intrinsic::lrint, .MakeFnTy: makeDoubleDouble}, |
1397 | {.NarrowName: "llvm.lrint.f64" , .ID: Intrinsic::lrint, .MakeFnTy: makeX86FP80X86FP80}, |
1398 | {.NarrowName: "llvm.lrint.f80" , .ID: Intrinsic::lrint, .MakeFnTy: makeX86FP80X86FP80}, |
1399 | {.NarrowName: "llvm.llrint.f32" , .ID: Intrinsic::llrint, .MakeFnTy: makeDoubleDouble}, |
1400 | {.NarrowName: "llvm.llrint.f64" , .ID: Intrinsic::llrint, .MakeFnTy: makeX86FP80X86FP80}, |
1401 | {.NarrowName: "llvm.llrint.f80" , .ID: Intrinsic::llrint, .MakeFnTy: makeX86FP80X86FP80}, |
1402 | }; |
1403 | |
1404 | const KnownIntrinsic::LFEntry KnownIntrinsic::kLibfuncIntrinsics[] = { |
1405 | {.LFunc: LibFunc_sqrtf, .IntrinsicName: "llvm.sqrt.f32" }, |
1406 | {.LFunc: LibFunc_sqrt, .IntrinsicName: "llvm.sqrt.f64" }, |
1407 | {.LFunc: LibFunc_sqrtl, .IntrinsicName: "llvm.sqrt.f80" }, |
1408 | {.LFunc: LibFunc_sinf, .IntrinsicName: "llvm.sin.f32" }, |
1409 | {.LFunc: LibFunc_sin, .IntrinsicName: "llvm.sin.f64" }, |
1410 | {.LFunc: LibFunc_sinl, .IntrinsicName: "llvm.sin.f80" }, |
1411 | {.LFunc: LibFunc_cosf, .IntrinsicName: "llvm.cos.f32" }, |
1412 | {.LFunc: LibFunc_cos, .IntrinsicName: "llvm.cos.f64" }, |
1413 | {.LFunc: LibFunc_cosl, .IntrinsicName: "llvm.cos.f80" }, |
1414 | {.LFunc: LibFunc_powf, .IntrinsicName: "llvm.pow.f32" }, |
1415 | {.LFunc: LibFunc_pow, .IntrinsicName: "llvm.pow.f64" }, |
1416 | {.LFunc: LibFunc_powl, .IntrinsicName: "llvm.pow.f80" }, |
1417 | {.LFunc: LibFunc_expf, .IntrinsicName: "llvm.exp.f32" }, |
1418 | {.LFunc: LibFunc_exp, .IntrinsicName: "llvm.exp.f64" }, |
1419 | {.LFunc: LibFunc_expl, .IntrinsicName: "llvm.exp.f80" }, |
1420 | {.LFunc: LibFunc_exp2f, .IntrinsicName: "llvm.exp2.f32" }, |
1421 | {.LFunc: LibFunc_exp2, .IntrinsicName: "llvm.exp2.f64" }, |
1422 | {.LFunc: LibFunc_exp2l, .IntrinsicName: "llvm.exp2.f80" }, |
1423 | {.LFunc: LibFunc_logf, .IntrinsicName: "llvm.log.f32" }, |
1424 | {.LFunc: LibFunc_log, .IntrinsicName: "llvm.log.f64" }, |
1425 | {.LFunc: LibFunc_logl, .IntrinsicName: "llvm.log.f80" }, |
1426 | {.LFunc: LibFunc_log10f, .IntrinsicName: "llvm.log10.f32" }, |
1427 | {.LFunc: LibFunc_log10, .IntrinsicName: "llvm.log10.f64" }, |
1428 | {.LFunc: LibFunc_log10l, .IntrinsicName: "llvm.log10.f80" }, |
1429 | {.LFunc: LibFunc_log2f, .IntrinsicName: "llvm.log2.f32" }, |
1430 | {.LFunc: LibFunc_log2, .IntrinsicName: "llvm.log2.f64" }, |
1431 | {.LFunc: LibFunc_log2l, .IntrinsicName: "llvm.log2.f80" }, |
1432 | {.LFunc: LibFunc_fabsf, .IntrinsicName: "llvm.fabs.f32" }, |
1433 | {.LFunc: LibFunc_fabs, .IntrinsicName: "llvm.fabs.f64" }, |
1434 | {.LFunc: LibFunc_fabsl, .IntrinsicName: "llvm.fabs.f80" }, |
1435 | {.LFunc: LibFunc_copysignf, .IntrinsicName: "llvm.copysign.f32" }, |
1436 | {.LFunc: LibFunc_copysign, .IntrinsicName: "llvm.copysign.f64" }, |
1437 | {.LFunc: LibFunc_copysignl, .IntrinsicName: "llvm.copysign.f80" }, |
1438 | {.LFunc: LibFunc_floorf, .IntrinsicName: "llvm.floor.f32" }, |
1439 | {.LFunc: LibFunc_floor, .IntrinsicName: "llvm.floor.f64" }, |
1440 | {.LFunc: LibFunc_floorl, .IntrinsicName: "llvm.floor.f80" }, |
1441 | {.LFunc: LibFunc_fmaxf, .IntrinsicName: "llvm.maxnum.f32" }, |
1442 | {.LFunc: LibFunc_fmax, .IntrinsicName: "llvm.maxnum.f64" }, |
1443 | {.LFunc: LibFunc_fmaxl, .IntrinsicName: "llvm.maxnum.f80" }, |
1444 | {.LFunc: LibFunc_fminf, .IntrinsicName: "llvm.minnum.f32" }, |
1445 | {.LFunc: LibFunc_fmin, .IntrinsicName: "llvm.minnum.f64" }, |
1446 | {.LFunc: LibFunc_fminl, .IntrinsicName: "llvm.minnum.f80" }, |
1447 | {.LFunc: LibFunc_ceilf, .IntrinsicName: "llvm.ceil.f32" }, |
1448 | {.LFunc: LibFunc_ceil, .IntrinsicName: "llvm.ceil.f64" }, |
1449 | {.LFunc: LibFunc_ceill, .IntrinsicName: "llvm.ceil.f80" }, |
1450 | {.LFunc: LibFunc_truncf, .IntrinsicName: "llvm.trunc.f32" }, |
1451 | {.LFunc: LibFunc_trunc, .IntrinsicName: "llvm.trunc.f64" }, |
1452 | {.LFunc: LibFunc_truncl, .IntrinsicName: "llvm.trunc.f80" }, |
1453 | {.LFunc: LibFunc_rintf, .IntrinsicName: "llvm.rint.f32" }, |
1454 | {.LFunc: LibFunc_rint, .IntrinsicName: "llvm.rint.f64" }, |
1455 | {.LFunc: LibFunc_rintl, .IntrinsicName: "llvm.rint.f80" }, |
1456 | {.LFunc: LibFunc_nearbyintf, .IntrinsicName: "llvm.nearbyint.f32" }, |
1457 | {.LFunc: LibFunc_nearbyint, .IntrinsicName: "llvm.nearbyint.f64" }, |
1458 | {.LFunc: LibFunc_nearbyintl, .IntrinsicName: "llvm.nearbyint.f80" }, |
1459 | {.LFunc: LibFunc_roundf, .IntrinsicName: "llvm.round.f32" }, |
1460 | {.LFunc: LibFunc_round, .IntrinsicName: "llvm.round.f64" }, |
1461 | {.LFunc: LibFunc_roundl, .IntrinsicName: "llvm.round.f80" }, |
1462 | }; |
1463 | |
1464 | const char *KnownIntrinsic::get(LibFunc LFunc) { |
1465 | for (const auto &E : kLibfuncIntrinsics) { |
1466 | if (E.LFunc == LFunc) |
1467 | return E.IntrinsicName; |
1468 | } |
1469 | return nullptr; |
1470 | } |
1471 | |
1472 | const KnownIntrinsic::WidenedIntrinsic *KnownIntrinsic::widen(StringRef Name) { |
1473 | for (const auto &E : kWidenedIntrinsics) { |
1474 | if (E.NarrowName == Name) |
1475 | return &E; |
1476 | } |
1477 | return nullptr; |
1478 | } |
1479 | |
1480 | // Returns the name of the LLVM intrinsic corresponding to the given function. |
1481 | static const char *getIntrinsicFromLibfunc(Function &Fn, Type *VT, |
1482 | const TargetLibraryInfo &TLI) { |
1483 | LibFunc LFunc; |
1484 | if (!TLI.getLibFunc(FDecl: Fn, F&: LFunc)) |
1485 | return nullptr; |
1486 | |
1487 | if (const char *Name = KnownIntrinsic::get(LFunc)) |
1488 | return Name; |
1489 | |
1490 | LLVM_DEBUG(errs() << "TODO: LibFunc: " << TLI.getName(LFunc) << "\n" ); |
1491 | return nullptr; |
1492 | } |
1493 | |
1494 | // Try to handle a known function call. |
1495 | Value *NumericalStabilitySanitizer::maybeHandleKnownCallBase( |
1496 | CallBase &Call, Type *VT, Type *ExtendedVT, const TargetLibraryInfo &TLI, |
1497 | const ValueToShadowMap &Map, IRBuilder<> &Builder) { |
1498 | Function *Fn = Call.getCalledFunction(); |
1499 | if (Fn == nullptr) |
1500 | return nullptr; |
1501 | |
1502 | Intrinsic::ID WidenedId = Intrinsic::ID(); |
1503 | FunctionType *WidenedFnTy = nullptr; |
1504 | if (const auto ID = Fn->getIntrinsicID()) { |
1505 | const auto *Widened = KnownIntrinsic::widen(Name: Fn->getName()); |
1506 | if (Widened) { |
1507 | WidenedId = Widened->ID; |
1508 | WidenedFnTy = Widened->MakeFnTy(Context); |
1509 | } else { |
1510 | // If we don't know how to widen the intrinsic, we have no choice but to |
1511 | // call the non-wide version on a truncated shadow and extend again |
1512 | // afterwards. |
1513 | WidenedId = ID; |
1514 | WidenedFnTy = Fn->getFunctionType(); |
1515 | } |
1516 | } else if (const char *Name = getIntrinsicFromLibfunc(Fn&: *Fn, VT, TLI)) { |
1517 | // We might have a call to a library function that we can replace with a |
1518 | // wider Intrinsic. |
1519 | const auto *Widened = KnownIntrinsic::widen(Name); |
1520 | assert(Widened && "make sure KnownIntrinsic entries are consistent" ); |
1521 | WidenedId = Widened->ID; |
1522 | WidenedFnTy = Widened->MakeFnTy(Context); |
1523 | } else { |
1524 | // This is not a known library function or intrinsic. |
1525 | return nullptr; |
1526 | } |
1527 | |
1528 | // Check that the widened intrinsic is valid. |
1529 | SmallVector<Intrinsic::IITDescriptor, 8> Table; |
1530 | getIntrinsicInfoTableEntries(id: WidenedId, T&: Table); |
1531 | SmallVector<Type *, 4> ArgTys; |
1532 | ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; |
1533 | [[maybe_unused]] Intrinsic::MatchIntrinsicTypesResult MatchResult = |
1534 | Intrinsic::matchIntrinsicSignature(FTy: WidenedFnTy, Infos&: TableRef, ArgTys); |
1535 | assert(MatchResult == Intrinsic::MatchIntrinsicTypes_Match && |
1536 | "invalid widened intrinsic" ); |
1537 | // For known intrinsic functions, we create a second call to the same |
1538 | // intrinsic with a different type. |
1539 | SmallVector<Value *, 4> Args; |
1540 | // The last operand is the intrinsic itself, skip it. |
1541 | for (unsigned I = 0, E = Call.getNumOperands() - 1; I < E; ++I) { |
1542 | Value *Arg = Call.getOperand(i_nocapture: I); |
1543 | Type *OrigArgTy = Arg->getType(); |
1544 | Type *IntrinsicArgTy = WidenedFnTy->getParamType(i: I); |
1545 | if (OrigArgTy == IntrinsicArgTy) { |
1546 | Args.push_back(Elt: Arg); // The arg is passed as is. |
1547 | continue; |
1548 | } |
1549 | Type *ShadowArgTy = Config.getExtendedFPType(FT: Arg->getType()); |
1550 | assert(ShadowArgTy && |
1551 | "don't know how to get the shadow value for a non-FT" ); |
1552 | Value *Shadow = Map.getShadow(V: Arg); |
1553 | if (ShadowArgTy == IntrinsicArgTy) { |
1554 | // The shadow is the right type for the intrinsic. |
1555 | assert(Shadow->getType() == ShadowArgTy); |
1556 | Args.push_back(Elt: Shadow); |
1557 | continue; |
1558 | } |
1559 | // There is no intrinsic with his level of precision, truncate the shadow. |
1560 | Args.push_back(Elt: Builder.CreateFPTrunc(V: Shadow, DestTy: IntrinsicArgTy)); |
1561 | } |
1562 | Value *IntrinsicCall = Builder.CreateIntrinsic(ID: WidenedId, Types: ArgTys, Args); |
1563 | return WidenedFnTy->getReturnType() == ExtendedVT |
1564 | ? IntrinsicCall |
1565 | : Builder.CreateFPExt(V: IntrinsicCall, DestTy: ExtendedVT); |
1566 | } |
1567 | |
1568 | // Handle a CallBase, i.e. a function call, an inline asm sequence, or an |
1569 | // invoke. |
1570 | Value *NumericalStabilitySanitizer::handleCallBase(CallBase &Call, Type *VT, |
1571 | Type *ExtendedVT, |
1572 | const TargetLibraryInfo &TLI, |
1573 | const ValueToShadowMap &Map, |
1574 | IRBuilder<> &Builder) { |
1575 | // We cannot look inside inline asm, just expand the result again. |
1576 | if (Call.isInlineAsm()) |
1577 | return Builder.CreateFPExt(V: &Call, DestTy: ExtendedVT); |
1578 | |
1579 | // Intrinsics and library functions (e.g. sin, exp) are handled |
1580 | // specifically, because we know their semantics and can do better than |
1581 | // blindly calling them (e.g. compute the sinus in the actual shadow domain). |
1582 | if (Value *V = |
1583 | maybeHandleKnownCallBase(Call, VT, ExtendedVT, TLI, Map, Builder)) |
1584 | return V; |
1585 | |
1586 | // If the return tag matches that of the called function, read the extended |
1587 | // return value from the shadow ret ptr. Else, just extend the return value. |
1588 | Value *L = |
1589 | Builder.CreateLoad(Ty: IntptrTy, Ptr: NsanShadowRetTag, /*isVolatile=*/false); |
1590 | Value *HasShadowRet = Builder.CreateICmpEQ( |
1591 | LHS: L, RHS: Builder.CreatePtrToInt(V: Call.getCalledOperand(), DestTy: IntptrTy)); |
1592 | |
1593 | Value *ShadowRetVal = Builder.CreateLoad( |
1594 | Ty: ExtendedVT, |
1595 | Ptr: Builder.CreateConstGEP2_64(Ty: NsanShadowRetType, Ptr: NsanShadowRetPtr, Idx0: 0, Idx1: 0), |
1596 | /*isVolatile=*/false); |
1597 | Value *Shadow = Builder.CreateSelect(C: HasShadowRet, True: ShadowRetVal, |
1598 | False: Builder.CreateFPExt(V: &Call, DestTy: ExtendedVT)); |
1599 | ++NumInstrumentedFTCalls; |
1600 | return Shadow; |
1601 | } |
1602 | |
1603 | // Creates a shadow value for the given FT value. At that point all operands are |
1604 | // guaranteed to be available. |
1605 | Value *NumericalStabilitySanitizer::createShadowValueWithOperandsAvailable( |
1606 | Instruction &Inst, const TargetLibraryInfo &TLI, |
1607 | const ValueToShadowMap &Map) { |
1608 | Type *VT = Inst.getType(); |
1609 | Type *ExtendedVT = Config.getExtendedFPType(FT: VT); |
1610 | assert(ExtendedVT != nullptr && "trying to create a shadow for a non-FT" ); |
1611 | |
1612 | if (auto *Load = dyn_cast<LoadInst>(Val: &Inst)) |
1613 | return handleLoad(Load&: *Load, VT, ExtendedVT); |
1614 | |
1615 | if (auto *Call = dyn_cast<CallInst>(Val: &Inst)) { |
1616 | // Insert after the call. |
1617 | BasicBlock::iterator It(Inst); |
1618 | IRBuilder<> Builder(Call->getParent(), ++It); |
1619 | Builder.SetCurrentDebugLocation(Call->getDebugLoc()); |
1620 | return handleCallBase(Call&: *Call, VT, ExtendedVT, TLI, Map, Builder); |
1621 | } |
1622 | |
1623 | if (auto *Invoke = dyn_cast<InvokeInst>(Val: &Inst)) { |
1624 | // The Invoke terminates the basic block, create a new basic block in |
1625 | // between the successful invoke and the next block. |
1626 | BasicBlock *InvokeBB = Invoke->getParent(); |
1627 | BasicBlock *NextBB = Invoke->getNormalDest(); |
1628 | BasicBlock *NewBB = |
1629 | BasicBlock::Create(Context, Name: "" , Parent: NextBB->getParent(), InsertBefore: NextBB); |
1630 | Inst.replaceSuccessorWith(OldBB: NextBB, NewBB); |
1631 | |
1632 | IRBuilder<> Builder(NewBB); |
1633 | Builder.SetCurrentDebugLocation(Invoke->getDebugLoc()); |
1634 | Value *Shadow = handleCallBase(Call&: *Invoke, VT, ExtendedVT, TLI, Map, Builder); |
1635 | Builder.CreateBr(Dest: NextBB); |
1636 | NewBB->replaceSuccessorsPhiUsesWith(Old: InvokeBB, New: NewBB); |
1637 | return Shadow; |
1638 | } |
1639 | |
1640 | IRBuilder<> Builder(Inst.getNextNode()); |
1641 | Builder.SetCurrentDebugLocation(Inst.getDebugLoc()); |
1642 | |
1643 | if (auto *Trunc = dyn_cast<FPTruncInst>(Val: &Inst)) |
1644 | return handleTrunc(Trunc: *Trunc, VT, ExtendedVT, Map, Builder); |
1645 | if (auto *Ext = dyn_cast<FPExtInst>(Val: &Inst)) |
1646 | return handleExt(Ext: *Ext, VT, ExtendedVT, Map, Builder); |
1647 | |
1648 | if (auto *UnaryOp = dyn_cast<UnaryOperator>(Val: &Inst)) |
1649 | return Builder.CreateUnOp(Opc: UnaryOp->getOpcode(), |
1650 | V: Map.getShadow(V: UnaryOp->getOperand(i_nocapture: 0))); |
1651 | |
1652 | if (auto *BinOp = dyn_cast<BinaryOperator>(Val: &Inst)) |
1653 | return Builder.CreateBinOp(Opc: BinOp->getOpcode(), |
1654 | LHS: Map.getShadow(V: BinOp->getOperand(i_nocapture: 0)), |
1655 | RHS: Map.getShadow(V: BinOp->getOperand(i_nocapture: 1))); |
1656 | |
1657 | if (isa<UIToFPInst>(Val: &Inst) || isa<SIToFPInst>(Val: &Inst)) { |
1658 | auto *Cast = dyn_cast<CastInst>(Val: &Inst); |
1659 | return Builder.CreateCast(Op: Cast->getOpcode(), V: Cast->getOperand(i_nocapture: 0), |
1660 | DestTy: ExtendedVT); |
1661 | } |
1662 | |
1663 | if (auto *S = dyn_cast<SelectInst>(Val: &Inst)) |
1664 | return Builder.CreateSelect(C: S->getCondition(), |
1665 | True: Map.getShadow(V: S->getTrueValue()), |
1666 | False: Map.getShadow(V: S->getFalseValue())); |
1667 | |
1668 | if (auto * = dyn_cast<ExtractElementInst>(Val: &Inst)) |
1669 | return Builder.CreateExtractElement( |
1670 | Vec: Map.getShadow(V: Extract->getVectorOperand()), Idx: Extract->getIndexOperand()); |
1671 | |
1672 | if (auto *Insert = dyn_cast<InsertElementInst>(Val: &Inst)) |
1673 | return Builder.CreateInsertElement(Vec: Map.getShadow(V: Insert->getOperand(i_nocapture: 0)), |
1674 | NewElt: Map.getShadow(V: Insert->getOperand(i_nocapture: 1)), |
1675 | Idx: Insert->getOperand(i_nocapture: 2)); |
1676 | |
1677 | if (auto *Shuffle = dyn_cast<ShuffleVectorInst>(Val: &Inst)) |
1678 | return Builder.CreateShuffleVector(V1: Map.getShadow(V: Shuffle->getOperand(i_nocapture: 0)), |
1679 | V2: Map.getShadow(V: Shuffle->getOperand(i_nocapture: 1)), |
1680 | Mask: Shuffle->getShuffleMask()); |
1681 | // TODO: We could make aggregate object first class citizens. For now we |
1682 | // just extend the extracted value. |
1683 | if (auto * = dyn_cast<ExtractValueInst>(Val: &Inst)) |
1684 | return Builder.CreateFPExt(V: Extract, DestTy: ExtendedVT); |
1685 | |
1686 | if (auto *BC = dyn_cast<BitCastInst>(Val: &Inst)) |
1687 | return Builder.CreateFPExt(V: BC, DestTy: ExtendedVT); |
1688 | |
1689 | report_fatal_error(reason: "Unimplemented support for " + |
1690 | Twine(Inst.getOpcodeName())); |
1691 | } |
1692 | |
1693 | // Creates a shadow value for an instruction that defines a value of FT type. |
1694 | // FT operands that do not already have shadow values are created recursively. |
1695 | // The DFS is guaranteed to not loop as phis and arguments already have |
1696 | // shadows. |
1697 | void NumericalStabilitySanitizer::maybeCreateShadowValue( |
1698 | Instruction &Root, const TargetLibraryInfo &TLI, ValueToShadowMap &Map) { |
1699 | Type *VT = Root.getType(); |
1700 | Type *ExtendedVT = Config.getExtendedFPType(FT: VT); |
1701 | if (ExtendedVT == nullptr) |
1702 | return; // Not an FT value. |
1703 | |
1704 | if (Map.hasShadow(V: &Root)) |
1705 | return; // Shadow already exists. |
1706 | |
1707 | assert(!isa<PHINode>(Root) && "phi nodes should already have shadows" ); |
1708 | |
1709 | std::vector<Instruction *> DfsStack(1, &Root); |
1710 | while (!DfsStack.empty()) { |
1711 | // Ensure that all operands to the instruction have shadows before |
1712 | // proceeding. |
1713 | Instruction *I = DfsStack.back(); |
1714 | // The shadow for the instruction might have been created deeper in the DFS, |
1715 | // see `forward_use_with_two_uses` test. |
1716 | if (Map.hasShadow(V: I)) { |
1717 | DfsStack.pop_back(); |
1718 | continue; |
1719 | } |
1720 | |
1721 | bool MissingShadow = false; |
1722 | for (Value *Op : I->operands()) { |
1723 | Type *VT = Op->getType(); |
1724 | if (!Config.getExtendedFPType(FT: VT)) |
1725 | continue; // Not an FT value. |
1726 | if (Map.hasShadow(V: Op)) |
1727 | continue; // Shadow is already available. |
1728 | MissingShadow = true; |
1729 | DfsStack.push_back(x: cast<Instruction>(Val: Op)); |
1730 | } |
1731 | if (MissingShadow) |
1732 | continue; // Process operands and come back to this instruction later. |
1733 | |
1734 | // All operands have shadows. Create a shadow for the current value. |
1735 | Value *Shadow = createShadowValueWithOperandsAvailable(Inst&: *I, TLI, Map); |
1736 | Map.setShadow(V&: *I, Shadow&: *Shadow); |
1737 | DfsStack.pop_back(); |
1738 | } |
1739 | } |
1740 | |
1741 | // A floating-point store needs its value and type written to shadow memory. |
1742 | void NumericalStabilitySanitizer::propagateFTStore( |
1743 | StoreInst &Store, Type *VT, Type *ExtendedVT, const ValueToShadowMap &Map) { |
1744 | Value *StoredValue = Store.getValueOperand(); |
1745 | IRBuilder<> Builder(&Store); |
1746 | Builder.SetCurrentDebugLocation(Store.getDebugLoc()); |
1747 | const auto Extents = getMemoryExtentsOrDie(FT: VT); |
1748 | Value *ShadowPtr = Builder.CreateCall( |
1749 | Callee: NsanGetShadowPtrForStore[Extents.ValueType], |
1750 | Args: {Store.getPointerOperand(), ConstantInt::get(Ty: IntptrTy, V: Extents.NumElts)}); |
1751 | |
1752 | Value *StoredShadow = Map.getShadow(V: StoredValue); |
1753 | if (!Store.getParent()->getParent()->hasOptNone()) { |
1754 | // Only check stores when optimizing, because non-optimized code generates |
1755 | // too many stores to the stack, creating false positives. |
1756 | if (ClCheckStores) { |
1757 | StoredShadow = emitCheck(V: StoredValue, ShadowV: StoredShadow, Builder, |
1758 | Loc: CheckLoc::makeStore(Address: Store.getPointerOperand())); |
1759 | ++NumInstrumentedFTStores; |
1760 | } |
1761 | } |
1762 | |
1763 | Builder.CreateAlignedStore(Val: StoredShadow, Ptr: ShadowPtr, Align: Align(1), |
1764 | isVolatile: Store.isVolatile()); |
1765 | } |
1766 | |
1767 | // A non-ft store needs to invalidate shadow memory. Exceptions are: |
1768 | // - memory transfers of floating-point data through other pointer types (llvm |
1769 | // optimization passes transform `*(float*)a = *(float*)b` into |
1770 | // `*(i32*)a = *(i32*)b` ). These have the same semantics as memcpy. |
1771 | // - Writes of FT-sized constants. LLVM likes to do float stores as bitcasted |
1772 | // ints. Note that this is not really necessary because if the value is |
1773 | // unknown the framework will re-extend it on load anyway. It just felt |
1774 | // easier to debug tests with vectors of FTs. |
1775 | void NumericalStabilitySanitizer::propagateNonFTStore( |
1776 | StoreInst &Store, Type *VT, const ValueToShadowMap &Map) { |
1777 | Value *PtrOp = Store.getPointerOperand(); |
1778 | IRBuilder<> Builder(Store.getNextNode()); |
1779 | Builder.SetCurrentDebugLocation(Store.getDebugLoc()); |
1780 | Value *Dst = PtrOp; |
1781 | TypeSize SlotSize = DL.getTypeStoreSize(Ty: VT); |
1782 | assert(!SlotSize.isScalable() && "unsupported" ); |
1783 | const auto LoadSizeBytes = SlotSize.getFixedValue(); |
1784 | Value *ValueSize = Constant::getIntegerValue( |
1785 | Ty: IntptrTy, V: APInt(IntptrTy->getPrimitiveSizeInBits(), LoadSizeBytes)); |
1786 | |
1787 | ++NumInstrumentedNonFTStores; |
1788 | Value *StoredValue = Store.getValueOperand(); |
1789 | if (LoadInst *Load = dyn_cast<LoadInst>(Val: StoredValue)) { |
1790 | // TODO: Handle the case when the value is from a phi. |
1791 | // This is a memory transfer with memcpy semantics. Copy the type and |
1792 | // value from the source. Note that we cannot use __nsan_copy_values() |
1793 | // here, because that will not work when there is a write to memory in |
1794 | // between the load and the store, e.g. in the case of a swap. |
1795 | Type *ShadowTypeIntTy = Type::getIntNTy(C&: Context, N: 8 * LoadSizeBytes); |
1796 | Type *ShadowValueIntTy = |
1797 | Type::getIntNTy(C&: Context, N: 8 * kShadowScale * LoadSizeBytes); |
1798 | IRBuilder<> LoadBuilder(Load->getNextNode()); |
1799 | Builder.SetCurrentDebugLocation(Store.getDebugLoc()); |
1800 | Value *LoadSrc = Load->getPointerOperand(); |
1801 | // Read the shadow type and value at load time. The type has the same size |
1802 | // as the FT value, the value has twice its size. |
1803 | // TODO: cache them to avoid re-creating them when a load is used by |
1804 | // several stores. Maybe create them like the FT shadows when a load is |
1805 | // encountered. |
1806 | Value *RawShadowType = LoadBuilder.CreateAlignedLoad( |
1807 | Ty: ShadowTypeIntTy, |
1808 | Ptr: LoadBuilder.CreateCall(Callee: NsanGetRawShadowTypePtr, Args: {LoadSrc}), Align: Align(1), |
1809 | /*isVolatile=*/false); |
1810 | Value *RawShadowValue = LoadBuilder.CreateAlignedLoad( |
1811 | Ty: ShadowValueIntTy, |
1812 | Ptr: LoadBuilder.CreateCall(Callee: NsanGetRawShadowPtr, Args: {LoadSrc}), Align: Align(1), |
1813 | /*isVolatile=*/false); |
1814 | |
1815 | // Write back the shadow type and value at store time. |
1816 | Builder.CreateAlignedStore( |
1817 | Val: RawShadowType, Ptr: Builder.CreateCall(Callee: NsanGetRawShadowTypePtr, Args: {Dst}), |
1818 | Align: Align(1), |
1819 | /*isVolatile=*/false); |
1820 | Builder.CreateAlignedStore(Val: RawShadowValue, |
1821 | Ptr: Builder.CreateCall(Callee: NsanGetRawShadowPtr, Args: {Dst}), |
1822 | Align: Align(1), |
1823 | /*isVolatile=*/false); |
1824 | |
1825 | ++NumInstrumentedNonFTMemcpyStores; |
1826 | return; |
1827 | } |
1828 | // ClPropagateNonFTConstStoresAsFT is by default false. |
1829 | if (Constant *C; ClPropagateNonFTConstStoresAsFT && |
1830 | (C = dyn_cast<Constant>(Val: StoredValue))) { |
1831 | // This might be a fp constant stored as an int. Bitcast and store if it has |
1832 | // appropriate size. |
1833 | Type *BitcastTy = nullptr; // The FT type to bitcast to. |
1834 | if (auto *CInt = dyn_cast<ConstantInt>(Val: C)) { |
1835 | switch (CInt->getType()->getScalarSizeInBits()) { |
1836 | case 32: |
1837 | BitcastTy = Type::getFloatTy(C&: Context); |
1838 | break; |
1839 | case 64: |
1840 | BitcastTy = Type::getDoubleTy(C&: Context); |
1841 | break; |
1842 | case 80: |
1843 | BitcastTy = Type::getX86_FP80Ty(C&: Context); |
1844 | break; |
1845 | default: |
1846 | break; |
1847 | } |
1848 | } else if (auto *CDV = dyn_cast<ConstantDataVector>(Val: C)) { |
1849 | const int NumElements = |
1850 | cast<VectorType>(Val: CDV->getType())->getElementCount().getFixedValue(); |
1851 | switch (CDV->getType()->getScalarSizeInBits()) { |
1852 | case 32: |
1853 | BitcastTy = |
1854 | VectorType::get(ElementType: Type::getFloatTy(C&: Context), NumElements, Scalable: false); |
1855 | break; |
1856 | case 64: |
1857 | BitcastTy = |
1858 | VectorType::get(ElementType: Type::getDoubleTy(C&: Context), NumElements, Scalable: false); |
1859 | break; |
1860 | case 80: |
1861 | BitcastTy = |
1862 | VectorType::get(ElementType: Type::getX86_FP80Ty(C&: Context), NumElements, Scalable: false); |
1863 | break; |
1864 | default: |
1865 | break; |
1866 | } |
1867 | } |
1868 | if (BitcastTy) { |
1869 | const MemoryExtents Extents = getMemoryExtentsOrDie(FT: BitcastTy); |
1870 | Value *ShadowPtr = Builder.CreateCall( |
1871 | Callee: NsanGetShadowPtrForStore[Extents.ValueType], |
1872 | Args: {PtrOp, ConstantInt::get(Ty: IntptrTy, V: Extents.NumElts)}); |
1873 | // Bitcast the integer value to the appropriate FT type and extend to 2FT. |
1874 | Type *ExtVT = Config.getExtendedFPType(FT: BitcastTy); |
1875 | Value *Shadow = |
1876 | Builder.CreateFPExt(V: Builder.CreateBitCast(V: C, DestTy: BitcastTy), DestTy: ExtVT); |
1877 | Builder.CreateAlignedStore(Val: Shadow, Ptr: ShadowPtr, Align: Align(1), |
1878 | isVolatile: Store.isVolatile()); |
1879 | return; |
1880 | } |
1881 | } |
1882 | // All other stores just reset the shadow value to unknown. |
1883 | Builder.CreateCall(Callee: NsanSetValueUnknown, Args: {Dst, ValueSize}); |
1884 | } |
1885 | |
1886 | void NumericalStabilitySanitizer::propagateShadowValues( |
1887 | Instruction &Inst, const TargetLibraryInfo &TLI, |
1888 | const ValueToShadowMap &Map) { |
1889 | if (auto *Store = dyn_cast<StoreInst>(Val: &Inst)) { |
1890 | Value *StoredValue = Store->getValueOperand(); |
1891 | Type *VT = StoredValue->getType(); |
1892 | Type *ExtendedVT = Config.getExtendedFPType(FT: VT); |
1893 | if (ExtendedVT == nullptr) |
1894 | return propagateNonFTStore(Store&: *Store, VT, Map); |
1895 | return propagateFTStore(Store&: *Store, VT, ExtendedVT, Map); |
1896 | } |
1897 | |
1898 | if (auto *FCmp = dyn_cast<FCmpInst>(Val: &Inst)) { |
1899 | emitFCmpCheck(FCmp&: *FCmp, Map); |
1900 | return; |
1901 | } |
1902 | |
1903 | if (auto *CB = dyn_cast<CallBase>(Val: &Inst)) { |
1904 | maybeAddSuffixForNsanInterface(CI: CB); |
1905 | if (CallInst *CI = dyn_cast<CallInst>(Val: &Inst)) |
1906 | maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI: &TLI); |
1907 | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Val: &Inst)) { |
1908 | instrumentMemIntrinsic(MI); |
1909 | return; |
1910 | } |
1911 | populateShadowStack(CI&: *CB, TLI, Map); |
1912 | return; |
1913 | } |
1914 | |
1915 | if (auto *RetInst = dyn_cast<ReturnInst>(Val: &Inst)) { |
1916 | if (!ClCheckRet) |
1917 | return; |
1918 | |
1919 | Value *RV = RetInst->getReturnValue(); |
1920 | if (RV == nullptr) |
1921 | return; // This is a `ret void`. |
1922 | Type *VT = RV->getType(); |
1923 | Type *ExtendedVT = Config.getExtendedFPType(FT: VT); |
1924 | if (ExtendedVT == nullptr) |
1925 | return; // Not an FT ret. |
1926 | Value *RVShadow = Map.getShadow(V: RV); |
1927 | IRBuilder<> Builder(RetInst); |
1928 | |
1929 | RVShadow = emitCheck(V: RV, ShadowV: RVShadow, Builder, Loc: CheckLoc::makeRet()); |
1930 | ++NumInstrumentedFTRets; |
1931 | // Store tag. |
1932 | Value *FnAddr = |
1933 | Builder.CreatePtrToInt(V: Inst.getParent()->getParent(), DestTy: IntptrTy); |
1934 | Builder.CreateStore(Val: FnAddr, Ptr: NsanShadowRetTag); |
1935 | // Store value. |
1936 | Value *ShadowRetValPtr = |
1937 | Builder.CreateConstGEP2_64(Ty: NsanShadowRetType, Ptr: NsanShadowRetPtr, Idx0: 0, Idx1: 0); |
1938 | Builder.CreateStore(Val: RVShadow, Ptr: ShadowRetValPtr); |
1939 | return; |
1940 | } |
1941 | |
1942 | if (InsertValueInst *Insert = dyn_cast<InsertValueInst>(Val: &Inst)) { |
1943 | Value *V = Insert->getOperand(i_nocapture: 1); |
1944 | Type *VT = V->getType(); |
1945 | Type *ExtendedVT = Config.getExtendedFPType(FT: VT); |
1946 | if (ExtendedVT == nullptr) |
1947 | return; |
1948 | IRBuilder<> Builder(Insert); |
1949 | emitCheck(V, ShadowV: Map.getShadow(V), Builder, Loc: CheckLoc::makeInsert()); |
1950 | return; |
1951 | } |
1952 | } |
1953 | |
1954 | // Moves fast math flags from the function to individual instructions, and |
1955 | // removes the attribute from the function. |
1956 | // TODO: Make this controllable with a flag. |
1957 | static void moveFastMathFlags(Function &F, |
1958 | std::vector<Instruction *> &Instructions) { |
1959 | FastMathFlags FMF; |
1960 | #define MOVE_FLAG(attr, setter) \ |
1961 | if (F.getFnAttribute(attr).getValueAsString() == "true") { \ |
1962 | F.removeFnAttr(attr); \ |
1963 | FMF.set##setter(); \ |
1964 | } |
1965 | MOVE_FLAG("unsafe-fp-math" , Fast) |
1966 | MOVE_FLAG("no-infs-fp-math" , NoInfs) |
1967 | MOVE_FLAG("no-nans-fp-math" , NoNaNs) |
1968 | MOVE_FLAG("no-signed-zeros-fp-math" , NoSignedZeros) |
1969 | #undef MOVE_FLAG |
1970 | |
1971 | for (Instruction *I : Instructions) |
1972 | if (isa<FPMathOperator>(Val: I)) |
1973 | I->setFastMathFlags(FMF); |
1974 | } |
1975 | |
1976 | bool NumericalStabilitySanitizer::sanitizeFunction( |
1977 | Function &F, const TargetLibraryInfo &TLI) { |
1978 | if (!F.hasFnAttribute(Kind: Attribute::SanitizeNumericalStability)) |
1979 | return false; |
1980 | |
1981 | // This is required to prevent instrumenting call to __nsan_init from within |
1982 | // the module constructor. |
1983 | if (F.getName() == kNsanModuleCtorName) |
1984 | return false; |
1985 | SmallVector<Instruction *, 8> AllLoadsAndStores; |
1986 | SmallVector<Instruction *, 8> LocalLoadsAndStores; |
1987 | |
1988 | // The instrumentation maintains: |
1989 | // - for each IR value `v` of floating-point (or vector floating-point) type |
1990 | // FT, a shadow IR value `s(v)` with twice the precision 2FT (e.g. |
1991 | // double for float and f128 for double). |
1992 | // - A shadow memory, which stores `s(v)` for any `v` that has been stored, |
1993 | // along with a shadow memory tag, which stores whether the value in the |
1994 | // corresponding shadow memory is valid. Note that this might be |
1995 | // incorrect if a non-instrumented function stores to memory, or if |
1996 | // memory is stored to through a char pointer. |
1997 | // - A shadow stack, which holds `s(v)` for any floating-point argument `v` |
1998 | // of a call to an instrumented function. This allows |
1999 | // instrumented functions to retrieve the shadow values for their |
2000 | // arguments. |
2001 | // Because instrumented functions can be called from non-instrumented |
2002 | // functions, the stack needs to include a tag so that the instrumented |
2003 | // function knows whether shadow values are available for their |
2004 | // parameters (i.e. whether is was called by an instrumented function). |
2005 | // When shadow arguments are not available, they have to be recreated by |
2006 | // extending the precision of the non-shadow arguments to the non-shadow |
2007 | // value. Non-instrumented functions do not modify (or even know about) the |
2008 | // shadow stack. The shadow stack pointer is __nsan_shadow_args. The shadow |
2009 | // stack tag is __nsan_shadow_args_tag. The tag is any unique identifier |
2010 | // for the function (we use the address of the function). Both variables |
2011 | // are thread local. |
2012 | // Example: |
2013 | // calls shadow stack tag shadow stack |
2014 | // ======================================================================= |
2015 | // non_instrumented_1() 0 0 |
2016 | // | |
2017 | // v |
2018 | // instrumented_2(float a) 0 0 |
2019 | // | |
2020 | // v |
2021 | // instrumented_3(float b, double c) &instrumented_3 s(b),s(c) |
2022 | // | |
2023 | // v |
2024 | // instrumented_4(float d) &instrumented_4 s(d) |
2025 | // | |
2026 | // v |
2027 | // non_instrumented_5(float e) &non_instrumented_5 s(e) |
2028 | // | |
2029 | // v |
2030 | // instrumented_6(float f) &non_instrumented_5 s(e) |
2031 | // |
2032 | // On entry, instrumented_2 checks whether the tag corresponds to its |
2033 | // function ptr. |
2034 | // Note that functions reset the tag to 0 after reading shadow parameters. |
2035 | // This ensures that the function does not erroneously read invalid data if |
2036 | // called twice in the same stack, once from an instrumented function and |
2037 | // once from an uninstrumented one. For example, in the following example, |
2038 | // resetting the tag in (A) ensures that (B) does not reuse the same the |
2039 | // shadow arguments (which would be incorrect). |
2040 | // instrumented_1(float a) |
2041 | // | |
2042 | // v |
2043 | // instrumented_2(float b) (A) |
2044 | // | |
2045 | // v |
2046 | // non_instrumented_3() |
2047 | // | |
2048 | // v |
2049 | // instrumented_2(float b) (B) |
2050 | // |
2051 | // - A shadow return slot. Any function that returns a floating-point value |
2052 | // places a shadow return value in __nsan_shadow_ret_val. Again, because |
2053 | // we might be calling non-instrumented functions, this value is guarded |
2054 | // by __nsan_shadow_ret_tag marker indicating which instrumented function |
2055 | // placed the value in __nsan_shadow_ret_val, so that the caller can check |
2056 | // that this corresponds to the callee. Both variables are thread local. |
2057 | // |
2058 | // For example, in the following example, the instrumentation in |
2059 | // `instrumented_1` rejects the shadow return value from `instrumented_3` |
2060 | // because is is not tagged as expected (`&instrumented_3` instead of |
2061 | // `non_instrumented_2`): |
2062 | // |
2063 | // instrumented_1() |
2064 | // | |
2065 | // v |
2066 | // float non_instrumented_2() |
2067 | // | |
2068 | // v |
2069 | // float instrumented_3() |
2070 | // |
2071 | // Calls of known math functions (sin, cos, exp, ...) are duplicated to call |
2072 | // their overload on the shadow type. |
2073 | |
2074 | // Collect all instructions before processing, as creating shadow values |
2075 | // creates new instructions inside the function. |
2076 | std::vector<Instruction *> OriginalInstructions; |
2077 | for (BasicBlock &BB : F) |
2078 | for (Instruction &Inst : BB) |
2079 | OriginalInstructions.emplace_back(args: &Inst); |
2080 | |
2081 | moveFastMathFlags(F, Instructions&: OriginalInstructions); |
2082 | ValueToShadowMap ValueToShadow(Config); |
2083 | |
2084 | // In the first pass, we create shadow values for all FT function arguments |
2085 | // and all phis. This ensures that the DFS of the next pass does not have |
2086 | // any loops. |
2087 | std::vector<PHINode *> OriginalPhis; |
2088 | createShadowArguments(F, TLI, Map&: ValueToShadow); |
2089 | for (Instruction *I : OriginalInstructions) { |
2090 | if (PHINode *Phi = dyn_cast<PHINode>(Val: I)) { |
2091 | if (PHINode *Shadow = maybeCreateShadowPhi(Phi&: *Phi, TLI)) { |
2092 | OriginalPhis.push_back(x: Phi); |
2093 | ValueToShadow.setShadow(V&: *Phi, Shadow&: *Shadow); |
2094 | } |
2095 | } |
2096 | } |
2097 | |
2098 | // Create shadow values for all instructions creating FT values. |
2099 | for (Instruction *I : OriginalInstructions) |
2100 | maybeCreateShadowValue(Root&: *I, TLI, Map&: ValueToShadow); |
2101 | |
2102 | // Propagate shadow values across stores, calls and rets. |
2103 | for (Instruction *I : OriginalInstructions) |
2104 | propagateShadowValues(Inst&: *I, TLI, Map: ValueToShadow); |
2105 | |
2106 | // The last pass populates shadow phis with shadow values. |
2107 | for (PHINode *Phi : OriginalPhis) { |
2108 | PHINode *ShadowPhi = dyn_cast<PHINode>(Val: ValueToShadow.getShadow(V: Phi)); |
2109 | for (unsigned I : seq(Size: Phi->getNumOperands())) { |
2110 | Value *V = Phi->getOperand(i_nocapture: I); |
2111 | Value *Shadow = ValueToShadow.getShadow(V); |
2112 | BasicBlock *IncomingBB = Phi->getIncomingBlock(i: I); |
2113 | // For some instructions (e.g. invoke), we create the shadow in a separate |
2114 | // block, different from the block where the original value is created. |
2115 | // In that case, the shadow phi might need to refer to this block instead |
2116 | // of the original block. |
2117 | // Note that this can only happen for instructions as constant shadows are |
2118 | // always created in the same block. |
2119 | ShadowPhi->addIncoming(V: Shadow, BB: IncomingBB); |
2120 | } |
2121 | } |
2122 | |
2123 | return !ValueToShadow.empty(); |
2124 | } |
2125 | |
2126 | // Instrument the memory intrinsics so that they properly modify the shadow |
2127 | // memory. |
2128 | bool NumericalStabilitySanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { |
2129 | IRBuilder<> Builder(MI); |
2130 | if (auto *M = dyn_cast<MemSetInst>(Val: MI)) { |
2131 | Builder.CreateCall( |
2132 | Callee: NsanSetValueUnknown, |
2133 | Args: {/*Address=*/M->getArgOperand(i: 0), |
2134 | /*Size=*/Builder.CreateIntCast(V: M->getArgOperand(i: 2), DestTy: IntptrTy, isSigned: false)}); |
2135 | } else if (auto *M = dyn_cast<MemTransferInst>(Val: MI)) { |
2136 | Builder.CreateCall( |
2137 | Callee: NsanCopyValues, |
2138 | Args: {/*Destination=*/M->getArgOperand(i: 0), |
2139 | /*Source=*/M->getArgOperand(i: 1), |
2140 | /*Size=*/Builder.CreateIntCast(V: M->getArgOperand(i: 2), DestTy: IntptrTy, isSigned: false)}); |
2141 | } |
2142 | return false; |
2143 | } |
2144 | |
2145 | void NumericalStabilitySanitizer::maybeAddSuffixForNsanInterface(CallBase *CI) { |
2146 | Function *Fn = CI->getCalledFunction(); |
2147 | if (Fn == nullptr) |
2148 | return; |
2149 | |
2150 | if (!Fn->getName().starts_with(Prefix: "__nsan_" )) |
2151 | return; |
2152 | |
2153 | if (Fn->getName() == "__nsan_dump_shadow_mem" ) { |
2154 | assert(CI->arg_size() == 4 && |
2155 | "invalid prototype for __nsan_dump_shadow_mem" ); |
2156 | // __nsan_dump_shadow_mem requires an extra parameter with the dynamic |
2157 | // configuration: |
2158 | // (shadow_type_id_for_long_double << 16) | (shadow_type_id_for_double << 8) |
2159 | // | shadow_type_id_for_double |
2160 | const uint64_t shadow_value_type_ids = |
2161 | (static_cast<size_t>(Config.byValueType(VT: kLongDouble).getNsanTypeId()) |
2162 | << 16) | |
2163 | (static_cast<size_t>(Config.byValueType(VT: kDouble).getNsanTypeId()) |
2164 | << 8) | |
2165 | static_cast<size_t>(Config.byValueType(VT: kFloat).getNsanTypeId()); |
2166 | CI->setArgOperand(i: 3, v: ConstantInt::get(Ty: IntptrTy, V: shadow_value_type_ids)); |
2167 | } |
2168 | } |
2169 | |