1 | //===- ObjCARCOpts.cpp - ObjC ARC Optimization ----------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file |
10 | /// This file defines ObjC ARC optimizations. ARC stands for Automatic |
11 | /// Reference Counting and is a system for managing reference counts for objects |
12 | /// in Objective C. |
13 | /// |
14 | /// The optimizations performed include elimination of redundant, partially |
15 | /// redundant, and inconsequential reference count operations, elimination of |
16 | /// redundant weak pointer operations, and numerous minor simplifications. |
17 | /// |
18 | /// WARNING: This file knows about certain library functions. It recognizes them |
19 | /// by name, and hardwires knowledge of their semantics. |
20 | /// |
21 | /// WARNING: This file knows about how certain Objective-C library functions are |
22 | /// used. Naive LLVM IR transformations which would otherwise be |
23 | /// behavior-preserving may break these assumptions. |
24 | // |
25 | //===----------------------------------------------------------------------===// |
26 | |
27 | #include "ARCRuntimeEntryPoints.h" |
28 | #include "BlotMapVector.h" |
29 | #include "DependencyAnalysis.h" |
30 | #include "ObjCARC.h" |
31 | #include "ProvenanceAnalysis.h" |
32 | #include "PtrState.h" |
33 | #include "llvm/ADT/DenseMap.h" |
34 | #include "llvm/ADT/STLExtras.h" |
35 | #include "llvm/ADT/SmallPtrSet.h" |
36 | #include "llvm/ADT/SmallVector.h" |
37 | #include "llvm/ADT/Statistic.h" |
38 | #include "llvm/Analysis/AliasAnalysis.h" |
39 | #include "llvm/Analysis/ObjCARCAliasAnalysis.h" |
40 | #include "llvm/Analysis/ObjCARCAnalysisUtils.h" |
41 | #include "llvm/Analysis/ObjCARCInstKind.h" |
42 | #include "llvm/Analysis/ObjCARCUtil.h" |
43 | #include "llvm/IR/BasicBlock.h" |
44 | #include "llvm/IR/CFG.h" |
45 | #include "llvm/IR/Constant.h" |
46 | #include "llvm/IR/Constants.h" |
47 | #include "llvm/IR/DerivedTypes.h" |
48 | #include "llvm/IR/EHPersonalities.h" |
49 | #include "llvm/IR/Function.h" |
50 | #include "llvm/IR/GlobalVariable.h" |
51 | #include "llvm/IR/InstIterator.h" |
52 | #include "llvm/IR/InstrTypes.h" |
53 | #include "llvm/IR/Instruction.h" |
54 | #include "llvm/IR/Instructions.h" |
55 | #include "llvm/IR/LLVMContext.h" |
56 | #include "llvm/IR/Metadata.h" |
57 | #include "llvm/IR/Type.h" |
58 | #include "llvm/IR/User.h" |
59 | #include "llvm/IR/Value.h" |
60 | #include "llvm/Support/Casting.h" |
61 | #include "llvm/Support/CommandLine.h" |
62 | #include "llvm/Support/Compiler.h" |
63 | #include "llvm/Support/Debug.h" |
64 | #include "llvm/Support/ErrorHandling.h" |
65 | #include "llvm/Support/raw_ostream.h" |
66 | #include "llvm/Transforms/ObjCARC.h" |
67 | #include <cassert> |
68 | #include <iterator> |
69 | #include <utility> |
70 | |
71 | using namespace llvm; |
72 | using namespace llvm::objcarc; |
73 | |
74 | #define DEBUG_TYPE "objc-arc-opts" |
75 | |
76 | static cl::opt<unsigned> MaxPtrStates("arc-opt-max-ptr-states" , |
77 | cl::Hidden, |
78 | cl::desc("Maximum number of ptr states the optimizer keeps track of" ), |
79 | cl::init(Val: 4095)); |
80 | |
81 | /// \defgroup ARCUtilities Utility declarations/definitions specific to ARC. |
82 | /// @{ |
83 | |
84 | /// This is similar to GetRCIdentityRoot but it stops as soon |
85 | /// as it finds a value with multiple uses. |
86 | static const Value *FindSingleUseIdentifiedObject(const Value *Arg) { |
87 | // ConstantData (like ConstantPointerNull and UndefValue) is used across |
88 | // modules. It's never a single-use value. |
89 | if (isa<ConstantData>(Val: Arg)) |
90 | return nullptr; |
91 | |
92 | if (Arg->hasOneUse()) { |
93 | if (const BitCastInst *BC = dyn_cast<BitCastInst>(Val: Arg)) |
94 | return FindSingleUseIdentifiedObject(Arg: BC->getOperand(i_nocapture: 0)); |
95 | if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: Arg)) |
96 | if (GEP->hasAllZeroIndices()) |
97 | return FindSingleUseIdentifiedObject(Arg: GEP->getPointerOperand()); |
98 | if (IsForwarding(Class: GetBasicARCInstKind(V: Arg))) |
99 | return FindSingleUseIdentifiedObject( |
100 | Arg: cast<CallInst>(Val: Arg)->getArgOperand(i: 0)); |
101 | if (!IsObjCIdentifiedObject(V: Arg)) |
102 | return nullptr; |
103 | return Arg; |
104 | } |
105 | |
106 | // If we found an identifiable object but it has multiple uses, but they are |
107 | // trivial uses, we can still consider this to be a single-use value. |
108 | if (IsObjCIdentifiedObject(V: Arg)) { |
109 | for (const User *U : Arg->users()) |
110 | if (!U->use_empty() || GetRCIdentityRoot(V: U) != Arg) |
111 | return nullptr; |
112 | |
113 | return Arg; |
114 | } |
115 | |
116 | return nullptr; |
117 | } |
118 | |
119 | /// @} |
120 | /// |
121 | /// \defgroup ARCOpt ARC Optimization. |
122 | /// @{ |
123 | |
124 | // TODO: On code like this: |
125 | // |
126 | // objc_retain(%x) |
127 | // stuff_that_cannot_release() |
128 | // objc_autorelease(%x) |
129 | // stuff_that_cannot_release() |
130 | // objc_retain(%x) |
131 | // stuff_that_cannot_release() |
132 | // objc_autorelease(%x) |
133 | // |
134 | // The second retain and autorelease can be deleted. |
135 | |
136 | // TODO: It should be possible to delete |
137 | // objc_autoreleasePoolPush and objc_autoreleasePoolPop |
138 | // pairs if nothing is actually autoreleased between them. Also, autorelease |
139 | // calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code |
140 | // after inlining) can be turned into plain release calls. |
141 | |
142 | // TODO: Critical-edge splitting. If the optimial insertion point is |
143 | // a critical edge, the current algorithm has to fail, because it doesn't |
144 | // know how to split edges. It should be possible to make the optimizer |
145 | // think in terms of edges, rather than blocks, and then split critical |
146 | // edges on demand. |
147 | |
148 | // TODO: OptimizeSequences could generalized to be Interprocedural. |
149 | |
150 | // TODO: Recognize that a bunch of other objc runtime calls have |
151 | // non-escaping arguments and non-releasing arguments, and may be |
152 | // non-autoreleasing. |
153 | |
154 | // TODO: Sink autorelease calls as far as possible. Unfortunately we |
155 | // usually can't sink them past other calls, which would be the main |
156 | // case where it would be useful. |
157 | |
158 | // TODO: The pointer returned from objc_loadWeakRetained is retained. |
159 | |
160 | // TODO: Delete release+retain pairs (rare). |
161 | |
162 | STATISTIC(NumNoops, "Number of no-op objc calls eliminated" ); |
163 | STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated" ); |
164 | STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases" ); |
165 | STATISTIC(NumRets, "Number of return value forwarding " |
166 | "retain+autoreleases eliminated" ); |
167 | STATISTIC(NumRRs, "Number of retain+release paths eliminated" ); |
168 | STATISTIC(NumPeeps, "Number of calls peephole-optimized" ); |
169 | #ifndef NDEBUG |
170 | STATISTIC(NumRetainsBeforeOpt, |
171 | "Number of retains before optimization" ); |
172 | STATISTIC(NumReleasesBeforeOpt, |
173 | "Number of releases before optimization" ); |
174 | STATISTIC(NumRetainsAfterOpt, |
175 | "Number of retains after optimization" ); |
176 | STATISTIC(NumReleasesAfterOpt, |
177 | "Number of releases after optimization" ); |
178 | #endif |
179 | |
180 | namespace { |
181 | |
182 | /// Per-BasicBlock state. |
183 | class BBState { |
184 | /// The number of unique control paths from the entry which can reach this |
185 | /// block. |
186 | unsigned TopDownPathCount = 0; |
187 | |
188 | /// The number of unique control paths to exits from this block. |
189 | unsigned BottomUpPathCount = 0; |
190 | |
191 | /// The top-down traversal uses this to record information known about a |
192 | /// pointer at the bottom of each block. |
193 | BlotMapVector<const Value *, TopDownPtrState> PerPtrTopDown; |
194 | |
195 | /// The bottom-up traversal uses this to record information known about a |
196 | /// pointer at the top of each block. |
197 | BlotMapVector<const Value *, BottomUpPtrState> PerPtrBottomUp; |
198 | |
199 | /// Effective predecessors of the current block ignoring ignorable edges and |
200 | /// ignored backedges. |
201 | SmallVector<BasicBlock *, 2> Preds; |
202 | |
203 | /// Effective successors of the current block ignoring ignorable edges and |
204 | /// ignored backedges. |
205 | SmallVector<BasicBlock *, 2> Succs; |
206 | |
207 | public: |
208 | static const unsigned OverflowOccurredValue; |
209 | |
210 | BBState() = default; |
211 | |
212 | using top_down_ptr_iterator = decltype(PerPtrTopDown)::iterator; |
213 | using const_top_down_ptr_iterator = decltype(PerPtrTopDown)::const_iterator; |
214 | |
215 | top_down_ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); } |
216 | top_down_ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); } |
217 | const_top_down_ptr_iterator top_down_ptr_begin() const { |
218 | return PerPtrTopDown.begin(); |
219 | } |
220 | const_top_down_ptr_iterator top_down_ptr_end() const { |
221 | return PerPtrTopDown.end(); |
222 | } |
223 | bool hasTopDownPtrs() const { |
224 | return !PerPtrTopDown.empty(); |
225 | } |
226 | |
227 | unsigned top_down_ptr_list_size() const { |
228 | return std::distance(first: top_down_ptr_begin(), last: top_down_ptr_end()); |
229 | } |
230 | |
231 | using bottom_up_ptr_iterator = decltype(PerPtrBottomUp)::iterator; |
232 | using const_bottom_up_ptr_iterator = |
233 | decltype(PerPtrBottomUp)::const_iterator; |
234 | |
235 | bottom_up_ptr_iterator bottom_up_ptr_begin() { |
236 | return PerPtrBottomUp.begin(); |
237 | } |
238 | bottom_up_ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); } |
239 | const_bottom_up_ptr_iterator bottom_up_ptr_begin() const { |
240 | return PerPtrBottomUp.begin(); |
241 | } |
242 | const_bottom_up_ptr_iterator bottom_up_ptr_end() const { |
243 | return PerPtrBottomUp.end(); |
244 | } |
245 | bool hasBottomUpPtrs() const { |
246 | return !PerPtrBottomUp.empty(); |
247 | } |
248 | |
249 | unsigned bottom_up_ptr_list_size() const { |
250 | return std::distance(first: bottom_up_ptr_begin(), last: bottom_up_ptr_end()); |
251 | } |
252 | |
253 | /// Mark this block as being an entry block, which has one path from the |
254 | /// entry by definition. |
255 | void SetAsEntry() { TopDownPathCount = 1; } |
256 | |
257 | /// Mark this block as being an exit block, which has one path to an exit by |
258 | /// definition. |
259 | void SetAsExit() { BottomUpPathCount = 1; } |
260 | |
261 | /// Attempt to find the PtrState object describing the top down state for |
262 | /// pointer Arg. Return a new initialized PtrState describing the top down |
263 | /// state for Arg if we do not find one. |
264 | TopDownPtrState &getPtrTopDownState(const Value *Arg) { |
265 | return PerPtrTopDown[Arg]; |
266 | } |
267 | |
268 | /// Attempt to find the PtrState object describing the bottom up state for |
269 | /// pointer Arg. Return a new initialized PtrState describing the bottom up |
270 | /// state for Arg if we do not find one. |
271 | BottomUpPtrState &getPtrBottomUpState(const Value *Arg) { |
272 | return PerPtrBottomUp[Arg]; |
273 | } |
274 | |
275 | /// Attempt to find the PtrState object describing the bottom up state for |
276 | /// pointer Arg. |
277 | bottom_up_ptr_iterator findPtrBottomUpState(const Value *Arg) { |
278 | return PerPtrBottomUp.find(Key: Arg); |
279 | } |
280 | |
281 | void clearBottomUpPointers() { |
282 | PerPtrBottomUp.clear(); |
283 | } |
284 | |
285 | void clearTopDownPointers() { |
286 | PerPtrTopDown.clear(); |
287 | } |
288 | |
289 | void InitFromPred(const BBState &Other); |
290 | void InitFromSucc(const BBState &Other); |
291 | void MergePred(const BBState &Other); |
292 | void MergeSucc(const BBState &Other); |
293 | |
294 | /// Compute the number of possible unique paths from an entry to an exit |
295 | /// which pass through this block. This is only valid after both the |
296 | /// top-down and bottom-up traversals are complete. |
297 | /// |
298 | /// Returns true if overflow occurred. Returns false if overflow did not |
299 | /// occur. |
300 | bool GetAllPathCountWithOverflow(unsigned &PathCount) const { |
301 | if (TopDownPathCount == OverflowOccurredValue || |
302 | BottomUpPathCount == OverflowOccurredValue) |
303 | return true; |
304 | unsigned long long Product = |
305 | (unsigned long long)TopDownPathCount*BottomUpPathCount; |
306 | // Overflow occurred if any of the upper bits of Product are set or if all |
307 | // the lower bits of Product are all set. |
308 | return (Product >> 32) || |
309 | ((PathCount = Product) == OverflowOccurredValue); |
310 | } |
311 | |
312 | // Specialized CFG utilities. |
313 | using edge_iterator = SmallVectorImpl<BasicBlock *>::const_iterator; |
314 | |
315 | edge_iterator pred_begin() const { return Preds.begin(); } |
316 | edge_iterator pred_end() const { return Preds.end(); } |
317 | edge_iterator succ_begin() const { return Succs.begin(); } |
318 | edge_iterator succ_end() const { return Succs.end(); } |
319 | |
320 | void addSucc(BasicBlock *Succ) { Succs.push_back(Elt: Succ); } |
321 | void addPred(BasicBlock *Pred) { Preds.push_back(Elt: Pred); } |
322 | |
323 | bool isExit() const { return Succs.empty(); } |
324 | }; |
325 | |
326 | } // end anonymous namespace |
327 | |
328 | const unsigned BBState::OverflowOccurredValue = 0xffffffff; |
329 | |
330 | namespace llvm { |
331 | |
332 | raw_ostream &operator<<(raw_ostream &OS, |
333 | BBState &BBState) LLVM_ATTRIBUTE_UNUSED; |
334 | |
335 | } // end namespace llvm |
336 | |
337 | void BBState::InitFromPred(const BBState &Other) { |
338 | PerPtrTopDown = Other.PerPtrTopDown; |
339 | TopDownPathCount = Other.TopDownPathCount; |
340 | } |
341 | |
342 | void BBState::InitFromSucc(const BBState &Other) { |
343 | PerPtrBottomUp = Other.PerPtrBottomUp; |
344 | BottomUpPathCount = Other.BottomUpPathCount; |
345 | } |
346 | |
347 | /// The top-down traversal uses this to merge information about predecessors to |
348 | /// form the initial state for a new block. |
349 | void BBState::MergePred(const BBState &Other) { |
350 | if (TopDownPathCount == OverflowOccurredValue) |
351 | return; |
352 | |
353 | // Other.TopDownPathCount can be 0, in which case it is either dead or a |
354 | // loop backedge. Loop backedges are special. |
355 | TopDownPathCount += Other.TopDownPathCount; |
356 | |
357 | // In order to be consistent, we clear the top down pointers when by adding |
358 | // TopDownPathCount becomes OverflowOccurredValue even though "true" overflow |
359 | // has not occurred. |
360 | if (TopDownPathCount == OverflowOccurredValue) { |
361 | clearTopDownPointers(); |
362 | return; |
363 | } |
364 | |
365 | // Check for overflow. If we have overflow, fall back to conservative |
366 | // behavior. |
367 | if (TopDownPathCount < Other.TopDownPathCount) { |
368 | TopDownPathCount = OverflowOccurredValue; |
369 | clearTopDownPointers(); |
370 | return; |
371 | } |
372 | |
373 | // For each entry in the other set, if our set has an entry with the same key, |
374 | // merge the entries. Otherwise, copy the entry and merge it with an empty |
375 | // entry. |
376 | for (auto MI = Other.top_down_ptr_begin(), ME = Other.top_down_ptr_end(); |
377 | MI != ME; ++MI) { |
378 | auto Pair = PerPtrTopDown.insert(InsertPair: *MI); |
379 | Pair.first->second.Merge(Other: Pair.second ? TopDownPtrState() : MI->second, |
380 | /*TopDown=*/true); |
381 | } |
382 | |
383 | // For each entry in our set, if the other set doesn't have an entry with the |
384 | // same key, force it to merge with an empty entry. |
385 | for (auto MI = top_down_ptr_begin(), ME = top_down_ptr_end(); MI != ME; ++MI) |
386 | if (Other.PerPtrTopDown.find(Key: MI->first) == Other.PerPtrTopDown.end()) |
387 | MI->second.Merge(Other: TopDownPtrState(), /*TopDown=*/true); |
388 | } |
389 | |
390 | /// The bottom-up traversal uses this to merge information about successors to |
391 | /// form the initial state for a new block. |
392 | void BBState::MergeSucc(const BBState &Other) { |
393 | if (BottomUpPathCount == OverflowOccurredValue) |
394 | return; |
395 | |
396 | // Other.BottomUpPathCount can be 0, in which case it is either dead or a |
397 | // loop backedge. Loop backedges are special. |
398 | BottomUpPathCount += Other.BottomUpPathCount; |
399 | |
400 | // In order to be consistent, we clear the top down pointers when by adding |
401 | // BottomUpPathCount becomes OverflowOccurredValue even though "true" overflow |
402 | // has not occurred. |
403 | if (BottomUpPathCount == OverflowOccurredValue) { |
404 | clearBottomUpPointers(); |
405 | return; |
406 | } |
407 | |
408 | // Check for overflow. If we have overflow, fall back to conservative |
409 | // behavior. |
410 | if (BottomUpPathCount < Other.BottomUpPathCount) { |
411 | BottomUpPathCount = OverflowOccurredValue; |
412 | clearBottomUpPointers(); |
413 | return; |
414 | } |
415 | |
416 | // For each entry in the other set, if our set has an entry with the |
417 | // same key, merge the entries. Otherwise, copy the entry and merge |
418 | // it with an empty entry. |
419 | for (auto MI = Other.bottom_up_ptr_begin(), ME = Other.bottom_up_ptr_end(); |
420 | MI != ME; ++MI) { |
421 | auto Pair = PerPtrBottomUp.insert(InsertPair: *MI); |
422 | Pair.first->second.Merge(Other: Pair.second ? BottomUpPtrState() : MI->second, |
423 | /*TopDown=*/false); |
424 | } |
425 | |
426 | // For each entry in our set, if the other set doesn't have an entry |
427 | // with the same key, force it to merge with an empty entry. |
428 | for (auto MI = bottom_up_ptr_begin(), ME = bottom_up_ptr_end(); MI != ME; |
429 | ++MI) |
430 | if (Other.PerPtrBottomUp.find(Key: MI->first) == Other.PerPtrBottomUp.end()) |
431 | MI->second.Merge(Other: BottomUpPtrState(), /*TopDown=*/false); |
432 | } |
433 | |
434 | raw_ostream &llvm::operator<<(raw_ostream &OS, BBState &BBInfo) { |
435 | // Dump the pointers we are tracking. |
436 | OS << " TopDown State:\n" ; |
437 | if (!BBInfo.hasTopDownPtrs()) { |
438 | LLVM_DEBUG(dbgs() << " NONE!\n" ); |
439 | } else { |
440 | for (auto I = BBInfo.top_down_ptr_begin(), E = BBInfo.top_down_ptr_end(); |
441 | I != E; ++I) { |
442 | const PtrState &P = I->second; |
443 | OS << " Ptr: " << *I->first |
444 | << "\n KnownSafe: " << (P.IsKnownSafe()?"true" :"false" ) |
445 | << "\n ImpreciseRelease: " |
446 | << (P.IsTrackingImpreciseReleases()?"true" :"false" ) << "\n" |
447 | << " HasCFGHazards: " |
448 | << (P.IsCFGHazardAfflicted()?"true" :"false" ) << "\n" |
449 | << " KnownPositive: " |
450 | << (P.HasKnownPositiveRefCount()?"true" :"false" ) << "\n" |
451 | << " Seq: " |
452 | << P.GetSeq() << "\n" ; |
453 | } |
454 | } |
455 | |
456 | OS << " BottomUp State:\n" ; |
457 | if (!BBInfo.hasBottomUpPtrs()) { |
458 | LLVM_DEBUG(dbgs() << " NONE!\n" ); |
459 | } else { |
460 | for (auto I = BBInfo.bottom_up_ptr_begin(), E = BBInfo.bottom_up_ptr_end(); |
461 | I != E; ++I) { |
462 | const PtrState &P = I->second; |
463 | OS << " Ptr: " << *I->first |
464 | << "\n KnownSafe: " << (P.IsKnownSafe()?"true" :"false" ) |
465 | << "\n ImpreciseRelease: " |
466 | << (P.IsTrackingImpreciseReleases()?"true" :"false" ) << "\n" |
467 | << " HasCFGHazards: " |
468 | << (P.IsCFGHazardAfflicted()?"true" :"false" ) << "\n" |
469 | << " KnownPositive: " |
470 | << (P.HasKnownPositiveRefCount()?"true" :"false" ) << "\n" |
471 | << " Seq: " |
472 | << P.GetSeq() << "\n" ; |
473 | } |
474 | } |
475 | |
476 | return OS; |
477 | } |
478 | |
479 | namespace { |
480 | |
481 | /// The main ARC optimization pass. |
482 | class ObjCARCOpt { |
483 | bool Changed = false; |
484 | bool CFGChanged = false; |
485 | ProvenanceAnalysis PA; |
486 | |
487 | /// A cache of references to runtime entry point constants. |
488 | ARCRuntimeEntryPoints EP; |
489 | |
490 | /// A cache of MDKinds that can be passed into other functions to propagate |
491 | /// MDKind identifiers. |
492 | ARCMDKindCache MDKindCache; |
493 | |
494 | BundledRetainClaimRVs *BundledInsts = nullptr; |
495 | |
496 | /// A flag indicating whether the optimization that removes or moves |
497 | /// retain/release pairs should be performed. |
498 | bool DisableRetainReleasePairing = false; |
499 | |
500 | /// Flags which determine whether each of the interesting runtime functions |
501 | /// is in fact used in the current function. |
502 | unsigned UsedInThisFunction; |
503 | |
504 | DenseMap<BasicBlock *, ColorVector> BlockEHColors; |
505 | |
506 | bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV); |
507 | void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV, |
508 | ARCInstKind &Class); |
509 | void OptimizeIndividualCalls(Function &F); |
510 | |
511 | /// Optimize an individual call, optionally passing the |
512 | /// GetArgRCIdentityRoot if it has already been computed. |
513 | void OptimizeIndividualCallImpl(Function &F, Instruction *Inst, |
514 | ARCInstKind Class, const Value *Arg); |
515 | |
516 | /// Try to optimize an AutoreleaseRV with a RetainRV or UnsafeClaimRV. If the |
517 | /// optimization occurs, returns true to indicate that the caller should |
518 | /// assume the instructions are dead. |
519 | bool OptimizeInlinedAutoreleaseRVCall(Function &F, Instruction *Inst, |
520 | const Value *&Arg, ARCInstKind Class, |
521 | Instruction *AutoreleaseRV, |
522 | const Value *&AutoreleaseRVArg); |
523 | |
524 | void CheckForCFGHazards(const BasicBlock *BB, |
525 | DenseMap<const BasicBlock *, BBState> &BBStates, |
526 | BBState &MyStates) const; |
527 | bool VisitInstructionBottomUp(Instruction *Inst, BasicBlock *BB, |
528 | BlotMapVector<Value *, RRInfo> &Retains, |
529 | BBState &MyStates); |
530 | bool VisitBottomUp(BasicBlock *BB, |
531 | DenseMap<const BasicBlock *, BBState> &BBStates, |
532 | BlotMapVector<Value *, RRInfo> &Retains); |
533 | bool VisitInstructionTopDown( |
534 | Instruction *Inst, DenseMap<Value *, RRInfo> &Releases, BBState &MyStates, |
535 | const DenseMap<const Instruction *, SmallPtrSet<const Value *, 2>> |
536 | &ReleaseInsertPtToRCIdentityRoots); |
537 | bool VisitTopDown( |
538 | BasicBlock *BB, DenseMap<const BasicBlock *, BBState> &BBStates, |
539 | DenseMap<Value *, RRInfo> &Releases, |
540 | const DenseMap<const Instruction *, SmallPtrSet<const Value *, 2>> |
541 | &ReleaseInsertPtToRCIdentityRoots); |
542 | bool Visit(Function &F, DenseMap<const BasicBlock *, BBState> &BBStates, |
543 | BlotMapVector<Value *, RRInfo> &Retains, |
544 | DenseMap<Value *, RRInfo> &Releases); |
545 | |
546 | void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove, |
547 | BlotMapVector<Value *, RRInfo> &Retains, |
548 | DenseMap<Value *, RRInfo> &Releases, |
549 | SmallVectorImpl<Instruction *> &DeadInsts, Module *M); |
550 | |
551 | bool PairUpRetainsAndReleases(DenseMap<const BasicBlock *, BBState> &BBStates, |
552 | BlotMapVector<Value *, RRInfo> &Retains, |
553 | DenseMap<Value *, RRInfo> &Releases, Module *M, |
554 | Instruction *Retain, |
555 | SmallVectorImpl<Instruction *> &DeadInsts, |
556 | RRInfo &RetainsToMove, RRInfo &ReleasesToMove, |
557 | Value *Arg, bool KnownSafe, |
558 | bool &AnyPairsCompletelyEliminated); |
559 | |
560 | bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates, |
561 | BlotMapVector<Value *, RRInfo> &Retains, |
562 | DenseMap<Value *, RRInfo> &Releases, Module *M); |
563 | |
564 | void OptimizeWeakCalls(Function &F); |
565 | |
566 | bool OptimizeSequences(Function &F); |
567 | |
568 | void OptimizeReturns(Function &F); |
569 | |
570 | template <typename PredicateT> |
571 | static void cloneOpBundlesIf(CallBase *CI, |
572 | SmallVectorImpl<OperandBundleDef> &OpBundles, |
573 | PredicateT Predicate) { |
574 | for (unsigned I = 0, E = CI->getNumOperandBundles(); I != E; ++I) { |
575 | OperandBundleUse B = CI->getOperandBundleAt(Index: I); |
576 | if (Predicate(B)) |
577 | OpBundles.emplace_back(Args&: B); |
578 | } |
579 | } |
580 | |
581 | void addOpBundleForFunclet(BasicBlock *BB, |
582 | SmallVectorImpl<OperandBundleDef> &OpBundles) { |
583 | if (!BlockEHColors.empty()) { |
584 | const ColorVector &CV = BlockEHColors.find(Val: BB)->second; |
585 | assert(CV.size() > 0 && "Uncolored block" ); |
586 | for (BasicBlock *EHPadBB : CV) |
587 | if (auto *EHPad = dyn_cast<FuncletPadInst>(Val: EHPadBB->getFirstNonPHI())) { |
588 | OpBundles.emplace_back(Args: "funclet" , Args&: EHPad); |
589 | return; |
590 | } |
591 | } |
592 | } |
593 | |
594 | #ifndef NDEBUG |
595 | void GatherStatistics(Function &F, bool AfterOptimization = false); |
596 | #endif |
597 | |
598 | public: |
599 | void init(Function &F); |
600 | bool run(Function &F, AAResults &AA); |
601 | bool hasCFGChanged() const { return CFGChanged; } |
602 | }; |
603 | } // end anonymous namespace |
604 | |
605 | /// Turn objc_retainAutoreleasedReturnValue into objc_retain if the operand is |
606 | /// not a return value. |
607 | bool |
608 | ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) { |
609 | // Check for the argument being from an immediately preceding call or invoke. |
610 | const Value *Arg = GetArgRCIdentityRoot(Inst: RetainRV); |
611 | if (const Instruction *Call = dyn_cast<CallBase>(Val: Arg)) { |
612 | if (Call->getParent() == RetainRV->getParent()) { |
613 | BasicBlock::const_iterator I(Call); |
614 | ++I; |
615 | while (IsNoopInstruction(I: &*I)) |
616 | ++I; |
617 | if (&*I == RetainRV) |
618 | return false; |
619 | } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Val: Call)) { |
620 | BasicBlock *RetainRVParent = RetainRV->getParent(); |
621 | if (II->getNormalDest() == RetainRVParent) { |
622 | BasicBlock::const_iterator I = RetainRVParent->begin(); |
623 | while (IsNoopInstruction(I: &*I)) |
624 | ++I; |
625 | if (&*I == RetainRV) |
626 | return false; |
627 | } |
628 | } |
629 | } |
630 | |
631 | assert(!BundledInsts->contains(RetainRV) && |
632 | "a bundled retainRV's argument should be a call" ); |
633 | |
634 | // Turn it to a plain objc_retain. |
635 | Changed = true; |
636 | ++NumPeeps; |
637 | |
638 | LLVM_DEBUG(dbgs() << "Transforming objc_retainAutoreleasedReturnValue => " |
639 | "objc_retain since the operand is not a return value.\n" |
640 | "Old = " |
641 | << *RetainRV << "\n" ); |
642 | |
643 | Function *NewDecl = EP.get(kind: ARCRuntimeEntryPointKind::Retain); |
644 | cast<CallInst>(Val: RetainRV)->setCalledFunction(NewDecl); |
645 | |
646 | LLVM_DEBUG(dbgs() << "New = " << *RetainRV << "\n" ); |
647 | |
648 | return false; |
649 | } |
650 | |
651 | bool ObjCARCOpt::OptimizeInlinedAutoreleaseRVCall( |
652 | Function &F, Instruction *Inst, const Value *&Arg, ARCInstKind Class, |
653 | Instruction *AutoreleaseRV, const Value *&AutoreleaseRVArg) { |
654 | if (BundledInsts->contains(I: Inst)) |
655 | return false; |
656 | |
657 | // Must be in the same basic block. |
658 | assert(Inst->getParent() == AutoreleaseRV->getParent()); |
659 | |
660 | // Must operate on the same root. |
661 | Arg = GetArgRCIdentityRoot(Inst); |
662 | AutoreleaseRVArg = GetArgRCIdentityRoot(Inst: AutoreleaseRV); |
663 | if (Arg != AutoreleaseRVArg) { |
664 | // If there isn't an exact match, check if we have equivalent PHIs. |
665 | const PHINode *PN = dyn_cast<PHINode>(Val: Arg); |
666 | if (!PN) |
667 | return false; |
668 | |
669 | SmallVector<const Value *, 4> ArgUsers; |
670 | getEquivalentPHIs(PN: *PN, PHIList&: ArgUsers); |
671 | if (!llvm::is_contained(Range&: ArgUsers, Element: AutoreleaseRVArg)) |
672 | return false; |
673 | } |
674 | |
675 | // Okay, this is a match. Merge them. |
676 | ++NumPeeps; |
677 | LLVM_DEBUG(dbgs() << "Found inlined objc_autoreleaseReturnValue '" |
678 | << *AutoreleaseRV << "' paired with '" << *Inst << "'\n" ); |
679 | |
680 | // Delete the RV pair, starting with the AutoreleaseRV. |
681 | AutoreleaseRV->replaceAllUsesWith( |
682 | V: cast<CallInst>(Val: AutoreleaseRV)->getArgOperand(i: 0)); |
683 | Changed = true; |
684 | EraseInstruction(CI: AutoreleaseRV); |
685 | if (Class == ARCInstKind::RetainRV) { |
686 | // AutoreleaseRV and RetainRV cancel out. Delete the RetainRV. |
687 | Inst->replaceAllUsesWith(V: cast<CallInst>(Val: Inst)->getArgOperand(i: 0)); |
688 | EraseInstruction(CI: Inst); |
689 | return true; |
690 | } |
691 | |
692 | // UnsafeClaimRV is a frontend peephole for RetainRV + Release. Since the |
693 | // AutoreleaseRV and RetainRV cancel out, replace UnsafeClaimRV with Release. |
694 | assert(Class == ARCInstKind::UnsafeClaimRV); |
695 | Value *CallArg = cast<CallInst>(Val: Inst)->getArgOperand(i: 0); |
696 | CallInst *Release = |
697 | CallInst::Create(Func: EP.get(kind: ARCRuntimeEntryPointKind::Release), Args: CallArg, NameStr: "" , |
698 | InsertBefore: Inst->getIterator()); |
699 | assert(IsAlwaysTail(ARCInstKind::UnsafeClaimRV) && |
700 | "Expected UnsafeClaimRV to be safe to tail call" ); |
701 | Release->setTailCall(); |
702 | Inst->replaceAllUsesWith(V: CallArg); |
703 | EraseInstruction(CI: Inst); |
704 | |
705 | // Run the normal optimizations on Release. |
706 | OptimizeIndividualCallImpl(F, Inst: Release, Class: ARCInstKind::Release, Arg); |
707 | return true; |
708 | } |
709 | |
710 | /// Turn objc_autoreleaseReturnValue into objc_autorelease if the result is not |
711 | /// used as a return value. |
712 | void ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, |
713 | Instruction *AutoreleaseRV, |
714 | ARCInstKind &Class) { |
715 | // Check for a return of the pointer value. |
716 | const Value *Ptr = GetArgRCIdentityRoot(Inst: AutoreleaseRV); |
717 | |
718 | // If the argument is ConstantPointerNull or UndefValue, its other users |
719 | // aren't actually interesting to look at. |
720 | if (isa<ConstantData>(Val: Ptr)) |
721 | return; |
722 | |
723 | SmallVector<const Value *, 2> Users; |
724 | Users.push_back(Elt: Ptr); |
725 | |
726 | // Add PHIs that are equivalent to Ptr to Users. |
727 | if (const PHINode *PN = dyn_cast<PHINode>(Val: Ptr)) |
728 | getEquivalentPHIs(PN: *PN, PHIList&: Users); |
729 | |
730 | do { |
731 | Ptr = Users.pop_back_val(); |
732 | for (const User *U : Ptr->users()) { |
733 | if (isa<ReturnInst>(Val: U) || GetBasicARCInstKind(V: U) == ARCInstKind::RetainRV) |
734 | return; |
735 | if (isa<BitCastInst>(Val: U)) |
736 | Users.push_back(Elt: U); |
737 | } |
738 | } while (!Users.empty()); |
739 | |
740 | Changed = true; |
741 | ++NumPeeps; |
742 | |
743 | LLVM_DEBUG( |
744 | dbgs() << "Transforming objc_autoreleaseReturnValue => " |
745 | "objc_autorelease since its operand is not used as a return " |
746 | "value.\n" |
747 | "Old = " |
748 | << *AutoreleaseRV << "\n" ); |
749 | |
750 | CallInst *AutoreleaseRVCI = cast<CallInst>(Val: AutoreleaseRV); |
751 | Function *NewDecl = EP.get(kind: ARCRuntimeEntryPointKind::Autorelease); |
752 | AutoreleaseRVCI->setCalledFunction(NewDecl); |
753 | AutoreleaseRVCI->setTailCall(false); // Never tail call objc_autorelease. |
754 | Class = ARCInstKind::Autorelease; |
755 | |
756 | LLVM_DEBUG(dbgs() << "New: " << *AutoreleaseRV << "\n" ); |
757 | } |
758 | |
759 | /// Visit each call, one at a time, and make simplifications without doing any |
760 | /// additional analysis. |
761 | void ObjCARCOpt::OptimizeIndividualCalls(Function &F) { |
762 | LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeIndividualCalls ==\n" ); |
763 | // Reset all the flags in preparation for recomputing them. |
764 | UsedInThisFunction = 0; |
765 | |
766 | // Store any delayed AutoreleaseRV intrinsics, so they can be easily paired |
767 | // with RetainRV and UnsafeClaimRV. |
768 | Instruction *DelayedAutoreleaseRV = nullptr; |
769 | const Value *DelayedAutoreleaseRVArg = nullptr; |
770 | auto setDelayedAutoreleaseRV = [&](Instruction *AutoreleaseRV) { |
771 | assert(!DelayedAutoreleaseRV || !AutoreleaseRV); |
772 | DelayedAutoreleaseRV = AutoreleaseRV; |
773 | DelayedAutoreleaseRVArg = nullptr; |
774 | }; |
775 | auto optimizeDelayedAutoreleaseRV = [&]() { |
776 | if (!DelayedAutoreleaseRV) |
777 | return; |
778 | OptimizeIndividualCallImpl(F, Inst: DelayedAutoreleaseRV, |
779 | Class: ARCInstKind::AutoreleaseRV, |
780 | Arg: DelayedAutoreleaseRVArg); |
781 | setDelayedAutoreleaseRV(nullptr); |
782 | }; |
783 | auto shouldDelayAutoreleaseRV = [&](Instruction *NonARCInst) { |
784 | // Nothing to delay, but we may as well skip the logic below. |
785 | if (!DelayedAutoreleaseRV) |
786 | return true; |
787 | |
788 | // If we hit the end of the basic block we're not going to find an RV-pair. |
789 | // Stop delaying. |
790 | if (NonARCInst->isTerminator()) |
791 | return false; |
792 | |
793 | // Given the frontend rules for emitting AutoreleaseRV, RetainRV, and |
794 | // UnsafeClaimRV, it's probably safe to skip over even opaque function calls |
795 | // here since OptimizeInlinedAutoreleaseRVCall will confirm that they |
796 | // have the same RCIdentityRoot. However, what really matters is |
797 | // skipping instructions or intrinsics that the inliner could leave behind; |
798 | // be conservative for now and don't skip over opaque calls, which could |
799 | // potentially include other ARC calls. |
800 | auto *CB = dyn_cast<CallBase>(Val: NonARCInst); |
801 | if (!CB) |
802 | return true; |
803 | return CB->getIntrinsicID() != Intrinsic::not_intrinsic; |
804 | }; |
805 | |
806 | // Visit all objc_* calls in F. |
807 | for (inst_iterator I = inst_begin(F: &F), E = inst_end(F: &F); I != E; ) { |
808 | Instruction *Inst = &*I++; |
809 | |
810 | if (auto *CI = dyn_cast<CallInst>(Val: Inst)) |
811 | if (objcarc::hasAttachedCallOpBundle(CB: CI)) { |
812 | BundledInsts->insertRVCall(InsertPt: I->getIterator(), AnnotatedCall: CI); |
813 | Changed = true; |
814 | } |
815 | |
816 | ARCInstKind Class = GetBasicARCInstKind(V: Inst); |
817 | |
818 | // Skip this loop if this instruction isn't itself an ARC intrinsic. |
819 | const Value *Arg = nullptr; |
820 | switch (Class) { |
821 | default: |
822 | optimizeDelayedAutoreleaseRV(); |
823 | break; |
824 | case ARCInstKind::CallOrUser: |
825 | case ARCInstKind::User: |
826 | case ARCInstKind::None: |
827 | // This is a non-ARC instruction. If we're delaying an AutoreleaseRV, |
828 | // check if it's safe to skip over it; if not, optimize the AutoreleaseRV |
829 | // now. |
830 | if (!shouldDelayAutoreleaseRV(Inst)) |
831 | optimizeDelayedAutoreleaseRV(); |
832 | continue; |
833 | case ARCInstKind::AutoreleaseRV: |
834 | optimizeDelayedAutoreleaseRV(); |
835 | setDelayedAutoreleaseRV(Inst); |
836 | continue; |
837 | case ARCInstKind::RetainRV: |
838 | case ARCInstKind::UnsafeClaimRV: |
839 | if (DelayedAutoreleaseRV) { |
840 | // We have a potential RV pair. Check if they cancel out. |
841 | if (OptimizeInlinedAutoreleaseRVCall(F, Inst, Arg, Class, |
842 | AutoreleaseRV: DelayedAutoreleaseRV, |
843 | AutoreleaseRVArg&: DelayedAutoreleaseRVArg)) { |
844 | setDelayedAutoreleaseRV(nullptr); |
845 | continue; |
846 | } |
847 | optimizeDelayedAutoreleaseRV(); |
848 | } |
849 | break; |
850 | } |
851 | |
852 | OptimizeIndividualCallImpl(F, Inst, Class, Arg); |
853 | } |
854 | |
855 | // Catch the final delayed AutoreleaseRV. |
856 | optimizeDelayedAutoreleaseRV(); |
857 | } |
858 | |
859 | /// This function returns true if the value is inert. An ObjC ARC runtime call |
860 | /// taking an inert operand can be safely deleted. |
861 | static bool isInertARCValue(Value *V, SmallPtrSet<Value *, 1> &VisitedPhis) { |
862 | V = V->stripPointerCasts(); |
863 | |
864 | if (IsNullOrUndef(V)) |
865 | return true; |
866 | |
867 | // See if this is a global attribute annotated with an 'objc_arc_inert'. |
868 | if (auto *GV = dyn_cast<GlobalVariable>(Val: V)) |
869 | if (GV->hasAttribute(Kind: "objc_arc_inert" )) |
870 | return true; |
871 | |
872 | if (auto PN = dyn_cast<PHINode>(Val: V)) { |
873 | // Ignore this phi if it has already been discovered. |
874 | if (!VisitedPhis.insert(Ptr: PN).second) |
875 | return true; |
876 | // Look through phis's operands. |
877 | for (Value *Opnd : PN->incoming_values()) |
878 | if (!isInertARCValue(V: Opnd, VisitedPhis)) |
879 | return false; |
880 | return true; |
881 | } |
882 | |
883 | return false; |
884 | } |
885 | |
886 | void ObjCARCOpt::OptimizeIndividualCallImpl(Function &F, Instruction *Inst, |
887 | ARCInstKind Class, |
888 | const Value *Arg) { |
889 | LLVM_DEBUG(dbgs() << "Visiting: Class: " << Class << "; " << *Inst << "\n" ); |
890 | |
891 | // We can delete this call if it takes an inert value. |
892 | SmallPtrSet<Value *, 1> VisitedPhis; |
893 | |
894 | if (BundledInsts->contains(I: Inst)) { |
895 | UsedInThisFunction |= 1 << unsigned(Class); |
896 | return; |
897 | } |
898 | |
899 | if (IsNoopOnGlobal(Class)) |
900 | if (isInertARCValue(V: Inst->getOperand(i: 0), VisitedPhis)) { |
901 | if (!Inst->getType()->isVoidTy()) |
902 | Inst->replaceAllUsesWith(V: Inst->getOperand(i: 0)); |
903 | Inst->eraseFromParent(); |
904 | Changed = true; |
905 | return; |
906 | } |
907 | |
908 | switch (Class) { |
909 | default: |
910 | break; |
911 | |
912 | // Delete no-op casts. These function calls have special semantics, but |
913 | // the semantics are entirely implemented via lowering in the front-end, |
914 | // so by the time they reach the optimizer, they are just no-op calls |
915 | // which return their argument. |
916 | // |
917 | // There are gray areas here, as the ability to cast reference-counted |
918 | // pointers to raw void* and back allows code to break ARC assumptions, |
919 | // however these are currently considered to be unimportant. |
920 | case ARCInstKind::NoopCast: |
921 | Changed = true; |
922 | ++NumNoops; |
923 | LLVM_DEBUG(dbgs() << "Erasing no-op cast: " << *Inst << "\n" ); |
924 | EraseInstruction(CI: Inst); |
925 | return; |
926 | |
927 | // If the pointer-to-weak-pointer is null, it's undefined behavior. |
928 | case ARCInstKind::StoreWeak: |
929 | case ARCInstKind::LoadWeak: |
930 | case ARCInstKind::LoadWeakRetained: |
931 | case ARCInstKind::InitWeak: |
932 | case ARCInstKind::DestroyWeak: { |
933 | CallInst *CI = cast<CallInst>(Val: Inst); |
934 | if (IsNullOrUndef(V: CI->getArgOperand(i: 0))) { |
935 | Changed = true; |
936 | new StoreInst(ConstantInt::getTrue(Context&: CI->getContext()), |
937 | PoisonValue::get(T: PointerType::getUnqual(C&: CI->getContext())), |
938 | CI->getIterator()); |
939 | Value *NewValue = PoisonValue::get(T: CI->getType()); |
940 | LLVM_DEBUG( |
941 | dbgs() << "A null pointer-to-weak-pointer is undefined behavior." |
942 | "\nOld = " |
943 | << *CI << "\nNew = " << *NewValue << "\n" ); |
944 | CI->replaceAllUsesWith(V: NewValue); |
945 | CI->eraseFromParent(); |
946 | return; |
947 | } |
948 | break; |
949 | } |
950 | case ARCInstKind::CopyWeak: |
951 | case ARCInstKind::MoveWeak: { |
952 | CallInst *CI = cast<CallInst>(Val: Inst); |
953 | if (IsNullOrUndef(V: CI->getArgOperand(i: 0)) || |
954 | IsNullOrUndef(V: CI->getArgOperand(i: 1))) { |
955 | Changed = true; |
956 | new StoreInst(ConstantInt::getTrue(Context&: CI->getContext()), |
957 | PoisonValue::get(T: PointerType::getUnqual(C&: CI->getContext())), |
958 | CI->getIterator()); |
959 | |
960 | Value *NewValue = PoisonValue::get(T: CI->getType()); |
961 | LLVM_DEBUG( |
962 | dbgs() << "A null pointer-to-weak-pointer is undefined behavior." |
963 | "\nOld = " |
964 | << *CI << "\nNew = " << *NewValue << "\n" ); |
965 | |
966 | CI->replaceAllUsesWith(V: NewValue); |
967 | CI->eraseFromParent(); |
968 | return; |
969 | } |
970 | break; |
971 | } |
972 | case ARCInstKind::RetainRV: |
973 | if (OptimizeRetainRVCall(F, RetainRV: Inst)) |
974 | return; |
975 | break; |
976 | case ARCInstKind::AutoreleaseRV: |
977 | OptimizeAutoreleaseRVCall(F, AutoreleaseRV: Inst, Class); |
978 | break; |
979 | } |
980 | |
981 | // objc_autorelease(x) -> objc_release(x) if x is otherwise unused. |
982 | if (IsAutorelease(Class) && Inst->use_empty()) { |
983 | CallInst *Call = cast<CallInst>(Val: Inst); |
984 | const Value *Arg = Call->getArgOperand(i: 0); |
985 | Arg = FindSingleUseIdentifiedObject(Arg); |
986 | if (Arg) { |
987 | Changed = true; |
988 | ++NumAutoreleases; |
989 | |
990 | // Create the declaration lazily. |
991 | LLVMContext &C = Inst->getContext(); |
992 | |
993 | Function *Decl = EP.get(kind: ARCRuntimeEntryPointKind::Release); |
994 | CallInst *NewCall = CallInst::Create(Func: Decl, Args: Call->getArgOperand(i: 0), NameStr: "" , |
995 | InsertBefore: Call->getIterator()); |
996 | NewCall->setMetadata(KindID: MDKindCache.get(ID: ARCMDKindID::ImpreciseRelease), |
997 | Node: MDNode::get(Context&: C, MDs: std::nullopt)); |
998 | |
999 | LLVM_DEBUG(dbgs() << "Replacing autorelease{,RV}(x) with objc_release(x) " |
1000 | "since x is otherwise unused.\nOld: " |
1001 | << *Call << "\nNew: " << *NewCall << "\n" ); |
1002 | |
1003 | EraseInstruction(CI: Call); |
1004 | Inst = NewCall; |
1005 | Class = ARCInstKind::Release; |
1006 | } |
1007 | } |
1008 | |
1009 | // For functions which can never be passed stack arguments, add |
1010 | // a tail keyword. |
1011 | if (IsAlwaysTail(Class) && !cast<CallInst>(Val: Inst)->isNoTailCall()) { |
1012 | Changed = true; |
1013 | LLVM_DEBUG( |
1014 | dbgs() << "Adding tail keyword to function since it can never be " |
1015 | "passed stack args: " |
1016 | << *Inst << "\n" ); |
1017 | cast<CallInst>(Val: Inst)->setTailCall(); |
1018 | } |
1019 | |
1020 | // Ensure that functions that can never have a "tail" keyword due to the |
1021 | // semantics of ARC truly do not do so. |
1022 | if (IsNeverTail(Class)) { |
1023 | Changed = true; |
1024 | LLVM_DEBUG(dbgs() << "Removing tail keyword from function: " << *Inst |
1025 | << "\n" ); |
1026 | cast<CallInst>(Val: Inst)->setTailCall(false); |
1027 | } |
1028 | |
1029 | // Set nounwind as needed. |
1030 | if (IsNoThrow(Class)) { |
1031 | Changed = true; |
1032 | LLVM_DEBUG(dbgs() << "Found no throw class. Setting nounwind on: " << *Inst |
1033 | << "\n" ); |
1034 | cast<CallInst>(Val: Inst)->setDoesNotThrow(); |
1035 | } |
1036 | |
1037 | // Note: This catches instructions unrelated to ARC. |
1038 | if (!IsNoopOnNull(Class)) { |
1039 | UsedInThisFunction |= 1 << unsigned(Class); |
1040 | return; |
1041 | } |
1042 | |
1043 | // If we haven't already looked up the root, look it up now. |
1044 | if (!Arg) |
1045 | Arg = GetArgRCIdentityRoot(Inst); |
1046 | |
1047 | // ARC calls with null are no-ops. Delete them. |
1048 | if (IsNullOrUndef(V: Arg)) { |
1049 | Changed = true; |
1050 | ++NumNoops; |
1051 | LLVM_DEBUG(dbgs() << "ARC calls with null are no-ops. Erasing: " << *Inst |
1052 | << "\n" ); |
1053 | EraseInstruction(CI: Inst); |
1054 | return; |
1055 | } |
1056 | |
1057 | // Keep track of which of retain, release, autorelease, and retain_block |
1058 | // are actually present in this function. |
1059 | UsedInThisFunction |= 1 << unsigned(Class); |
1060 | |
1061 | // If Arg is a PHI, and one or more incoming values to the |
1062 | // PHI are null, and the call is control-equivalent to the PHI, and there |
1063 | // are no relevant side effects between the PHI and the call, and the call |
1064 | // is not a release that doesn't have the clang.imprecise_release tag, the |
1065 | // call could be pushed up to just those paths with non-null incoming |
1066 | // values. For now, don't bother splitting critical edges for this. |
1067 | if (Class == ARCInstKind::Release && |
1068 | !Inst->getMetadata(KindID: MDKindCache.get(ID: ARCMDKindID::ImpreciseRelease))) |
1069 | return; |
1070 | |
1071 | SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist; |
1072 | Worklist.push_back(Elt: std::make_pair(x&: Inst, y&: Arg)); |
1073 | do { |
1074 | std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val(); |
1075 | Inst = Pair.first; |
1076 | Arg = Pair.second; |
1077 | |
1078 | const PHINode *PN = dyn_cast<PHINode>(Val: Arg); |
1079 | if (!PN) |
1080 | continue; |
1081 | |
1082 | // Determine if the PHI has any null operands, or any incoming |
1083 | // critical edges. |
1084 | bool HasNull = false; |
1085 | bool HasCriticalEdges = false; |
1086 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
1087 | Value *Incoming = GetRCIdentityRoot(V: PN->getIncomingValue(i)); |
1088 | if (IsNullOrUndef(V: Incoming)) |
1089 | HasNull = true; |
1090 | else if (PN->getIncomingBlock(i)->getTerminator()->getNumSuccessors() != |
1091 | 1) { |
1092 | HasCriticalEdges = true; |
1093 | break; |
1094 | } |
1095 | } |
1096 | // If we have null operands and no critical edges, optimize. |
1097 | if (HasCriticalEdges) |
1098 | continue; |
1099 | if (!HasNull) |
1100 | continue; |
1101 | |
1102 | Instruction *DepInst = nullptr; |
1103 | |
1104 | // Check that there is nothing that cares about the reference |
1105 | // count between the call and the phi. |
1106 | switch (Class) { |
1107 | case ARCInstKind::Retain: |
1108 | case ARCInstKind::RetainBlock: |
1109 | // These can always be moved up. |
1110 | break; |
1111 | case ARCInstKind::Release: |
1112 | // These can't be moved across things that care about the retain |
1113 | // count. |
1114 | DepInst = findSingleDependency(Flavor: NeedsPositiveRetainCount, Arg, |
1115 | StartBB: Inst->getParent(), StartInst: Inst, PA); |
1116 | break; |
1117 | case ARCInstKind::Autorelease: |
1118 | // These can't be moved across autorelease pool scope boundaries. |
1119 | DepInst = findSingleDependency(Flavor: AutoreleasePoolBoundary, Arg, |
1120 | StartBB: Inst->getParent(), StartInst: Inst, PA); |
1121 | break; |
1122 | case ARCInstKind::UnsafeClaimRV: |
1123 | case ARCInstKind::RetainRV: |
1124 | case ARCInstKind::AutoreleaseRV: |
1125 | // Don't move these; the RV optimization depends on the autoreleaseRV |
1126 | // being tail called, and the retainRV being immediately after a call |
1127 | // (which might still happen if we get lucky with codegen layout, but |
1128 | // it's not worth taking the chance). |
1129 | continue; |
1130 | default: |
1131 | llvm_unreachable("Invalid dependence flavor" ); |
1132 | } |
1133 | |
1134 | if (DepInst != PN) |
1135 | continue; |
1136 | |
1137 | Changed = true; |
1138 | ++NumPartialNoops; |
1139 | // Clone the call into each predecessor that has a non-null value. |
1140 | CallInst *CInst = cast<CallInst>(Val: Inst); |
1141 | Type *ParamTy = CInst->getArgOperand(i: 0)->getType(); |
1142 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
1143 | Value *Incoming = GetRCIdentityRoot(V: PN->getIncomingValue(i)); |
1144 | if (IsNullOrUndef(V: Incoming)) |
1145 | continue; |
1146 | Value *Op = PN->getIncomingValue(i); |
1147 | BasicBlock::iterator InsertPos = |
1148 | PN->getIncomingBlock(i)->back().getIterator(); |
1149 | SmallVector<OperandBundleDef, 1> OpBundles; |
1150 | cloneOpBundlesIf(CI: CInst, OpBundles, Predicate: [](const OperandBundleUse &B) { |
1151 | return B.getTagID() != LLVMContext::OB_funclet; |
1152 | }); |
1153 | addOpBundleForFunclet(BB: InsertPos->getParent(), OpBundles); |
1154 | CallInst *Clone = CallInst::Create(CI: CInst, Bundles: OpBundles); |
1155 | if (Op->getType() != ParamTy) |
1156 | Op = new BitCastInst(Op, ParamTy, "" , InsertPos); |
1157 | Clone->setArgOperand(i: 0, v: Op); |
1158 | Clone->insertBefore(BB&: *InsertPos->getParent(), InsertPos); |
1159 | |
1160 | LLVM_DEBUG(dbgs() << "Cloning " << *CInst << "\n" |
1161 | "And inserting clone at " |
1162 | << *InsertPos << "\n" ); |
1163 | Worklist.push_back(Elt: std::make_pair(x&: Clone, y&: Incoming)); |
1164 | } |
1165 | // Erase the original call. |
1166 | LLVM_DEBUG(dbgs() << "Erasing: " << *CInst << "\n" ); |
1167 | EraseInstruction(CI: CInst); |
1168 | } while (!Worklist.empty()); |
1169 | } |
1170 | |
1171 | /// If we have a top down pointer in the S_Use state, make sure that there are |
1172 | /// no CFG hazards by checking the states of various bottom up pointers. |
1173 | static void CheckForUseCFGHazard(const Sequence SuccSSeq, |
1174 | const bool SuccSRRIKnownSafe, |
1175 | TopDownPtrState &S, |
1176 | bool &SomeSuccHasSame, |
1177 | bool &AllSuccsHaveSame, |
1178 | bool &NotAllSeqEqualButKnownSafe, |
1179 | bool &ShouldContinue) { |
1180 | switch (SuccSSeq) { |
1181 | case S_CanRelease: { |
1182 | if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) { |
1183 | S.ClearSequenceProgress(); |
1184 | break; |
1185 | } |
1186 | S.SetCFGHazardAfflicted(true); |
1187 | ShouldContinue = true; |
1188 | break; |
1189 | } |
1190 | case S_Use: |
1191 | SomeSuccHasSame = true; |
1192 | break; |
1193 | case S_Stop: |
1194 | case S_MovableRelease: |
1195 | if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) |
1196 | AllSuccsHaveSame = false; |
1197 | else |
1198 | NotAllSeqEqualButKnownSafe = true; |
1199 | break; |
1200 | case S_Retain: |
1201 | llvm_unreachable("bottom-up pointer in retain state!" ); |
1202 | case S_None: |
1203 | llvm_unreachable("This should have been handled earlier." ); |
1204 | } |
1205 | } |
1206 | |
1207 | /// If we have a Top Down pointer in the S_CanRelease state, make sure that |
1208 | /// there are no CFG hazards by checking the states of various bottom up |
1209 | /// pointers. |
1210 | static void CheckForCanReleaseCFGHazard(const Sequence SuccSSeq, |
1211 | const bool SuccSRRIKnownSafe, |
1212 | TopDownPtrState &S, |
1213 | bool &SomeSuccHasSame, |
1214 | bool &AllSuccsHaveSame, |
1215 | bool &NotAllSeqEqualButKnownSafe) { |
1216 | switch (SuccSSeq) { |
1217 | case S_CanRelease: |
1218 | SomeSuccHasSame = true; |
1219 | break; |
1220 | case S_Stop: |
1221 | case S_MovableRelease: |
1222 | case S_Use: |
1223 | if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) |
1224 | AllSuccsHaveSame = false; |
1225 | else |
1226 | NotAllSeqEqualButKnownSafe = true; |
1227 | break; |
1228 | case S_Retain: |
1229 | llvm_unreachable("bottom-up pointer in retain state!" ); |
1230 | case S_None: |
1231 | llvm_unreachable("This should have been handled earlier." ); |
1232 | } |
1233 | } |
1234 | |
1235 | /// Check for critical edges, loop boundaries, irreducible control flow, or |
1236 | /// other CFG structures where moving code across the edge would result in it |
1237 | /// being executed more. |
1238 | void |
1239 | ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB, |
1240 | DenseMap<const BasicBlock *, BBState> &BBStates, |
1241 | BBState &MyStates) const { |
1242 | // If any top-down local-use or possible-dec has a succ which is earlier in |
1243 | // the sequence, forget it. |
1244 | for (auto I = MyStates.top_down_ptr_begin(), E = MyStates.top_down_ptr_end(); |
1245 | I != E; ++I) { |
1246 | TopDownPtrState &S = I->second; |
1247 | const Sequence Seq = I->second.GetSeq(); |
1248 | |
1249 | // We only care about S_Retain, S_CanRelease, and S_Use. |
1250 | if (Seq == S_None) |
1251 | continue; |
1252 | |
1253 | // Make sure that if extra top down states are added in the future that this |
1254 | // code is updated to handle it. |
1255 | assert((Seq == S_Retain || Seq == S_CanRelease || Seq == S_Use) && |
1256 | "Unknown top down sequence state." ); |
1257 | |
1258 | const Value *Arg = I->first; |
1259 | bool SomeSuccHasSame = false; |
1260 | bool AllSuccsHaveSame = true; |
1261 | bool NotAllSeqEqualButKnownSafe = false; |
1262 | |
1263 | for (const BasicBlock *Succ : successors(BB)) { |
1264 | // If VisitBottomUp has pointer information for this successor, take |
1265 | // what we know about it. |
1266 | const DenseMap<const BasicBlock *, BBState>::iterator BBI = |
1267 | BBStates.find(Val: Succ); |
1268 | assert(BBI != BBStates.end()); |
1269 | const BottomUpPtrState &SuccS = BBI->second.getPtrBottomUpState(Arg); |
1270 | const Sequence SuccSSeq = SuccS.GetSeq(); |
1271 | |
1272 | // If bottom up, the pointer is in an S_None state, clear the sequence |
1273 | // progress since the sequence in the bottom up state finished |
1274 | // suggesting a mismatch in between retains/releases. This is true for |
1275 | // all three cases that we are handling here: S_Retain, S_Use, and |
1276 | // S_CanRelease. |
1277 | if (SuccSSeq == S_None) { |
1278 | S.ClearSequenceProgress(); |
1279 | continue; |
1280 | } |
1281 | |
1282 | // If we have S_Use or S_CanRelease, perform our check for cfg hazard |
1283 | // checks. |
1284 | const bool SuccSRRIKnownSafe = SuccS.IsKnownSafe(); |
1285 | |
1286 | // *NOTE* We do not use Seq from above here since we are allowing for |
1287 | // S.GetSeq() to change while we are visiting basic blocks. |
1288 | switch(S.GetSeq()) { |
1289 | case S_Use: { |
1290 | bool ShouldContinue = false; |
1291 | CheckForUseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, SomeSuccHasSame, |
1292 | AllSuccsHaveSame, NotAllSeqEqualButKnownSafe, |
1293 | ShouldContinue); |
1294 | if (ShouldContinue) |
1295 | continue; |
1296 | break; |
1297 | } |
1298 | case S_CanRelease: |
1299 | CheckForCanReleaseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, |
1300 | SomeSuccHasSame, AllSuccsHaveSame, |
1301 | NotAllSeqEqualButKnownSafe); |
1302 | break; |
1303 | case S_Retain: |
1304 | case S_None: |
1305 | case S_Stop: |
1306 | case S_MovableRelease: |
1307 | break; |
1308 | } |
1309 | } |
1310 | |
1311 | // If the state at the other end of any of the successor edges |
1312 | // matches the current state, require all edges to match. This |
1313 | // guards against loops in the middle of a sequence. |
1314 | if (SomeSuccHasSame && !AllSuccsHaveSame) { |
1315 | S.ClearSequenceProgress(); |
1316 | } else if (NotAllSeqEqualButKnownSafe) { |
1317 | // If we would have cleared the state foregoing the fact that we are known |
1318 | // safe, stop code motion. This is because whether or not it is safe to |
1319 | // remove RR pairs via KnownSafe is an orthogonal concept to whether we |
1320 | // are allowed to perform code motion. |
1321 | S.SetCFGHazardAfflicted(true); |
1322 | } |
1323 | } |
1324 | } |
1325 | |
1326 | bool ObjCARCOpt::VisitInstructionBottomUp( |
1327 | Instruction *Inst, BasicBlock *BB, BlotMapVector<Value *, RRInfo> &Retains, |
1328 | BBState &MyStates) { |
1329 | bool NestingDetected = false; |
1330 | ARCInstKind Class = GetARCInstKind(V: Inst); |
1331 | const Value *Arg = nullptr; |
1332 | |
1333 | LLVM_DEBUG(dbgs() << " Class: " << Class << "\n" ); |
1334 | |
1335 | switch (Class) { |
1336 | case ARCInstKind::Release: { |
1337 | Arg = GetArgRCIdentityRoot(Inst); |
1338 | |
1339 | BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg); |
1340 | NestingDetected |= S.InitBottomUp(Cache&: MDKindCache, I: Inst); |
1341 | break; |
1342 | } |
1343 | case ARCInstKind::RetainBlock: |
1344 | // In OptimizeIndividualCalls, we have strength reduced all optimizable |
1345 | // objc_retainBlocks to objc_retains. Thus at this point any |
1346 | // objc_retainBlocks that we see are not optimizable. |
1347 | break; |
1348 | case ARCInstKind::Retain: |
1349 | case ARCInstKind::RetainRV: { |
1350 | Arg = GetArgRCIdentityRoot(Inst); |
1351 | BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg); |
1352 | if (S.MatchWithRetain()) { |
1353 | // Don't do retain+release tracking for ARCInstKind::RetainRV, because |
1354 | // it's better to let it remain as the first instruction after a call. |
1355 | if (Class != ARCInstKind::RetainRV) { |
1356 | LLVM_DEBUG(dbgs() << " Matching with: " << *Inst << "\n" ); |
1357 | Retains[Inst] = S.GetRRInfo(); |
1358 | } |
1359 | S.ClearSequenceProgress(); |
1360 | } |
1361 | // A retain moving bottom up can be a use. |
1362 | break; |
1363 | } |
1364 | case ARCInstKind::AutoreleasepoolPop: |
1365 | // Conservatively, clear MyStates for all known pointers. |
1366 | MyStates.clearBottomUpPointers(); |
1367 | return NestingDetected; |
1368 | case ARCInstKind::AutoreleasepoolPush: |
1369 | case ARCInstKind::None: |
1370 | // These are irrelevant. |
1371 | return NestingDetected; |
1372 | default: |
1373 | break; |
1374 | } |
1375 | |
1376 | // Consider any other possible effects of this instruction on each |
1377 | // pointer being tracked. |
1378 | for (auto MI = MyStates.bottom_up_ptr_begin(), |
1379 | ME = MyStates.bottom_up_ptr_end(); |
1380 | MI != ME; ++MI) { |
1381 | const Value *Ptr = MI->first; |
1382 | if (Ptr == Arg) |
1383 | continue; // Handled above. |
1384 | BottomUpPtrState &S = MI->second; |
1385 | |
1386 | if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class)) |
1387 | continue; |
1388 | |
1389 | S.HandlePotentialUse(BB, Inst, Ptr, PA, Class); |
1390 | } |
1391 | |
1392 | return NestingDetected; |
1393 | } |
1394 | |
1395 | bool ObjCARCOpt::VisitBottomUp(BasicBlock *BB, |
1396 | DenseMap<const BasicBlock *, BBState> &BBStates, |
1397 | BlotMapVector<Value *, RRInfo> &Retains) { |
1398 | LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::VisitBottomUp ==\n" ); |
1399 | |
1400 | bool NestingDetected = false; |
1401 | BBState &MyStates = BBStates[BB]; |
1402 | |
1403 | // Merge the states from each successor to compute the initial state |
1404 | // for the current block. |
1405 | BBState::edge_iterator SI(MyStates.succ_begin()), |
1406 | SE(MyStates.succ_end()); |
1407 | if (SI != SE) { |
1408 | const BasicBlock *Succ = *SI; |
1409 | DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Val: Succ); |
1410 | assert(I != BBStates.end()); |
1411 | MyStates.InitFromSucc(Other: I->second); |
1412 | ++SI; |
1413 | for (; SI != SE; ++SI) { |
1414 | Succ = *SI; |
1415 | I = BBStates.find(Val: Succ); |
1416 | assert(I != BBStates.end()); |
1417 | MyStates.MergeSucc(Other: I->second); |
1418 | } |
1419 | } |
1420 | |
1421 | LLVM_DEBUG(dbgs() << "Before:\n" |
1422 | << BBStates[BB] << "\n" |
1423 | << "Performing Dataflow:\n" ); |
1424 | |
1425 | // Visit all the instructions, bottom-up. |
1426 | for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) { |
1427 | Instruction *Inst = &*std::prev(x: I); |
1428 | |
1429 | // Invoke instructions are visited as part of their successors (below). |
1430 | if (isa<InvokeInst>(Val: Inst)) |
1431 | continue; |
1432 | |
1433 | LLVM_DEBUG(dbgs() << " Visiting " << *Inst << "\n" ); |
1434 | |
1435 | NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates); |
1436 | |
1437 | // Bail out if the number of pointers being tracked becomes too large so |
1438 | // that this pass can complete in a reasonable amount of time. |
1439 | if (MyStates.bottom_up_ptr_list_size() > MaxPtrStates) { |
1440 | DisableRetainReleasePairing = true; |
1441 | return false; |
1442 | } |
1443 | } |
1444 | |
1445 | // If there's a predecessor with an invoke, visit the invoke as if it were |
1446 | // part of this block, since we can't insert code after an invoke in its own |
1447 | // block, and we don't want to split critical edges. |
1448 | for (BBState::edge_iterator PI(MyStates.pred_begin()), |
1449 | PE(MyStates.pred_end()); PI != PE; ++PI) { |
1450 | BasicBlock *Pred = *PI; |
1451 | if (InvokeInst *II = dyn_cast<InvokeInst>(Val: &Pred->back())) |
1452 | NestingDetected |= VisitInstructionBottomUp(Inst: II, BB, Retains, MyStates); |
1453 | } |
1454 | |
1455 | LLVM_DEBUG(dbgs() << "\nFinal State:\n" << BBStates[BB] << "\n" ); |
1456 | |
1457 | return NestingDetected; |
1458 | } |
1459 | |
1460 | // Fill ReleaseInsertPtToRCIdentityRoots, which is a map from insertion points |
1461 | // to the set of RC identity roots that would be released by the release calls |
1462 | // moved to the insertion points. |
1463 | static void collectReleaseInsertPts( |
1464 | const BlotMapVector<Value *, RRInfo> &Retains, |
1465 | DenseMap<const Instruction *, SmallPtrSet<const Value *, 2>> |
1466 | &ReleaseInsertPtToRCIdentityRoots) { |
1467 | for (const auto &P : Retains) { |
1468 | // Retains is a map from an objc_retain call to a RRInfo of the RC identity |
1469 | // root of the call. Get the RC identity root of the objc_retain call. |
1470 | Instruction *Retain = cast<Instruction>(Val: P.first); |
1471 | Value *Root = GetRCIdentityRoot(V: Retain->getOperand(i: 0)); |
1472 | // Collect all the insertion points of the objc_release calls that release |
1473 | // the RC identity root of the objc_retain call. |
1474 | for (const Instruction *InsertPt : P.second.ReverseInsertPts) |
1475 | ReleaseInsertPtToRCIdentityRoots[InsertPt].insert(Ptr: Root); |
1476 | } |
1477 | } |
1478 | |
1479 | // Get the RC identity roots from an insertion point of an objc_release call. |
1480 | // Return nullptr if the passed instruction isn't an insertion point. |
1481 | static const SmallPtrSet<const Value *, 2> * |
1482 | getRCIdentityRootsFromReleaseInsertPt( |
1483 | const Instruction *InsertPt, |
1484 | const DenseMap<const Instruction *, SmallPtrSet<const Value *, 2>> |
1485 | &ReleaseInsertPtToRCIdentityRoots) { |
1486 | auto I = ReleaseInsertPtToRCIdentityRoots.find(Val: InsertPt); |
1487 | if (I == ReleaseInsertPtToRCIdentityRoots.end()) |
1488 | return nullptr; |
1489 | return &I->second; |
1490 | } |
1491 | |
1492 | bool ObjCARCOpt::VisitInstructionTopDown( |
1493 | Instruction *Inst, DenseMap<Value *, RRInfo> &Releases, BBState &MyStates, |
1494 | const DenseMap<const Instruction *, SmallPtrSet<const Value *, 2>> |
1495 | &ReleaseInsertPtToRCIdentityRoots) { |
1496 | bool NestingDetected = false; |
1497 | ARCInstKind Class = GetARCInstKind(V: Inst); |
1498 | const Value *Arg = nullptr; |
1499 | |
1500 | // Make sure a call to objc_retain isn't moved past insertion points of calls |
1501 | // to objc_release. |
1502 | if (const SmallPtrSet<const Value *, 2> *Roots = |
1503 | getRCIdentityRootsFromReleaseInsertPt( |
1504 | InsertPt: Inst, ReleaseInsertPtToRCIdentityRoots)) |
1505 | for (const auto *Root : *Roots) { |
1506 | TopDownPtrState &S = MyStates.getPtrTopDownState(Arg: Root); |
1507 | // Disable code motion if the current position is S_Retain to prevent |
1508 | // moving the objc_retain call past objc_release calls. If it's |
1509 | // S_CanRelease or larger, it's not necessary to disable code motion as |
1510 | // the insertion points that prevent the objc_retain call from moving down |
1511 | // should have been set already. |
1512 | if (S.GetSeq() == S_Retain) |
1513 | S.SetCFGHazardAfflicted(true); |
1514 | } |
1515 | |
1516 | LLVM_DEBUG(dbgs() << " Class: " << Class << "\n" ); |
1517 | |
1518 | switch (Class) { |
1519 | case ARCInstKind::RetainBlock: |
1520 | // In OptimizeIndividualCalls, we have strength reduced all optimizable |
1521 | // objc_retainBlocks to objc_retains. Thus at this point any |
1522 | // objc_retainBlocks that we see are not optimizable. We need to break since |
1523 | // a retain can be a potential use. |
1524 | break; |
1525 | case ARCInstKind::Retain: |
1526 | case ARCInstKind::RetainRV: { |
1527 | Arg = GetArgRCIdentityRoot(Inst); |
1528 | TopDownPtrState &S = MyStates.getPtrTopDownState(Arg); |
1529 | NestingDetected |= S.InitTopDown(Kind: Class, I: Inst); |
1530 | // A retain can be a potential use; proceed to the generic checking |
1531 | // code below. |
1532 | break; |
1533 | } |
1534 | case ARCInstKind::Release: { |
1535 | Arg = GetArgRCIdentityRoot(Inst); |
1536 | TopDownPtrState &S = MyStates.getPtrTopDownState(Arg); |
1537 | // Try to form a tentative pair in between this release instruction and the |
1538 | // top down pointers that we are tracking. |
1539 | if (S.MatchWithRelease(Cache&: MDKindCache, Release: Inst)) { |
1540 | // If we succeed, copy S's RRInfo into the Release -> {Retain Set |
1541 | // Map}. Then we clear S. |
1542 | LLVM_DEBUG(dbgs() << " Matching with: " << *Inst << "\n" ); |
1543 | Releases[Inst] = S.GetRRInfo(); |
1544 | S.ClearSequenceProgress(); |
1545 | } |
1546 | break; |
1547 | } |
1548 | case ARCInstKind::AutoreleasepoolPop: |
1549 | // Conservatively, clear MyStates for all known pointers. |
1550 | MyStates.clearTopDownPointers(); |
1551 | return false; |
1552 | case ARCInstKind::AutoreleasepoolPush: |
1553 | case ARCInstKind::None: |
1554 | // These can not be uses of |
1555 | return false; |
1556 | default: |
1557 | break; |
1558 | } |
1559 | |
1560 | // Consider any other possible effects of this instruction on each |
1561 | // pointer being tracked. |
1562 | for (auto MI = MyStates.top_down_ptr_begin(), |
1563 | ME = MyStates.top_down_ptr_end(); |
1564 | MI != ME; ++MI) { |
1565 | const Value *Ptr = MI->first; |
1566 | if (Ptr == Arg) |
1567 | continue; // Handled above. |
1568 | TopDownPtrState &S = MI->second; |
1569 | if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class, BundledRVs: *BundledInsts)) |
1570 | continue; |
1571 | |
1572 | S.HandlePotentialUse(Inst, Ptr, PA, Class); |
1573 | } |
1574 | |
1575 | return NestingDetected; |
1576 | } |
1577 | |
1578 | bool ObjCARCOpt::VisitTopDown( |
1579 | BasicBlock *BB, DenseMap<const BasicBlock *, BBState> &BBStates, |
1580 | DenseMap<Value *, RRInfo> &Releases, |
1581 | const DenseMap<const Instruction *, SmallPtrSet<const Value *, 2>> |
1582 | &ReleaseInsertPtToRCIdentityRoots) { |
1583 | LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::VisitTopDown ==\n" ); |
1584 | bool NestingDetected = false; |
1585 | BBState &MyStates = BBStates[BB]; |
1586 | |
1587 | // Merge the states from each predecessor to compute the initial state |
1588 | // for the current block. |
1589 | BBState::edge_iterator PI(MyStates.pred_begin()), |
1590 | PE(MyStates.pred_end()); |
1591 | if (PI != PE) { |
1592 | const BasicBlock *Pred = *PI; |
1593 | DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Val: Pred); |
1594 | assert(I != BBStates.end()); |
1595 | MyStates.InitFromPred(Other: I->second); |
1596 | ++PI; |
1597 | for (; PI != PE; ++PI) { |
1598 | Pred = *PI; |
1599 | I = BBStates.find(Val: Pred); |
1600 | assert(I != BBStates.end()); |
1601 | MyStates.MergePred(Other: I->second); |
1602 | } |
1603 | } |
1604 | |
1605 | // Check that BB and MyStates have the same number of predecessors. This |
1606 | // prevents retain calls that live outside a loop from being moved into the |
1607 | // loop. |
1608 | if (!BB->hasNPredecessors(N: MyStates.pred_end() - MyStates.pred_begin())) |
1609 | for (auto I = MyStates.top_down_ptr_begin(), |
1610 | E = MyStates.top_down_ptr_end(); |
1611 | I != E; ++I) |
1612 | I->second.SetCFGHazardAfflicted(true); |
1613 | |
1614 | LLVM_DEBUG(dbgs() << "Before:\n" |
1615 | << BBStates[BB] << "\n" |
1616 | << "Performing Dataflow:\n" ); |
1617 | |
1618 | // Visit all the instructions, top-down. |
1619 | for (Instruction &Inst : *BB) { |
1620 | LLVM_DEBUG(dbgs() << " Visiting " << Inst << "\n" ); |
1621 | |
1622 | NestingDetected |= VisitInstructionTopDown( |
1623 | Inst: &Inst, Releases, MyStates, ReleaseInsertPtToRCIdentityRoots); |
1624 | |
1625 | // Bail out if the number of pointers being tracked becomes too large so |
1626 | // that this pass can complete in a reasonable amount of time. |
1627 | if (MyStates.top_down_ptr_list_size() > MaxPtrStates) { |
1628 | DisableRetainReleasePairing = true; |
1629 | return false; |
1630 | } |
1631 | } |
1632 | |
1633 | LLVM_DEBUG(dbgs() << "\nState Before Checking for CFG Hazards:\n" |
1634 | << BBStates[BB] << "\n\n" ); |
1635 | CheckForCFGHazards(BB, BBStates, MyStates); |
1636 | LLVM_DEBUG(dbgs() << "Final State:\n" << BBStates[BB] << "\n" ); |
1637 | return NestingDetected; |
1638 | } |
1639 | |
1640 | static void |
1641 | ComputePostOrders(Function &F, |
1642 | SmallVectorImpl<BasicBlock *> &PostOrder, |
1643 | SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder, |
1644 | unsigned NoObjCARCExceptionsMDKind, |
1645 | DenseMap<const BasicBlock *, BBState> &BBStates) { |
1646 | /// The visited set, for doing DFS walks. |
1647 | SmallPtrSet<BasicBlock *, 16> Visited; |
1648 | |
1649 | // Do DFS, computing the PostOrder. |
1650 | SmallPtrSet<BasicBlock *, 16> OnStack; |
1651 | SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack; |
1652 | |
1653 | // Functions always have exactly one entry block, and we don't have |
1654 | // any other block that we treat like an entry block. |
1655 | BasicBlock *EntryBB = &F.getEntryBlock(); |
1656 | BBState &MyStates = BBStates[EntryBB]; |
1657 | MyStates.SetAsEntry(); |
1658 | Instruction *EntryTI = EntryBB->getTerminator(); |
1659 | SuccStack.push_back(Elt: std::make_pair(x&: EntryBB, y: succ_iterator(EntryTI))); |
1660 | Visited.insert(Ptr: EntryBB); |
1661 | OnStack.insert(Ptr: EntryBB); |
1662 | do { |
1663 | dfs_next_succ: |
1664 | BasicBlock *CurrBB = SuccStack.back().first; |
1665 | succ_iterator SE(CurrBB->getTerminator(), false); |
1666 | |
1667 | while (SuccStack.back().second != SE) { |
1668 | BasicBlock *SuccBB = *SuccStack.back().second++; |
1669 | if (Visited.insert(Ptr: SuccBB).second) { |
1670 | SuccStack.push_back( |
1671 | Elt: std::make_pair(x&: SuccBB, y: succ_iterator(SuccBB->getTerminator()))); |
1672 | BBStates[CurrBB].addSucc(Succ: SuccBB); |
1673 | BBState &SuccStates = BBStates[SuccBB]; |
1674 | SuccStates.addPred(Pred: CurrBB); |
1675 | OnStack.insert(Ptr: SuccBB); |
1676 | goto dfs_next_succ; |
1677 | } |
1678 | |
1679 | if (!OnStack.count(Ptr: SuccBB)) { |
1680 | BBStates[CurrBB].addSucc(Succ: SuccBB); |
1681 | BBStates[SuccBB].addPred(Pred: CurrBB); |
1682 | } |
1683 | } |
1684 | OnStack.erase(Ptr: CurrBB); |
1685 | PostOrder.push_back(Elt: CurrBB); |
1686 | SuccStack.pop_back(); |
1687 | } while (!SuccStack.empty()); |
1688 | |
1689 | Visited.clear(); |
1690 | |
1691 | // Do reverse-CFG DFS, computing the reverse-CFG PostOrder. |
1692 | // Functions may have many exits, and there also blocks which we treat |
1693 | // as exits due to ignored edges. |
1694 | SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack; |
1695 | for (BasicBlock &ExitBB : F) { |
1696 | BBState &MyStates = BBStates[&ExitBB]; |
1697 | if (!MyStates.isExit()) |
1698 | continue; |
1699 | |
1700 | MyStates.SetAsExit(); |
1701 | |
1702 | PredStack.push_back(Elt: std::make_pair(x: &ExitBB, y: MyStates.pred_begin())); |
1703 | Visited.insert(Ptr: &ExitBB); |
1704 | while (!PredStack.empty()) { |
1705 | reverse_dfs_next_succ: |
1706 | BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end(); |
1707 | while (PredStack.back().second != PE) { |
1708 | BasicBlock *BB = *PredStack.back().second++; |
1709 | if (Visited.insert(Ptr: BB).second) { |
1710 | PredStack.push_back(Elt: std::make_pair(x&: BB, y: BBStates[BB].pred_begin())); |
1711 | goto reverse_dfs_next_succ; |
1712 | } |
1713 | } |
1714 | ReverseCFGPostOrder.push_back(Elt: PredStack.pop_back_val().first); |
1715 | } |
1716 | } |
1717 | } |
1718 | |
1719 | // Visit the function both top-down and bottom-up. |
1720 | bool ObjCARCOpt::Visit(Function &F, |
1721 | DenseMap<const BasicBlock *, BBState> &BBStates, |
1722 | BlotMapVector<Value *, RRInfo> &Retains, |
1723 | DenseMap<Value *, RRInfo> &Releases) { |
1724 | // Use reverse-postorder traversals, because we magically know that loops |
1725 | // will be well behaved, i.e. they won't repeatedly call retain on a single |
1726 | // pointer without doing a release. We can't use the ReversePostOrderTraversal |
1727 | // class here because we want the reverse-CFG postorder to consider each |
1728 | // function exit point, and we want to ignore selected cycle edges. |
1729 | SmallVector<BasicBlock *, 16> PostOrder; |
1730 | SmallVector<BasicBlock *, 16> ReverseCFGPostOrder; |
1731 | ComputePostOrders(F, PostOrder, ReverseCFGPostOrder, |
1732 | NoObjCARCExceptionsMDKind: MDKindCache.get(ID: ARCMDKindID::NoObjCARCExceptions), |
1733 | BBStates); |
1734 | |
1735 | // Use reverse-postorder on the reverse CFG for bottom-up. |
1736 | bool BottomUpNestingDetected = false; |
1737 | for (BasicBlock *BB : llvm::reverse(C&: ReverseCFGPostOrder)) { |
1738 | BottomUpNestingDetected |= VisitBottomUp(BB, BBStates, Retains); |
1739 | if (DisableRetainReleasePairing) |
1740 | return false; |
1741 | } |
1742 | |
1743 | DenseMap<const Instruction *, SmallPtrSet<const Value *, 2>> |
1744 | ReleaseInsertPtToRCIdentityRoots; |
1745 | collectReleaseInsertPts(Retains, ReleaseInsertPtToRCIdentityRoots); |
1746 | |
1747 | // Use reverse-postorder for top-down. |
1748 | bool TopDownNestingDetected = false; |
1749 | for (BasicBlock *BB : llvm::reverse(C&: PostOrder)) { |
1750 | TopDownNestingDetected |= |
1751 | VisitTopDown(BB, BBStates, Releases, ReleaseInsertPtToRCIdentityRoots); |
1752 | if (DisableRetainReleasePairing) |
1753 | return false; |
1754 | } |
1755 | |
1756 | return TopDownNestingDetected && BottomUpNestingDetected; |
1757 | } |
1758 | |
1759 | /// Move the calls in RetainsToMove and ReleasesToMove. |
1760 | void ObjCARCOpt::MoveCalls(Value *Arg, RRInfo &RetainsToMove, |
1761 | RRInfo &ReleasesToMove, |
1762 | BlotMapVector<Value *, RRInfo> &Retains, |
1763 | DenseMap<Value *, RRInfo> &Releases, |
1764 | SmallVectorImpl<Instruction *> &DeadInsts, |
1765 | Module *M) { |
1766 | Type *ArgTy = Arg->getType(); |
1767 | Type *ParamTy = PointerType::getUnqual(ElementType: Type::getInt8Ty(C&: ArgTy->getContext())); |
1768 | |
1769 | LLVM_DEBUG(dbgs() << "== ObjCARCOpt::MoveCalls ==\n" ); |
1770 | |
1771 | // Insert the new retain and release calls. |
1772 | for (Instruction *InsertPt : ReleasesToMove.ReverseInsertPts) { |
1773 | Value *MyArg = ArgTy == ParamTy ? Arg |
1774 | : new BitCastInst(Arg, ParamTy, "" , |
1775 | InsertPt->getIterator()); |
1776 | Function *Decl = EP.get(kind: ARCRuntimeEntryPointKind::Retain); |
1777 | SmallVector<OperandBundleDef, 1> BundleList; |
1778 | addOpBundleForFunclet(BB: InsertPt->getParent(), OpBundles&: BundleList); |
1779 | CallInst *Call = |
1780 | CallInst::Create(Func: Decl, Args: MyArg, Bundles: BundleList, NameStr: "" , InsertBefore: InsertPt->getIterator()); |
1781 | Call->setDoesNotThrow(); |
1782 | Call->setTailCall(); |
1783 | |
1784 | LLVM_DEBUG(dbgs() << "Inserting new Retain: " << *Call |
1785 | << "\n" |
1786 | "At insertion point: " |
1787 | << *InsertPt << "\n" ); |
1788 | } |
1789 | for (Instruction *InsertPt : RetainsToMove.ReverseInsertPts) { |
1790 | Value *MyArg = ArgTy == ParamTy ? Arg |
1791 | : new BitCastInst(Arg, ParamTy, "" , |
1792 | InsertPt->getIterator()); |
1793 | Function *Decl = EP.get(kind: ARCRuntimeEntryPointKind::Release); |
1794 | SmallVector<OperandBundleDef, 1> BundleList; |
1795 | addOpBundleForFunclet(BB: InsertPt->getParent(), OpBundles&: BundleList); |
1796 | CallInst *Call = |
1797 | CallInst::Create(Func: Decl, Args: MyArg, Bundles: BundleList, NameStr: "" , InsertBefore: InsertPt->getIterator()); |
1798 | // Attach a clang.imprecise_release metadata tag, if appropriate. |
1799 | if (MDNode *M = ReleasesToMove.ReleaseMetadata) |
1800 | Call->setMetadata(KindID: MDKindCache.get(ID: ARCMDKindID::ImpreciseRelease), Node: M); |
1801 | Call->setDoesNotThrow(); |
1802 | if (ReleasesToMove.IsTailCallRelease) |
1803 | Call->setTailCall(); |
1804 | |
1805 | LLVM_DEBUG(dbgs() << "Inserting new Release: " << *Call |
1806 | << "\n" |
1807 | "At insertion point: " |
1808 | << *InsertPt << "\n" ); |
1809 | } |
1810 | |
1811 | // Delete the original retain and release calls. |
1812 | for (Instruction *OrigRetain : RetainsToMove.Calls) { |
1813 | Retains.blot(Key: OrigRetain); |
1814 | DeadInsts.push_back(Elt: OrigRetain); |
1815 | LLVM_DEBUG(dbgs() << "Deleting retain: " << *OrigRetain << "\n" ); |
1816 | } |
1817 | for (Instruction *OrigRelease : ReleasesToMove.Calls) { |
1818 | Releases.erase(Val: OrigRelease); |
1819 | DeadInsts.push_back(Elt: OrigRelease); |
1820 | LLVM_DEBUG(dbgs() << "Deleting release: " << *OrigRelease << "\n" ); |
1821 | } |
1822 | } |
1823 | |
1824 | bool ObjCARCOpt::PairUpRetainsAndReleases( |
1825 | DenseMap<const BasicBlock *, BBState> &BBStates, |
1826 | BlotMapVector<Value *, RRInfo> &Retains, |
1827 | DenseMap<Value *, RRInfo> &Releases, Module *M, |
1828 | Instruction *Retain, |
1829 | SmallVectorImpl<Instruction *> &DeadInsts, RRInfo &RetainsToMove, |
1830 | RRInfo &ReleasesToMove, Value *Arg, bool KnownSafe, |
1831 | bool &AnyPairsCompletelyEliminated) { |
1832 | // If a pair happens in a region where it is known that the reference count |
1833 | // is already incremented, we can similarly ignore possible decrements unless |
1834 | // we are dealing with a retainable object with multiple provenance sources. |
1835 | bool KnownSafeTD = true, KnownSafeBU = true; |
1836 | bool CFGHazardAfflicted = false; |
1837 | |
1838 | // Connect the dots between the top-down-collected RetainsToMove and |
1839 | // bottom-up-collected ReleasesToMove to form sets of related calls. |
1840 | // This is an iterative process so that we connect multiple releases |
1841 | // to multiple retains if needed. |
1842 | unsigned OldDelta = 0; |
1843 | unsigned NewDelta = 0; |
1844 | unsigned OldCount = 0; |
1845 | unsigned NewCount = 0; |
1846 | bool FirstRelease = true; |
1847 | for (SmallVector<Instruction *, 4> NewRetains{Retain};;) { |
1848 | SmallVector<Instruction *, 4> NewReleases; |
1849 | for (Instruction *NewRetain : NewRetains) { |
1850 | auto It = Retains.find(Key: NewRetain); |
1851 | assert(It != Retains.end()); |
1852 | const RRInfo &NewRetainRRI = It->second; |
1853 | KnownSafeTD &= NewRetainRRI.KnownSafe; |
1854 | CFGHazardAfflicted |= NewRetainRRI.CFGHazardAfflicted; |
1855 | for (Instruction *NewRetainRelease : NewRetainRRI.Calls) { |
1856 | auto Jt = Releases.find(Val: NewRetainRelease); |
1857 | if (Jt == Releases.end()) |
1858 | return false; |
1859 | const RRInfo &NewRetainReleaseRRI = Jt->second; |
1860 | |
1861 | // If the release does not have a reference to the retain as well, |
1862 | // something happened which is unaccounted for. Do not do anything. |
1863 | // |
1864 | // This can happen if we catch an additive overflow during path count |
1865 | // merging. |
1866 | if (!NewRetainReleaseRRI.Calls.count(Ptr: NewRetain)) |
1867 | return false; |
1868 | |
1869 | if (ReleasesToMove.Calls.insert(Ptr: NewRetainRelease).second) { |
1870 | // If we overflow when we compute the path count, don't remove/move |
1871 | // anything. |
1872 | const BBState &NRRBBState = BBStates[NewRetainRelease->getParent()]; |
1873 | unsigned PathCount = BBState::OverflowOccurredValue; |
1874 | if (NRRBBState.GetAllPathCountWithOverflow(PathCount)) |
1875 | return false; |
1876 | assert(PathCount != BBState::OverflowOccurredValue && |
1877 | "PathCount at this point can not be " |
1878 | "OverflowOccurredValue." ); |
1879 | OldDelta -= PathCount; |
1880 | |
1881 | // Merge the ReleaseMetadata and IsTailCallRelease values. |
1882 | if (FirstRelease) { |
1883 | ReleasesToMove.ReleaseMetadata = |
1884 | NewRetainReleaseRRI.ReleaseMetadata; |
1885 | ReleasesToMove.IsTailCallRelease = |
1886 | NewRetainReleaseRRI.IsTailCallRelease; |
1887 | FirstRelease = false; |
1888 | } else { |
1889 | if (ReleasesToMove.ReleaseMetadata != |
1890 | NewRetainReleaseRRI.ReleaseMetadata) |
1891 | ReleasesToMove.ReleaseMetadata = nullptr; |
1892 | if (ReleasesToMove.IsTailCallRelease != |
1893 | NewRetainReleaseRRI.IsTailCallRelease) |
1894 | ReleasesToMove.IsTailCallRelease = false; |
1895 | } |
1896 | |
1897 | // Collect the optimal insertion points. |
1898 | if (!KnownSafe) |
1899 | for (Instruction *RIP : NewRetainReleaseRRI.ReverseInsertPts) { |
1900 | if (ReleasesToMove.ReverseInsertPts.insert(Ptr: RIP).second) { |
1901 | // If we overflow when we compute the path count, don't |
1902 | // remove/move anything. |
1903 | const BBState &RIPBBState = BBStates[RIP->getParent()]; |
1904 | PathCount = BBState::OverflowOccurredValue; |
1905 | if (RIPBBState.GetAllPathCountWithOverflow(PathCount)) |
1906 | return false; |
1907 | assert(PathCount != BBState::OverflowOccurredValue && |
1908 | "PathCount at this point can not be " |
1909 | "OverflowOccurredValue." ); |
1910 | NewDelta -= PathCount; |
1911 | } |
1912 | } |
1913 | NewReleases.push_back(Elt: NewRetainRelease); |
1914 | } |
1915 | } |
1916 | } |
1917 | NewRetains.clear(); |
1918 | if (NewReleases.empty()) break; |
1919 | |
1920 | // Back the other way. |
1921 | for (Instruction *NewRelease : NewReleases) { |
1922 | auto It = Releases.find(Val: NewRelease); |
1923 | assert(It != Releases.end()); |
1924 | const RRInfo &NewReleaseRRI = It->second; |
1925 | KnownSafeBU &= NewReleaseRRI.KnownSafe; |
1926 | CFGHazardAfflicted |= NewReleaseRRI.CFGHazardAfflicted; |
1927 | for (Instruction *NewReleaseRetain : NewReleaseRRI.Calls) { |
1928 | auto Jt = Retains.find(Key: NewReleaseRetain); |
1929 | if (Jt == Retains.end()) |
1930 | return false; |
1931 | const RRInfo &NewReleaseRetainRRI = Jt->second; |
1932 | |
1933 | // If the retain does not have a reference to the release as well, |
1934 | // something happened which is unaccounted for. Do not do anything. |
1935 | // |
1936 | // This can happen if we catch an additive overflow during path count |
1937 | // merging. |
1938 | if (!NewReleaseRetainRRI.Calls.count(Ptr: NewRelease)) |
1939 | return false; |
1940 | |
1941 | if (RetainsToMove.Calls.insert(Ptr: NewReleaseRetain).second) { |
1942 | // If we overflow when we compute the path count, don't remove/move |
1943 | // anything. |
1944 | const BBState &NRRBBState = BBStates[NewReleaseRetain->getParent()]; |
1945 | unsigned PathCount = BBState::OverflowOccurredValue; |
1946 | if (NRRBBState.GetAllPathCountWithOverflow(PathCount)) |
1947 | return false; |
1948 | assert(PathCount != BBState::OverflowOccurredValue && |
1949 | "PathCount at this point can not be " |
1950 | "OverflowOccurredValue." ); |
1951 | OldDelta += PathCount; |
1952 | OldCount += PathCount; |
1953 | |
1954 | // Collect the optimal insertion points. |
1955 | if (!KnownSafe) |
1956 | for (Instruction *RIP : NewReleaseRetainRRI.ReverseInsertPts) { |
1957 | if (RetainsToMove.ReverseInsertPts.insert(Ptr: RIP).second) { |
1958 | // If we overflow when we compute the path count, don't |
1959 | // remove/move anything. |
1960 | const BBState &RIPBBState = BBStates[RIP->getParent()]; |
1961 | |
1962 | PathCount = BBState::OverflowOccurredValue; |
1963 | if (RIPBBState.GetAllPathCountWithOverflow(PathCount)) |
1964 | return false; |
1965 | assert(PathCount != BBState::OverflowOccurredValue && |
1966 | "PathCount at this point can not be " |
1967 | "OverflowOccurredValue." ); |
1968 | NewDelta += PathCount; |
1969 | NewCount += PathCount; |
1970 | } |
1971 | } |
1972 | NewRetains.push_back(Elt: NewReleaseRetain); |
1973 | } |
1974 | } |
1975 | } |
1976 | if (NewRetains.empty()) break; |
1977 | } |
1978 | |
1979 | // We can only remove pointers if we are known safe in both directions. |
1980 | bool UnconditionallySafe = KnownSafeTD && KnownSafeBU; |
1981 | if (UnconditionallySafe) { |
1982 | RetainsToMove.ReverseInsertPts.clear(); |
1983 | ReleasesToMove.ReverseInsertPts.clear(); |
1984 | NewCount = 0; |
1985 | } else { |
1986 | // Determine whether the new insertion points we computed preserve the |
1987 | // balance of retain and release calls through the program. |
1988 | // TODO: If the fully aggressive solution isn't valid, try to find a |
1989 | // less aggressive solution which is. |
1990 | if (NewDelta != 0) |
1991 | return false; |
1992 | |
1993 | // At this point, we are not going to remove any RR pairs, but we still are |
1994 | // able to move RR pairs. If one of our pointers is afflicted with |
1995 | // CFGHazards, we cannot perform such code motion so exit early. |
1996 | const bool WillPerformCodeMotion = |
1997 | !RetainsToMove.ReverseInsertPts.empty() || |
1998 | !ReleasesToMove.ReverseInsertPts.empty(); |
1999 | if (CFGHazardAfflicted && WillPerformCodeMotion) |
2000 | return false; |
2001 | } |
2002 | |
2003 | // Determine whether the original call points are balanced in the retain and |
2004 | // release calls through the program. If not, conservatively don't touch |
2005 | // them. |
2006 | // TODO: It's theoretically possible to do code motion in this case, as |
2007 | // long as the existing imbalances are maintained. |
2008 | if (OldDelta != 0) |
2009 | return false; |
2010 | |
2011 | Changed = true; |
2012 | assert(OldCount != 0 && "Unreachable code?" ); |
2013 | NumRRs += OldCount - NewCount; |
2014 | // Set to true if we completely removed any RR pairs. |
2015 | AnyPairsCompletelyEliminated = NewCount == 0; |
2016 | |
2017 | // We can move calls! |
2018 | return true; |
2019 | } |
2020 | |
2021 | /// Identify pairings between the retains and releases, and delete and/or move |
2022 | /// them. |
2023 | bool ObjCARCOpt::PerformCodePlacement( |
2024 | DenseMap<const BasicBlock *, BBState> &BBStates, |
2025 | BlotMapVector<Value *, RRInfo> &Retains, |
2026 | DenseMap<Value *, RRInfo> &Releases, Module *M) { |
2027 | LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::PerformCodePlacement ==\n" ); |
2028 | |
2029 | bool AnyPairsCompletelyEliminated = false; |
2030 | SmallVector<Instruction *, 8> DeadInsts; |
2031 | |
2032 | // Visit each retain. |
2033 | for (BlotMapVector<Value *, RRInfo>::const_iterator I = Retains.begin(), |
2034 | E = Retains.end(); |
2035 | I != E; ++I) { |
2036 | Value *V = I->first; |
2037 | if (!V) continue; // blotted |
2038 | |
2039 | Instruction *Retain = cast<Instruction>(Val: V); |
2040 | |
2041 | LLVM_DEBUG(dbgs() << "Visiting: " << *Retain << "\n" ); |
2042 | |
2043 | Value *Arg = GetArgRCIdentityRoot(Inst: Retain); |
2044 | |
2045 | // If the object being released is in static or stack storage, we know it's |
2046 | // not being managed by ObjC reference counting, so we can delete pairs |
2047 | // regardless of what possible decrements or uses lie between them. |
2048 | bool KnownSafe = isa<Constant>(Val: Arg) || isa<AllocaInst>(Val: Arg); |
2049 | |
2050 | // A constant pointer can't be pointing to an object on the heap. It may |
2051 | // be reference-counted, but it won't be deleted. |
2052 | if (const LoadInst *LI = dyn_cast<LoadInst>(Val: Arg)) |
2053 | if (const GlobalVariable *GV = |
2054 | dyn_cast<GlobalVariable>( |
2055 | Val: GetRCIdentityRoot(V: LI->getPointerOperand()))) |
2056 | if (GV->isConstant()) |
2057 | KnownSafe = true; |
2058 | |
2059 | // Connect the dots between the top-down-collected RetainsToMove and |
2060 | // bottom-up-collected ReleasesToMove to form sets of related calls. |
2061 | RRInfo RetainsToMove, ReleasesToMove; |
2062 | |
2063 | bool PerformMoveCalls = PairUpRetainsAndReleases( |
2064 | BBStates, Retains, Releases, M, Retain, DeadInsts, |
2065 | RetainsToMove, ReleasesToMove, Arg, KnownSafe, |
2066 | AnyPairsCompletelyEliminated); |
2067 | |
2068 | if (PerformMoveCalls) { |
2069 | // Ok, everything checks out and we're all set. Let's move/delete some |
2070 | // code! |
2071 | MoveCalls(Arg, RetainsToMove, ReleasesToMove, |
2072 | Retains, Releases, DeadInsts, M); |
2073 | } |
2074 | } |
2075 | |
2076 | // Now that we're done moving everything, we can delete the newly dead |
2077 | // instructions, as we no longer need them as insert points. |
2078 | while (!DeadInsts.empty()) |
2079 | EraseInstruction(CI: DeadInsts.pop_back_val()); |
2080 | |
2081 | return AnyPairsCompletelyEliminated; |
2082 | } |
2083 | |
2084 | /// Weak pointer optimizations. |
2085 | void ObjCARCOpt::OptimizeWeakCalls(Function &F) { |
2086 | LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeWeakCalls ==\n" ); |
2087 | |
2088 | // First, do memdep-style RLE and S2L optimizations. We can't use memdep |
2089 | // itself because it uses AliasAnalysis and we need to do provenance |
2090 | // queries instead. |
2091 | for (inst_iterator I = inst_begin(F: &F), E = inst_end(F: &F); I != E; ) { |
2092 | Instruction *Inst = &*I++; |
2093 | |
2094 | LLVM_DEBUG(dbgs() << "Visiting: " << *Inst << "\n" ); |
2095 | |
2096 | ARCInstKind Class = GetBasicARCInstKind(V: Inst); |
2097 | if (Class != ARCInstKind::LoadWeak && |
2098 | Class != ARCInstKind::LoadWeakRetained) |
2099 | continue; |
2100 | |
2101 | // Delete objc_loadWeak calls with no users. |
2102 | if (Class == ARCInstKind::LoadWeak && Inst->use_empty()) { |
2103 | Inst->eraseFromParent(); |
2104 | Changed = true; |
2105 | continue; |
2106 | } |
2107 | |
2108 | // TODO: For now, just look for an earlier available version of this value |
2109 | // within the same block. Theoretically, we could do memdep-style non-local |
2110 | // analysis too, but that would want caching. A better approach would be to |
2111 | // use the technique that EarlyCSE uses. |
2112 | inst_iterator Current = std::prev(x: I); |
2113 | BasicBlock *CurrentBB = &*Current.getBasicBlockIterator(); |
2114 | for (BasicBlock::iterator B = CurrentBB->begin(), |
2115 | J = Current.getInstructionIterator(); |
2116 | J != B; --J) { |
2117 | Instruction *EarlierInst = &*std::prev(x: J); |
2118 | ARCInstKind EarlierClass = GetARCInstKind(V: EarlierInst); |
2119 | switch (EarlierClass) { |
2120 | case ARCInstKind::LoadWeak: |
2121 | case ARCInstKind::LoadWeakRetained: { |
2122 | // If this is loading from the same pointer, replace this load's value |
2123 | // with that one. |
2124 | CallInst *Call = cast<CallInst>(Val: Inst); |
2125 | CallInst *EarlierCall = cast<CallInst>(Val: EarlierInst); |
2126 | Value *Arg = Call->getArgOperand(i: 0); |
2127 | Value *EarlierArg = EarlierCall->getArgOperand(i: 0); |
2128 | switch (PA.getAA()->alias(V1: Arg, V2: EarlierArg)) { |
2129 | case AliasResult::MustAlias: |
2130 | Changed = true; |
2131 | // If the load has a builtin retain, insert a plain retain for it. |
2132 | if (Class == ARCInstKind::LoadWeakRetained) { |
2133 | Function *Decl = EP.get(kind: ARCRuntimeEntryPointKind::Retain); |
2134 | CallInst *CI = |
2135 | CallInst::Create(Func: Decl, Args: EarlierCall, NameStr: "" , InsertBefore: Call->getIterator()); |
2136 | CI->setTailCall(); |
2137 | } |
2138 | // Zap the fully redundant load. |
2139 | Call->replaceAllUsesWith(V: EarlierCall); |
2140 | Call->eraseFromParent(); |
2141 | goto clobbered; |
2142 | case AliasResult::MayAlias: |
2143 | case AliasResult::PartialAlias: |
2144 | goto clobbered; |
2145 | case AliasResult::NoAlias: |
2146 | break; |
2147 | } |
2148 | break; |
2149 | } |
2150 | case ARCInstKind::StoreWeak: |
2151 | case ARCInstKind::InitWeak: { |
2152 | // If this is storing to the same pointer and has the same size etc. |
2153 | // replace this load's value with the stored value. |
2154 | CallInst *Call = cast<CallInst>(Val: Inst); |
2155 | CallInst *EarlierCall = cast<CallInst>(Val: EarlierInst); |
2156 | Value *Arg = Call->getArgOperand(i: 0); |
2157 | Value *EarlierArg = EarlierCall->getArgOperand(i: 0); |
2158 | switch (PA.getAA()->alias(V1: Arg, V2: EarlierArg)) { |
2159 | case AliasResult::MustAlias: |
2160 | Changed = true; |
2161 | // If the load has a builtin retain, insert a plain retain for it. |
2162 | if (Class == ARCInstKind::LoadWeakRetained) { |
2163 | Function *Decl = EP.get(kind: ARCRuntimeEntryPointKind::Retain); |
2164 | CallInst *CI = |
2165 | CallInst::Create(Func: Decl, Args: EarlierCall, NameStr: "" , InsertBefore: Call->getIterator()); |
2166 | CI->setTailCall(); |
2167 | } |
2168 | // Zap the fully redundant load. |
2169 | Call->replaceAllUsesWith(V: EarlierCall->getArgOperand(i: 1)); |
2170 | Call->eraseFromParent(); |
2171 | goto clobbered; |
2172 | case AliasResult::MayAlias: |
2173 | case AliasResult::PartialAlias: |
2174 | goto clobbered; |
2175 | case AliasResult::NoAlias: |
2176 | break; |
2177 | } |
2178 | break; |
2179 | } |
2180 | case ARCInstKind::MoveWeak: |
2181 | case ARCInstKind::CopyWeak: |
2182 | // TOOD: Grab the copied value. |
2183 | goto clobbered; |
2184 | case ARCInstKind::AutoreleasepoolPush: |
2185 | case ARCInstKind::None: |
2186 | case ARCInstKind::IntrinsicUser: |
2187 | case ARCInstKind::User: |
2188 | // Weak pointers are only modified through the weak entry points |
2189 | // (and arbitrary calls, which could call the weak entry points). |
2190 | break; |
2191 | default: |
2192 | // Anything else could modify the weak pointer. |
2193 | goto clobbered; |
2194 | } |
2195 | } |
2196 | clobbered:; |
2197 | } |
2198 | |
2199 | // Then, for each destroyWeak with an alloca operand, check to see if |
2200 | // the alloca and all its users can be zapped. |
2201 | for (Instruction &Inst : llvm::make_early_inc_range(Range: instructions(F))) { |
2202 | ARCInstKind Class = GetBasicARCInstKind(V: &Inst); |
2203 | if (Class != ARCInstKind::DestroyWeak) |
2204 | continue; |
2205 | |
2206 | CallInst *Call = cast<CallInst>(Val: &Inst); |
2207 | Value *Arg = Call->getArgOperand(i: 0); |
2208 | if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Val: Arg)) { |
2209 | for (User *U : Alloca->users()) { |
2210 | const Instruction *UserInst = cast<Instruction>(Val: U); |
2211 | switch (GetBasicARCInstKind(V: UserInst)) { |
2212 | case ARCInstKind::InitWeak: |
2213 | case ARCInstKind::StoreWeak: |
2214 | case ARCInstKind::DestroyWeak: |
2215 | continue; |
2216 | default: |
2217 | goto done; |
2218 | } |
2219 | } |
2220 | Changed = true; |
2221 | for (User *U : llvm::make_early_inc_range(Range: Alloca->users())) { |
2222 | CallInst *UserInst = cast<CallInst>(Val: U); |
2223 | switch (GetBasicARCInstKind(V: UserInst)) { |
2224 | case ARCInstKind::InitWeak: |
2225 | case ARCInstKind::StoreWeak: |
2226 | // These functions return their second argument. |
2227 | UserInst->replaceAllUsesWith(V: UserInst->getArgOperand(i: 1)); |
2228 | break; |
2229 | case ARCInstKind::DestroyWeak: |
2230 | // No return value. |
2231 | break; |
2232 | default: |
2233 | llvm_unreachable("alloca really is used!" ); |
2234 | } |
2235 | UserInst->eraseFromParent(); |
2236 | } |
2237 | Alloca->eraseFromParent(); |
2238 | done:; |
2239 | } |
2240 | } |
2241 | } |
2242 | |
2243 | /// Identify program paths which execute sequences of retains and releases which |
2244 | /// can be eliminated. |
2245 | bool ObjCARCOpt::OptimizeSequences(Function &F) { |
2246 | // Releases, Retains - These are used to store the results of the main flow |
2247 | // analysis. These use Value* as the key instead of Instruction* so that the |
2248 | // map stays valid when we get around to rewriting code and calls get |
2249 | // replaced by arguments. |
2250 | DenseMap<Value *, RRInfo> Releases; |
2251 | BlotMapVector<Value *, RRInfo> Retains; |
2252 | |
2253 | // This is used during the traversal of the function to track the |
2254 | // states for each identified object at each block. |
2255 | DenseMap<const BasicBlock *, BBState> BBStates; |
2256 | |
2257 | // Analyze the CFG of the function, and all instructions. |
2258 | bool NestingDetected = Visit(F, BBStates, Retains, Releases); |
2259 | |
2260 | if (DisableRetainReleasePairing) |
2261 | return false; |
2262 | |
2263 | // Transform. |
2264 | bool AnyPairsCompletelyEliminated = PerformCodePlacement(BBStates, Retains, |
2265 | Releases, |
2266 | M: F.getParent()); |
2267 | |
2268 | return AnyPairsCompletelyEliminated && NestingDetected; |
2269 | } |
2270 | |
2271 | /// Check if there is a dependent call earlier that does not have anything in |
2272 | /// between the Retain and the call that can affect the reference count of their |
2273 | /// shared pointer argument. Note that Retain need not be in BB. |
2274 | static CallInst *HasSafePathToPredecessorCall(const Value *Arg, |
2275 | Instruction *Retain, |
2276 | ProvenanceAnalysis &PA) { |
2277 | auto *Call = dyn_cast_or_null<CallInst>(Val: findSingleDependency( |
2278 | Flavor: CanChangeRetainCount, Arg, StartBB: Retain->getParent(), StartInst: Retain, PA)); |
2279 | |
2280 | // Check that the pointer is the return value of the call. |
2281 | if (!Call || Arg != Call) |
2282 | return nullptr; |
2283 | |
2284 | // Check that the call is a regular call. |
2285 | ARCInstKind Class = GetBasicARCInstKind(V: Call); |
2286 | return Class == ARCInstKind::CallOrUser || Class == ARCInstKind::Call |
2287 | ? Call |
2288 | : nullptr; |
2289 | } |
2290 | |
2291 | /// Find a dependent retain that precedes the given autorelease for which there |
2292 | /// is nothing in between the two instructions that can affect the ref count of |
2293 | /// Arg. |
2294 | static CallInst * |
2295 | FindPredecessorRetainWithSafePath(const Value *Arg, BasicBlock *BB, |
2296 | Instruction *Autorelease, |
2297 | ProvenanceAnalysis &PA) { |
2298 | auto *Retain = dyn_cast_or_null<CallInst>( |
2299 | Val: findSingleDependency(Flavor: CanChangeRetainCount, Arg, StartBB: BB, StartInst: Autorelease, PA)); |
2300 | |
2301 | // Check that we found a retain with the same argument. |
2302 | if (!Retain || !IsRetain(Class: GetBasicARCInstKind(V: Retain)) || |
2303 | GetArgRCIdentityRoot(Inst: Retain) != Arg) { |
2304 | return nullptr; |
2305 | } |
2306 | |
2307 | return Retain; |
2308 | } |
2309 | |
2310 | /// Look for an ``autorelease'' instruction dependent on Arg such that there are |
2311 | /// no instructions dependent on Arg that need a positive ref count in between |
2312 | /// the autorelease and the ret. |
2313 | static CallInst * |
2314 | FindPredecessorAutoreleaseWithSafePath(const Value *Arg, BasicBlock *BB, |
2315 | ReturnInst *Ret, |
2316 | ProvenanceAnalysis &PA) { |
2317 | SmallPtrSet<Instruction *, 4> DepInsts; |
2318 | auto *Autorelease = dyn_cast_or_null<CallInst>( |
2319 | Val: findSingleDependency(Flavor: NeedsPositiveRetainCount, Arg, StartBB: BB, StartInst: Ret, PA)); |
2320 | |
2321 | if (!Autorelease) |
2322 | return nullptr; |
2323 | ARCInstKind AutoreleaseClass = GetBasicARCInstKind(V: Autorelease); |
2324 | if (!IsAutorelease(Class: AutoreleaseClass)) |
2325 | return nullptr; |
2326 | if (GetArgRCIdentityRoot(Inst: Autorelease) != Arg) |
2327 | return nullptr; |
2328 | |
2329 | return Autorelease; |
2330 | } |
2331 | |
2332 | /// Look for this pattern: |
2333 | /// \code |
2334 | /// %call = call i8* @something(...) |
2335 | /// %2 = call i8* @objc_retain(i8* %call) |
2336 | /// %3 = call i8* @objc_autorelease(i8* %2) |
2337 | /// ret i8* %3 |
2338 | /// \endcode |
2339 | /// And delete the retain and autorelease. |
2340 | void ObjCARCOpt::OptimizeReturns(Function &F) { |
2341 | if (!F.getReturnType()->isPointerTy()) |
2342 | return; |
2343 | |
2344 | LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeReturns ==\n" ); |
2345 | |
2346 | for (BasicBlock &BB: F) { |
2347 | ReturnInst *Ret = dyn_cast<ReturnInst>(Val: &BB.back()); |
2348 | if (!Ret) |
2349 | continue; |
2350 | |
2351 | LLVM_DEBUG(dbgs() << "Visiting: " << *Ret << "\n" ); |
2352 | |
2353 | const Value *Arg = GetRCIdentityRoot(V: Ret->getOperand(i_nocapture: 0)); |
2354 | |
2355 | // Look for an ``autorelease'' instruction that is a predecessor of Ret and |
2356 | // dependent on Arg such that there are no instructions dependent on Arg |
2357 | // that need a positive ref count in between the autorelease and Ret. |
2358 | CallInst *Autorelease = |
2359 | FindPredecessorAutoreleaseWithSafePath(Arg, BB: &BB, Ret, PA); |
2360 | |
2361 | if (!Autorelease) |
2362 | continue; |
2363 | |
2364 | CallInst *Retain = FindPredecessorRetainWithSafePath( |
2365 | Arg, BB: Autorelease->getParent(), Autorelease, PA); |
2366 | |
2367 | if (!Retain) |
2368 | continue; |
2369 | |
2370 | // Check that there is nothing that can affect the reference count |
2371 | // between the retain and the call. Note that Retain need not be in BB. |
2372 | CallInst *Call = HasSafePathToPredecessorCall(Arg, Retain, PA); |
2373 | |
2374 | // Don't remove retainRV/autoreleaseRV pairs if the call isn't a tail call. |
2375 | if (!Call || |
2376 | (!Call->isTailCall() && |
2377 | GetBasicARCInstKind(V: Retain) == ARCInstKind::RetainRV && |
2378 | GetBasicARCInstKind(V: Autorelease) == ARCInstKind::AutoreleaseRV)) |
2379 | continue; |
2380 | |
2381 | // If so, we can zap the retain and autorelease. |
2382 | Changed = true; |
2383 | ++NumRets; |
2384 | LLVM_DEBUG(dbgs() << "Erasing: " << *Retain << "\nErasing: " << *Autorelease |
2385 | << "\n" ); |
2386 | BundledInsts->eraseInst(CI: Retain); |
2387 | EraseInstruction(CI: Autorelease); |
2388 | } |
2389 | } |
2390 | |
2391 | #ifndef NDEBUG |
2392 | void |
2393 | ObjCARCOpt::GatherStatistics(Function &F, bool AfterOptimization) { |
2394 | Statistic &NumRetains = |
2395 | AfterOptimization ? NumRetainsAfterOpt : NumRetainsBeforeOpt; |
2396 | Statistic &NumReleases = |
2397 | AfterOptimization ? NumReleasesAfterOpt : NumReleasesBeforeOpt; |
2398 | |
2399 | for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { |
2400 | Instruction *Inst = &*I++; |
2401 | switch (GetBasicARCInstKind(Inst)) { |
2402 | default: |
2403 | break; |
2404 | case ARCInstKind::Retain: |
2405 | ++NumRetains; |
2406 | break; |
2407 | case ARCInstKind::Release: |
2408 | ++NumReleases; |
2409 | break; |
2410 | } |
2411 | } |
2412 | } |
2413 | #endif |
2414 | |
2415 | void ObjCARCOpt::init(Function &F) { |
2416 | if (!EnableARCOpts) |
2417 | return; |
2418 | |
2419 | // Intuitively, objc_retain and others are nocapture, however in practice |
2420 | // they are not, because they return their argument value. And objc_release |
2421 | // calls finalizers which can have arbitrary side effects. |
2422 | MDKindCache.init(Mod: F.getParent()); |
2423 | |
2424 | // Initialize our runtime entry point cache. |
2425 | EP.init(M: F.getParent()); |
2426 | |
2427 | // Compute which blocks are in which funclet. |
2428 | if (F.hasPersonalityFn() && |
2429 | isScopedEHPersonality(Pers: classifyEHPersonality(Pers: F.getPersonalityFn()))) |
2430 | BlockEHColors = colorEHFunclets(F); |
2431 | } |
2432 | |
2433 | bool ObjCARCOpt::run(Function &F, AAResults &AA) { |
2434 | if (!EnableARCOpts) |
2435 | return false; |
2436 | |
2437 | Changed = CFGChanged = false; |
2438 | BundledRetainClaimRVs BRV(/*ContractPass=*/false); |
2439 | BundledInsts = &BRV; |
2440 | |
2441 | LLVM_DEBUG(dbgs() << "<<< ObjCARCOpt: Visiting Function: " << F.getName() |
2442 | << " >>>" |
2443 | "\n" ); |
2444 | |
2445 | std::pair<bool, bool> R = BundledInsts->insertAfterInvokes(F, DT: nullptr); |
2446 | Changed |= R.first; |
2447 | CFGChanged |= R.second; |
2448 | |
2449 | PA.setAA(&AA); |
2450 | |
2451 | #ifndef NDEBUG |
2452 | if (AreStatisticsEnabled()) { |
2453 | GatherStatistics(F, false); |
2454 | } |
2455 | #endif |
2456 | |
2457 | // This pass performs several distinct transformations. As a compile-time aid |
2458 | // when compiling code that isn't ObjC, skip these if the relevant ObjC |
2459 | // library functions aren't declared. |
2460 | |
2461 | // Preliminary optimizations. This also computes UsedInThisFunction. |
2462 | OptimizeIndividualCalls(F); |
2463 | |
2464 | // Optimizations for weak pointers. |
2465 | if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::LoadWeak)) | |
2466 | (1 << unsigned(ARCInstKind::LoadWeakRetained)) | |
2467 | (1 << unsigned(ARCInstKind::StoreWeak)) | |
2468 | (1 << unsigned(ARCInstKind::InitWeak)) | |
2469 | (1 << unsigned(ARCInstKind::CopyWeak)) | |
2470 | (1 << unsigned(ARCInstKind::MoveWeak)) | |
2471 | (1 << unsigned(ARCInstKind::DestroyWeak)))) |
2472 | OptimizeWeakCalls(F); |
2473 | |
2474 | // Optimizations for retain+release pairs. |
2475 | if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Retain)) | |
2476 | (1 << unsigned(ARCInstKind::RetainRV)) | |
2477 | (1 << unsigned(ARCInstKind::RetainBlock)))) |
2478 | if (UsedInThisFunction & (1 << unsigned(ARCInstKind::Release))) |
2479 | // Run OptimizeSequences until it either stops making changes or |
2480 | // no retain+release pair nesting is detected. |
2481 | while (OptimizeSequences(F)) {} |
2482 | |
2483 | // Optimizations if objc_autorelease is used. |
2484 | if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Autorelease)) | |
2485 | (1 << unsigned(ARCInstKind::AutoreleaseRV)))) |
2486 | OptimizeReturns(F); |
2487 | |
2488 | // Gather statistics after optimization. |
2489 | #ifndef NDEBUG |
2490 | if (AreStatisticsEnabled()) { |
2491 | GatherStatistics(F, true); |
2492 | } |
2493 | #endif |
2494 | |
2495 | LLVM_DEBUG(dbgs() << "\n" ); |
2496 | |
2497 | return Changed; |
2498 | } |
2499 | |
2500 | /// @} |
2501 | /// |
2502 | |
2503 | PreservedAnalyses ObjCARCOptPass::run(Function &F, |
2504 | FunctionAnalysisManager &AM) { |
2505 | ObjCARCOpt OCAO; |
2506 | OCAO.init(F); |
2507 | |
2508 | bool Changed = OCAO.run(F, AA&: AM.getResult<AAManager>(IR&: F)); |
2509 | bool CFGChanged = OCAO.hasCFGChanged(); |
2510 | if (Changed) { |
2511 | PreservedAnalyses PA; |
2512 | if (!CFGChanged) |
2513 | PA.preserveSet<CFGAnalyses>(); |
2514 | return PA; |
2515 | } |
2516 | return PreservedAnalyses::all(); |
2517 | } |
2518 | |