1 | //===- ProvenanceAnalysis.cpp - ObjC ARC Optimization ---------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file |
10 | /// |
11 | /// This file defines a special form of Alias Analysis called ``Provenance |
12 | /// Analysis''. The word ``provenance'' refers to the history of the ownership |
13 | /// of an object. Thus ``Provenance Analysis'' is an analysis which attempts to |
14 | /// use various techniques to determine if locally |
15 | /// |
16 | /// WARNING: This file knows about certain library functions. It recognizes them |
17 | /// by name, and hardwires knowledge of their semantics. |
18 | /// |
19 | /// WARNING: This file knows about how certain Objective-C library functions are |
20 | /// used. Naive LLVM IR transformations which would otherwise be |
21 | /// behavior-preserving may break these assumptions. |
22 | // |
23 | //===----------------------------------------------------------------------===// |
24 | |
25 | #include "ProvenanceAnalysis.h" |
26 | #include "llvm/ADT/SmallPtrSet.h" |
27 | #include "llvm/ADT/SmallVector.h" |
28 | #include "llvm/Analysis/AliasAnalysis.h" |
29 | #include "llvm/Analysis/ObjCARCAnalysisUtils.h" |
30 | #include "llvm/IR/Instructions.h" |
31 | #include "llvm/IR/Module.h" |
32 | #include "llvm/IR/Use.h" |
33 | #include "llvm/IR/User.h" |
34 | #include "llvm/IR/Value.h" |
35 | #include "llvm/Support/Casting.h" |
36 | #include <utility> |
37 | |
38 | using namespace llvm; |
39 | using namespace llvm::objcarc; |
40 | |
41 | bool ProvenanceAnalysis::relatedSelect(const SelectInst *A, |
42 | const Value *B) { |
43 | // If the values are Selects with the same condition, we can do a more precise |
44 | // check: just check for relations between the values on corresponding arms. |
45 | if (const SelectInst *SB = dyn_cast<SelectInst>(Val: B)) |
46 | if (A->getCondition() == SB->getCondition()) |
47 | return related(A: A->getTrueValue(), B: SB->getTrueValue()) || |
48 | related(A: A->getFalseValue(), B: SB->getFalseValue()); |
49 | |
50 | // Check both arms of the Select node individually. |
51 | return related(A: A->getTrueValue(), B) || related(A: A->getFalseValue(), B); |
52 | } |
53 | |
54 | bool ProvenanceAnalysis::relatedPHI(const PHINode *A, |
55 | const Value *B) { |
56 | // If the values are PHIs in the same block, we can do a more precise as well |
57 | // as efficient check: just check for relations between the values on |
58 | // corresponding edges. |
59 | if (const PHINode *PNB = dyn_cast<PHINode>(Val: B)) |
60 | if (PNB->getParent() == A->getParent()) { |
61 | for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i) |
62 | if (related(A: A->getIncomingValue(i), |
63 | B: PNB->getIncomingValueForBlock(BB: A->getIncomingBlock(i)))) |
64 | return true; |
65 | return false; |
66 | } |
67 | |
68 | // Check each unique source of the PHI node against B. |
69 | SmallPtrSet<const Value *, 4> UniqueSrc; |
70 | for (Value *PV1 : A->incoming_values()) { |
71 | if (UniqueSrc.insert(Ptr: PV1).second && related(A: PV1, B)) |
72 | return true; |
73 | } |
74 | |
75 | // All of the arms checked out. |
76 | return false; |
77 | } |
78 | |
79 | /// Test if the value of P, or any value covered by its provenance, is ever |
80 | /// stored within the function (not counting callees). |
81 | static bool IsStoredObjCPointer(const Value *P) { |
82 | SmallPtrSet<const Value *, 8> Visited; |
83 | SmallVector<const Value *, 8> Worklist; |
84 | Worklist.push_back(Elt: P); |
85 | Visited.insert(Ptr: P); |
86 | do { |
87 | P = Worklist.pop_back_val(); |
88 | for (const Use &U : P->uses()) { |
89 | const User *Ur = U.getUser(); |
90 | if (isa<StoreInst>(Val: Ur)) { |
91 | if (U.getOperandNo() == 0) |
92 | // The pointer is stored. |
93 | return true; |
94 | // The pointed is stored through. |
95 | continue; |
96 | } |
97 | if (isa<CallInst>(Val: Ur)) |
98 | // The pointer is passed as an argument, ignore this. |
99 | continue; |
100 | if (isa<PtrToIntInst>(Val: P)) |
101 | // Assume the worst. |
102 | return true; |
103 | if (Visited.insert(Ptr: Ur).second) |
104 | Worklist.push_back(Elt: Ur); |
105 | } |
106 | } while (!Worklist.empty()); |
107 | |
108 | // Everything checked out. |
109 | return false; |
110 | } |
111 | |
112 | bool ProvenanceAnalysis::relatedCheck(const Value *A, const Value *B) { |
113 | // Ask regular AliasAnalysis, for a first approximation. |
114 | switch (AA->alias(V1: A, V2: B)) { |
115 | case AliasResult::NoAlias: |
116 | return false; |
117 | case AliasResult::MustAlias: |
118 | case AliasResult::PartialAlias: |
119 | return true; |
120 | case AliasResult::MayAlias: |
121 | break; |
122 | } |
123 | |
124 | bool AIsIdentified = IsObjCIdentifiedObject(V: A); |
125 | bool BIsIdentified = IsObjCIdentifiedObject(V: B); |
126 | |
127 | // An ObjC-Identified object can't alias a load if it is never locally stored. |
128 | if (AIsIdentified) { |
129 | // Check for an obvious escape. |
130 | if (isa<LoadInst>(Val: B)) |
131 | return IsStoredObjCPointer(P: A); |
132 | if (BIsIdentified) { |
133 | // Check for an obvious escape. |
134 | if (isa<LoadInst>(Val: A)) |
135 | return IsStoredObjCPointer(P: B); |
136 | // Both pointers are identified and escapes aren't an evident problem. |
137 | return false; |
138 | } |
139 | } else if (BIsIdentified) { |
140 | // Check for an obvious escape. |
141 | if (isa<LoadInst>(Val: A)) |
142 | return IsStoredObjCPointer(P: B); |
143 | } |
144 | |
145 | // Special handling for PHI and Select. |
146 | if (const PHINode *PN = dyn_cast<PHINode>(Val: A)) |
147 | return relatedPHI(A: PN, B); |
148 | if (const PHINode *PN = dyn_cast<PHINode>(Val: B)) |
149 | return relatedPHI(A: PN, B: A); |
150 | if (const SelectInst *S = dyn_cast<SelectInst>(Val: A)) |
151 | return relatedSelect(A: S, B); |
152 | if (const SelectInst *S = dyn_cast<SelectInst>(Val: B)) |
153 | return relatedSelect(A: S, B: A); |
154 | |
155 | // Conservative. |
156 | return true; |
157 | } |
158 | |
159 | bool ProvenanceAnalysis::related(const Value *A, const Value *B) { |
160 | A = GetUnderlyingObjCPtrCached(V: A, Cache&: UnderlyingObjCPtrCache); |
161 | B = GetUnderlyingObjCPtrCached(V: B, Cache&: UnderlyingObjCPtrCache); |
162 | |
163 | // Quick check. |
164 | if (A == B) |
165 | return true; |
166 | |
167 | // Begin by inserting a conservative value into the map. If the insertion |
168 | // fails, we have the answer already. If it succeeds, leave it there until we |
169 | // compute the real answer to guard against recursive queries. |
170 | std::pair<CachedResultsTy::iterator, bool> Pair = |
171 | CachedResults.insert(KV: std::make_pair(x: ValuePairTy(A, B), y: true)); |
172 | if (!Pair.second) |
173 | return Pair.first->second; |
174 | |
175 | bool Result = relatedCheck(A, B); |
176 | CachedResults[ValuePairTy(A, B)] = Result; |
177 | return Result; |
178 | } |
179 | |