1 | //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This pass implements a simple loop unroller. It works best when loops have |
10 | // been canonicalized by the -indvars pass, allowing it to determine the trip |
11 | // counts of loops easily. |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "llvm/Transforms/Scalar/LoopUnrollPass.h" |
15 | #include "llvm/ADT/DenseMap.h" |
16 | #include "llvm/ADT/DenseMapInfo.h" |
17 | #include "llvm/ADT/DenseSet.h" |
18 | #include "llvm/ADT/STLExtras.h" |
19 | #include "llvm/ADT/ScopedHashTable.h" |
20 | #include "llvm/ADT/SetVector.h" |
21 | #include "llvm/ADT/SmallPtrSet.h" |
22 | #include "llvm/ADT/SmallVector.h" |
23 | #include "llvm/ADT/StringRef.h" |
24 | #include "llvm/Analysis/AssumptionCache.h" |
25 | #include "llvm/Analysis/BlockFrequencyInfo.h" |
26 | #include "llvm/Analysis/CodeMetrics.h" |
27 | #include "llvm/Analysis/LoopAnalysisManager.h" |
28 | #include "llvm/Analysis/LoopInfo.h" |
29 | #include "llvm/Analysis/LoopPass.h" |
30 | #include "llvm/Analysis/LoopUnrollAnalyzer.h" |
31 | #include "llvm/Analysis/MemorySSA.h" |
32 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
33 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
34 | #include "llvm/Analysis/ScalarEvolution.h" |
35 | #include "llvm/Analysis/TargetTransformInfo.h" |
36 | #include "llvm/IR/BasicBlock.h" |
37 | #include "llvm/IR/CFG.h" |
38 | #include "llvm/IR/Constant.h" |
39 | #include "llvm/IR/Constants.h" |
40 | #include "llvm/IR/DiagnosticInfo.h" |
41 | #include "llvm/IR/Dominators.h" |
42 | #include "llvm/IR/Function.h" |
43 | #include "llvm/IR/Instruction.h" |
44 | #include "llvm/IR/Instructions.h" |
45 | #include "llvm/IR/IntrinsicInst.h" |
46 | #include "llvm/IR/Metadata.h" |
47 | #include "llvm/IR/PassManager.h" |
48 | #include "llvm/InitializePasses.h" |
49 | #include "llvm/Pass.h" |
50 | #include "llvm/Support/Casting.h" |
51 | #include "llvm/Support/CommandLine.h" |
52 | #include "llvm/Support/Debug.h" |
53 | #include "llvm/Support/ErrorHandling.h" |
54 | #include "llvm/Support/raw_ostream.h" |
55 | #include "llvm/Transforms/Scalar.h" |
56 | #include "llvm/Transforms/Scalar/LoopPassManager.h" |
57 | #include "llvm/Transforms/Utils.h" |
58 | #include "llvm/Transforms/Utils/LoopPeel.h" |
59 | #include "llvm/Transforms/Utils/LoopSimplify.h" |
60 | #include "llvm/Transforms/Utils/LoopUtils.h" |
61 | #include "llvm/Transforms/Utils/SizeOpts.h" |
62 | #include "llvm/Transforms/Utils/UnrollLoop.h" |
63 | #include <algorithm> |
64 | #include <cassert> |
65 | #include <cstdint> |
66 | #include <limits> |
67 | #include <optional> |
68 | #include <string> |
69 | #include <tuple> |
70 | #include <utility> |
71 | |
72 | using namespace llvm; |
73 | |
74 | #define DEBUG_TYPE "loop-unroll" |
75 | |
76 | cl::opt<bool> llvm::ForgetSCEVInLoopUnroll( |
77 | "forget-scev-loop-unroll" , cl::init(Val: false), cl::Hidden, |
78 | cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" |
79 | " the current top-most loop. This is sometimes preferred to reduce" |
80 | " compile time." )); |
81 | |
82 | static cl::opt<unsigned> |
83 | UnrollThreshold("unroll-threshold" , cl::Hidden, |
84 | cl::desc("The cost threshold for loop unrolling" )); |
85 | |
86 | static cl::opt<unsigned> |
87 | UnrollOptSizeThreshold( |
88 | "unroll-optsize-threshold" , cl::init(Val: 0), cl::Hidden, |
89 | cl::desc("The cost threshold for loop unrolling when optimizing for " |
90 | "size" )); |
91 | |
92 | static cl::opt<unsigned> UnrollPartialThreshold( |
93 | "unroll-partial-threshold" , cl::Hidden, |
94 | cl::desc("The cost threshold for partial loop unrolling" )); |
95 | |
96 | static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( |
97 | "unroll-max-percent-threshold-boost" , cl::init(Val: 400), cl::Hidden, |
98 | cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " |
99 | "to the threshold when aggressively unrolling a loop due to the " |
100 | "dynamic cost savings. If completely unrolling a loop will reduce " |
101 | "the total runtime from X to Y, we boost the loop unroll " |
102 | "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " |
103 | "X/Y). This limit avoids excessive code bloat." )); |
104 | |
105 | static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( |
106 | "unroll-max-iteration-count-to-analyze" , cl::init(Val: 10), cl::Hidden, |
107 | cl::desc("Don't allow loop unrolling to simulate more than this number of" |
108 | "iterations when checking full unroll profitability" )); |
109 | |
110 | static cl::opt<unsigned> UnrollCount( |
111 | "unroll-count" , cl::Hidden, |
112 | cl::desc("Use this unroll count for all loops including those with " |
113 | "unroll_count pragma values, for testing purposes" )); |
114 | |
115 | static cl::opt<unsigned> UnrollMaxCount( |
116 | "unroll-max-count" , cl::Hidden, |
117 | cl::desc("Set the max unroll count for partial and runtime unrolling, for" |
118 | "testing purposes" )); |
119 | |
120 | static cl::opt<unsigned> UnrollFullMaxCount( |
121 | "unroll-full-max-count" , cl::Hidden, |
122 | cl::desc( |
123 | "Set the max unroll count for full unrolling, for testing purposes" )); |
124 | |
125 | static cl::opt<bool> |
126 | UnrollAllowPartial("unroll-allow-partial" , cl::Hidden, |
127 | cl::desc("Allows loops to be partially unrolled until " |
128 | "-unroll-threshold loop size is reached." )); |
129 | |
130 | static cl::opt<bool> UnrollAllowRemainder( |
131 | "unroll-allow-remainder" , cl::Hidden, |
132 | cl::desc("Allow generation of a loop remainder (extra iterations) " |
133 | "when unrolling a loop." )); |
134 | |
135 | static cl::opt<bool> |
136 | UnrollRuntime("unroll-runtime" , cl::Hidden, |
137 | cl::desc("Unroll loops with run-time trip counts" )); |
138 | |
139 | static cl::opt<unsigned> UnrollMaxUpperBound( |
140 | "unroll-max-upperbound" , cl::init(Val: 8), cl::Hidden, |
141 | cl::desc( |
142 | "The max of trip count upper bound that is considered in unrolling" )); |
143 | |
144 | static cl::opt<unsigned> PragmaUnrollThreshold( |
145 | "pragma-unroll-threshold" , cl::init(Val: 16 * 1024), cl::Hidden, |
146 | cl::desc("Unrolled size limit for loops with an unroll(full) or " |
147 | "unroll_count pragma." )); |
148 | |
149 | static cl::opt<unsigned> FlatLoopTripCountThreshold( |
150 | "flat-loop-tripcount-threshold" , cl::init(Val: 5), cl::Hidden, |
151 | cl::desc("If the runtime tripcount for the loop is lower than the " |
152 | "threshold, the loop is considered as flat and will be less " |
153 | "aggressively unrolled." )); |
154 | |
155 | static cl::opt<bool> UnrollUnrollRemainder( |
156 | "unroll-remainder" , cl::Hidden, |
157 | cl::desc("Allow the loop remainder to be unrolled." )); |
158 | |
159 | // This option isn't ever intended to be enabled, it serves to allow |
160 | // experiments to check the assumptions about when this kind of revisit is |
161 | // necessary. |
162 | static cl::opt<bool> UnrollRevisitChildLoops( |
163 | "unroll-revisit-child-loops" , cl::Hidden, |
164 | cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " |
165 | "This shouldn't typically be needed as child loops (or their " |
166 | "clones) were already visited." )); |
167 | |
168 | static cl::opt<unsigned> UnrollThresholdAggressive( |
169 | "unroll-threshold-aggressive" , cl::init(Val: 300), cl::Hidden, |
170 | cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) " |
171 | "optimizations" )); |
172 | static cl::opt<unsigned> |
173 | UnrollThresholdDefault("unroll-threshold-default" , cl::init(Val: 150), |
174 | cl::Hidden, |
175 | cl::desc("Default threshold (max size of unrolled " |
176 | "loop), used in all but O3 optimizations" )); |
177 | |
178 | static cl::opt<unsigned> PragmaUnrollFullMaxIterations( |
179 | "pragma-unroll-full-max-iterations" , cl::init(Val: 1'000'000), cl::Hidden, |
180 | cl::desc("Maximum allowed iterations to unroll under pragma unroll full." )); |
181 | |
182 | /// A magic value for use with the Threshold parameter to indicate |
183 | /// that the loop unroll should be performed regardless of how much |
184 | /// code expansion would result. |
185 | static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); |
186 | |
187 | /// Gather the various unrolling parameters based on the defaults, compiler |
188 | /// flags, TTI overrides and user specified parameters. |
189 | TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( |
190 | Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, |
191 | BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, |
192 | OptimizationRemarkEmitter &ORE, int OptLevel, |
193 | std::optional<unsigned> UserThreshold, std::optional<unsigned> UserCount, |
194 | std::optional<bool> UserAllowPartial, std::optional<bool> UserRuntime, |
195 | std::optional<bool> UserUpperBound, |
196 | std::optional<unsigned> UserFullUnrollMaxCount) { |
197 | TargetTransformInfo::UnrollingPreferences UP; |
198 | |
199 | // Set up the defaults |
200 | UP.Threshold = |
201 | OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault; |
202 | UP.MaxPercentThresholdBoost = 400; |
203 | UP.OptSizeThreshold = UnrollOptSizeThreshold; |
204 | UP.PartialThreshold = 150; |
205 | UP.PartialOptSizeThreshold = UnrollOptSizeThreshold; |
206 | UP.Count = 0; |
207 | UP.DefaultUnrollRuntimeCount = 8; |
208 | UP.MaxCount = std::numeric_limits<unsigned>::max(); |
209 | UP.MaxUpperBound = UnrollMaxUpperBound; |
210 | UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); |
211 | UP.BEInsns = 2; |
212 | UP.Partial = false; |
213 | UP.Runtime = false; |
214 | UP.AllowRemainder = true; |
215 | UP.UnrollRemainder = false; |
216 | UP.AllowExpensiveTripCount = false; |
217 | UP.Force = false; |
218 | UP.UpperBound = false; |
219 | UP.UnrollAndJam = false; |
220 | UP.UnrollAndJamInnerLoopThreshold = 60; |
221 | UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; |
222 | |
223 | // Override with any target specific settings |
224 | TTI.getUnrollingPreferences(L, SE, UP, ORE: &ORE); |
225 | |
226 | // Apply size attributes |
227 | bool OptForSize = L->getHeader()->getParent()->hasOptSize() || |
228 | // Let unroll hints / pragmas take precedence over PGSO. |
229 | (hasUnrollTransformation(L) != TM_ForcedByUser && |
230 | llvm::shouldOptimizeForSize(BB: L->getHeader(), PSI, BFI, |
231 | QueryType: PGSOQueryType::IRPass)); |
232 | if (OptForSize) { |
233 | UP.Threshold = UP.OptSizeThreshold; |
234 | UP.PartialThreshold = UP.PartialOptSizeThreshold; |
235 | UP.MaxPercentThresholdBoost = 100; |
236 | } |
237 | |
238 | // Apply any user values specified by cl::opt |
239 | if (UnrollThreshold.getNumOccurrences() > 0) |
240 | UP.Threshold = UnrollThreshold; |
241 | if (UnrollPartialThreshold.getNumOccurrences() > 0) |
242 | UP.PartialThreshold = UnrollPartialThreshold; |
243 | if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) |
244 | UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; |
245 | if (UnrollMaxCount.getNumOccurrences() > 0) |
246 | UP.MaxCount = UnrollMaxCount; |
247 | if (UnrollMaxUpperBound.getNumOccurrences() > 0) |
248 | UP.MaxUpperBound = UnrollMaxUpperBound; |
249 | if (UnrollFullMaxCount.getNumOccurrences() > 0) |
250 | UP.FullUnrollMaxCount = UnrollFullMaxCount; |
251 | if (UnrollAllowPartial.getNumOccurrences() > 0) |
252 | UP.Partial = UnrollAllowPartial; |
253 | if (UnrollAllowRemainder.getNumOccurrences() > 0) |
254 | UP.AllowRemainder = UnrollAllowRemainder; |
255 | if (UnrollRuntime.getNumOccurrences() > 0) |
256 | UP.Runtime = UnrollRuntime; |
257 | if (UnrollMaxUpperBound == 0) |
258 | UP.UpperBound = false; |
259 | if (UnrollUnrollRemainder.getNumOccurrences() > 0) |
260 | UP.UnrollRemainder = UnrollUnrollRemainder; |
261 | if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0) |
262 | UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; |
263 | |
264 | // Apply user values provided by argument |
265 | if (UserThreshold) { |
266 | UP.Threshold = *UserThreshold; |
267 | UP.PartialThreshold = *UserThreshold; |
268 | } |
269 | if (UserCount) |
270 | UP.Count = *UserCount; |
271 | if (UserAllowPartial) |
272 | UP.Partial = *UserAllowPartial; |
273 | if (UserRuntime) |
274 | UP.Runtime = *UserRuntime; |
275 | if (UserUpperBound) |
276 | UP.UpperBound = *UserUpperBound; |
277 | if (UserFullUnrollMaxCount) |
278 | UP.FullUnrollMaxCount = *UserFullUnrollMaxCount; |
279 | |
280 | return UP; |
281 | } |
282 | |
283 | namespace { |
284 | |
285 | /// A struct to densely store the state of an instruction after unrolling at |
286 | /// each iteration. |
287 | /// |
288 | /// This is designed to work like a tuple of <Instruction *, int> for the |
289 | /// purposes of hashing and lookup, but to be able to associate two boolean |
290 | /// states with each key. |
291 | struct UnrolledInstState { |
292 | Instruction *I; |
293 | int Iteration : 30; |
294 | unsigned IsFree : 1; |
295 | unsigned IsCounted : 1; |
296 | }; |
297 | |
298 | /// Hashing and equality testing for a set of the instruction states. |
299 | struct UnrolledInstStateKeyInfo { |
300 | using PtrInfo = DenseMapInfo<Instruction *>; |
301 | using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; |
302 | |
303 | static inline UnrolledInstState getEmptyKey() { |
304 | return {.I: PtrInfo::getEmptyKey(), .Iteration: 0, .IsFree: 0, .IsCounted: 0}; |
305 | } |
306 | |
307 | static inline UnrolledInstState getTombstoneKey() { |
308 | return {.I: PtrInfo::getTombstoneKey(), .Iteration: 0, .IsFree: 0, .IsCounted: 0}; |
309 | } |
310 | |
311 | static inline unsigned getHashValue(const UnrolledInstState &S) { |
312 | return PairInfo::getHashValue(PairVal: {S.I, S.Iteration}); |
313 | } |
314 | |
315 | static inline bool isEqual(const UnrolledInstState &LHS, |
316 | const UnrolledInstState &RHS) { |
317 | return PairInfo::isEqual(LHS: {LHS.I, LHS.Iteration}, RHS: {RHS.I, RHS.Iteration}); |
318 | } |
319 | }; |
320 | |
321 | struct EstimatedUnrollCost { |
322 | /// The estimated cost after unrolling. |
323 | unsigned UnrolledCost; |
324 | |
325 | /// The estimated dynamic cost of executing the instructions in the |
326 | /// rolled form. |
327 | unsigned RolledDynamicCost; |
328 | }; |
329 | |
330 | struct PragmaInfo { |
331 | PragmaInfo(bool UUC, bool PFU, unsigned PC, bool PEU) |
332 | : UserUnrollCount(UUC), PragmaFullUnroll(PFU), PragmaCount(PC), |
333 | PragmaEnableUnroll(PEU) {} |
334 | const bool UserUnrollCount; |
335 | const bool PragmaFullUnroll; |
336 | const unsigned PragmaCount; |
337 | const bool PragmaEnableUnroll; |
338 | }; |
339 | |
340 | } // end anonymous namespace |
341 | |
342 | /// Figure out if the loop is worth full unrolling. |
343 | /// |
344 | /// Complete loop unrolling can make some loads constant, and we need to know |
345 | /// if that would expose any further optimization opportunities. This routine |
346 | /// estimates this optimization. It computes cost of unrolled loop |
347 | /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By |
348 | /// dynamic cost we mean that we won't count costs of blocks that are known not |
349 | /// to be executed (i.e. if we have a branch in the loop and we know that at the |
350 | /// given iteration its condition would be resolved to true, we won't add up the |
351 | /// cost of the 'false'-block). |
352 | /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If |
353 | /// the analysis failed (no benefits expected from the unrolling, or the loop is |
354 | /// too big to analyze), the returned value is std::nullopt. |
355 | static std::optional<EstimatedUnrollCost> analyzeLoopUnrollCost( |
356 | const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, |
357 | const SmallPtrSetImpl<const Value *> &EphValues, |
358 | const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize, |
359 | unsigned MaxIterationsCountToAnalyze) { |
360 | // We want to be able to scale offsets by the trip count and add more offsets |
361 | // to them without checking for overflows, and we already don't want to |
362 | // analyze *massive* trip counts, so we force the max to be reasonably small. |
363 | assert(MaxIterationsCountToAnalyze < |
364 | (unsigned)(std::numeric_limits<int>::max() / 2) && |
365 | "The unroll iterations max is too large!" ); |
366 | |
367 | // Only analyze inner loops. We can't properly estimate cost of nested loops |
368 | // and we won't visit inner loops again anyway. |
369 | if (!L->isInnermost()) |
370 | return std::nullopt; |
371 | |
372 | // Don't simulate loops with a big or unknown tripcount |
373 | if (!TripCount || TripCount > MaxIterationsCountToAnalyze) |
374 | return std::nullopt; |
375 | |
376 | SmallSetVector<BasicBlock *, 16> BBWorklist; |
377 | SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; |
378 | DenseMap<Value *, Value *> SimplifiedValues; |
379 | SmallVector<std::pair<Value *, Value *>, 4> SimplifiedInputValues; |
380 | |
381 | // The estimated cost of the unrolled form of the loop. We try to estimate |
382 | // this by simplifying as much as we can while computing the estimate. |
383 | InstructionCost UnrolledCost = 0; |
384 | |
385 | // We also track the estimated dynamic (that is, actually executed) cost in |
386 | // the rolled form. This helps identify cases when the savings from unrolling |
387 | // aren't just exposing dead control flows, but actual reduced dynamic |
388 | // instructions due to the simplifications which we expect to occur after |
389 | // unrolling. |
390 | InstructionCost RolledDynamicCost = 0; |
391 | |
392 | // We track the simplification of each instruction in each iteration. We use |
393 | // this to recursively merge costs into the unrolled cost on-demand so that |
394 | // we don't count the cost of any dead code. This is essentially a map from |
395 | // <instruction, int> to <bool, bool>, but stored as a densely packed struct. |
396 | DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; |
397 | |
398 | // A small worklist used to accumulate cost of instructions from each |
399 | // observable and reached root in the loop. |
400 | SmallVector<Instruction *, 16> CostWorklist; |
401 | |
402 | // PHI-used worklist used between iterations while accumulating cost. |
403 | SmallVector<Instruction *, 4> PHIUsedList; |
404 | |
405 | // Helper function to accumulate cost for instructions in the loop. |
406 | auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { |
407 | assert(Iteration >= 0 && "Cannot have a negative iteration!" ); |
408 | assert(CostWorklist.empty() && "Must start with an empty cost list" ); |
409 | assert(PHIUsedList.empty() && "Must start with an empty phi used list" ); |
410 | CostWorklist.push_back(Elt: &RootI); |
411 | TargetTransformInfo::TargetCostKind CostKind = |
412 | RootI.getFunction()->hasMinSize() ? |
413 | TargetTransformInfo::TCK_CodeSize : |
414 | TargetTransformInfo::TCK_SizeAndLatency; |
415 | for (;; --Iteration) { |
416 | do { |
417 | Instruction *I = CostWorklist.pop_back_val(); |
418 | |
419 | // InstCostMap only uses I and Iteration as a key, the other two values |
420 | // don't matter here. |
421 | auto CostIter = InstCostMap.find(V: {.I: I, .Iteration: Iteration, .IsFree: 0, .IsCounted: 0}); |
422 | if (CostIter == InstCostMap.end()) |
423 | // If an input to a PHI node comes from a dead path through the loop |
424 | // we may have no cost data for it here. What that actually means is |
425 | // that it is free. |
426 | continue; |
427 | auto &Cost = *CostIter; |
428 | if (Cost.IsCounted) |
429 | // Already counted this instruction. |
430 | continue; |
431 | |
432 | // Mark that we are counting the cost of this instruction now. |
433 | Cost.IsCounted = true; |
434 | |
435 | // If this is a PHI node in the loop header, just add it to the PHI set. |
436 | if (auto *PhiI = dyn_cast<PHINode>(Val: I)) |
437 | if (PhiI->getParent() == L->getHeader()) { |
438 | assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " |
439 | "inherently simplify during unrolling." ); |
440 | if (Iteration == 0) |
441 | continue; |
442 | |
443 | // Push the incoming value from the backedge into the PHI used list |
444 | // if it is an in-loop instruction. We'll use this to populate the |
445 | // cost worklist for the next iteration (as we count backwards). |
446 | if (auto *OpI = dyn_cast<Instruction>( |
447 | Val: PhiI->getIncomingValueForBlock(BB: L->getLoopLatch()))) |
448 | if (L->contains(Inst: OpI)) |
449 | PHIUsedList.push_back(Elt: OpI); |
450 | continue; |
451 | } |
452 | |
453 | // First accumulate the cost of this instruction. |
454 | if (!Cost.IsFree) { |
455 | // Consider simplified operands in instruction cost. |
456 | SmallVector<Value *, 4> Operands; |
457 | transform(Range: I->operands(), d_first: std::back_inserter(x&: Operands), |
458 | F: [&](Value *Op) { |
459 | if (auto Res = SimplifiedValues.lookup(Val: Op)) |
460 | return Res; |
461 | return Op; |
462 | }); |
463 | UnrolledCost += TTI.getInstructionCost(U: I, Operands, CostKind); |
464 | LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " |
465 | << Iteration << "): " ); |
466 | LLVM_DEBUG(I->dump()); |
467 | } |
468 | |
469 | // We must count the cost of every operand which is not free, |
470 | // recursively. If we reach a loop PHI node, simply add it to the set |
471 | // to be considered on the next iteration (backwards!). |
472 | for (Value *Op : I->operands()) { |
473 | // Check whether this operand is free due to being a constant or |
474 | // outside the loop. |
475 | auto *OpI = dyn_cast<Instruction>(Val: Op); |
476 | if (!OpI || !L->contains(Inst: OpI)) |
477 | continue; |
478 | |
479 | // Otherwise accumulate its cost. |
480 | CostWorklist.push_back(Elt: OpI); |
481 | } |
482 | } while (!CostWorklist.empty()); |
483 | |
484 | if (PHIUsedList.empty()) |
485 | // We've exhausted the search. |
486 | break; |
487 | |
488 | assert(Iteration > 0 && |
489 | "Cannot track PHI-used values past the first iteration!" ); |
490 | CostWorklist.append(in_start: PHIUsedList.begin(), in_end: PHIUsedList.end()); |
491 | PHIUsedList.clear(); |
492 | } |
493 | }; |
494 | |
495 | // Ensure that we don't violate the loop structure invariants relied on by |
496 | // this analysis. |
497 | assert(L->isLoopSimplifyForm() && "Must put loop into normal form first." ); |
498 | assert(L->isLCSSAForm(DT) && |
499 | "Must have loops in LCSSA form to track live-out values." ); |
500 | |
501 | LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n" ); |
502 | |
503 | TargetTransformInfo::TargetCostKind CostKind = |
504 | L->getHeader()->getParent()->hasMinSize() ? |
505 | TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency; |
506 | // Simulate execution of each iteration of the loop counting instructions, |
507 | // which would be simplified. |
508 | // Since the same load will take different values on different iterations, |
509 | // we literally have to go through all loop's iterations. |
510 | for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { |
511 | LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n" ); |
512 | |
513 | // Prepare for the iteration by collecting any simplified entry or backedge |
514 | // inputs. |
515 | for (Instruction &I : *L->getHeader()) { |
516 | auto *PHI = dyn_cast<PHINode>(Val: &I); |
517 | if (!PHI) |
518 | break; |
519 | |
520 | // The loop header PHI nodes must have exactly two input: one from the |
521 | // loop preheader and one from the loop latch. |
522 | assert( |
523 | PHI->getNumIncomingValues() == 2 && |
524 | "Must have an incoming value only for the preheader and the latch." ); |
525 | |
526 | Value *V = PHI->getIncomingValueForBlock( |
527 | BB: Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); |
528 | if (Iteration != 0 && SimplifiedValues.count(Val: V)) |
529 | V = SimplifiedValues.lookup(Val: V); |
530 | SimplifiedInputValues.push_back(Elt: {PHI, V}); |
531 | } |
532 | |
533 | // Now clear and re-populate the map for the next iteration. |
534 | SimplifiedValues.clear(); |
535 | while (!SimplifiedInputValues.empty()) |
536 | SimplifiedValues.insert(KV: SimplifiedInputValues.pop_back_val()); |
537 | |
538 | UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); |
539 | |
540 | BBWorklist.clear(); |
541 | BBWorklist.insert(X: L->getHeader()); |
542 | // Note that we *must not* cache the size, this loop grows the worklist. |
543 | for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { |
544 | BasicBlock *BB = BBWorklist[Idx]; |
545 | |
546 | // Visit all instructions in the given basic block and try to simplify |
547 | // it. We don't change the actual IR, just count optimization |
548 | // opportunities. |
549 | for (Instruction &I : *BB) { |
550 | // These won't get into the final code - don't even try calculating the |
551 | // cost for them. |
552 | if (isa<DbgInfoIntrinsic>(Val: I) || EphValues.count(Ptr: &I)) |
553 | continue; |
554 | |
555 | // Track this instruction's expected baseline cost when executing the |
556 | // rolled loop form. |
557 | RolledDynamicCost += TTI.getInstructionCost(U: &I, CostKind); |
558 | |
559 | // Visit the instruction to analyze its loop cost after unrolling, |
560 | // and if the visitor returns true, mark the instruction as free after |
561 | // unrolling and continue. |
562 | bool IsFree = Analyzer.visit(I); |
563 | bool Inserted = InstCostMap.insert(V: {.I: &I, .Iteration: (int)Iteration, |
564 | .IsFree: (unsigned)IsFree, |
565 | /*IsCounted*/ false}).second; |
566 | (void)Inserted; |
567 | assert(Inserted && "Cannot have a state for an unvisited instruction!" ); |
568 | |
569 | if (IsFree) |
570 | continue; |
571 | |
572 | // Can't properly model a cost of a call. |
573 | // FIXME: With a proper cost model we should be able to do it. |
574 | if (auto *CI = dyn_cast<CallInst>(Val: &I)) { |
575 | const Function *Callee = CI->getCalledFunction(); |
576 | if (!Callee || TTI.isLoweredToCall(F: Callee)) { |
577 | LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n" ); |
578 | return std::nullopt; |
579 | } |
580 | } |
581 | |
582 | // If the instruction might have a side-effect recursively account for |
583 | // the cost of it and all the instructions leading up to it. |
584 | if (I.mayHaveSideEffects()) |
585 | AddCostRecursively(I, Iteration); |
586 | |
587 | // If unrolled body turns out to be too big, bail out. |
588 | if (UnrolledCost > MaxUnrolledLoopSize) { |
589 | LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" |
590 | << " UnrolledCost: " << UnrolledCost |
591 | << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize |
592 | << "\n" ); |
593 | return std::nullopt; |
594 | } |
595 | } |
596 | |
597 | Instruction *TI = BB->getTerminator(); |
598 | |
599 | auto getSimplifiedConstant = [&](Value *V) -> Constant * { |
600 | if (SimplifiedValues.count(Val: V)) |
601 | V = SimplifiedValues.lookup(Val: V); |
602 | return dyn_cast<Constant>(Val: V); |
603 | }; |
604 | |
605 | // Add in the live successors by first checking whether we have terminator |
606 | // that may be simplified based on the values simplified by this call. |
607 | BasicBlock *KnownSucc = nullptr; |
608 | if (BranchInst *BI = dyn_cast<BranchInst>(Val: TI)) { |
609 | if (BI->isConditional()) { |
610 | if (auto *SimpleCond = getSimplifiedConstant(BI->getCondition())) { |
611 | // Just take the first successor if condition is undef |
612 | if (isa<UndefValue>(Val: SimpleCond)) |
613 | KnownSucc = BI->getSuccessor(i: 0); |
614 | else if (ConstantInt *SimpleCondVal = |
615 | dyn_cast<ConstantInt>(Val: SimpleCond)) |
616 | KnownSucc = BI->getSuccessor(i: SimpleCondVal->isZero() ? 1 : 0); |
617 | } |
618 | } |
619 | } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Val: TI)) { |
620 | if (auto *SimpleCond = getSimplifiedConstant(SI->getCondition())) { |
621 | // Just take the first successor if condition is undef |
622 | if (isa<UndefValue>(Val: SimpleCond)) |
623 | KnownSucc = SI->getSuccessor(idx: 0); |
624 | else if (ConstantInt *SimpleCondVal = |
625 | dyn_cast<ConstantInt>(Val: SimpleCond)) |
626 | KnownSucc = SI->findCaseValue(C: SimpleCondVal)->getCaseSuccessor(); |
627 | } |
628 | } |
629 | if (KnownSucc) { |
630 | if (L->contains(BB: KnownSucc)) |
631 | BBWorklist.insert(X: KnownSucc); |
632 | else |
633 | ExitWorklist.insert(X: {BB, KnownSucc}); |
634 | continue; |
635 | } |
636 | |
637 | // Add BB's successors to the worklist. |
638 | for (BasicBlock *Succ : successors(BB)) |
639 | if (L->contains(BB: Succ)) |
640 | BBWorklist.insert(X: Succ); |
641 | else |
642 | ExitWorklist.insert(X: {BB, Succ}); |
643 | AddCostRecursively(*TI, Iteration); |
644 | } |
645 | |
646 | // If we found no optimization opportunities on the first iteration, we |
647 | // won't find them on later ones too. |
648 | if (UnrolledCost == RolledDynamicCost) { |
649 | LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" |
650 | << " UnrolledCost: " << UnrolledCost << "\n" ); |
651 | return std::nullopt; |
652 | } |
653 | } |
654 | |
655 | while (!ExitWorklist.empty()) { |
656 | BasicBlock *ExitingBB, *ExitBB; |
657 | std::tie(args&: ExitingBB, args&: ExitBB) = ExitWorklist.pop_back_val(); |
658 | |
659 | for (Instruction &I : *ExitBB) { |
660 | auto *PN = dyn_cast<PHINode>(Val: &I); |
661 | if (!PN) |
662 | break; |
663 | |
664 | Value *Op = PN->getIncomingValueForBlock(BB: ExitingBB); |
665 | if (auto *OpI = dyn_cast<Instruction>(Val: Op)) |
666 | if (L->contains(Inst: OpI)) |
667 | AddCostRecursively(*OpI, TripCount - 1); |
668 | } |
669 | } |
670 | |
671 | assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() && |
672 | "All instructions must have a valid cost, whether the " |
673 | "loop is rolled or unrolled." ); |
674 | |
675 | LLVM_DEBUG(dbgs() << "Analysis finished:\n" |
676 | << "UnrolledCost: " << UnrolledCost << ", " |
677 | << "RolledDynamicCost: " << RolledDynamicCost << "\n" ); |
678 | return {{.UnrolledCost: unsigned(*UnrolledCost.getValue()), |
679 | .RolledDynamicCost: unsigned(*RolledDynamicCost.getValue())}}; |
680 | } |
681 | |
682 | UnrollCostEstimator::UnrollCostEstimator( |
683 | const Loop *L, const TargetTransformInfo &TTI, |
684 | const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { |
685 | CodeMetrics Metrics; |
686 | for (BasicBlock *BB : L->blocks()) |
687 | Metrics.analyzeBasicBlock(BB, TTI, EphValues, /* PrepareForLTO= */ false, |
688 | L); |
689 | NumInlineCandidates = Metrics.NumInlineCandidates; |
690 | NotDuplicatable = Metrics.notDuplicatable; |
691 | Convergence = Metrics.Convergence; |
692 | LoopSize = Metrics.NumInsts; |
693 | ConvergenceAllowsRuntime = |
694 | Metrics.Convergence != ConvergenceKind::Uncontrolled && |
695 | !getLoopConvergenceHeart(TheLoop: L); |
696 | |
697 | // Don't allow an estimate of size zero. This would allows unrolling of loops |
698 | // with huge iteration counts, which is a compile time problem even if it's |
699 | // not a problem for code quality. Also, the code using this size may assume |
700 | // that each loop has at least three instructions (likely a conditional |
701 | // branch, a comparison feeding that branch, and some kind of loop increment |
702 | // feeding that comparison instruction). |
703 | if (LoopSize.isValid() && LoopSize < BEInsns + 1) |
704 | // This is an open coded max() on InstructionCost |
705 | LoopSize = BEInsns + 1; |
706 | } |
707 | |
708 | bool UnrollCostEstimator::canUnroll() const { |
709 | switch (Convergence) { |
710 | case ConvergenceKind::ExtendedLoop: |
711 | LLVM_DEBUG(dbgs() << " Convergence prevents unrolling.\n" ); |
712 | return false; |
713 | default: |
714 | break; |
715 | } |
716 | if (!LoopSize.isValid()) { |
717 | LLVM_DEBUG(dbgs() << " Invalid loop size prevents unrolling.\n" ); |
718 | return false; |
719 | } |
720 | if (NotDuplicatable) { |
721 | LLVM_DEBUG(dbgs() << " Non-duplicatable blocks prevent unrolling.\n" ); |
722 | return false; |
723 | } |
724 | return true; |
725 | } |
726 | |
727 | uint64_t UnrollCostEstimator::getUnrolledLoopSize( |
728 | const TargetTransformInfo::UnrollingPreferences &UP, |
729 | unsigned CountOverwrite) const { |
730 | unsigned LS = *LoopSize.getValue(); |
731 | assert(LS >= UP.BEInsns && "LoopSize should not be less than BEInsns!" ); |
732 | if (CountOverwrite) |
733 | return static_cast<uint64_t>(LS - UP.BEInsns) * CountOverwrite + UP.BEInsns; |
734 | else |
735 | return static_cast<uint64_t>(LS - UP.BEInsns) * UP.Count + UP.BEInsns; |
736 | } |
737 | |
738 | // Returns the loop hint metadata node with the given name (for example, |
739 | // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is |
740 | // returned. |
741 | static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) { |
742 | if (MDNode *LoopID = L->getLoopID()) |
743 | return GetUnrollMetadata(LoopID, Name); |
744 | return nullptr; |
745 | } |
746 | |
747 | // Returns true if the loop has an unroll(full) pragma. |
748 | static bool hasUnrollFullPragma(const Loop *L) { |
749 | return getUnrollMetadataForLoop(L, Name: "llvm.loop.unroll.full" ); |
750 | } |
751 | |
752 | // Returns true if the loop has an unroll(enable) pragma. This metadata is used |
753 | // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. |
754 | static bool hasUnrollEnablePragma(const Loop *L) { |
755 | return getUnrollMetadataForLoop(L, Name: "llvm.loop.unroll.enable" ); |
756 | } |
757 | |
758 | // Returns true if the loop has an runtime unroll(disable) pragma. |
759 | static bool hasRuntimeUnrollDisablePragma(const Loop *L) { |
760 | return getUnrollMetadataForLoop(L, Name: "llvm.loop.unroll.runtime.disable" ); |
761 | } |
762 | |
763 | // If loop has an unroll_count pragma return the (necessarily |
764 | // positive) value from the pragma. Otherwise return 0. |
765 | static unsigned unrollCountPragmaValue(const Loop *L) { |
766 | MDNode *MD = getUnrollMetadataForLoop(L, Name: "llvm.loop.unroll.count" ); |
767 | if (MD) { |
768 | assert(MD->getNumOperands() == 2 && |
769 | "Unroll count hint metadata should have two operands." ); |
770 | unsigned Count = |
771 | mdconst::extract<ConstantInt>(MD: MD->getOperand(I: 1))->getZExtValue(); |
772 | assert(Count >= 1 && "Unroll count must be positive." ); |
773 | return Count; |
774 | } |
775 | return 0; |
776 | } |
777 | |
778 | // Computes the boosting factor for complete unrolling. |
779 | // If fully unrolling the loop would save a lot of RolledDynamicCost, it would |
780 | // be beneficial to fully unroll the loop even if unrolledcost is large. We |
781 | // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust |
782 | // the unroll threshold. |
783 | static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, |
784 | unsigned MaxPercentThresholdBoost) { |
785 | if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) |
786 | return 100; |
787 | else if (Cost.UnrolledCost != 0) |
788 | // The boosting factor is RolledDynamicCost / UnrolledCost |
789 | return std::min(a: 100 * Cost.RolledDynamicCost / Cost.UnrolledCost, |
790 | b: MaxPercentThresholdBoost); |
791 | else |
792 | return MaxPercentThresholdBoost; |
793 | } |
794 | |
795 | static std::optional<unsigned> |
796 | shouldPragmaUnroll(Loop *L, const PragmaInfo &PInfo, |
797 | const unsigned TripMultiple, const unsigned TripCount, |
798 | unsigned MaxTripCount, const UnrollCostEstimator UCE, |
799 | const TargetTransformInfo::UnrollingPreferences &UP) { |
800 | |
801 | // Using unroll pragma |
802 | // 1st priority is unroll count set by "unroll-count" option. |
803 | |
804 | if (PInfo.UserUnrollCount) { |
805 | if (UP.AllowRemainder && |
806 | UCE.getUnrolledLoopSize(UP, CountOverwrite: (unsigned)UnrollCount) < UP.Threshold) |
807 | return (unsigned)UnrollCount; |
808 | } |
809 | |
810 | // 2nd priority is unroll count set by pragma. |
811 | if (PInfo.PragmaCount > 0) { |
812 | if ((UP.AllowRemainder || (TripMultiple % PInfo.PragmaCount == 0))) |
813 | return PInfo.PragmaCount; |
814 | } |
815 | |
816 | if (PInfo.PragmaFullUnroll && TripCount != 0) { |
817 | // Certain cases with UBSAN can cause trip count to be calculated as |
818 | // INT_MAX, Block full unrolling at a reasonable limit so that the compiler |
819 | // doesn't hang trying to unroll the loop. See PR77842 |
820 | if (TripCount > PragmaUnrollFullMaxIterations) { |
821 | LLVM_DEBUG(dbgs() << "Won't unroll; trip count is too large\n" ); |
822 | return std::nullopt; |
823 | } |
824 | |
825 | return TripCount; |
826 | } |
827 | |
828 | if (PInfo.PragmaEnableUnroll && !TripCount && MaxTripCount && |
829 | MaxTripCount <= UP.MaxUpperBound) |
830 | return MaxTripCount; |
831 | |
832 | // if didn't return until here, should continue to other priorties |
833 | return std::nullopt; |
834 | } |
835 | |
836 | static std::optional<unsigned> shouldFullUnroll( |
837 | Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, |
838 | ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, |
839 | const unsigned FullUnrollTripCount, const UnrollCostEstimator UCE, |
840 | const TargetTransformInfo::UnrollingPreferences &UP) { |
841 | assert(FullUnrollTripCount && "should be non-zero!" ); |
842 | |
843 | if (FullUnrollTripCount > UP.FullUnrollMaxCount) |
844 | return std::nullopt; |
845 | |
846 | // When computing the unrolled size, note that BEInsns are not replicated |
847 | // like the rest of the loop body. |
848 | if (UCE.getUnrolledLoopSize(UP) < UP.Threshold) |
849 | return FullUnrollTripCount; |
850 | |
851 | // The loop isn't that small, but we still can fully unroll it if that |
852 | // helps to remove a significant number of instructions. |
853 | // To check that, run additional analysis on the loop. |
854 | if (std::optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( |
855 | L, TripCount: FullUnrollTripCount, DT, SE, EphValues, TTI, |
856 | MaxUnrolledLoopSize: UP.Threshold * UP.MaxPercentThresholdBoost / 100, |
857 | MaxIterationsCountToAnalyze: UP.MaxIterationsCountToAnalyze)) { |
858 | unsigned Boost = |
859 | getFullUnrollBoostingFactor(Cost: *Cost, MaxPercentThresholdBoost: UP.MaxPercentThresholdBoost); |
860 | if (Cost->UnrolledCost < UP.Threshold * Boost / 100) |
861 | return FullUnrollTripCount; |
862 | } |
863 | return std::nullopt; |
864 | } |
865 | |
866 | static std::optional<unsigned> |
867 | shouldPartialUnroll(const unsigned LoopSize, const unsigned TripCount, |
868 | const UnrollCostEstimator UCE, |
869 | const TargetTransformInfo::UnrollingPreferences &UP) { |
870 | |
871 | if (!TripCount) |
872 | return std::nullopt; |
873 | |
874 | if (!UP.Partial) { |
875 | LLVM_DEBUG(dbgs() << " will not try to unroll partially because " |
876 | << "-unroll-allow-partial not given\n" ); |
877 | return 0; |
878 | } |
879 | unsigned count = UP.Count; |
880 | if (count == 0) |
881 | count = TripCount; |
882 | if (UP.PartialThreshold != NoThreshold) { |
883 | // Reduce unroll count to be modulo of TripCount for partial unrolling. |
884 | if (UCE.getUnrolledLoopSize(UP, CountOverwrite: count) > UP.PartialThreshold) |
885 | count = (std::max(a: UP.PartialThreshold, b: UP.BEInsns + 1) - UP.BEInsns) / |
886 | (LoopSize - UP.BEInsns); |
887 | if (count > UP.MaxCount) |
888 | count = UP.MaxCount; |
889 | while (count != 0 && TripCount % count != 0) |
890 | count--; |
891 | if (UP.AllowRemainder && count <= 1) { |
892 | // If there is no Count that is modulo of TripCount, set Count to |
893 | // largest power-of-two factor that satisfies the threshold limit. |
894 | // As we'll create fixup loop, do the type of unrolling only if |
895 | // remainder loop is allowed. |
896 | count = UP.DefaultUnrollRuntimeCount; |
897 | while (count != 0 && |
898 | UCE.getUnrolledLoopSize(UP, CountOverwrite: count) > UP.PartialThreshold) |
899 | count >>= 1; |
900 | } |
901 | if (count < 2) { |
902 | count = 0; |
903 | } |
904 | } else { |
905 | count = TripCount; |
906 | } |
907 | if (count > UP.MaxCount) |
908 | count = UP.MaxCount; |
909 | |
910 | LLVM_DEBUG(dbgs() << " partially unrolling with count: " << count << "\n" ); |
911 | |
912 | return count; |
913 | } |
914 | // Returns true if unroll count was set explicitly. |
915 | // Calculates unroll count and writes it to UP.Count. |
916 | // Unless IgnoreUser is true, will also use metadata and command-line options |
917 | // that are specific to to the LoopUnroll pass (which, for instance, are |
918 | // irrelevant for the LoopUnrollAndJam pass). |
919 | // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes |
920 | // many LoopUnroll-specific options. The shared functionality should be |
921 | // refactored into it own function. |
922 | bool llvm::computeUnrollCount( |
923 | Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, |
924 | AssumptionCache *AC, ScalarEvolution &SE, |
925 | const SmallPtrSetImpl<const Value *> &EphValues, |
926 | OptimizationRemarkEmitter *ORE, unsigned TripCount, unsigned MaxTripCount, |
927 | bool MaxOrZero, unsigned TripMultiple, const UnrollCostEstimator &UCE, |
928 | TargetTransformInfo::UnrollingPreferences &UP, |
929 | TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) { |
930 | |
931 | unsigned LoopSize = UCE.getRolledLoopSize(); |
932 | |
933 | const bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; |
934 | const bool PragmaFullUnroll = hasUnrollFullPragma(L); |
935 | const unsigned PragmaCount = unrollCountPragmaValue(L); |
936 | const bool PragmaEnableUnroll = hasUnrollEnablePragma(L); |
937 | |
938 | const bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || |
939 | PragmaEnableUnroll || UserUnrollCount; |
940 | |
941 | PragmaInfo PInfo(UserUnrollCount, PragmaFullUnroll, PragmaCount, |
942 | PragmaEnableUnroll); |
943 | // Use an explicit peel count that has been specified for testing. In this |
944 | // case it's not permitted to also specify an explicit unroll count. |
945 | if (PP.PeelCount) { |
946 | if (UnrollCount.getNumOccurrences() > 0) { |
947 | report_fatal_error(reason: "Cannot specify both explicit peel count and " |
948 | "explicit unroll count" , /*GenCrashDiag=*/gen_crash_diag: false); |
949 | } |
950 | UP.Count = 1; |
951 | UP.Runtime = false; |
952 | return true; |
953 | } |
954 | // Check for explicit Count. |
955 | // 1st priority is unroll count set by "unroll-count" option. |
956 | // 2nd priority is unroll count set by pragma. |
957 | if (auto UnrollFactor = shouldPragmaUnroll(L, PInfo, TripMultiple, TripCount, |
958 | MaxTripCount, UCE, UP)) { |
959 | UP.Count = *UnrollFactor; |
960 | |
961 | if (UserUnrollCount || (PragmaCount > 0)) { |
962 | UP.AllowExpensiveTripCount = true; |
963 | UP.Force = true; |
964 | } |
965 | UP.Runtime |= (PragmaCount > 0); |
966 | return ExplicitUnroll; |
967 | } else { |
968 | if (ExplicitUnroll && TripCount != 0) { |
969 | // If the loop has an unrolling pragma, we want to be more aggressive with |
970 | // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold |
971 | // value which is larger than the default limits. |
972 | UP.Threshold = std::max<unsigned>(a: UP.Threshold, b: PragmaUnrollThreshold); |
973 | UP.PartialThreshold = |
974 | std::max<unsigned>(a: UP.PartialThreshold, b: PragmaUnrollThreshold); |
975 | } |
976 | } |
977 | |
978 | // 3rd priority is exact full unrolling. This will eliminate all copies |
979 | // of some exit test. |
980 | UP.Count = 0; |
981 | if (TripCount) { |
982 | UP.Count = TripCount; |
983 | if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues, |
984 | FullUnrollTripCount: TripCount, UCE, UP)) { |
985 | UP.Count = *UnrollFactor; |
986 | UseUpperBound = false; |
987 | return ExplicitUnroll; |
988 | } |
989 | } |
990 | |
991 | // 4th priority is bounded unrolling. |
992 | // We can unroll by the upper bound amount if it's generally allowed or if |
993 | // we know that the loop is executed either the upper bound or zero times. |
994 | // (MaxOrZero unrolling keeps only the first loop test, so the number of |
995 | // loop tests remains the same compared to the non-unrolled version, whereas |
996 | // the generic upper bound unrolling keeps all but the last loop test so the |
997 | // number of loop tests goes up which may end up being worse on targets with |
998 | // constrained branch predictor resources so is controlled by an option.) |
999 | // In addition we only unroll small upper bounds. |
1000 | // Note that the cost of bounded unrolling is always strictly greater than |
1001 | // cost of exact full unrolling. As such, if we have an exact count and |
1002 | // found it unprofitable, we'll never chose to bounded unroll. |
1003 | if (!TripCount && MaxTripCount && (UP.UpperBound || MaxOrZero) && |
1004 | MaxTripCount <= UP.MaxUpperBound) { |
1005 | UP.Count = MaxTripCount; |
1006 | if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues, |
1007 | FullUnrollTripCount: MaxTripCount, UCE, UP)) { |
1008 | UP.Count = *UnrollFactor; |
1009 | UseUpperBound = true; |
1010 | return ExplicitUnroll; |
1011 | } |
1012 | } |
1013 | |
1014 | // 5th priority is loop peeling. |
1015 | computePeelCount(L, LoopSize, PP, TripCount, DT, SE, AC, Threshold: UP.Threshold); |
1016 | if (PP.PeelCount) { |
1017 | UP.Runtime = false; |
1018 | UP.Count = 1; |
1019 | return ExplicitUnroll; |
1020 | } |
1021 | |
1022 | // Before starting partial unrolling, set up.partial to true, |
1023 | // if user explicitly asked for unrolling |
1024 | if (TripCount) |
1025 | UP.Partial |= ExplicitUnroll; |
1026 | |
1027 | // 6th priority is partial unrolling. |
1028 | // Try partial unroll only when TripCount could be statically calculated. |
1029 | if (auto UnrollFactor = shouldPartialUnroll(LoopSize, TripCount, UCE, UP)) { |
1030 | UP.Count = *UnrollFactor; |
1031 | |
1032 | if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && |
1033 | UP.Count != TripCount) |
1034 | ORE->emit(RemarkBuilder: [&]() { |
1035 | return OptimizationRemarkMissed(DEBUG_TYPE, |
1036 | "FullUnrollAsDirectedTooLarge" , |
1037 | L->getStartLoc(), L->getHeader()) |
1038 | << "Unable to fully unroll loop as directed by unroll pragma " |
1039 | "because " |
1040 | "unrolled size is too large." ; |
1041 | }); |
1042 | |
1043 | if (UP.PartialThreshold != NoThreshold) { |
1044 | if (UP.Count == 0) { |
1045 | if (PragmaEnableUnroll) |
1046 | ORE->emit(RemarkBuilder: [&]() { |
1047 | return OptimizationRemarkMissed(DEBUG_TYPE, |
1048 | "UnrollAsDirectedTooLarge" , |
1049 | L->getStartLoc(), L->getHeader()) |
1050 | << "Unable to unroll loop as directed by unroll(enable) " |
1051 | "pragma " |
1052 | "because unrolled size is too large." ; |
1053 | }); |
1054 | } |
1055 | } |
1056 | return ExplicitUnroll; |
1057 | } |
1058 | assert(TripCount == 0 && |
1059 | "All cases when TripCount is constant should be covered here." ); |
1060 | if (PragmaFullUnroll) |
1061 | ORE->emit(RemarkBuilder: [&]() { |
1062 | return OptimizationRemarkMissed( |
1063 | DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount" , |
1064 | L->getStartLoc(), L->getHeader()) |
1065 | << "Unable to fully unroll loop as directed by unroll(full) " |
1066 | "pragma " |
1067 | "because loop has a runtime trip count." ; |
1068 | }); |
1069 | |
1070 | // 7th priority is runtime unrolling. |
1071 | // Don't unroll a runtime trip count loop when it is disabled. |
1072 | if (hasRuntimeUnrollDisablePragma(L)) { |
1073 | UP.Count = 0; |
1074 | return false; |
1075 | } |
1076 | |
1077 | // Don't unroll a small upper bound loop unless user or TTI asked to do so. |
1078 | if (MaxTripCount && !UP.Force && MaxTripCount < UP.MaxUpperBound) { |
1079 | UP.Count = 0; |
1080 | return false; |
1081 | } |
1082 | |
1083 | // Check if the runtime trip count is too small when profile is available. |
1084 | if (L->getHeader()->getParent()->hasProfileData()) { |
1085 | if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { |
1086 | if (*ProfileTripCount < FlatLoopTripCountThreshold) |
1087 | return false; |
1088 | else |
1089 | UP.AllowExpensiveTripCount = true; |
1090 | } |
1091 | } |
1092 | UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; |
1093 | if (!UP.Runtime) { |
1094 | LLVM_DEBUG( |
1095 | dbgs() << " will not try to unroll loop with runtime trip count " |
1096 | << "-unroll-runtime not given\n" ); |
1097 | UP.Count = 0; |
1098 | return false; |
1099 | } |
1100 | if (UP.Count == 0) |
1101 | UP.Count = UP.DefaultUnrollRuntimeCount; |
1102 | |
1103 | // Reduce unroll count to be the largest power-of-two factor of |
1104 | // the original count which satisfies the threshold limit. |
1105 | while (UP.Count != 0 && |
1106 | UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold) |
1107 | UP.Count >>= 1; |
1108 | |
1109 | #ifndef NDEBUG |
1110 | unsigned OrigCount = UP.Count; |
1111 | #endif |
1112 | |
1113 | if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { |
1114 | while (UP.Count != 0 && TripMultiple % UP.Count != 0) |
1115 | UP.Count >>= 1; |
1116 | LLVM_DEBUG( |
1117 | dbgs() << "Remainder loop is restricted (that could architecture " |
1118 | "specific or because the loop contains a convergent " |
1119 | "instruction), so unroll count must divide the trip " |
1120 | "multiple, " |
1121 | << TripMultiple << ". Reducing unroll count from " << OrigCount |
1122 | << " to " << UP.Count << ".\n" ); |
1123 | |
1124 | using namespace ore; |
1125 | |
1126 | if (unrollCountPragmaValue(L) > 0 && !UP.AllowRemainder) |
1127 | ORE->emit(RemarkBuilder: [&]() { |
1128 | return OptimizationRemarkMissed(DEBUG_TYPE, |
1129 | "DifferentUnrollCountFromDirected" , |
1130 | L->getStartLoc(), L->getHeader()) |
1131 | << "Unable to unroll loop the number of times directed by " |
1132 | "unroll_count pragma because remainder loop is restricted " |
1133 | "(that could architecture specific or because the loop " |
1134 | "contains a convergent instruction) and so must have an " |
1135 | "unroll " |
1136 | "count that divides the loop trip multiple of " |
1137 | << NV("TripMultiple" , TripMultiple) << ". Unrolling instead " |
1138 | << NV("UnrollCount" , UP.Count) << " time(s)." ; |
1139 | }); |
1140 | } |
1141 | |
1142 | if (UP.Count > UP.MaxCount) |
1143 | UP.Count = UP.MaxCount; |
1144 | |
1145 | if (MaxTripCount && UP.Count > MaxTripCount) |
1146 | UP.Count = MaxTripCount; |
1147 | |
1148 | LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count |
1149 | << "\n" ); |
1150 | if (UP.Count < 2) |
1151 | UP.Count = 0; |
1152 | return ExplicitUnroll; |
1153 | } |
1154 | |
1155 | static LoopUnrollResult |
1156 | tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, |
1157 | const TargetTransformInfo &TTI, AssumptionCache &AC, |
1158 | OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, |
1159 | ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel, |
1160 | bool OnlyFullUnroll, bool OnlyWhenForced, bool ForgetAllSCEV, |
1161 | std::optional<unsigned> ProvidedCount, |
1162 | std::optional<unsigned> ProvidedThreshold, |
1163 | std::optional<bool> ProvidedAllowPartial, |
1164 | std::optional<bool> ProvidedRuntime, |
1165 | std::optional<bool> ProvidedUpperBound, |
1166 | std::optional<bool> ProvidedAllowPeeling, |
1167 | std::optional<bool> ProvidedAllowProfileBasedPeeling, |
1168 | std::optional<unsigned> ProvidedFullUnrollMaxCount, |
1169 | AAResults *AA = nullptr) { |
1170 | |
1171 | LLVM_DEBUG(dbgs() << "Loop Unroll: F[" |
1172 | << L->getHeader()->getParent()->getName() << "] Loop %" |
1173 | << L->getHeader()->getName() << "\n" ); |
1174 | TransformationMode TM = hasUnrollTransformation(L); |
1175 | if (TM & TM_Disable) |
1176 | return LoopUnrollResult::Unmodified; |
1177 | |
1178 | // If this loop isn't forced to be unrolled, avoid unrolling it when the |
1179 | // parent loop has an explicit unroll-and-jam pragma. This is to prevent |
1180 | // automatic unrolling from interfering with the user requested |
1181 | // transformation. |
1182 | Loop *ParentL = L->getParentLoop(); |
1183 | if (ParentL != nullptr && |
1184 | hasUnrollAndJamTransformation(L: ParentL) == TM_ForcedByUser && |
1185 | hasUnrollTransformation(L) != TM_ForcedByUser) { |
1186 | LLVM_DEBUG(dbgs() << "Not unrolling loop since parent loop has" |
1187 | << " llvm.loop.unroll_and_jam.\n" ); |
1188 | return LoopUnrollResult::Unmodified; |
1189 | } |
1190 | |
1191 | // If this loop isn't forced to be unrolled, avoid unrolling it when the |
1192 | // loop has an explicit unroll-and-jam pragma. This is to prevent automatic |
1193 | // unrolling from interfering with the user requested transformation. |
1194 | if (hasUnrollAndJamTransformation(L) == TM_ForcedByUser && |
1195 | hasUnrollTransformation(L) != TM_ForcedByUser) { |
1196 | LLVM_DEBUG( |
1197 | dbgs() |
1198 | << " Not unrolling loop since it has llvm.loop.unroll_and_jam.\n" ); |
1199 | return LoopUnrollResult::Unmodified; |
1200 | } |
1201 | |
1202 | if (!L->isLoopSimplifyForm()) { |
1203 | LLVM_DEBUG( |
1204 | dbgs() << " Not unrolling loop which is not in loop-simplify form.\n" ); |
1205 | return LoopUnrollResult::Unmodified; |
1206 | } |
1207 | |
1208 | // When automatic unrolling is disabled, do not unroll unless overridden for |
1209 | // this loop. |
1210 | if (OnlyWhenForced && !(TM & TM_Enable)) |
1211 | return LoopUnrollResult::Unmodified; |
1212 | |
1213 | bool OptForSize = L->getHeader()->getParent()->hasOptSize(); |
1214 | TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( |
1215 | L, SE, TTI, BFI, PSI, ORE, OptLevel, UserThreshold: ProvidedThreshold, UserCount: ProvidedCount, |
1216 | UserAllowPartial: ProvidedAllowPartial, UserRuntime: ProvidedRuntime, UserUpperBound: ProvidedUpperBound, |
1217 | UserFullUnrollMaxCount: ProvidedFullUnrollMaxCount); |
1218 | TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences( |
1219 | L, SE, TTI, UserAllowPeeling: ProvidedAllowPeeling, UserAllowProfileBasedPeeling: ProvidedAllowProfileBasedPeeling, UnrollingSpecficValues: true); |
1220 | |
1221 | // Exit early if unrolling is disabled. For OptForSize, we pick the loop size |
1222 | // as threshold later on. |
1223 | if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) && |
1224 | !OptForSize) |
1225 | return LoopUnrollResult::Unmodified; |
1226 | |
1227 | SmallPtrSet<const Value *, 32> EphValues; |
1228 | CodeMetrics::collectEphemeralValues(L, AC: &AC, EphValues); |
1229 | |
1230 | UnrollCostEstimator UCE(L, TTI, EphValues, UP.BEInsns); |
1231 | if (!UCE.canUnroll()) { |
1232 | LLVM_DEBUG(dbgs() << " Loop not considered unrollable.\n" ); |
1233 | return LoopUnrollResult::Unmodified; |
1234 | } |
1235 | |
1236 | unsigned LoopSize = UCE.getRolledLoopSize(); |
1237 | LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n" ); |
1238 | |
1239 | // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold |
1240 | // later), to (fully) unroll loops, if it does not increase code size. |
1241 | if (OptForSize) |
1242 | UP.Threshold = std::max(a: UP.Threshold, b: LoopSize + 1); |
1243 | |
1244 | if (UCE.NumInlineCandidates != 0) { |
1245 | LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n" ); |
1246 | return LoopUnrollResult::Unmodified; |
1247 | } |
1248 | |
1249 | // Find the smallest exact trip count for any exit. This is an upper bound |
1250 | // on the loop trip count, but an exit at an earlier iteration is still |
1251 | // possible. An unroll by the smallest exact trip count guarantees that all |
1252 | // branches relating to at least one exit can be eliminated. This is unlike |
1253 | // the max trip count, which only guarantees that the backedge can be broken. |
1254 | unsigned TripCount = 0; |
1255 | unsigned TripMultiple = 1; |
1256 | SmallVector<BasicBlock *, 8> ExitingBlocks; |
1257 | L->getExitingBlocks(ExitingBlocks); |
1258 | for (BasicBlock *ExitingBlock : ExitingBlocks) |
1259 | if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock)) |
1260 | if (!TripCount || TC < TripCount) |
1261 | TripCount = TripMultiple = TC; |
1262 | |
1263 | if (!TripCount) { |
1264 | // If no exact trip count is known, determine the trip multiple of either |
1265 | // the loop latch or the single exiting block. |
1266 | // TODO: Relax for multiple exits. |
1267 | BasicBlock *ExitingBlock = L->getLoopLatch(); |
1268 | if (!ExitingBlock || !L->isLoopExiting(BB: ExitingBlock)) |
1269 | ExitingBlock = L->getExitingBlock(); |
1270 | if (ExitingBlock) |
1271 | TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); |
1272 | } |
1273 | |
1274 | // If the loop contains a convergent operation, the prelude we'd add |
1275 | // to do the first few instructions before we hit the unrolled loop |
1276 | // is unsafe -- it adds a control-flow dependency to the convergent |
1277 | // operation. Therefore restrict remainder loop (try unrolling without). |
1278 | // |
1279 | // TODO: This is somewhat conservative; we could allow the remainder if the |
1280 | // trip count is uniform. |
1281 | UP.AllowRemainder &= UCE.ConvergenceAllowsRuntime; |
1282 | |
1283 | // Try to find the trip count upper bound if we cannot find the exact trip |
1284 | // count. |
1285 | unsigned MaxTripCount = 0; |
1286 | bool MaxOrZero = false; |
1287 | if (!TripCount) { |
1288 | MaxTripCount = SE.getSmallConstantMaxTripCount(L); |
1289 | MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); |
1290 | } |
1291 | |
1292 | // computeUnrollCount() decides whether it is beneficial to use upper bound to |
1293 | // fully unroll the loop. |
1294 | bool UseUpperBound = false; |
1295 | bool IsCountSetExplicitly = computeUnrollCount( |
1296 | L, TTI, DT, LI, AC: &AC, SE, EphValues, ORE: &ORE, TripCount, MaxTripCount, |
1297 | MaxOrZero, TripMultiple, UCE, UP, PP, UseUpperBound); |
1298 | if (!UP.Count) |
1299 | return LoopUnrollResult::Unmodified; |
1300 | |
1301 | UP.Runtime &= UCE.ConvergenceAllowsRuntime; |
1302 | |
1303 | if (PP.PeelCount) { |
1304 | assert(UP.Count == 1 && "Cannot perform peel and unroll in the same step" ); |
1305 | LLVM_DEBUG(dbgs() << "PEELING loop %" << L->getHeader()->getName() |
1306 | << " with iteration count " << PP.PeelCount << "!\n" ); |
1307 | ORE.emit(RemarkBuilder: [&]() { |
1308 | return OptimizationRemark(DEBUG_TYPE, "Peeled" , L->getStartLoc(), |
1309 | L->getHeader()) |
1310 | << " peeled loop by " << ore::NV("PeelCount" , PP.PeelCount) |
1311 | << " iterations" ; |
1312 | }); |
1313 | |
1314 | ValueToValueMapTy VMap; |
1315 | if (peelLoop(L, PeelCount: PP.PeelCount, LI, SE: &SE, DT, AC: &AC, PreserveLCSSA, VMap)) { |
1316 | simplifyLoopAfterUnroll(L, SimplifyIVs: true, LI, SE: &SE, DT: &DT, AC: &AC, TTI: &TTI, AA: nullptr); |
1317 | // If the loop was peeled, we already "used up" the profile information |
1318 | // we had, so we don't want to unroll or peel again. |
1319 | if (PP.PeelProfiledIterations) |
1320 | L->setLoopAlreadyUnrolled(); |
1321 | return LoopUnrollResult::PartiallyUnrolled; |
1322 | } |
1323 | return LoopUnrollResult::Unmodified; |
1324 | } |
1325 | |
1326 | // Do not attempt partial/runtime unrolling in FullLoopUnrolling |
1327 | if (OnlyFullUnroll && (UP.Count < TripCount || UP.Count < MaxTripCount)) { |
1328 | LLVM_DEBUG( |
1329 | dbgs() << "Not attempting partial/runtime unroll in FullLoopUnroll.\n" ); |
1330 | return LoopUnrollResult::Unmodified; |
1331 | } |
1332 | |
1333 | // At this point, UP.Runtime indicates that run-time unrolling is allowed. |
1334 | // However, we only want to actually perform it if we don't know the trip |
1335 | // count and the unroll count doesn't divide the known trip multiple. |
1336 | // TODO: This decision should probably be pushed up into |
1337 | // computeUnrollCount(). |
1338 | UP.Runtime &= TripCount == 0 && TripMultiple % UP.Count != 0; |
1339 | |
1340 | // Save loop properties before it is transformed. |
1341 | MDNode *OrigLoopID = L->getLoopID(); |
1342 | |
1343 | // Unroll the loop. |
1344 | Loop *RemainderLoop = nullptr; |
1345 | UnrollLoopOptions ULO; |
1346 | ULO.Count = UP.Count; |
1347 | ULO.Force = UP.Force; |
1348 | ULO.AllowExpensiveTripCount = UP.AllowExpensiveTripCount; |
1349 | ULO.UnrollRemainder = UP.UnrollRemainder; |
1350 | ULO.Runtime = UP.Runtime; |
1351 | ULO.ForgetAllSCEV = ForgetAllSCEV; |
1352 | ULO.Heart = getLoopConvergenceHeart(TheLoop: L); |
1353 | LoopUnrollResult UnrollResult = UnrollLoop( |
1354 | L, ULO, LI, SE: &SE, DT: &DT, AC: &AC, TTI: &TTI, ORE: &ORE, PreserveLCSSA, RemainderLoop: &RemainderLoop, AA); |
1355 | if (UnrollResult == LoopUnrollResult::Unmodified) |
1356 | return LoopUnrollResult::Unmodified; |
1357 | |
1358 | if (RemainderLoop) { |
1359 | std::optional<MDNode *> RemainderLoopID = |
1360 | makeFollowupLoopID(OrigLoopID, FollowupAttrs: {LLVMLoopUnrollFollowupAll, |
1361 | LLVMLoopUnrollFollowupRemainder}); |
1362 | if (RemainderLoopID) |
1363 | RemainderLoop->setLoopID(*RemainderLoopID); |
1364 | } |
1365 | |
1366 | if (UnrollResult != LoopUnrollResult::FullyUnrolled) { |
1367 | std::optional<MDNode *> NewLoopID = |
1368 | makeFollowupLoopID(OrigLoopID, FollowupAttrs: {LLVMLoopUnrollFollowupAll, |
1369 | LLVMLoopUnrollFollowupUnrolled}); |
1370 | if (NewLoopID) { |
1371 | L->setLoopID(*NewLoopID); |
1372 | |
1373 | // Do not setLoopAlreadyUnrolled if loop attributes have been specified |
1374 | // explicitly. |
1375 | return UnrollResult; |
1376 | } |
1377 | } |
1378 | |
1379 | // If loop has an unroll count pragma or unrolled by explicitly set count |
1380 | // mark loop as unrolled to prevent unrolling beyond that requested. |
1381 | if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly) |
1382 | L->setLoopAlreadyUnrolled(); |
1383 | |
1384 | return UnrollResult; |
1385 | } |
1386 | |
1387 | namespace { |
1388 | |
1389 | class LoopUnroll : public LoopPass { |
1390 | public: |
1391 | static char ID; // Pass ID, replacement for typeid |
1392 | |
1393 | int OptLevel; |
1394 | |
1395 | /// If false, use a cost model to determine whether unrolling of a loop is |
1396 | /// profitable. If true, only loops that explicitly request unrolling via |
1397 | /// metadata are considered. All other loops are skipped. |
1398 | bool OnlyWhenForced; |
1399 | |
1400 | /// If false, when SCEV is invalidated, only forget everything in the |
1401 | /// top-most loop (call forgetTopMostLoop), of the loop being processed. |
1402 | /// Otherwise, forgetAllLoops and rebuild when needed next. |
1403 | bool ForgetAllSCEV; |
1404 | |
1405 | std::optional<unsigned> ProvidedCount; |
1406 | std::optional<unsigned> ProvidedThreshold; |
1407 | std::optional<bool> ProvidedAllowPartial; |
1408 | std::optional<bool> ProvidedRuntime; |
1409 | std::optional<bool> ProvidedUpperBound; |
1410 | std::optional<bool> ProvidedAllowPeeling; |
1411 | std::optional<bool> ProvidedAllowProfileBasedPeeling; |
1412 | std::optional<unsigned> ProvidedFullUnrollMaxCount; |
1413 | |
1414 | LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, |
1415 | bool ForgetAllSCEV = false, |
1416 | std::optional<unsigned> Threshold = std::nullopt, |
1417 | std::optional<unsigned> Count = std::nullopt, |
1418 | std::optional<bool> AllowPartial = std::nullopt, |
1419 | std::optional<bool> Runtime = std::nullopt, |
1420 | std::optional<bool> UpperBound = std::nullopt, |
1421 | std::optional<bool> AllowPeeling = std::nullopt, |
1422 | std::optional<bool> AllowProfileBasedPeeling = std::nullopt, |
1423 | std::optional<unsigned> ProvidedFullUnrollMaxCount = std::nullopt) |
1424 | : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), |
1425 | ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), |
1426 | ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), |
1427 | ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), |
1428 | ProvidedAllowPeeling(AllowPeeling), |
1429 | ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling), |
1430 | ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) { |
1431 | initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); |
1432 | } |
1433 | |
1434 | bool runOnLoop(Loop *L, LPPassManager &LPM) override { |
1435 | if (skipLoop(L)) |
1436 | return false; |
1437 | |
1438 | Function &F = *L->getHeader()->getParent(); |
1439 | |
1440 | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
1441 | LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
1442 | ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
1443 | const TargetTransformInfo &TTI = |
1444 | getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
1445 | auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
1446 | // For the old PM, we can't use OptimizationRemarkEmitter as an analysis |
1447 | // pass. Function analyses need to be preserved across loop transformations |
1448 | // but ORE cannot be preserved (see comment before the pass definition). |
1449 | OptimizationRemarkEmitter ORE(&F); |
1450 | bool PreserveLCSSA = mustPreserveAnalysisID(AID&: LCSSAID); |
1451 | |
1452 | LoopUnrollResult Result = tryToUnrollLoop( |
1453 | L, DT, LI, SE, TTI, AC, ORE, BFI: nullptr, PSI: nullptr, PreserveLCSSA, OptLevel, |
1454 | /*OnlyFullUnroll*/ false, OnlyWhenForced, ForgetAllSCEV, ProvidedCount, |
1455 | ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime, |
1456 | ProvidedUpperBound, ProvidedAllowPeeling, |
1457 | ProvidedAllowProfileBasedPeeling, ProvidedFullUnrollMaxCount); |
1458 | |
1459 | if (Result == LoopUnrollResult::FullyUnrolled) |
1460 | LPM.markLoopAsDeleted(L&: *L); |
1461 | |
1462 | return Result != LoopUnrollResult::Unmodified; |
1463 | } |
1464 | |
1465 | /// This transformation requires natural loop information & requires that |
1466 | /// loop preheaders be inserted into the CFG... |
1467 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
1468 | AU.addRequired<AssumptionCacheTracker>(); |
1469 | AU.addRequired<TargetTransformInfoWrapperPass>(); |
1470 | // FIXME: Loop passes are required to preserve domtree, and for now we just |
1471 | // recreate dom info if anything gets unrolled. |
1472 | getLoopAnalysisUsage(AU); |
1473 | } |
1474 | }; |
1475 | |
1476 | } // end anonymous namespace |
1477 | |
1478 | char LoopUnroll::ID = 0; |
1479 | |
1480 | INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll" , "Unroll loops" , false, false) |
1481 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
1482 | INITIALIZE_PASS_DEPENDENCY(LoopPass) |
1483 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
1484 | INITIALIZE_PASS_END(LoopUnroll, "loop-unroll" , "Unroll loops" , false, false) |
1485 | |
1486 | Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, |
1487 | bool ForgetAllSCEV, int Threshold, int Count, |
1488 | int AllowPartial, int Runtime, int UpperBound, |
1489 | int AllowPeeling) { |
1490 | // TODO: It would make more sense for this function to take the optionals |
1491 | // directly, but that's dangerous since it would silently break out of tree |
1492 | // callers. |
1493 | return new LoopUnroll( |
1494 | OptLevel, OnlyWhenForced, ForgetAllSCEV, |
1495 | Threshold == -1 ? std::nullopt : std::optional<unsigned>(Threshold), |
1496 | Count == -1 ? std::nullopt : std::optional<unsigned>(Count), |
1497 | AllowPartial == -1 ? std::nullopt : std::optional<bool>(AllowPartial), |
1498 | Runtime == -1 ? std::nullopt : std::optional<bool>(Runtime), |
1499 | UpperBound == -1 ? std::nullopt : std::optional<bool>(UpperBound), |
1500 | AllowPeeling == -1 ? std::nullopt : std::optional<bool>(AllowPeeling)); |
1501 | } |
1502 | |
1503 | PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, |
1504 | LoopStandardAnalysisResults &AR, |
1505 | LPMUpdater &Updater) { |
1506 | // For the new PM, we can't use OptimizationRemarkEmitter as an analysis |
1507 | // pass. Function analyses need to be preserved across loop transformations |
1508 | // but ORE cannot be preserved (see comment before the pass definition). |
1509 | OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); |
1510 | |
1511 | // Keep track of the previous loop structure so we can identify new loops |
1512 | // created by unrolling. |
1513 | Loop *ParentL = L.getParentLoop(); |
1514 | SmallPtrSet<Loop *, 4> OldLoops; |
1515 | if (ParentL) |
1516 | OldLoops.insert(I: ParentL->begin(), E: ParentL->end()); |
1517 | else |
1518 | OldLoops.insert(I: AR.LI.begin(), E: AR.LI.end()); |
1519 | |
1520 | std::string LoopName = std::string(L.getName()); |
1521 | |
1522 | bool Changed = |
1523 | tryToUnrollLoop(L: &L, DT&: AR.DT, LI: &AR.LI, SE&: AR.SE, TTI: AR.TTI, AC&: AR.AC, ORE, |
1524 | /*BFI*/ nullptr, /*PSI*/ nullptr, |
1525 | /*PreserveLCSSA*/ true, OptLevel, /*OnlyFullUnroll*/ true, |
1526 | OnlyWhenForced, ForgetAllSCEV: ForgetSCEV, /*Count*/ ProvidedCount: std::nullopt, |
1527 | /*Threshold*/ ProvidedThreshold: std::nullopt, /*AllowPartial*/ ProvidedAllowPartial: false, |
1528 | /*Runtime*/ ProvidedRuntime: false, /*UpperBound*/ ProvidedUpperBound: false, |
1529 | /*AllowPeeling*/ ProvidedAllowPeeling: true, |
1530 | /*AllowProfileBasedPeeling*/ ProvidedAllowProfileBasedPeeling: false, |
1531 | /*FullUnrollMaxCount*/ ProvidedFullUnrollMaxCount: std::nullopt) != |
1532 | LoopUnrollResult::Unmodified; |
1533 | if (!Changed) |
1534 | return PreservedAnalyses::all(); |
1535 | |
1536 | // The parent must not be damaged by unrolling! |
1537 | #ifndef NDEBUG |
1538 | if (ParentL) |
1539 | ParentL->verifyLoop(); |
1540 | #endif |
1541 | |
1542 | // Unrolling can do several things to introduce new loops into a loop nest: |
1543 | // - Full unrolling clones child loops within the current loop but then |
1544 | // removes the current loop making all of the children appear to be new |
1545 | // sibling loops. |
1546 | // |
1547 | // When a new loop appears as a sibling loop after fully unrolling, |
1548 | // its nesting structure has fundamentally changed and we want to revisit |
1549 | // it to reflect that. |
1550 | // |
1551 | // When unrolling has removed the current loop, we need to tell the |
1552 | // infrastructure that it is gone. |
1553 | // |
1554 | // Finally, we support a debugging/testing mode where we revisit child loops |
1555 | // as well. These are not expected to require further optimizations as either |
1556 | // they or the loop they were cloned from have been directly visited already. |
1557 | // But the debugging mode allows us to check this assumption. |
1558 | bool IsCurrentLoopValid = false; |
1559 | SmallVector<Loop *, 4> SibLoops; |
1560 | if (ParentL) |
1561 | SibLoops.append(in_start: ParentL->begin(), in_end: ParentL->end()); |
1562 | else |
1563 | SibLoops.append(in_start: AR.LI.begin(), in_end: AR.LI.end()); |
1564 | erase_if(C&: SibLoops, P: [&](Loop *SibLoop) { |
1565 | if (SibLoop == &L) { |
1566 | IsCurrentLoopValid = true; |
1567 | return true; |
1568 | } |
1569 | |
1570 | // Otherwise erase the loop from the list if it was in the old loops. |
1571 | return OldLoops.contains(Ptr: SibLoop); |
1572 | }); |
1573 | Updater.addSiblingLoops(NewSibLoops: SibLoops); |
1574 | |
1575 | if (!IsCurrentLoopValid) { |
1576 | Updater.markLoopAsDeleted(L, Name: LoopName); |
1577 | } else { |
1578 | // We can only walk child loops if the current loop remained valid. |
1579 | if (UnrollRevisitChildLoops) { |
1580 | // Walk *all* of the child loops. |
1581 | SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); |
1582 | Updater.addChildLoops(NewChildLoops: ChildLoops); |
1583 | } |
1584 | } |
1585 | |
1586 | return getLoopPassPreservedAnalyses(); |
1587 | } |
1588 | |
1589 | PreservedAnalyses LoopUnrollPass::run(Function &F, |
1590 | FunctionAnalysisManager &AM) { |
1591 | auto &LI = AM.getResult<LoopAnalysis>(IR&: F); |
1592 | // There are no loops in the function. Return before computing other expensive |
1593 | // analyses. |
1594 | if (LI.empty()) |
1595 | return PreservedAnalyses::all(); |
1596 | auto &SE = AM.getResult<ScalarEvolutionAnalysis>(IR&: F); |
1597 | auto &TTI = AM.getResult<TargetIRAnalysis>(IR&: F); |
1598 | auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
1599 | auto &AC = AM.getResult<AssumptionAnalysis>(IR&: F); |
1600 | auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(IR&: F); |
1601 | AAResults &AA = AM.getResult<AAManager>(IR&: F); |
1602 | |
1603 | LoopAnalysisManager *LAM = nullptr; |
1604 | if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(IR&: F)) |
1605 | LAM = &LAMProxy->getManager(); |
1606 | |
1607 | auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(IR&: F); |
1608 | ProfileSummaryInfo *PSI = |
1609 | MAMProxy.getCachedResult<ProfileSummaryAnalysis>(IR&: *F.getParent()); |
1610 | auto *BFI = (PSI && PSI->hasProfileSummary()) ? |
1611 | &AM.getResult<BlockFrequencyAnalysis>(IR&: F) : nullptr; |
1612 | |
1613 | bool Changed = false; |
1614 | |
1615 | // The unroller requires loops to be in simplified form, and also needs LCSSA. |
1616 | // Since simplification may add new inner loops, it has to run before the |
1617 | // legality and profitability checks. This means running the loop unroller |
1618 | // will simplify all loops, regardless of whether anything end up being |
1619 | // unrolled. |
1620 | for (const auto &L : LI) { |
1621 | Changed |= |
1622 | simplifyLoop(L, DT: &DT, LI: &LI, SE: &SE, AC: &AC, MSSAU: nullptr, PreserveLCSSA: false /* PreserveLCSSA */); |
1623 | Changed |= formLCSSARecursively(L&: *L, DT, LI: &LI, SE: &SE); |
1624 | } |
1625 | |
1626 | // Add the loop nests in the reverse order of LoopInfo. See method |
1627 | // declaration. |
1628 | SmallPriorityWorklist<Loop *, 4> Worklist; |
1629 | appendLoopsToWorklist(LI, Worklist); |
1630 | |
1631 | while (!Worklist.empty()) { |
1632 | // Because the LoopInfo stores the loops in RPO, we walk the worklist |
1633 | // from back to front so that we work forward across the CFG, which |
1634 | // for unrolling is only needed to get optimization remarks emitted in |
1635 | // a forward order. |
1636 | Loop &L = *Worklist.pop_back_val(); |
1637 | #ifndef NDEBUG |
1638 | Loop *ParentL = L.getParentLoop(); |
1639 | #endif |
1640 | |
1641 | // Check if the profile summary indicates that the profiled application |
1642 | // has a huge working set size, in which case we disable peeling to avoid |
1643 | // bloating it further. |
1644 | std::optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; |
1645 | if (PSI && PSI->hasHugeWorkingSetSize()) |
1646 | LocalAllowPeeling = false; |
1647 | std::string LoopName = std::string(L.getName()); |
1648 | // The API here is quite complex to call and we allow to select some |
1649 | // flavors of unrolling during construction time (by setting UnrollOpts). |
1650 | LoopUnrollResult Result = tryToUnrollLoop( |
1651 | L: &L, DT, LI: &LI, SE, TTI, AC, ORE, BFI, PSI, |
1652 | /*PreserveLCSSA*/ true, OptLevel: UnrollOpts.OptLevel, /*OnlyFullUnroll*/ false, |
1653 | OnlyWhenForced: UnrollOpts.OnlyWhenForced, ForgetAllSCEV: UnrollOpts.ForgetSCEV, |
1654 | /*Count*/ ProvidedCount: std::nullopt, |
1655 | /*Threshold*/ ProvidedThreshold: std::nullopt, ProvidedAllowPartial: UnrollOpts.AllowPartial, |
1656 | ProvidedRuntime: UnrollOpts.AllowRuntime, ProvidedUpperBound: UnrollOpts.AllowUpperBound, ProvidedAllowPeeling: LocalAllowPeeling, |
1657 | ProvidedAllowProfileBasedPeeling: UnrollOpts.AllowProfileBasedPeeling, ProvidedFullUnrollMaxCount: UnrollOpts.FullUnrollMaxCount, |
1658 | AA: &AA); |
1659 | Changed |= Result != LoopUnrollResult::Unmodified; |
1660 | |
1661 | // The parent must not be damaged by unrolling! |
1662 | #ifndef NDEBUG |
1663 | if (Result != LoopUnrollResult::Unmodified && ParentL) |
1664 | ParentL->verifyLoop(); |
1665 | #endif |
1666 | |
1667 | // Clear any cached analysis results for L if we removed it completely. |
1668 | if (LAM && Result == LoopUnrollResult::FullyUnrolled) |
1669 | LAM->clear(IR&: L, Name: LoopName); |
1670 | } |
1671 | |
1672 | if (!Changed) |
1673 | return PreservedAnalyses::all(); |
1674 | |
1675 | return getLoopPassPreservedAnalyses(); |
1676 | } |
1677 | |
1678 | void LoopUnrollPass::printPipeline( |
1679 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
1680 | static_cast<PassInfoMixin<LoopUnrollPass> *>(this)->printPipeline( |
1681 | OS, MapClassName2PassName); |
1682 | OS << '<'; |
1683 | if (UnrollOpts.AllowPartial != std::nullopt) |
1684 | OS << (*UnrollOpts.AllowPartial ? "" : "no-" ) << "partial;" ; |
1685 | if (UnrollOpts.AllowPeeling != std::nullopt) |
1686 | OS << (*UnrollOpts.AllowPeeling ? "" : "no-" ) << "peeling;" ; |
1687 | if (UnrollOpts.AllowRuntime != std::nullopt) |
1688 | OS << (*UnrollOpts.AllowRuntime ? "" : "no-" ) << "runtime;" ; |
1689 | if (UnrollOpts.AllowUpperBound != std::nullopt) |
1690 | OS << (*UnrollOpts.AllowUpperBound ? "" : "no-" ) << "upperbound;" ; |
1691 | if (UnrollOpts.AllowProfileBasedPeeling != std::nullopt) |
1692 | OS << (*UnrollOpts.AllowProfileBasedPeeling ? "" : "no-" ) |
1693 | << "profile-peeling;" ; |
1694 | if (UnrollOpts.FullUnrollMaxCount != std::nullopt) |
1695 | OS << "full-unroll-max=" << UnrollOpts.FullUnrollMaxCount << ';'; |
1696 | OS << 'O' << UnrollOpts.OptLevel; |
1697 | OS << '>'; |
1698 | } |
1699 | |