1 | //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Rewrite call/invoke instructions so as to make potential relocations |
10 | // performed by the garbage collector explicit in the IR. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h" |
15 | |
16 | #include "llvm/ADT/ArrayRef.h" |
17 | #include "llvm/ADT/DenseMap.h" |
18 | #include "llvm/ADT/DenseSet.h" |
19 | #include "llvm/ADT/MapVector.h" |
20 | #include "llvm/ADT/STLExtras.h" |
21 | #include "llvm/ADT/Sequence.h" |
22 | #include "llvm/ADT/SetVector.h" |
23 | #include "llvm/ADT/SmallSet.h" |
24 | #include "llvm/ADT/SmallVector.h" |
25 | #include "llvm/ADT/StringRef.h" |
26 | #include "llvm/ADT/iterator_range.h" |
27 | #include "llvm/Analysis/DomTreeUpdater.h" |
28 | #include "llvm/Analysis/TargetLibraryInfo.h" |
29 | #include "llvm/Analysis/TargetTransformInfo.h" |
30 | #include "llvm/IR/Argument.h" |
31 | #include "llvm/IR/AttributeMask.h" |
32 | #include "llvm/IR/Attributes.h" |
33 | #include "llvm/IR/BasicBlock.h" |
34 | #include "llvm/IR/CallingConv.h" |
35 | #include "llvm/IR/Constant.h" |
36 | #include "llvm/IR/Constants.h" |
37 | #include "llvm/IR/DataLayout.h" |
38 | #include "llvm/IR/DerivedTypes.h" |
39 | #include "llvm/IR/Dominators.h" |
40 | #include "llvm/IR/Function.h" |
41 | #include "llvm/IR/GCStrategy.h" |
42 | #include "llvm/IR/IRBuilder.h" |
43 | #include "llvm/IR/InstIterator.h" |
44 | #include "llvm/IR/InstrTypes.h" |
45 | #include "llvm/IR/Instruction.h" |
46 | #include "llvm/IR/Instructions.h" |
47 | #include "llvm/IR/IntrinsicInst.h" |
48 | #include "llvm/IR/Intrinsics.h" |
49 | #include "llvm/IR/LLVMContext.h" |
50 | #include "llvm/IR/MDBuilder.h" |
51 | #include "llvm/IR/Metadata.h" |
52 | #include "llvm/IR/Module.h" |
53 | #include "llvm/IR/Statepoint.h" |
54 | #include "llvm/IR/Type.h" |
55 | #include "llvm/IR/User.h" |
56 | #include "llvm/IR/Value.h" |
57 | #include "llvm/IR/ValueHandle.h" |
58 | #include "llvm/Support/Casting.h" |
59 | #include "llvm/Support/CommandLine.h" |
60 | #include "llvm/Support/Compiler.h" |
61 | #include "llvm/Support/Debug.h" |
62 | #include "llvm/Support/ErrorHandling.h" |
63 | #include "llvm/Support/raw_ostream.h" |
64 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
65 | #include "llvm/Transforms/Utils/Local.h" |
66 | #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
67 | #include <algorithm> |
68 | #include <cassert> |
69 | #include <cstddef> |
70 | #include <cstdint> |
71 | #include <iterator> |
72 | #include <optional> |
73 | #include <set> |
74 | #include <string> |
75 | #include <utility> |
76 | #include <vector> |
77 | |
78 | #define DEBUG_TYPE "rewrite-statepoints-for-gc" |
79 | |
80 | using namespace llvm; |
81 | |
82 | // Print the liveset found at the insert location |
83 | static cl::opt<bool> PrintLiveSet("spp-print-liveset" , cl::Hidden, |
84 | cl::init(Val: false)); |
85 | static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size" , cl::Hidden, |
86 | cl::init(Val: false)); |
87 | |
88 | // Print out the base pointers for debugging |
89 | static cl::opt<bool> PrintBasePointers("spp-print-base-pointers" , cl::Hidden, |
90 | cl::init(Val: false)); |
91 | |
92 | // Cost threshold measuring when it is profitable to rematerialize value instead |
93 | // of relocating it |
94 | static cl::opt<unsigned> |
95 | RematerializationThreshold("spp-rematerialization-threshold" , cl::Hidden, |
96 | cl::init(Val: 6)); |
97 | |
98 | #ifdef EXPENSIVE_CHECKS |
99 | static bool ClobberNonLive = true; |
100 | #else |
101 | static bool ClobberNonLive = false; |
102 | #endif |
103 | |
104 | static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live" , |
105 | cl::location(L&: ClobberNonLive), |
106 | cl::Hidden); |
107 | |
108 | static cl::opt<bool> |
109 | AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info" , |
110 | cl::Hidden, cl::init(Val: true)); |
111 | |
112 | static cl::opt<bool> RematDerivedAtUses("rs4gc-remat-derived-at-uses" , |
113 | cl::Hidden, cl::init(Val: true)); |
114 | |
115 | /// The IR fed into RewriteStatepointsForGC may have had attributes and |
116 | /// metadata implying dereferenceability that are no longer valid/correct after |
117 | /// RewriteStatepointsForGC has run. This is because semantically, after |
118 | /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire |
119 | /// heap. stripNonValidData (conservatively) restores |
120 | /// correctness by erasing all attributes in the module that externally imply |
121 | /// dereferenceability. Similar reasoning also applies to the noalias |
122 | /// attributes and metadata. gc.statepoint can touch the entire heap including |
123 | /// noalias objects. |
124 | /// Apart from attributes and metadata, we also remove instructions that imply |
125 | /// constant physical memory: llvm.invariant.start. |
126 | static void stripNonValidData(Module &M); |
127 | |
128 | // Find the GC strategy for a function, or null if it doesn't have one. |
129 | static std::unique_ptr<GCStrategy> findGCStrategy(Function &F); |
130 | |
131 | static bool shouldRewriteStatepointsIn(Function &F); |
132 | |
133 | PreservedAnalyses RewriteStatepointsForGC::run(Module &M, |
134 | ModuleAnalysisManager &AM) { |
135 | bool Changed = false; |
136 | auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
137 | for (Function &F : M) { |
138 | // Nothing to do for declarations. |
139 | if (F.isDeclaration() || F.empty()) |
140 | continue; |
141 | |
142 | // Policy choice says not to rewrite - the most common reason is that we're |
143 | // compiling code without a GCStrategy. |
144 | if (!shouldRewriteStatepointsIn(F)) |
145 | continue; |
146 | |
147 | auto &DT = FAM.getResult<DominatorTreeAnalysis>(IR&: F); |
148 | auto &TTI = FAM.getResult<TargetIRAnalysis>(IR&: F); |
149 | auto &TLI = FAM.getResult<TargetLibraryAnalysis>(IR&: F); |
150 | Changed |= runOnFunction(F, DT, TTI, TLI); |
151 | } |
152 | if (!Changed) |
153 | return PreservedAnalyses::all(); |
154 | |
155 | // stripNonValidData asserts that shouldRewriteStatepointsIn |
156 | // returns true for at least one function in the module. Since at least |
157 | // one function changed, we know that the precondition is satisfied. |
158 | stripNonValidData(M); |
159 | |
160 | PreservedAnalyses PA; |
161 | PA.preserve<TargetIRAnalysis>(); |
162 | PA.preserve<TargetLibraryAnalysis>(); |
163 | return PA; |
164 | } |
165 | |
166 | namespace { |
167 | |
168 | struct GCPtrLivenessData { |
169 | /// Values defined in this block. |
170 | MapVector<BasicBlock *, SetVector<Value *>> KillSet; |
171 | |
172 | /// Values used in this block (and thus live); does not included values |
173 | /// killed within this block. |
174 | MapVector<BasicBlock *, SetVector<Value *>> LiveSet; |
175 | |
176 | /// Values live into this basic block (i.e. used by any |
177 | /// instruction in this basic block or ones reachable from here) |
178 | MapVector<BasicBlock *, SetVector<Value *>> LiveIn; |
179 | |
180 | /// Values live out of this basic block (i.e. live into |
181 | /// any successor block) |
182 | MapVector<BasicBlock *, SetVector<Value *>> LiveOut; |
183 | }; |
184 | |
185 | // The type of the internal cache used inside the findBasePointers family |
186 | // of functions. From the callers perspective, this is an opaque type and |
187 | // should not be inspected. |
188 | // |
189 | // In the actual implementation this caches two relations: |
190 | // - The base relation itself (i.e. this pointer is based on that one) |
191 | // - The base defining value relation (i.e. before base_phi insertion) |
192 | // Generally, after the execution of a full findBasePointer call, only the |
193 | // base relation will remain. Internally, we add a mixture of the two |
194 | // types, then update all the second type to the first type |
195 | using DefiningValueMapTy = MapVector<Value *, Value *>; |
196 | using IsKnownBaseMapTy = MapVector<Value *, bool>; |
197 | using PointerToBaseTy = MapVector<Value *, Value *>; |
198 | using StatepointLiveSetTy = SetVector<Value *>; |
199 | using RematerializedValueMapTy = |
200 | MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; |
201 | |
202 | struct PartiallyConstructedSafepointRecord { |
203 | /// The set of values known to be live across this safepoint |
204 | StatepointLiveSetTy LiveSet; |
205 | |
206 | /// The *new* gc.statepoint instruction itself. This produces the token |
207 | /// that normal path gc.relocates and the gc.result are tied to. |
208 | GCStatepointInst *StatepointToken; |
209 | |
210 | /// Instruction to which exceptional gc relocates are attached |
211 | /// Makes it easier to iterate through them during relocationViaAlloca. |
212 | Instruction *UnwindToken; |
213 | |
214 | /// Record live values we are rematerialized instead of relocating. |
215 | /// They are not included into 'LiveSet' field. |
216 | /// Maps rematerialized copy to it's original value. |
217 | RematerializedValueMapTy RematerializedValues; |
218 | }; |
219 | |
220 | struct RematerizlizationCandidateRecord { |
221 | // Chain from derived pointer to base. |
222 | SmallVector<Instruction *, 3> ChainToBase; |
223 | // Original base. |
224 | Value *RootOfChain; |
225 | // Cost of chain. |
226 | InstructionCost Cost; |
227 | }; |
228 | using RematCandTy = MapVector<Value *, RematerizlizationCandidateRecord>; |
229 | |
230 | } // end anonymous namespace |
231 | |
232 | static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) { |
233 | std::optional<OperandBundleUse> DeoptBundle = |
234 | Call->getOperandBundle(ID: LLVMContext::OB_deopt); |
235 | |
236 | if (!DeoptBundle) { |
237 | assert(AllowStatepointWithNoDeoptInfo && |
238 | "Found non-leaf call without deopt info!" ); |
239 | return std::nullopt; |
240 | } |
241 | |
242 | return DeoptBundle->Inputs; |
243 | } |
244 | |
245 | /// Compute the live-in set for every basic block in the function |
246 | static void computeLiveInValues(DominatorTree &DT, Function &F, |
247 | GCPtrLivenessData &Data, GCStrategy *GC); |
248 | |
249 | /// Given results from the dataflow liveness computation, find the set of live |
250 | /// Values at a particular instruction. |
251 | static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, |
252 | StatepointLiveSetTy &out, GCStrategy *GC); |
253 | |
254 | static bool isGCPointerType(Type *T, GCStrategy *GC) { |
255 | assert(GC && "GC Strategy for isGCPointerType cannot be null" ); |
256 | |
257 | if (!isa<PointerType>(Val: T)) |
258 | return false; |
259 | |
260 | // conservative - same as StatepointLowering |
261 | return GC->isGCManagedPointer(Ty: T).value_or(u: true); |
262 | } |
263 | |
264 | // Return true if this type is one which a) is a gc pointer or contains a GC |
265 | // pointer and b) is of a type this code expects to encounter as a live value. |
266 | // (The insertion code will assert that a type which matches (a) and not (b) |
267 | // is not encountered.) |
268 | static bool isHandledGCPointerType(Type *T, GCStrategy *GC) { |
269 | // We fully support gc pointers |
270 | if (isGCPointerType(T, GC)) |
271 | return true; |
272 | // We partially support vectors of gc pointers. The code will assert if it |
273 | // can't handle something. |
274 | if (auto VT = dyn_cast<VectorType>(Val: T)) |
275 | if (isGCPointerType(T: VT->getElementType(), GC)) |
276 | return true; |
277 | return false; |
278 | } |
279 | |
280 | #ifndef NDEBUG |
281 | /// Returns true if this type contains a gc pointer whether we know how to |
282 | /// handle that type or not. |
283 | static bool containsGCPtrType(Type *Ty, GCStrategy *GC) { |
284 | if (isGCPointerType(Ty, GC)) |
285 | return true; |
286 | if (VectorType *VT = dyn_cast<VectorType>(Ty)) |
287 | return isGCPointerType(VT->getScalarType(), GC); |
288 | if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) |
289 | return containsGCPtrType(AT->getElementType(), GC); |
290 | if (StructType *ST = dyn_cast<StructType>(Ty)) |
291 | return llvm::any_of(ST->elements(), |
292 | [GC](Type *Ty) { return containsGCPtrType(Ty, GC); }); |
293 | return false; |
294 | } |
295 | |
296 | // Returns true if this is a type which a) is a gc pointer or contains a GC |
297 | // pointer and b) is of a type which the code doesn't expect (i.e. first class |
298 | // aggregates). Used to trip assertions. |
299 | static bool isUnhandledGCPointerType(Type *Ty, GCStrategy *GC) { |
300 | return containsGCPtrType(Ty, GC) && !isHandledGCPointerType(Ty, GC); |
301 | } |
302 | #endif |
303 | |
304 | // Return the name of the value suffixed with the provided value, or if the |
305 | // value didn't have a name, the default value specified. |
306 | static std::string suffixed_name_or(Value *V, StringRef Suffix, |
307 | StringRef DefaultName) { |
308 | return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); |
309 | } |
310 | |
311 | // Conservatively identifies any definitions which might be live at the |
312 | // given instruction. The analysis is performed immediately before the |
313 | // given instruction. Values defined by that instruction are not considered |
314 | // live. Values used by that instruction are considered live. |
315 | static void analyzeParsePointLiveness( |
316 | DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call, |
317 | PartiallyConstructedSafepointRecord &Result, GCStrategy *GC) { |
318 | StatepointLiveSetTy LiveSet; |
319 | findLiveSetAtInst(inst: Call, Data&: OriginalLivenessData, out&: LiveSet, GC); |
320 | |
321 | if (PrintLiveSet) { |
322 | dbgs() << "Live Variables:\n" ; |
323 | for (Value *V : LiveSet) |
324 | dbgs() << " " << V->getName() << " " << *V << "\n" ; |
325 | } |
326 | if (PrintLiveSetSize) { |
327 | dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n" ; |
328 | dbgs() << "Number live values: " << LiveSet.size() << "\n" ; |
329 | } |
330 | Result.LiveSet = LiveSet; |
331 | } |
332 | |
333 | /// Returns true if V is a known base. |
334 | static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases); |
335 | |
336 | /// Caches the IsKnownBase flag for a value and asserts that it wasn't present |
337 | /// in the cache before. |
338 | static void setKnownBase(Value *V, bool IsKnownBase, |
339 | IsKnownBaseMapTy &KnownBases); |
340 | |
341 | static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache, |
342 | IsKnownBaseMapTy &KnownBases); |
343 | |
344 | /// Return a base defining value for the 'Index' element of the given vector |
345 | /// instruction 'I'. If Index is null, returns a BDV for the entire vector |
346 | /// 'I'. As an optimization, this method will try to determine when the |
347 | /// element is known to already be a base pointer. If this can be established, |
348 | /// the second value in the returned pair will be true. Note that either a |
349 | /// vector or a pointer typed value can be returned. For the former, the |
350 | /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. |
351 | /// If the later, the return pointer is a BDV (or possibly a base) for the |
352 | /// particular element in 'I'. |
353 | static Value *findBaseDefiningValueOfVector(Value *I, DefiningValueMapTy &Cache, |
354 | IsKnownBaseMapTy &KnownBases) { |
355 | // Each case parallels findBaseDefiningValue below, see that code for |
356 | // detailed motivation. |
357 | |
358 | auto Cached = Cache.find(Key: I); |
359 | if (Cached != Cache.end()) |
360 | return Cached->second; |
361 | |
362 | if (isa<Argument>(Val: I)) { |
363 | // An incoming argument to the function is a base pointer |
364 | Cache[I] = I; |
365 | setKnownBase(V: I, /* IsKnownBase */true, KnownBases); |
366 | return I; |
367 | } |
368 | |
369 | if (isa<Constant>(Val: I)) { |
370 | // Base of constant vector consists only of constant null pointers. |
371 | // For reasoning see similar case inside 'findBaseDefiningValue' function. |
372 | auto *CAZ = ConstantAggregateZero::get(Ty: I->getType()); |
373 | Cache[I] = CAZ; |
374 | setKnownBase(V: CAZ, /* IsKnownBase */true, KnownBases); |
375 | return CAZ; |
376 | } |
377 | |
378 | if (isa<LoadInst>(Val: I)) { |
379 | Cache[I] = I; |
380 | setKnownBase(V: I, /* IsKnownBase */true, KnownBases); |
381 | return I; |
382 | } |
383 | |
384 | if (isa<InsertElementInst>(Val: I)) { |
385 | // We don't know whether this vector contains entirely base pointers or |
386 | // not. To be conservatively correct, we treat it as a BDV and will |
387 | // duplicate code as needed to construct a parallel vector of bases. |
388 | Cache[I] = I; |
389 | setKnownBase(V: I, /* IsKnownBase */false, KnownBases); |
390 | return I; |
391 | } |
392 | |
393 | if (isa<ShuffleVectorInst>(Val: I)) { |
394 | // We don't know whether this vector contains entirely base pointers or |
395 | // not. To be conservatively correct, we treat it as a BDV and will |
396 | // duplicate code as needed to construct a parallel vector of bases. |
397 | // TODO: There a number of local optimizations which could be applied here |
398 | // for particular sufflevector patterns. |
399 | Cache[I] = I; |
400 | setKnownBase(V: I, /* IsKnownBase */false, KnownBases); |
401 | return I; |
402 | } |
403 | |
404 | // The behavior of getelementptr instructions is the same for vector and |
405 | // non-vector data types. |
406 | if (auto *GEP = dyn_cast<GetElementPtrInst>(Val: I)) { |
407 | auto *BDV = |
408 | findBaseDefiningValue(I: GEP->getPointerOperand(), Cache, KnownBases); |
409 | Cache[GEP] = BDV; |
410 | return BDV; |
411 | } |
412 | |
413 | // The behavior of freeze instructions is the same for vector and |
414 | // non-vector data types. |
415 | if (auto *Freeze = dyn_cast<FreezeInst>(Val: I)) { |
416 | auto *BDV = findBaseDefiningValue(I: Freeze->getOperand(i_nocapture: 0), Cache, KnownBases); |
417 | Cache[Freeze] = BDV; |
418 | return BDV; |
419 | } |
420 | |
421 | // If the pointer comes through a bitcast of a vector of pointers to |
422 | // a vector of another type of pointer, then look through the bitcast |
423 | if (auto *BC = dyn_cast<BitCastInst>(Val: I)) { |
424 | auto *BDV = findBaseDefiningValue(I: BC->getOperand(i_nocapture: 0), Cache, KnownBases); |
425 | Cache[BC] = BDV; |
426 | return BDV; |
427 | } |
428 | |
429 | // We assume that functions in the source language only return base |
430 | // pointers. This should probably be generalized via attributes to support |
431 | // both source language and internal functions. |
432 | if (isa<CallInst>(Val: I) || isa<InvokeInst>(Val: I)) { |
433 | Cache[I] = I; |
434 | setKnownBase(V: I, /* IsKnownBase */true, KnownBases); |
435 | return I; |
436 | } |
437 | |
438 | // A PHI or Select is a base defining value. The outer findBasePointer |
439 | // algorithm is responsible for constructing a base value for this BDV. |
440 | assert((isa<SelectInst>(I) || isa<PHINode>(I)) && |
441 | "unknown vector instruction - no base found for vector element" ); |
442 | Cache[I] = I; |
443 | setKnownBase(V: I, /* IsKnownBase */false, KnownBases); |
444 | return I; |
445 | } |
446 | |
447 | /// Helper function for findBasePointer - Will return a value which either a) |
448 | /// defines the base pointer for the input, b) blocks the simple search |
449 | /// (i.e. a PHI or Select of two derived pointers), or c) involves a change |
450 | /// from pointer to vector type or back. |
451 | static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache, |
452 | IsKnownBaseMapTy &KnownBases) { |
453 | assert(I->getType()->isPtrOrPtrVectorTy() && |
454 | "Illegal to ask for the base pointer of a non-pointer type" ); |
455 | auto Cached = Cache.find(Key: I); |
456 | if (Cached != Cache.end()) |
457 | return Cached->second; |
458 | |
459 | if (I->getType()->isVectorTy()) |
460 | return findBaseDefiningValueOfVector(I, Cache, KnownBases); |
461 | |
462 | if (isa<Argument>(Val: I)) { |
463 | // An incoming argument to the function is a base pointer |
464 | // We should have never reached here if this argument isn't an gc value |
465 | Cache[I] = I; |
466 | setKnownBase(V: I, /* IsKnownBase */true, KnownBases); |
467 | return I; |
468 | } |
469 | |
470 | if (isa<Constant>(Val: I)) { |
471 | // We assume that objects with a constant base (e.g. a global) can't move |
472 | // and don't need to be reported to the collector because they are always |
473 | // live. Besides global references, all kinds of constants (e.g. undef, |
474 | // constant expressions, null pointers) can be introduced by the inliner or |
475 | // the optimizer, especially on dynamically dead paths. |
476 | // Here we treat all of them as having single null base. By doing this we |
477 | // trying to avoid problems reporting various conflicts in a form of |
478 | // "phi (const1, const2)" or "phi (const, regular gc ptr)". |
479 | // See constant.ll file for relevant test cases. |
480 | |
481 | auto *CPN = ConstantPointerNull::get(T: cast<PointerType>(Val: I->getType())); |
482 | Cache[I] = CPN; |
483 | setKnownBase(V: CPN, /* IsKnownBase */true, KnownBases); |
484 | return CPN; |
485 | } |
486 | |
487 | // inttoptrs in an integral address space are currently ill-defined. We |
488 | // treat them as defining base pointers here for consistency with the |
489 | // constant rule above and because we don't really have a better semantic |
490 | // to give them. Note that the optimizer is always free to insert undefined |
491 | // behavior on dynamically dead paths as well. |
492 | if (isa<IntToPtrInst>(Val: I)) { |
493 | Cache[I] = I; |
494 | setKnownBase(V: I, /* IsKnownBase */true, KnownBases); |
495 | return I; |
496 | } |
497 | |
498 | if (CastInst *CI = dyn_cast<CastInst>(Val: I)) { |
499 | Value *Def = CI->stripPointerCasts(); |
500 | // If stripping pointer casts changes the address space there is an |
501 | // addrspacecast in between. |
502 | assert(cast<PointerType>(Def->getType())->getAddressSpace() == |
503 | cast<PointerType>(CI->getType())->getAddressSpace() && |
504 | "unsupported addrspacecast" ); |
505 | // If we find a cast instruction here, it means we've found a cast which is |
506 | // not simply a pointer cast (i.e. an inttoptr). We don't know how to |
507 | // handle int->ptr conversion. |
508 | assert(!isa<CastInst>(Def) && "shouldn't find another cast here" ); |
509 | auto *BDV = findBaseDefiningValue(I: Def, Cache, KnownBases); |
510 | Cache[CI] = BDV; |
511 | return BDV; |
512 | } |
513 | |
514 | if (isa<LoadInst>(Val: I)) { |
515 | // The value loaded is an gc base itself |
516 | Cache[I] = I; |
517 | setKnownBase(V: I, /* IsKnownBase */true, KnownBases); |
518 | return I; |
519 | } |
520 | |
521 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: I)) { |
522 | // The base of this GEP is the base |
523 | auto *BDV = |
524 | findBaseDefiningValue(I: GEP->getPointerOperand(), Cache, KnownBases); |
525 | Cache[GEP] = BDV; |
526 | return BDV; |
527 | } |
528 | |
529 | if (auto *Freeze = dyn_cast<FreezeInst>(Val: I)) { |
530 | auto *BDV = findBaseDefiningValue(I: Freeze->getOperand(i_nocapture: 0), Cache, KnownBases); |
531 | Cache[Freeze] = BDV; |
532 | return BDV; |
533 | } |
534 | |
535 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: I)) { |
536 | switch (II->getIntrinsicID()) { |
537 | default: |
538 | // fall through to general call handling |
539 | break; |
540 | case Intrinsic::experimental_gc_statepoint: |
541 | llvm_unreachable("statepoints don't produce pointers" ); |
542 | case Intrinsic::experimental_gc_relocate: |
543 | // Rerunning safepoint insertion after safepoints are already |
544 | // inserted is not supported. It could probably be made to work, |
545 | // but why are you doing this? There's no good reason. |
546 | llvm_unreachable("repeat safepoint insertion is not supported" ); |
547 | case Intrinsic::gcroot: |
548 | // Currently, this mechanism hasn't been extended to work with gcroot. |
549 | // There's no reason it couldn't be, but I haven't thought about the |
550 | // implications much. |
551 | llvm_unreachable( |
552 | "interaction with the gcroot mechanism is not supported" ); |
553 | case Intrinsic::experimental_gc_get_pointer_base: |
554 | auto *BDV = findBaseDefiningValue(I: II->getOperand(i_nocapture: 0), Cache, KnownBases); |
555 | Cache[II] = BDV; |
556 | return BDV; |
557 | } |
558 | } |
559 | // We assume that functions in the source language only return base |
560 | // pointers. This should probably be generalized via attributes to support |
561 | // both source language and internal functions. |
562 | if (isa<CallInst>(Val: I) || isa<InvokeInst>(Val: I)) { |
563 | Cache[I] = I; |
564 | setKnownBase(V: I, /* IsKnownBase */true, KnownBases); |
565 | return I; |
566 | } |
567 | |
568 | // TODO: I have absolutely no idea how to implement this part yet. It's not |
569 | // necessarily hard, I just haven't really looked at it yet. |
570 | assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented" ); |
571 | |
572 | if (isa<AtomicCmpXchgInst>(Val: I)) { |
573 | // A CAS is effectively a atomic store and load combined under a |
574 | // predicate. From the perspective of base pointers, we just treat it |
575 | // like a load. |
576 | Cache[I] = I; |
577 | setKnownBase(V: I, /* IsKnownBase */true, KnownBases); |
578 | return I; |
579 | } |
580 | |
581 | assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " |
582 | "binary ops which don't apply to pointers" ); |
583 | |
584 | // The aggregate ops. Aggregates can either be in the heap or on the |
585 | // stack, but in either case, this is simply a field load. As a result, |
586 | // this is a defining definition of the base just like a load is. |
587 | if (isa<ExtractValueInst>(Val: I)) { |
588 | Cache[I] = I; |
589 | setKnownBase(V: I, /* IsKnownBase */true, KnownBases); |
590 | return I; |
591 | } |
592 | |
593 | // We should never see an insert vector since that would require we be |
594 | // tracing back a struct value not a pointer value. |
595 | assert(!isa<InsertValueInst>(I) && |
596 | "Base pointer for a struct is meaningless" ); |
597 | |
598 | // This value might have been generated by findBasePointer() called when |
599 | // substituting gc.get.pointer.base() intrinsic. |
600 | bool IsKnownBase = |
601 | isa<Instruction>(Val: I) && cast<Instruction>(Val: I)->getMetadata(Kind: "is_base_value" ); |
602 | setKnownBase(V: I, /* IsKnownBase */IsKnownBase, KnownBases); |
603 | Cache[I] = I; |
604 | |
605 | // An extractelement produces a base result exactly when it's input does. |
606 | // We may need to insert a parallel instruction to extract the appropriate |
607 | // element out of the base vector corresponding to the input. Given this, |
608 | // it's analogous to the phi and select case even though it's not a merge. |
609 | if (isa<ExtractElementInst>(Val: I)) |
610 | // Note: There a lot of obvious peephole cases here. This are deliberately |
611 | // handled after the main base pointer inference algorithm to make writing |
612 | // test cases to exercise that code easier. |
613 | return I; |
614 | |
615 | // The last two cases here don't return a base pointer. Instead, they |
616 | // return a value which dynamically selects from among several base |
617 | // derived pointers (each with it's own base potentially). It's the job of |
618 | // the caller to resolve these. |
619 | assert((isa<SelectInst>(I) || isa<PHINode>(I)) && |
620 | "missing instruction case in findBaseDefiningValue" ); |
621 | return I; |
622 | } |
623 | |
624 | /// Returns the base defining value for this value. |
625 | static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache, |
626 | IsKnownBaseMapTy &KnownBases) { |
627 | if (!Cache.contains(Key: I)) { |
628 | auto *BDV = findBaseDefiningValue(I, Cache, KnownBases); |
629 | Cache[I] = BDV; |
630 | LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " |
631 | << Cache[I]->getName() << ", is known base = " |
632 | << KnownBases[I] << "\n" ); |
633 | } |
634 | assert(Cache[I] != nullptr); |
635 | assert(KnownBases.contains(Cache[I]) && |
636 | "Cached value must be present in known bases map" ); |
637 | return Cache[I]; |
638 | } |
639 | |
640 | /// Return a base pointer for this value if known. Otherwise, return it's |
641 | /// base defining value. |
642 | static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache, |
643 | IsKnownBaseMapTy &KnownBases) { |
644 | Value *Def = findBaseDefiningValueCached(I, Cache, KnownBases); |
645 | auto Found = Cache.find(Key: Def); |
646 | if (Found != Cache.end()) { |
647 | // Either a base-of relation, or a self reference. Caller must check. |
648 | return Found->second; |
649 | } |
650 | // Only a BDV available |
651 | return Def; |
652 | } |
653 | |
654 | #ifndef NDEBUG |
655 | /// This value is a base pointer that is not generated by RS4GC, i.e. it already |
656 | /// exists in the code. |
657 | static bool isOriginalBaseResult(Value *V) { |
658 | // no recursion possible |
659 | return !isa<PHINode>(V) && !isa<SelectInst>(V) && |
660 | !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && |
661 | !isa<ShuffleVectorInst>(V); |
662 | } |
663 | #endif |
664 | |
665 | static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases) { |
666 | auto It = KnownBases.find(Key: V); |
667 | assert(It != KnownBases.end() && "Value not present in the map" ); |
668 | return It->second; |
669 | } |
670 | |
671 | static void setKnownBase(Value *V, bool IsKnownBase, |
672 | IsKnownBaseMapTy &KnownBases) { |
673 | #ifndef NDEBUG |
674 | auto It = KnownBases.find(V); |
675 | if (It != KnownBases.end()) |
676 | assert(It->second == IsKnownBase && "Changing already present value" ); |
677 | #endif |
678 | KnownBases[V] = IsKnownBase; |
679 | } |
680 | |
681 | // Returns true if First and Second values are both scalar or both vector. |
682 | static bool areBothVectorOrScalar(Value *First, Value *Second) { |
683 | return isa<VectorType>(Val: First->getType()) == |
684 | isa<VectorType>(Val: Second->getType()); |
685 | } |
686 | |
687 | namespace { |
688 | |
689 | /// Models the state of a single base defining value in the findBasePointer |
690 | /// algorithm for determining where a new instruction is needed to propagate |
691 | /// the base of this BDV. |
692 | class BDVState { |
693 | public: |
694 | enum StatusTy { |
695 | // Starting state of lattice |
696 | Unknown, |
697 | // Some specific base value -- does *not* mean that instruction |
698 | // propagates the base of the object |
699 | // ex: gep %arg, 16 -> %arg is the base value |
700 | Base, |
701 | // Need to insert a node to represent a merge. |
702 | Conflict |
703 | }; |
704 | |
705 | BDVState() { |
706 | llvm_unreachable("missing state in map" ); |
707 | } |
708 | |
709 | explicit BDVState(Value *OriginalValue) |
710 | : OriginalValue(OriginalValue) {} |
711 | explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr) |
712 | : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) { |
713 | assert(Status != Base || BaseValue); |
714 | } |
715 | |
716 | StatusTy getStatus() const { return Status; } |
717 | Value *getOriginalValue() const { return OriginalValue; } |
718 | Value *getBaseValue() const { return BaseValue; } |
719 | |
720 | bool isBase() const { return getStatus() == Base; } |
721 | bool isUnknown() const { return getStatus() == Unknown; } |
722 | bool isConflict() const { return getStatus() == Conflict; } |
723 | |
724 | // Values of type BDVState form a lattice, and this function implements the |
725 | // meet |
726 | // operation. |
727 | void meet(const BDVState &Other) { |
728 | auto markConflict = [&]() { |
729 | Status = BDVState::Conflict; |
730 | BaseValue = nullptr; |
731 | }; |
732 | // Conflict is a final state. |
733 | if (isConflict()) |
734 | return; |
735 | // if we are not known - just take other state. |
736 | if (isUnknown()) { |
737 | Status = Other.getStatus(); |
738 | BaseValue = Other.getBaseValue(); |
739 | return; |
740 | } |
741 | // We are base. |
742 | assert(isBase() && "Unknown state" ); |
743 | // If other is unknown - just keep our state. |
744 | if (Other.isUnknown()) |
745 | return; |
746 | // If other is conflict - it is a final state. |
747 | if (Other.isConflict()) |
748 | return markConflict(); |
749 | // Other is base as well. |
750 | assert(Other.isBase() && "Unknown state" ); |
751 | // If bases are different - Conflict. |
752 | if (getBaseValue() != Other.getBaseValue()) |
753 | return markConflict(); |
754 | // We are identical, do nothing. |
755 | } |
756 | |
757 | bool operator==(const BDVState &Other) const { |
758 | return OriginalValue == Other.OriginalValue && BaseValue == Other.BaseValue && |
759 | Status == Other.Status; |
760 | } |
761 | |
762 | bool operator!=(const BDVState &other) const { return !(*this == other); } |
763 | |
764 | LLVM_DUMP_METHOD |
765 | void dump() const { |
766 | print(OS&: dbgs()); |
767 | dbgs() << '\n'; |
768 | } |
769 | |
770 | void print(raw_ostream &OS) const { |
771 | switch (getStatus()) { |
772 | case Unknown: |
773 | OS << "U" ; |
774 | break; |
775 | case Base: |
776 | OS << "B" ; |
777 | break; |
778 | case Conflict: |
779 | OS << "C" ; |
780 | break; |
781 | } |
782 | OS << " (base " << getBaseValue() << " - " |
783 | << (getBaseValue() ? getBaseValue()->getName() : "nullptr" ) << ")" |
784 | << " for " << OriginalValue->getName() << ":" ; |
785 | } |
786 | |
787 | private: |
788 | AssertingVH<Value> OriginalValue; // instruction this state corresponds to |
789 | StatusTy Status = Unknown; |
790 | AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base. |
791 | }; |
792 | |
793 | } // end anonymous namespace |
794 | |
795 | #ifndef NDEBUG |
796 | static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { |
797 | State.print(OS); |
798 | return OS; |
799 | } |
800 | #endif |
801 | |
802 | /// For a given value or instruction, figure out what base ptr its derived from. |
803 | /// For gc objects, this is simply itself. On success, returns a value which is |
804 | /// the base pointer. (This is reliable and can be used for relocation.) On |
805 | /// failure, returns nullptr. |
806 | static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache, |
807 | IsKnownBaseMapTy &KnownBases) { |
808 | Value *Def = findBaseOrBDV(I, Cache, KnownBases); |
809 | |
810 | if (isKnownBase(V: Def, KnownBases) && areBothVectorOrScalar(First: Def, Second: I)) |
811 | return Def; |
812 | |
813 | // Here's the rough algorithm: |
814 | // - For every SSA value, construct a mapping to either an actual base |
815 | // pointer or a PHI which obscures the base pointer. |
816 | // - Construct a mapping from PHI to unknown TOP state. Use an |
817 | // optimistic algorithm to propagate base pointer information. Lattice |
818 | // looks like: |
819 | // UNKNOWN |
820 | // b1 b2 b3 b4 |
821 | // CONFLICT |
822 | // When algorithm terminates, all PHIs will either have a single concrete |
823 | // base or be in a conflict state. |
824 | // - For every conflict, insert a dummy PHI node without arguments. Add |
825 | // these to the base[Instruction] = BasePtr mapping. For every |
826 | // non-conflict, add the actual base. |
827 | // - For every conflict, add arguments for the base[a] of each input |
828 | // arguments. |
829 | // |
830 | // Note: A simpler form of this would be to add the conflict form of all |
831 | // PHIs without running the optimistic algorithm. This would be |
832 | // analogous to pessimistic data flow and would likely lead to an |
833 | // overall worse solution. |
834 | |
835 | #ifndef NDEBUG |
836 | auto isExpectedBDVType = [](Value *BDV) { |
837 | return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || |
838 | isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || |
839 | isa<ShuffleVectorInst>(BDV); |
840 | }; |
841 | #endif |
842 | |
843 | // Once populated, will contain a mapping from each potentially non-base BDV |
844 | // to a lattice value (described above) which corresponds to that BDV. |
845 | // We use the order of insertion (DFS over the def/use graph) to provide a |
846 | // stable deterministic ordering for visiting DenseMaps (which are unordered) |
847 | // below. This is important for deterministic compilation. |
848 | MapVector<Value *, BDVState> States; |
849 | |
850 | #ifndef NDEBUG |
851 | auto VerifyStates = [&]() { |
852 | for (auto &Entry : States) { |
853 | assert(Entry.first == Entry.second.getOriginalValue()); |
854 | } |
855 | }; |
856 | #endif |
857 | |
858 | auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) { |
859 | if (PHINode *PN = dyn_cast<PHINode>(Val: BDV)) { |
860 | for (Value *InVal : PN->incoming_values()) |
861 | F(InVal); |
862 | } else if (SelectInst *SI = dyn_cast<SelectInst>(Val: BDV)) { |
863 | F(SI->getTrueValue()); |
864 | F(SI->getFalseValue()); |
865 | } else if (auto *EE = dyn_cast<ExtractElementInst>(Val: BDV)) { |
866 | F(EE->getVectorOperand()); |
867 | } else if (auto *IE = dyn_cast<InsertElementInst>(Val: BDV)) { |
868 | F(IE->getOperand(i_nocapture: 0)); |
869 | F(IE->getOperand(i_nocapture: 1)); |
870 | } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Val: BDV)) { |
871 | // For a canonical broadcast, ignore the undef argument |
872 | // (without this, we insert a parallel base shuffle for every broadcast) |
873 | F(SV->getOperand(i_nocapture: 0)); |
874 | if (!SV->isZeroEltSplat()) |
875 | F(SV->getOperand(i_nocapture: 1)); |
876 | } else { |
877 | llvm_unreachable("unexpected BDV type" ); |
878 | } |
879 | }; |
880 | |
881 | |
882 | // Recursively fill in all base defining values reachable from the initial |
883 | // one for which we don't already know a definite base value for |
884 | /* scope */ { |
885 | SmallVector<Value*, 16> Worklist; |
886 | Worklist.push_back(Elt: Def); |
887 | States.insert(KV: {Def, BDVState(Def)}); |
888 | while (!Worklist.empty()) { |
889 | Value *Current = Worklist.pop_back_val(); |
890 | assert(!isOriginalBaseResult(Current) && "why did it get added?" ); |
891 | |
892 | auto visitIncomingValue = [&](Value *InVal) { |
893 | Value *Base = findBaseOrBDV(I: InVal, Cache, KnownBases); |
894 | if (isKnownBase(V: Base, KnownBases) && areBothVectorOrScalar(First: Base, Second: InVal)) |
895 | // Known bases won't need new instructions introduced and can be |
896 | // ignored safely. However, this can only be done when InVal and Base |
897 | // are both scalar or both vector. Otherwise, we need to find a |
898 | // correct BDV for InVal, by creating an entry in the lattice |
899 | // (States). |
900 | return; |
901 | assert(isExpectedBDVType(Base) && "the only non-base values " |
902 | "we see should be base defining values" ); |
903 | if (States.insert(KV: std::make_pair(x&: Base, y: BDVState(Base))).second) |
904 | Worklist.push_back(Elt: Base); |
905 | }; |
906 | |
907 | visitBDVOperands(Current, visitIncomingValue); |
908 | } |
909 | } |
910 | |
911 | #ifndef NDEBUG |
912 | VerifyStates(); |
913 | LLVM_DEBUG(dbgs() << "States after initialization:\n" ); |
914 | for (const auto &Pair : States) { |
915 | LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n" ); |
916 | } |
917 | #endif |
918 | |
919 | // Iterate forward through the value graph pruning any node from the state |
920 | // list where all of the inputs are base pointers. The purpose of this is to |
921 | // reuse existing values when the derived pointer we were asked to materialize |
922 | // a base pointer for happens to be a base pointer itself. (Or a sub-graph |
923 | // feeding it does.) |
924 | SmallVector<Value *> ToRemove; |
925 | do { |
926 | ToRemove.clear(); |
927 | for (auto Pair : States) { |
928 | Value *BDV = Pair.first; |
929 | auto canPruneInput = [&](Value *V) { |
930 | // If the input of the BDV is the BDV itself we can prune it. This is |
931 | // only possible if the BDV is a PHI node. |
932 | if (V->stripPointerCasts() == BDV) |
933 | return true; |
934 | Value *VBDV = findBaseOrBDV(I: V, Cache, KnownBases); |
935 | if (V->stripPointerCasts() != VBDV) |
936 | return false; |
937 | // The assumption is that anything not in the state list is |
938 | // propagates a base pointer. |
939 | return States.count(Key: VBDV) == 0; |
940 | }; |
941 | |
942 | bool CanPrune = true; |
943 | visitBDVOperands(BDV, [&](Value *Op) { |
944 | CanPrune = CanPrune && canPruneInput(Op); |
945 | }); |
946 | if (CanPrune) |
947 | ToRemove.push_back(Elt: BDV); |
948 | } |
949 | for (Value *V : ToRemove) { |
950 | States.erase(Key: V); |
951 | // Cache the fact V is it's own base for later usage. |
952 | Cache[V] = V; |
953 | } |
954 | } while (!ToRemove.empty()); |
955 | |
956 | // Did we manage to prove that Def itself must be a base pointer? |
957 | if (!States.count(Key: Def)) |
958 | return Def; |
959 | |
960 | // Return a phi state for a base defining value. We'll generate a new |
961 | // base state for known bases and expect to find a cached state otherwise. |
962 | auto GetStateForBDV = [&](Value *BaseValue, Value *Input) { |
963 | auto I = States.find(Key: BaseValue); |
964 | if (I != States.end()) |
965 | return I->second; |
966 | assert(areBothVectorOrScalar(BaseValue, Input)); |
967 | return BDVState(BaseValue, BDVState::Base, BaseValue); |
968 | }; |
969 | |
970 | // Even though we have identified a concrete base (or a conflict) for all live |
971 | // pointers at this point, there are cases where the base is of an |
972 | // incompatible type compared to the original instruction. We conservatively |
973 | // mark those as conflicts to ensure that corresponding BDVs will be generated |
974 | // in the next steps. |
975 | |
976 | // this is a rather explicit check for all cases where we should mark the |
977 | // state as a conflict to force the latter stages of the algorithm to emit |
978 | // the BDVs. |
979 | // TODO: in many cases the instructions emited for the conflicting states |
980 | // will be identical to the I itself (if the I's operate on their BDVs |
981 | // themselves). We should exploit this, but can't do it here since it would |
982 | // break the invariant about the BDVs not being known to be a base. |
983 | // TODO: the code also does not handle constants at all - the algorithm relies |
984 | // on all constants having the same BDV and therefore constant-only insns |
985 | // will never be in conflict, but this check is ignored here. If the |
986 | // constant conflicts will be to BDVs themselves, they will be identical |
987 | // instructions and will get optimized away (as in the above TODO) |
988 | auto MarkConflict = [&](Instruction *I, Value *BaseValue) { |
989 | // II and EE mixes vector & scalar so is always a conflict |
990 | if (isa<InsertElementInst>(Val: I) || isa<ExtractElementInst>(Val: I)) |
991 | return true; |
992 | // Shuffle vector is always a conflict as it creates new vector from |
993 | // existing ones. |
994 | if (isa<ShuffleVectorInst>(Val: I)) |
995 | return true; |
996 | // Any instructions where the computed base type differs from the |
997 | // instruction type. An example is where an extract instruction is used by a |
998 | // select. Here the select's BDV is a vector (because of extract's BDV), |
999 | // while the select itself is a scalar type. Note that the IE and EE |
1000 | // instruction check is not fully subsumed by the vector<->scalar check at |
1001 | // the end, this is due to the BDV algorithm being ignorant of BDV types at |
1002 | // this junction. |
1003 | if (!areBothVectorOrScalar(First: BaseValue, Second: I)) |
1004 | return true; |
1005 | return false; |
1006 | }; |
1007 | |
1008 | bool Progress = true; |
1009 | while (Progress) { |
1010 | #ifndef NDEBUG |
1011 | const size_t OldSize = States.size(); |
1012 | #endif |
1013 | Progress = false; |
1014 | // We're only changing values in this loop, thus safe to keep iterators. |
1015 | // Since this is computing a fixed point, the order of visit does not |
1016 | // effect the result. TODO: We could use a worklist here and make this run |
1017 | // much faster. |
1018 | for (auto Pair : States) { |
1019 | Value *BDV = Pair.first; |
1020 | // Only values that do not have known bases or those that have differing |
1021 | // type (scalar versus vector) from a possible known base should be in the |
1022 | // lattice. |
1023 | assert((!isKnownBase(BDV, KnownBases) || |
1024 | !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) && |
1025 | "why did it get added?" ); |
1026 | |
1027 | BDVState NewState(BDV); |
1028 | visitBDVOperands(BDV, [&](Value *Op) { |
1029 | Value *BDV = findBaseOrBDV(I: Op, Cache, KnownBases); |
1030 | auto OpState = GetStateForBDV(BDV, Op); |
1031 | NewState.meet(Other: OpState); |
1032 | }); |
1033 | |
1034 | // if the instruction has known base, but should in fact be marked as |
1035 | // conflict because of incompatible in/out types, we mark it as such |
1036 | // ensuring that it will propagate through the fixpoint iteration |
1037 | auto I = cast<Instruction>(Val: BDV); |
1038 | auto BV = NewState.getBaseValue(); |
1039 | if (BV && MarkConflict(I, BV)) |
1040 | NewState = BDVState(I, BDVState::Conflict); |
1041 | |
1042 | BDVState OldState = Pair.second; |
1043 | if (OldState != NewState) { |
1044 | Progress = true; |
1045 | States[BDV] = NewState; |
1046 | } |
1047 | } |
1048 | |
1049 | assert(OldSize == States.size() && |
1050 | "fixed point shouldn't be adding any new nodes to state" ); |
1051 | } |
1052 | |
1053 | #ifndef NDEBUG |
1054 | VerifyStates(); |
1055 | LLVM_DEBUG(dbgs() << "States after meet iteration:\n" ); |
1056 | for (const auto &Pair : States) { |
1057 | LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n" ); |
1058 | } |
1059 | |
1060 | // since we do the conflict marking as part of the fixpoint iteration this |
1061 | // loop only asserts that invariants are met |
1062 | for (auto Pair : States) { |
1063 | Instruction *I = cast<Instruction>(Pair.first); |
1064 | BDVState State = Pair.second; |
1065 | auto *BaseValue = State.getBaseValue(); |
1066 | // Only values that do not have known bases or those that have differing |
1067 | // type (scalar versus vector) from a possible known base should be in the |
1068 | // lattice. |
1069 | assert( |
1070 | (!isKnownBase(I, KnownBases) || !areBothVectorOrScalar(I, BaseValue)) && |
1071 | "why did it get added?" ); |
1072 | assert(!State.isUnknown() && "Optimistic algorithm didn't complete!" ); |
1073 | } |
1074 | #endif |
1075 | |
1076 | // Insert Phis for all conflicts |
1077 | // TODO: adjust naming patterns to avoid this order of iteration dependency |
1078 | for (auto Pair : States) { |
1079 | Instruction *I = cast<Instruction>(Val: Pair.first); |
1080 | BDVState State = Pair.second; |
1081 | // Only values that do not have known bases or those that have differing |
1082 | // type (scalar versus vector) from a possible known base should be in the |
1083 | // lattice. |
1084 | assert((!isKnownBase(I, KnownBases) || |
1085 | !areBothVectorOrScalar(I, State.getBaseValue())) && |
1086 | "why did it get added?" ); |
1087 | assert(!State.isUnknown() && "Optimistic algorithm didn't complete!" ); |
1088 | |
1089 | // Since we're joining a vector and scalar base, they can never be the |
1090 | // same. As a result, we should always see insert element having reached |
1091 | // the conflict state. |
1092 | assert(!isa<InsertElementInst>(I) || State.isConflict()); |
1093 | |
1094 | if (!State.isConflict()) |
1095 | continue; |
1096 | |
1097 | auto getMangledName = [](Instruction *I) -> std::string { |
1098 | if (isa<PHINode>(Val: I)) { |
1099 | return suffixed_name_or(V: I, Suffix: ".base" , DefaultName: "base_phi" ); |
1100 | } else if (isa<SelectInst>(Val: I)) { |
1101 | return suffixed_name_or(V: I, Suffix: ".base" , DefaultName: "base_select" ); |
1102 | } else if (isa<ExtractElementInst>(Val: I)) { |
1103 | return suffixed_name_or(V: I, Suffix: ".base" , DefaultName: "base_ee" ); |
1104 | } else if (isa<InsertElementInst>(Val: I)) { |
1105 | return suffixed_name_or(V: I, Suffix: ".base" , DefaultName: "base_ie" ); |
1106 | } else { |
1107 | return suffixed_name_or(V: I, Suffix: ".base" , DefaultName: "base_sv" ); |
1108 | } |
1109 | }; |
1110 | |
1111 | Instruction *BaseInst = I->clone(); |
1112 | BaseInst->insertBefore(InsertPos: I); |
1113 | BaseInst->setName(getMangledName(I)); |
1114 | // Add metadata marking this as a base value |
1115 | BaseInst->setMetadata(Kind: "is_base_value" , Node: MDNode::get(Context&: I->getContext(), MDs: {})); |
1116 | States[I] = BDVState(I, BDVState::Conflict, BaseInst); |
1117 | setKnownBase(V: BaseInst, /* IsKnownBase */true, KnownBases); |
1118 | } |
1119 | |
1120 | #ifndef NDEBUG |
1121 | VerifyStates(); |
1122 | #endif |
1123 | |
1124 | // Returns a instruction which produces the base pointer for a given |
1125 | // instruction. The instruction is assumed to be an input to one of the BDVs |
1126 | // seen in the inference algorithm above. As such, we must either already |
1127 | // know it's base defining value is a base, or have inserted a new |
1128 | // instruction to propagate the base of it's BDV and have entered that newly |
1129 | // introduced instruction into the state table. In either case, we are |
1130 | // assured to be able to determine an instruction which produces it's base |
1131 | // pointer. |
1132 | auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { |
1133 | Value *BDV = findBaseOrBDV(I: Input, Cache, KnownBases); |
1134 | Value *Base = nullptr; |
1135 | if (!States.count(Key: BDV)) { |
1136 | assert(areBothVectorOrScalar(BDV, Input)); |
1137 | Base = BDV; |
1138 | } else { |
1139 | // Either conflict or base. |
1140 | assert(States.count(BDV)); |
1141 | Base = States[BDV].getBaseValue(); |
1142 | } |
1143 | assert(Base && "Can't be null" ); |
1144 | // The cast is needed since base traversal may strip away bitcasts |
1145 | if (Base->getType() != Input->getType() && InsertPt) |
1146 | Base = new BitCastInst(Base, Input->getType(), "cast" , |
1147 | InsertPt->getIterator()); |
1148 | return Base; |
1149 | }; |
1150 | |
1151 | // Fixup all the inputs of the new PHIs. Visit order needs to be |
1152 | // deterministic and predictable because we're naming newly created |
1153 | // instructions. |
1154 | for (auto Pair : States) { |
1155 | Instruction *BDV = cast<Instruction>(Val: Pair.first); |
1156 | BDVState State = Pair.second; |
1157 | |
1158 | // Only values that do not have known bases or those that have differing |
1159 | // type (scalar versus vector) from a possible known base should be in the |
1160 | // lattice. |
1161 | assert((!isKnownBase(BDV, KnownBases) || |
1162 | !areBothVectorOrScalar(BDV, State.getBaseValue())) && |
1163 | "why did it get added?" ); |
1164 | assert(!State.isUnknown() && "Optimistic algorithm didn't complete!" ); |
1165 | if (!State.isConflict()) |
1166 | continue; |
1167 | |
1168 | if (PHINode *BasePHI = dyn_cast<PHINode>(Val: State.getBaseValue())) { |
1169 | PHINode *PN = cast<PHINode>(Val: BDV); |
1170 | const unsigned NumPHIValues = PN->getNumIncomingValues(); |
1171 | |
1172 | // The IR verifier requires phi nodes with multiple entries from the |
1173 | // same basic block to have the same incoming value for each of those |
1174 | // entries. Since we're inserting bitcasts in the loop, make sure we |
1175 | // do so at least once per incoming block. |
1176 | DenseMap<BasicBlock *, Value*> BlockToValue; |
1177 | for (unsigned i = 0; i < NumPHIValues; i++) { |
1178 | Value *InVal = PN->getIncomingValue(i); |
1179 | BasicBlock *InBB = PN->getIncomingBlock(i); |
1180 | if (!BlockToValue.count(Val: InBB)) |
1181 | BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator()); |
1182 | else { |
1183 | #ifndef NDEBUG |
1184 | Value *OldBase = BlockToValue[InBB]; |
1185 | Value *Base = getBaseForInput(InVal, nullptr); |
1186 | |
1187 | // We can't use `stripPointerCasts` instead of this function because |
1188 | // `stripPointerCasts` doesn't handle vectors of pointers. |
1189 | auto StripBitCasts = [](Value *V) -> Value * { |
1190 | while (auto *BC = dyn_cast<BitCastInst>(V)) |
1191 | V = BC->getOperand(0); |
1192 | return V; |
1193 | }; |
1194 | // In essence this assert states: the only way two values |
1195 | // incoming from the same basic block may be different is by |
1196 | // being different bitcasts of the same value. A cleanup |
1197 | // that remains TODO is changing findBaseOrBDV to return an |
1198 | // llvm::Value of the correct type (and still remain pure). |
1199 | // This will remove the need to add bitcasts. |
1200 | assert(StripBitCasts(Base) == StripBitCasts(OldBase) && |
1201 | "findBaseOrBDV should be pure!" ); |
1202 | #endif |
1203 | } |
1204 | Value *Base = BlockToValue[InBB]; |
1205 | BasePHI->setIncomingValue(i, V: Base); |
1206 | } |
1207 | } else if (SelectInst *BaseSI = |
1208 | dyn_cast<SelectInst>(Val: State.getBaseValue())) { |
1209 | SelectInst *SI = cast<SelectInst>(Val: BDV); |
1210 | |
1211 | // Find the instruction which produces the base for each input. |
1212 | // We may need to insert a bitcast. |
1213 | BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); |
1214 | BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); |
1215 | } else if (auto *BaseEE = |
1216 | dyn_cast<ExtractElementInst>(Val: State.getBaseValue())) { |
1217 | Value *InVal = cast<ExtractElementInst>(Val: BDV)->getVectorOperand(); |
1218 | // Find the instruction which produces the base for each input. We may |
1219 | // need to insert a bitcast. |
1220 | BaseEE->setOperand(i_nocapture: 0, Val_nocapture: getBaseForInput(InVal, BaseEE)); |
1221 | } else if (auto *BaseIE = dyn_cast<InsertElementInst>(Val: State.getBaseValue())){ |
1222 | auto *BdvIE = cast<InsertElementInst>(Val: BDV); |
1223 | auto UpdateOperand = [&](int OperandIdx) { |
1224 | Value *InVal = BdvIE->getOperand(i_nocapture: OperandIdx); |
1225 | Value *Base = getBaseForInput(InVal, BaseIE); |
1226 | BaseIE->setOperand(i_nocapture: OperandIdx, Val_nocapture: Base); |
1227 | }; |
1228 | UpdateOperand(0); // vector operand |
1229 | UpdateOperand(1); // scalar operand |
1230 | } else { |
1231 | auto *BaseSV = cast<ShuffleVectorInst>(Val: State.getBaseValue()); |
1232 | auto *BdvSV = cast<ShuffleVectorInst>(Val: BDV); |
1233 | auto UpdateOperand = [&](int OperandIdx) { |
1234 | Value *InVal = BdvSV->getOperand(i_nocapture: OperandIdx); |
1235 | Value *Base = getBaseForInput(InVal, BaseSV); |
1236 | BaseSV->setOperand(i_nocapture: OperandIdx, Val_nocapture: Base); |
1237 | }; |
1238 | UpdateOperand(0); // vector operand |
1239 | if (!BdvSV->isZeroEltSplat()) |
1240 | UpdateOperand(1); // vector operand |
1241 | else { |
1242 | // Never read, so just use poison |
1243 | Value *InVal = BdvSV->getOperand(i_nocapture: 1); |
1244 | BaseSV->setOperand(i_nocapture: 1, Val_nocapture: PoisonValue::get(T: InVal->getType())); |
1245 | } |
1246 | } |
1247 | } |
1248 | |
1249 | #ifndef NDEBUG |
1250 | VerifyStates(); |
1251 | #endif |
1252 | |
1253 | // get the data layout to compare the sizes of base/derived pointer values |
1254 | [[maybe_unused]] auto &DL = |
1255 | cast<llvm::Instruction>(Val: Def)->getDataLayout(); |
1256 | // Cache all of our results so we can cheaply reuse them |
1257 | // NOTE: This is actually two caches: one of the base defining value |
1258 | // relation and one of the base pointer relation! FIXME |
1259 | for (auto Pair : States) { |
1260 | auto *BDV = Pair.first; |
1261 | Value *Base = Pair.second.getBaseValue(); |
1262 | assert(BDV && Base); |
1263 | // Whenever we have a derived ptr(s), their base |
1264 | // ptr(s) must be of the same size, not necessarily the same type |
1265 | assert(DL.getTypeAllocSize(BDV->getType()) == |
1266 | DL.getTypeAllocSize(Base->getType()) && |
1267 | "Derived and base values should have same size" ); |
1268 | // Only values that do not have known bases or those that have differing |
1269 | // type (scalar versus vector) from a possible known base should be in the |
1270 | // lattice. |
1271 | assert( |
1272 | (!isKnownBase(BDV, KnownBases) || !areBothVectorOrScalar(BDV, Base)) && |
1273 | "why did it get added?" ); |
1274 | |
1275 | LLVM_DEBUG( |
1276 | dbgs() << "Updating base value cache" |
1277 | << " for: " << BDV->getName() << " from: " |
1278 | << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none" ) |
1279 | << " to: " << Base->getName() << "\n" ); |
1280 | |
1281 | Cache[BDV] = Base; |
1282 | } |
1283 | assert(Cache.count(Def)); |
1284 | return Cache[Def]; |
1285 | } |
1286 | |
1287 | // For a set of live pointers (base and/or derived), identify the base |
1288 | // pointer of the object which they are derived from. This routine will |
1289 | // mutate the IR graph as needed to make the 'base' pointer live at the |
1290 | // definition site of 'derived'. This ensures that any use of 'derived' can |
1291 | // also use 'base'. This may involve the insertion of a number of |
1292 | // additional PHI nodes. |
1293 | // |
1294 | // preconditions: live is a set of pointer type Values |
1295 | // |
1296 | // side effects: may insert PHI nodes into the existing CFG, will preserve |
1297 | // CFG, will not remove or mutate any existing nodes |
1298 | // |
1299 | // post condition: PointerToBase contains one (derived, base) pair for every |
1300 | // pointer in live. Note that derived can be equal to base if the original |
1301 | // pointer was a base pointer. |
1302 | static void findBasePointers(const StatepointLiveSetTy &live, |
1303 | PointerToBaseTy &PointerToBase, DominatorTree *DT, |
1304 | DefiningValueMapTy &DVCache, |
1305 | IsKnownBaseMapTy &KnownBases) { |
1306 | for (Value *ptr : live) { |
1307 | Value *base = findBasePointer(I: ptr, Cache&: DVCache, KnownBases); |
1308 | assert(base && "failed to find base pointer" ); |
1309 | PointerToBase[ptr] = base; |
1310 | assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || |
1311 | DT->dominates(cast<Instruction>(base)->getParent(), |
1312 | cast<Instruction>(ptr)->getParent())) && |
1313 | "The base we found better dominate the derived pointer" ); |
1314 | } |
1315 | } |
1316 | |
1317 | /// Find the required based pointers (and adjust the live set) for the given |
1318 | /// parse point. |
1319 | static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, |
1320 | CallBase *Call, |
1321 | PartiallyConstructedSafepointRecord &result, |
1322 | PointerToBaseTy &PointerToBase, |
1323 | IsKnownBaseMapTy &KnownBases) { |
1324 | StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet; |
1325 | // We assume that all pointers passed to deopt are base pointers; as an |
1326 | // optimization, we can use this to avoid separately materializing the base |
1327 | // pointer graph. This is only relevant since we're very conservative about |
1328 | // generating new conflict nodes during base pointer insertion. If we were |
1329 | // smarter there, this would be irrelevant. |
1330 | if (auto Opt = Call->getOperandBundle(ID: LLVMContext::OB_deopt)) |
1331 | for (Value *V : Opt->Inputs) { |
1332 | if (!PotentiallyDerivedPointers.count(key: V)) |
1333 | continue; |
1334 | PotentiallyDerivedPointers.remove(X: V); |
1335 | PointerToBase[V] = V; |
1336 | } |
1337 | findBasePointers(live: PotentiallyDerivedPointers, PointerToBase, DT: &DT, DVCache, |
1338 | KnownBases); |
1339 | } |
1340 | |
1341 | /// Given an updated version of the dataflow liveness results, update the |
1342 | /// liveset and base pointer maps for the call site CS. |
1343 | static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, |
1344 | CallBase *Call, |
1345 | PartiallyConstructedSafepointRecord &result, |
1346 | PointerToBaseTy &PointerToBase, |
1347 | GCStrategy *GC); |
1348 | |
1349 | static void recomputeLiveInValues( |
1350 | Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, |
1351 | MutableArrayRef<struct PartiallyConstructedSafepointRecord> records, |
1352 | PointerToBaseTy &PointerToBase, GCStrategy *GC) { |
1353 | // TODO-PERF: reuse the original liveness, then simply run the dataflow |
1354 | // again. The old values are still live and will help it stabilize quickly. |
1355 | GCPtrLivenessData RevisedLivenessData; |
1356 | computeLiveInValues(DT, F, Data&: RevisedLivenessData, GC); |
1357 | for (size_t i = 0; i < records.size(); i++) { |
1358 | struct PartiallyConstructedSafepointRecord &info = records[i]; |
1359 | recomputeLiveInValues(RevisedLivenessData, Call: toUpdate[i], result&: info, PointerToBase, |
1360 | GC); |
1361 | } |
1362 | } |
1363 | |
1364 | // Utility function which clones all instructions from "ChainToBase" |
1365 | // and inserts them before "InsertBefore". Returns rematerialized value |
1366 | // which should be used after statepoint. |
1367 | static Instruction *rematerializeChain(ArrayRef<Instruction *> ChainToBase, |
1368 | Instruction *InsertBefore, |
1369 | Value *RootOfChain, |
1370 | Value *AlternateLiveBase) { |
1371 | Instruction *LastClonedValue = nullptr; |
1372 | Instruction *LastValue = nullptr; |
1373 | // Walk backwards to visit top-most instructions first. |
1374 | for (Instruction *Instr : |
1375 | make_range(x: ChainToBase.rbegin(), y: ChainToBase.rend())) { |
1376 | // Only GEP's and casts are supported as we need to be careful to not |
1377 | // introduce any new uses of pointers not in the liveset. |
1378 | // Note that it's fine to introduce new uses of pointers which were |
1379 | // otherwise not used after this statepoint. |
1380 | assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); |
1381 | |
1382 | Instruction *ClonedValue = Instr->clone(); |
1383 | ClonedValue->insertBefore(InsertPos: InsertBefore); |
1384 | ClonedValue->setName(Instr->getName() + ".remat" ); |
1385 | |
1386 | // If it is not first instruction in the chain then it uses previously |
1387 | // cloned value. We should update it to use cloned value. |
1388 | if (LastClonedValue) { |
1389 | assert(LastValue); |
1390 | ClonedValue->replaceUsesOfWith(From: LastValue, To: LastClonedValue); |
1391 | #ifndef NDEBUG |
1392 | for (auto *OpValue : ClonedValue->operand_values()) { |
1393 | // Assert that cloned instruction does not use any instructions from |
1394 | // this chain other than LastClonedValue |
1395 | assert(!is_contained(ChainToBase, OpValue) && |
1396 | "incorrect use in rematerialization chain" ); |
1397 | // Assert that the cloned instruction does not use the RootOfChain |
1398 | // or the AlternateLiveBase. |
1399 | assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); |
1400 | } |
1401 | #endif |
1402 | } else { |
1403 | // For the first instruction, replace the use of unrelocated base i.e. |
1404 | // RootOfChain/OrigRootPhi, with the corresponding PHI present in the |
1405 | // live set. They have been proved to be the same PHI nodes. Note |
1406 | // that the *only* use of the RootOfChain in the ChainToBase list is |
1407 | // the first Value in the list. |
1408 | if (RootOfChain != AlternateLiveBase) |
1409 | ClonedValue->replaceUsesOfWith(From: RootOfChain, To: AlternateLiveBase); |
1410 | } |
1411 | |
1412 | LastClonedValue = ClonedValue; |
1413 | LastValue = Instr; |
1414 | } |
1415 | assert(LastClonedValue); |
1416 | return LastClonedValue; |
1417 | } |
1418 | |
1419 | // When inserting gc.relocate and gc.result calls, we need to ensure there are |
1420 | // no uses of the original value / return value between the gc.statepoint and |
1421 | // the gc.relocate / gc.result call. One case which can arise is a phi node |
1422 | // starting one of the successor blocks. We also need to be able to insert the |
1423 | // gc.relocates only on the path which goes through the statepoint. We might |
1424 | // need to split an edge to make this possible. |
1425 | static BasicBlock * |
1426 | normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, |
1427 | DominatorTree &DT) { |
1428 | BasicBlock *Ret = BB; |
1429 | if (!BB->getUniquePredecessor()) |
1430 | Ret = SplitBlockPredecessors(BB, Preds: InvokeParent, Suffix: "" , DT: &DT); |
1431 | |
1432 | // Now that 'Ret' has unique predecessor we can safely remove all phi nodes |
1433 | // from it |
1434 | FoldSingleEntryPHINodes(BB: Ret); |
1435 | assert(!isa<PHINode>(Ret->begin()) && |
1436 | "All PHI nodes should have been removed!" ); |
1437 | |
1438 | // At this point, we can safely insert a gc.relocate or gc.result as the first |
1439 | // instruction in Ret if needed. |
1440 | return Ret; |
1441 | } |
1442 | |
1443 | // List of all function attributes which must be stripped when lowering from |
1444 | // abstract machine model to physical machine model. Essentially, these are |
1445 | // all the effects a safepoint might have which we ignored in the abstract |
1446 | // machine model for purposes of optimization. We have to strip these on |
1447 | // both function declarations and call sites. |
1448 | static constexpr Attribute::AttrKind FnAttrsToStrip[] = |
1449 | {Attribute::Memory, Attribute::NoSync, Attribute::NoFree}; |
1450 | |
1451 | // Create new attribute set containing only attributes which can be transferred |
1452 | // from the original call to the safepoint. |
1453 | static AttributeList legalizeCallAttributes(CallBase *Call, bool IsMemIntrinsic, |
1454 | AttributeList StatepointAL) { |
1455 | AttributeList OrigAL = Call->getAttributes(); |
1456 | if (OrigAL.isEmpty()) |
1457 | return StatepointAL; |
1458 | |
1459 | // Remove the readonly, readnone, and statepoint function attributes. |
1460 | LLVMContext &Ctx = Call->getContext(); |
1461 | AttrBuilder FnAttrs(Ctx, OrigAL.getFnAttrs()); |
1462 | for (auto Attr : FnAttrsToStrip) |
1463 | FnAttrs.removeAttribute(Val: Attr); |
1464 | |
1465 | for (Attribute A : OrigAL.getFnAttrs()) { |
1466 | if (isStatepointDirectiveAttr(Attr: A)) |
1467 | FnAttrs.removeAttribute(A); |
1468 | } |
1469 | |
1470 | StatepointAL = StatepointAL.addFnAttributes(C&: Ctx, B: FnAttrs); |
1471 | |
1472 | // The memory intrinsics do not have a 1:1 correspondence of the original |
1473 | // call arguments to the produced statepoint. Do not transfer the argument |
1474 | // attributes to avoid putting them on incorrect arguments. |
1475 | if (IsMemIntrinsic) |
1476 | return StatepointAL; |
1477 | |
1478 | // Attach the argument attributes from the original call at the corresponding |
1479 | // arguments in the statepoint. Note that any argument attributes that are |
1480 | // invalid after lowering are stripped in stripNonValidDataFromBody. |
1481 | for (unsigned I : llvm::seq(Size: Call->arg_size())) |
1482 | StatepointAL = StatepointAL.addParamAttributes( |
1483 | C&: Ctx, ArgNo: GCStatepointInst::CallArgsBeginPos + I, |
1484 | B: AttrBuilder(Ctx, OrigAL.getParamAttrs(ArgNo: I))); |
1485 | |
1486 | // Return attributes are later attached to the gc.result intrinsic. |
1487 | return StatepointAL; |
1488 | } |
1489 | |
1490 | /// Helper function to place all gc relocates necessary for the given |
1491 | /// statepoint. |
1492 | /// Inputs: |
1493 | /// liveVariables - list of variables to be relocated. |
1494 | /// basePtrs - base pointers. |
1495 | /// statepointToken - statepoint instruction to which relocates should be |
1496 | /// bound. |
1497 | /// Builder - Llvm IR builder to be used to construct new calls. |
1498 | static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, |
1499 | ArrayRef<Value *> BasePtrs, |
1500 | Instruction *StatepointToken, |
1501 | IRBuilder<> &Builder, GCStrategy *GC) { |
1502 | if (LiveVariables.empty()) |
1503 | return; |
1504 | |
1505 | auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { |
1506 | auto ValIt = llvm::find(Range&: LiveVec, Val); |
1507 | assert(ValIt != LiveVec.end() && "Val not found in LiveVec!" ); |
1508 | size_t Index = std::distance(first: LiveVec.begin(), last: ValIt); |
1509 | assert(Index < LiveVec.size() && "Bug in std::find?" ); |
1510 | return Index; |
1511 | }; |
1512 | Module *M = StatepointToken->getModule(); |
1513 | |
1514 | // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose |
1515 | // element type is i8 addrspace(1)*). We originally generated unique |
1516 | // declarations for each pointer type, but this proved problematic because |
1517 | // the intrinsic mangling code is incomplete and fragile. Since we're moving |
1518 | // towards a single unified pointer type anyways, we can just cast everything |
1519 | // to an i8* of the right address space. A bitcast is added later to convert |
1520 | // gc_relocate to the actual value's type. |
1521 | auto getGCRelocateDecl = [&](Type *Ty) { |
1522 | assert(isHandledGCPointerType(Ty, GC)); |
1523 | auto AS = Ty->getScalarType()->getPointerAddressSpace(); |
1524 | Type *NewTy = PointerType::get(C&: M->getContext(), AddressSpace: AS); |
1525 | if (auto *VT = dyn_cast<VectorType>(Val: Ty)) |
1526 | NewTy = FixedVectorType::get(ElementType: NewTy, |
1527 | NumElts: cast<FixedVectorType>(Val: VT)->getNumElements()); |
1528 | return Intrinsic::getDeclaration(M, id: Intrinsic::experimental_gc_relocate, |
1529 | Tys: {NewTy}); |
1530 | }; |
1531 | |
1532 | // Lazily populated map from input types to the canonicalized form mentioned |
1533 | // in the comment above. This should probably be cached somewhere more |
1534 | // broadly. |
1535 | DenseMap<Type *, Function *> TypeToDeclMap; |
1536 | |
1537 | for (unsigned i = 0; i < LiveVariables.size(); i++) { |
1538 | // Generate the gc.relocate call and save the result |
1539 | Value *BaseIdx = Builder.getInt32(C: FindIndex(LiveVariables, BasePtrs[i])); |
1540 | Value *LiveIdx = Builder.getInt32(C: i); |
1541 | |
1542 | Type *Ty = LiveVariables[i]->getType(); |
1543 | if (!TypeToDeclMap.count(Val: Ty)) |
1544 | TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); |
1545 | Function *GCRelocateDecl = TypeToDeclMap[Ty]; |
1546 | |
1547 | // only specify a debug name if we can give a useful one |
1548 | CallInst *Reloc = Builder.CreateCall( |
1549 | Callee: GCRelocateDecl, Args: {StatepointToken, BaseIdx, LiveIdx}, |
1550 | Name: suffixed_name_or(V: LiveVariables[i], Suffix: ".relocated" , DefaultName: "" )); |
1551 | // Trick CodeGen into thinking there are lots of free registers at this |
1552 | // fake call. |
1553 | Reloc->setCallingConv(CallingConv::Cold); |
1554 | } |
1555 | } |
1556 | |
1557 | namespace { |
1558 | |
1559 | /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this |
1560 | /// avoids having to worry about keeping around dangling pointers to Values. |
1561 | class DeferredReplacement { |
1562 | AssertingVH<Instruction> Old; |
1563 | AssertingVH<Instruction> New; |
1564 | bool IsDeoptimize = false; |
1565 | |
1566 | DeferredReplacement() = default; |
1567 | |
1568 | public: |
1569 | static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { |
1570 | assert(Old != New && Old && New && |
1571 | "Cannot RAUW equal values or to / from null!" ); |
1572 | |
1573 | DeferredReplacement D; |
1574 | D.Old = Old; |
1575 | D.New = New; |
1576 | return D; |
1577 | } |
1578 | |
1579 | static DeferredReplacement createDelete(Instruction *ToErase) { |
1580 | DeferredReplacement D; |
1581 | D.Old = ToErase; |
1582 | return D; |
1583 | } |
1584 | |
1585 | static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { |
1586 | #ifndef NDEBUG |
1587 | auto *F = cast<CallInst>(Old)->getCalledFunction(); |
1588 | assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && |
1589 | "Only way to construct a deoptimize deferred replacement" ); |
1590 | #endif |
1591 | DeferredReplacement D; |
1592 | D.Old = Old; |
1593 | D.IsDeoptimize = true; |
1594 | return D; |
1595 | } |
1596 | |
1597 | /// Does the task represented by this instance. |
1598 | void doReplacement() { |
1599 | Instruction *OldI = Old; |
1600 | Instruction *NewI = New; |
1601 | |
1602 | assert(OldI != NewI && "Disallowed at construction?!" ); |
1603 | assert((!IsDeoptimize || !New) && |
1604 | "Deoptimize intrinsics are not replaced!" ); |
1605 | |
1606 | Old = nullptr; |
1607 | New = nullptr; |
1608 | |
1609 | if (NewI) |
1610 | OldI->replaceAllUsesWith(V: NewI); |
1611 | |
1612 | if (IsDeoptimize) { |
1613 | // Note: we've inserted instructions, so the call to llvm.deoptimize may |
1614 | // not necessarily be followed by the matching return. |
1615 | auto *RI = cast<ReturnInst>(Val: OldI->getParent()->getTerminator()); |
1616 | new UnreachableInst(RI->getContext(), RI->getIterator()); |
1617 | RI->eraseFromParent(); |
1618 | } |
1619 | |
1620 | OldI->eraseFromParent(); |
1621 | } |
1622 | }; |
1623 | |
1624 | } // end anonymous namespace |
1625 | |
1626 | static StringRef getDeoptLowering(CallBase *Call) { |
1627 | const char *DeoptLowering = "deopt-lowering" ; |
1628 | if (Call->hasFnAttr(Kind: DeoptLowering)) { |
1629 | // FIXME: Calls have a *really* confusing interface around attributes |
1630 | // with values. |
1631 | const AttributeList &CSAS = Call->getAttributes(); |
1632 | if (CSAS.hasFnAttr(Kind: DeoptLowering)) |
1633 | return CSAS.getFnAttr(Kind: DeoptLowering).getValueAsString(); |
1634 | Function *F = Call->getCalledFunction(); |
1635 | assert(F && F->hasFnAttribute(DeoptLowering)); |
1636 | return F->getFnAttribute(Kind: DeoptLowering).getValueAsString(); |
1637 | } |
1638 | return "live-through" ; |
1639 | } |
1640 | |
1641 | static void |
1642 | makeStatepointExplicitImpl(CallBase *Call, /* to replace */ |
1643 | const SmallVectorImpl<Value *> &BasePtrs, |
1644 | const SmallVectorImpl<Value *> &LiveVariables, |
1645 | PartiallyConstructedSafepointRecord &Result, |
1646 | std::vector<DeferredReplacement> &Replacements, |
1647 | const PointerToBaseTy &PointerToBase, |
1648 | GCStrategy *GC) { |
1649 | assert(BasePtrs.size() == LiveVariables.size()); |
1650 | |
1651 | // Then go ahead and use the builder do actually do the inserts. We insert |
1652 | // immediately before the previous instruction under the assumption that all |
1653 | // arguments will be available here. We can't insert afterwards since we may |
1654 | // be replacing a terminator. |
1655 | IRBuilder<> Builder(Call); |
1656 | |
1657 | ArrayRef<Value *> GCArgs(LiveVariables); |
1658 | uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; |
1659 | uint32_t NumPatchBytes = 0; |
1660 | uint32_t Flags = uint32_t(StatepointFlags::None); |
1661 | |
1662 | SmallVector<Value *, 8> CallArgs(Call->args()); |
1663 | std::optional<ArrayRef<Use>> DeoptArgs; |
1664 | if (auto Bundle = Call->getOperandBundle(ID: LLVMContext::OB_deopt)) |
1665 | DeoptArgs = Bundle->Inputs; |
1666 | std::optional<ArrayRef<Use>> TransitionArgs; |
1667 | if (auto Bundle = Call->getOperandBundle(ID: LLVMContext::OB_gc_transition)) { |
1668 | TransitionArgs = Bundle->Inputs; |
1669 | // TODO: This flag no longer serves a purpose and can be removed later |
1670 | Flags |= uint32_t(StatepointFlags::GCTransition); |
1671 | } |
1672 | |
1673 | // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls |
1674 | // with a return value, we lower then as never returning calls to |
1675 | // __llvm_deoptimize that are followed by unreachable to get better codegen. |
1676 | bool IsDeoptimize = false; |
1677 | bool IsMemIntrinsic = false; |
1678 | |
1679 | StatepointDirectives SD = |
1680 | parseStatepointDirectivesFromAttrs(AS: Call->getAttributes()); |
1681 | if (SD.NumPatchBytes) |
1682 | NumPatchBytes = *SD.NumPatchBytes; |
1683 | if (SD.StatepointID) |
1684 | StatepointID = *SD.StatepointID; |
1685 | |
1686 | // Pass through the requested lowering if any. The default is live-through. |
1687 | StringRef DeoptLowering = getDeoptLowering(Call); |
1688 | if (DeoptLowering == "live-in" ) |
1689 | Flags |= uint32_t(StatepointFlags::DeoptLiveIn); |
1690 | else { |
1691 | assert(DeoptLowering == "live-through" && "Unsupported value!" ); |
1692 | } |
1693 | |
1694 | FunctionCallee CallTarget(Call->getFunctionType(), Call->getCalledOperand()); |
1695 | if (Function *F = dyn_cast<Function>(Val: CallTarget.getCallee())) { |
1696 | auto IID = F->getIntrinsicID(); |
1697 | if (IID == Intrinsic::experimental_deoptimize) { |
1698 | // Calls to llvm.experimental.deoptimize are lowered to calls to the |
1699 | // __llvm_deoptimize symbol. We want to resolve this now, since the |
1700 | // verifier does not allow taking the address of an intrinsic function. |
1701 | |
1702 | SmallVector<Type *, 8> DomainTy; |
1703 | for (Value *Arg : CallArgs) |
1704 | DomainTy.push_back(Elt: Arg->getType()); |
1705 | auto *FTy = FunctionType::get(Result: Type::getVoidTy(C&: F->getContext()), Params: DomainTy, |
1706 | /* isVarArg = */ false); |
1707 | |
1708 | // Note: CallTarget can be a bitcast instruction of a symbol if there are |
1709 | // calls to @llvm.experimental.deoptimize with different argument types in |
1710 | // the same module. This is fine -- we assume the frontend knew what it |
1711 | // was doing when generating this kind of IR. |
1712 | CallTarget = F->getParent() |
1713 | ->getOrInsertFunction(Name: "__llvm_deoptimize" , T: FTy); |
1714 | |
1715 | IsDeoptimize = true; |
1716 | } else if (IID == Intrinsic::memcpy_element_unordered_atomic || |
1717 | IID == Intrinsic::memmove_element_unordered_atomic) { |
1718 | IsMemIntrinsic = true; |
1719 | |
1720 | // Unordered atomic memcpy and memmove intrinsics which are not explicitly |
1721 | // marked as "gc-leaf-function" should be lowered in a GC parseable way. |
1722 | // Specifically, these calls should be lowered to the |
1723 | // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols. |
1724 | // Similarly to __llvm_deoptimize we want to resolve this now, since the |
1725 | // verifier does not allow taking the address of an intrinsic function. |
1726 | // |
1727 | // Moreover we need to shuffle the arguments for the call in order to |
1728 | // accommodate GC. The underlying source and destination objects might be |
1729 | // relocated during copy operation should the GC occur. To relocate the |
1730 | // derived source and destination pointers the implementation of the |
1731 | // intrinsic should know the corresponding base pointers. |
1732 | // |
1733 | // To make the base pointers available pass them explicitly as arguments: |
1734 | // memcpy(dest_derived, source_derived, ...) => |
1735 | // memcpy(dest_base, dest_offset, source_base, source_offset, ...) |
1736 | auto &Context = Call->getContext(); |
1737 | auto &DL = Call->getDataLayout(); |
1738 | auto GetBaseAndOffset = [&](Value *Derived) { |
1739 | Value *Base = nullptr; |
1740 | // Optimizations in unreachable code might substitute the real pointer |
1741 | // with undef, poison or null-derived constant. Return null base for |
1742 | // them to be consistent with the handling in the main algorithm in |
1743 | // findBaseDefiningValue. |
1744 | if (isa<Constant>(Val: Derived)) |
1745 | Base = |
1746 | ConstantPointerNull::get(T: cast<PointerType>(Val: Derived->getType())); |
1747 | else { |
1748 | assert(PointerToBase.count(Derived)); |
1749 | Base = PointerToBase.find(Key: Derived)->second; |
1750 | } |
1751 | unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); |
1752 | unsigned IntPtrSize = DL.getPointerSizeInBits(AS: AddressSpace); |
1753 | Value *Base_int = Builder.CreatePtrToInt( |
1754 | V: Base, DestTy: Type::getIntNTy(C&: Context, N: IntPtrSize)); |
1755 | Value *Derived_int = Builder.CreatePtrToInt( |
1756 | V: Derived, DestTy: Type::getIntNTy(C&: Context, N: IntPtrSize)); |
1757 | return std::make_pair(x&: Base, y: Builder.CreateSub(LHS: Derived_int, RHS: Base_int)); |
1758 | }; |
1759 | |
1760 | auto *Dest = CallArgs[0]; |
1761 | Value *DestBase, *DestOffset; |
1762 | std::tie(args&: DestBase, args&: DestOffset) = GetBaseAndOffset(Dest); |
1763 | |
1764 | auto *Source = CallArgs[1]; |
1765 | Value *SourceBase, *SourceOffset; |
1766 | std::tie(args&: SourceBase, args&: SourceOffset) = GetBaseAndOffset(Source); |
1767 | |
1768 | auto *LengthInBytes = CallArgs[2]; |
1769 | auto *ElementSizeCI = cast<ConstantInt>(Val: CallArgs[3]); |
1770 | |
1771 | CallArgs.clear(); |
1772 | CallArgs.push_back(Elt: DestBase); |
1773 | CallArgs.push_back(Elt: DestOffset); |
1774 | CallArgs.push_back(Elt: SourceBase); |
1775 | CallArgs.push_back(Elt: SourceOffset); |
1776 | CallArgs.push_back(Elt: LengthInBytes); |
1777 | |
1778 | SmallVector<Type *, 8> DomainTy; |
1779 | for (Value *Arg : CallArgs) |
1780 | DomainTy.push_back(Elt: Arg->getType()); |
1781 | auto *FTy = FunctionType::get(Result: Type::getVoidTy(C&: F->getContext()), Params: DomainTy, |
1782 | /* isVarArg = */ false); |
1783 | |
1784 | auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) { |
1785 | uint64_t ElementSize = ElementSizeCI->getZExtValue(); |
1786 | if (IID == Intrinsic::memcpy_element_unordered_atomic) { |
1787 | switch (ElementSize) { |
1788 | case 1: |
1789 | return "__llvm_memcpy_element_unordered_atomic_safepoint_1" ; |
1790 | case 2: |
1791 | return "__llvm_memcpy_element_unordered_atomic_safepoint_2" ; |
1792 | case 4: |
1793 | return "__llvm_memcpy_element_unordered_atomic_safepoint_4" ; |
1794 | case 8: |
1795 | return "__llvm_memcpy_element_unordered_atomic_safepoint_8" ; |
1796 | case 16: |
1797 | return "__llvm_memcpy_element_unordered_atomic_safepoint_16" ; |
1798 | default: |
1799 | llvm_unreachable("unexpected element size!" ); |
1800 | } |
1801 | } |
1802 | assert(IID == Intrinsic::memmove_element_unordered_atomic); |
1803 | switch (ElementSize) { |
1804 | case 1: |
1805 | return "__llvm_memmove_element_unordered_atomic_safepoint_1" ; |
1806 | case 2: |
1807 | return "__llvm_memmove_element_unordered_atomic_safepoint_2" ; |
1808 | case 4: |
1809 | return "__llvm_memmove_element_unordered_atomic_safepoint_4" ; |
1810 | case 8: |
1811 | return "__llvm_memmove_element_unordered_atomic_safepoint_8" ; |
1812 | case 16: |
1813 | return "__llvm_memmove_element_unordered_atomic_safepoint_16" ; |
1814 | default: |
1815 | llvm_unreachable("unexpected element size!" ); |
1816 | } |
1817 | }; |
1818 | |
1819 | CallTarget = |
1820 | F->getParent() |
1821 | ->getOrInsertFunction(Name: GetFunctionName(IID, ElementSizeCI), T: FTy); |
1822 | } |
1823 | } |
1824 | |
1825 | // Create the statepoint given all the arguments |
1826 | GCStatepointInst *Token = nullptr; |
1827 | if (auto *CI = dyn_cast<CallInst>(Val: Call)) { |
1828 | CallInst *SPCall = Builder.CreateGCStatepointCall( |
1829 | ID: StatepointID, NumPatchBytes, ActualCallee: CallTarget, Flags, CallArgs, |
1830 | TransitionArgs, DeoptArgs, GCArgs, Name: "safepoint_token" ); |
1831 | |
1832 | SPCall->setTailCallKind(CI->getTailCallKind()); |
1833 | SPCall->setCallingConv(CI->getCallingConv()); |
1834 | |
1835 | // Set up function attrs directly on statepoint and return attrs later for |
1836 | // gc_result intrinsic. |
1837 | SPCall->setAttributes( |
1838 | legalizeCallAttributes(Call: CI, IsMemIntrinsic, StatepointAL: SPCall->getAttributes())); |
1839 | |
1840 | Token = cast<GCStatepointInst>(Val: SPCall); |
1841 | |
1842 | // Put the following gc_result and gc_relocate calls immediately after the |
1843 | // the old call (which we're about to delete) |
1844 | assert(CI->getNextNode() && "Not a terminator, must have next!" ); |
1845 | Builder.SetInsertPoint(CI->getNextNode()); |
1846 | Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc()); |
1847 | } else { |
1848 | auto *II = cast<InvokeInst>(Val: Call); |
1849 | |
1850 | // Insert the new invoke into the old block. We'll remove the old one in a |
1851 | // moment at which point this will become the new terminator for the |
1852 | // original block. |
1853 | InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke( |
1854 | ID: StatepointID, NumPatchBytes, ActualInvokee: CallTarget, NormalDest: II->getNormalDest(), |
1855 | UnwindDest: II->getUnwindDest(), Flags, InvokeArgs: CallArgs, TransitionArgs, DeoptArgs, GCArgs, |
1856 | Name: "statepoint_token" ); |
1857 | |
1858 | SPInvoke->setCallingConv(II->getCallingConv()); |
1859 | |
1860 | // Set up function attrs directly on statepoint and return attrs later for |
1861 | // gc_result intrinsic. |
1862 | SPInvoke->setAttributes( |
1863 | legalizeCallAttributes(Call: II, IsMemIntrinsic, StatepointAL: SPInvoke->getAttributes())); |
1864 | |
1865 | Token = cast<GCStatepointInst>(Val: SPInvoke); |
1866 | |
1867 | // Generate gc relocates in exceptional path |
1868 | BasicBlock *UnwindBlock = II->getUnwindDest(); |
1869 | assert(!isa<PHINode>(UnwindBlock->begin()) && |
1870 | UnwindBlock->getUniquePredecessor() && |
1871 | "can't safely insert in this block!" ); |
1872 | |
1873 | Builder.SetInsertPoint(TheBB: UnwindBlock, IP: UnwindBlock->getFirstInsertionPt()); |
1874 | Builder.SetCurrentDebugLocation(II->getDebugLoc()); |
1875 | |
1876 | // Attach exceptional gc relocates to the landingpad. |
1877 | Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); |
1878 | Result.UnwindToken = ExceptionalToken; |
1879 | |
1880 | CreateGCRelocates(LiveVariables, BasePtrs, StatepointToken: ExceptionalToken, Builder, GC); |
1881 | |
1882 | // Generate gc relocates and returns for normal block |
1883 | BasicBlock *NormalDest = II->getNormalDest(); |
1884 | assert(!isa<PHINode>(NormalDest->begin()) && |
1885 | NormalDest->getUniquePredecessor() && |
1886 | "can't safely insert in this block!" ); |
1887 | |
1888 | Builder.SetInsertPoint(TheBB: NormalDest, IP: NormalDest->getFirstInsertionPt()); |
1889 | |
1890 | // gc relocates will be generated later as if it were regular call |
1891 | // statepoint |
1892 | } |
1893 | assert(Token && "Should be set in one of the above branches!" ); |
1894 | |
1895 | if (IsDeoptimize) { |
1896 | // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we |
1897 | // transform the tail-call like structure to a call to a void function |
1898 | // followed by unreachable to get better codegen. |
1899 | Replacements.push_back( |
1900 | x: DeferredReplacement::createDeoptimizeReplacement(Old: Call)); |
1901 | } else { |
1902 | Token->setName("statepoint_token" ); |
1903 | if (!Call->getType()->isVoidTy() && !Call->use_empty()) { |
1904 | StringRef Name = Call->hasName() ? Call->getName() : "" ; |
1905 | CallInst *GCResult = Builder.CreateGCResult(Statepoint: Token, ResultType: Call->getType(), Name); |
1906 | GCResult->setAttributes( |
1907 | AttributeList::get(C&: GCResult->getContext(), Index: AttributeList::ReturnIndex, |
1908 | Attrs: Call->getAttributes().getRetAttrs())); |
1909 | |
1910 | // We cannot RAUW or delete CS.getInstruction() because it could be in the |
1911 | // live set of some other safepoint, in which case that safepoint's |
1912 | // PartiallyConstructedSafepointRecord will hold a raw pointer to this |
1913 | // llvm::Instruction. Instead, we defer the replacement and deletion to |
1914 | // after the live sets have been made explicit in the IR, and we no longer |
1915 | // have raw pointers to worry about. |
1916 | Replacements.emplace_back( |
1917 | args: DeferredReplacement::createRAUW(Old: Call, New: GCResult)); |
1918 | } else { |
1919 | Replacements.emplace_back(args: DeferredReplacement::createDelete(ToErase: Call)); |
1920 | } |
1921 | } |
1922 | |
1923 | Result.StatepointToken = Token; |
1924 | |
1925 | // Second, create a gc.relocate for every live variable |
1926 | CreateGCRelocates(LiveVariables, BasePtrs, StatepointToken: Token, Builder, GC); |
1927 | } |
1928 | |
1929 | // Replace an existing gc.statepoint with a new one and a set of gc.relocates |
1930 | // which make the relocations happening at this safepoint explicit. |
1931 | // |
1932 | // WARNING: Does not do any fixup to adjust users of the original live |
1933 | // values. That's the callers responsibility. |
1934 | static void |
1935 | makeStatepointExplicit(DominatorTree &DT, CallBase *Call, |
1936 | PartiallyConstructedSafepointRecord &Result, |
1937 | std::vector<DeferredReplacement> &Replacements, |
1938 | const PointerToBaseTy &PointerToBase, GCStrategy *GC) { |
1939 | const auto &LiveSet = Result.LiveSet; |
1940 | |
1941 | // Convert to vector for efficient cross referencing. |
1942 | SmallVector<Value *, 64> BaseVec, LiveVec; |
1943 | LiveVec.reserve(N: LiveSet.size()); |
1944 | BaseVec.reserve(N: LiveSet.size()); |
1945 | for (Value *L : LiveSet) { |
1946 | LiveVec.push_back(Elt: L); |
1947 | assert(PointerToBase.count(L)); |
1948 | Value *Base = PointerToBase.find(Key: L)->second; |
1949 | BaseVec.push_back(Elt: Base); |
1950 | } |
1951 | assert(LiveVec.size() == BaseVec.size()); |
1952 | |
1953 | // Do the actual rewriting and delete the old statepoint |
1954 | makeStatepointExplicitImpl(Call, BasePtrs: BaseVec, LiveVariables: LiveVec, Result, Replacements, |
1955 | PointerToBase, GC); |
1956 | } |
1957 | |
1958 | // Helper function for the relocationViaAlloca. |
1959 | // |
1960 | // It receives iterator to the statepoint gc relocates and emits a store to the |
1961 | // assigned location (via allocaMap) for the each one of them. It adds the |
1962 | // visited values into the visitedLiveValues set, which we will later use them |
1963 | // for validation checking. |
1964 | static void |
1965 | insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, |
1966 | DenseMap<Value *, AllocaInst *> &AllocaMap, |
1967 | DenseSet<Value *> &VisitedLiveValues) { |
1968 | for (User *U : GCRelocs) { |
1969 | GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(Val: U); |
1970 | if (!Relocate) |
1971 | continue; |
1972 | |
1973 | Value *OriginalValue = Relocate->getDerivedPtr(); |
1974 | assert(AllocaMap.count(OriginalValue)); |
1975 | Value *Alloca = AllocaMap[OriginalValue]; |
1976 | |
1977 | // Emit store into the related alloca. |
1978 | assert(Relocate->getNextNode() && |
1979 | "Should always have one since it's not a terminator" ); |
1980 | new StoreInst(Relocate, Alloca, std::next(x: Relocate->getIterator())); |
1981 | |
1982 | #ifndef NDEBUG |
1983 | VisitedLiveValues.insert(OriginalValue); |
1984 | #endif |
1985 | } |
1986 | } |
1987 | |
1988 | // Helper function for the "relocationViaAlloca". Similar to the |
1989 | // "insertRelocationStores" but works for rematerialized values. |
1990 | static void insertRematerializationStores( |
1991 | const RematerializedValueMapTy &RematerializedValues, |
1992 | DenseMap<Value *, AllocaInst *> &AllocaMap, |
1993 | DenseSet<Value *> &VisitedLiveValues) { |
1994 | for (auto RematerializedValuePair: RematerializedValues) { |
1995 | Instruction *RematerializedValue = RematerializedValuePair.first; |
1996 | Value *OriginalValue = RematerializedValuePair.second; |
1997 | |
1998 | assert(AllocaMap.count(OriginalValue) && |
1999 | "Can not find alloca for rematerialized value" ); |
2000 | Value *Alloca = AllocaMap[OriginalValue]; |
2001 | |
2002 | new StoreInst(RematerializedValue, Alloca, |
2003 | std::next(x: RematerializedValue->getIterator())); |
2004 | |
2005 | #ifndef NDEBUG |
2006 | VisitedLiveValues.insert(OriginalValue); |
2007 | #endif |
2008 | } |
2009 | } |
2010 | |
2011 | /// Do all the relocation update via allocas and mem2reg |
2012 | static void relocationViaAlloca( |
2013 | Function &F, DominatorTree &DT, ArrayRef<Value *> Live, |
2014 | ArrayRef<PartiallyConstructedSafepointRecord> Records) { |
2015 | #ifndef NDEBUG |
2016 | // record initial number of (static) allocas; we'll check we have the same |
2017 | // number when we get done. |
2018 | int InitialAllocaNum = 0; |
2019 | for (Instruction &I : F.getEntryBlock()) |
2020 | if (isa<AllocaInst>(I)) |
2021 | InitialAllocaNum++; |
2022 | #endif |
2023 | |
2024 | // TODO-PERF: change data structures, reserve |
2025 | DenseMap<Value *, AllocaInst *> AllocaMap; |
2026 | SmallVector<AllocaInst *, 200> PromotableAllocas; |
2027 | // Used later to chack that we have enough allocas to store all values |
2028 | std::size_t NumRematerializedValues = 0; |
2029 | PromotableAllocas.reserve(N: Live.size()); |
2030 | |
2031 | // Emit alloca for "LiveValue" and record it in "allocaMap" and |
2032 | // "PromotableAllocas" |
2033 | const DataLayout &DL = F.getDataLayout(); |
2034 | auto emitAllocaFor = [&](Value *LiveValue) { |
2035 | AllocaInst *Alloca = |
2036 | new AllocaInst(LiveValue->getType(), DL.getAllocaAddrSpace(), "" , |
2037 | F.getEntryBlock().getFirstNonPHIIt()); |
2038 | AllocaMap[LiveValue] = Alloca; |
2039 | PromotableAllocas.push_back(Elt: Alloca); |
2040 | }; |
2041 | |
2042 | // Emit alloca for each live gc pointer |
2043 | for (Value *V : Live) |
2044 | emitAllocaFor(V); |
2045 | |
2046 | // Emit allocas for rematerialized values |
2047 | for (const auto &Info : Records) |
2048 | for (auto RematerializedValuePair : Info.RematerializedValues) { |
2049 | Value *OriginalValue = RematerializedValuePair.second; |
2050 | if (AllocaMap.contains(Val: OriginalValue)) |
2051 | continue; |
2052 | |
2053 | emitAllocaFor(OriginalValue); |
2054 | ++NumRematerializedValues; |
2055 | } |
2056 | |
2057 | // The next two loops are part of the same conceptual operation. We need to |
2058 | // insert a store to the alloca after the original def and at each |
2059 | // redefinition. We need to insert a load before each use. These are split |
2060 | // into distinct loops for performance reasons. |
2061 | |
2062 | // Update gc pointer after each statepoint: either store a relocated value or |
2063 | // null (if no relocated value was found for this gc pointer and it is not a |
2064 | // gc_result). This must happen before we update the statepoint with load of |
2065 | // alloca otherwise we lose the link between statepoint and old def. |
2066 | for (const auto &Info : Records) { |
2067 | Value *Statepoint = Info.StatepointToken; |
2068 | |
2069 | // This will be used for consistency check |
2070 | DenseSet<Value *> VisitedLiveValues; |
2071 | |
2072 | // Insert stores for normal statepoint gc relocates |
2073 | insertRelocationStores(GCRelocs: Statepoint->users(), AllocaMap, VisitedLiveValues); |
2074 | |
2075 | // In case if it was invoke statepoint |
2076 | // we will insert stores for exceptional path gc relocates. |
2077 | if (isa<InvokeInst>(Val: Statepoint)) { |
2078 | insertRelocationStores(GCRelocs: Info.UnwindToken->users(), AllocaMap, |
2079 | VisitedLiveValues); |
2080 | } |
2081 | |
2082 | // Do similar thing with rematerialized values |
2083 | insertRematerializationStores(RematerializedValues: Info.RematerializedValues, AllocaMap, |
2084 | VisitedLiveValues); |
2085 | |
2086 | if (ClobberNonLive) { |
2087 | // As a debugging aid, pretend that an unrelocated pointer becomes null at |
2088 | // the gc.statepoint. This will turn some subtle GC problems into |
2089 | // slightly easier to debug SEGVs. Note that on large IR files with |
2090 | // lots of gc.statepoints this is extremely costly both memory and time |
2091 | // wise. |
2092 | SmallVector<AllocaInst *, 64> ToClobber; |
2093 | for (auto Pair : AllocaMap) { |
2094 | Value *Def = Pair.first; |
2095 | AllocaInst *Alloca = Pair.second; |
2096 | |
2097 | // This value was relocated |
2098 | if (VisitedLiveValues.count(V: Def)) { |
2099 | continue; |
2100 | } |
2101 | ToClobber.push_back(Elt: Alloca); |
2102 | } |
2103 | |
2104 | auto InsertClobbersAt = [&](BasicBlock::iterator IP) { |
2105 | for (auto *AI : ToClobber) { |
2106 | auto AT = AI->getAllocatedType(); |
2107 | Constant *CPN; |
2108 | if (AT->isVectorTy()) |
2109 | CPN = ConstantAggregateZero::get(Ty: AT); |
2110 | else |
2111 | CPN = ConstantPointerNull::get(T: cast<PointerType>(Val: AT)); |
2112 | new StoreInst(CPN, AI, IP); |
2113 | } |
2114 | }; |
2115 | |
2116 | // Insert the clobbering stores. These may get intermixed with the |
2117 | // gc.results and gc.relocates, but that's fine. |
2118 | if (auto II = dyn_cast<InvokeInst>(Val: Statepoint)) { |
2119 | InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); |
2120 | InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); |
2121 | } else { |
2122 | InsertClobbersAt( |
2123 | std::next(x: cast<Instruction>(Val: Statepoint)->getIterator())); |
2124 | } |
2125 | } |
2126 | } |
2127 | |
2128 | // Update use with load allocas and add store for gc_relocated. |
2129 | for (auto Pair : AllocaMap) { |
2130 | Value *Def = Pair.first; |
2131 | AllocaInst *Alloca = Pair.second; |
2132 | |
2133 | // We pre-record the uses of allocas so that we dont have to worry about |
2134 | // later update that changes the user information.. |
2135 | |
2136 | SmallVector<Instruction *, 20> Uses; |
2137 | // PERF: trade a linear scan for repeated reallocation |
2138 | Uses.reserve(N: Def->getNumUses()); |
2139 | for (User *U : Def->users()) { |
2140 | if (!isa<ConstantExpr>(Val: U)) { |
2141 | // If the def has a ConstantExpr use, then the def is either a |
2142 | // ConstantExpr use itself or null. In either case |
2143 | // (recursively in the first, directly in the second), the oop |
2144 | // it is ultimately dependent on is null and this particular |
2145 | // use does not need to be fixed up. |
2146 | Uses.push_back(Elt: cast<Instruction>(Val: U)); |
2147 | } |
2148 | } |
2149 | |
2150 | llvm::sort(C&: Uses); |
2151 | auto Last = llvm::unique(R&: Uses); |
2152 | Uses.erase(CS: Last, CE: Uses.end()); |
2153 | |
2154 | for (Instruction *Use : Uses) { |
2155 | if (isa<PHINode>(Val: Use)) { |
2156 | PHINode *Phi = cast<PHINode>(Val: Use); |
2157 | for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { |
2158 | if (Def == Phi->getIncomingValue(i)) { |
2159 | LoadInst *Load = new LoadInst( |
2160 | Alloca->getAllocatedType(), Alloca, "" , |
2161 | Phi->getIncomingBlock(i)->getTerminator()->getIterator()); |
2162 | Phi->setIncomingValue(i, V: Load); |
2163 | } |
2164 | } |
2165 | } else { |
2166 | LoadInst *Load = new LoadInst(Alloca->getAllocatedType(), Alloca, "" , |
2167 | Use->getIterator()); |
2168 | Use->replaceUsesOfWith(From: Def, To: Load); |
2169 | } |
2170 | } |
2171 | |
2172 | // Emit store for the initial gc value. Store must be inserted after load, |
2173 | // otherwise store will be in alloca's use list and an extra load will be |
2174 | // inserted before it. |
2175 | StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false, |
2176 | DL.getABITypeAlign(Ty: Def->getType())); |
2177 | if (Instruction *Inst = dyn_cast<Instruction>(Val: Def)) { |
2178 | if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Val: Inst)) { |
2179 | // InvokeInst is a terminator so the store need to be inserted into its |
2180 | // normal destination block. |
2181 | BasicBlock *NormalDest = Invoke->getNormalDest(); |
2182 | Store->insertBefore(InsertPos: NormalDest->getFirstNonPHI()); |
2183 | } else { |
2184 | assert(!Inst->isTerminator() && |
2185 | "The only terminator that can produce a value is " |
2186 | "InvokeInst which is handled above." ); |
2187 | Store->insertAfter(InsertPos: Inst); |
2188 | } |
2189 | } else { |
2190 | assert(isa<Argument>(Def)); |
2191 | Store->insertAfter(InsertPos: cast<Instruction>(Val: Alloca)); |
2192 | } |
2193 | } |
2194 | |
2195 | assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && |
2196 | "we must have the same allocas with lives" ); |
2197 | (void) NumRematerializedValues; |
2198 | if (!PromotableAllocas.empty()) { |
2199 | // Apply mem2reg to promote alloca to SSA |
2200 | PromoteMemToReg(Allocas: PromotableAllocas, DT); |
2201 | } |
2202 | |
2203 | #ifndef NDEBUG |
2204 | for (auto &I : F.getEntryBlock()) |
2205 | if (isa<AllocaInst>(I)) |
2206 | InitialAllocaNum--; |
2207 | assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas" ); |
2208 | #endif |
2209 | } |
2210 | |
2211 | /// Implement a unique function which doesn't require we sort the input |
2212 | /// vector. Doing so has the effect of changing the output of a couple of |
2213 | /// tests in ways which make them less useful in testing fused safepoints. |
2214 | template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { |
2215 | SmallSet<T, 8> Seen; |
2216 | erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }); |
2217 | } |
2218 | |
2219 | /// Insert holders so that each Value is obviously live through the entire |
2220 | /// lifetime of the call. |
2221 | static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values, |
2222 | SmallVectorImpl<CallInst *> &Holders) { |
2223 | if (Values.empty()) |
2224 | // No values to hold live, might as well not insert the empty holder |
2225 | return; |
2226 | |
2227 | Module *M = Call->getModule(); |
2228 | // Use a dummy vararg function to actually hold the values live |
2229 | FunctionCallee Func = M->getOrInsertFunction( |
2230 | Name: "__tmp_use" , T: FunctionType::get(Result: Type::getVoidTy(C&: M->getContext()), isVarArg: true)); |
2231 | if (isa<CallInst>(Val: Call)) { |
2232 | // For call safepoints insert dummy calls right after safepoint |
2233 | Holders.push_back( |
2234 | Elt: CallInst::Create(Func, Args: Values, NameStr: "" , InsertBefore: std::next(x: Call->getIterator()))); |
2235 | return; |
2236 | } |
2237 | // For invoke safepooints insert dummy calls both in normal and |
2238 | // exceptional destination blocks |
2239 | auto *II = cast<InvokeInst>(Val: Call); |
2240 | Holders.push_back(Elt: CallInst::Create( |
2241 | Func, Args: Values, NameStr: "" , InsertBefore: II->getNormalDest()->getFirstInsertionPt())); |
2242 | Holders.push_back(Elt: CallInst::Create( |
2243 | Func, Args: Values, NameStr: "" , InsertBefore: II->getUnwindDest()->getFirstInsertionPt())); |
2244 | } |
2245 | |
2246 | static void findLiveReferences( |
2247 | Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, |
2248 | MutableArrayRef<struct PartiallyConstructedSafepointRecord> records, |
2249 | GCStrategy *GC) { |
2250 | GCPtrLivenessData OriginalLivenessData; |
2251 | computeLiveInValues(DT, F, Data&: OriginalLivenessData, GC); |
2252 | for (size_t i = 0; i < records.size(); i++) { |
2253 | struct PartiallyConstructedSafepointRecord &info = records[i]; |
2254 | analyzeParsePointLiveness(DT, OriginalLivenessData, Call: toUpdate[i], Result&: info, GC); |
2255 | } |
2256 | } |
2257 | |
2258 | // Helper function for the "rematerializeLiveValues". It walks use chain |
2259 | // starting from the "CurrentValue" until it reaches the root of the chain, i.e. |
2260 | // the base or a value it cannot process. Only "simple" values are processed |
2261 | // (currently it is GEP's and casts). The returned root is examined by the |
2262 | // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array |
2263 | // with all visited values. |
2264 | static Value* findRematerializableChainToBasePointer( |
2265 | SmallVectorImpl<Instruction*> &ChainToBase, |
2266 | Value *CurrentValue) { |
2267 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: CurrentValue)) { |
2268 | ChainToBase.push_back(Elt: GEP); |
2269 | return findRematerializableChainToBasePointer(ChainToBase, |
2270 | CurrentValue: GEP->getPointerOperand()); |
2271 | } |
2272 | |
2273 | if (CastInst *CI = dyn_cast<CastInst>(Val: CurrentValue)) { |
2274 | if (!CI->isNoopCast(DL: CI->getDataLayout())) |
2275 | return CI; |
2276 | |
2277 | ChainToBase.push_back(Elt: CI); |
2278 | return findRematerializableChainToBasePointer(ChainToBase, |
2279 | CurrentValue: CI->getOperand(i_nocapture: 0)); |
2280 | } |
2281 | |
2282 | // We have reached the root of the chain, which is either equal to the base or |
2283 | // is the first unsupported value along the use chain. |
2284 | return CurrentValue; |
2285 | } |
2286 | |
2287 | // Helper function for the "rematerializeLiveValues". Compute cost of the use |
2288 | // chain we are going to rematerialize. |
2289 | static InstructionCost |
2290 | chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain, |
2291 | TargetTransformInfo &TTI) { |
2292 | InstructionCost Cost = 0; |
2293 | |
2294 | for (Instruction *Instr : Chain) { |
2295 | if (CastInst *CI = dyn_cast<CastInst>(Val: Instr)) { |
2296 | assert(CI->isNoopCast(CI->getDataLayout()) && |
2297 | "non noop cast is found during rematerialization" ); |
2298 | |
2299 | Type *SrcTy = CI->getOperand(i_nocapture: 0)->getType(); |
2300 | Cost += TTI.getCastInstrCost(Opcode: CI->getOpcode(), Dst: CI->getType(), Src: SrcTy, |
2301 | CCH: TTI::getCastContextHint(I: CI), |
2302 | CostKind: TargetTransformInfo::TCK_SizeAndLatency, I: CI); |
2303 | |
2304 | } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: Instr)) { |
2305 | // Cost of the address calculation |
2306 | Type *ValTy = GEP->getSourceElementType(); |
2307 | Cost += TTI.getAddressComputationCost(Ty: ValTy); |
2308 | |
2309 | // And cost of the GEP itself |
2310 | // TODO: Use TTI->getGEPCost here (it exists, but appears to be not |
2311 | // allowed for the external usage) |
2312 | if (!GEP->hasAllConstantIndices()) |
2313 | Cost += 2; |
2314 | |
2315 | } else { |
2316 | llvm_unreachable("unsupported instruction type during rematerialization" ); |
2317 | } |
2318 | } |
2319 | |
2320 | return Cost; |
2321 | } |
2322 | |
2323 | static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { |
2324 | unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); |
2325 | if (PhiNum != AlternateRootPhi.getNumIncomingValues() || |
2326 | OrigRootPhi.getParent() != AlternateRootPhi.getParent()) |
2327 | return false; |
2328 | // Map of incoming values and their corresponding basic blocks of |
2329 | // OrigRootPhi. |
2330 | SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; |
2331 | for (unsigned i = 0; i < PhiNum; i++) |
2332 | CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = |
2333 | OrigRootPhi.getIncomingBlock(i); |
2334 | |
2335 | // Both current and base PHIs should have same incoming values and |
2336 | // the same basic blocks corresponding to the incoming values. |
2337 | for (unsigned i = 0; i < PhiNum; i++) { |
2338 | auto CIVI = |
2339 | CurrentIncomingValues.find(Val: AlternateRootPhi.getIncomingValue(i)); |
2340 | if (CIVI == CurrentIncomingValues.end()) |
2341 | return false; |
2342 | BasicBlock *CurrentIncomingBB = CIVI->second; |
2343 | if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) |
2344 | return false; |
2345 | } |
2346 | return true; |
2347 | } |
2348 | |
2349 | // Find derived pointers that can be recomputed cheap enough and fill |
2350 | // RematerizationCandidates with such candidates. |
2351 | static void |
2352 | findRematerializationCandidates(PointerToBaseTy PointerToBase, |
2353 | RematCandTy &RematerizationCandidates, |
2354 | TargetTransformInfo &TTI) { |
2355 | const unsigned int ChainLengthThreshold = 10; |
2356 | |
2357 | for (auto P2B : PointerToBase) { |
2358 | auto *Derived = P2B.first; |
2359 | auto *Base = P2B.second; |
2360 | // Consider only derived pointers. |
2361 | if (Derived == Base) |
2362 | continue; |
2363 | |
2364 | // For each live pointer find its defining chain. |
2365 | SmallVector<Instruction *, 3> ChainToBase; |
2366 | Value *RootOfChain = |
2367 | findRematerializableChainToBasePointer(ChainToBase, CurrentValue: Derived); |
2368 | |
2369 | // Nothing to do, or chain is too long |
2370 | if ( ChainToBase.size() == 0 || |
2371 | ChainToBase.size() > ChainLengthThreshold) |
2372 | continue; |
2373 | |
2374 | // Handle the scenario where the RootOfChain is not equal to the |
2375 | // Base Value, but they are essentially the same phi values. |
2376 | if (RootOfChain != PointerToBase[Derived]) { |
2377 | PHINode *OrigRootPhi = dyn_cast<PHINode>(Val: RootOfChain); |
2378 | PHINode *AlternateRootPhi = dyn_cast<PHINode>(Val: PointerToBase[Derived]); |
2379 | if (!OrigRootPhi || !AlternateRootPhi) |
2380 | continue; |
2381 | // PHI nodes that have the same incoming values, and belonging to the same |
2382 | // basic blocks are essentially the same SSA value. When the original phi |
2383 | // has incoming values with different base pointers, the original phi is |
2384 | // marked as conflict, and an additional `AlternateRootPhi` with the same |
2385 | // incoming values get generated by the findBasePointer function. We need |
2386 | // to identify the newly generated AlternateRootPhi (.base version of phi) |
2387 | // and RootOfChain (the original phi node itself) are the same, so that we |
2388 | // can rematerialize the gep and casts. This is a workaround for the |
2389 | // deficiency in the findBasePointer algorithm. |
2390 | if (!AreEquivalentPhiNodes(OrigRootPhi&: *OrigRootPhi, AlternateRootPhi&: *AlternateRootPhi)) |
2391 | continue; |
2392 | } |
2393 | // Compute cost of this chain. |
2394 | InstructionCost Cost = chainToBasePointerCost(Chain&: ChainToBase, TTI); |
2395 | // TODO: We can also account for cases when we will be able to remove some |
2396 | // of the rematerialized values by later optimization passes. I.e if |
2397 | // we rematerialized several intersecting chains. Or if original values |
2398 | // don't have any uses besides this statepoint. |
2399 | |
2400 | // Ok, there is a candidate. |
2401 | RematerizlizationCandidateRecord Record; |
2402 | Record.ChainToBase = ChainToBase; |
2403 | Record.RootOfChain = RootOfChain; |
2404 | Record.Cost = Cost; |
2405 | RematerizationCandidates.insert(KV: { Derived, Record }); |
2406 | } |
2407 | } |
2408 | |
2409 | // Try to rematerialize derived pointers immediately before their uses |
2410 | // (instead of rematerializing after every statepoint it is live through). |
2411 | // This can be beneficial when derived pointer is live across many |
2412 | // statepoints, but uses are rare. |
2413 | static void rematerializeLiveValuesAtUses( |
2414 | RematCandTy &RematerizationCandidates, |
2415 | MutableArrayRef<PartiallyConstructedSafepointRecord> Records, |
2416 | PointerToBaseTy &PointerToBase) { |
2417 | if (!RematDerivedAtUses) |
2418 | return; |
2419 | |
2420 | SmallVector<Instruction *, 32> LiveValuesToBeDeleted; |
2421 | |
2422 | LLVM_DEBUG(dbgs() << "Rematerialize derived pointers at uses, " |
2423 | << "Num statepoints: " << Records.size() << '\n'); |
2424 | |
2425 | for (auto &It : RematerizationCandidates) { |
2426 | Instruction *Cand = cast<Instruction>(Val: It.first); |
2427 | auto &Record = It.second; |
2428 | |
2429 | if (Record.Cost >= RematerializationThreshold) |
2430 | continue; |
2431 | |
2432 | if (Cand->user_empty()) |
2433 | continue; |
2434 | |
2435 | if (Cand->hasOneUse()) |
2436 | if (auto *U = dyn_cast<Instruction>(Val: Cand->getUniqueUndroppableUser())) |
2437 | if (U->getParent() == Cand->getParent()) |
2438 | continue; |
2439 | |
2440 | // Rematerialization before PHI nodes is not implemented. |
2441 | if (llvm::any_of(Range: Cand->users(), |
2442 | P: [](const auto *U) { return isa<PHINode>(U); })) |
2443 | continue; |
2444 | |
2445 | LLVM_DEBUG(dbgs() << "Trying cand " << *Cand << " ... " ); |
2446 | |
2447 | // Count of rematerialization instructions we introduce is equal to number |
2448 | // of candidate uses. |
2449 | // Count of rematerialization instructions we eliminate is equal to number |
2450 | // of statepoints it is live through. |
2451 | // Consider transformation profitable if latter is greater than former |
2452 | // (in other words, we create less than eliminate). |
2453 | unsigned NumLiveStatepoints = llvm::count_if( |
2454 | Range&: Records, P: [Cand](const auto &R) { return R.LiveSet.contains(Cand); }); |
2455 | unsigned NumUses = Cand->getNumUses(); |
2456 | |
2457 | LLVM_DEBUG(dbgs() << "Num uses: " << NumUses << " Num live statepoints: " |
2458 | << NumLiveStatepoints << " " ); |
2459 | |
2460 | if (NumLiveStatepoints < NumUses) { |
2461 | LLVM_DEBUG(dbgs() << "not profitable\n" ); |
2462 | continue; |
2463 | } |
2464 | |
2465 | // If rematerialization is 'free', then favor rematerialization at |
2466 | // uses as it generally shortens live ranges. |
2467 | // TODO: Short (size ==1) chains only? |
2468 | if (NumLiveStatepoints == NumUses && Record.Cost > 0) { |
2469 | LLVM_DEBUG(dbgs() << "not profitable\n" ); |
2470 | continue; |
2471 | } |
2472 | |
2473 | LLVM_DEBUG(dbgs() << "looks profitable\n" ); |
2474 | |
2475 | // ChainToBase may contain another remat candidate (as a sub chain) which |
2476 | // has been rewritten by now. Need to recollect chain to have up to date |
2477 | // value. |
2478 | // TODO: sort records in findRematerializationCandidates() in |
2479 | // decreasing chain size order? |
2480 | if (Record.ChainToBase.size() > 1) { |
2481 | Record.ChainToBase.clear(); |
2482 | findRematerializableChainToBasePointer(ChainToBase&: Record.ChainToBase, CurrentValue: Cand); |
2483 | } |
2484 | |
2485 | // Current rematerialization algorithm is very simple: we rematerialize |
2486 | // immediately before EVERY use, even if there are several uses in same |
2487 | // block or if use is local to Cand Def. The reason is that this allows |
2488 | // us to avoid recomputing liveness without complicated analysis: |
2489 | // - If we did not eliminate all uses of original Candidate, we do not |
2490 | // know exaclty in what BBs it is still live. |
2491 | // - If we rematerialize once per BB, we need to find proper insertion |
2492 | // place (first use in block, but after Def) and analyze if there is |
2493 | // statepoint between uses in the block. |
2494 | while (!Cand->user_empty()) { |
2495 | Instruction *UserI = cast<Instruction>(Val: *Cand->user_begin()); |
2496 | Instruction *RematChain = rematerializeChain( |
2497 | ChainToBase: Record.ChainToBase, InsertBefore: UserI, RootOfChain: Record.RootOfChain, AlternateLiveBase: PointerToBase[Cand]); |
2498 | UserI->replaceUsesOfWith(From: Cand, To: RematChain); |
2499 | PointerToBase[RematChain] = PointerToBase[Cand]; |
2500 | } |
2501 | LiveValuesToBeDeleted.push_back(Elt: Cand); |
2502 | } |
2503 | |
2504 | LLVM_DEBUG(dbgs() << "Rematerialized " << LiveValuesToBeDeleted.size() |
2505 | << " derived pointers\n" ); |
2506 | for (auto *Cand : LiveValuesToBeDeleted) { |
2507 | assert(Cand->use_empty() && "Unexpected user remain" ); |
2508 | RematerizationCandidates.erase(Key: Cand); |
2509 | for (auto &R : Records) { |
2510 | assert(!R.LiveSet.contains(Cand) || |
2511 | R.LiveSet.contains(PointerToBase[Cand])); |
2512 | R.LiveSet.remove(X: Cand); |
2513 | } |
2514 | } |
2515 | |
2516 | // Recollect not rematerialized chains - we might have rewritten |
2517 | // their sub-chains. |
2518 | if (!LiveValuesToBeDeleted.empty()) { |
2519 | for (auto &P : RematerizationCandidates) { |
2520 | auto &R = P.second; |
2521 | if (R.ChainToBase.size() > 1) { |
2522 | R.ChainToBase.clear(); |
2523 | findRematerializableChainToBasePointer(ChainToBase&: R.ChainToBase, CurrentValue: P.first); |
2524 | } |
2525 | } |
2526 | } |
2527 | } |
2528 | |
2529 | // From the statepoint live set pick values that are cheaper to recompute then |
2530 | // to relocate. Remove this values from the live set, rematerialize them after |
2531 | // statepoint and record them in "Info" structure. Note that similar to |
2532 | // relocated values we don't do any user adjustments here. |
2533 | static void rematerializeLiveValues(CallBase *Call, |
2534 | PartiallyConstructedSafepointRecord &Info, |
2535 | PointerToBaseTy &PointerToBase, |
2536 | RematCandTy &RematerizationCandidates, |
2537 | TargetTransformInfo &TTI) { |
2538 | // Record values we are going to delete from this statepoint live set. |
2539 | // We can not di this in following loop due to iterator invalidation. |
2540 | SmallVector<Value *, 32> LiveValuesToBeDeleted; |
2541 | |
2542 | for (Value *LiveValue : Info.LiveSet) { |
2543 | auto It = RematerizationCandidates.find(Key: LiveValue); |
2544 | if (It == RematerizationCandidates.end()) |
2545 | continue; |
2546 | |
2547 | RematerizlizationCandidateRecord &Record = It->second; |
2548 | |
2549 | InstructionCost Cost = Record.Cost; |
2550 | // For invokes we need to rematerialize each chain twice - for normal and |
2551 | // for unwind basic blocks. Model this by multiplying cost by two. |
2552 | if (isa<InvokeInst>(Val: Call)) |
2553 | Cost *= 2; |
2554 | |
2555 | // If it's too expensive - skip it. |
2556 | if (Cost >= RematerializationThreshold) |
2557 | continue; |
2558 | |
2559 | // Remove value from the live set |
2560 | LiveValuesToBeDeleted.push_back(Elt: LiveValue); |
2561 | |
2562 | // Clone instructions and record them inside "Info" structure. |
2563 | |
2564 | // Different cases for calls and invokes. For invokes we need to clone |
2565 | // instructions both on normal and unwind path. |
2566 | if (isa<CallInst>(Val: Call)) { |
2567 | Instruction *InsertBefore = Call->getNextNode(); |
2568 | assert(InsertBefore); |
2569 | Instruction *RematerializedValue = |
2570 | rematerializeChain(ChainToBase: Record.ChainToBase, InsertBefore, |
2571 | RootOfChain: Record.RootOfChain, AlternateLiveBase: PointerToBase[LiveValue]); |
2572 | Info.RematerializedValues[RematerializedValue] = LiveValue; |
2573 | } else { |
2574 | auto *Invoke = cast<InvokeInst>(Val: Call); |
2575 | |
2576 | Instruction *NormalInsertBefore = |
2577 | &*Invoke->getNormalDest()->getFirstInsertionPt(); |
2578 | Instruction *UnwindInsertBefore = |
2579 | &*Invoke->getUnwindDest()->getFirstInsertionPt(); |
2580 | |
2581 | Instruction *NormalRematerializedValue = |
2582 | rematerializeChain(ChainToBase: Record.ChainToBase, InsertBefore: NormalInsertBefore, |
2583 | RootOfChain: Record.RootOfChain, AlternateLiveBase: PointerToBase[LiveValue]); |
2584 | Instruction *UnwindRematerializedValue = |
2585 | rematerializeChain(ChainToBase: Record.ChainToBase, InsertBefore: UnwindInsertBefore, |
2586 | RootOfChain: Record.RootOfChain, AlternateLiveBase: PointerToBase[LiveValue]); |
2587 | |
2588 | Info.RematerializedValues[NormalRematerializedValue] = LiveValue; |
2589 | Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; |
2590 | } |
2591 | } |
2592 | |
2593 | // Remove rematerialized values from the live set. |
2594 | for (auto *LiveValue: LiveValuesToBeDeleted) { |
2595 | Info.LiveSet.remove(X: LiveValue); |
2596 | } |
2597 | } |
2598 | |
2599 | static bool inlineGetBaseAndOffset(Function &F, |
2600 | SmallVectorImpl<CallInst *> &Intrinsics, |
2601 | DefiningValueMapTy &DVCache, |
2602 | IsKnownBaseMapTy &KnownBases) { |
2603 | auto &Context = F.getContext(); |
2604 | auto &DL = F.getDataLayout(); |
2605 | bool Changed = false; |
2606 | |
2607 | for (auto *Callsite : Intrinsics) |
2608 | switch (Callsite->getIntrinsicID()) { |
2609 | case Intrinsic::experimental_gc_get_pointer_base: { |
2610 | Changed = true; |
2611 | Value *Base = |
2612 | findBasePointer(I: Callsite->getOperand(i_nocapture: 0), Cache&: DVCache, KnownBases); |
2613 | assert(!DVCache.count(Callsite)); |
2614 | Callsite->replaceAllUsesWith(V: Base); |
2615 | if (!Base->hasName()) |
2616 | Base->takeName(V: Callsite); |
2617 | Callsite->eraseFromParent(); |
2618 | break; |
2619 | } |
2620 | case Intrinsic::experimental_gc_get_pointer_offset: { |
2621 | Changed = true; |
2622 | Value *Derived = Callsite->getOperand(i_nocapture: 0); |
2623 | Value *Base = findBasePointer(I: Derived, Cache&: DVCache, KnownBases); |
2624 | assert(!DVCache.count(Callsite)); |
2625 | unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); |
2626 | unsigned IntPtrSize = DL.getPointerSizeInBits(AS: AddressSpace); |
2627 | IRBuilder<> Builder(Callsite); |
2628 | Value *BaseInt = |
2629 | Builder.CreatePtrToInt(V: Base, DestTy: Type::getIntNTy(C&: Context, N: IntPtrSize), |
2630 | Name: suffixed_name_or(V: Base, Suffix: ".int" , DefaultName: "" )); |
2631 | Value *DerivedInt = |
2632 | Builder.CreatePtrToInt(V: Derived, DestTy: Type::getIntNTy(C&: Context, N: IntPtrSize), |
2633 | Name: suffixed_name_or(V: Derived, Suffix: ".int" , DefaultName: "" )); |
2634 | Value *Offset = Builder.CreateSub(LHS: DerivedInt, RHS: BaseInt); |
2635 | Callsite->replaceAllUsesWith(V: Offset); |
2636 | Offset->takeName(V: Callsite); |
2637 | Callsite->eraseFromParent(); |
2638 | break; |
2639 | } |
2640 | default: |
2641 | llvm_unreachable("Unknown intrinsic" ); |
2642 | } |
2643 | |
2644 | return Changed; |
2645 | } |
2646 | |
2647 | static bool insertParsePoints(Function &F, DominatorTree &DT, |
2648 | TargetTransformInfo &TTI, |
2649 | SmallVectorImpl<CallBase *> &ToUpdate, |
2650 | DefiningValueMapTy &DVCache, |
2651 | IsKnownBaseMapTy &KnownBases) { |
2652 | std::unique_ptr<GCStrategy> GC = findGCStrategy(F); |
2653 | |
2654 | #ifndef NDEBUG |
2655 | // Validate the input |
2656 | std::set<CallBase *> Uniqued; |
2657 | Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); |
2658 | assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!" ); |
2659 | |
2660 | for (CallBase *Call : ToUpdate) |
2661 | assert(Call->getFunction() == &F); |
2662 | #endif |
2663 | |
2664 | // When inserting gc.relocates for invokes, we need to be able to insert at |
2665 | // the top of the successor blocks. See the comment on |
2666 | // normalForInvokeSafepoint on exactly what is needed. Note that this step |
2667 | // may restructure the CFG. |
2668 | for (CallBase *Call : ToUpdate) { |
2669 | auto *II = dyn_cast<InvokeInst>(Val: Call); |
2670 | if (!II) |
2671 | continue; |
2672 | normalizeForInvokeSafepoint(BB: II->getNormalDest(), InvokeParent: II->getParent(), DT); |
2673 | normalizeForInvokeSafepoint(BB: II->getUnwindDest(), InvokeParent: II->getParent(), DT); |
2674 | } |
2675 | |
2676 | // A list of dummy calls added to the IR to keep various values obviously |
2677 | // live in the IR. We'll remove all of these when done. |
2678 | SmallVector<CallInst *, 64> Holders; |
2679 | |
2680 | // Insert a dummy call with all of the deopt operands we'll need for the |
2681 | // actual safepoint insertion as arguments. This ensures reference operands |
2682 | // in the deopt argument list are considered live through the safepoint (and |
2683 | // thus makes sure they get relocated.) |
2684 | for (CallBase *Call : ToUpdate) { |
2685 | SmallVector<Value *, 64> DeoptValues; |
2686 | |
2687 | for (Value *Arg : GetDeoptBundleOperands(Call)) { |
2688 | assert(!isUnhandledGCPointerType(Arg->getType(), GC.get()) && |
2689 | "support for FCA unimplemented" ); |
2690 | if (isHandledGCPointerType(T: Arg->getType(), GC: GC.get())) |
2691 | DeoptValues.push_back(Elt: Arg); |
2692 | } |
2693 | |
2694 | insertUseHolderAfter(Call, Values: DeoptValues, Holders); |
2695 | } |
2696 | |
2697 | SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); |
2698 | |
2699 | // A) Identify all gc pointers which are statically live at the given call |
2700 | // site. |
2701 | findLiveReferences(F, DT, toUpdate: ToUpdate, records: Records, GC: GC.get()); |
2702 | |
2703 | /// Global mapping from live pointers to a base-defining-value. |
2704 | PointerToBaseTy PointerToBase; |
2705 | |
2706 | // B) Find the base pointers for each live pointer |
2707 | for (size_t i = 0; i < Records.size(); i++) { |
2708 | PartiallyConstructedSafepointRecord &info = Records[i]; |
2709 | findBasePointers(DT, DVCache, Call: ToUpdate[i], result&: info, PointerToBase, KnownBases); |
2710 | } |
2711 | if (PrintBasePointers) { |
2712 | errs() << "Base Pairs (w/o Relocation):\n" ; |
2713 | for (auto &Pair : PointerToBase) { |
2714 | errs() << " derived " ; |
2715 | Pair.first->printAsOperand(O&: errs(), PrintType: false); |
2716 | errs() << " base " ; |
2717 | Pair.second->printAsOperand(O&: errs(), PrintType: false); |
2718 | errs() << "\n" ; |
2719 | ; |
2720 | } |
2721 | } |
2722 | |
2723 | // The base phi insertion logic (for any safepoint) may have inserted new |
2724 | // instructions which are now live at some safepoint. The simplest such |
2725 | // example is: |
2726 | // loop: |
2727 | // phi a <-- will be a new base_phi here |
2728 | // safepoint 1 <-- that needs to be live here |
2729 | // gep a + 1 |
2730 | // safepoint 2 |
2731 | // br loop |
2732 | // We insert some dummy calls after each safepoint to definitely hold live |
2733 | // the base pointers which were identified for that safepoint. We'll then |
2734 | // ask liveness for _every_ base inserted to see what is now live. Then we |
2735 | // remove the dummy calls. |
2736 | Holders.reserve(N: Holders.size() + Records.size()); |
2737 | for (size_t i = 0; i < Records.size(); i++) { |
2738 | PartiallyConstructedSafepointRecord &Info = Records[i]; |
2739 | |
2740 | SmallVector<Value *, 128> Bases; |
2741 | for (auto *Derived : Info.LiveSet) { |
2742 | assert(PointerToBase.count(Derived) && "Missed base for derived pointer" ); |
2743 | Bases.push_back(Elt: PointerToBase[Derived]); |
2744 | } |
2745 | |
2746 | insertUseHolderAfter(Call: ToUpdate[i], Values: Bases, Holders); |
2747 | } |
2748 | |
2749 | // By selecting base pointers, we've effectively inserted new uses. Thus, we |
2750 | // need to rerun liveness. We may *also* have inserted new defs, but that's |
2751 | // not the key issue. |
2752 | recomputeLiveInValues(F, DT, toUpdate: ToUpdate, records: Records, PointerToBase, GC: GC.get()); |
2753 | |
2754 | if (PrintBasePointers) { |
2755 | errs() << "Base Pairs: (w/Relocation)\n" ; |
2756 | for (auto Pair : PointerToBase) { |
2757 | errs() << " derived " ; |
2758 | Pair.first->printAsOperand(O&: errs(), PrintType: false); |
2759 | errs() << " base " ; |
2760 | Pair.second->printAsOperand(O&: errs(), PrintType: false); |
2761 | errs() << "\n" ; |
2762 | } |
2763 | } |
2764 | |
2765 | // It is possible that non-constant live variables have a constant base. For |
2766 | // example, a GEP with a variable offset from a global. In this case we can |
2767 | // remove it from the liveset. We already don't add constants to the liveset |
2768 | // because we assume they won't move at runtime and the GC doesn't need to be |
2769 | // informed about them. The same reasoning applies if the base is constant. |
2770 | // Note that the relocation placement code relies on this filtering for |
2771 | // correctness as it expects the base to be in the liveset, which isn't true |
2772 | // if the base is constant. |
2773 | for (auto &Info : Records) { |
2774 | Info.LiveSet.remove_if(P: [&](Value *LiveV) { |
2775 | assert(PointerToBase.count(LiveV) && "Missed base for derived pointer" ); |
2776 | return isa<Constant>(Val: PointerToBase[LiveV]); |
2777 | }); |
2778 | } |
2779 | |
2780 | for (CallInst *CI : Holders) |
2781 | CI->eraseFromParent(); |
2782 | |
2783 | Holders.clear(); |
2784 | |
2785 | // Compute the cost of possible re-materialization of derived pointers. |
2786 | RematCandTy RematerizationCandidates; |
2787 | findRematerializationCandidates(PointerToBase, RematerizationCandidates, TTI); |
2788 | |
2789 | // In order to reduce live set of statepoint we might choose to rematerialize |
2790 | // some values instead of relocating them. This is purely an optimization and |
2791 | // does not influence correctness. |
2792 | // First try rematerialization at uses, then after statepoints. |
2793 | rematerializeLiveValuesAtUses(RematerizationCandidates, Records, |
2794 | PointerToBase); |
2795 | for (size_t i = 0; i < Records.size(); i++) |
2796 | rematerializeLiveValues(Call: ToUpdate[i], Info&: Records[i], PointerToBase, |
2797 | RematerizationCandidates, TTI); |
2798 | |
2799 | // We need this to safely RAUW and delete call or invoke return values that |
2800 | // may themselves be live over a statepoint. For details, please see usage in |
2801 | // makeStatepointExplicitImpl. |
2802 | std::vector<DeferredReplacement> Replacements; |
2803 | |
2804 | // Now run through and replace the existing statepoints with new ones with |
2805 | // the live variables listed. We do not yet update uses of the values being |
2806 | // relocated. We have references to live variables that need to |
2807 | // survive to the last iteration of this loop. (By construction, the |
2808 | // previous statepoint can not be a live variable, thus we can and remove |
2809 | // the old statepoint calls as we go.) |
2810 | for (size_t i = 0; i < Records.size(); i++) |
2811 | makeStatepointExplicit(DT, Call: ToUpdate[i], Result&: Records[i], Replacements, |
2812 | PointerToBase, GC: GC.get()); |
2813 | |
2814 | ToUpdate.clear(); // prevent accident use of invalid calls. |
2815 | |
2816 | for (auto &PR : Replacements) |
2817 | PR.doReplacement(); |
2818 | |
2819 | Replacements.clear(); |
2820 | |
2821 | for (auto &Info : Records) { |
2822 | // These live sets may contain state Value pointers, since we replaced calls |
2823 | // with operand bundles with calls wrapped in gc.statepoint, and some of |
2824 | // those calls may have been def'ing live gc pointers. Clear these out to |
2825 | // avoid accidentally using them. |
2826 | // |
2827 | // TODO: We should create a separate data structure that does not contain |
2828 | // these live sets, and migrate to using that data structure from this point |
2829 | // onward. |
2830 | Info.LiveSet.clear(); |
2831 | } |
2832 | PointerToBase.clear(); |
2833 | |
2834 | // Do all the fixups of the original live variables to their relocated selves |
2835 | SmallVector<Value *, 128> Live; |
2836 | for (const PartiallyConstructedSafepointRecord &Info : Records) { |
2837 | // We can't simply save the live set from the original insertion. One of |
2838 | // the live values might be the result of a call which needs a safepoint. |
2839 | // That Value* no longer exists and we need to use the new gc_result. |
2840 | // Thankfully, the live set is embedded in the statepoint (and updated), so |
2841 | // we just grab that. |
2842 | llvm::append_range(C&: Live, R: Info.StatepointToken->gc_args()); |
2843 | #ifndef NDEBUG |
2844 | // Do some basic validation checking on our liveness results before |
2845 | // performing relocation. Relocation can and will turn mistakes in liveness |
2846 | // results into non-sensical code which is must harder to debug. |
2847 | // TODO: It would be nice to test consistency as well |
2848 | assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && |
2849 | "statepoint must be reachable or liveness is meaningless" ); |
2850 | for (Value *V : Info.StatepointToken->gc_args()) { |
2851 | if (!isa<Instruction>(V)) |
2852 | // Non-instruction values trivial dominate all possible uses |
2853 | continue; |
2854 | auto *LiveInst = cast<Instruction>(V); |
2855 | assert(DT.isReachableFromEntry(LiveInst->getParent()) && |
2856 | "unreachable values should never be live" ); |
2857 | assert(DT.dominates(LiveInst, Info.StatepointToken) && |
2858 | "basic SSA liveness expectation violated by liveness analysis" ); |
2859 | } |
2860 | #endif |
2861 | } |
2862 | unique_unsorted(Vec&: Live); |
2863 | |
2864 | #ifndef NDEBUG |
2865 | // Validation check |
2866 | for (auto *Ptr : Live) |
2867 | assert(isHandledGCPointerType(Ptr->getType(), GC.get()) && |
2868 | "must be a gc pointer type" ); |
2869 | #endif |
2870 | |
2871 | relocationViaAlloca(F, DT, Live, Records); |
2872 | return !Records.empty(); |
2873 | } |
2874 | |
2875 | // List of all parameter and return attributes which must be stripped when |
2876 | // lowering from the abstract machine model. Note that we list attributes |
2877 | // here which aren't valid as return attributes, that is okay. |
2878 | static AttributeMask getParamAndReturnAttributesToRemove() { |
2879 | AttributeMask R; |
2880 | R.addAttribute(Val: Attribute::Dereferenceable); |
2881 | R.addAttribute(Val: Attribute::DereferenceableOrNull); |
2882 | R.addAttribute(Val: Attribute::ReadNone); |
2883 | R.addAttribute(Val: Attribute::ReadOnly); |
2884 | R.addAttribute(Val: Attribute::WriteOnly); |
2885 | R.addAttribute(Val: Attribute::NoAlias); |
2886 | R.addAttribute(Val: Attribute::NoFree); |
2887 | return R; |
2888 | } |
2889 | |
2890 | static void stripNonValidAttributesFromPrototype(Function &F) { |
2891 | LLVMContext &Ctx = F.getContext(); |
2892 | |
2893 | // Intrinsics are very delicate. Lowering sometimes depends the presence |
2894 | // of certain attributes for correctness, but we may have also inferred |
2895 | // additional ones in the abstract machine model which need stripped. This |
2896 | // assumes that the attributes defined in Intrinsic.td are conservatively |
2897 | // correct for both physical and abstract model. |
2898 | if (Intrinsic::ID id = F.getIntrinsicID()) { |
2899 | F.setAttributes(Intrinsic::getAttributes(C&: Ctx, id)); |
2900 | return; |
2901 | } |
2902 | |
2903 | AttributeMask R = getParamAndReturnAttributesToRemove(); |
2904 | for (Argument &A : F.args()) |
2905 | if (isa<PointerType>(Val: A.getType())) |
2906 | F.removeParamAttrs(ArgNo: A.getArgNo(), Attrs: R); |
2907 | |
2908 | if (isa<PointerType>(Val: F.getReturnType())) |
2909 | F.removeRetAttrs(Attrs: R); |
2910 | |
2911 | for (auto Attr : FnAttrsToStrip) |
2912 | F.removeFnAttr(Kind: Attr); |
2913 | } |
2914 | |
2915 | /// Certain metadata on instructions are invalid after running RS4GC. |
2916 | /// Optimizations that run after RS4GC can incorrectly use this metadata to |
2917 | /// optimize functions. We drop such metadata on the instruction. |
2918 | static void stripInvalidMetadataFromInstruction(Instruction &I) { |
2919 | if (!isa<LoadInst>(Val: I) && !isa<StoreInst>(Val: I)) |
2920 | return; |
2921 | // These are the attributes that are still valid on loads and stores after |
2922 | // RS4GC. |
2923 | // The metadata implying dereferenceability and noalias are (conservatively) |
2924 | // dropped. This is because semantically, after RewriteStatepointsForGC runs, |
2925 | // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can |
2926 | // touch the entire heap including noalias objects. Note: The reasoning is |
2927 | // same as stripping the dereferenceability and noalias attributes that are |
2928 | // analogous to the metadata counterparts. |
2929 | // We also drop the invariant.load metadata on the load because that metadata |
2930 | // implies the address operand to the load points to memory that is never |
2931 | // changed once it became dereferenceable. This is no longer true after RS4GC. |
2932 | // Similar reasoning applies to invariant.group metadata, which applies to |
2933 | // loads within a group. |
2934 | unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, |
2935 | LLVMContext::MD_range, |
2936 | LLVMContext::MD_alias_scope, |
2937 | LLVMContext::MD_nontemporal, |
2938 | LLVMContext::MD_nonnull, |
2939 | LLVMContext::MD_align, |
2940 | LLVMContext::MD_type}; |
2941 | |
2942 | // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. |
2943 | I.dropUnknownNonDebugMetadata(KnownIDs: ValidMetadataAfterRS4GC); |
2944 | } |
2945 | |
2946 | static void stripNonValidDataFromBody(Function &F) { |
2947 | if (F.empty()) |
2948 | return; |
2949 | |
2950 | LLVMContext &Ctx = F.getContext(); |
2951 | MDBuilder Builder(Ctx); |
2952 | |
2953 | // Set of invariantstart instructions that we need to remove. |
2954 | // Use this to avoid invalidating the instruction iterator. |
2955 | SmallVector<IntrinsicInst*, 12> InvariantStartInstructions; |
2956 | |
2957 | for (Instruction &I : instructions(F)) { |
2958 | // invariant.start on memory location implies that the referenced memory |
2959 | // location is constant and unchanging. This is no longer true after |
2960 | // RewriteStatepointsForGC runs because there can be calls to gc.statepoint |
2961 | // which frees the entire heap and the presence of invariant.start allows |
2962 | // the optimizer to sink the load of a memory location past a statepoint, |
2963 | // which is incorrect. |
2964 | if (auto *II = dyn_cast<IntrinsicInst>(Val: &I)) |
2965 | if (II->getIntrinsicID() == Intrinsic::invariant_start) { |
2966 | InvariantStartInstructions.push_back(Elt: II); |
2967 | continue; |
2968 | } |
2969 | |
2970 | if (MDNode *Tag = I.getMetadata(KindID: LLVMContext::MD_tbaa)) { |
2971 | MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag); |
2972 | I.setMetadata(KindID: LLVMContext::MD_tbaa, Node: MutableTBAA); |
2973 | } |
2974 | |
2975 | stripInvalidMetadataFromInstruction(I); |
2976 | |
2977 | AttributeMask R = getParamAndReturnAttributesToRemove(); |
2978 | if (auto *Call = dyn_cast<CallBase>(Val: &I)) { |
2979 | for (int i = 0, e = Call->arg_size(); i != e; i++) |
2980 | if (isa<PointerType>(Val: Call->getArgOperand(i)->getType())) |
2981 | Call->removeParamAttrs(ArgNo: i, AttrsToRemove: R); |
2982 | if (isa<PointerType>(Val: Call->getType())) |
2983 | Call->removeRetAttrs(AttrsToRemove: R); |
2984 | } |
2985 | } |
2986 | |
2987 | // Delete the invariant.start instructions and RAUW poison. |
2988 | for (auto *II : InvariantStartInstructions) { |
2989 | II->replaceAllUsesWith(V: PoisonValue::get(T: II->getType())); |
2990 | II->eraseFromParent(); |
2991 | } |
2992 | } |
2993 | |
2994 | /// Looks up the GC strategy for a given function, returning null if the |
2995 | /// function doesn't have a GC tag. The strategy is stored in the cache. |
2996 | static std::unique_ptr<GCStrategy> findGCStrategy(Function &F) { |
2997 | if (!F.hasGC()) |
2998 | return nullptr; |
2999 | |
3000 | return getGCStrategy(Name: F.getGC()); |
3001 | } |
3002 | |
3003 | /// Returns true if this function should be rewritten by this pass. The main |
3004 | /// point of this function is as an extension point for custom logic. |
3005 | static bool shouldRewriteStatepointsIn(Function &F) { |
3006 | if (!F.hasGC()) |
3007 | return false; |
3008 | |
3009 | std::unique_ptr<GCStrategy> Strategy = findGCStrategy(F); |
3010 | |
3011 | assert(Strategy && "GC strategy is required by function, but was not found" ); |
3012 | |
3013 | return Strategy->useRS4GC(); |
3014 | } |
3015 | |
3016 | static void stripNonValidData(Module &M) { |
3017 | #ifndef NDEBUG |
3018 | assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!" ); |
3019 | #endif |
3020 | |
3021 | for (Function &F : M) |
3022 | stripNonValidAttributesFromPrototype(F); |
3023 | |
3024 | for (Function &F : M) |
3025 | stripNonValidDataFromBody(F); |
3026 | } |
3027 | |
3028 | bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT, |
3029 | TargetTransformInfo &TTI, |
3030 | const TargetLibraryInfo &TLI) { |
3031 | assert(!F.isDeclaration() && !F.empty() && |
3032 | "need function body to rewrite statepoints in" ); |
3033 | assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision" ); |
3034 | |
3035 | auto NeedsRewrite = [&TLI](Instruction &I) { |
3036 | if (const auto *Call = dyn_cast<CallBase>(Val: &I)) { |
3037 | if (isa<GCStatepointInst>(Val: Call)) |
3038 | return false; |
3039 | if (callsGCLeafFunction(Call, TLI)) |
3040 | return false; |
3041 | |
3042 | // Normally it's up to the frontend to make sure that non-leaf calls also |
3043 | // have proper deopt state if it is required. We make an exception for |
3044 | // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics |
3045 | // these are non-leaf by default. They might be generated by the optimizer |
3046 | // which doesn't know how to produce a proper deopt state. So if we see a |
3047 | // non-leaf memcpy/memmove without deopt state just treat it as a leaf |
3048 | // copy and don't produce a statepoint. |
3049 | if (!AllowStatepointWithNoDeoptInfo && !Call->hasDeoptState()) { |
3050 | assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) && |
3051 | "Don't expect any other calls here!" ); |
3052 | return false; |
3053 | } |
3054 | return true; |
3055 | } |
3056 | return false; |
3057 | }; |
3058 | |
3059 | // Delete any unreachable statepoints so that we don't have unrewritten |
3060 | // statepoints surviving this pass. This makes testing easier and the |
3061 | // resulting IR less confusing to human readers. |
3062 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); |
3063 | bool MadeChange = removeUnreachableBlocks(F, DTU: &DTU); |
3064 | // Flush the Dominator Tree. |
3065 | DTU.getDomTree(); |
3066 | |
3067 | // Gather all the statepoints which need rewritten. Be careful to only |
3068 | // consider those in reachable code since we need to ask dominance queries |
3069 | // when rewriting. We'll delete the unreachable ones in a moment. |
3070 | SmallVector<CallBase *, 64> ParsePointNeeded; |
3071 | SmallVector<CallInst *, 64> Intrinsics; |
3072 | for (Instruction &I : instructions(F)) { |
3073 | // TODO: only the ones with the flag set! |
3074 | if (NeedsRewrite(I)) { |
3075 | // NOTE removeUnreachableBlocks() is stronger than |
3076 | // DominatorTree::isReachableFromEntry(). In other words |
3077 | // removeUnreachableBlocks can remove some blocks for which |
3078 | // isReachableFromEntry() returns true. |
3079 | assert(DT.isReachableFromEntry(I.getParent()) && |
3080 | "no unreachable blocks expected" ); |
3081 | ParsePointNeeded.push_back(Elt: cast<CallBase>(Val: &I)); |
3082 | } |
3083 | if (auto *CI = dyn_cast<CallInst>(Val: &I)) |
3084 | if (CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_base || |
3085 | CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_offset) |
3086 | Intrinsics.emplace_back(Args&: CI); |
3087 | } |
3088 | |
3089 | // Return early if no work to do. |
3090 | if (ParsePointNeeded.empty() && Intrinsics.empty()) |
3091 | return MadeChange; |
3092 | |
3093 | // As a prepass, go ahead and aggressively destroy single entry phi nodes. |
3094 | // These are created by LCSSA. They have the effect of increasing the size |
3095 | // of liveness sets for no good reason. It may be harder to do this post |
3096 | // insertion since relocations and base phis can confuse things. |
3097 | for (BasicBlock &BB : F) |
3098 | if (BB.getUniquePredecessor()) |
3099 | MadeChange |= FoldSingleEntryPHINodes(BB: &BB); |
3100 | |
3101 | // Before we start introducing relocations, we want to tweak the IR a bit to |
3102 | // avoid unfortunate code generation effects. The main example is that we |
3103 | // want to try to make sure the comparison feeding a branch is after any |
3104 | // safepoints. Otherwise, we end up with a comparison of pre-relocation |
3105 | // values feeding a branch after relocation. This is semantically correct, |
3106 | // but results in extra register pressure since both the pre-relocation and |
3107 | // post-relocation copies must be available in registers. For code without |
3108 | // relocations this is handled elsewhere, but teaching the scheduler to |
3109 | // reverse the transform we're about to do would be slightly complex. |
3110 | // Note: This may extend the live range of the inputs to the icmp and thus |
3111 | // increase the liveset of any statepoint we move over. This is profitable |
3112 | // as long as all statepoints are in rare blocks. If we had in-register |
3113 | // lowering for live values this would be a much safer transform. |
3114 | auto getConditionInst = [](Instruction *TI) -> Instruction * { |
3115 | if (auto *BI = dyn_cast<BranchInst>(Val: TI)) |
3116 | if (BI->isConditional()) |
3117 | return dyn_cast<Instruction>(Val: BI->getCondition()); |
3118 | // TODO: Extend this to handle switches |
3119 | return nullptr; |
3120 | }; |
3121 | for (BasicBlock &BB : F) { |
3122 | Instruction *TI = BB.getTerminator(); |
3123 | if (auto *Cond = getConditionInst(TI)) |
3124 | // TODO: Handle more than just ICmps here. We should be able to move |
3125 | // most instructions without side effects or memory access. |
3126 | if (isa<ICmpInst>(Val: Cond) && Cond->hasOneUse()) { |
3127 | MadeChange = true; |
3128 | Cond->moveBefore(MovePos: TI); |
3129 | } |
3130 | } |
3131 | |
3132 | // Nasty workaround - The base computation code in the main algorithm doesn't |
3133 | // consider the fact that a GEP can be used to convert a scalar to a vector. |
3134 | // The right fix for this is to integrate GEPs into the base rewriting |
3135 | // algorithm properly, this is just a short term workaround to prevent |
3136 | // crashes by canonicalizing such GEPs into fully vector GEPs. |
3137 | for (Instruction &I : instructions(F)) { |
3138 | if (!isa<GetElementPtrInst>(Val: I)) |
3139 | continue; |
3140 | |
3141 | unsigned VF = 0; |
3142 | for (unsigned i = 0; i < I.getNumOperands(); i++) |
3143 | if (auto *OpndVTy = dyn_cast<VectorType>(Val: I.getOperand(i)->getType())) { |
3144 | assert(VF == 0 || |
3145 | VF == cast<FixedVectorType>(OpndVTy)->getNumElements()); |
3146 | VF = cast<FixedVectorType>(Val: OpndVTy)->getNumElements(); |
3147 | } |
3148 | |
3149 | // It's the vector to scalar traversal through the pointer operand which |
3150 | // confuses base pointer rewriting, so limit ourselves to that case. |
3151 | if (!I.getOperand(i: 0)->getType()->isVectorTy() && VF != 0) { |
3152 | IRBuilder<> B(&I); |
3153 | auto *Splat = B.CreateVectorSplat(NumElts: VF, V: I.getOperand(i: 0)); |
3154 | I.setOperand(i: 0, Val: Splat); |
3155 | MadeChange = true; |
3156 | } |
3157 | } |
3158 | |
3159 | // Cache the 'defining value' relation used in the computation and |
3160 | // insertion of base phis and selects. This ensures that we don't insert |
3161 | // large numbers of duplicate base_phis. Use one cache for both |
3162 | // inlineGetBaseAndOffset() and insertParsePoints(). |
3163 | DefiningValueMapTy DVCache; |
3164 | |
3165 | // Mapping between a base values and a flag indicating whether it's a known |
3166 | // base or not. |
3167 | IsKnownBaseMapTy KnownBases; |
3168 | |
3169 | if (!Intrinsics.empty()) |
3170 | // Inline @gc.get.pointer.base() and @gc.get.pointer.offset() before finding |
3171 | // live references. |
3172 | MadeChange |= inlineGetBaseAndOffset(F, Intrinsics, DVCache, KnownBases); |
3173 | |
3174 | if (!ParsePointNeeded.empty()) |
3175 | MadeChange |= |
3176 | insertParsePoints(F, DT, TTI, ToUpdate&: ParsePointNeeded, DVCache, KnownBases); |
3177 | |
3178 | return MadeChange; |
3179 | } |
3180 | |
3181 | // liveness computation via standard dataflow |
3182 | // ------------------------------------------------------------------- |
3183 | |
3184 | // TODO: Consider using bitvectors for liveness, the set of potentially |
3185 | // interesting values should be small and easy to pre-compute. |
3186 | |
3187 | /// Compute the live-in set for the location rbegin starting from |
3188 | /// the live-out set of the basic block |
3189 | static void computeLiveInValues(BasicBlock::reverse_iterator Begin, |
3190 | BasicBlock::reverse_iterator End, |
3191 | SetVector<Value *> &LiveTmp, GCStrategy *GC) { |
3192 | for (auto &I : make_range(x: Begin, y: End)) { |
3193 | // KILL/Def - Remove this definition from LiveIn |
3194 | LiveTmp.remove(X: &I); |
3195 | |
3196 | // Don't consider *uses* in PHI nodes, we handle their contribution to |
3197 | // predecessor blocks when we seed the LiveOut sets |
3198 | if (isa<PHINode>(Val: I)) |
3199 | continue; |
3200 | |
3201 | // USE - Add to the LiveIn set for this instruction |
3202 | for (Value *V : I.operands()) { |
3203 | assert(!isUnhandledGCPointerType(V->getType(), GC) && |
3204 | "support for FCA unimplemented" ); |
3205 | if (isHandledGCPointerType(T: V->getType(), GC) && !isa<Constant>(Val: V)) { |
3206 | // The choice to exclude all things constant here is slightly subtle. |
3207 | // There are two independent reasons: |
3208 | // - We assume that things which are constant (from LLVM's definition) |
3209 | // do not move at runtime. For example, the address of a global |
3210 | // variable is fixed, even though it's contents may not be. |
3211 | // - Second, we can't disallow arbitrary inttoptr constants even |
3212 | // if the language frontend does. Optimization passes are free to |
3213 | // locally exploit facts without respect to global reachability. This |
3214 | // can create sections of code which are dynamically unreachable and |
3215 | // contain just about anything. (see constants.ll in tests) |
3216 | LiveTmp.insert(X: V); |
3217 | } |
3218 | } |
3219 | } |
3220 | } |
3221 | |
3222 | static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp, |
3223 | GCStrategy *GC) { |
3224 | for (BasicBlock *Succ : successors(BB)) { |
3225 | for (auto &I : *Succ) { |
3226 | PHINode *PN = dyn_cast<PHINode>(Val: &I); |
3227 | if (!PN) |
3228 | break; |
3229 | |
3230 | Value *V = PN->getIncomingValueForBlock(BB); |
3231 | assert(!isUnhandledGCPointerType(V->getType(), GC) && |
3232 | "support for FCA unimplemented" ); |
3233 | if (isHandledGCPointerType(T: V->getType(), GC) && !isa<Constant>(Val: V)) |
3234 | LiveTmp.insert(X: V); |
3235 | } |
3236 | } |
3237 | } |
3238 | |
3239 | static SetVector<Value *> computeKillSet(BasicBlock *BB, GCStrategy *GC) { |
3240 | SetVector<Value *> KillSet; |
3241 | for (Instruction &I : *BB) |
3242 | if (isHandledGCPointerType(T: I.getType(), GC)) |
3243 | KillSet.insert(X: &I); |
3244 | return KillSet; |
3245 | } |
3246 | |
3247 | #ifndef NDEBUG |
3248 | /// Check that the items in 'Live' dominate 'TI'. This is used as a basic |
3249 | /// validation check for the liveness computation. |
3250 | static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, |
3251 | Instruction *TI, bool TermOkay = false) { |
3252 | for (Value *V : Live) { |
3253 | if (auto *I = dyn_cast<Instruction>(V)) { |
3254 | // The terminator can be a member of the LiveOut set. LLVM's definition |
3255 | // of instruction dominance states that V does not dominate itself. As |
3256 | // such, we need to special case this to allow it. |
3257 | if (TermOkay && TI == I) |
3258 | continue; |
3259 | assert(DT.dominates(I, TI) && |
3260 | "basic SSA liveness expectation violated by liveness analysis" ); |
3261 | } |
3262 | } |
3263 | } |
3264 | |
3265 | /// Check that all the liveness sets used during the computation of liveness |
3266 | /// obey basic SSA properties. This is useful for finding cases where we miss |
3267 | /// a def. |
3268 | static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, |
3269 | BasicBlock &BB) { |
3270 | checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); |
3271 | checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); |
3272 | checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); |
3273 | } |
3274 | #endif |
3275 | |
3276 | static void computeLiveInValues(DominatorTree &DT, Function &F, |
3277 | GCPtrLivenessData &Data, GCStrategy *GC) { |
3278 | SmallSetVector<BasicBlock *, 32> Worklist; |
3279 | |
3280 | // Seed the liveness for each individual block |
3281 | for (BasicBlock &BB : F) { |
3282 | Data.KillSet[&BB] = computeKillSet(BB: &BB, GC); |
3283 | Data.LiveSet[&BB].clear(); |
3284 | computeLiveInValues(Begin: BB.rbegin(), End: BB.rend(), LiveTmp&: Data.LiveSet[&BB], GC); |
3285 | |
3286 | #ifndef NDEBUG |
3287 | for (Value *Kill : Data.KillSet[&BB]) |
3288 | assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill" ); |
3289 | #endif |
3290 | |
3291 | Data.LiveOut[&BB] = SetVector<Value *>(); |
3292 | computeLiveOutSeed(BB: &BB, LiveTmp&: Data.LiveOut[&BB], GC); |
3293 | Data.LiveIn[&BB] = Data.LiveSet[&BB]; |
3294 | Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); |
3295 | Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); |
3296 | if (!Data.LiveIn[&BB].empty()) |
3297 | Worklist.insert(Start: pred_begin(BB: &BB), End: pred_end(BB: &BB)); |
3298 | } |
3299 | |
3300 | // Propagate that liveness until stable |
3301 | while (!Worklist.empty()) { |
3302 | BasicBlock *BB = Worklist.pop_back_val(); |
3303 | |
3304 | // Compute our new liveout set, then exit early if it hasn't changed despite |
3305 | // the contribution of our successor. |
3306 | SetVector<Value *> LiveOut = Data.LiveOut[BB]; |
3307 | const auto OldLiveOutSize = LiveOut.size(); |
3308 | for (BasicBlock *Succ : successors(BB)) { |
3309 | assert(Data.LiveIn.count(Succ)); |
3310 | LiveOut.set_union(Data.LiveIn[Succ]); |
3311 | } |
3312 | // assert OutLiveOut is a subset of LiveOut |
3313 | if (OldLiveOutSize == LiveOut.size()) { |
3314 | // If the sets are the same size, then we didn't actually add anything |
3315 | // when unioning our successors LiveIn. Thus, the LiveIn of this block |
3316 | // hasn't changed. |
3317 | continue; |
3318 | } |
3319 | Data.LiveOut[BB] = LiveOut; |
3320 | |
3321 | // Apply the effects of this basic block |
3322 | SetVector<Value *> LiveTmp = LiveOut; |
3323 | LiveTmp.set_union(Data.LiveSet[BB]); |
3324 | LiveTmp.set_subtract(Data.KillSet[BB]); |
3325 | |
3326 | assert(Data.LiveIn.count(BB)); |
3327 | const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; |
3328 | // assert: OldLiveIn is a subset of LiveTmp |
3329 | if (OldLiveIn.size() != LiveTmp.size()) { |
3330 | Data.LiveIn[BB] = LiveTmp; |
3331 | Worklist.insert(Start: pred_begin(BB), End: pred_end(BB)); |
3332 | } |
3333 | } // while (!Worklist.empty()) |
3334 | |
3335 | #ifndef NDEBUG |
3336 | // Verify our output against SSA properties. This helps catch any |
3337 | // missing kills during the above iteration. |
3338 | for (BasicBlock &BB : F) |
3339 | checkBasicSSA(DT, Data, BB); |
3340 | #endif |
3341 | } |
3342 | |
3343 | static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, |
3344 | StatepointLiveSetTy &Out, GCStrategy *GC) { |
3345 | BasicBlock *BB = Inst->getParent(); |
3346 | |
3347 | // Note: The copy is intentional and required |
3348 | assert(Data.LiveOut.count(BB)); |
3349 | SetVector<Value *> LiveOut = Data.LiveOut[BB]; |
3350 | |
3351 | // We want to handle the statepoint itself oddly. It's |
3352 | // call result is not live (normal), nor are it's arguments |
3353 | // (unless they're used again later). This adjustment is |
3354 | // specifically what we need to relocate |
3355 | computeLiveInValues(Begin: BB->rbegin(), End: ++Inst->getIterator().getReverse(), LiveTmp&: LiveOut, |
3356 | GC); |
3357 | LiveOut.remove(X: Inst); |
3358 | Out.insert(Start: LiveOut.begin(), End: LiveOut.end()); |
3359 | } |
3360 | |
3361 | static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, |
3362 | CallBase *Call, |
3363 | PartiallyConstructedSafepointRecord &Info, |
3364 | PointerToBaseTy &PointerToBase, |
3365 | GCStrategy *GC) { |
3366 | StatepointLiveSetTy Updated; |
3367 | findLiveSetAtInst(Inst: Call, Data&: RevisedLivenessData, Out&: Updated, GC); |
3368 | |
3369 | // We may have base pointers which are now live that weren't before. We need |
3370 | // to update the PointerToBase structure to reflect this. |
3371 | for (auto *V : Updated) |
3372 | PointerToBase.insert(KV: { V, V }); |
3373 | |
3374 | Info.LiveSet = Updated; |
3375 | } |
3376 | |