1 | //===- CodeLayout.cpp - Implementation of code layout algorithms ----------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // The file implements "cache-aware" layout algorithms of basic blocks and |
10 | // functions in a binary. |
11 | // |
12 | // The algorithm tries to find a layout of nodes (basic blocks) of a given CFG |
13 | // optimizing jump locality and thus processor I-cache utilization. This is |
14 | // achieved via increasing the number of fall-through jumps and co-locating |
15 | // frequently executed nodes together. The name follows the underlying |
16 | // optimization problem, Extended-TSP, which is a generalization of classical |
17 | // (maximum) Traveling Salesmen Problem. |
18 | // |
19 | // The algorithm is a greedy heuristic that works with chains (ordered lists) |
20 | // of basic blocks. Initially all chains are isolated basic blocks. On every |
21 | // iteration, we pick a pair of chains whose merging yields the biggest increase |
22 | // in the ExtTSP score, which models how i-cache "friendly" a specific chain is. |
23 | // A pair of chains giving the maximum gain is merged into a new chain. The |
24 | // procedure stops when there is only one chain left, or when merging does not |
25 | // increase ExtTSP. In the latter case, the remaining chains are sorted by |
26 | // density in the decreasing order. |
27 | // |
28 | // An important aspect is the way two chains are merged. Unlike earlier |
29 | // algorithms (e.g., based on the approach of Pettis-Hansen), two |
30 | // chains, X and Y, are first split into three, X1, X2, and Y. Then we |
31 | // consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y, |
32 | // X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score. |
33 | // This improves the quality of the final result (the search space is larger) |
34 | // while keeping the implementation sufficiently fast. |
35 | // |
36 | // Reference: |
37 | // * A. Newell and S. Pupyrev, Improved Basic Block Reordering, |
38 | // IEEE Transactions on Computers, 2020 |
39 | // https://arxiv.org/abs/1809.04676 |
40 | // |
41 | //===----------------------------------------------------------------------===// |
42 | |
43 | #include "llvm/Transforms/Utils/CodeLayout.h" |
44 | #include "llvm/Support/CommandLine.h" |
45 | #include "llvm/Support/Debug.h" |
46 | |
47 | #include <cmath> |
48 | #include <set> |
49 | |
50 | using namespace llvm; |
51 | using namespace llvm::codelayout; |
52 | |
53 | #define DEBUG_TYPE "code-layout" |
54 | |
55 | namespace llvm { |
56 | cl::opt<bool> EnableExtTspBlockPlacement( |
57 | "enable-ext-tsp-block-placement" , cl::Hidden, cl::init(Val: false), |
58 | cl::desc("Enable machine block placement based on the ext-tsp model, " |
59 | "optimizing I-cache utilization." )); |
60 | |
61 | cl::opt<bool> ApplyExtTspWithoutProfile( |
62 | "ext-tsp-apply-without-profile" , |
63 | cl::desc("Whether to apply ext-tsp placement for instances w/o profile" ), |
64 | cl::init(Val: true), cl::Hidden); |
65 | } // namespace llvm |
66 | |
67 | // Algorithm-specific params for Ext-TSP. The values are tuned for the best |
68 | // performance of large-scale front-end bound binaries. |
69 | static cl::opt<double> ForwardWeightCond( |
70 | "ext-tsp-forward-weight-cond" , cl::ReallyHidden, cl::init(Val: 0.1), |
71 | cl::desc("The weight of conditional forward jumps for ExtTSP value" )); |
72 | |
73 | static cl::opt<double> ForwardWeightUncond( |
74 | "ext-tsp-forward-weight-uncond" , cl::ReallyHidden, cl::init(Val: 0.1), |
75 | cl::desc("The weight of unconditional forward jumps for ExtTSP value" )); |
76 | |
77 | static cl::opt<double> BackwardWeightCond( |
78 | "ext-tsp-backward-weight-cond" , cl::ReallyHidden, cl::init(Val: 0.1), |
79 | cl::desc("The weight of conditional backward jumps for ExtTSP value" )); |
80 | |
81 | static cl::opt<double> BackwardWeightUncond( |
82 | "ext-tsp-backward-weight-uncond" , cl::ReallyHidden, cl::init(Val: 0.1), |
83 | cl::desc("The weight of unconditional backward jumps for ExtTSP value" )); |
84 | |
85 | static cl::opt<double> FallthroughWeightCond( |
86 | "ext-tsp-fallthrough-weight-cond" , cl::ReallyHidden, cl::init(Val: 1.0), |
87 | cl::desc("The weight of conditional fallthrough jumps for ExtTSP value" )); |
88 | |
89 | static cl::opt<double> FallthroughWeightUncond( |
90 | "ext-tsp-fallthrough-weight-uncond" , cl::ReallyHidden, cl::init(Val: 1.05), |
91 | cl::desc("The weight of unconditional fallthrough jumps for ExtTSP value" )); |
92 | |
93 | static cl::opt<unsigned> ForwardDistance( |
94 | "ext-tsp-forward-distance" , cl::ReallyHidden, cl::init(Val: 1024), |
95 | cl::desc("The maximum distance (in bytes) of a forward jump for ExtTSP" )); |
96 | |
97 | static cl::opt<unsigned> BackwardDistance( |
98 | "ext-tsp-backward-distance" , cl::ReallyHidden, cl::init(Val: 640), |
99 | cl::desc("The maximum distance (in bytes) of a backward jump for ExtTSP" )); |
100 | |
101 | // The maximum size of a chain created by the algorithm. The size is bounded |
102 | // so that the algorithm can efficiently process extremely large instances. |
103 | static cl::opt<unsigned> |
104 | MaxChainSize("ext-tsp-max-chain-size" , cl::ReallyHidden, cl::init(Val: 512), |
105 | cl::desc("The maximum size of a chain to create" )); |
106 | |
107 | // The maximum size of a chain for splitting. Larger values of the threshold |
108 | // may yield better quality at the cost of worsen run-time. |
109 | static cl::opt<unsigned> ChainSplitThreshold( |
110 | "ext-tsp-chain-split-threshold" , cl::ReallyHidden, cl::init(Val: 128), |
111 | cl::desc("The maximum size of a chain to apply splitting" )); |
112 | |
113 | // The maximum ratio between densities of two chains for merging. |
114 | static cl::opt<double> MaxMergeDensityRatio( |
115 | "ext-tsp-max-merge-density-ratio" , cl::ReallyHidden, cl::init(Val: 100), |
116 | cl::desc("The maximum ratio between densities of two chains for merging" )); |
117 | |
118 | // Algorithm-specific options for CDSort. |
119 | static cl::opt<unsigned> CacheEntries("cdsort-cache-entries" , cl::ReallyHidden, |
120 | cl::desc("The size of the cache" )); |
121 | |
122 | static cl::opt<unsigned> CacheSize("cdsort-cache-size" , cl::ReallyHidden, |
123 | cl::desc("The size of a line in the cache" )); |
124 | |
125 | static cl::opt<unsigned> |
126 | CDMaxChainSize("cdsort-max-chain-size" , cl::ReallyHidden, |
127 | cl::desc("The maximum size of a chain to create" )); |
128 | |
129 | static cl::opt<double> DistancePower( |
130 | "cdsort-distance-power" , cl::ReallyHidden, |
131 | cl::desc("The power exponent for the distance-based locality" )); |
132 | |
133 | static cl::opt<double> FrequencyScale( |
134 | "cdsort-frequency-scale" , cl::ReallyHidden, |
135 | cl::desc("The scale factor for the frequency-based locality" )); |
136 | |
137 | namespace { |
138 | |
139 | // Epsilon for comparison of doubles. |
140 | constexpr double EPS = 1e-8; |
141 | |
142 | // Compute the Ext-TSP score for a given jump. |
143 | double jumpExtTSPScore(uint64_t JumpDist, uint64_t JumpMaxDist, uint64_t Count, |
144 | double Weight) { |
145 | if (JumpDist > JumpMaxDist) |
146 | return 0; |
147 | double Prob = 1.0 - static_cast<double>(JumpDist) / JumpMaxDist; |
148 | return Weight * Prob * Count; |
149 | } |
150 | |
151 | // Compute the Ext-TSP score for a jump between a given pair of blocks, |
152 | // using their sizes, (estimated) addresses and the jump execution count. |
153 | double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr, |
154 | uint64_t Count, bool IsConditional) { |
155 | // Fallthrough |
156 | if (SrcAddr + SrcSize == DstAddr) { |
157 | return jumpExtTSPScore(JumpDist: 0, JumpMaxDist: 1, Count, |
158 | Weight: IsConditional ? FallthroughWeightCond |
159 | : FallthroughWeightUncond); |
160 | } |
161 | // Forward |
162 | if (SrcAddr + SrcSize < DstAddr) { |
163 | const uint64_t Dist = DstAddr - (SrcAddr + SrcSize); |
164 | return jumpExtTSPScore(JumpDist: Dist, JumpMaxDist: ForwardDistance, Count, |
165 | Weight: IsConditional ? ForwardWeightCond |
166 | : ForwardWeightUncond); |
167 | } |
168 | // Backward |
169 | const uint64_t Dist = SrcAddr + SrcSize - DstAddr; |
170 | return jumpExtTSPScore(JumpDist: Dist, JumpMaxDist: BackwardDistance, Count, |
171 | Weight: IsConditional ? BackwardWeightCond |
172 | : BackwardWeightUncond); |
173 | } |
174 | |
175 | /// A type of merging two chains, X and Y. The former chain is split into |
176 | /// X1 and X2 and then concatenated with Y in the order specified by the type. |
177 | enum class MergeTypeT : int { X_Y, Y_X, X1_Y_X2, Y_X2_X1, X2_X1_Y }; |
178 | |
179 | /// The gain of merging two chains, that is, the Ext-TSP score of the merge |
180 | /// together with the corresponding merge 'type' and 'offset'. |
181 | struct MergeGainT { |
182 | explicit MergeGainT() = default; |
183 | explicit MergeGainT(double Score, size_t MergeOffset, MergeTypeT MergeType) |
184 | : Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {} |
185 | |
186 | double score() const { return Score; } |
187 | |
188 | size_t mergeOffset() const { return MergeOffset; } |
189 | |
190 | MergeTypeT mergeType() const { return MergeType; } |
191 | |
192 | void setMergeType(MergeTypeT Ty) { MergeType = Ty; } |
193 | |
194 | // Returns 'true' iff Other is preferred over this. |
195 | bool operator<(const MergeGainT &Other) const { |
196 | return (Other.Score > EPS && Other.Score > Score + EPS); |
197 | } |
198 | |
199 | // Update the current gain if Other is preferred over this. |
200 | void updateIfLessThan(const MergeGainT &Other) { |
201 | if (*this < Other) |
202 | *this = Other; |
203 | } |
204 | |
205 | private: |
206 | double Score{-1.0}; |
207 | size_t MergeOffset{0}; |
208 | MergeTypeT MergeType{MergeTypeT::X_Y}; |
209 | }; |
210 | |
211 | struct JumpT; |
212 | struct ChainT; |
213 | struct ChainEdge; |
214 | |
215 | /// A node in the graph, typically corresponding to a basic block in the CFG or |
216 | /// a function in the call graph. |
217 | struct NodeT { |
218 | NodeT(const NodeT &) = delete; |
219 | NodeT(NodeT &&) = default; |
220 | NodeT &operator=(const NodeT &) = delete; |
221 | NodeT &operator=(NodeT &&) = default; |
222 | |
223 | explicit NodeT(size_t Index, uint64_t Size, uint64_t Count) |
224 | : Index(Index), Size(Size), ExecutionCount(Count) {} |
225 | |
226 | bool isEntry() const { return Index == 0; } |
227 | |
228 | // Check if Other is a successor of the node. |
229 | bool isSuccessor(const NodeT *Other) const; |
230 | |
231 | // The total execution count of outgoing jumps. |
232 | uint64_t outCount() const; |
233 | |
234 | // The total execution count of incoming jumps. |
235 | uint64_t inCount() const; |
236 | |
237 | // The original index of the node in graph. |
238 | size_t Index{0}; |
239 | // The index of the node in the current chain. |
240 | size_t CurIndex{0}; |
241 | // The size of the node in the binary. |
242 | uint64_t Size{0}; |
243 | // The execution count of the node in the profile data. |
244 | uint64_t ExecutionCount{0}; |
245 | // The current chain of the node. |
246 | ChainT *CurChain{nullptr}; |
247 | // The offset of the node in the current chain. |
248 | mutable uint64_t EstimatedAddr{0}; |
249 | // Forced successor of the node in the graph. |
250 | NodeT *ForcedSucc{nullptr}; |
251 | // Forced predecessor of the node in the graph. |
252 | NodeT *ForcedPred{nullptr}; |
253 | // Outgoing jumps from the node. |
254 | std::vector<JumpT *> OutJumps; |
255 | // Incoming jumps to the node. |
256 | std::vector<JumpT *> InJumps; |
257 | }; |
258 | |
259 | /// An arc in the graph, typically corresponding to a jump between two nodes. |
260 | struct JumpT { |
261 | JumpT(const JumpT &) = delete; |
262 | JumpT(JumpT &&) = default; |
263 | JumpT &operator=(const JumpT &) = delete; |
264 | JumpT &operator=(JumpT &&) = default; |
265 | |
266 | explicit JumpT(NodeT *Source, NodeT *Target, uint64_t ExecutionCount) |
267 | : Source(Source), Target(Target), ExecutionCount(ExecutionCount) {} |
268 | |
269 | // Source node of the jump. |
270 | NodeT *Source; |
271 | // Target node of the jump. |
272 | NodeT *Target; |
273 | // Execution count of the arc in the profile data. |
274 | uint64_t ExecutionCount{0}; |
275 | // Whether the jump corresponds to a conditional branch. |
276 | bool IsConditional{false}; |
277 | // The offset of the jump from the source node. |
278 | uint64_t Offset{0}; |
279 | }; |
280 | |
281 | /// A chain (ordered sequence) of nodes in the graph. |
282 | struct ChainT { |
283 | ChainT(const ChainT &) = delete; |
284 | ChainT(ChainT &&) = default; |
285 | ChainT &operator=(const ChainT &) = delete; |
286 | ChainT &operator=(ChainT &&) = default; |
287 | |
288 | explicit ChainT(uint64_t Id, NodeT *Node) |
289 | : Id(Id), ExecutionCount(Node->ExecutionCount), Size(Node->Size), |
290 | Nodes(1, Node) {} |
291 | |
292 | size_t numBlocks() const { return Nodes.size(); } |
293 | |
294 | double density() const { return ExecutionCount / Size; } |
295 | |
296 | bool isEntry() const { return Nodes[0]->Index == 0; } |
297 | |
298 | bool isCold() const { |
299 | for (NodeT *Node : Nodes) { |
300 | if (Node->ExecutionCount > 0) |
301 | return false; |
302 | } |
303 | return true; |
304 | } |
305 | |
306 | ChainEdge *getEdge(ChainT *Other) const { |
307 | for (const auto &[Chain, ChainEdge] : Edges) { |
308 | if (Chain == Other) |
309 | return ChainEdge; |
310 | } |
311 | return nullptr; |
312 | } |
313 | |
314 | void removeEdge(ChainT *Other) { |
315 | auto It = Edges.begin(); |
316 | while (It != Edges.end()) { |
317 | if (It->first == Other) { |
318 | Edges.erase(position: It); |
319 | return; |
320 | } |
321 | It++; |
322 | } |
323 | } |
324 | |
325 | void addEdge(ChainT *Other, ChainEdge *Edge) { |
326 | Edges.push_back(x: std::make_pair(x&: Other, y&: Edge)); |
327 | } |
328 | |
329 | void merge(ChainT *Other, std::vector<NodeT *> MergedBlocks) { |
330 | Nodes = std::move(MergedBlocks); |
331 | // Update the chain's data. |
332 | ExecutionCount += Other->ExecutionCount; |
333 | Size += Other->Size; |
334 | Id = Nodes[0]->Index; |
335 | // Update the node's data. |
336 | for (size_t Idx = 0; Idx < Nodes.size(); Idx++) { |
337 | Nodes[Idx]->CurChain = this; |
338 | Nodes[Idx]->CurIndex = Idx; |
339 | } |
340 | } |
341 | |
342 | void mergeEdges(ChainT *Other); |
343 | |
344 | void clear() { |
345 | Nodes.clear(); |
346 | Nodes.shrink_to_fit(); |
347 | Edges.clear(); |
348 | Edges.shrink_to_fit(); |
349 | } |
350 | |
351 | // Unique chain identifier. |
352 | uint64_t Id; |
353 | // Cached ext-tsp score for the chain. |
354 | double Score{0}; |
355 | // The total execution count of the chain. Since the execution count of |
356 | // a basic block is uint64_t, using doubles here to avoid overflow. |
357 | double ExecutionCount{0}; |
358 | // The total size of the chain. |
359 | uint64_t Size{0}; |
360 | // Nodes of the chain. |
361 | std::vector<NodeT *> Nodes; |
362 | // Adjacent chains and corresponding edges (lists of jumps). |
363 | std::vector<std::pair<ChainT *, ChainEdge *>> Edges; |
364 | }; |
365 | |
366 | /// An edge in the graph representing jumps between two chains. |
367 | /// When nodes are merged into chains, the edges are combined too so that |
368 | /// there is always at most one edge between a pair of chains. |
369 | struct ChainEdge { |
370 | ChainEdge(const ChainEdge &) = delete; |
371 | ChainEdge(ChainEdge &&) = default; |
372 | ChainEdge &operator=(const ChainEdge &) = delete; |
373 | ChainEdge &operator=(ChainEdge &&) = delete; |
374 | |
375 | explicit ChainEdge(JumpT *Jump) |
376 | : SrcChain(Jump->Source->CurChain), DstChain(Jump->Target->CurChain), |
377 | Jumps(1, Jump) {} |
378 | |
379 | ChainT *srcChain() const { return SrcChain; } |
380 | |
381 | ChainT *dstChain() const { return DstChain; } |
382 | |
383 | bool isSelfEdge() const { return SrcChain == DstChain; } |
384 | |
385 | const std::vector<JumpT *> &jumps() const { return Jumps; } |
386 | |
387 | void appendJump(JumpT *Jump) { Jumps.push_back(x: Jump); } |
388 | |
389 | void moveJumps(ChainEdge *Other) { |
390 | Jumps.insert(position: Jumps.end(), first: Other->Jumps.begin(), last: Other->Jumps.end()); |
391 | Other->Jumps.clear(); |
392 | Other->Jumps.shrink_to_fit(); |
393 | } |
394 | |
395 | void changeEndpoint(ChainT *From, ChainT *To) { |
396 | if (From == SrcChain) |
397 | SrcChain = To; |
398 | if (From == DstChain) |
399 | DstChain = To; |
400 | } |
401 | |
402 | bool hasCachedMergeGain(ChainT *Src, ChainT *Dst) const { |
403 | return Src == SrcChain ? CacheValidForward : CacheValidBackward; |
404 | } |
405 | |
406 | MergeGainT getCachedMergeGain(ChainT *Src, ChainT *Dst) const { |
407 | return Src == SrcChain ? CachedGainForward : CachedGainBackward; |
408 | } |
409 | |
410 | void setCachedMergeGain(ChainT *Src, ChainT *Dst, MergeGainT MergeGain) { |
411 | if (Src == SrcChain) { |
412 | CachedGainForward = MergeGain; |
413 | CacheValidForward = true; |
414 | } else { |
415 | CachedGainBackward = MergeGain; |
416 | CacheValidBackward = true; |
417 | } |
418 | } |
419 | |
420 | void invalidateCache() { |
421 | CacheValidForward = false; |
422 | CacheValidBackward = false; |
423 | } |
424 | |
425 | void setMergeGain(MergeGainT Gain) { CachedGain = Gain; } |
426 | |
427 | MergeGainT getMergeGain() const { return CachedGain; } |
428 | |
429 | double gain() const { return CachedGain.score(); } |
430 | |
431 | private: |
432 | // Source chain. |
433 | ChainT *SrcChain{nullptr}; |
434 | // Destination chain. |
435 | ChainT *DstChain{nullptr}; |
436 | // Original jumps in the binary with corresponding execution counts. |
437 | std::vector<JumpT *> Jumps; |
438 | // Cached gain value for merging the pair of chains. |
439 | MergeGainT CachedGain; |
440 | |
441 | // Cached gain values for merging the pair of chains. Since the gain of |
442 | // merging (Src, Dst) and (Dst, Src) might be different, we store both values |
443 | // here and a flag indicating which of the options results in a higher gain. |
444 | // Cached gain values. |
445 | MergeGainT CachedGainForward; |
446 | MergeGainT CachedGainBackward; |
447 | // Whether the cached value must be recomputed. |
448 | bool CacheValidForward{false}; |
449 | bool CacheValidBackward{false}; |
450 | }; |
451 | |
452 | bool NodeT::isSuccessor(const NodeT *Other) const { |
453 | for (JumpT *Jump : OutJumps) |
454 | if (Jump->Target == Other) |
455 | return true; |
456 | return false; |
457 | } |
458 | |
459 | uint64_t NodeT::outCount() const { |
460 | uint64_t Count = 0; |
461 | for (JumpT *Jump : OutJumps) |
462 | Count += Jump->ExecutionCount; |
463 | return Count; |
464 | } |
465 | |
466 | uint64_t NodeT::inCount() const { |
467 | uint64_t Count = 0; |
468 | for (JumpT *Jump : InJumps) |
469 | Count += Jump->ExecutionCount; |
470 | return Count; |
471 | } |
472 | |
473 | void ChainT::mergeEdges(ChainT *Other) { |
474 | // Update edges adjacent to chain Other. |
475 | for (const auto &[DstChain, DstEdge] : Other->Edges) { |
476 | ChainT *TargetChain = DstChain == Other ? this : DstChain; |
477 | ChainEdge *CurEdge = getEdge(Other: TargetChain); |
478 | if (CurEdge == nullptr) { |
479 | DstEdge->changeEndpoint(From: Other, To: this); |
480 | this->addEdge(Other: TargetChain, Edge: DstEdge); |
481 | if (DstChain != this && DstChain != Other) |
482 | DstChain->addEdge(Other: this, Edge: DstEdge); |
483 | } else { |
484 | CurEdge->moveJumps(Other: DstEdge); |
485 | } |
486 | // Cleanup leftover edge. |
487 | if (DstChain != Other) |
488 | DstChain->removeEdge(Other); |
489 | } |
490 | } |
491 | |
492 | using NodeIter = std::vector<NodeT *>::const_iterator; |
493 | static std::vector<NodeT *> EmptyList; |
494 | |
495 | /// A wrapper around three concatenated vectors (chains) of nodes; it is used |
496 | /// to avoid extra instantiation of the vectors. |
497 | struct MergedNodesT { |
498 | MergedNodesT(NodeIter Begin1, NodeIter End1, |
499 | NodeIter Begin2 = EmptyList.begin(), |
500 | NodeIter End2 = EmptyList.end(), |
501 | NodeIter Begin3 = EmptyList.begin(), |
502 | NodeIter End3 = EmptyList.end()) |
503 | : Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3), |
504 | End3(End3) {} |
505 | |
506 | template <typename F> void forEach(const F &Func) const { |
507 | for (auto It = Begin1; It != End1; It++) |
508 | Func(*It); |
509 | for (auto It = Begin2; It != End2; It++) |
510 | Func(*It); |
511 | for (auto It = Begin3; It != End3; It++) |
512 | Func(*It); |
513 | } |
514 | |
515 | std::vector<NodeT *> getNodes() const { |
516 | std::vector<NodeT *> Result; |
517 | Result.reserve(n: std::distance(first: Begin1, last: End1) + std::distance(first: Begin2, last: End2) + |
518 | std::distance(first: Begin3, last: End3)); |
519 | Result.insert(position: Result.end(), first: Begin1, last: End1); |
520 | Result.insert(position: Result.end(), first: Begin2, last: End2); |
521 | Result.insert(position: Result.end(), first: Begin3, last: End3); |
522 | return Result; |
523 | } |
524 | |
525 | const NodeT *getFirstNode() const { return *Begin1; } |
526 | |
527 | private: |
528 | NodeIter Begin1; |
529 | NodeIter End1; |
530 | NodeIter Begin2; |
531 | NodeIter End2; |
532 | NodeIter Begin3; |
533 | NodeIter End3; |
534 | }; |
535 | |
536 | /// A wrapper around two concatenated vectors (chains) of jumps. |
537 | struct MergedJumpsT { |
538 | MergedJumpsT(const std::vector<JumpT *> *Jumps1, |
539 | const std::vector<JumpT *> *Jumps2 = nullptr) { |
540 | assert(!Jumps1->empty() && "cannot merge empty jump list" ); |
541 | JumpArray[0] = Jumps1; |
542 | JumpArray[1] = Jumps2; |
543 | } |
544 | |
545 | template <typename F> void forEach(const F &Func) const { |
546 | for (auto Jumps : JumpArray) |
547 | if (Jumps != nullptr) |
548 | for (JumpT *Jump : *Jumps) |
549 | Func(Jump); |
550 | } |
551 | |
552 | private: |
553 | std::array<const std::vector<JumpT *> *, 2> JumpArray{nullptr, nullptr}; |
554 | }; |
555 | |
556 | /// Merge two chains of nodes respecting a given 'type' and 'offset'. |
557 | /// |
558 | /// If MergeType == 0, then the result is a concatenation of two chains. |
559 | /// Otherwise, the first chain is cut into two sub-chains at the offset, |
560 | /// and merged using all possible ways of concatenating three chains. |
561 | MergedNodesT mergeNodes(const std::vector<NodeT *> &X, |
562 | const std::vector<NodeT *> &Y, size_t MergeOffset, |
563 | MergeTypeT MergeType) { |
564 | // Split the first chain, X, into X1 and X2. |
565 | NodeIter BeginX1 = X.begin(); |
566 | NodeIter EndX1 = X.begin() + MergeOffset; |
567 | NodeIter BeginX2 = X.begin() + MergeOffset; |
568 | NodeIter EndX2 = X.end(); |
569 | NodeIter BeginY = Y.begin(); |
570 | NodeIter EndY = Y.end(); |
571 | |
572 | // Construct a new chain from the three existing ones. |
573 | switch (MergeType) { |
574 | case MergeTypeT::X_Y: |
575 | return MergedNodesT(BeginX1, EndX2, BeginY, EndY); |
576 | case MergeTypeT::Y_X: |
577 | return MergedNodesT(BeginY, EndY, BeginX1, EndX2); |
578 | case MergeTypeT::X1_Y_X2: |
579 | return MergedNodesT(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2); |
580 | case MergeTypeT::Y_X2_X1: |
581 | return MergedNodesT(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1); |
582 | case MergeTypeT::X2_X1_Y: |
583 | return MergedNodesT(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY); |
584 | } |
585 | llvm_unreachable("unexpected chain merge type" ); |
586 | } |
587 | |
588 | /// The implementation of the ExtTSP algorithm. |
589 | class ExtTSPImpl { |
590 | public: |
591 | ExtTSPImpl(ArrayRef<uint64_t> NodeSizes, ArrayRef<uint64_t> NodeCounts, |
592 | ArrayRef<EdgeCount> EdgeCounts) |
593 | : NumNodes(NodeSizes.size()) { |
594 | initialize(NodeSizes, NodeCounts, EdgeCounts); |
595 | } |
596 | |
597 | /// Run the algorithm and return an optimized ordering of nodes. |
598 | std::vector<uint64_t> run() { |
599 | // Pass 1: Merge nodes with their mutually forced successors |
600 | mergeForcedPairs(); |
601 | |
602 | // Pass 2: Merge pairs of chains while improving the ExtTSP objective |
603 | mergeChainPairs(); |
604 | |
605 | // Pass 3: Merge cold nodes to reduce code size |
606 | mergeColdChains(); |
607 | |
608 | // Collect nodes from all chains |
609 | return concatChains(); |
610 | } |
611 | |
612 | private: |
613 | /// Initialize the algorithm's data structures. |
614 | void initialize(const ArrayRef<uint64_t> &NodeSizes, |
615 | const ArrayRef<uint64_t> &NodeCounts, |
616 | const ArrayRef<EdgeCount> &EdgeCounts) { |
617 | // Initialize nodes. |
618 | AllNodes.reserve(n: NumNodes); |
619 | for (uint64_t Idx = 0; Idx < NumNodes; Idx++) { |
620 | uint64_t Size = std::max<uint64_t>(a: NodeSizes[Idx], b: 1ULL); |
621 | uint64_t ExecutionCount = NodeCounts[Idx]; |
622 | // The execution count of the entry node is set to at least one. |
623 | if (Idx == 0 && ExecutionCount == 0) |
624 | ExecutionCount = 1; |
625 | AllNodes.emplace_back(args&: Idx, args&: Size, args&: ExecutionCount); |
626 | } |
627 | |
628 | // Initialize jumps between the nodes. |
629 | SuccNodes.resize(new_size: NumNodes); |
630 | PredNodes.resize(new_size: NumNodes); |
631 | std::vector<uint64_t> OutDegree(NumNodes, 0); |
632 | AllJumps.reserve(n: EdgeCounts.size()); |
633 | for (auto Edge : EdgeCounts) { |
634 | ++OutDegree[Edge.src]; |
635 | // Ignore self-edges. |
636 | if (Edge.src == Edge.dst) |
637 | continue; |
638 | |
639 | SuccNodes[Edge.src].push_back(x: Edge.dst); |
640 | PredNodes[Edge.dst].push_back(x: Edge.src); |
641 | if (Edge.count > 0) { |
642 | NodeT &PredNode = AllNodes[Edge.src]; |
643 | NodeT &SuccNode = AllNodes[Edge.dst]; |
644 | AllJumps.emplace_back(args: &PredNode, args: &SuccNode, args&: Edge.count); |
645 | SuccNode.InJumps.push_back(x: &AllJumps.back()); |
646 | PredNode.OutJumps.push_back(x: &AllJumps.back()); |
647 | // Adjust execution counts. |
648 | PredNode.ExecutionCount = std::max(a: PredNode.ExecutionCount, b: Edge.count); |
649 | SuccNode.ExecutionCount = std::max(a: SuccNode.ExecutionCount, b: Edge.count); |
650 | } |
651 | } |
652 | for (JumpT &Jump : AllJumps) { |
653 | assert(OutDegree[Jump.Source->Index] > 0 && |
654 | "incorrectly computed out-degree of the block" ); |
655 | Jump.IsConditional = OutDegree[Jump.Source->Index] > 1; |
656 | } |
657 | |
658 | // Initialize chains. |
659 | AllChains.reserve(n: NumNodes); |
660 | HotChains.reserve(n: NumNodes); |
661 | for (NodeT &Node : AllNodes) { |
662 | // Create a chain. |
663 | AllChains.emplace_back(args&: Node.Index, args: &Node); |
664 | Node.CurChain = &AllChains.back(); |
665 | if (Node.ExecutionCount > 0) |
666 | HotChains.push_back(x: &AllChains.back()); |
667 | } |
668 | |
669 | // Initialize chain edges. |
670 | AllEdges.reserve(n: AllJumps.size()); |
671 | for (NodeT &PredNode : AllNodes) { |
672 | for (JumpT *Jump : PredNode.OutJumps) { |
673 | assert(Jump->ExecutionCount > 0 && "incorrectly initialized jump" ); |
674 | NodeT *SuccNode = Jump->Target; |
675 | ChainEdge *CurEdge = PredNode.CurChain->getEdge(Other: SuccNode->CurChain); |
676 | // This edge is already present in the graph. |
677 | if (CurEdge != nullptr) { |
678 | assert(SuccNode->CurChain->getEdge(PredNode.CurChain) != nullptr); |
679 | CurEdge->appendJump(Jump); |
680 | continue; |
681 | } |
682 | // This is a new edge. |
683 | AllEdges.emplace_back(args&: Jump); |
684 | PredNode.CurChain->addEdge(Other: SuccNode->CurChain, Edge: &AllEdges.back()); |
685 | SuccNode->CurChain->addEdge(Other: PredNode.CurChain, Edge: &AllEdges.back()); |
686 | } |
687 | } |
688 | } |
689 | |
690 | /// For a pair of nodes, A and B, node B is the forced successor of A, |
691 | /// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps |
692 | /// to B are from A. Such nodes should be adjacent in the optimal ordering; |
693 | /// the method finds and merges such pairs of nodes. |
694 | void mergeForcedPairs() { |
695 | // Find forced pairs of blocks. |
696 | for (NodeT &Node : AllNodes) { |
697 | if (SuccNodes[Node.Index].size() == 1 && |
698 | PredNodes[SuccNodes[Node.Index][0]].size() == 1 && |
699 | SuccNodes[Node.Index][0] != 0) { |
700 | size_t SuccIndex = SuccNodes[Node.Index][0]; |
701 | Node.ForcedSucc = &AllNodes[SuccIndex]; |
702 | AllNodes[SuccIndex].ForcedPred = &Node; |
703 | } |
704 | } |
705 | |
706 | // There might be 'cycles' in the forced dependencies, since profile |
707 | // data isn't 100% accurate. Typically this is observed in loops, when the |
708 | // loop edges are the hottest successors for the basic blocks of the loop. |
709 | // Break the cycles by choosing the node with the smallest index as the |
710 | // head. This helps to keep the original order of the loops, which likely |
711 | // have already been rotated in the optimized manner. |
712 | for (NodeT &Node : AllNodes) { |
713 | if (Node.ForcedSucc == nullptr || Node.ForcedPred == nullptr) |
714 | continue; |
715 | |
716 | NodeT *SuccNode = Node.ForcedSucc; |
717 | while (SuccNode != nullptr && SuccNode != &Node) { |
718 | SuccNode = SuccNode->ForcedSucc; |
719 | } |
720 | if (SuccNode == nullptr) |
721 | continue; |
722 | // Break the cycle. |
723 | AllNodes[Node.ForcedPred->Index].ForcedSucc = nullptr; |
724 | Node.ForcedPred = nullptr; |
725 | } |
726 | |
727 | // Merge nodes with their fallthrough successors. |
728 | for (NodeT &Node : AllNodes) { |
729 | if (Node.ForcedPred == nullptr && Node.ForcedSucc != nullptr) { |
730 | const NodeT *CurBlock = &Node; |
731 | while (CurBlock->ForcedSucc != nullptr) { |
732 | const NodeT *NextBlock = CurBlock->ForcedSucc; |
733 | mergeChains(Into: Node.CurChain, From: NextBlock->CurChain, MergeOffset: 0, MergeType: MergeTypeT::X_Y); |
734 | CurBlock = NextBlock; |
735 | } |
736 | } |
737 | } |
738 | } |
739 | |
740 | /// Merge pairs of chains while improving the ExtTSP objective. |
741 | void mergeChainPairs() { |
742 | /// Deterministically compare pairs of chains. |
743 | auto compareChainPairs = [](const ChainT *A1, const ChainT *B1, |
744 | const ChainT *A2, const ChainT *B2) { |
745 | return std::make_tuple(args: A1->Id, args: B1->Id) < std::make_tuple(args: A2->Id, args: B2->Id); |
746 | }; |
747 | |
748 | while (HotChains.size() > 1) { |
749 | ChainT *BestChainPred = nullptr; |
750 | ChainT *BestChainSucc = nullptr; |
751 | MergeGainT BestGain; |
752 | // Iterate over all pairs of chains. |
753 | for (ChainT *ChainPred : HotChains) { |
754 | // Get candidates for merging with the current chain. |
755 | for (const auto &[ChainSucc, Edge] : ChainPred->Edges) { |
756 | // Ignore loop edges. |
757 | if (Edge->isSelfEdge()) |
758 | continue; |
759 | // Skip the merge if the combined chain violates the maximum specified |
760 | // size. |
761 | if (ChainPred->numBlocks() + ChainSucc->numBlocks() >= MaxChainSize) |
762 | continue; |
763 | // Don't merge the chains if they have vastly different densities. |
764 | // Skip the merge if the ratio between the densities exceeds |
765 | // MaxMergeDensityRatio. Smaller values of the option result in fewer |
766 | // merges, and hence, more chains. |
767 | const double ChainPredDensity = ChainPred->density(); |
768 | const double ChainSuccDensity = ChainSucc->density(); |
769 | assert(ChainPredDensity > 0.0 && ChainSuccDensity > 0.0 && |
770 | "incorrectly computed chain densities" ); |
771 | auto [MinDensity, MaxDensity] = |
772 | std::minmax(a: ChainPredDensity, b: ChainSuccDensity); |
773 | const double Ratio = MaxDensity / MinDensity; |
774 | if (Ratio > MaxMergeDensityRatio) |
775 | continue; |
776 | |
777 | // Compute the gain of merging the two chains. |
778 | MergeGainT CurGain = getBestMergeGain(ChainPred, ChainSucc, Edge); |
779 | if (CurGain.score() <= EPS) |
780 | continue; |
781 | |
782 | if (BestGain < CurGain || |
783 | (std::abs(x: CurGain.score() - BestGain.score()) < EPS && |
784 | compareChainPairs(ChainPred, ChainSucc, BestChainPred, |
785 | BestChainSucc))) { |
786 | BestGain = CurGain; |
787 | BestChainPred = ChainPred; |
788 | BestChainSucc = ChainSucc; |
789 | } |
790 | } |
791 | } |
792 | |
793 | // Stop merging when there is no improvement. |
794 | if (BestGain.score() <= EPS) |
795 | break; |
796 | |
797 | // Merge the best pair of chains. |
798 | mergeChains(Into: BestChainPred, From: BestChainSucc, MergeOffset: BestGain.mergeOffset(), |
799 | MergeType: BestGain.mergeType()); |
800 | } |
801 | } |
802 | |
803 | /// Merge remaining nodes into chains w/o taking jump counts into |
804 | /// consideration. This allows to maintain the original node order in the |
805 | /// absence of profile data. |
806 | void mergeColdChains() { |
807 | for (size_t SrcBB = 0; SrcBB < NumNodes; SrcBB++) { |
808 | // Iterating in reverse order to make sure original fallthrough jumps are |
809 | // merged first; this might be beneficial for code size. |
810 | size_t NumSuccs = SuccNodes[SrcBB].size(); |
811 | for (size_t Idx = 0; Idx < NumSuccs; Idx++) { |
812 | size_t DstBB = SuccNodes[SrcBB][NumSuccs - Idx - 1]; |
813 | ChainT *SrcChain = AllNodes[SrcBB].CurChain; |
814 | ChainT *DstChain = AllNodes[DstBB].CurChain; |
815 | if (SrcChain != DstChain && !DstChain->isEntry() && |
816 | SrcChain->Nodes.back()->Index == SrcBB && |
817 | DstChain->Nodes.front()->Index == DstBB && |
818 | SrcChain->isCold() == DstChain->isCold()) { |
819 | mergeChains(Into: SrcChain, From: DstChain, MergeOffset: 0, MergeType: MergeTypeT::X_Y); |
820 | } |
821 | } |
822 | } |
823 | } |
824 | |
825 | /// Compute the Ext-TSP score for a given node order and a list of jumps. |
826 | double extTSPScore(const MergedNodesT &Nodes, |
827 | const MergedJumpsT &Jumps) const { |
828 | uint64_t CurAddr = 0; |
829 | Nodes.forEach(Func: [&](const NodeT *Node) { |
830 | Node->EstimatedAddr = CurAddr; |
831 | CurAddr += Node->Size; |
832 | }); |
833 | |
834 | double Score = 0; |
835 | Jumps.forEach(Func: [&](const JumpT *Jump) { |
836 | const NodeT *SrcBlock = Jump->Source; |
837 | const NodeT *DstBlock = Jump->Target; |
838 | Score += ::extTSPScore(SrcAddr: SrcBlock->EstimatedAddr, SrcSize: SrcBlock->Size, |
839 | DstAddr: DstBlock->EstimatedAddr, Count: Jump->ExecutionCount, |
840 | IsConditional: Jump->IsConditional); |
841 | }); |
842 | return Score; |
843 | } |
844 | |
845 | /// Compute the gain of merging two chains. |
846 | /// |
847 | /// The function considers all possible ways of merging two chains and |
848 | /// computes the one having the largest increase in ExtTSP objective. The |
849 | /// result is a pair with the first element being the gain and the second |
850 | /// element being the corresponding merging type. |
851 | MergeGainT getBestMergeGain(ChainT *ChainPred, ChainT *ChainSucc, |
852 | ChainEdge *Edge) const { |
853 | if (Edge->hasCachedMergeGain(Src: ChainPred, Dst: ChainSucc)) |
854 | return Edge->getCachedMergeGain(Src: ChainPred, Dst: ChainSucc); |
855 | |
856 | assert(!Edge->jumps().empty() && "trying to merge chains w/o jumps" ); |
857 | // Precompute jumps between ChainPred and ChainSucc. |
858 | ChainEdge *EdgePP = ChainPred->getEdge(Other: ChainPred); |
859 | MergedJumpsT Jumps(&Edge->jumps(), EdgePP ? &EdgePP->jumps() : nullptr); |
860 | |
861 | // This object holds the best chosen gain of merging two chains. |
862 | MergeGainT Gain = MergeGainT(); |
863 | |
864 | /// Given a merge offset and a list of merge types, try to merge two chains |
865 | /// and update Gain with a better alternative. |
866 | auto tryChainMerging = [&](size_t Offset, |
867 | const std::vector<MergeTypeT> &MergeTypes) { |
868 | // Skip merging corresponding to concatenation w/o splitting. |
869 | if (Offset == 0 || Offset == ChainPred->Nodes.size()) |
870 | return; |
871 | // Skip merging if it breaks Forced successors. |
872 | NodeT *Node = ChainPred->Nodes[Offset - 1]; |
873 | if (Node->ForcedSucc != nullptr) |
874 | return; |
875 | // Apply the merge, compute the corresponding gain, and update the best |
876 | // value, if the merge is beneficial. |
877 | for (const MergeTypeT &MergeType : MergeTypes) { |
878 | Gain.updateIfLessThan( |
879 | Other: computeMergeGain(ChainPred, ChainSucc, Jumps, MergeOffset: Offset, MergeType)); |
880 | } |
881 | }; |
882 | |
883 | // Try to concatenate two chains w/o splitting. |
884 | Gain.updateIfLessThan( |
885 | Other: computeMergeGain(ChainPred, ChainSucc, Jumps, MergeOffset: 0, MergeType: MergeTypeT::X_Y)); |
886 | |
887 | // Attach (a part of) ChainPred before the first node of ChainSucc. |
888 | for (JumpT *Jump : ChainSucc->Nodes.front()->InJumps) { |
889 | const NodeT *SrcBlock = Jump->Source; |
890 | if (SrcBlock->CurChain != ChainPred) |
891 | continue; |
892 | size_t Offset = SrcBlock->CurIndex + 1; |
893 | tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::X2_X1_Y}); |
894 | } |
895 | |
896 | // Attach (a part of) ChainPred after the last node of ChainSucc. |
897 | for (JumpT *Jump : ChainSucc->Nodes.back()->OutJumps) { |
898 | const NodeT *DstBlock = Jump->Target; |
899 | if (DstBlock->CurChain != ChainPred) |
900 | continue; |
901 | size_t Offset = DstBlock->CurIndex; |
902 | tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1}); |
903 | } |
904 | |
905 | // Try to break ChainPred in various ways and concatenate with ChainSucc. |
906 | if (ChainPred->Nodes.size() <= ChainSplitThreshold) { |
907 | for (size_t Offset = 1; Offset < ChainPred->Nodes.size(); Offset++) { |
908 | // Do not split the chain along a fall-through jump. One of the two |
909 | // loops above may still "break" such a jump whenever it results in a |
910 | // new fall-through. |
911 | const NodeT *BB = ChainPred->Nodes[Offset - 1]; |
912 | const NodeT *BB2 = ChainPred->Nodes[Offset]; |
913 | if (BB->isSuccessor(Other: BB2)) |
914 | continue; |
915 | |
916 | // In practice, applying X2_Y_X1 merging almost never provides benefits; |
917 | // thus, we exclude it from consideration to reduce the search space. |
918 | tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1, |
919 | MergeTypeT::X2_X1_Y}); |
920 | } |
921 | } |
922 | |
923 | Edge->setCachedMergeGain(Src: ChainPred, Dst: ChainSucc, MergeGain: Gain); |
924 | return Gain; |
925 | } |
926 | |
927 | /// Compute the score gain of merging two chains, respecting a given |
928 | /// merge 'type' and 'offset'. |
929 | /// |
930 | /// The two chains are not modified in the method. |
931 | MergeGainT computeMergeGain(const ChainT *ChainPred, const ChainT *ChainSucc, |
932 | const MergedJumpsT &Jumps, size_t MergeOffset, |
933 | MergeTypeT MergeType) const { |
934 | MergedNodesT MergedNodes = |
935 | mergeNodes(X: ChainPred->Nodes, Y: ChainSucc->Nodes, MergeOffset, MergeType); |
936 | |
937 | // Do not allow a merge that does not preserve the original entry point. |
938 | if ((ChainPred->isEntry() || ChainSucc->isEntry()) && |
939 | !MergedNodes.getFirstNode()->isEntry()) |
940 | return MergeGainT(); |
941 | |
942 | // The gain for the new chain. |
943 | double NewScore = extTSPScore(Nodes: MergedNodes, Jumps); |
944 | double CurScore = ChainPred->Score; |
945 | return MergeGainT(NewScore - CurScore, MergeOffset, MergeType); |
946 | } |
947 | |
948 | /// Merge chain From into chain Into, update the list of active chains, |
949 | /// adjacency information, and the corresponding cached values. |
950 | void mergeChains(ChainT *Into, ChainT *From, size_t MergeOffset, |
951 | MergeTypeT MergeType) { |
952 | assert(Into != From && "a chain cannot be merged with itself" ); |
953 | |
954 | // Merge the nodes. |
955 | MergedNodesT MergedNodes = |
956 | mergeNodes(X: Into->Nodes, Y: From->Nodes, MergeOffset, MergeType); |
957 | Into->merge(Other: From, MergedBlocks: MergedNodes.getNodes()); |
958 | |
959 | // Merge the edges. |
960 | Into->mergeEdges(Other: From); |
961 | From->clear(); |
962 | |
963 | // Update cached ext-tsp score for the new chain. |
964 | ChainEdge *SelfEdge = Into->getEdge(Other: Into); |
965 | if (SelfEdge != nullptr) { |
966 | MergedNodes = MergedNodesT(Into->Nodes.begin(), Into->Nodes.end()); |
967 | MergedJumpsT MergedJumps(&SelfEdge->jumps()); |
968 | Into->Score = extTSPScore(Nodes: MergedNodes, Jumps: MergedJumps); |
969 | } |
970 | |
971 | // Remove the chain from the list of active chains. |
972 | llvm::erase(C&: HotChains, V: From); |
973 | |
974 | // Invalidate caches. |
975 | for (auto EdgeIt : Into->Edges) |
976 | EdgeIt.second->invalidateCache(); |
977 | } |
978 | |
979 | /// Concatenate all chains into the final order. |
980 | std::vector<uint64_t> concatChains() { |
981 | // Collect non-empty chains. |
982 | std::vector<const ChainT *> SortedChains; |
983 | for (ChainT &Chain : AllChains) { |
984 | if (!Chain.Nodes.empty()) |
985 | SortedChains.push_back(x: &Chain); |
986 | } |
987 | |
988 | // Sorting chains by density in the decreasing order. |
989 | std::sort(first: SortedChains.begin(), last: SortedChains.end(), |
990 | comp: [&](const ChainT *L, const ChainT *R) { |
991 | // Place the entry point at the beginning of the order. |
992 | if (L->isEntry() != R->isEntry()) |
993 | return L->isEntry(); |
994 | |
995 | // Compare by density and break ties by chain identifiers. |
996 | return std::make_tuple(args: -L->density(), args: L->Id) < |
997 | std::make_tuple(args: -R->density(), args: R->Id); |
998 | }); |
999 | |
1000 | // Collect the nodes in the order specified by their chains. |
1001 | std::vector<uint64_t> Order; |
1002 | Order.reserve(n: NumNodes); |
1003 | for (const ChainT *Chain : SortedChains) |
1004 | for (NodeT *Node : Chain->Nodes) |
1005 | Order.push_back(x: Node->Index); |
1006 | return Order; |
1007 | } |
1008 | |
1009 | private: |
1010 | /// The number of nodes in the graph. |
1011 | const size_t NumNodes; |
1012 | |
1013 | /// Successors of each node. |
1014 | std::vector<std::vector<uint64_t>> SuccNodes; |
1015 | |
1016 | /// Predecessors of each node. |
1017 | std::vector<std::vector<uint64_t>> PredNodes; |
1018 | |
1019 | /// All nodes (basic blocks) in the graph. |
1020 | std::vector<NodeT> AllNodes; |
1021 | |
1022 | /// All jumps between the nodes. |
1023 | std::vector<JumpT> AllJumps; |
1024 | |
1025 | /// All chains of nodes. |
1026 | std::vector<ChainT> AllChains; |
1027 | |
1028 | /// All edges between the chains. |
1029 | std::vector<ChainEdge> AllEdges; |
1030 | |
1031 | /// Active chains. The vector gets updated at runtime when chains are merged. |
1032 | std::vector<ChainT *> HotChains; |
1033 | }; |
1034 | |
1035 | /// The implementation of the Cache-Directed Sort (CDSort) algorithm for |
1036 | /// ordering functions represented by a call graph. |
1037 | class CDSortImpl { |
1038 | public: |
1039 | CDSortImpl(const CDSortConfig &Config, ArrayRef<uint64_t> NodeSizes, |
1040 | ArrayRef<uint64_t> NodeCounts, ArrayRef<EdgeCount> EdgeCounts, |
1041 | ArrayRef<uint64_t> EdgeOffsets) |
1042 | : Config(Config), NumNodes(NodeSizes.size()) { |
1043 | initialize(NodeSizes, NodeCounts, EdgeCounts, EdgeOffsets); |
1044 | } |
1045 | |
1046 | /// Run the algorithm and return an ordered set of function clusters. |
1047 | std::vector<uint64_t> run() { |
1048 | // Merge pairs of chains while improving the objective. |
1049 | mergeChainPairs(); |
1050 | |
1051 | // Collect nodes from all the chains. |
1052 | return concatChains(); |
1053 | } |
1054 | |
1055 | private: |
1056 | /// Initialize the algorithm's data structures. |
1057 | void initialize(const ArrayRef<uint64_t> &NodeSizes, |
1058 | const ArrayRef<uint64_t> &NodeCounts, |
1059 | const ArrayRef<EdgeCount> &EdgeCounts, |
1060 | const ArrayRef<uint64_t> &EdgeOffsets) { |
1061 | // Initialize nodes. |
1062 | AllNodes.reserve(n: NumNodes); |
1063 | for (uint64_t Node = 0; Node < NumNodes; Node++) { |
1064 | uint64_t Size = std::max<uint64_t>(a: NodeSizes[Node], b: 1ULL); |
1065 | uint64_t ExecutionCount = NodeCounts[Node]; |
1066 | AllNodes.emplace_back(args&: Node, args&: Size, args&: ExecutionCount); |
1067 | TotalSamples += ExecutionCount; |
1068 | if (ExecutionCount > 0) |
1069 | TotalSize += Size; |
1070 | } |
1071 | |
1072 | // Initialize jumps between the nodes. |
1073 | SuccNodes.resize(new_size: NumNodes); |
1074 | PredNodes.resize(new_size: NumNodes); |
1075 | AllJumps.reserve(n: EdgeCounts.size()); |
1076 | for (size_t I = 0; I < EdgeCounts.size(); I++) { |
1077 | auto [Pred, Succ, Count] = EdgeCounts[I]; |
1078 | // Ignore recursive calls. |
1079 | if (Pred == Succ) |
1080 | continue; |
1081 | |
1082 | SuccNodes[Pred].push_back(x: Succ); |
1083 | PredNodes[Succ].push_back(x: Pred); |
1084 | if (Count > 0) { |
1085 | NodeT &PredNode = AllNodes[Pred]; |
1086 | NodeT &SuccNode = AllNodes[Succ]; |
1087 | AllJumps.emplace_back(args: &PredNode, args: &SuccNode, args&: Count); |
1088 | AllJumps.back().Offset = EdgeOffsets[I]; |
1089 | SuccNode.InJumps.push_back(x: &AllJumps.back()); |
1090 | PredNode.OutJumps.push_back(x: &AllJumps.back()); |
1091 | // Adjust execution counts. |
1092 | PredNode.ExecutionCount = std::max(a: PredNode.ExecutionCount, b: Count); |
1093 | SuccNode.ExecutionCount = std::max(a: SuccNode.ExecutionCount, b: Count); |
1094 | } |
1095 | } |
1096 | |
1097 | // Initialize chains. |
1098 | AllChains.reserve(n: NumNodes); |
1099 | for (NodeT &Node : AllNodes) { |
1100 | // Adjust execution counts. |
1101 | Node.ExecutionCount = std::max(a: Node.ExecutionCount, b: Node.inCount()); |
1102 | Node.ExecutionCount = std::max(a: Node.ExecutionCount, b: Node.outCount()); |
1103 | // Create chain. |
1104 | AllChains.emplace_back(args&: Node.Index, args: &Node); |
1105 | Node.CurChain = &AllChains.back(); |
1106 | } |
1107 | |
1108 | // Initialize chain edges. |
1109 | AllEdges.reserve(n: AllJumps.size()); |
1110 | for (NodeT &PredNode : AllNodes) { |
1111 | for (JumpT *Jump : PredNode.OutJumps) { |
1112 | NodeT *SuccNode = Jump->Target; |
1113 | ChainEdge *CurEdge = PredNode.CurChain->getEdge(Other: SuccNode->CurChain); |
1114 | // This edge is already present in the graph. |
1115 | if (CurEdge != nullptr) { |
1116 | assert(SuccNode->CurChain->getEdge(PredNode.CurChain) != nullptr); |
1117 | CurEdge->appendJump(Jump); |
1118 | continue; |
1119 | } |
1120 | // This is a new edge. |
1121 | AllEdges.emplace_back(args&: Jump); |
1122 | PredNode.CurChain->addEdge(Other: SuccNode->CurChain, Edge: &AllEdges.back()); |
1123 | SuccNode->CurChain->addEdge(Other: PredNode.CurChain, Edge: &AllEdges.back()); |
1124 | } |
1125 | } |
1126 | } |
1127 | |
1128 | /// Merge pairs of chains while there is an improvement in the objective. |
1129 | void mergeChainPairs() { |
1130 | // Create a priority queue containing all edges ordered by the merge gain. |
1131 | auto GainComparator = [](ChainEdge *L, ChainEdge *R) { |
1132 | return std::make_tuple(args: -L->gain(), args&: L->srcChain()->Id, args&: L->dstChain()->Id) < |
1133 | std::make_tuple(args: -R->gain(), args&: R->srcChain()->Id, args&: R->dstChain()->Id); |
1134 | }; |
1135 | std::set<ChainEdge *, decltype(GainComparator)> Queue(GainComparator); |
1136 | |
1137 | // Insert the edges into the queue. |
1138 | [[maybe_unused]] size_t NumActiveChains = 0; |
1139 | for (NodeT &Node : AllNodes) { |
1140 | if (Node.ExecutionCount == 0) |
1141 | continue; |
1142 | ++NumActiveChains; |
1143 | for (const auto &[_, Edge] : Node.CurChain->Edges) { |
1144 | // Ignore self-edges. |
1145 | if (Edge->isSelfEdge()) |
1146 | continue; |
1147 | // Ignore already processed edges. |
1148 | if (Edge->gain() != -1.0) |
1149 | continue; |
1150 | |
1151 | // Compute the gain of merging the two chains. |
1152 | MergeGainT Gain = getBestMergeGain(Edge); |
1153 | Edge->setMergeGain(Gain); |
1154 | |
1155 | if (Edge->gain() > EPS) |
1156 | Queue.insert(x: Edge); |
1157 | } |
1158 | } |
1159 | |
1160 | // Merge the chains while the gain of merging is positive. |
1161 | while (!Queue.empty()) { |
1162 | // Extract the best (top) edge for merging. |
1163 | ChainEdge *BestEdge = *Queue.begin(); |
1164 | Queue.erase(position: Queue.begin()); |
1165 | ChainT *BestSrcChain = BestEdge->srcChain(); |
1166 | ChainT *BestDstChain = BestEdge->dstChain(); |
1167 | |
1168 | // Remove outdated edges from the queue. |
1169 | for (const auto &[_, ChainEdge] : BestSrcChain->Edges) |
1170 | Queue.erase(x: ChainEdge); |
1171 | for (const auto &[_, ChainEdge] : BestDstChain->Edges) |
1172 | Queue.erase(x: ChainEdge); |
1173 | |
1174 | // Merge the best pair of chains. |
1175 | MergeGainT BestGain = BestEdge->getMergeGain(); |
1176 | mergeChains(Into: BestSrcChain, From: BestDstChain, MergeOffset: BestGain.mergeOffset(), |
1177 | MergeType: BestGain.mergeType()); |
1178 | --NumActiveChains; |
1179 | |
1180 | // Insert newly created edges into the queue. |
1181 | for (const auto &[_, Edge] : BestSrcChain->Edges) { |
1182 | // Ignore loop edges. |
1183 | if (Edge->isSelfEdge()) |
1184 | continue; |
1185 | if (Edge->srcChain()->numBlocks() + Edge->dstChain()->numBlocks() > |
1186 | Config.MaxChainSize) |
1187 | continue; |
1188 | |
1189 | // Compute the gain of merging the two chains. |
1190 | MergeGainT Gain = getBestMergeGain(Edge); |
1191 | Edge->setMergeGain(Gain); |
1192 | |
1193 | if (Edge->gain() > EPS) |
1194 | Queue.insert(x: Edge); |
1195 | } |
1196 | } |
1197 | |
1198 | LLVM_DEBUG(dbgs() << "Cache-directed function sorting reduced the number" |
1199 | << " of chains from " << NumNodes << " to " |
1200 | << NumActiveChains << "\n" ); |
1201 | } |
1202 | |
1203 | /// Compute the gain of merging two chains. |
1204 | /// |
1205 | /// The function considers all possible ways of merging two chains and |
1206 | /// computes the one having the largest increase in ExtTSP objective. The |
1207 | /// result is a pair with the first element being the gain and the second |
1208 | /// element being the corresponding merging type. |
1209 | MergeGainT getBestMergeGain(ChainEdge *Edge) const { |
1210 | assert(!Edge->jumps().empty() && "trying to merge chains w/o jumps" ); |
1211 | // Precompute jumps between ChainPred and ChainSucc. |
1212 | MergedJumpsT Jumps(&Edge->jumps()); |
1213 | ChainT *SrcChain = Edge->srcChain(); |
1214 | ChainT *DstChain = Edge->dstChain(); |
1215 | |
1216 | // This object holds the best currently chosen gain of merging two chains. |
1217 | MergeGainT Gain = MergeGainT(); |
1218 | |
1219 | /// Given a list of merge types, try to merge two chains and update Gain |
1220 | /// with a better alternative. |
1221 | auto tryChainMerging = [&](const std::vector<MergeTypeT> &MergeTypes) { |
1222 | // Apply the merge, compute the corresponding gain, and update the best |
1223 | // value, if the merge is beneficial. |
1224 | for (const MergeTypeT &MergeType : MergeTypes) { |
1225 | MergeGainT NewGain = |
1226 | computeMergeGain(ChainPred: SrcChain, ChainSucc: DstChain, Jumps, MergeType); |
1227 | |
1228 | // When forward and backward gains are the same, prioritize merging that |
1229 | // preserves the original order of the functions in the binary. |
1230 | if (std::abs(x: Gain.score() - NewGain.score()) < EPS) { |
1231 | if ((MergeType == MergeTypeT::X_Y && SrcChain->Id < DstChain->Id) || |
1232 | (MergeType == MergeTypeT::Y_X && SrcChain->Id > DstChain->Id)) { |
1233 | Gain = NewGain; |
1234 | } |
1235 | } else if (NewGain.score() > Gain.score() + EPS) { |
1236 | Gain = NewGain; |
1237 | } |
1238 | } |
1239 | }; |
1240 | |
1241 | // Try to concatenate two chains w/o splitting. |
1242 | tryChainMerging({MergeTypeT::X_Y, MergeTypeT::Y_X}); |
1243 | |
1244 | return Gain; |
1245 | } |
1246 | |
1247 | /// Compute the score gain of merging two chains, respecting a given type. |
1248 | /// |
1249 | /// The two chains are not modified in the method. |
1250 | MergeGainT computeMergeGain(ChainT *ChainPred, ChainT *ChainSucc, |
1251 | const MergedJumpsT &Jumps, |
1252 | MergeTypeT MergeType) const { |
1253 | // This doesn't depend on the ordering of the nodes |
1254 | double FreqGain = freqBasedLocalityGain(ChainPred, ChainSucc); |
1255 | |
1256 | // Merge offset is always 0, as the chains are not split. |
1257 | size_t MergeOffset = 0; |
1258 | auto MergedBlocks = |
1259 | mergeNodes(X: ChainPred->Nodes, Y: ChainSucc->Nodes, MergeOffset, MergeType); |
1260 | double DistGain = distBasedLocalityGain(Nodes: MergedBlocks, Jumps); |
1261 | |
1262 | double GainScore = DistGain + Config.FrequencyScale * FreqGain; |
1263 | // Scale the result to increase the importance of merging short chains. |
1264 | if (GainScore >= 0.0) |
1265 | GainScore /= std::min(a: ChainPred->Size, b: ChainSucc->Size); |
1266 | |
1267 | return MergeGainT(GainScore, MergeOffset, MergeType); |
1268 | } |
1269 | |
1270 | /// Compute the change of the frequency locality after merging the chains. |
1271 | double freqBasedLocalityGain(ChainT *ChainPred, ChainT *ChainSucc) const { |
1272 | auto missProbability = [&](double ChainDensity) { |
1273 | double PageSamples = ChainDensity * Config.CacheSize; |
1274 | if (PageSamples >= TotalSamples) |
1275 | return 0.0; |
1276 | double P = PageSamples / TotalSamples; |
1277 | return pow(x: 1.0 - P, y: static_cast<double>(Config.CacheEntries)); |
1278 | }; |
1279 | |
1280 | // Cache misses on the chains before merging. |
1281 | double CurScore = |
1282 | ChainPred->ExecutionCount * missProbability(ChainPred->density()) + |
1283 | ChainSucc->ExecutionCount * missProbability(ChainSucc->density()); |
1284 | |
1285 | // Cache misses on the merged chain |
1286 | double MergedCounts = ChainPred->ExecutionCount + ChainSucc->ExecutionCount; |
1287 | double MergedSize = ChainPred->Size + ChainSucc->Size; |
1288 | double MergedDensity = static_cast<double>(MergedCounts) / MergedSize; |
1289 | double NewScore = MergedCounts * missProbability(MergedDensity); |
1290 | |
1291 | return CurScore - NewScore; |
1292 | } |
1293 | |
1294 | /// Compute the distance locality for a jump / call. |
1295 | double distScore(uint64_t SrcAddr, uint64_t DstAddr, uint64_t Count) const { |
1296 | uint64_t Dist = SrcAddr <= DstAddr ? DstAddr - SrcAddr : SrcAddr - DstAddr; |
1297 | double D = Dist == 0 ? 0.1 : static_cast<double>(Dist); |
1298 | return static_cast<double>(Count) * std::pow(x: D, y: -Config.DistancePower); |
1299 | } |
1300 | |
1301 | /// Compute the change of the distance locality after merging the chains. |
1302 | double distBasedLocalityGain(const MergedNodesT &Nodes, |
1303 | const MergedJumpsT &Jumps) const { |
1304 | uint64_t CurAddr = 0; |
1305 | Nodes.forEach(Func: [&](const NodeT *Node) { |
1306 | Node->EstimatedAddr = CurAddr; |
1307 | CurAddr += Node->Size; |
1308 | }); |
1309 | |
1310 | double CurScore = 0; |
1311 | double NewScore = 0; |
1312 | Jumps.forEach(Func: [&](const JumpT *Jump) { |
1313 | uint64_t SrcAddr = Jump->Source->EstimatedAddr + Jump->Offset; |
1314 | uint64_t DstAddr = Jump->Target->EstimatedAddr; |
1315 | NewScore += distScore(SrcAddr, DstAddr, Count: Jump->ExecutionCount); |
1316 | CurScore += distScore(SrcAddr: 0, DstAddr: TotalSize, Count: Jump->ExecutionCount); |
1317 | }); |
1318 | return NewScore - CurScore; |
1319 | } |
1320 | |
1321 | /// Merge chain From into chain Into, update the list of active chains, |
1322 | /// adjacency information, and the corresponding cached values. |
1323 | void mergeChains(ChainT *Into, ChainT *From, size_t MergeOffset, |
1324 | MergeTypeT MergeType) { |
1325 | assert(Into != From && "a chain cannot be merged with itself" ); |
1326 | |
1327 | // Merge the nodes. |
1328 | MergedNodesT MergedNodes = |
1329 | mergeNodes(X: Into->Nodes, Y: From->Nodes, MergeOffset, MergeType); |
1330 | Into->merge(Other: From, MergedBlocks: MergedNodes.getNodes()); |
1331 | |
1332 | // Merge the edges. |
1333 | Into->mergeEdges(Other: From); |
1334 | From->clear(); |
1335 | } |
1336 | |
1337 | /// Concatenate all chains into the final order. |
1338 | std::vector<uint64_t> concatChains() { |
1339 | // Collect chains and calculate density stats for their sorting. |
1340 | std::vector<const ChainT *> SortedChains; |
1341 | DenseMap<const ChainT *, double> ChainDensity; |
1342 | for (ChainT &Chain : AllChains) { |
1343 | if (!Chain.Nodes.empty()) { |
1344 | SortedChains.push_back(x: &Chain); |
1345 | // Using doubles to avoid overflow of ExecutionCounts. |
1346 | double Size = 0; |
1347 | double ExecutionCount = 0; |
1348 | for (NodeT *Node : Chain.Nodes) { |
1349 | Size += static_cast<double>(Node->Size); |
1350 | ExecutionCount += static_cast<double>(Node->ExecutionCount); |
1351 | } |
1352 | assert(Size > 0 && "a chain of zero size" ); |
1353 | ChainDensity[&Chain] = ExecutionCount / Size; |
1354 | } |
1355 | } |
1356 | |
1357 | // Sort chains by density in the decreasing order. |
1358 | std::sort(first: SortedChains.begin(), last: SortedChains.end(), |
1359 | comp: [&](const ChainT *L, const ChainT *R) { |
1360 | const double DL = ChainDensity[L]; |
1361 | const double DR = ChainDensity[R]; |
1362 | // Compare by density and break ties by chain identifiers. |
1363 | return std::make_tuple(args: -DL, args: L->Id) < |
1364 | std::make_tuple(args: -DR, args: R->Id); |
1365 | }); |
1366 | |
1367 | // Collect the nodes in the order specified by their chains. |
1368 | std::vector<uint64_t> Order; |
1369 | Order.reserve(n: NumNodes); |
1370 | for (const ChainT *Chain : SortedChains) |
1371 | for (NodeT *Node : Chain->Nodes) |
1372 | Order.push_back(x: Node->Index); |
1373 | return Order; |
1374 | } |
1375 | |
1376 | private: |
1377 | /// Config for the algorithm. |
1378 | const CDSortConfig Config; |
1379 | |
1380 | /// The number of nodes in the graph. |
1381 | const size_t NumNodes; |
1382 | |
1383 | /// Successors of each node. |
1384 | std::vector<std::vector<uint64_t>> SuccNodes; |
1385 | |
1386 | /// Predecessors of each node. |
1387 | std::vector<std::vector<uint64_t>> PredNodes; |
1388 | |
1389 | /// All nodes (functions) in the graph. |
1390 | std::vector<NodeT> AllNodes; |
1391 | |
1392 | /// All jumps (function calls) between the nodes. |
1393 | std::vector<JumpT> AllJumps; |
1394 | |
1395 | /// All chains of nodes. |
1396 | std::vector<ChainT> AllChains; |
1397 | |
1398 | /// All edges between the chains. |
1399 | std::vector<ChainEdge> AllEdges; |
1400 | |
1401 | /// The total number of samples in the graph. |
1402 | uint64_t TotalSamples{0}; |
1403 | |
1404 | /// The total size of the nodes in the graph. |
1405 | uint64_t TotalSize{0}; |
1406 | }; |
1407 | |
1408 | } // end of anonymous namespace |
1409 | |
1410 | std::vector<uint64_t> |
1411 | codelayout::computeExtTspLayout(ArrayRef<uint64_t> NodeSizes, |
1412 | ArrayRef<uint64_t> NodeCounts, |
1413 | ArrayRef<EdgeCount> EdgeCounts) { |
1414 | // Verify correctness of the input data. |
1415 | assert(NodeCounts.size() == NodeSizes.size() && "Incorrect input" ); |
1416 | assert(NodeSizes.size() > 2 && "Incorrect input" ); |
1417 | |
1418 | // Apply the reordering algorithm. |
1419 | ExtTSPImpl Alg(NodeSizes, NodeCounts, EdgeCounts); |
1420 | std::vector<uint64_t> Result = Alg.run(); |
1421 | |
1422 | // Verify correctness of the output. |
1423 | assert(Result.front() == 0 && "Original entry point is not preserved" ); |
1424 | assert(Result.size() == NodeSizes.size() && "Incorrect size of layout" ); |
1425 | return Result; |
1426 | } |
1427 | |
1428 | double codelayout::calcExtTspScore(ArrayRef<uint64_t> Order, |
1429 | ArrayRef<uint64_t> NodeSizes, |
1430 | ArrayRef<uint64_t> NodeCounts, |
1431 | ArrayRef<EdgeCount> EdgeCounts) { |
1432 | // Estimate addresses of the blocks in memory. |
1433 | std::vector<uint64_t> Addr(NodeSizes.size(), 0); |
1434 | for (size_t Idx = 1; Idx < Order.size(); Idx++) { |
1435 | Addr[Order[Idx]] = Addr[Order[Idx - 1]] + NodeSizes[Order[Idx - 1]]; |
1436 | } |
1437 | std::vector<uint64_t> OutDegree(NodeSizes.size(), 0); |
1438 | for (auto Edge : EdgeCounts) |
1439 | ++OutDegree[Edge.src]; |
1440 | |
1441 | // Increase the score for each jump. |
1442 | double Score = 0; |
1443 | for (auto Edge : EdgeCounts) { |
1444 | bool IsConditional = OutDegree[Edge.src] > 1; |
1445 | Score += ::extTSPScore(SrcAddr: Addr[Edge.src], SrcSize: NodeSizes[Edge.src], DstAddr: Addr[Edge.dst], |
1446 | Count: Edge.count, IsConditional); |
1447 | } |
1448 | return Score; |
1449 | } |
1450 | |
1451 | double codelayout::calcExtTspScore(ArrayRef<uint64_t> NodeSizes, |
1452 | ArrayRef<uint64_t> NodeCounts, |
1453 | ArrayRef<EdgeCount> EdgeCounts) { |
1454 | std::vector<uint64_t> Order(NodeSizes.size()); |
1455 | for (size_t Idx = 0; Idx < NodeSizes.size(); Idx++) { |
1456 | Order[Idx] = Idx; |
1457 | } |
1458 | return calcExtTspScore(Order, NodeSizes, NodeCounts, EdgeCounts); |
1459 | } |
1460 | |
1461 | std::vector<uint64_t> codelayout::computeCacheDirectedLayout( |
1462 | const CDSortConfig &Config, ArrayRef<uint64_t> FuncSizes, |
1463 | ArrayRef<uint64_t> FuncCounts, ArrayRef<EdgeCount> CallCounts, |
1464 | ArrayRef<uint64_t> CallOffsets) { |
1465 | // Verify correctness of the input data. |
1466 | assert(FuncCounts.size() == FuncSizes.size() && "Incorrect input" ); |
1467 | |
1468 | // Apply the reordering algorithm. |
1469 | CDSortImpl Alg(Config, FuncSizes, FuncCounts, CallCounts, CallOffsets); |
1470 | std::vector<uint64_t> Result = Alg.run(); |
1471 | assert(Result.size() == FuncSizes.size() && "Incorrect size of layout" ); |
1472 | return Result; |
1473 | } |
1474 | |
1475 | std::vector<uint64_t> codelayout::computeCacheDirectedLayout( |
1476 | ArrayRef<uint64_t> FuncSizes, ArrayRef<uint64_t> FuncCounts, |
1477 | ArrayRef<EdgeCount> CallCounts, ArrayRef<uint64_t> CallOffsets) { |
1478 | CDSortConfig Config; |
1479 | // Populate the config from the command-line options. |
1480 | if (CacheEntries.getNumOccurrences() > 0) |
1481 | Config.CacheEntries = CacheEntries; |
1482 | if (CacheSize.getNumOccurrences() > 0) |
1483 | Config.CacheSize = CacheSize; |
1484 | if (CDMaxChainSize.getNumOccurrences() > 0) |
1485 | Config.MaxChainSize = CDMaxChainSize; |
1486 | if (DistancePower.getNumOccurrences() > 0) |
1487 | Config.DistancePower = DistancePower; |
1488 | if (FrequencyScale.getNumOccurrences() > 0) |
1489 | Config.FrequencyScale = FrequencyScale; |
1490 | return computeCacheDirectedLayout(Config, FuncSizes, FuncCounts, CallCounts, |
1491 | CallOffsets); |
1492 | } |
1493 | |