1 | //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // The LowerSwitch transformation rewrites switch instructions with a sequence |
10 | // of branches, which allows targets to get away with not implementing the |
11 | // switch instruction until it is convenient. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "llvm/Transforms/Utils/LowerSwitch.h" |
16 | #include "llvm/ADT/DenseMap.h" |
17 | #include "llvm/ADT/STLExtras.h" |
18 | #include "llvm/ADT/SmallPtrSet.h" |
19 | #include "llvm/ADT/SmallVector.h" |
20 | #include "llvm/Analysis/AssumptionCache.h" |
21 | #include "llvm/Analysis/LazyValueInfo.h" |
22 | #include "llvm/Analysis/ValueTracking.h" |
23 | #include "llvm/IR/BasicBlock.h" |
24 | #include "llvm/IR/CFG.h" |
25 | #include "llvm/IR/ConstantRange.h" |
26 | #include "llvm/IR/Constants.h" |
27 | #include "llvm/IR/Function.h" |
28 | #include "llvm/IR/InstrTypes.h" |
29 | #include "llvm/IR/Instructions.h" |
30 | #include "llvm/IR/PassManager.h" |
31 | #include "llvm/IR/Value.h" |
32 | #include "llvm/InitializePasses.h" |
33 | #include "llvm/Pass.h" |
34 | #include "llvm/Support/Casting.h" |
35 | #include "llvm/Support/Compiler.h" |
36 | #include "llvm/Support/Debug.h" |
37 | #include "llvm/Support/KnownBits.h" |
38 | #include "llvm/Support/raw_ostream.h" |
39 | #include "llvm/Transforms/Utils.h" |
40 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
41 | #include <algorithm> |
42 | #include <cassert> |
43 | #include <cstdint> |
44 | #include <iterator> |
45 | #include <vector> |
46 | |
47 | using namespace llvm; |
48 | |
49 | #define DEBUG_TYPE "lower-switch" |
50 | |
51 | namespace { |
52 | |
53 | struct IntRange { |
54 | APInt Low, High; |
55 | }; |
56 | |
57 | } // end anonymous namespace |
58 | |
59 | namespace { |
60 | // Return true iff R is covered by Ranges. |
61 | bool IsInRanges(const IntRange &R, const std::vector<IntRange> &Ranges) { |
62 | // Note: Ranges must be sorted, non-overlapping and non-adjacent. |
63 | |
64 | // Find the first range whose High field is >= R.High, |
65 | // then check if the Low field is <= R.Low. If so, we |
66 | // have a Range that covers R. |
67 | auto I = llvm::lower_bound( |
68 | Range: Ranges, Value: R, C: [](IntRange A, IntRange B) { return A.High.slt(RHS: B.High); }); |
69 | return I != Ranges.end() && I->Low.sle(RHS: R.Low); |
70 | } |
71 | |
72 | struct CaseRange { |
73 | ConstantInt *Low; |
74 | ConstantInt *High; |
75 | BasicBlock *BB; |
76 | |
77 | CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb) |
78 | : Low(low), High(high), BB(bb) {} |
79 | }; |
80 | |
81 | using CaseVector = std::vector<CaseRange>; |
82 | using CaseItr = std::vector<CaseRange>::iterator; |
83 | |
84 | /// The comparison function for sorting the switch case values in the vector. |
85 | /// WARNING: Case ranges should be disjoint! |
86 | struct CaseCmp { |
87 | bool operator()(const CaseRange &C1, const CaseRange &C2) { |
88 | const ConstantInt *CI1 = cast<const ConstantInt>(Val: C1.Low); |
89 | const ConstantInt *CI2 = cast<const ConstantInt>(Val: C2.High); |
90 | return CI1->getValue().slt(RHS: CI2->getValue()); |
91 | } |
92 | }; |
93 | |
94 | /// Used for debugging purposes. |
95 | LLVM_ATTRIBUTE_USED |
96 | raw_ostream &operator<<(raw_ostream &O, const CaseVector &C) { |
97 | O << "[" ; |
98 | |
99 | for (CaseVector::const_iterator B = C.begin(), E = C.end(); B != E;) { |
100 | O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]" ; |
101 | if (++B != E) |
102 | O << ", " ; |
103 | } |
104 | |
105 | return O << "]" ; |
106 | } |
107 | |
108 | /// Update the first occurrence of the "switch statement" BB in the PHI |
109 | /// node with the "new" BB. The other occurrences will: |
110 | /// |
111 | /// 1) Be updated by subsequent calls to this function. Switch statements may |
112 | /// have more than one outcoming edge into the same BB if they all have the same |
113 | /// value. When the switch statement is converted these incoming edges are now |
114 | /// coming from multiple BBs. |
115 | /// 2) Removed if subsequent incoming values now share the same case, i.e., |
116 | /// multiple outcome edges are condensed into one. This is necessary to keep the |
117 | /// number of phi values equal to the number of branches to SuccBB. |
118 | void FixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB, |
119 | const APInt &NumMergedCases) { |
120 | for (auto &I : SuccBB->phis()) { |
121 | PHINode *PN = cast<PHINode>(Val: &I); |
122 | |
123 | // Only update the first occurrence if NewBB exists. |
124 | unsigned Idx = 0, E = PN->getNumIncomingValues(); |
125 | APInt LocalNumMergedCases = NumMergedCases; |
126 | for (; Idx != E && NewBB; ++Idx) { |
127 | if (PN->getIncomingBlock(i: Idx) == OrigBB) { |
128 | PN->setIncomingBlock(i: Idx, BB: NewBB); |
129 | break; |
130 | } |
131 | } |
132 | |
133 | // Skip the updated incoming block so that it will not be removed. |
134 | if (NewBB) |
135 | ++Idx; |
136 | |
137 | // Remove additional occurrences coming from condensed cases and keep the |
138 | // number of incoming values equal to the number of branches to SuccBB. |
139 | SmallVector<unsigned, 8> Indices; |
140 | for (; LocalNumMergedCases.ugt(RHS: 0) && Idx < E; ++Idx) |
141 | if (PN->getIncomingBlock(i: Idx) == OrigBB) { |
142 | Indices.push_back(Elt: Idx); |
143 | LocalNumMergedCases -= 1; |
144 | } |
145 | // Remove incoming values in the reverse order to prevent invalidating |
146 | // *successive* index. |
147 | for (unsigned III : llvm::reverse(C&: Indices)) |
148 | PN->removeIncomingValue(Idx: III); |
149 | } |
150 | } |
151 | |
152 | /// Create a new leaf block for the binary lookup tree. It checks if the |
153 | /// switch's value == the case's value. If not, then it jumps to the default |
154 | /// branch. At this point in the tree, the value can't be another valid case |
155 | /// value, so the jump to the "default" branch is warranted. |
156 | BasicBlock *NewLeafBlock(CaseRange &Leaf, Value *Val, ConstantInt *LowerBound, |
157 | ConstantInt *UpperBound, BasicBlock *OrigBlock, |
158 | BasicBlock *Default) { |
159 | Function *F = OrigBlock->getParent(); |
160 | BasicBlock *NewLeaf = BasicBlock::Create(Context&: Val->getContext(), Name: "LeafBlock" ); |
161 | F->insert(Position: ++OrigBlock->getIterator(), BB: NewLeaf); |
162 | |
163 | // Emit comparison |
164 | ICmpInst *Comp = nullptr; |
165 | if (Leaf.Low == Leaf.High) { |
166 | // Make the seteq instruction... |
167 | Comp = |
168 | new ICmpInst(NewLeaf, ICmpInst::ICMP_EQ, Val, Leaf.Low, "SwitchLeaf" ); |
169 | } else { |
170 | // Make range comparison |
171 | if (Leaf.Low == LowerBound) { |
172 | // Val >= Min && Val <= Hi --> Val <= Hi |
173 | Comp = new ICmpInst(NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High, |
174 | "SwitchLeaf" ); |
175 | } else if (Leaf.High == UpperBound) { |
176 | // Val <= Max && Val >= Lo --> Val >= Lo |
177 | Comp = new ICmpInst(NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low, |
178 | "SwitchLeaf" ); |
179 | } else if (Leaf.Low->isZero()) { |
180 | // Val >= 0 && Val <= Hi --> Val <=u Hi |
181 | Comp = new ICmpInst(NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High, |
182 | "SwitchLeaf" ); |
183 | } else { |
184 | // Emit V-Lo <=u Hi-Lo |
185 | Constant *NegLo = ConstantExpr::getNeg(C: Leaf.Low); |
186 | Instruction *Add = BinaryOperator::CreateAdd( |
187 | V1: Val, V2: NegLo, Name: Val->getName() + ".off" , BB: NewLeaf); |
188 | Constant *UpperBound = ConstantExpr::getAdd(C1: NegLo, C2: Leaf.High); |
189 | Comp = new ICmpInst(NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound, |
190 | "SwitchLeaf" ); |
191 | } |
192 | } |
193 | |
194 | // Make the conditional branch... |
195 | BasicBlock *Succ = Leaf.BB; |
196 | BranchInst::Create(IfTrue: Succ, IfFalse: Default, Cond: Comp, InsertBefore: NewLeaf); |
197 | |
198 | // Update the PHI incoming value/block for the default. |
199 | for (auto &I : Default->phis()) { |
200 | PHINode *PN = cast<PHINode>(Val: &I); |
201 | auto *V = PN->getIncomingValueForBlock(BB: OrigBlock); |
202 | PN->addIncoming(V, BB: NewLeaf); |
203 | } |
204 | |
205 | // If there were any PHI nodes in this successor, rewrite one entry |
206 | // from OrigBlock to come from NewLeaf. |
207 | for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(Val: I); ++I) { |
208 | PHINode *PN = cast<PHINode>(Val&: I); |
209 | // Remove all but one incoming entries from the cluster |
210 | APInt Range = Leaf.High->getValue() - Leaf.Low->getValue(); |
211 | for (APInt j(Range.getBitWidth(), 0, false); j.ult(RHS: Range); ++j) { |
212 | PN->removeIncomingValue(BB: OrigBlock); |
213 | } |
214 | |
215 | int BlockIdx = PN->getBasicBlockIndex(BB: OrigBlock); |
216 | assert(BlockIdx != -1 && "Switch didn't go to this successor??" ); |
217 | PN->setIncomingBlock(i: (unsigned)BlockIdx, BB: NewLeaf); |
218 | } |
219 | |
220 | return NewLeaf; |
221 | } |
222 | |
223 | /// Convert the switch statement into a binary lookup of the case values. |
224 | /// The function recursively builds this tree. LowerBound and UpperBound are |
225 | /// used to keep track of the bounds for Val that have already been checked by |
226 | /// a block emitted by one of the previous calls to switchConvert in the call |
227 | /// stack. |
228 | BasicBlock *SwitchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound, |
229 | ConstantInt *UpperBound, Value *Val, |
230 | BasicBlock *Predecessor, BasicBlock *OrigBlock, |
231 | BasicBlock *Default, |
232 | const std::vector<IntRange> &UnreachableRanges) { |
233 | assert(LowerBound && UpperBound && "Bounds must be initialized" ); |
234 | unsigned Size = End - Begin; |
235 | |
236 | if (Size == 1) { |
237 | // Check if the Case Range is perfectly squeezed in between |
238 | // already checked Upper and Lower bounds. If it is then we can avoid |
239 | // emitting the code that checks if the value actually falls in the range |
240 | // because the bounds already tell us so. |
241 | if (Begin->Low == LowerBound && Begin->High == UpperBound) { |
242 | APInt NumMergedCases = UpperBound->getValue() - LowerBound->getValue(); |
243 | FixPhis(SuccBB: Begin->BB, OrigBB: OrigBlock, NewBB: Predecessor, NumMergedCases); |
244 | return Begin->BB; |
245 | } |
246 | return NewLeafBlock(Leaf&: *Begin, Val, LowerBound, UpperBound, OrigBlock, |
247 | Default); |
248 | } |
249 | |
250 | unsigned Mid = Size / 2; |
251 | std::vector<CaseRange> LHS(Begin, Begin + Mid); |
252 | LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n" ); |
253 | std::vector<CaseRange> RHS(Begin + Mid, End); |
254 | LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n" ); |
255 | |
256 | CaseRange &Pivot = *(Begin + Mid); |
257 | LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", " |
258 | << Pivot.High->getValue() << "]\n" ); |
259 | |
260 | // NewLowerBound here should never be the integer minimal value. |
261 | // This is because it is computed from a case range that is never |
262 | // the smallest, so there is always a case range that has at least |
263 | // a smaller value. |
264 | ConstantInt *NewLowerBound = Pivot.Low; |
265 | |
266 | // Because NewLowerBound is never the smallest representable integer |
267 | // it is safe here to subtract one. |
268 | ConstantInt *NewUpperBound = ConstantInt::get(Context&: NewLowerBound->getContext(), |
269 | V: NewLowerBound->getValue() - 1); |
270 | |
271 | if (!UnreachableRanges.empty()) { |
272 | // Check if the gap between LHS's highest and NewLowerBound is unreachable. |
273 | APInt GapLow = LHS.back().High->getValue() + 1; |
274 | APInt GapHigh = NewLowerBound->getValue() - 1; |
275 | IntRange Gap = {.Low: GapLow, .High: GapHigh}; |
276 | if (GapHigh.sge(RHS: GapLow) && IsInRanges(R: Gap, Ranges: UnreachableRanges)) |
277 | NewUpperBound = LHS.back().High; |
278 | } |
279 | |
280 | LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getValue() << ", " |
281 | << NewUpperBound->getValue() << "]\n" |
282 | << "RHS Bounds ==> [" << NewLowerBound->getValue() << ", " |
283 | << UpperBound->getValue() << "]\n" ); |
284 | |
285 | // Create a new node that checks if the value is < pivot. Go to the |
286 | // left branch if it is and right branch if not. |
287 | Function *F = OrigBlock->getParent(); |
288 | BasicBlock *NewNode = BasicBlock::Create(Context&: Val->getContext(), Name: "NodeBlock" ); |
289 | |
290 | ICmpInst *Comp = new ICmpInst(ICmpInst::ICMP_SLT, Val, Pivot.Low, "Pivot" ); |
291 | |
292 | BasicBlock *LBranch = |
293 | SwitchConvert(Begin: LHS.begin(), End: LHS.end(), LowerBound, UpperBound: NewUpperBound, Val, |
294 | Predecessor: NewNode, OrigBlock, Default, UnreachableRanges); |
295 | BasicBlock *RBranch = |
296 | SwitchConvert(Begin: RHS.begin(), End: RHS.end(), LowerBound: NewLowerBound, UpperBound, Val, |
297 | Predecessor: NewNode, OrigBlock, Default, UnreachableRanges); |
298 | |
299 | F->insert(Position: ++OrigBlock->getIterator(), BB: NewNode); |
300 | Comp->insertInto(ParentBB: NewNode, It: NewNode->end()); |
301 | |
302 | BranchInst::Create(IfTrue: LBranch, IfFalse: RBranch, Cond: Comp, InsertBefore: NewNode); |
303 | return NewNode; |
304 | } |
305 | |
306 | /// Transform simple list of \p SI's cases into list of CaseRange's \p Cases. |
307 | /// \post \p Cases wouldn't contain references to \p SI's default BB. |
308 | /// \returns Number of \p SI's cases that do not reference \p SI's default BB. |
309 | unsigned Clusterify(CaseVector &Cases, SwitchInst *SI) { |
310 | unsigned NumSimpleCases = 0; |
311 | |
312 | // Start with "simple" cases |
313 | for (auto Case : SI->cases()) { |
314 | if (Case.getCaseSuccessor() == SI->getDefaultDest()) |
315 | continue; |
316 | Cases.push_back(x: CaseRange(Case.getCaseValue(), Case.getCaseValue(), |
317 | Case.getCaseSuccessor())); |
318 | ++NumSimpleCases; |
319 | } |
320 | |
321 | llvm::sort(C&: Cases, Comp: CaseCmp()); |
322 | |
323 | // Merge case into clusters |
324 | if (Cases.size() >= 2) { |
325 | CaseItr I = Cases.begin(); |
326 | for (CaseItr J = std::next(x: I), E = Cases.end(); J != E; ++J) { |
327 | const APInt &nextValue = J->Low->getValue(); |
328 | const APInt ¤tValue = I->High->getValue(); |
329 | BasicBlock *nextBB = J->BB; |
330 | BasicBlock *currentBB = I->BB; |
331 | |
332 | // If the two neighboring cases go to the same destination, merge them |
333 | // into a single case. |
334 | assert(nextValue.sgt(currentValue) && |
335 | "Cases should be strictly ascending" ); |
336 | if ((nextValue == currentValue + 1) && (currentBB == nextBB)) { |
337 | I->High = J->High; |
338 | // FIXME: Combine branch weights. |
339 | } else if (++I != J) { |
340 | *I = *J; |
341 | } |
342 | } |
343 | Cases.erase(first: std::next(x: I), last: Cases.end()); |
344 | } |
345 | |
346 | return NumSimpleCases; |
347 | } |
348 | |
349 | /// Replace the specified switch instruction with a sequence of chained if-then |
350 | /// insts in a balanced binary search. |
351 | void ProcessSwitchInst(SwitchInst *SI, |
352 | SmallPtrSetImpl<BasicBlock *> &DeleteList, |
353 | AssumptionCache *AC, LazyValueInfo *LVI) { |
354 | BasicBlock *OrigBlock = SI->getParent(); |
355 | Function *F = OrigBlock->getParent(); |
356 | Value *Val = SI->getCondition(); // The value we are switching on... |
357 | BasicBlock *Default = SI->getDefaultDest(); |
358 | |
359 | // Don't handle unreachable blocks. If there are successors with phis, this |
360 | // would leave them behind with missing predecessors. |
361 | if ((OrigBlock != &F->getEntryBlock() && pred_empty(BB: OrigBlock)) || |
362 | OrigBlock->getSinglePredecessor() == OrigBlock) { |
363 | DeleteList.insert(Ptr: OrigBlock); |
364 | return; |
365 | } |
366 | |
367 | // Prepare cases vector. |
368 | CaseVector Cases; |
369 | const unsigned NumSimpleCases = Clusterify(Cases, SI); |
370 | IntegerType *IT = cast<IntegerType>(Val: SI->getCondition()->getType()); |
371 | const unsigned BitWidth = IT->getBitWidth(); |
372 | // Explicitly use higher precision to prevent unsigned overflow where |
373 | // `UnsignedMax - 0 + 1 == 0` |
374 | APInt UnsignedZero(BitWidth + 1, 0); |
375 | APInt UnsignedMax = APInt::getMaxValue(numBits: BitWidth); |
376 | LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() |
377 | << ". Total non-default cases: " << NumSimpleCases |
378 | << "\nCase clusters: " << Cases << "\n" ); |
379 | |
380 | // If there is only the default destination, just branch. |
381 | if (Cases.empty()) { |
382 | BranchInst::Create(IfTrue: Default, InsertBefore: OrigBlock); |
383 | // Remove all the references from Default's PHIs to OrigBlock, but one. |
384 | FixPhis(SuccBB: Default, OrigBB: OrigBlock, NewBB: OrigBlock, NumMergedCases: UnsignedMax); |
385 | SI->eraseFromParent(); |
386 | return; |
387 | } |
388 | |
389 | ConstantInt *LowerBound = nullptr; |
390 | ConstantInt *UpperBound = nullptr; |
391 | bool DefaultIsUnreachableFromSwitch = false; |
392 | |
393 | if (isa<UnreachableInst>(Val: Default->getFirstNonPHIOrDbg())) { |
394 | // Make the bounds tightly fitted around the case value range, because we |
395 | // know that the value passed to the switch must be exactly one of the case |
396 | // values. |
397 | LowerBound = Cases.front().Low; |
398 | UpperBound = Cases.back().High; |
399 | DefaultIsUnreachableFromSwitch = true; |
400 | } else { |
401 | // Constraining the range of the value being switched over helps eliminating |
402 | // unreachable BBs and minimizing the number of `add` instructions |
403 | // newLeafBlock ends up emitting. Running CorrelatedValuePropagation after |
404 | // LowerSwitch isn't as good, and also much more expensive in terms of |
405 | // compile time for the following reasons: |
406 | // 1. it processes many kinds of instructions, not just switches; |
407 | // 2. even if limited to icmp instructions only, it will have to process |
408 | // roughly C icmp's per switch, where C is the number of cases in the |
409 | // switch, while LowerSwitch only needs to call LVI once per switch. |
410 | const DataLayout &DL = F->getDataLayout(); |
411 | KnownBits Known = computeKnownBits(V: Val, DL, /*Depth=*/0, AC, CxtI: SI); |
412 | // TODO Shouldn't this create a signed range? |
413 | ConstantRange KnownBitsRange = |
414 | ConstantRange::fromKnownBits(Known, /*IsSigned=*/false); |
415 | const ConstantRange LVIRange = |
416 | LVI->getConstantRange(V: Val, CxtI: SI, /*UndefAllowed*/ false); |
417 | ConstantRange ValRange = KnownBitsRange.intersectWith(CR: LVIRange); |
418 | // We delegate removal of unreachable non-default cases to other passes. In |
419 | // the unlikely event that some of them survived, we just conservatively |
420 | // maintain the invariant that all the cases lie between the bounds. This |
421 | // may, however, still render the default case effectively unreachable. |
422 | const APInt &Low = Cases.front().Low->getValue(); |
423 | const APInt &High = Cases.back().High->getValue(); |
424 | APInt Min = APIntOps::smin(A: ValRange.getSignedMin(), B: Low); |
425 | APInt Max = APIntOps::smax(A: ValRange.getSignedMax(), B: High); |
426 | |
427 | LowerBound = ConstantInt::get(Context&: SI->getContext(), V: Min); |
428 | UpperBound = ConstantInt::get(Context&: SI->getContext(), V: Max); |
429 | DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max); |
430 | } |
431 | |
432 | std::vector<IntRange> UnreachableRanges; |
433 | |
434 | if (DefaultIsUnreachableFromSwitch) { |
435 | DenseMap<BasicBlock *, APInt> Popularity; |
436 | APInt MaxPop(UnsignedZero); |
437 | BasicBlock *PopSucc = nullptr; |
438 | |
439 | APInt SignedMax = APInt::getSignedMaxValue(numBits: BitWidth); |
440 | APInt SignedMin = APInt::getSignedMinValue(numBits: BitWidth); |
441 | IntRange R = {.Low: SignedMin, .High: SignedMax}; |
442 | UnreachableRanges.push_back(x: R); |
443 | for (const auto &I : Cases) { |
444 | const APInt &Low = I.Low->getValue(); |
445 | const APInt &High = I.High->getValue(); |
446 | |
447 | IntRange &LastRange = UnreachableRanges.back(); |
448 | if (LastRange.Low.eq(RHS: Low)) { |
449 | // There is nothing left of the previous range. |
450 | UnreachableRanges.pop_back(); |
451 | } else { |
452 | // Terminate the previous range. |
453 | assert(Low.sgt(LastRange.Low)); |
454 | LastRange.High = Low - 1; |
455 | } |
456 | if (High.ne(RHS: SignedMax)) { |
457 | IntRange R = {.Low: High + 1, .High: SignedMax}; |
458 | UnreachableRanges.push_back(x: R); |
459 | } |
460 | |
461 | // Count popularity. |
462 | assert(High.sge(Low) && "Popularity shouldn't be negative." ); |
463 | APInt N = High.sext(width: BitWidth + 1) - Low.sext(width: BitWidth + 1) + 1; |
464 | // Explict insert to make sure the bitwidth of APInts match |
465 | APInt &Pop = Popularity.insert(KV: {I.BB, APInt(UnsignedZero)}).first->second; |
466 | if ((Pop += N).ugt(RHS: MaxPop)) { |
467 | MaxPop = Pop; |
468 | PopSucc = I.BB; |
469 | } |
470 | } |
471 | #ifndef NDEBUG |
472 | /* UnreachableRanges should be sorted and the ranges non-adjacent. */ |
473 | for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end(); |
474 | I != E; ++I) { |
475 | assert(I->Low.sle(I->High)); |
476 | auto Next = I + 1; |
477 | if (Next != E) { |
478 | assert(Next->Low.sgt(I->High)); |
479 | } |
480 | } |
481 | #endif |
482 | |
483 | // As the default block in the switch is unreachable, update the PHI nodes |
484 | // (remove all of the references to the default block) to reflect this. |
485 | const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases; |
486 | for (unsigned I = 0; I < NumDefaultEdges; ++I) |
487 | Default->removePredecessor(Pred: OrigBlock); |
488 | |
489 | // Use the most popular block as the new default, reducing the number of |
490 | // cases. |
491 | Default = PopSucc; |
492 | llvm::erase_if(C&: Cases, |
493 | P: [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }); |
494 | |
495 | // If there are no cases left, just branch. |
496 | if (Cases.empty()) { |
497 | BranchInst::Create(IfTrue: Default, InsertBefore: OrigBlock); |
498 | SI->eraseFromParent(); |
499 | // As all the cases have been replaced with a single branch, only keep |
500 | // one entry in the PHI nodes. |
501 | if (!MaxPop.isZero()) |
502 | for (APInt I(UnsignedZero); I.ult(RHS: MaxPop - 1); ++I) |
503 | PopSucc->removePredecessor(Pred: OrigBlock); |
504 | return; |
505 | } |
506 | |
507 | // If the condition was a PHI node with the switch block as a predecessor |
508 | // removing predecessors may have caused the condition to be erased. |
509 | // Getting the condition value again here protects against that. |
510 | Val = SI->getCondition(); |
511 | } |
512 | |
513 | BasicBlock *SwitchBlock = |
514 | SwitchConvert(Begin: Cases.begin(), End: Cases.end(), LowerBound, UpperBound, Val, |
515 | Predecessor: OrigBlock, OrigBlock, Default, UnreachableRanges); |
516 | |
517 | // We have added incoming values for newly-created predecessors in |
518 | // NewLeafBlock(). The only meaningful work we offload to FixPhis() is to |
519 | // remove the incoming values from OrigBlock. There might be a special case |
520 | // that SwitchBlock is the same as Default, under which the PHIs in Default |
521 | // are fixed inside SwitchConvert(). |
522 | if (SwitchBlock != Default) |
523 | FixPhis(SuccBB: Default, OrigBB: OrigBlock, NewBB: nullptr, NumMergedCases: UnsignedMax); |
524 | |
525 | // Branch to our shiny new if-then stuff... |
526 | BranchInst::Create(IfTrue: SwitchBlock, InsertBefore: OrigBlock); |
527 | |
528 | // We are now done with the switch instruction, delete it. |
529 | BasicBlock *OldDefault = SI->getDefaultDest(); |
530 | SI->eraseFromParent(); |
531 | |
532 | // If the Default block has no more predecessors just add it to DeleteList. |
533 | if (pred_empty(BB: OldDefault)) |
534 | DeleteList.insert(Ptr: OldDefault); |
535 | } |
536 | |
537 | bool LowerSwitch(Function &F, LazyValueInfo *LVI, AssumptionCache *AC) { |
538 | bool Changed = false; |
539 | SmallPtrSet<BasicBlock *, 8> DeleteList; |
540 | |
541 | // We use make_early_inc_range here so that we don't traverse new blocks. |
542 | for (BasicBlock &Cur : llvm::make_early_inc_range(Range&: F)) { |
543 | // If the block is a dead Default block that will be deleted later, don't |
544 | // waste time processing it. |
545 | if (DeleteList.count(Ptr: &Cur)) |
546 | continue; |
547 | |
548 | if (SwitchInst *SI = dyn_cast<SwitchInst>(Val: Cur.getTerminator())) { |
549 | Changed = true; |
550 | ProcessSwitchInst(SI, DeleteList, AC, LVI); |
551 | } |
552 | } |
553 | |
554 | for (BasicBlock *BB : DeleteList) { |
555 | LVI->eraseBlock(BB); |
556 | DeleteDeadBlock(BB); |
557 | } |
558 | |
559 | return Changed; |
560 | } |
561 | |
562 | /// Replace all SwitchInst instructions with chained branch instructions. |
563 | class LowerSwitchLegacyPass : public FunctionPass { |
564 | public: |
565 | // Pass identification, replacement for typeid |
566 | static char ID; |
567 | |
568 | LowerSwitchLegacyPass() : FunctionPass(ID) { |
569 | initializeLowerSwitchLegacyPassPass(*PassRegistry::getPassRegistry()); |
570 | } |
571 | |
572 | bool runOnFunction(Function &F) override; |
573 | |
574 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
575 | AU.addRequired<LazyValueInfoWrapperPass>(); |
576 | } |
577 | }; |
578 | |
579 | } // end anonymous namespace |
580 | |
581 | char LowerSwitchLegacyPass::ID = 0; |
582 | |
583 | // Publicly exposed interface to pass... |
584 | char &llvm::LowerSwitchID = LowerSwitchLegacyPass::ID; |
585 | |
586 | INITIALIZE_PASS_BEGIN(LowerSwitchLegacyPass, "lowerswitch" , |
587 | "Lower SwitchInst's to branches" , false, false) |
588 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
589 | INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) |
590 | INITIALIZE_PASS_END(LowerSwitchLegacyPass, "lowerswitch" , |
591 | "Lower SwitchInst's to branches" , false, false) |
592 | |
593 | // createLowerSwitchPass - Interface to this file... |
594 | FunctionPass *llvm::createLowerSwitchPass() { |
595 | return new LowerSwitchLegacyPass(); |
596 | } |
597 | |
598 | bool LowerSwitchLegacyPass::runOnFunction(Function &F) { |
599 | LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); |
600 | auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>(); |
601 | AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr; |
602 | return LowerSwitch(F, LVI, AC); |
603 | } |
604 | |
605 | PreservedAnalyses LowerSwitchPass::run(Function &F, |
606 | FunctionAnalysisManager &AM) { |
607 | LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(IR&: F); |
608 | AssumptionCache *AC = AM.getCachedResult<AssumptionAnalysis>(IR&: F); |
609 | return LowerSwitch(F, LVI, AC) ? PreservedAnalyses::none() |
610 | : PreservedAnalyses::all(); |
611 | } |
612 | |