1 | //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the library calls simplifier. It does not implement |
10 | // any pass, but can't be used by other passes to do simplifications. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "llvm/Transforms/Utils/SimplifyLibCalls.h" |
15 | #include "llvm/ADT/APSInt.h" |
16 | #include "llvm/ADT/SmallString.h" |
17 | #include "llvm/ADT/StringExtras.h" |
18 | #include "llvm/Analysis/ConstantFolding.h" |
19 | #include "llvm/Analysis/Loads.h" |
20 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
21 | #include "llvm/Analysis/ValueTracking.h" |
22 | #include "llvm/IR/AttributeMask.h" |
23 | #include "llvm/IR/DataLayout.h" |
24 | #include "llvm/IR/Function.h" |
25 | #include "llvm/IR/IRBuilder.h" |
26 | #include "llvm/IR/IntrinsicInst.h" |
27 | #include "llvm/IR/Intrinsics.h" |
28 | #include "llvm/IR/Module.h" |
29 | #include "llvm/IR/PatternMatch.h" |
30 | #include "llvm/Support/Casting.h" |
31 | #include "llvm/Support/CommandLine.h" |
32 | #include "llvm/Support/KnownBits.h" |
33 | #include "llvm/Support/MathExtras.h" |
34 | #include "llvm/TargetParser/Triple.h" |
35 | #include "llvm/Transforms/Utils/BuildLibCalls.h" |
36 | #include "llvm/Transforms/Utils/Local.h" |
37 | #include "llvm/Transforms/Utils/SizeOpts.h" |
38 | |
39 | #include <cmath> |
40 | |
41 | using namespace llvm; |
42 | using namespace PatternMatch; |
43 | |
44 | static cl::opt<bool> |
45 | EnableUnsafeFPShrink("enable-double-float-shrink" , cl::Hidden, |
46 | cl::init(Val: false), |
47 | cl::desc("Enable unsafe double to float " |
48 | "shrinking for math lib calls" )); |
49 | |
50 | // Enable conversion of operator new calls with a MemProf hot or cold hint |
51 | // to an operator new call that takes a hot/cold hint. Off by default since |
52 | // not all allocators currently support this extension. |
53 | static cl::opt<bool> |
54 | OptimizeHotColdNew("optimize-hot-cold-new" , cl::Hidden, cl::init(Val: false), |
55 | cl::desc("Enable hot/cold operator new library calls" )); |
56 | static cl::opt<bool> OptimizeExistingHotColdNew( |
57 | "optimize-existing-hot-cold-new" , cl::Hidden, cl::init(Val: false), |
58 | cl::desc( |
59 | "Enable optimization of existing hot/cold operator new library calls" )); |
60 | |
61 | namespace { |
62 | |
63 | // Specialized parser to ensure the hint is an 8 bit value (we can't specify |
64 | // uint8_t to opt<> as that is interpreted to mean that we are passing a char |
65 | // option with a specific set of values. |
66 | struct HotColdHintParser : public cl::parser<unsigned> { |
67 | HotColdHintParser(cl::Option &O) : cl::parser<unsigned>(O) {} |
68 | |
69 | bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) { |
70 | if (Arg.getAsInteger(Radix: 0, Result&: Value)) |
71 | return O.error(Message: "'" + Arg + "' value invalid for uint argument!" ); |
72 | |
73 | if (Value > 255) |
74 | return O.error(Message: "'" + Arg + "' value must be in the range [0, 255]!" ); |
75 | |
76 | return false; |
77 | } |
78 | }; |
79 | |
80 | } // end anonymous namespace |
81 | |
82 | // Hot/cold operator new takes an 8 bit hotness hint, where 0 is the coldest |
83 | // and 255 is the hottest. Default to 1 value away from the coldest and hottest |
84 | // hints, so that the compiler hinted allocations are slightly less strong than |
85 | // manually inserted hints at the two extremes. |
86 | static cl::opt<unsigned, false, HotColdHintParser> ColdNewHintValue( |
87 | "cold-new-hint-value" , cl::Hidden, cl::init(Val: 1), |
88 | cl::desc("Value to pass to hot/cold operator new for cold allocation" )); |
89 | static cl::opt<unsigned, false, HotColdHintParser> |
90 | NotColdNewHintValue("notcold-new-hint-value" , cl::Hidden, cl::init(Val: 128), |
91 | cl::desc("Value to pass to hot/cold operator new for " |
92 | "notcold (warm) allocation" )); |
93 | static cl::opt<unsigned, false, HotColdHintParser> HotNewHintValue( |
94 | "hot-new-hint-value" , cl::Hidden, cl::init(Val: 254), |
95 | cl::desc("Value to pass to hot/cold operator new for hot allocation" )); |
96 | |
97 | //===----------------------------------------------------------------------===// |
98 | // Helper Functions |
99 | //===----------------------------------------------------------------------===// |
100 | |
101 | static bool ignoreCallingConv(LibFunc Func) { |
102 | return Func == LibFunc_abs || Func == LibFunc_labs || |
103 | Func == LibFunc_llabs || Func == LibFunc_strlen; |
104 | } |
105 | |
106 | /// Return true if it is only used in equality comparisons with With. |
107 | static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { |
108 | for (User *U : V->users()) { |
109 | if (ICmpInst *IC = dyn_cast<ICmpInst>(Val: U)) |
110 | if (IC->isEquality() && IC->getOperand(i_nocapture: 1) == With) |
111 | continue; |
112 | // Unknown instruction. |
113 | return false; |
114 | } |
115 | return true; |
116 | } |
117 | |
118 | static bool callHasFloatingPointArgument(const CallInst *CI) { |
119 | return any_of(Range: CI->operands(), P: [](const Use &OI) { |
120 | return OI->getType()->isFloatingPointTy(); |
121 | }); |
122 | } |
123 | |
124 | static bool callHasFP128Argument(const CallInst *CI) { |
125 | return any_of(Range: CI->operands(), P: [](const Use &OI) { |
126 | return OI->getType()->isFP128Ty(); |
127 | }); |
128 | } |
129 | |
130 | // Convert the entire string Str representing an integer in Base, up to |
131 | // the terminating nul if present, to a constant according to the rules |
132 | // of strtoul[l] or, when AsSigned is set, of strtol[l]. On success |
133 | // return the result, otherwise null. |
134 | // The function assumes the string is encoded in ASCII and carefully |
135 | // avoids converting sequences (including "") that the corresponding |
136 | // library call might fail and set errno for. |
137 | static Value *convertStrToInt(CallInst *CI, StringRef &Str, Value *EndPtr, |
138 | uint64_t Base, bool AsSigned, IRBuilderBase &B) { |
139 | if (Base < 2 || Base > 36) |
140 | if (Base != 0) |
141 | // Fail for an invalid base (required by POSIX). |
142 | return nullptr; |
143 | |
144 | // Current offset into the original string to reflect in EndPtr. |
145 | size_t Offset = 0; |
146 | // Strip leading whitespace. |
147 | for ( ; Offset != Str.size(); ++Offset) |
148 | if (!isSpace(C: (unsigned char)Str[Offset])) { |
149 | Str = Str.substr(Start: Offset); |
150 | break; |
151 | } |
152 | |
153 | if (Str.empty()) |
154 | // Fail for empty subject sequences (POSIX allows but doesn't require |
155 | // strtol[l]/strtoul[l] to fail with EINVAL). |
156 | return nullptr; |
157 | |
158 | // Strip but remember the sign. |
159 | bool Negate = Str[0] == '-'; |
160 | if (Str[0] == '-' || Str[0] == '+') { |
161 | Str = Str.drop_front(); |
162 | if (Str.empty()) |
163 | // Fail for a sign with nothing after it. |
164 | return nullptr; |
165 | ++Offset; |
166 | } |
167 | |
168 | // Set Max to the absolute value of the minimum (for signed), or |
169 | // to the maximum (for unsigned) value representable in the type. |
170 | Type *RetTy = CI->getType(); |
171 | unsigned NBits = RetTy->getPrimitiveSizeInBits(); |
172 | uint64_t Max = AsSigned && Negate ? 1 : 0; |
173 | Max += AsSigned ? maxIntN(N: NBits) : maxUIntN(N: NBits); |
174 | |
175 | // Autodetect Base if it's zero and consume the "0x" prefix. |
176 | if (Str.size() > 1) { |
177 | if (Str[0] == '0') { |
178 | if (toUpper(x: (unsigned char)Str[1]) == 'X') { |
179 | if (Str.size() == 2 || (Base && Base != 16)) |
180 | // Fail if Base doesn't allow the "0x" prefix or for the prefix |
181 | // alone that implementations like BSD set errno to EINVAL for. |
182 | return nullptr; |
183 | |
184 | Str = Str.drop_front(N: 2); |
185 | Offset += 2; |
186 | Base = 16; |
187 | } |
188 | else if (Base == 0) |
189 | Base = 8; |
190 | } else if (Base == 0) |
191 | Base = 10; |
192 | } |
193 | else if (Base == 0) |
194 | Base = 10; |
195 | |
196 | // Convert the rest of the subject sequence, not including the sign, |
197 | // to its uint64_t representation (this assumes the source character |
198 | // set is ASCII). |
199 | uint64_t Result = 0; |
200 | for (unsigned i = 0; i != Str.size(); ++i) { |
201 | unsigned char DigVal = Str[i]; |
202 | if (isDigit(C: DigVal)) |
203 | DigVal = DigVal - '0'; |
204 | else { |
205 | DigVal = toUpper(x: DigVal); |
206 | if (isAlpha(C: DigVal)) |
207 | DigVal = DigVal - 'A' + 10; |
208 | else |
209 | return nullptr; |
210 | } |
211 | |
212 | if (DigVal >= Base) |
213 | // Fail if the digit is not valid in the Base. |
214 | return nullptr; |
215 | |
216 | // Add the digit and fail if the result is not representable in |
217 | // the (unsigned form of the) destination type. |
218 | bool VFlow; |
219 | Result = SaturatingMultiplyAdd(X: Result, Y: Base, A: (uint64_t)DigVal, ResultOverflowed: &VFlow); |
220 | if (VFlow || Result > Max) |
221 | return nullptr; |
222 | } |
223 | |
224 | if (EndPtr) { |
225 | // Store the pointer to the end. |
226 | Value *Off = B.getInt64(C: Offset + Str.size()); |
227 | Value *StrBeg = CI->getArgOperand(i: 0); |
228 | Value *StrEnd = B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: StrBeg, IdxList: Off, Name: "endptr" ); |
229 | B.CreateStore(Val: StrEnd, Ptr: EndPtr); |
230 | } |
231 | |
232 | if (Negate) |
233 | // Unsigned negation doesn't overflow. |
234 | Result = -Result; |
235 | |
236 | return ConstantInt::get(Ty: RetTy, V: Result); |
237 | } |
238 | |
239 | static bool isOnlyUsedInComparisonWithZero(Value *V) { |
240 | for (User *U : V->users()) { |
241 | if (ICmpInst *IC = dyn_cast<ICmpInst>(Val: U)) |
242 | if (Constant *C = dyn_cast<Constant>(Val: IC->getOperand(i_nocapture: 1))) |
243 | if (C->isNullValue()) |
244 | continue; |
245 | // Unknown instruction. |
246 | return false; |
247 | } |
248 | return true; |
249 | } |
250 | |
251 | static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, |
252 | const DataLayout &DL) { |
253 | if (!isOnlyUsedInComparisonWithZero(V: CI)) |
254 | return false; |
255 | |
256 | if (!isDereferenceableAndAlignedPointer(V: Str, Alignment: Align(1), Size: APInt(64, Len), DL)) |
257 | return false; |
258 | |
259 | if (CI->getFunction()->hasFnAttribute(Kind: Attribute::SanitizeMemory)) |
260 | return false; |
261 | |
262 | return true; |
263 | } |
264 | |
265 | static void annotateDereferenceableBytes(CallInst *CI, |
266 | ArrayRef<unsigned> ArgNos, |
267 | uint64_t DereferenceableBytes) { |
268 | const Function *F = CI->getCaller(); |
269 | if (!F) |
270 | return; |
271 | for (unsigned ArgNo : ArgNos) { |
272 | uint64_t DerefBytes = DereferenceableBytes; |
273 | unsigned AS = CI->getArgOperand(i: ArgNo)->getType()->getPointerAddressSpace(); |
274 | if (!llvm::NullPointerIsDefined(F, AS) || |
275 | CI->paramHasAttr(ArgNo, Kind: Attribute::NonNull)) |
276 | DerefBytes = std::max(a: CI->getParamDereferenceableOrNullBytes(i: ArgNo), |
277 | b: DereferenceableBytes); |
278 | |
279 | if (CI->getParamDereferenceableBytes(i: ArgNo) < DerefBytes) { |
280 | CI->removeParamAttr(ArgNo, Kind: Attribute::Dereferenceable); |
281 | if (!llvm::NullPointerIsDefined(F, AS) || |
282 | CI->paramHasAttr(ArgNo, Kind: Attribute::NonNull)) |
283 | CI->removeParamAttr(ArgNo, Kind: Attribute::DereferenceableOrNull); |
284 | CI->addParamAttr(ArgNo, Attr: Attribute::getWithDereferenceableBytes( |
285 | Context&: CI->getContext(), Bytes: DerefBytes)); |
286 | } |
287 | } |
288 | } |
289 | |
290 | static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, |
291 | ArrayRef<unsigned> ArgNos) { |
292 | Function *F = CI->getCaller(); |
293 | if (!F) |
294 | return; |
295 | |
296 | for (unsigned ArgNo : ArgNos) { |
297 | if (!CI->paramHasAttr(ArgNo, Kind: Attribute::NoUndef)) |
298 | CI->addParamAttr(ArgNo, Kind: Attribute::NoUndef); |
299 | |
300 | if (!CI->paramHasAttr(ArgNo, Kind: Attribute::NonNull)) { |
301 | unsigned AS = |
302 | CI->getArgOperand(i: ArgNo)->getType()->getPointerAddressSpace(); |
303 | if (llvm::NullPointerIsDefined(F, AS)) |
304 | continue; |
305 | CI->addParamAttr(ArgNo, Kind: Attribute::NonNull); |
306 | } |
307 | |
308 | annotateDereferenceableBytes(CI, ArgNos: ArgNo, DereferenceableBytes: 1); |
309 | } |
310 | } |
311 | |
312 | static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, |
313 | Value *Size, const DataLayout &DL) { |
314 | if (ConstantInt *LenC = dyn_cast<ConstantInt>(Val: Size)) { |
315 | annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); |
316 | annotateDereferenceableBytes(CI, ArgNos, DereferenceableBytes: LenC->getZExtValue()); |
317 | } else if (isKnownNonZero(V: Size, Q: DL)) { |
318 | annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); |
319 | const APInt *X, *Y; |
320 | uint64_t DerefMin = 1; |
321 | if (match(V: Size, P: m_Select(C: m_Value(), L: m_APInt(Res&: X), R: m_APInt(Res&: Y)))) { |
322 | DerefMin = std::min(a: X->getZExtValue(), b: Y->getZExtValue()); |
323 | annotateDereferenceableBytes(CI, ArgNos, DereferenceableBytes: DerefMin); |
324 | } |
325 | } |
326 | } |
327 | |
328 | // Copy CallInst "flags" like musttail, notail, and tail. Return New param for |
329 | // easier chaining. Calls to emit* and B.createCall should probably be wrapped |
330 | // in this function when New is created to replace Old. Callers should take |
331 | // care to check Old.isMustTailCall() if they aren't replacing Old directly |
332 | // with New. |
333 | static Value *copyFlags(const CallInst &Old, Value *New) { |
334 | assert(!Old.isMustTailCall() && "do not copy musttail call flags" ); |
335 | assert(!Old.isNoTailCall() && "do not copy notail call flags" ); |
336 | if (auto *NewCI = dyn_cast_or_null<CallInst>(Val: New)) |
337 | NewCI->setTailCallKind(Old.getTailCallKind()); |
338 | return New; |
339 | } |
340 | |
341 | static Value *mergeAttributesAndFlags(CallInst *NewCI, const CallInst &Old) { |
342 | NewCI->setAttributes(AttributeList::get( |
343 | C&: NewCI->getContext(), Attrs: {NewCI->getAttributes(), Old.getAttributes()})); |
344 | NewCI->removeRetAttrs(AttrsToRemove: AttributeFuncs::typeIncompatible(Ty: NewCI->getType())); |
345 | return copyFlags(Old, New: NewCI); |
346 | } |
347 | |
348 | // Helper to avoid truncating the length if size_t is 32-bits. |
349 | static StringRef substr(StringRef Str, uint64_t Len) { |
350 | return Len >= Str.size() ? Str : Str.substr(Start: 0, N: Len); |
351 | } |
352 | |
353 | //===----------------------------------------------------------------------===// |
354 | // String and Memory Library Call Optimizations |
355 | //===----------------------------------------------------------------------===// |
356 | |
357 | Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { |
358 | // Extract some information from the instruction |
359 | Value *Dst = CI->getArgOperand(i: 0); |
360 | Value *Src = CI->getArgOperand(i: 1); |
361 | annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: {0, 1}); |
362 | |
363 | // See if we can get the length of the input string. |
364 | uint64_t Len = GetStringLength(V: Src); |
365 | if (Len) |
366 | annotateDereferenceableBytes(CI, ArgNos: 1, DereferenceableBytes: Len); |
367 | else |
368 | return nullptr; |
369 | --Len; // Unbias length. |
370 | |
371 | // Handle the simple, do-nothing case: strcat(x, "") -> x |
372 | if (Len == 0) |
373 | return Dst; |
374 | |
375 | return copyFlags(Old: *CI, New: emitStrLenMemCpy(Src, Dst, Len, B)); |
376 | } |
377 | |
378 | Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, |
379 | IRBuilderBase &B) { |
380 | // We need to find the end of the destination string. That's where the |
381 | // memory is to be moved to. We just generate a call to strlen. |
382 | Value *DstLen = emitStrLen(Ptr: Dst, B, DL, TLI); |
383 | if (!DstLen) |
384 | return nullptr; |
385 | |
386 | // Now that we have the destination's length, we must index into the |
387 | // destination's pointer to get the actual memcpy destination (end of |
388 | // the string .. we're concatenating). |
389 | Value *CpyDst = B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: Dst, IdxList: DstLen, Name: "endptr" ); |
390 | |
391 | // We have enough information to now generate the memcpy call to do the |
392 | // concatenation for us. Make a memcpy to copy the nul byte with align = 1. |
393 | B.CreateMemCpy( |
394 | Dst: CpyDst, DstAlign: Align(1), Src, SrcAlign: Align(1), |
395 | Size: ConstantInt::get(Ty: DL.getIntPtrType(C&: Src->getContext()), V: Len + 1)); |
396 | return Dst; |
397 | } |
398 | |
399 | Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { |
400 | // Extract some information from the instruction. |
401 | Value *Dst = CI->getArgOperand(i: 0); |
402 | Value *Src = CI->getArgOperand(i: 1); |
403 | Value *Size = CI->getArgOperand(i: 2); |
404 | uint64_t Len; |
405 | annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 0); |
406 | if (isKnownNonZero(V: Size, Q: DL)) |
407 | annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 1); |
408 | |
409 | // We don't do anything if length is not constant. |
410 | ConstantInt *LengthArg = dyn_cast<ConstantInt>(Val: Size); |
411 | if (LengthArg) { |
412 | Len = LengthArg->getZExtValue(); |
413 | // strncat(x, c, 0) -> x |
414 | if (!Len) |
415 | return Dst; |
416 | } else { |
417 | return nullptr; |
418 | } |
419 | |
420 | // See if we can get the length of the input string. |
421 | uint64_t SrcLen = GetStringLength(V: Src); |
422 | if (SrcLen) { |
423 | annotateDereferenceableBytes(CI, ArgNos: 1, DereferenceableBytes: SrcLen); |
424 | --SrcLen; // Unbias length. |
425 | } else { |
426 | return nullptr; |
427 | } |
428 | |
429 | // strncat(x, "", c) -> x |
430 | if (SrcLen == 0) |
431 | return Dst; |
432 | |
433 | // We don't optimize this case. |
434 | if (Len < SrcLen) |
435 | return nullptr; |
436 | |
437 | // strncat(x, s, c) -> strcat(x, s) |
438 | // s is constant so the strcat can be optimized further. |
439 | return copyFlags(Old: *CI, New: emitStrLenMemCpy(Src, Dst, Len: SrcLen, B)); |
440 | } |
441 | |
442 | // Helper to transform memchr(S, C, N) == S to N && *S == C and, when |
443 | // NBytes is null, strchr(S, C) to *S == C. A precondition of the function |
444 | // is that either S is dereferenceable or the value of N is nonzero. |
445 | static Value* memChrToCharCompare(CallInst *CI, Value *NBytes, |
446 | IRBuilderBase &B, const DataLayout &DL) |
447 | { |
448 | Value *Src = CI->getArgOperand(i: 0); |
449 | Value *CharVal = CI->getArgOperand(i: 1); |
450 | |
451 | // Fold memchr(A, C, N) == A to N && *A == C. |
452 | Type *CharTy = B.getInt8Ty(); |
453 | Value *Char0 = B.CreateLoad(Ty: CharTy, Ptr: Src); |
454 | CharVal = B.CreateTrunc(V: CharVal, DestTy: CharTy); |
455 | Value *Cmp = B.CreateICmpEQ(LHS: Char0, RHS: CharVal, Name: "char0cmp" ); |
456 | |
457 | if (NBytes) { |
458 | Value *Zero = ConstantInt::get(Ty: NBytes->getType(), V: 0); |
459 | Value *And = B.CreateICmpNE(LHS: NBytes, RHS: Zero); |
460 | Cmp = B.CreateLogicalAnd(Cond1: And, Cond2: Cmp); |
461 | } |
462 | |
463 | Value *NullPtr = Constant::getNullValue(Ty: CI->getType()); |
464 | return B.CreateSelect(C: Cmp, True: Src, False: NullPtr); |
465 | } |
466 | |
467 | Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { |
468 | Value *SrcStr = CI->getArgOperand(i: 0); |
469 | Value *CharVal = CI->getArgOperand(i: 1); |
470 | annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 0); |
471 | |
472 | if (isOnlyUsedInEqualityComparison(V: CI, With: SrcStr)) |
473 | return memChrToCharCompare(CI, NBytes: nullptr, B, DL); |
474 | |
475 | // If the second operand is non-constant, see if we can compute the length |
476 | // of the input string and turn this into memchr. |
477 | ConstantInt *CharC = dyn_cast<ConstantInt>(Val: CharVal); |
478 | if (!CharC) { |
479 | uint64_t Len = GetStringLength(V: SrcStr); |
480 | if (Len) |
481 | annotateDereferenceableBytes(CI, ArgNos: 0, DereferenceableBytes: Len); |
482 | else |
483 | return nullptr; |
484 | |
485 | Function *Callee = CI->getCalledFunction(); |
486 | FunctionType *FT = Callee->getFunctionType(); |
487 | unsigned IntBits = TLI->getIntSize(); |
488 | if (!FT->getParamType(i: 1)->isIntegerTy(Bitwidth: IntBits)) // memchr needs 'int'. |
489 | return nullptr; |
490 | |
491 | unsigned SizeTBits = TLI->getSizeTSize(M: *CI->getModule()); |
492 | Type *SizeTTy = IntegerType::get(C&: CI->getContext(), NumBits: SizeTBits); |
493 | return copyFlags(Old: *CI, |
494 | New: emitMemChr(Ptr: SrcStr, Val: CharVal, // include nul. |
495 | Len: ConstantInt::get(Ty: SizeTTy, V: Len), B, |
496 | DL, TLI)); |
497 | } |
498 | |
499 | if (CharC->isZero()) { |
500 | Value *NullPtr = Constant::getNullValue(Ty: CI->getType()); |
501 | if (isOnlyUsedInEqualityComparison(V: CI, With: NullPtr)) |
502 | // Pre-empt the transformation to strlen below and fold |
503 | // strchr(A, '\0') == null to false. |
504 | return B.CreateIntToPtr(V: B.getTrue(), DestTy: CI->getType()); |
505 | } |
506 | |
507 | // Otherwise, the character is a constant, see if the first argument is |
508 | // a string literal. If so, we can constant fold. |
509 | StringRef Str; |
510 | if (!getConstantStringInfo(V: SrcStr, Str)) { |
511 | if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) |
512 | if (Value *StrLen = emitStrLen(Ptr: SrcStr, B, DL, TLI)) |
513 | return B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: SrcStr, IdxList: StrLen, Name: "strchr" ); |
514 | return nullptr; |
515 | } |
516 | |
517 | // Compute the offset, make sure to handle the case when we're searching for |
518 | // zero (a weird way to spell strlen). |
519 | size_t I = (0xFF & CharC->getSExtValue()) == 0 |
520 | ? Str.size() |
521 | : Str.find(C: CharC->getSExtValue()); |
522 | if (I == StringRef::npos) // Didn't find the char. strchr returns null. |
523 | return Constant::getNullValue(Ty: CI->getType()); |
524 | |
525 | // strchr(s+n,c) -> gep(s+n+i,c) |
526 | return B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: SrcStr, IdxList: B.getInt64(C: I), Name: "strchr" ); |
527 | } |
528 | |
529 | Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { |
530 | Value *SrcStr = CI->getArgOperand(i: 0); |
531 | Value *CharVal = CI->getArgOperand(i: 1); |
532 | ConstantInt *CharC = dyn_cast<ConstantInt>(Val: CharVal); |
533 | annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 0); |
534 | |
535 | StringRef Str; |
536 | if (!getConstantStringInfo(V: SrcStr, Str)) { |
537 | // strrchr(s, 0) -> strchr(s, 0) |
538 | if (CharC && CharC->isZero()) |
539 | return copyFlags(Old: *CI, New: emitStrChr(Ptr: SrcStr, C: '\0', B, TLI)); |
540 | return nullptr; |
541 | } |
542 | |
543 | unsigned SizeTBits = TLI->getSizeTSize(M: *CI->getModule()); |
544 | Type *SizeTTy = IntegerType::get(C&: CI->getContext(), NumBits: SizeTBits); |
545 | |
546 | // Try to expand strrchr to the memrchr nonstandard extension if it's |
547 | // available, or simply fail otherwise. |
548 | uint64_t NBytes = Str.size() + 1; // Include the terminating nul. |
549 | Value *Size = ConstantInt::get(Ty: SizeTTy, V: NBytes); |
550 | return copyFlags(Old: *CI, New: emitMemRChr(Ptr: SrcStr, Val: CharVal, Len: Size, B, DL, TLI)); |
551 | } |
552 | |
553 | Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { |
554 | Value *Str1P = CI->getArgOperand(i: 0), *Str2P = CI->getArgOperand(i: 1); |
555 | if (Str1P == Str2P) // strcmp(x,x) -> 0 |
556 | return ConstantInt::get(Ty: CI->getType(), V: 0); |
557 | |
558 | StringRef Str1, Str2; |
559 | bool HasStr1 = getConstantStringInfo(V: Str1P, Str&: Str1); |
560 | bool HasStr2 = getConstantStringInfo(V: Str2P, Str&: Str2); |
561 | |
562 | // strcmp(x, y) -> cnst (if both x and y are constant strings) |
563 | if (HasStr1 && HasStr2) |
564 | return ConstantInt::get(Ty: CI->getType(), |
565 | V: std::clamp(val: Str1.compare(RHS: Str2), lo: -1, hi: 1)); |
566 | |
567 | if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x |
568 | return B.CreateNeg(V: B.CreateZExt( |
569 | V: B.CreateLoad(Ty: B.getInt8Ty(), Ptr: Str2P, Name: "strcmpload" ), DestTy: CI->getType())); |
570 | |
571 | if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x |
572 | return B.CreateZExt(V: B.CreateLoad(Ty: B.getInt8Ty(), Ptr: Str1P, Name: "strcmpload" ), |
573 | DestTy: CI->getType()); |
574 | |
575 | // strcmp(P, "x") -> memcmp(P, "x", 2) |
576 | uint64_t Len1 = GetStringLength(V: Str1P); |
577 | if (Len1) |
578 | annotateDereferenceableBytes(CI, ArgNos: 0, DereferenceableBytes: Len1); |
579 | uint64_t Len2 = GetStringLength(V: Str2P); |
580 | if (Len2) |
581 | annotateDereferenceableBytes(CI, ArgNos: 1, DereferenceableBytes: Len2); |
582 | |
583 | if (Len1 && Len2) { |
584 | return copyFlags( |
585 | Old: *CI, New: emitMemCmp(Ptr1: Str1P, Ptr2: Str2P, |
586 | Len: ConstantInt::get(Ty: DL.getIntPtrType(C&: CI->getContext()), |
587 | V: std::min(a: Len1, b: Len2)), |
588 | B, DL, TLI)); |
589 | } |
590 | |
591 | // strcmp to memcmp |
592 | if (!HasStr1 && HasStr2) { |
593 | if (canTransformToMemCmp(CI, Str: Str1P, Len: Len2, DL)) |
594 | return copyFlags( |
595 | Old: *CI, |
596 | New: emitMemCmp(Ptr1: Str1P, Ptr2: Str2P, |
597 | Len: ConstantInt::get(Ty: DL.getIntPtrType(C&: CI->getContext()), V: Len2), |
598 | B, DL, TLI)); |
599 | } else if (HasStr1 && !HasStr2) { |
600 | if (canTransformToMemCmp(CI, Str: Str2P, Len: Len1, DL)) |
601 | return copyFlags( |
602 | Old: *CI, |
603 | New: emitMemCmp(Ptr1: Str1P, Ptr2: Str2P, |
604 | Len: ConstantInt::get(Ty: DL.getIntPtrType(C&: CI->getContext()), V: Len1), |
605 | B, DL, TLI)); |
606 | } |
607 | |
608 | annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: {0, 1}); |
609 | return nullptr; |
610 | } |
611 | |
612 | // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant |
613 | // arrays LHS and RHS and nonconstant Size. |
614 | static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS, |
615 | Value *Size, bool StrNCmp, |
616 | IRBuilderBase &B, const DataLayout &DL); |
617 | |
618 | Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { |
619 | Value *Str1P = CI->getArgOperand(i: 0); |
620 | Value *Str2P = CI->getArgOperand(i: 1); |
621 | Value *Size = CI->getArgOperand(i: 2); |
622 | if (Str1P == Str2P) // strncmp(x,x,n) -> 0 |
623 | return ConstantInt::get(Ty: CI->getType(), V: 0); |
624 | |
625 | if (isKnownNonZero(V: Size, Q: DL)) |
626 | annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: {0, 1}); |
627 | // Get the length argument if it is constant. |
628 | uint64_t Length; |
629 | if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Val: Size)) |
630 | Length = LengthArg->getZExtValue(); |
631 | else |
632 | return optimizeMemCmpVarSize(CI, LHS: Str1P, RHS: Str2P, Size, StrNCmp: true, B, DL); |
633 | |
634 | if (Length == 0) // strncmp(x,y,0) -> 0 |
635 | return ConstantInt::get(Ty: CI->getType(), V: 0); |
636 | |
637 | if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) |
638 | return copyFlags(Old: *CI, New: emitMemCmp(Ptr1: Str1P, Ptr2: Str2P, Len: Size, B, DL, TLI)); |
639 | |
640 | StringRef Str1, Str2; |
641 | bool HasStr1 = getConstantStringInfo(V: Str1P, Str&: Str1); |
642 | bool HasStr2 = getConstantStringInfo(V: Str2P, Str&: Str2); |
643 | |
644 | // strncmp(x, y) -> cnst (if both x and y are constant strings) |
645 | if (HasStr1 && HasStr2) { |
646 | // Avoid truncating the 64-bit Length to 32 bits in ILP32. |
647 | StringRef SubStr1 = substr(Str: Str1, Len: Length); |
648 | StringRef SubStr2 = substr(Str: Str2, Len: Length); |
649 | return ConstantInt::get(Ty: CI->getType(), |
650 | V: std::clamp(val: SubStr1.compare(RHS: SubStr2), lo: -1, hi: 1)); |
651 | } |
652 | |
653 | if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x |
654 | return B.CreateNeg(V: B.CreateZExt( |
655 | V: B.CreateLoad(Ty: B.getInt8Ty(), Ptr: Str2P, Name: "strcmpload" ), DestTy: CI->getType())); |
656 | |
657 | if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x |
658 | return B.CreateZExt(V: B.CreateLoad(Ty: B.getInt8Ty(), Ptr: Str1P, Name: "strcmpload" ), |
659 | DestTy: CI->getType()); |
660 | |
661 | uint64_t Len1 = GetStringLength(V: Str1P); |
662 | if (Len1) |
663 | annotateDereferenceableBytes(CI, ArgNos: 0, DereferenceableBytes: Len1); |
664 | uint64_t Len2 = GetStringLength(V: Str2P); |
665 | if (Len2) |
666 | annotateDereferenceableBytes(CI, ArgNos: 1, DereferenceableBytes: Len2); |
667 | |
668 | // strncmp to memcmp |
669 | if (!HasStr1 && HasStr2) { |
670 | Len2 = std::min(a: Len2, b: Length); |
671 | if (canTransformToMemCmp(CI, Str: Str1P, Len: Len2, DL)) |
672 | return copyFlags( |
673 | Old: *CI, |
674 | New: emitMemCmp(Ptr1: Str1P, Ptr2: Str2P, |
675 | Len: ConstantInt::get(Ty: DL.getIntPtrType(C&: CI->getContext()), V: Len2), |
676 | B, DL, TLI)); |
677 | } else if (HasStr1 && !HasStr2) { |
678 | Len1 = std::min(a: Len1, b: Length); |
679 | if (canTransformToMemCmp(CI, Str: Str2P, Len: Len1, DL)) |
680 | return copyFlags( |
681 | Old: *CI, |
682 | New: emitMemCmp(Ptr1: Str1P, Ptr2: Str2P, |
683 | Len: ConstantInt::get(Ty: DL.getIntPtrType(C&: CI->getContext()), V: Len1), |
684 | B, DL, TLI)); |
685 | } |
686 | |
687 | return nullptr; |
688 | } |
689 | |
690 | Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { |
691 | Value *Src = CI->getArgOperand(i: 0); |
692 | ConstantInt *Size = dyn_cast<ConstantInt>(Val: CI->getArgOperand(i: 1)); |
693 | uint64_t SrcLen = GetStringLength(V: Src); |
694 | if (SrcLen && Size) { |
695 | annotateDereferenceableBytes(CI, ArgNos: 0, DereferenceableBytes: SrcLen); |
696 | if (SrcLen <= Size->getZExtValue() + 1) |
697 | return copyFlags(Old: *CI, New: emitStrDup(Ptr: Src, B, TLI)); |
698 | } |
699 | |
700 | return nullptr; |
701 | } |
702 | |
703 | Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { |
704 | Value *Dst = CI->getArgOperand(i: 0), *Src = CI->getArgOperand(i: 1); |
705 | if (Dst == Src) // strcpy(x,x) -> x |
706 | return Src; |
707 | |
708 | annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: {0, 1}); |
709 | // See if we can get the length of the input string. |
710 | uint64_t Len = GetStringLength(V: Src); |
711 | if (Len) |
712 | annotateDereferenceableBytes(CI, ArgNos: 1, DereferenceableBytes: Len); |
713 | else |
714 | return nullptr; |
715 | |
716 | // We have enough information to now generate the memcpy call to do the |
717 | // copy for us. Make a memcpy to copy the nul byte with align = 1. |
718 | CallInst *NewCI = |
719 | B.CreateMemCpy(Dst, DstAlign: Align(1), Src, SrcAlign: Align(1), |
720 | Size: ConstantInt::get(Ty: DL.getIntPtrType(C&: CI->getContext()), V: Len)); |
721 | mergeAttributesAndFlags(NewCI, Old: *CI); |
722 | return Dst; |
723 | } |
724 | |
725 | Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { |
726 | Function *Callee = CI->getCalledFunction(); |
727 | Value *Dst = CI->getArgOperand(i: 0), *Src = CI->getArgOperand(i: 1); |
728 | |
729 | // stpcpy(d,s) -> strcpy(d,s) if the result is not used. |
730 | if (CI->use_empty()) |
731 | return copyFlags(Old: *CI, New: emitStrCpy(Dst, Src, B, TLI)); |
732 | |
733 | if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) |
734 | Value *StrLen = emitStrLen(Ptr: Src, B, DL, TLI); |
735 | return StrLen ? B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: Dst, IdxList: StrLen) : nullptr; |
736 | } |
737 | |
738 | // See if we can get the length of the input string. |
739 | uint64_t Len = GetStringLength(V: Src); |
740 | if (Len) |
741 | annotateDereferenceableBytes(CI, ArgNos: 1, DereferenceableBytes: Len); |
742 | else |
743 | return nullptr; |
744 | |
745 | Type *PT = Callee->getFunctionType()->getParamType(i: 0); |
746 | Value *LenV = ConstantInt::get(Ty: DL.getIntPtrType(PT), V: Len); |
747 | Value *DstEnd = B.CreateInBoundsGEP( |
748 | Ty: B.getInt8Ty(), Ptr: Dst, IdxList: ConstantInt::get(Ty: DL.getIntPtrType(PT), V: Len - 1)); |
749 | |
750 | // We have enough information to now generate the memcpy call to do the |
751 | // copy for us. Make a memcpy to copy the nul byte with align = 1. |
752 | CallInst *NewCI = B.CreateMemCpy(Dst, DstAlign: Align(1), Src, SrcAlign: Align(1), Size: LenV); |
753 | mergeAttributesAndFlags(NewCI, Old: *CI); |
754 | return DstEnd; |
755 | } |
756 | |
757 | // Optimize a call to size_t strlcpy(char*, const char*, size_t). |
758 | |
759 | Value *LibCallSimplifier::optimizeStrLCpy(CallInst *CI, IRBuilderBase &B) { |
760 | Value *Size = CI->getArgOperand(i: 2); |
761 | if (isKnownNonZero(V: Size, Q: DL)) |
762 | // Like snprintf, the function stores into the destination only when |
763 | // the size argument is nonzero. |
764 | annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 0); |
765 | // The function reads the source argument regardless of Size (it returns |
766 | // its length). |
767 | annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 1); |
768 | |
769 | uint64_t NBytes; |
770 | if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Val: Size)) |
771 | NBytes = SizeC->getZExtValue(); |
772 | else |
773 | return nullptr; |
774 | |
775 | Value *Dst = CI->getArgOperand(i: 0); |
776 | Value *Src = CI->getArgOperand(i: 1); |
777 | if (NBytes <= 1) { |
778 | if (NBytes == 1) |
779 | // For a call to strlcpy(D, S, 1) first store a nul in *D. |
780 | B.CreateStore(Val: B.getInt8(C: 0), Ptr: Dst); |
781 | |
782 | // Transform strlcpy(D, S, 0) to a call to strlen(S). |
783 | return copyFlags(Old: *CI, New: emitStrLen(Ptr: Src, B, DL, TLI)); |
784 | } |
785 | |
786 | // Try to determine the length of the source, substituting its size |
787 | // when it's not nul-terminated (as it's required to be) to avoid |
788 | // reading past its end. |
789 | StringRef Str; |
790 | if (!getConstantStringInfo(V: Src, Str, /*TrimAtNul=*/false)) |
791 | return nullptr; |
792 | |
793 | uint64_t SrcLen = Str.find(C: '\0'); |
794 | // Set if the terminating nul should be copied by the call to memcpy |
795 | // below. |
796 | bool NulTerm = SrcLen < NBytes; |
797 | |
798 | if (NulTerm) |
799 | // Overwrite NBytes with the number of bytes to copy, including |
800 | // the terminating nul. |
801 | NBytes = SrcLen + 1; |
802 | else { |
803 | // Set the length of the source for the function to return to its |
804 | // size, and cap NBytes at the same. |
805 | SrcLen = std::min(a: SrcLen, b: uint64_t(Str.size())); |
806 | NBytes = std::min(a: NBytes - 1, b: SrcLen); |
807 | } |
808 | |
809 | if (SrcLen == 0) { |
810 | // Transform strlcpy(D, "", N) to (*D = '\0, 0). |
811 | B.CreateStore(Val: B.getInt8(C: 0), Ptr: Dst); |
812 | return ConstantInt::get(Ty: CI->getType(), V: 0); |
813 | } |
814 | |
815 | Function *Callee = CI->getCalledFunction(); |
816 | Type *PT = Callee->getFunctionType()->getParamType(i: 0); |
817 | // Transform strlcpy(D, S, N) to memcpy(D, S, N') where N' is the lower |
818 | // bound on strlen(S) + 1 and N, optionally followed by a nul store to |
819 | // D[N' - 1] if necessary. |
820 | CallInst *NewCI = B.CreateMemCpy(Dst, DstAlign: Align(1), Src, SrcAlign: Align(1), |
821 | Size: ConstantInt::get(Ty: DL.getIntPtrType(PT), V: NBytes)); |
822 | mergeAttributesAndFlags(NewCI, Old: *CI); |
823 | |
824 | if (!NulTerm) { |
825 | Value *EndOff = ConstantInt::get(Ty: CI->getType(), V: NBytes); |
826 | Value *EndPtr = B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: Dst, IdxList: EndOff); |
827 | B.CreateStore(Val: B.getInt8(C: 0), Ptr: EndPtr); |
828 | } |
829 | |
830 | // Like snprintf, strlcpy returns the number of nonzero bytes that would |
831 | // have been copied if the bound had been sufficiently big (which in this |
832 | // case is strlen(Src)). |
833 | return ConstantInt::get(Ty: CI->getType(), V: SrcLen); |
834 | } |
835 | |
836 | // Optimize a call CI to either stpncpy when RetEnd is true, or to strncpy |
837 | // otherwise. |
838 | Value *LibCallSimplifier::optimizeStringNCpy(CallInst *CI, bool RetEnd, |
839 | IRBuilderBase &B) { |
840 | Function *Callee = CI->getCalledFunction(); |
841 | Value *Dst = CI->getArgOperand(i: 0); |
842 | Value *Src = CI->getArgOperand(i: 1); |
843 | Value *Size = CI->getArgOperand(i: 2); |
844 | |
845 | if (isKnownNonZero(V: Size, Q: DL)) { |
846 | // Both st{p,r}ncpy(D, S, N) access the source and destination arrays |
847 | // only when N is nonzero. |
848 | annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 0); |
849 | annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 1); |
850 | } |
851 | |
852 | // If the "bound" argument is known set N to it. Otherwise set it to |
853 | // UINT64_MAX and handle it later. |
854 | uint64_t N = UINT64_MAX; |
855 | if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Val: Size)) |
856 | N = SizeC->getZExtValue(); |
857 | |
858 | if (N == 0) |
859 | // Fold st{p,r}ncpy(D, S, 0) to D. |
860 | return Dst; |
861 | |
862 | if (N == 1) { |
863 | Type *CharTy = B.getInt8Ty(); |
864 | Value *CharVal = B.CreateLoad(Ty: CharTy, Ptr: Src, Name: "stxncpy.char0" ); |
865 | B.CreateStore(Val: CharVal, Ptr: Dst); |
866 | if (!RetEnd) |
867 | // Transform strncpy(D, S, 1) to return (*D = *S), D. |
868 | return Dst; |
869 | |
870 | // Transform stpncpy(D, S, 1) to return (*D = *S) ? D + 1 : D. |
871 | Value *ZeroChar = ConstantInt::get(Ty: CharTy, V: 0); |
872 | Value *Cmp = B.CreateICmpEQ(LHS: CharVal, RHS: ZeroChar, Name: "stpncpy.char0cmp" ); |
873 | |
874 | Value *Off1 = B.getInt32(C: 1); |
875 | Value *EndPtr = B.CreateInBoundsGEP(Ty: CharTy, Ptr: Dst, IdxList: Off1, Name: "stpncpy.end" ); |
876 | return B.CreateSelect(C: Cmp, True: Dst, False: EndPtr, Name: "stpncpy.sel" ); |
877 | } |
878 | |
879 | // If the length of the input string is known set SrcLen to it. |
880 | uint64_t SrcLen = GetStringLength(V: Src); |
881 | if (SrcLen) |
882 | annotateDereferenceableBytes(CI, ArgNos: 1, DereferenceableBytes: SrcLen); |
883 | else |
884 | return nullptr; |
885 | |
886 | --SrcLen; // Unbias length. |
887 | |
888 | if (SrcLen == 0) { |
889 | // Transform st{p,r}ncpy(D, "", N) to memset(D, '\0', N) for any N. |
890 | Align MemSetAlign = |
891 | CI->getAttributes().getParamAttrs(ArgNo: 0).getAlignment().valueOrOne(); |
892 | CallInst *NewCI = B.CreateMemSet(Ptr: Dst, Val: B.getInt8(C: '\0'), Size, Align: MemSetAlign); |
893 | AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(ArgNo: 0)); |
894 | NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( |
895 | C&: CI->getContext(), ArgNo: 0, B: ArgAttrs)); |
896 | copyFlags(Old: *CI, New: NewCI); |
897 | return Dst; |
898 | } |
899 | |
900 | if (N > SrcLen + 1) { |
901 | if (N > 128) |
902 | // Bail if N is large or unknown. |
903 | return nullptr; |
904 | |
905 | // st{p,r}ncpy(D, "a", N) -> memcpy(D, "a\0\0\0", N) for N <= 128. |
906 | StringRef Str; |
907 | if (!getConstantStringInfo(V: Src, Str)) |
908 | return nullptr; |
909 | std::string SrcStr = Str.str(); |
910 | // Create a bigger, nul-padded array with the same length, SrcLen, |
911 | // as the original string. |
912 | SrcStr.resize(n: N, c: '\0'); |
913 | Src = B.CreateGlobalString(Str: SrcStr, Name: "str" ); |
914 | } |
915 | |
916 | Type *PT = Callee->getFunctionType()->getParamType(i: 0); |
917 | // st{p,r}ncpy(D, S, N) -> memcpy(align 1 D, align 1 S, N) when both |
918 | // S and N are constant. |
919 | CallInst *NewCI = B.CreateMemCpy(Dst, DstAlign: Align(1), Src, SrcAlign: Align(1), |
920 | Size: ConstantInt::get(Ty: DL.getIntPtrType(PT), V: N)); |
921 | mergeAttributesAndFlags(NewCI, Old: *CI); |
922 | if (!RetEnd) |
923 | return Dst; |
924 | |
925 | // stpncpy(D, S, N) returns the address of the first null in D if it writes |
926 | // one, otherwise D + N. |
927 | Value *Off = B.getInt64(C: std::min(a: SrcLen, b: N)); |
928 | return B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: Dst, IdxList: Off, Name: "endptr" ); |
929 | } |
930 | |
931 | Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, |
932 | unsigned CharSize, |
933 | Value *Bound) { |
934 | Value *Src = CI->getArgOperand(i: 0); |
935 | Type *CharTy = B.getIntNTy(N: CharSize); |
936 | |
937 | if (isOnlyUsedInZeroEqualityComparison(CxtI: CI) && |
938 | (!Bound || isKnownNonZero(V: Bound, Q: DL))) { |
939 | // Fold strlen: |
940 | // strlen(x) != 0 --> *x != 0 |
941 | // strlen(x) == 0 --> *x == 0 |
942 | // and likewise strnlen with constant N > 0: |
943 | // strnlen(x, N) != 0 --> *x != 0 |
944 | // strnlen(x, N) == 0 --> *x == 0 |
945 | return B.CreateZExt(V: B.CreateLoad(Ty: CharTy, Ptr: Src, Name: "char0" ), |
946 | DestTy: CI->getType()); |
947 | } |
948 | |
949 | if (Bound) { |
950 | if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Val: Bound)) { |
951 | if (BoundCst->isZero()) |
952 | // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise. |
953 | return ConstantInt::get(Ty: CI->getType(), V: 0); |
954 | |
955 | if (BoundCst->isOne()) { |
956 | // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s. |
957 | Value *CharVal = B.CreateLoad(Ty: CharTy, Ptr: Src, Name: "strnlen.char0" ); |
958 | Value *ZeroChar = ConstantInt::get(Ty: CharTy, V: 0); |
959 | Value *Cmp = B.CreateICmpNE(LHS: CharVal, RHS: ZeroChar, Name: "strnlen.char0cmp" ); |
960 | return B.CreateZExt(V: Cmp, DestTy: CI->getType()); |
961 | } |
962 | } |
963 | } |
964 | |
965 | if (uint64_t Len = GetStringLength(V: Src, CharSize)) { |
966 | Value *LenC = ConstantInt::get(Ty: CI->getType(), V: Len - 1); |
967 | // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2 |
968 | // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound. |
969 | if (Bound) |
970 | return B.CreateBinaryIntrinsic(ID: Intrinsic::umin, LHS: LenC, RHS: Bound); |
971 | return LenC; |
972 | } |
973 | |
974 | if (Bound) |
975 | // Punt for strnlen for now. |
976 | return nullptr; |
977 | |
978 | // If s is a constant pointer pointing to a string literal, we can fold |
979 | // strlen(s + x) to strlen(s) - x, when x is known to be in the range |
980 | // [0, strlen(s)] or the string has a single null terminator '\0' at the end. |
981 | // We only try to simplify strlen when the pointer s points to an array |
982 | // of CharSize elements. Otherwise, we would need to scale the offset x before |
983 | // doing the subtraction. This will make the optimization more complex, and |
984 | // it's not very useful because calling strlen for a pointer of other types is |
985 | // very uncommon. |
986 | if (GEPOperator *GEP = dyn_cast<GEPOperator>(Val: Src)) { |
987 | // TODO: Handle subobjects. |
988 | if (!isGEPBasedOnPointerToString(GEP, CharSize)) |
989 | return nullptr; |
990 | |
991 | ConstantDataArraySlice Slice; |
992 | if (getConstantDataArrayInfo(V: GEP->getOperand(i_nocapture: 0), Slice, ElementSize: CharSize)) { |
993 | uint64_t NullTermIdx; |
994 | if (Slice.Array == nullptr) { |
995 | NullTermIdx = 0; |
996 | } else { |
997 | NullTermIdx = ~((uint64_t)0); |
998 | for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { |
999 | if (Slice.Array->getElementAsInteger(i: I + Slice.Offset) == 0) { |
1000 | NullTermIdx = I; |
1001 | break; |
1002 | } |
1003 | } |
1004 | // If the string does not have '\0', leave it to strlen to compute |
1005 | // its length. |
1006 | if (NullTermIdx == ~((uint64_t)0)) |
1007 | return nullptr; |
1008 | } |
1009 | |
1010 | Value *Offset = GEP->getOperand(i_nocapture: 2); |
1011 | KnownBits Known = computeKnownBits(V: Offset, DL, Depth: 0, AC: nullptr, CxtI: CI, DT: nullptr); |
1012 | uint64_t ArrSize = |
1013 | cast<ArrayType>(Val: GEP->getSourceElementType())->getNumElements(); |
1014 | |
1015 | // If Offset is not provably in the range [0, NullTermIdx], we can still |
1016 | // optimize if we can prove that the program has undefined behavior when |
1017 | // Offset is outside that range. That is the case when GEP->getOperand(0) |
1018 | // is a pointer to an object whose memory extent is NullTermIdx+1. |
1019 | if ((Known.isNonNegative() && Known.getMaxValue().ule(RHS: NullTermIdx)) || |
1020 | (isa<GlobalVariable>(Val: GEP->getOperand(i_nocapture: 0)) && |
1021 | NullTermIdx == ArrSize - 1)) { |
1022 | Offset = B.CreateSExtOrTrunc(V: Offset, DestTy: CI->getType()); |
1023 | return B.CreateSub(LHS: ConstantInt::get(Ty: CI->getType(), V: NullTermIdx), |
1024 | RHS: Offset); |
1025 | } |
1026 | } |
1027 | } |
1028 | |
1029 | // strlen(x?"foo":"bars") --> x ? 3 : 4 |
1030 | if (SelectInst *SI = dyn_cast<SelectInst>(Val: Src)) { |
1031 | uint64_t LenTrue = GetStringLength(V: SI->getTrueValue(), CharSize); |
1032 | uint64_t LenFalse = GetStringLength(V: SI->getFalseValue(), CharSize); |
1033 | if (LenTrue && LenFalse) { |
1034 | ORE.emit(RemarkBuilder: [&]() { |
1035 | return OptimizationRemark("instcombine" , "simplify-libcalls" , CI) |
1036 | << "folded strlen(select) to select of constants" ; |
1037 | }); |
1038 | return B.CreateSelect(C: SI->getCondition(), |
1039 | True: ConstantInt::get(Ty: CI->getType(), V: LenTrue - 1), |
1040 | False: ConstantInt::get(Ty: CI->getType(), V: LenFalse - 1)); |
1041 | } |
1042 | } |
1043 | |
1044 | return nullptr; |
1045 | } |
1046 | |
1047 | Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { |
1048 | if (Value *V = optimizeStringLength(CI, B, CharSize: 8)) |
1049 | return V; |
1050 | annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 0); |
1051 | return nullptr; |
1052 | } |
1053 | |
1054 | Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) { |
1055 | Value *Bound = CI->getArgOperand(i: 1); |
1056 | if (Value *V = optimizeStringLength(CI, B, CharSize: 8, Bound)) |
1057 | return V; |
1058 | |
1059 | if (isKnownNonZero(V: Bound, Q: DL)) |
1060 | annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 0); |
1061 | return nullptr; |
1062 | } |
1063 | |
1064 | Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { |
1065 | Module &M = *CI->getModule(); |
1066 | unsigned WCharSize = TLI->getWCharSize(M) * 8; |
1067 | // We cannot perform this optimization without wchar_size metadata. |
1068 | if (WCharSize == 0) |
1069 | return nullptr; |
1070 | |
1071 | return optimizeStringLength(CI, B, CharSize: WCharSize); |
1072 | } |
1073 | |
1074 | Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { |
1075 | StringRef S1, S2; |
1076 | bool HasS1 = getConstantStringInfo(V: CI->getArgOperand(i: 0), Str&: S1); |
1077 | bool HasS2 = getConstantStringInfo(V: CI->getArgOperand(i: 1), Str&: S2); |
1078 | |
1079 | // strpbrk(s, "") -> nullptr |
1080 | // strpbrk("", s) -> nullptr |
1081 | if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) |
1082 | return Constant::getNullValue(Ty: CI->getType()); |
1083 | |
1084 | // Constant folding. |
1085 | if (HasS1 && HasS2) { |
1086 | size_t I = S1.find_first_of(Chars: S2); |
1087 | if (I == StringRef::npos) // No match. |
1088 | return Constant::getNullValue(Ty: CI->getType()); |
1089 | |
1090 | return B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: CI->getArgOperand(i: 0), |
1091 | IdxList: B.getInt64(C: I), Name: "strpbrk" ); |
1092 | } |
1093 | |
1094 | // strpbrk(s, "a") -> strchr(s, 'a') |
1095 | if (HasS2 && S2.size() == 1) |
1096 | return copyFlags(Old: *CI, New: emitStrChr(Ptr: CI->getArgOperand(i: 0), C: S2[0], B, TLI)); |
1097 | |
1098 | return nullptr; |
1099 | } |
1100 | |
1101 | Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { |
1102 | Value *EndPtr = CI->getArgOperand(i: 1); |
1103 | if (isa<ConstantPointerNull>(Val: EndPtr)) { |
1104 | // With a null EndPtr, this function won't capture the main argument. |
1105 | // It would be readonly too, except that it still may write to errno. |
1106 | CI->addParamAttr(ArgNo: 0, Kind: Attribute::NoCapture); |
1107 | } |
1108 | |
1109 | return nullptr; |
1110 | } |
1111 | |
1112 | Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { |
1113 | StringRef S1, S2; |
1114 | bool HasS1 = getConstantStringInfo(V: CI->getArgOperand(i: 0), Str&: S1); |
1115 | bool HasS2 = getConstantStringInfo(V: CI->getArgOperand(i: 1), Str&: S2); |
1116 | |
1117 | // strspn(s, "") -> 0 |
1118 | // strspn("", s) -> 0 |
1119 | if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) |
1120 | return Constant::getNullValue(Ty: CI->getType()); |
1121 | |
1122 | // Constant folding. |
1123 | if (HasS1 && HasS2) { |
1124 | size_t Pos = S1.find_first_not_of(Chars: S2); |
1125 | if (Pos == StringRef::npos) |
1126 | Pos = S1.size(); |
1127 | return ConstantInt::get(Ty: CI->getType(), V: Pos); |
1128 | } |
1129 | |
1130 | return nullptr; |
1131 | } |
1132 | |
1133 | Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { |
1134 | StringRef S1, S2; |
1135 | bool HasS1 = getConstantStringInfo(V: CI->getArgOperand(i: 0), Str&: S1); |
1136 | bool HasS2 = getConstantStringInfo(V: CI->getArgOperand(i: 1), Str&: S2); |
1137 | |
1138 | // strcspn("", s) -> 0 |
1139 | if (HasS1 && S1.empty()) |
1140 | return Constant::getNullValue(Ty: CI->getType()); |
1141 | |
1142 | // Constant folding. |
1143 | if (HasS1 && HasS2) { |
1144 | size_t Pos = S1.find_first_of(Chars: S2); |
1145 | if (Pos == StringRef::npos) |
1146 | Pos = S1.size(); |
1147 | return ConstantInt::get(Ty: CI->getType(), V: Pos); |
1148 | } |
1149 | |
1150 | // strcspn(s, "") -> strlen(s) |
1151 | if (HasS2 && S2.empty()) |
1152 | return copyFlags(Old: *CI, New: emitStrLen(Ptr: CI->getArgOperand(i: 0), B, DL, TLI)); |
1153 | |
1154 | return nullptr; |
1155 | } |
1156 | |
1157 | Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { |
1158 | // fold strstr(x, x) -> x. |
1159 | if (CI->getArgOperand(i: 0) == CI->getArgOperand(i: 1)) |
1160 | return CI->getArgOperand(i: 0); |
1161 | |
1162 | // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 |
1163 | if (isOnlyUsedInEqualityComparison(V: CI, With: CI->getArgOperand(i: 0))) { |
1164 | Value *StrLen = emitStrLen(Ptr: CI->getArgOperand(i: 1), B, DL, TLI); |
1165 | if (!StrLen) |
1166 | return nullptr; |
1167 | Value *StrNCmp = emitStrNCmp(Ptr1: CI->getArgOperand(i: 0), Ptr2: CI->getArgOperand(i: 1), |
1168 | Len: StrLen, B, DL, TLI); |
1169 | if (!StrNCmp) |
1170 | return nullptr; |
1171 | for (User *U : llvm::make_early_inc_range(Range: CI->users())) { |
1172 | ICmpInst *Old = cast<ICmpInst>(Val: U); |
1173 | Value *Cmp = |
1174 | B.CreateICmp(P: Old->getPredicate(), LHS: StrNCmp, |
1175 | RHS: ConstantInt::getNullValue(Ty: StrNCmp->getType()), Name: "cmp" ); |
1176 | replaceAllUsesWith(I: Old, With: Cmp); |
1177 | } |
1178 | return CI; |
1179 | } |
1180 | |
1181 | // See if either input string is a constant string. |
1182 | StringRef SearchStr, ToFindStr; |
1183 | bool HasStr1 = getConstantStringInfo(V: CI->getArgOperand(i: 0), Str&: SearchStr); |
1184 | bool HasStr2 = getConstantStringInfo(V: CI->getArgOperand(i: 1), Str&: ToFindStr); |
1185 | |
1186 | // fold strstr(x, "") -> x. |
1187 | if (HasStr2 && ToFindStr.empty()) |
1188 | return CI->getArgOperand(i: 0); |
1189 | |
1190 | // If both strings are known, constant fold it. |
1191 | if (HasStr1 && HasStr2) { |
1192 | size_t Offset = SearchStr.find(Str: ToFindStr); |
1193 | |
1194 | if (Offset == StringRef::npos) // strstr("foo", "bar") -> null |
1195 | return Constant::getNullValue(Ty: CI->getType()); |
1196 | |
1197 | // strstr("abcd", "bc") -> gep((char*)"abcd", 1) |
1198 | return B.CreateConstInBoundsGEP1_64(Ty: B.getInt8Ty(), Ptr: CI->getArgOperand(i: 0), |
1199 | Idx0: Offset, Name: "strstr" ); |
1200 | } |
1201 | |
1202 | // fold strstr(x, "y") -> strchr(x, 'y'). |
1203 | if (HasStr2 && ToFindStr.size() == 1) { |
1204 | return emitStrChr(Ptr: CI->getArgOperand(i: 0), C: ToFindStr[0], B, TLI); |
1205 | } |
1206 | |
1207 | annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: {0, 1}); |
1208 | return nullptr; |
1209 | } |
1210 | |
1211 | Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { |
1212 | Value *SrcStr = CI->getArgOperand(i: 0); |
1213 | Value *Size = CI->getArgOperand(i: 2); |
1214 | annotateNonNullAndDereferenceable(CI, ArgNos: 0, Size, DL); |
1215 | Value *CharVal = CI->getArgOperand(i: 1); |
1216 | ConstantInt *LenC = dyn_cast<ConstantInt>(Val: Size); |
1217 | Value *NullPtr = Constant::getNullValue(Ty: CI->getType()); |
1218 | |
1219 | if (LenC) { |
1220 | if (LenC->isZero()) |
1221 | // Fold memrchr(x, y, 0) --> null. |
1222 | return NullPtr; |
1223 | |
1224 | if (LenC->isOne()) { |
1225 | // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y, |
1226 | // constant or otherwise. |
1227 | Value *Val = B.CreateLoad(Ty: B.getInt8Ty(), Ptr: SrcStr, Name: "memrchr.char0" ); |
1228 | // Slice off the character's high end bits. |
1229 | CharVal = B.CreateTrunc(V: CharVal, DestTy: B.getInt8Ty()); |
1230 | Value *Cmp = B.CreateICmpEQ(LHS: Val, RHS: CharVal, Name: "memrchr.char0cmp" ); |
1231 | return B.CreateSelect(C: Cmp, True: SrcStr, False: NullPtr, Name: "memrchr.sel" ); |
1232 | } |
1233 | } |
1234 | |
1235 | StringRef Str; |
1236 | if (!getConstantStringInfo(V: SrcStr, Str, /*TrimAtNul=*/false)) |
1237 | return nullptr; |
1238 | |
1239 | if (Str.size() == 0) |
1240 | // If the array is empty fold memrchr(A, C, N) to null for any value |
1241 | // of C and N on the basis that the only valid value of N is zero |
1242 | // (otherwise the call is undefined). |
1243 | return NullPtr; |
1244 | |
1245 | uint64_t EndOff = UINT64_MAX; |
1246 | if (LenC) { |
1247 | EndOff = LenC->getZExtValue(); |
1248 | if (Str.size() < EndOff) |
1249 | // Punt out-of-bounds accesses to sanitizers and/or libc. |
1250 | return nullptr; |
1251 | } |
1252 | |
1253 | if (ConstantInt *CharC = dyn_cast<ConstantInt>(Val: CharVal)) { |
1254 | // Fold memrchr(S, C, N) for a constant C. |
1255 | size_t Pos = Str.rfind(C: CharC->getZExtValue(), From: EndOff); |
1256 | if (Pos == StringRef::npos) |
1257 | // When the character is not in the source array fold the result |
1258 | // to null regardless of Size. |
1259 | return NullPtr; |
1260 | |
1261 | if (LenC) |
1262 | // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos. |
1263 | return B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: SrcStr, IdxList: B.getInt64(C: Pos)); |
1264 | |
1265 | if (Str.find(C: Str[Pos]) == Pos) { |
1266 | // When there is just a single occurrence of C in S, i.e., the one |
1267 | // in Str[Pos], fold |
1268 | // memrchr(s, c, N) --> N <= Pos ? null : s + Pos |
1269 | // for nonconstant N. |
1270 | Value *Cmp = B.CreateICmpULE(LHS: Size, RHS: ConstantInt::get(Ty: Size->getType(), V: Pos), |
1271 | Name: "memrchr.cmp" ); |
1272 | Value *SrcPlus = B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: SrcStr, |
1273 | IdxList: B.getInt64(C: Pos), Name: "memrchr.ptr_plus" ); |
1274 | return B.CreateSelect(C: Cmp, True: NullPtr, False: SrcPlus, Name: "memrchr.sel" ); |
1275 | } |
1276 | } |
1277 | |
1278 | // Truncate the string to search at most EndOff characters. |
1279 | Str = Str.substr(Start: 0, N: EndOff); |
1280 | if (Str.find_first_not_of(C: Str[0]) != StringRef::npos) |
1281 | return nullptr; |
1282 | |
1283 | // If the source array consists of all equal characters, then for any |
1284 | // C and N (whether in bounds or not), fold memrchr(S, C, N) to |
1285 | // N != 0 && *S == C ? S + N - 1 : null |
1286 | Type *SizeTy = Size->getType(); |
1287 | Type *Int8Ty = B.getInt8Ty(); |
1288 | Value *NNeZ = B.CreateICmpNE(LHS: Size, RHS: ConstantInt::get(Ty: SizeTy, V: 0)); |
1289 | // Slice off the sought character's high end bits. |
1290 | CharVal = B.CreateTrunc(V: CharVal, DestTy: Int8Ty); |
1291 | Value *CEqS0 = B.CreateICmpEQ(LHS: ConstantInt::get(Ty: Int8Ty, V: Str[0]), RHS: CharVal); |
1292 | Value *And = B.CreateLogicalAnd(Cond1: NNeZ, Cond2: CEqS0); |
1293 | Value *SizeM1 = B.CreateSub(LHS: Size, RHS: ConstantInt::get(Ty: SizeTy, V: 1)); |
1294 | Value *SrcPlus = |
1295 | B.CreateInBoundsGEP(Ty: Int8Ty, Ptr: SrcStr, IdxList: SizeM1, Name: "memrchr.ptr_plus" ); |
1296 | return B.CreateSelect(C: And, True: SrcPlus, False: NullPtr, Name: "memrchr.sel" ); |
1297 | } |
1298 | |
1299 | Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { |
1300 | Value *SrcStr = CI->getArgOperand(i: 0); |
1301 | Value *Size = CI->getArgOperand(i: 2); |
1302 | |
1303 | if (isKnownNonZero(V: Size, Q: DL)) { |
1304 | annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 0); |
1305 | if (isOnlyUsedInEqualityComparison(V: CI, With: SrcStr)) |
1306 | return memChrToCharCompare(CI, NBytes: Size, B, DL); |
1307 | } |
1308 | |
1309 | Value *CharVal = CI->getArgOperand(i: 1); |
1310 | ConstantInt *CharC = dyn_cast<ConstantInt>(Val: CharVal); |
1311 | ConstantInt *LenC = dyn_cast<ConstantInt>(Val: Size); |
1312 | Value *NullPtr = Constant::getNullValue(Ty: CI->getType()); |
1313 | |
1314 | // memchr(x, y, 0) -> null |
1315 | if (LenC) { |
1316 | if (LenC->isZero()) |
1317 | return NullPtr; |
1318 | |
1319 | if (LenC->isOne()) { |
1320 | // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y, |
1321 | // constant or otherwise. |
1322 | Value *Val = B.CreateLoad(Ty: B.getInt8Ty(), Ptr: SrcStr, Name: "memchr.char0" ); |
1323 | // Slice off the character's high end bits. |
1324 | CharVal = B.CreateTrunc(V: CharVal, DestTy: B.getInt8Ty()); |
1325 | Value *Cmp = B.CreateICmpEQ(LHS: Val, RHS: CharVal, Name: "memchr.char0cmp" ); |
1326 | return B.CreateSelect(C: Cmp, True: SrcStr, False: NullPtr, Name: "memchr.sel" ); |
1327 | } |
1328 | } |
1329 | |
1330 | StringRef Str; |
1331 | if (!getConstantStringInfo(V: SrcStr, Str, /*TrimAtNul=*/false)) |
1332 | return nullptr; |
1333 | |
1334 | if (CharC) { |
1335 | size_t Pos = Str.find(C: CharC->getZExtValue()); |
1336 | if (Pos == StringRef::npos) |
1337 | // When the character is not in the source array fold the result |
1338 | // to null regardless of Size. |
1339 | return NullPtr; |
1340 | |
1341 | // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos |
1342 | // When the constant Size is less than or equal to the character |
1343 | // position also fold the result to null. |
1344 | Value *Cmp = B.CreateICmpULE(LHS: Size, RHS: ConstantInt::get(Ty: Size->getType(), V: Pos), |
1345 | Name: "memchr.cmp" ); |
1346 | Value *SrcPlus = B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: SrcStr, IdxList: B.getInt64(C: Pos), |
1347 | Name: "memchr.ptr" ); |
1348 | return B.CreateSelect(C: Cmp, True: NullPtr, False: SrcPlus); |
1349 | } |
1350 | |
1351 | if (Str.size() == 0) |
1352 | // If the array is empty fold memchr(A, C, N) to null for any value |
1353 | // of C and N on the basis that the only valid value of N is zero |
1354 | // (otherwise the call is undefined). |
1355 | return NullPtr; |
1356 | |
1357 | if (LenC) |
1358 | Str = substr(Str, Len: LenC->getZExtValue()); |
1359 | |
1360 | size_t Pos = Str.find_first_not_of(C: Str[0]); |
1361 | if (Pos == StringRef::npos |
1362 | || Str.find_first_not_of(C: Str[Pos], From: Pos) == StringRef::npos) { |
1363 | // If the source array consists of at most two consecutive sequences |
1364 | // of the same characters, then for any C and N (whether in bounds or |
1365 | // not), fold memchr(S, C, N) to |
1366 | // N != 0 && *S == C ? S : null |
1367 | // or for the two sequences to: |
1368 | // N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null) |
1369 | // ^Sel2 ^Sel1 are denoted above. |
1370 | // The latter makes it also possible to fold strchr() calls with strings |
1371 | // of the same characters. |
1372 | Type *SizeTy = Size->getType(); |
1373 | Type *Int8Ty = B.getInt8Ty(); |
1374 | |
1375 | // Slice off the sought character's high end bits. |
1376 | CharVal = B.CreateTrunc(V: CharVal, DestTy: Int8Ty); |
1377 | |
1378 | Value *Sel1 = NullPtr; |
1379 | if (Pos != StringRef::npos) { |
1380 | // Handle two consecutive sequences of the same characters. |
1381 | Value *PosVal = ConstantInt::get(Ty: SizeTy, V: Pos); |
1382 | Value *StrPos = ConstantInt::get(Ty: Int8Ty, V: Str[Pos]); |
1383 | Value *CEqSPos = B.CreateICmpEQ(LHS: CharVal, RHS: StrPos); |
1384 | Value *NGtPos = B.CreateICmp(P: ICmpInst::ICMP_UGT, LHS: Size, RHS: PosVal); |
1385 | Value *And = B.CreateAnd(LHS: CEqSPos, RHS: NGtPos); |
1386 | Value *SrcPlus = B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: SrcStr, IdxList: PosVal); |
1387 | Sel1 = B.CreateSelect(C: And, True: SrcPlus, False: NullPtr, Name: "memchr.sel1" ); |
1388 | } |
1389 | |
1390 | Value *Str0 = ConstantInt::get(Ty: Int8Ty, V: Str[0]); |
1391 | Value *CEqS0 = B.CreateICmpEQ(LHS: Str0, RHS: CharVal); |
1392 | Value *NNeZ = B.CreateICmpNE(LHS: Size, RHS: ConstantInt::get(Ty: SizeTy, V: 0)); |
1393 | Value *And = B.CreateAnd(LHS: NNeZ, RHS: CEqS0); |
1394 | return B.CreateSelect(C: And, True: SrcStr, False: Sel1, Name: "memchr.sel2" ); |
1395 | } |
1396 | |
1397 | if (!LenC) { |
1398 | if (isOnlyUsedInEqualityComparison(V: CI, With: SrcStr)) |
1399 | // S is dereferenceable so it's safe to load from it and fold |
1400 | // memchr(S, C, N) == S to N && *S == C for any C and N. |
1401 | // TODO: This is safe even for nonconstant S. |
1402 | return memChrToCharCompare(CI, NBytes: Size, B, DL); |
1403 | |
1404 | // From now on we need a constant length and constant array. |
1405 | return nullptr; |
1406 | } |
1407 | |
1408 | bool OptForSize = CI->getFunction()->hasOptSize() || |
1409 | llvm::shouldOptimizeForSize(BB: CI->getParent(), PSI, BFI, |
1410 | QueryType: PGSOQueryType::IRPass); |
1411 | |
1412 | // If the char is variable but the input str and length are not we can turn |
1413 | // this memchr call into a simple bit field test. Of course this only works |
1414 | // when the return value is only checked against null. |
1415 | // |
1416 | // It would be really nice to reuse switch lowering here but we can't change |
1417 | // the CFG at this point. |
1418 | // |
1419 | // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) |
1420 | // != 0 |
1421 | // after bounds check. |
1422 | if (OptForSize || Str.empty() || !isOnlyUsedInZeroEqualityComparison(CxtI: CI)) |
1423 | return nullptr; |
1424 | |
1425 | unsigned char Max = |
1426 | *std::max_element(first: reinterpret_cast<const unsigned char *>(Str.begin()), |
1427 | last: reinterpret_cast<const unsigned char *>(Str.end())); |
1428 | |
1429 | // Make sure the bit field we're about to create fits in a register on the |
1430 | // target. |
1431 | // FIXME: On a 64 bit architecture this prevents us from using the |
1432 | // interesting range of alpha ascii chars. We could do better by emitting |
1433 | // two bitfields or shifting the range by 64 if no lower chars are used. |
1434 | if (!DL.fitsInLegalInteger(Width: Max + 1)) { |
1435 | // Build chain of ORs |
1436 | // Transform: |
1437 | // memchr("abcd", C, 4) != nullptr |
1438 | // to: |
1439 | // (C == 'a' || C == 'b' || C == 'c' || C == 'd') != 0 |
1440 | std::string SortedStr = Str.str(); |
1441 | llvm::sort(C&: SortedStr); |
1442 | // Compute the number of of non-contiguous ranges. |
1443 | unsigned NonContRanges = 1; |
1444 | for (size_t i = 1; i < SortedStr.size(); ++i) { |
1445 | if (SortedStr[i] > SortedStr[i - 1] + 1) { |
1446 | NonContRanges++; |
1447 | } |
1448 | } |
1449 | |
1450 | // Restrict this optimization to profitable cases with one or two range |
1451 | // checks. |
1452 | if (NonContRanges > 2) |
1453 | return nullptr; |
1454 | |
1455 | SmallVector<Value *> CharCompares; |
1456 | for (unsigned char C : SortedStr) |
1457 | CharCompares.push_back( |
1458 | Elt: B.CreateICmpEQ(LHS: CharVal, RHS: ConstantInt::get(Ty: CharVal->getType(), V: C))); |
1459 | |
1460 | return B.CreateIntToPtr(V: B.CreateOr(Ops: CharCompares), DestTy: CI->getType()); |
1461 | } |
1462 | |
1463 | // For the bit field use a power-of-2 type with at least 8 bits to avoid |
1464 | // creating unnecessary illegal types. |
1465 | unsigned char Width = NextPowerOf2(A: std::max(a: (unsigned char)7, b: Max)); |
1466 | |
1467 | // Now build the bit field. |
1468 | APInt Bitfield(Width, 0); |
1469 | for (char C : Str) |
1470 | Bitfield.setBit((unsigned char)C); |
1471 | Value *BitfieldC = B.getInt(AI: Bitfield); |
1472 | |
1473 | // Adjust width of "C" to the bitfield width, then mask off the high bits. |
1474 | Value *C = B.CreateZExtOrTrunc(V: CharVal, DestTy: BitfieldC->getType()); |
1475 | C = B.CreateAnd(LHS: C, RHS: B.getIntN(N: Width, C: 0xFF)); |
1476 | |
1477 | // First check that the bit field access is within bounds. |
1478 | Value *Bounds = B.CreateICmp(P: ICmpInst::ICMP_ULT, LHS: C, RHS: B.getIntN(N: Width, C: Width), |
1479 | Name: "memchr.bounds" ); |
1480 | |
1481 | // Create code that checks if the given bit is set in the field. |
1482 | Value *Shl = B.CreateShl(LHS: B.getIntN(N: Width, C: 1ULL), RHS: C); |
1483 | Value *Bits = B.CreateIsNotNull(Arg: B.CreateAnd(LHS: Shl, RHS: BitfieldC), Name: "memchr.bits" ); |
1484 | |
1485 | // Finally merge both checks and cast to pointer type. The inttoptr |
1486 | // implicitly zexts the i1 to intptr type. |
1487 | return B.CreateIntToPtr(V: B.CreateLogicalAnd(Cond1: Bounds, Cond2: Bits, Name: "memchr" ), |
1488 | DestTy: CI->getType()); |
1489 | } |
1490 | |
1491 | // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant |
1492 | // arrays LHS and RHS and nonconstant Size. |
1493 | static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS, |
1494 | Value *Size, bool StrNCmp, |
1495 | IRBuilderBase &B, const DataLayout &DL) { |
1496 | if (LHS == RHS) // memcmp(s,s,x) -> 0 |
1497 | return Constant::getNullValue(Ty: CI->getType()); |
1498 | |
1499 | StringRef LStr, RStr; |
1500 | if (!getConstantStringInfo(V: LHS, Str&: LStr, /*TrimAtNul=*/false) || |
1501 | !getConstantStringInfo(V: RHS, Str&: RStr, /*TrimAtNul=*/false)) |
1502 | return nullptr; |
1503 | |
1504 | // If the contents of both constant arrays are known, fold a call to |
1505 | // memcmp(A, B, N) to |
1506 | // N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0) |
1507 | // where Pos is the first mismatch between A and B, determined below. |
1508 | |
1509 | uint64_t Pos = 0; |
1510 | Value *Zero = ConstantInt::get(Ty: CI->getType(), V: 0); |
1511 | for (uint64_t MinSize = std::min(a: LStr.size(), b: RStr.size()); ; ++Pos) { |
1512 | if (Pos == MinSize || |
1513 | (StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) { |
1514 | // One array is a leading part of the other of equal or greater |
1515 | // size, or for strncmp, the arrays are equal strings. |
1516 | // Fold the result to zero. Size is assumed to be in bounds, since |
1517 | // otherwise the call would be undefined. |
1518 | return Zero; |
1519 | } |
1520 | |
1521 | if (LStr[Pos] != RStr[Pos]) |
1522 | break; |
1523 | } |
1524 | |
1525 | // Normalize the result. |
1526 | typedef unsigned char UChar; |
1527 | int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1; |
1528 | Value *MaxSize = ConstantInt::get(Ty: Size->getType(), V: Pos); |
1529 | Value *Cmp = B.CreateICmp(P: ICmpInst::ICMP_ULE, LHS: Size, RHS: MaxSize); |
1530 | Value *Res = ConstantInt::get(Ty: CI->getType(), V: IRes); |
1531 | return B.CreateSelect(C: Cmp, True: Zero, False: Res); |
1532 | } |
1533 | |
1534 | // Optimize a memcmp call CI with constant size Len. |
1535 | static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, |
1536 | uint64_t Len, IRBuilderBase &B, |
1537 | const DataLayout &DL) { |
1538 | if (Len == 0) // memcmp(s1,s2,0) -> 0 |
1539 | return Constant::getNullValue(Ty: CI->getType()); |
1540 | |
1541 | // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS |
1542 | if (Len == 1) { |
1543 | Value *LHSV = B.CreateZExt(V: B.CreateLoad(Ty: B.getInt8Ty(), Ptr: LHS, Name: "lhsc" ), |
1544 | DestTy: CI->getType(), Name: "lhsv" ); |
1545 | Value *RHSV = B.CreateZExt(V: B.CreateLoad(Ty: B.getInt8Ty(), Ptr: RHS, Name: "rhsc" ), |
1546 | DestTy: CI->getType(), Name: "rhsv" ); |
1547 | return B.CreateSub(LHS: LHSV, RHS: RHSV, Name: "chardiff" ); |
1548 | } |
1549 | |
1550 | // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 |
1551 | // TODO: The case where both inputs are constants does not need to be limited |
1552 | // to legal integers or equality comparison. See block below this. |
1553 | if (DL.isLegalInteger(Width: Len * 8) && isOnlyUsedInZeroEqualityComparison(CxtI: CI)) { |
1554 | IntegerType *IntType = IntegerType::get(C&: CI->getContext(), NumBits: Len * 8); |
1555 | Align PrefAlignment = DL.getPrefTypeAlign(Ty: IntType); |
1556 | |
1557 | // First, see if we can fold either argument to a constant. |
1558 | Value *LHSV = nullptr; |
1559 | if (auto *LHSC = dyn_cast<Constant>(Val: LHS)) |
1560 | LHSV = ConstantFoldLoadFromConstPtr(C: LHSC, Ty: IntType, DL); |
1561 | |
1562 | Value *RHSV = nullptr; |
1563 | if (auto *RHSC = dyn_cast<Constant>(Val: RHS)) |
1564 | RHSV = ConstantFoldLoadFromConstPtr(C: RHSC, Ty: IntType, DL); |
1565 | |
1566 | // Don't generate unaligned loads. If either source is constant data, |
1567 | // alignment doesn't matter for that source because there is no load. |
1568 | if ((LHSV || getKnownAlignment(V: LHS, DL, CxtI: CI) >= PrefAlignment) && |
1569 | (RHSV || getKnownAlignment(V: RHS, DL, CxtI: CI) >= PrefAlignment)) { |
1570 | if (!LHSV) |
1571 | LHSV = B.CreateLoad(Ty: IntType, Ptr: LHS, Name: "lhsv" ); |
1572 | if (!RHSV) |
1573 | RHSV = B.CreateLoad(Ty: IntType, Ptr: RHS, Name: "rhsv" ); |
1574 | return B.CreateZExt(V: B.CreateICmpNE(LHS: LHSV, RHS: RHSV), DestTy: CI->getType(), Name: "memcmp" ); |
1575 | } |
1576 | } |
1577 | |
1578 | return nullptr; |
1579 | } |
1580 | |
1581 | // Most simplifications for memcmp also apply to bcmp. |
1582 | Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, |
1583 | IRBuilderBase &B) { |
1584 | Value *LHS = CI->getArgOperand(i: 0), *RHS = CI->getArgOperand(i: 1); |
1585 | Value *Size = CI->getArgOperand(i: 2); |
1586 | |
1587 | annotateNonNullAndDereferenceable(CI, ArgNos: {0, 1}, Size, DL); |
1588 | |
1589 | if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, StrNCmp: false, B, DL)) |
1590 | return Res; |
1591 | |
1592 | // Handle constant Size. |
1593 | ConstantInt *LenC = dyn_cast<ConstantInt>(Val: Size); |
1594 | if (!LenC) |
1595 | return nullptr; |
1596 | |
1597 | return optimizeMemCmpConstantSize(CI, LHS, RHS, Len: LenC->getZExtValue(), B, DL); |
1598 | } |
1599 | |
1600 | Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { |
1601 | Module *M = CI->getModule(); |
1602 | if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) |
1603 | return V; |
1604 | |
1605 | // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 |
1606 | // bcmp can be more efficient than memcmp because it only has to know that |
1607 | // there is a difference, not how different one is to the other. |
1608 | if (isLibFuncEmittable(M, TLI, TheLibFunc: LibFunc_bcmp) && |
1609 | isOnlyUsedInZeroEqualityComparison(CxtI: CI)) { |
1610 | Value *LHS = CI->getArgOperand(i: 0); |
1611 | Value *RHS = CI->getArgOperand(i: 1); |
1612 | Value *Size = CI->getArgOperand(i: 2); |
1613 | return copyFlags(Old: *CI, New: emitBCmp(Ptr1: LHS, Ptr2: RHS, Len: Size, B, DL, TLI)); |
1614 | } |
1615 | |
1616 | return nullptr; |
1617 | } |
1618 | |
1619 | Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { |
1620 | return optimizeMemCmpBCmpCommon(CI, B); |
1621 | } |
1622 | |
1623 | Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { |
1624 | Value *Size = CI->getArgOperand(i: 2); |
1625 | annotateNonNullAndDereferenceable(CI, ArgNos: {0, 1}, Size, DL); |
1626 | if (isa<IntrinsicInst>(Val: CI)) |
1627 | return nullptr; |
1628 | |
1629 | // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) |
1630 | CallInst *NewCI = B.CreateMemCpy(Dst: CI->getArgOperand(i: 0), DstAlign: Align(1), |
1631 | Src: CI->getArgOperand(i: 1), SrcAlign: Align(1), Size); |
1632 | mergeAttributesAndFlags(NewCI, Old: *CI); |
1633 | return CI->getArgOperand(i: 0); |
1634 | } |
1635 | |
1636 | Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { |
1637 | Value *Dst = CI->getArgOperand(i: 0); |
1638 | Value *Src = CI->getArgOperand(i: 1); |
1639 | ConstantInt *StopChar = dyn_cast<ConstantInt>(Val: CI->getArgOperand(i: 2)); |
1640 | ConstantInt *N = dyn_cast<ConstantInt>(Val: CI->getArgOperand(i: 3)); |
1641 | StringRef SrcStr; |
1642 | if (CI->use_empty() && Dst == Src) |
1643 | return Dst; |
1644 | // memccpy(d, s, c, 0) -> nullptr |
1645 | if (N) { |
1646 | if (N->isNullValue()) |
1647 | return Constant::getNullValue(Ty: CI->getType()); |
1648 | if (!getConstantStringInfo(V: Src, Str&: SrcStr, /*TrimAtNul=*/false) || |
1649 | // TODO: Handle zeroinitializer. |
1650 | !StopChar) |
1651 | return nullptr; |
1652 | } else { |
1653 | return nullptr; |
1654 | } |
1655 | |
1656 | // Wrap arg 'c' of type int to char |
1657 | size_t Pos = SrcStr.find(C: StopChar->getSExtValue() & 0xFF); |
1658 | if (Pos == StringRef::npos) { |
1659 | if (N->getZExtValue() <= SrcStr.size()) { |
1660 | copyFlags(Old: *CI, New: B.CreateMemCpy(Dst, DstAlign: Align(1), Src, SrcAlign: Align(1), |
1661 | Size: CI->getArgOperand(i: 3))); |
1662 | return Constant::getNullValue(Ty: CI->getType()); |
1663 | } |
1664 | return nullptr; |
1665 | } |
1666 | |
1667 | Value *NewN = |
1668 | ConstantInt::get(Ty: N->getType(), V: std::min(a: uint64_t(Pos + 1), b: N->getZExtValue())); |
1669 | // memccpy -> llvm.memcpy |
1670 | copyFlags(Old: *CI, New: B.CreateMemCpy(Dst, DstAlign: Align(1), Src, SrcAlign: Align(1), Size: NewN)); |
1671 | return Pos + 1 <= N->getZExtValue() |
1672 | ? B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: Dst, IdxList: NewN) |
1673 | : Constant::getNullValue(Ty: CI->getType()); |
1674 | } |
1675 | |
1676 | Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { |
1677 | Value *Dst = CI->getArgOperand(i: 0); |
1678 | Value *N = CI->getArgOperand(i: 2); |
1679 | // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n |
1680 | CallInst *NewCI = |
1681 | B.CreateMemCpy(Dst, DstAlign: Align(1), Src: CI->getArgOperand(i: 1), SrcAlign: Align(1), Size: N); |
1682 | // Propagate attributes, but memcpy has no return value, so make sure that |
1683 | // any return attributes are compliant. |
1684 | // TODO: Attach return value attributes to the 1st operand to preserve them? |
1685 | mergeAttributesAndFlags(NewCI, Old: *CI); |
1686 | return B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: Dst, IdxList: N); |
1687 | } |
1688 | |
1689 | Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { |
1690 | Value *Size = CI->getArgOperand(i: 2); |
1691 | annotateNonNullAndDereferenceable(CI, ArgNos: {0, 1}, Size, DL); |
1692 | if (isa<IntrinsicInst>(Val: CI)) |
1693 | return nullptr; |
1694 | |
1695 | // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) |
1696 | CallInst *NewCI = B.CreateMemMove(Dst: CI->getArgOperand(i: 0), DstAlign: Align(1), |
1697 | Src: CI->getArgOperand(i: 1), SrcAlign: Align(1), Size); |
1698 | mergeAttributesAndFlags(NewCI, Old: *CI); |
1699 | return CI->getArgOperand(i: 0); |
1700 | } |
1701 | |
1702 | Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { |
1703 | Value *Size = CI->getArgOperand(i: 2); |
1704 | annotateNonNullAndDereferenceable(CI, ArgNos: 0, Size, DL); |
1705 | if (isa<IntrinsicInst>(Val: CI)) |
1706 | return nullptr; |
1707 | |
1708 | // memset(p, v, n) -> llvm.memset(align 1 p, v, n) |
1709 | Value *Val = B.CreateIntCast(V: CI->getArgOperand(i: 1), DestTy: B.getInt8Ty(), isSigned: false); |
1710 | CallInst *NewCI = B.CreateMemSet(Ptr: CI->getArgOperand(i: 0), Val, Size, Align: Align(1)); |
1711 | mergeAttributesAndFlags(NewCI, Old: *CI); |
1712 | return CI->getArgOperand(i: 0); |
1713 | } |
1714 | |
1715 | Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { |
1716 | if (isa<ConstantPointerNull>(Val: CI->getArgOperand(i: 0))) |
1717 | return copyFlags(Old: *CI, New: emitMalloc(Num: CI->getArgOperand(i: 1), B, DL, TLI)); |
1718 | |
1719 | return nullptr; |
1720 | } |
1721 | |
1722 | // When enabled, replace operator new() calls marked with a hot or cold memprof |
1723 | // attribute with an operator new() call that takes a __hot_cold_t parameter. |
1724 | // Currently this is supported by the open source version of tcmalloc, see: |
1725 | // https://github.com/google/tcmalloc/blob/master/tcmalloc/new_extension.h |
1726 | Value *LibCallSimplifier::optimizeNew(CallInst *CI, IRBuilderBase &B, |
1727 | LibFunc &Func) { |
1728 | if (!OptimizeHotColdNew) |
1729 | return nullptr; |
1730 | |
1731 | uint8_t HotCold; |
1732 | if (CI->getAttributes().getFnAttr(Kind: "memprof" ).getValueAsString() == "cold" ) |
1733 | HotCold = ColdNewHintValue; |
1734 | else if (CI->getAttributes().getFnAttr(Kind: "memprof" ).getValueAsString() == |
1735 | "notcold" ) |
1736 | HotCold = NotColdNewHintValue; |
1737 | else if (CI->getAttributes().getFnAttr(Kind: "memprof" ).getValueAsString() == "hot" ) |
1738 | HotCold = HotNewHintValue; |
1739 | else |
1740 | return nullptr; |
1741 | |
1742 | // For calls that already pass a hot/cold hint, only update the hint if |
1743 | // directed by OptimizeExistingHotColdNew. For other calls to new, add a hint |
1744 | // if cold or hot, and leave as-is for default handling if "notcold" aka warm. |
1745 | // Note that in cases where we decide it is "notcold", it might be slightly |
1746 | // better to replace the hinted call with a non hinted call, to avoid the |
1747 | // extra paramter and the if condition check of the hint value in the |
1748 | // allocator. This can be considered in the future. |
1749 | switch (Func) { |
1750 | case LibFunc_Znwm12__hot_cold_t: |
1751 | if (OptimizeExistingHotColdNew) |
1752 | return emitHotColdNew(Num: CI->getArgOperand(i: 0), B, TLI, |
1753 | NewFunc: LibFunc_Znwm12__hot_cold_t, HotCold); |
1754 | break; |
1755 | case LibFunc_Znwm: |
1756 | if (HotCold != NotColdNewHintValue) |
1757 | return emitHotColdNew(Num: CI->getArgOperand(i: 0), B, TLI, |
1758 | NewFunc: LibFunc_Znwm12__hot_cold_t, HotCold); |
1759 | break; |
1760 | case LibFunc_Znam12__hot_cold_t: |
1761 | if (OptimizeExistingHotColdNew) |
1762 | return emitHotColdNew(Num: CI->getArgOperand(i: 0), B, TLI, |
1763 | NewFunc: LibFunc_Znam12__hot_cold_t, HotCold); |
1764 | break; |
1765 | case LibFunc_Znam: |
1766 | if (HotCold != NotColdNewHintValue) |
1767 | return emitHotColdNew(Num: CI->getArgOperand(i: 0), B, TLI, |
1768 | NewFunc: LibFunc_Znam12__hot_cold_t, HotCold); |
1769 | break; |
1770 | case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t: |
1771 | if (OptimizeExistingHotColdNew) |
1772 | return emitHotColdNewNoThrow( |
1773 | Num: CI->getArgOperand(i: 0), NoThrow: CI->getArgOperand(i: 1), B, TLI, |
1774 | NewFunc: LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, HotCold); |
1775 | break; |
1776 | case LibFunc_ZnwmRKSt9nothrow_t: |
1777 | if (HotCold != NotColdNewHintValue) |
1778 | return emitHotColdNewNoThrow( |
1779 | Num: CI->getArgOperand(i: 0), NoThrow: CI->getArgOperand(i: 1), B, TLI, |
1780 | NewFunc: LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, HotCold); |
1781 | break; |
1782 | case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t: |
1783 | if (OptimizeExistingHotColdNew) |
1784 | return emitHotColdNewNoThrow( |
1785 | Num: CI->getArgOperand(i: 0), NoThrow: CI->getArgOperand(i: 1), B, TLI, |
1786 | NewFunc: LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, HotCold); |
1787 | break; |
1788 | case LibFunc_ZnamRKSt9nothrow_t: |
1789 | if (HotCold != NotColdNewHintValue) |
1790 | return emitHotColdNewNoThrow( |
1791 | Num: CI->getArgOperand(i: 0), NoThrow: CI->getArgOperand(i: 1), B, TLI, |
1792 | NewFunc: LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, HotCold); |
1793 | break; |
1794 | case LibFunc_ZnwmSt11align_val_t12__hot_cold_t: |
1795 | if (OptimizeExistingHotColdNew) |
1796 | return emitHotColdNewAligned( |
1797 | Num: CI->getArgOperand(i: 0), Align: CI->getArgOperand(i: 1), B, TLI, |
1798 | NewFunc: LibFunc_ZnwmSt11align_val_t12__hot_cold_t, HotCold); |
1799 | break; |
1800 | case LibFunc_ZnwmSt11align_val_t: |
1801 | if (HotCold != NotColdNewHintValue) |
1802 | return emitHotColdNewAligned( |
1803 | Num: CI->getArgOperand(i: 0), Align: CI->getArgOperand(i: 1), B, TLI, |
1804 | NewFunc: LibFunc_ZnwmSt11align_val_t12__hot_cold_t, HotCold); |
1805 | break; |
1806 | case LibFunc_ZnamSt11align_val_t12__hot_cold_t: |
1807 | if (OptimizeExistingHotColdNew) |
1808 | return emitHotColdNewAligned( |
1809 | Num: CI->getArgOperand(i: 0), Align: CI->getArgOperand(i: 1), B, TLI, |
1810 | NewFunc: LibFunc_ZnamSt11align_val_t12__hot_cold_t, HotCold); |
1811 | break; |
1812 | case LibFunc_ZnamSt11align_val_t: |
1813 | if (HotCold != NotColdNewHintValue) |
1814 | return emitHotColdNewAligned( |
1815 | Num: CI->getArgOperand(i: 0), Align: CI->getArgOperand(i: 1), B, TLI, |
1816 | NewFunc: LibFunc_ZnamSt11align_val_t12__hot_cold_t, HotCold); |
1817 | break; |
1818 | case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t: |
1819 | if (OptimizeExistingHotColdNew) |
1820 | return emitHotColdNewAlignedNoThrow( |
1821 | Num: CI->getArgOperand(i: 0), Align: CI->getArgOperand(i: 1), NoThrow: CI->getArgOperand(i: 2), B, |
1822 | TLI, NewFunc: LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, |
1823 | HotCold); |
1824 | break; |
1825 | case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t: |
1826 | if (HotCold != NotColdNewHintValue) |
1827 | return emitHotColdNewAlignedNoThrow( |
1828 | Num: CI->getArgOperand(i: 0), Align: CI->getArgOperand(i: 1), NoThrow: CI->getArgOperand(i: 2), B, |
1829 | TLI, NewFunc: LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, |
1830 | HotCold); |
1831 | break; |
1832 | case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t: |
1833 | if (OptimizeExistingHotColdNew) |
1834 | return emitHotColdNewAlignedNoThrow( |
1835 | Num: CI->getArgOperand(i: 0), Align: CI->getArgOperand(i: 1), NoThrow: CI->getArgOperand(i: 2), B, |
1836 | TLI, NewFunc: LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, |
1837 | HotCold); |
1838 | break; |
1839 | case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t: |
1840 | if (HotCold != NotColdNewHintValue) |
1841 | return emitHotColdNewAlignedNoThrow( |
1842 | Num: CI->getArgOperand(i: 0), Align: CI->getArgOperand(i: 1), NoThrow: CI->getArgOperand(i: 2), B, |
1843 | TLI, NewFunc: LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, |
1844 | HotCold); |
1845 | break; |
1846 | default: |
1847 | return nullptr; |
1848 | } |
1849 | return nullptr; |
1850 | } |
1851 | |
1852 | //===----------------------------------------------------------------------===// |
1853 | // Math Library Optimizations |
1854 | //===----------------------------------------------------------------------===// |
1855 | |
1856 | // Replace a libcall \p CI with a call to intrinsic \p IID |
1857 | static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, |
1858 | Intrinsic::ID IID) { |
1859 | CallInst *NewCall = B.CreateUnaryIntrinsic(ID: IID, V: CI->getArgOperand(i: 0), FMFSource: CI); |
1860 | NewCall->takeName(V: CI); |
1861 | return copyFlags(Old: *CI, New: NewCall); |
1862 | } |
1863 | |
1864 | /// Return a variant of Val with float type. |
1865 | /// Currently this works in two cases: If Val is an FPExtension of a float |
1866 | /// value to something bigger, simply return the operand. |
1867 | /// If Val is a ConstantFP but can be converted to a float ConstantFP without |
1868 | /// loss of precision do so. |
1869 | static Value *valueHasFloatPrecision(Value *Val) { |
1870 | if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { |
1871 | Value *Op = Cast->getOperand(i_nocapture: 0); |
1872 | if (Op->getType()->isFloatTy()) |
1873 | return Op; |
1874 | } |
1875 | if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { |
1876 | APFloat F = Const->getValueAPF(); |
1877 | bool losesInfo; |
1878 | (void)F.convert(ToSemantics: APFloat::IEEEsingle(), RM: APFloat::rmNearestTiesToEven, |
1879 | losesInfo: &losesInfo); |
1880 | if (!losesInfo) |
1881 | return ConstantFP::get(Context&: Const->getContext(), V: F); |
1882 | } |
1883 | return nullptr; |
1884 | } |
1885 | |
1886 | /// Shrink double -> float functions. |
1887 | static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, |
1888 | bool isBinary, const TargetLibraryInfo *TLI, |
1889 | bool isPrecise = false) { |
1890 | Function *CalleeFn = CI->getCalledFunction(); |
1891 | if (!CI->getType()->isDoubleTy() || !CalleeFn) |
1892 | return nullptr; |
1893 | |
1894 | // If not all the uses of the function are converted to float, then bail out. |
1895 | // This matters if the precision of the result is more important than the |
1896 | // precision of the arguments. |
1897 | if (isPrecise) |
1898 | for (User *U : CI->users()) { |
1899 | FPTruncInst *Cast = dyn_cast<FPTruncInst>(Val: U); |
1900 | if (!Cast || !Cast->getType()->isFloatTy()) |
1901 | return nullptr; |
1902 | } |
1903 | |
1904 | // If this is something like 'g((double) float)', convert to 'gf(float)'. |
1905 | Value *V[2]; |
1906 | V[0] = valueHasFloatPrecision(Val: CI->getArgOperand(i: 0)); |
1907 | V[1] = isBinary ? valueHasFloatPrecision(Val: CI->getArgOperand(i: 1)) : nullptr; |
1908 | if (!V[0] || (isBinary && !V[1])) |
1909 | return nullptr; |
1910 | |
1911 | // If call isn't an intrinsic, check that it isn't within a function with the |
1912 | // same name as the float version of this call, otherwise the result is an |
1913 | // infinite loop. For example, from MinGW-w64: |
1914 | // |
1915 | // float expf(float val) { return (float) exp((double) val); } |
1916 | StringRef CalleeName = CalleeFn->getName(); |
1917 | bool IsIntrinsic = CalleeFn->isIntrinsic(); |
1918 | if (!IsIntrinsic) { |
1919 | StringRef CallerName = CI->getFunction()->getName(); |
1920 | if (!CallerName.empty() && CallerName.back() == 'f' && |
1921 | CallerName.size() == (CalleeName.size() + 1) && |
1922 | CallerName.starts_with(Prefix: CalleeName)) |
1923 | return nullptr; |
1924 | } |
1925 | |
1926 | // Propagate the math semantics from the current function to the new function. |
1927 | IRBuilderBase::FastMathFlagGuard Guard(B); |
1928 | B.setFastMathFlags(CI->getFastMathFlags()); |
1929 | |
1930 | // g((double) float) -> (double) gf(float) |
1931 | Value *R; |
1932 | if (IsIntrinsic) { |
1933 | Module *M = CI->getModule(); |
1934 | Intrinsic::ID IID = CalleeFn->getIntrinsicID(); |
1935 | Function *Fn = Intrinsic::getDeclaration(M, id: IID, Tys: B.getFloatTy()); |
1936 | R = isBinary ? B.CreateCall(Callee: Fn, Args: V) : B.CreateCall(Callee: Fn, Args: V[0]); |
1937 | } else { |
1938 | AttributeList CalleeAttrs = CalleeFn->getAttributes(); |
1939 | R = isBinary ? emitBinaryFloatFnCall(Op1: V[0], Op2: V[1], TLI, Name: CalleeName, B, |
1940 | Attrs: CalleeAttrs) |
1941 | : emitUnaryFloatFnCall(Op: V[0], TLI, Name: CalleeName, B, Attrs: CalleeAttrs); |
1942 | } |
1943 | return B.CreateFPExt(V: R, DestTy: B.getDoubleTy()); |
1944 | } |
1945 | |
1946 | /// Shrink double -> float for unary functions. |
1947 | static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, |
1948 | const TargetLibraryInfo *TLI, |
1949 | bool isPrecise = false) { |
1950 | return optimizeDoubleFP(CI, B, isBinary: false, TLI, isPrecise); |
1951 | } |
1952 | |
1953 | /// Shrink double -> float for binary functions. |
1954 | static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, |
1955 | const TargetLibraryInfo *TLI, |
1956 | bool isPrecise = false) { |
1957 | return optimizeDoubleFP(CI, B, isBinary: true, TLI, isPrecise); |
1958 | } |
1959 | |
1960 | // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) |
1961 | Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { |
1962 | Value *Real, *Imag; |
1963 | |
1964 | if (CI->arg_size() == 1) { |
1965 | |
1966 | if (!CI->isFast()) |
1967 | return nullptr; |
1968 | |
1969 | Value *Op = CI->getArgOperand(i: 0); |
1970 | assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!" ); |
1971 | |
1972 | Real = B.CreateExtractValue(Agg: Op, Idxs: 0, Name: "real" ); |
1973 | Imag = B.CreateExtractValue(Agg: Op, Idxs: 1, Name: "imag" ); |
1974 | |
1975 | } else { |
1976 | assert(CI->arg_size() == 2 && "Unexpected signature for cabs!" ); |
1977 | |
1978 | Real = CI->getArgOperand(i: 0); |
1979 | Imag = CI->getArgOperand(i: 1); |
1980 | |
1981 | // if real or imaginary part is zero, simplify to abs(cimag(z)) |
1982 | // or abs(creal(z)) |
1983 | Value *AbsOp = nullptr; |
1984 | if (ConstantFP *ConstReal = dyn_cast<ConstantFP>(Val: Real)) { |
1985 | if (ConstReal->isZero()) |
1986 | AbsOp = Imag; |
1987 | |
1988 | } else if (ConstantFP *ConstImag = dyn_cast<ConstantFP>(Val: Imag)) { |
1989 | if (ConstImag->isZero()) |
1990 | AbsOp = Real; |
1991 | } |
1992 | |
1993 | if (AbsOp) { |
1994 | IRBuilderBase::FastMathFlagGuard Guard(B); |
1995 | B.setFastMathFlags(CI->getFastMathFlags()); |
1996 | |
1997 | return copyFlags( |
1998 | Old: *CI, New: B.CreateUnaryIntrinsic(ID: Intrinsic::fabs, V: AbsOp, FMFSource: nullptr, Name: "cabs" )); |
1999 | } |
2000 | |
2001 | if (!CI->isFast()) |
2002 | return nullptr; |
2003 | } |
2004 | |
2005 | // Propagate fast-math flags from the existing call to new instructions. |
2006 | IRBuilderBase::FastMathFlagGuard Guard(B); |
2007 | B.setFastMathFlags(CI->getFastMathFlags()); |
2008 | |
2009 | Value *RealReal = B.CreateFMul(L: Real, R: Real); |
2010 | Value *ImagImag = B.CreateFMul(L: Imag, R: Imag); |
2011 | |
2012 | return copyFlags(Old: *CI, New: B.CreateUnaryIntrinsic(ID: Intrinsic::sqrt, |
2013 | V: B.CreateFAdd(L: RealReal, R: ImagImag), |
2014 | FMFSource: nullptr, Name: "cabs" )); |
2015 | } |
2016 | |
2017 | // Return a properly extended integer (DstWidth bits wide) if the operation is |
2018 | // an itofp. |
2019 | static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { |
2020 | if (isa<SIToFPInst>(Val: I2F) || isa<UIToFPInst>(Val: I2F)) { |
2021 | Value *Op = cast<Instruction>(Val: I2F)->getOperand(i: 0); |
2022 | // Make sure that the exponent fits inside an "int" of size DstWidth, |
2023 | // thus avoiding any range issues that FP has not. |
2024 | unsigned BitWidth = Op->getType()->getScalarSizeInBits(); |
2025 | if (BitWidth < DstWidth || (BitWidth == DstWidth && isa<SIToFPInst>(Val: I2F))) { |
2026 | Type *IntTy = Op->getType()->getWithNewBitWidth(NewBitWidth: DstWidth); |
2027 | return isa<SIToFPInst>(Val: I2F) ? B.CreateSExt(V: Op, DestTy: IntTy) |
2028 | : B.CreateZExt(V: Op, DestTy: IntTy); |
2029 | } |
2030 | } |
2031 | |
2032 | return nullptr; |
2033 | } |
2034 | |
2035 | /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); |
2036 | /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); |
2037 | /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). |
2038 | Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { |
2039 | Module *M = Pow->getModule(); |
2040 | Value *Base = Pow->getArgOperand(i: 0), *Expo = Pow->getArgOperand(i: 1); |
2041 | Type *Ty = Pow->getType(); |
2042 | bool Ignored; |
2043 | |
2044 | // Evaluate special cases related to a nested function as the base. |
2045 | |
2046 | // pow(exp(x), y) -> exp(x * y) |
2047 | // pow(exp2(x), y) -> exp2(x * y) |
2048 | // If exp{,2}() is used only once, it is better to fold two transcendental |
2049 | // math functions into one. If used again, exp{,2}() would still have to be |
2050 | // called with the original argument, then keep both original transcendental |
2051 | // functions. However, this transformation is only safe with fully relaxed |
2052 | // math semantics, since, besides rounding differences, it changes overflow |
2053 | // and underflow behavior quite dramatically. For example: |
2054 | // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf |
2055 | // Whereas: |
2056 | // exp(1000 * 0.001) = exp(1) |
2057 | // TODO: Loosen the requirement for fully relaxed math semantics. |
2058 | // TODO: Handle exp10() when more targets have it available. |
2059 | CallInst *BaseFn = dyn_cast<CallInst>(Val: Base); |
2060 | if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { |
2061 | LibFunc LibFn; |
2062 | |
2063 | Function *CalleeFn = BaseFn->getCalledFunction(); |
2064 | if (CalleeFn && TLI->getLibFunc(funcName: CalleeFn->getName(), F&: LibFn) && |
2065 | isLibFuncEmittable(M, TLI, TheLibFunc: LibFn)) { |
2066 | StringRef ExpName; |
2067 | Intrinsic::ID ID; |
2068 | Value *ExpFn; |
2069 | LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; |
2070 | |
2071 | switch (LibFn) { |
2072 | default: |
2073 | return nullptr; |
2074 | case LibFunc_expf: |
2075 | case LibFunc_exp: |
2076 | case LibFunc_expl: |
2077 | ExpName = TLI->getName(F: LibFunc_exp); |
2078 | ID = Intrinsic::exp; |
2079 | LibFnFloat = LibFunc_expf; |
2080 | LibFnDouble = LibFunc_exp; |
2081 | LibFnLongDouble = LibFunc_expl; |
2082 | break; |
2083 | case LibFunc_exp2f: |
2084 | case LibFunc_exp2: |
2085 | case LibFunc_exp2l: |
2086 | ExpName = TLI->getName(F: LibFunc_exp2); |
2087 | ID = Intrinsic::exp2; |
2088 | LibFnFloat = LibFunc_exp2f; |
2089 | LibFnDouble = LibFunc_exp2; |
2090 | LibFnLongDouble = LibFunc_exp2l; |
2091 | break; |
2092 | } |
2093 | |
2094 | // Create new exp{,2}() with the product as its argument. |
2095 | Value *FMul = B.CreateFMul(L: BaseFn->getArgOperand(i: 0), R: Expo, Name: "mul" ); |
2096 | ExpFn = BaseFn->doesNotAccessMemory() |
2097 | ? B.CreateUnaryIntrinsic(ID, V: FMul, FMFSource: nullptr, Name: ExpName) |
2098 | : emitUnaryFloatFnCall(Op: FMul, TLI, DoubleFn: LibFnDouble, FloatFn: LibFnFloat, |
2099 | LongDoubleFn: LibFnLongDouble, B, |
2100 | Attrs: BaseFn->getAttributes()); |
2101 | |
2102 | // Since the new exp{,2}() is different from the original one, dead code |
2103 | // elimination cannot be trusted to remove it, since it may have side |
2104 | // effects (e.g., errno). When the only consumer for the original |
2105 | // exp{,2}() is pow(), then it has to be explicitly erased. |
2106 | substituteInParent(I: BaseFn, With: ExpFn); |
2107 | return ExpFn; |
2108 | } |
2109 | } |
2110 | |
2111 | // Evaluate special cases related to a constant base. |
2112 | |
2113 | const APFloat *BaseF; |
2114 | if (!match(V: Base, P: m_APFloat(Res&: BaseF))) |
2115 | return nullptr; |
2116 | |
2117 | AttributeList NoAttrs; // Attributes are only meaningful on the original call |
2118 | |
2119 | const bool UseIntrinsic = Pow->doesNotAccessMemory(); |
2120 | |
2121 | // pow(2.0, itofp(x)) -> ldexp(1.0, x) |
2122 | if ((UseIntrinsic || !Ty->isVectorTy()) && BaseF->isExactlyValue(V: 2.0) && |
2123 | (isa<SIToFPInst>(Val: Expo) || isa<UIToFPInst>(Val: Expo)) && |
2124 | (UseIntrinsic || |
2125 | hasFloatFn(M, TLI, Ty, DoubleFn: LibFunc_ldexp, FloatFn: LibFunc_ldexpf, LongDoubleFn: LibFunc_ldexpl))) { |
2126 | |
2127 | // TODO: Shouldn't really need to depend on getIntToFPVal for intrinsic. Can |
2128 | // just directly use the original integer type. |
2129 | if (Value *ExpoI = getIntToFPVal(I2F: Expo, B, DstWidth: TLI->getIntSize())) { |
2130 | Constant *One = ConstantFP::get(Ty, V: 1.0); |
2131 | |
2132 | if (UseIntrinsic) { |
2133 | return copyFlags(Old: *Pow, New: B.CreateIntrinsic(ID: Intrinsic::ldexp, |
2134 | Types: {Ty, ExpoI->getType()}, |
2135 | Args: {One, ExpoI}, FMFSource: Pow, Name: "exp2" )); |
2136 | } |
2137 | |
2138 | return copyFlags(Old: *Pow, New: emitBinaryFloatFnCall( |
2139 | Op1: One, Op2: ExpoI, TLI, DoubleFn: LibFunc_ldexp, FloatFn: LibFunc_ldexpf, |
2140 | LongDoubleFn: LibFunc_ldexpl, B, Attrs: NoAttrs)); |
2141 | } |
2142 | } |
2143 | |
2144 | // pow(2.0 ** n, x) -> exp2(n * x) |
2145 | if (hasFloatFn(M, TLI, Ty, DoubleFn: LibFunc_exp2, FloatFn: LibFunc_exp2f, LongDoubleFn: LibFunc_exp2l)) { |
2146 | APFloat BaseR = APFloat(1.0); |
2147 | BaseR.convert(ToSemantics: BaseF->getSemantics(), RM: APFloat::rmTowardZero, losesInfo: &Ignored); |
2148 | BaseR = BaseR / *BaseF; |
2149 | bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); |
2150 | const APFloat *NF = IsReciprocal ? &BaseR : BaseF; |
2151 | APSInt NI(64, false); |
2152 | if ((IsInteger || IsReciprocal) && |
2153 | NF->convertToInteger(Result&: NI, RM: APFloat::rmTowardZero, IsExact: &Ignored) == |
2154 | APFloat::opOK && |
2155 | NI > 1 && NI.isPowerOf2()) { |
2156 | double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); |
2157 | Value *FMul = B.CreateFMul(L: Expo, R: ConstantFP::get(Ty, V: N), Name: "mul" ); |
2158 | if (Pow->doesNotAccessMemory()) |
2159 | return copyFlags(Old: *Pow, New: B.CreateUnaryIntrinsic(ID: Intrinsic::exp2, V: FMul, |
2160 | FMFSource: nullptr, Name: "exp2" )); |
2161 | else |
2162 | return copyFlags(Old: *Pow, New: emitUnaryFloatFnCall(Op: FMul, TLI, DoubleFn: LibFunc_exp2, |
2163 | FloatFn: LibFunc_exp2f, |
2164 | LongDoubleFn: LibFunc_exp2l, B, Attrs: NoAttrs)); |
2165 | } |
2166 | } |
2167 | |
2168 | // pow(10.0, x) -> exp10(x) |
2169 | if (BaseF->isExactlyValue(V: 10.0) && |
2170 | hasFloatFn(M, TLI, Ty, DoubleFn: LibFunc_exp10, FloatFn: LibFunc_exp10f, LongDoubleFn: LibFunc_exp10l)) { |
2171 | |
2172 | if (Pow->doesNotAccessMemory()) { |
2173 | CallInst *NewExp10 = |
2174 | B.CreateIntrinsic(ID: Intrinsic::exp10, Types: {Ty}, Args: {Expo}, FMFSource: Pow, Name: "exp10" ); |
2175 | return copyFlags(Old: *Pow, New: NewExp10); |
2176 | } |
2177 | |
2178 | return copyFlags(Old: *Pow, New: emitUnaryFloatFnCall(Op: Expo, TLI, DoubleFn: LibFunc_exp10, |
2179 | FloatFn: LibFunc_exp10f, LongDoubleFn: LibFunc_exp10l, |
2180 | B, Attrs: NoAttrs)); |
2181 | } |
2182 | |
2183 | // pow(x, y) -> exp2(log2(x) * y) |
2184 | if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && |
2185 | !BaseF->isNegative()) { |
2186 | // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. |
2187 | // Luckily optimizePow has already handled the x == 1 case. |
2188 | assert(!match(Base, m_FPOne()) && |
2189 | "pow(1.0, y) should have been simplified earlier!" ); |
2190 | |
2191 | Value *Log = nullptr; |
2192 | if (Ty->isFloatTy()) |
2193 | Log = ConstantFP::get(Ty, V: std::log2(x: BaseF->convertToFloat())); |
2194 | else if (Ty->isDoubleTy()) |
2195 | Log = ConstantFP::get(Ty, V: std::log2(x: BaseF->convertToDouble())); |
2196 | |
2197 | if (Log) { |
2198 | Value *FMul = B.CreateFMul(L: Log, R: Expo, Name: "mul" ); |
2199 | if (Pow->doesNotAccessMemory()) |
2200 | return copyFlags(Old: *Pow, New: B.CreateUnaryIntrinsic(ID: Intrinsic::exp2, V: FMul, |
2201 | FMFSource: nullptr, Name: "exp2" )); |
2202 | else if (hasFloatFn(M, TLI, Ty, DoubleFn: LibFunc_exp2, FloatFn: LibFunc_exp2f, |
2203 | LongDoubleFn: LibFunc_exp2l)) |
2204 | return copyFlags(Old: *Pow, New: emitUnaryFloatFnCall(Op: FMul, TLI, DoubleFn: LibFunc_exp2, |
2205 | FloatFn: LibFunc_exp2f, |
2206 | LongDoubleFn: LibFunc_exp2l, B, Attrs: NoAttrs)); |
2207 | } |
2208 | } |
2209 | |
2210 | return nullptr; |
2211 | } |
2212 | |
2213 | static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, |
2214 | Module *M, IRBuilderBase &B, |
2215 | const TargetLibraryInfo *TLI) { |
2216 | // If errno is never set, then use the intrinsic for sqrt(). |
2217 | if (NoErrno) |
2218 | return B.CreateUnaryIntrinsic(ID: Intrinsic::sqrt, V, FMFSource: nullptr, Name: "sqrt" ); |
2219 | |
2220 | // Otherwise, use the libcall for sqrt(). |
2221 | if (hasFloatFn(M, TLI, Ty: V->getType(), DoubleFn: LibFunc_sqrt, FloatFn: LibFunc_sqrtf, |
2222 | LongDoubleFn: LibFunc_sqrtl)) |
2223 | // TODO: We also should check that the target can in fact lower the sqrt() |
2224 | // libcall. We currently have no way to ask this question, so we ask if |
2225 | // the target has a sqrt() libcall, which is not exactly the same. |
2226 | return emitUnaryFloatFnCall(Op: V, TLI, DoubleFn: LibFunc_sqrt, FloatFn: LibFunc_sqrtf, |
2227 | LongDoubleFn: LibFunc_sqrtl, B, Attrs); |
2228 | |
2229 | return nullptr; |
2230 | } |
2231 | |
2232 | /// Use square root in place of pow(x, +/-0.5). |
2233 | Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { |
2234 | Value *Sqrt, *Base = Pow->getArgOperand(i: 0), *Expo = Pow->getArgOperand(i: 1); |
2235 | Module *Mod = Pow->getModule(); |
2236 | Type *Ty = Pow->getType(); |
2237 | |
2238 | const APFloat *ExpoF; |
2239 | if (!match(V: Expo, P: m_APFloat(Res&: ExpoF)) || |
2240 | (!ExpoF->isExactlyValue(V: 0.5) && !ExpoF->isExactlyValue(V: -0.5))) |
2241 | return nullptr; |
2242 | |
2243 | // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, |
2244 | // so that requires fast-math-flags (afn or reassoc). |
2245 | if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) |
2246 | return nullptr; |
2247 | |
2248 | // If we have a pow() library call (accesses memory) and we can't guarantee |
2249 | // that the base is not an infinity, give up: |
2250 | // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting |
2251 | // errno), but sqrt(-Inf) is required by various standards to set errno. |
2252 | if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && |
2253 | !isKnownNeverInfinity(V: Base, Depth: 0, |
2254 | SQ: SimplifyQuery(DL, TLI, /*DT=*/nullptr, AC, Pow))) |
2255 | return nullptr; |
2256 | |
2257 | Sqrt = getSqrtCall(V: Base, Attrs: AttributeList(), NoErrno: Pow->doesNotAccessMemory(), M: Mod, B, |
2258 | TLI); |
2259 | if (!Sqrt) |
2260 | return nullptr; |
2261 | |
2262 | // Handle signed zero base by expanding to fabs(sqrt(x)). |
2263 | if (!Pow->hasNoSignedZeros()) |
2264 | Sqrt = B.CreateUnaryIntrinsic(ID: Intrinsic::fabs, V: Sqrt, FMFSource: nullptr, Name: "abs" ); |
2265 | |
2266 | Sqrt = copyFlags(Old: *Pow, New: Sqrt); |
2267 | |
2268 | // Handle non finite base by expanding to |
2269 | // (x == -infinity ? +infinity : sqrt(x)). |
2270 | if (!Pow->hasNoInfs()) { |
2271 | Value *PosInf = ConstantFP::getInfinity(Ty), |
2272 | *NegInf = ConstantFP::getInfinity(Ty, Negative: true); |
2273 | Value *FCmp = B.CreateFCmpOEQ(LHS: Base, RHS: NegInf, Name: "isinf" ); |
2274 | Sqrt = B.CreateSelect(C: FCmp, True: PosInf, False: Sqrt); |
2275 | } |
2276 | |
2277 | // If the exponent is negative, then get the reciprocal. |
2278 | if (ExpoF->isNegative()) |
2279 | Sqrt = B.CreateFDiv(L: ConstantFP::get(Ty, V: 1.0), R: Sqrt, Name: "reciprocal" ); |
2280 | |
2281 | return Sqrt; |
2282 | } |
2283 | |
2284 | static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, |
2285 | IRBuilderBase &B) { |
2286 | Value *Args[] = {Base, Expo}; |
2287 | Type *Types[] = {Base->getType(), Expo->getType()}; |
2288 | return B.CreateIntrinsic(ID: Intrinsic::powi, Types, Args); |
2289 | } |
2290 | |
2291 | Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { |
2292 | Value *Base = Pow->getArgOperand(i: 0); |
2293 | Value *Expo = Pow->getArgOperand(i: 1); |
2294 | Function *Callee = Pow->getCalledFunction(); |
2295 | StringRef Name = Callee->getName(); |
2296 | Type *Ty = Pow->getType(); |
2297 | Module *M = Pow->getModule(); |
2298 | bool AllowApprox = Pow->hasApproxFunc(); |
2299 | bool Ignored; |
2300 | |
2301 | // Propagate the math semantics from the call to any created instructions. |
2302 | IRBuilderBase::FastMathFlagGuard Guard(B); |
2303 | B.setFastMathFlags(Pow->getFastMathFlags()); |
2304 | // Evaluate special cases related to the base. |
2305 | |
2306 | // pow(1.0, x) -> 1.0 |
2307 | if (match(V: Base, P: m_FPOne())) |
2308 | return Base; |
2309 | |
2310 | if (Value *Exp = replacePowWithExp(Pow, B)) |
2311 | return Exp; |
2312 | |
2313 | // Evaluate special cases related to the exponent. |
2314 | |
2315 | // pow(x, -1.0) -> 1.0 / x |
2316 | if (match(V: Expo, P: m_SpecificFP(V: -1.0))) |
2317 | return B.CreateFDiv(L: ConstantFP::get(Ty, V: 1.0), R: Base, Name: "reciprocal" ); |
2318 | |
2319 | // pow(x, +/-0.0) -> 1.0 |
2320 | if (match(V: Expo, P: m_AnyZeroFP())) |
2321 | return ConstantFP::get(Ty, V: 1.0); |
2322 | |
2323 | // pow(x, 1.0) -> x |
2324 | if (match(V: Expo, P: m_FPOne())) |
2325 | return Base; |
2326 | |
2327 | // pow(x, 2.0) -> x * x |
2328 | if (match(V: Expo, P: m_SpecificFP(V: 2.0))) |
2329 | return B.CreateFMul(L: Base, R: Base, Name: "square" ); |
2330 | |
2331 | if (Value *Sqrt = replacePowWithSqrt(Pow, B)) |
2332 | return Sqrt; |
2333 | |
2334 | // If we can approximate pow: |
2335 | // pow(x, n) -> powi(x, n) * sqrt(x) if n has exactly a 0.5 fraction |
2336 | // pow(x, n) -> powi(x, n) if n is a constant signed integer value |
2337 | const APFloat *ExpoF; |
2338 | if (AllowApprox && match(V: Expo, P: m_APFloat(Res&: ExpoF)) && |
2339 | !ExpoF->isExactlyValue(V: 0.5) && !ExpoF->isExactlyValue(V: -0.5)) { |
2340 | APFloat ExpoA(abs(X: *ExpoF)); |
2341 | APFloat ExpoI(*ExpoF); |
2342 | Value *Sqrt = nullptr; |
2343 | if (!ExpoA.isInteger()) { |
2344 | APFloat Expo2 = ExpoA; |
2345 | // To check if ExpoA is an integer + 0.5, we add it to itself. If there |
2346 | // is no floating point exception and the result is an integer, then |
2347 | // ExpoA == integer + 0.5 |
2348 | if (Expo2.add(RHS: ExpoA, RM: APFloat::rmNearestTiesToEven) != APFloat::opOK) |
2349 | return nullptr; |
2350 | |
2351 | if (!Expo2.isInteger()) |
2352 | return nullptr; |
2353 | |
2354 | if (ExpoI.roundToIntegral(RM: APFloat::rmTowardNegative) != |
2355 | APFloat::opInexact) |
2356 | return nullptr; |
2357 | if (!ExpoI.isInteger()) |
2358 | return nullptr; |
2359 | ExpoF = &ExpoI; |
2360 | |
2361 | Sqrt = getSqrtCall(V: Base, Attrs: AttributeList(), NoErrno: Pow->doesNotAccessMemory(), M, |
2362 | B, TLI); |
2363 | if (!Sqrt) |
2364 | return nullptr; |
2365 | } |
2366 | |
2367 | // 0.5 fraction is now optionally handled. |
2368 | // Do pow -> powi for remaining integer exponent |
2369 | APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); |
2370 | if (ExpoF->isInteger() && |
2371 | ExpoF->convertToInteger(Result&: IntExpo, RM: APFloat::rmTowardZero, IsExact: &Ignored) == |
2372 | APFloat::opOK) { |
2373 | Value *PowI = copyFlags( |
2374 | Old: *Pow, |
2375 | New: createPowWithIntegerExponent( |
2376 | Base, Expo: ConstantInt::get(Ty: B.getIntNTy(N: TLI->getIntSize()), V: IntExpo), |
2377 | M, B)); |
2378 | |
2379 | if (PowI && Sqrt) |
2380 | return B.CreateFMul(L: PowI, R: Sqrt); |
2381 | |
2382 | return PowI; |
2383 | } |
2384 | } |
2385 | |
2386 | // powf(x, itofp(y)) -> powi(x, y) |
2387 | if (AllowApprox && (isa<SIToFPInst>(Val: Expo) || isa<UIToFPInst>(Val: Expo))) { |
2388 | if (Value *ExpoI = getIntToFPVal(I2F: Expo, B, DstWidth: TLI->getIntSize())) |
2389 | return copyFlags(Old: *Pow, New: createPowWithIntegerExponent(Base, Expo: ExpoI, M, B)); |
2390 | } |
2391 | |
2392 | // Shrink pow() to powf() if the arguments are single precision, |
2393 | // unless the result is expected to be double precision. |
2394 | if (UnsafeFPShrink && Name == TLI->getName(F: LibFunc_pow) && |
2395 | hasFloatVersion(M, FuncName: Name)) { |
2396 | if (Value *Shrunk = optimizeBinaryDoubleFP(CI: Pow, B, TLI, isPrecise: true)) |
2397 | return Shrunk; |
2398 | } |
2399 | |
2400 | return nullptr; |
2401 | } |
2402 | |
2403 | Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { |
2404 | Module *M = CI->getModule(); |
2405 | Function *Callee = CI->getCalledFunction(); |
2406 | StringRef Name = Callee->getName(); |
2407 | Value *Ret = nullptr; |
2408 | if (UnsafeFPShrink && Name == TLI->getName(F: LibFunc_exp2) && |
2409 | hasFloatVersion(M, FuncName: Name)) |
2410 | Ret = optimizeUnaryDoubleFP(CI, B, TLI, isPrecise: true); |
2411 | |
2412 | // If we have an llvm.exp2 intrinsic, emit the llvm.ldexp intrinsic. If we |
2413 | // have the libcall, emit the libcall. |
2414 | // |
2415 | // TODO: In principle we should be able to just always use the intrinsic for |
2416 | // any doesNotAccessMemory callsite. |
2417 | |
2418 | const bool UseIntrinsic = Callee->isIntrinsic(); |
2419 | // Bail out for vectors because the code below only expects scalars. |
2420 | Type *Ty = CI->getType(); |
2421 | if (!UseIntrinsic && Ty->isVectorTy()) |
2422 | return Ret; |
2423 | |
2424 | // exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize |
2425 | // exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize |
2426 | Value *Op = CI->getArgOperand(i: 0); |
2427 | if ((isa<SIToFPInst>(Val: Op) || isa<UIToFPInst>(Val: Op)) && |
2428 | (UseIntrinsic || |
2429 | hasFloatFn(M, TLI, Ty, DoubleFn: LibFunc_ldexp, FloatFn: LibFunc_ldexpf, LongDoubleFn: LibFunc_ldexpl))) { |
2430 | if (Value *Exp = getIntToFPVal(I2F: Op, B, DstWidth: TLI->getIntSize())) { |
2431 | Constant *One = ConstantFP::get(Ty, V: 1.0); |
2432 | |
2433 | if (UseIntrinsic) { |
2434 | return copyFlags(Old: *CI, New: B.CreateIntrinsic(ID: Intrinsic::ldexp, |
2435 | Types: {Ty, Exp->getType()}, |
2436 | Args: {One, Exp}, FMFSource: CI)); |
2437 | } |
2438 | |
2439 | IRBuilderBase::FastMathFlagGuard Guard(B); |
2440 | B.setFastMathFlags(CI->getFastMathFlags()); |
2441 | return copyFlags(Old: *CI, New: emitBinaryFloatFnCall( |
2442 | Op1: One, Op2: Exp, TLI, DoubleFn: LibFunc_ldexp, FloatFn: LibFunc_ldexpf, |
2443 | LongDoubleFn: LibFunc_ldexpl, B, Attrs: AttributeList())); |
2444 | } |
2445 | } |
2446 | |
2447 | return Ret; |
2448 | } |
2449 | |
2450 | Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { |
2451 | Module *M = CI->getModule(); |
2452 | |
2453 | // If we can shrink the call to a float function rather than a double |
2454 | // function, do that first. |
2455 | Function *Callee = CI->getCalledFunction(); |
2456 | StringRef Name = Callee->getName(); |
2457 | if ((Name == "fmin" || Name == "fmax" ) && hasFloatVersion(M, FuncName: Name)) |
2458 | if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI)) |
2459 | return Ret; |
2460 | |
2461 | // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to |
2462 | // the intrinsics for improved optimization (for example, vectorization). |
2463 | // No-signed-zeros is implied by the definitions of fmax/fmin themselves. |
2464 | // From the C standard draft WG14/N1256: |
2465 | // "Ideally, fmax would be sensitive to the sign of zero, for example |
2466 | // fmax(-0.0, +0.0) would return +0; however, implementation in software |
2467 | // might be impractical." |
2468 | IRBuilderBase::FastMathFlagGuard Guard(B); |
2469 | FastMathFlags FMF = CI->getFastMathFlags(); |
2470 | FMF.setNoSignedZeros(); |
2471 | B.setFastMathFlags(FMF); |
2472 | |
2473 | Intrinsic::ID IID = Callee->getName().starts_with(Prefix: "fmin" ) ? Intrinsic::minnum |
2474 | : Intrinsic::maxnum; |
2475 | return copyFlags(Old: *CI, New: B.CreateBinaryIntrinsic(ID: IID, LHS: CI->getArgOperand(i: 0), |
2476 | RHS: CI->getArgOperand(i: 1))); |
2477 | } |
2478 | |
2479 | Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { |
2480 | Function *LogFn = Log->getCalledFunction(); |
2481 | StringRef LogNm = LogFn->getName(); |
2482 | Intrinsic::ID LogID = LogFn->getIntrinsicID(); |
2483 | Module *Mod = Log->getModule(); |
2484 | Type *Ty = Log->getType(); |
2485 | Value *Ret = nullptr; |
2486 | |
2487 | if (UnsafeFPShrink && hasFloatVersion(M: Mod, FuncName: LogNm)) |
2488 | Ret = optimizeUnaryDoubleFP(CI: Log, B, TLI, isPrecise: true); |
2489 | |
2490 | // The earlier call must also be 'fast' in order to do these transforms. |
2491 | CallInst *Arg = dyn_cast<CallInst>(Val: Log->getArgOperand(i: 0)); |
2492 | if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) |
2493 | return Ret; |
2494 | |
2495 | LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; |
2496 | |
2497 | // This is only applicable to log(), log2(), log10(). |
2498 | if (TLI->getLibFunc(funcName: LogNm, F&: LogLb)) |
2499 | switch (LogLb) { |
2500 | case LibFunc_logf: |
2501 | LogID = Intrinsic::log; |
2502 | ExpLb = LibFunc_expf; |
2503 | Exp2Lb = LibFunc_exp2f; |
2504 | Exp10Lb = LibFunc_exp10f; |
2505 | PowLb = LibFunc_powf; |
2506 | break; |
2507 | case LibFunc_log: |
2508 | LogID = Intrinsic::log; |
2509 | ExpLb = LibFunc_exp; |
2510 | Exp2Lb = LibFunc_exp2; |
2511 | Exp10Lb = LibFunc_exp10; |
2512 | PowLb = LibFunc_pow; |
2513 | break; |
2514 | case LibFunc_logl: |
2515 | LogID = Intrinsic::log; |
2516 | ExpLb = LibFunc_expl; |
2517 | Exp2Lb = LibFunc_exp2l; |
2518 | Exp10Lb = LibFunc_exp10l; |
2519 | PowLb = LibFunc_powl; |
2520 | break; |
2521 | case LibFunc_log2f: |
2522 | LogID = Intrinsic::log2; |
2523 | ExpLb = LibFunc_expf; |
2524 | Exp2Lb = LibFunc_exp2f; |
2525 | Exp10Lb = LibFunc_exp10f; |
2526 | PowLb = LibFunc_powf; |
2527 | break; |
2528 | case LibFunc_log2: |
2529 | LogID = Intrinsic::log2; |
2530 | ExpLb = LibFunc_exp; |
2531 | Exp2Lb = LibFunc_exp2; |
2532 | Exp10Lb = LibFunc_exp10; |
2533 | PowLb = LibFunc_pow; |
2534 | break; |
2535 | case LibFunc_log2l: |
2536 | LogID = Intrinsic::log2; |
2537 | ExpLb = LibFunc_expl; |
2538 | Exp2Lb = LibFunc_exp2l; |
2539 | Exp10Lb = LibFunc_exp10l; |
2540 | PowLb = LibFunc_powl; |
2541 | break; |
2542 | case LibFunc_log10f: |
2543 | LogID = Intrinsic::log10; |
2544 | ExpLb = LibFunc_expf; |
2545 | Exp2Lb = LibFunc_exp2f; |
2546 | Exp10Lb = LibFunc_exp10f; |
2547 | PowLb = LibFunc_powf; |
2548 | break; |
2549 | case LibFunc_log10: |
2550 | LogID = Intrinsic::log10; |
2551 | ExpLb = LibFunc_exp; |
2552 | Exp2Lb = LibFunc_exp2; |
2553 | Exp10Lb = LibFunc_exp10; |
2554 | PowLb = LibFunc_pow; |
2555 | break; |
2556 | case LibFunc_log10l: |
2557 | LogID = Intrinsic::log10; |
2558 | ExpLb = LibFunc_expl; |
2559 | Exp2Lb = LibFunc_exp2l; |
2560 | Exp10Lb = LibFunc_exp10l; |
2561 | PowLb = LibFunc_powl; |
2562 | break; |
2563 | default: |
2564 | return Ret; |
2565 | } |
2566 | else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || |
2567 | LogID == Intrinsic::log10) { |
2568 | if (Ty->getScalarType()->isFloatTy()) { |
2569 | ExpLb = LibFunc_expf; |
2570 | Exp2Lb = LibFunc_exp2f; |
2571 | Exp10Lb = LibFunc_exp10f; |
2572 | PowLb = LibFunc_powf; |
2573 | } else if (Ty->getScalarType()->isDoubleTy()) { |
2574 | ExpLb = LibFunc_exp; |
2575 | Exp2Lb = LibFunc_exp2; |
2576 | Exp10Lb = LibFunc_exp10; |
2577 | PowLb = LibFunc_pow; |
2578 | } else |
2579 | return Ret; |
2580 | } else |
2581 | return Ret; |
2582 | |
2583 | IRBuilderBase::FastMathFlagGuard Guard(B); |
2584 | B.setFastMathFlags(FastMathFlags::getFast()); |
2585 | |
2586 | Intrinsic::ID ArgID = Arg->getIntrinsicID(); |
2587 | LibFunc ArgLb = NotLibFunc; |
2588 | TLI->getLibFunc(CB: *Arg, F&: ArgLb); |
2589 | |
2590 | // log(pow(x,y)) -> y*log(x) |
2591 | AttributeList NoAttrs; |
2592 | if (ArgLb == PowLb || ArgID == Intrinsic::pow || ArgID == Intrinsic::powi) { |
2593 | Value *LogX = |
2594 | Log->doesNotAccessMemory() |
2595 | ? B.CreateUnaryIntrinsic(ID: LogID, V: Arg->getOperand(i_nocapture: 0), FMFSource: nullptr, Name: "log" ) |
2596 | : emitUnaryFloatFnCall(Op: Arg->getOperand(i_nocapture: 0), TLI, Name: LogNm, B, Attrs: NoAttrs); |
2597 | Value *Y = Arg->getArgOperand(i: 1); |
2598 | // Cast exponent to FP if integer. |
2599 | if (ArgID == Intrinsic::powi) |
2600 | Y = B.CreateSIToFP(V: Y, DestTy: Ty, Name: "cast" ); |
2601 | Value *MulY = B.CreateFMul(L: Y, R: LogX, Name: "mul" ); |
2602 | // Since pow() may have side effects, e.g. errno, |
2603 | // dead code elimination may not be trusted to remove it. |
2604 | substituteInParent(I: Arg, With: MulY); |
2605 | return MulY; |
2606 | } |
2607 | |
2608 | // log(exp{,2,10}(y)) -> y*log({e,2,10}) |
2609 | // TODO: There is no exp10() intrinsic yet. |
2610 | if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || |
2611 | ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { |
2612 | Constant *Eul; |
2613 | if (ArgLb == ExpLb || ArgID == Intrinsic::exp) |
2614 | // FIXME: Add more precise value of e for long double. |
2615 | Eul = ConstantFP::get(Ty: Log->getType(), V: numbers::e); |
2616 | else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) |
2617 | Eul = ConstantFP::get(Ty: Log->getType(), V: 2.0); |
2618 | else |
2619 | Eul = ConstantFP::get(Ty: Log->getType(), V: 10.0); |
2620 | Value *LogE = Log->doesNotAccessMemory() |
2621 | ? B.CreateUnaryIntrinsic(ID: LogID, V: Eul, FMFSource: nullptr, Name: "log" ) |
2622 | : emitUnaryFloatFnCall(Op: Eul, TLI, Name: LogNm, B, Attrs: NoAttrs); |
2623 | Value *MulY = B.CreateFMul(L: Arg->getArgOperand(i: 0), R: LogE, Name: "mul" ); |
2624 | // Since exp() may have side effects, e.g. errno, |
2625 | // dead code elimination may not be trusted to remove it. |
2626 | substituteInParent(I: Arg, With: MulY); |
2627 | return MulY; |
2628 | } |
2629 | |
2630 | return Ret; |
2631 | } |
2632 | |
2633 | // sqrt(exp(X)) -> exp(X * 0.5) |
2634 | Value *LibCallSimplifier::mergeSqrtToExp(CallInst *CI, IRBuilderBase &B) { |
2635 | if (!CI->hasAllowReassoc()) |
2636 | return nullptr; |
2637 | |
2638 | Function *SqrtFn = CI->getCalledFunction(); |
2639 | CallInst *Arg = dyn_cast<CallInst>(Val: CI->getArgOperand(i: 0)); |
2640 | if (!Arg || !Arg->hasAllowReassoc() || !Arg->hasOneUse()) |
2641 | return nullptr; |
2642 | Intrinsic::ID ArgID = Arg->getIntrinsicID(); |
2643 | LibFunc ArgLb = NotLibFunc; |
2644 | TLI->getLibFunc(CB: *Arg, F&: ArgLb); |
2645 | |
2646 | LibFunc SqrtLb, ExpLb, Exp2Lb, Exp10Lb; |
2647 | |
2648 | if (TLI->getLibFunc(funcName: SqrtFn->getName(), F&: SqrtLb)) |
2649 | switch (SqrtLb) { |
2650 | case LibFunc_sqrtf: |
2651 | ExpLb = LibFunc_expf; |
2652 | Exp2Lb = LibFunc_exp2f; |
2653 | Exp10Lb = LibFunc_exp10f; |
2654 | break; |
2655 | case LibFunc_sqrt: |
2656 | ExpLb = LibFunc_exp; |
2657 | Exp2Lb = LibFunc_exp2; |
2658 | Exp10Lb = LibFunc_exp10; |
2659 | break; |
2660 | case LibFunc_sqrtl: |
2661 | ExpLb = LibFunc_expl; |
2662 | Exp2Lb = LibFunc_exp2l; |
2663 | Exp10Lb = LibFunc_exp10l; |
2664 | break; |
2665 | default: |
2666 | return nullptr; |
2667 | } |
2668 | else if (SqrtFn->getIntrinsicID() == Intrinsic::sqrt) { |
2669 | if (CI->getType()->getScalarType()->isFloatTy()) { |
2670 | ExpLb = LibFunc_expf; |
2671 | Exp2Lb = LibFunc_exp2f; |
2672 | Exp10Lb = LibFunc_exp10f; |
2673 | } else if (CI->getType()->getScalarType()->isDoubleTy()) { |
2674 | ExpLb = LibFunc_exp; |
2675 | Exp2Lb = LibFunc_exp2; |
2676 | Exp10Lb = LibFunc_exp10; |
2677 | } else |
2678 | return nullptr; |
2679 | } else |
2680 | return nullptr; |
2681 | |
2682 | if (ArgLb != ExpLb && ArgLb != Exp2Lb && ArgLb != Exp10Lb && |
2683 | ArgID != Intrinsic::exp && ArgID != Intrinsic::exp2) |
2684 | return nullptr; |
2685 | |
2686 | IRBuilderBase::InsertPointGuard Guard(B); |
2687 | B.SetInsertPoint(Arg); |
2688 | auto *ExpOperand = Arg->getOperand(i_nocapture: 0); |
2689 | auto *FMul = |
2690 | B.CreateFMulFMF(L: ExpOperand, R: ConstantFP::get(Ty: ExpOperand->getType(), V: 0.5), |
2691 | FMFSource: CI, Name: "merged.sqrt" ); |
2692 | |
2693 | Arg->setOperand(i_nocapture: 0, Val_nocapture: FMul); |
2694 | return Arg; |
2695 | } |
2696 | |
2697 | Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { |
2698 | Module *M = CI->getModule(); |
2699 | Function *Callee = CI->getCalledFunction(); |
2700 | Value *Ret = nullptr; |
2701 | // TODO: Once we have a way (other than checking for the existince of the |
2702 | // libcall) to tell whether our target can lower @llvm.sqrt, relax the |
2703 | // condition below. |
2704 | if (isLibFuncEmittable(M, TLI, TheLibFunc: LibFunc_sqrtf) && |
2705 | (Callee->getName() == "sqrt" || |
2706 | Callee->getIntrinsicID() == Intrinsic::sqrt)) |
2707 | Ret = optimizeUnaryDoubleFP(CI, B, TLI, isPrecise: true); |
2708 | |
2709 | if (Value *Opt = mergeSqrtToExp(CI, B)) |
2710 | return Opt; |
2711 | |
2712 | if (!CI->isFast()) |
2713 | return Ret; |
2714 | |
2715 | Instruction *I = dyn_cast<Instruction>(Val: CI->getArgOperand(i: 0)); |
2716 | if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) |
2717 | return Ret; |
2718 | |
2719 | // We're looking for a repeated factor in a multiplication tree, |
2720 | // so we can do this fold: sqrt(x * x) -> fabs(x); |
2721 | // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). |
2722 | Value *Op0 = I->getOperand(i: 0); |
2723 | Value *Op1 = I->getOperand(i: 1); |
2724 | Value *RepeatOp = nullptr; |
2725 | Value *OtherOp = nullptr; |
2726 | if (Op0 == Op1) { |
2727 | // Simple match: the operands of the multiply are identical. |
2728 | RepeatOp = Op0; |
2729 | } else { |
2730 | // Look for a more complicated pattern: one of the operands is itself |
2731 | // a multiply, so search for a common factor in that multiply. |
2732 | // Note: We don't bother looking any deeper than this first level or for |
2733 | // variations of this pattern because instcombine's visitFMUL and/or the |
2734 | // reassociation pass should give us this form. |
2735 | Value *OtherMul0, *OtherMul1; |
2736 | if (match(V: Op0, P: m_FMul(L: m_Value(V&: OtherMul0), R: m_Value(V&: OtherMul1)))) { |
2737 | // Pattern: sqrt((x * y) * z) |
2738 | if (OtherMul0 == OtherMul1 && cast<Instruction>(Val: Op0)->isFast()) { |
2739 | // Matched: sqrt((x * x) * z) |
2740 | RepeatOp = OtherMul0; |
2741 | OtherOp = Op1; |
2742 | } |
2743 | } |
2744 | } |
2745 | if (!RepeatOp) |
2746 | return Ret; |
2747 | |
2748 | // Fast math flags for any created instructions should match the sqrt |
2749 | // and multiply. |
2750 | IRBuilderBase::FastMathFlagGuard Guard(B); |
2751 | B.setFastMathFlags(I->getFastMathFlags()); |
2752 | |
2753 | // If we found a repeated factor, hoist it out of the square root and |
2754 | // replace it with the fabs of that factor. |
2755 | Value *FabsCall = |
2756 | B.CreateUnaryIntrinsic(ID: Intrinsic::fabs, V: RepeatOp, FMFSource: nullptr, Name: "fabs" ); |
2757 | if (OtherOp) { |
2758 | // If we found a non-repeated factor, we still need to get its square |
2759 | // root. We then multiply that by the value that was simplified out |
2760 | // of the square root calculation. |
2761 | Value *SqrtCall = |
2762 | B.CreateUnaryIntrinsic(ID: Intrinsic::sqrt, V: OtherOp, FMFSource: nullptr, Name: "sqrt" ); |
2763 | return copyFlags(Old: *CI, New: B.CreateFMul(L: FabsCall, R: SqrtCall)); |
2764 | } |
2765 | return copyFlags(Old: *CI, New: FabsCall); |
2766 | } |
2767 | |
2768 | Value *LibCallSimplifier::optimizeTrigInversionPairs(CallInst *CI, |
2769 | IRBuilderBase &B) { |
2770 | Module *M = CI->getModule(); |
2771 | Function *Callee = CI->getCalledFunction(); |
2772 | Value *Ret = nullptr; |
2773 | StringRef Name = Callee->getName(); |
2774 | if (UnsafeFPShrink && |
2775 | (Name == "tan" || Name == "atanh" || Name == "sinh" || Name == "cosh" || |
2776 | Name == "asinh" ) && |
2777 | hasFloatVersion(M, FuncName: Name)) |
2778 | Ret = optimizeUnaryDoubleFP(CI, B, TLI, isPrecise: true); |
2779 | |
2780 | Value *Op1 = CI->getArgOperand(i: 0); |
2781 | auto *OpC = dyn_cast<CallInst>(Val: Op1); |
2782 | if (!OpC) |
2783 | return Ret; |
2784 | |
2785 | // Both calls must be 'fast' in order to remove them. |
2786 | if (!CI->isFast() || !OpC->isFast()) |
2787 | return Ret; |
2788 | |
2789 | // tan(atan(x)) -> x |
2790 | // atanh(tanh(x)) -> x |
2791 | // sinh(asinh(x)) -> x |
2792 | // asinh(sinh(x)) -> x |
2793 | // cosh(acosh(x)) -> x |
2794 | LibFunc Func; |
2795 | Function *F = OpC->getCalledFunction(); |
2796 | if (F && TLI->getLibFunc(funcName: F->getName(), F&: Func) && |
2797 | isLibFuncEmittable(M, TLI, TheLibFunc: Func)) { |
2798 | LibFunc inverseFunc = llvm::StringSwitch<LibFunc>(Callee->getName()) |
2799 | .Case(S: "tan" , Value: LibFunc_atan) |
2800 | .Case(S: "atanh" , Value: LibFunc_tanh) |
2801 | .Case(S: "sinh" , Value: LibFunc_asinh) |
2802 | .Case(S: "cosh" , Value: LibFunc_acosh) |
2803 | .Case(S: "tanf" , Value: LibFunc_atanf) |
2804 | .Case(S: "atanhf" , Value: LibFunc_tanhf) |
2805 | .Case(S: "sinhf" , Value: LibFunc_asinhf) |
2806 | .Case(S: "coshf" , Value: LibFunc_acoshf) |
2807 | .Case(S: "tanl" , Value: LibFunc_atanl) |
2808 | .Case(S: "atanhl" , Value: LibFunc_tanhl) |
2809 | .Case(S: "sinhl" , Value: LibFunc_asinhl) |
2810 | .Case(S: "coshl" , Value: LibFunc_acoshl) |
2811 | .Case(S: "asinh" , Value: LibFunc_sinh) |
2812 | .Case(S: "asinhf" , Value: LibFunc_sinhf) |
2813 | .Case(S: "asinhl" , Value: LibFunc_sinhl) |
2814 | .Default(Value: NumLibFuncs); // Used as error value |
2815 | if (Func == inverseFunc) |
2816 | Ret = OpC->getArgOperand(i: 0); |
2817 | } |
2818 | return Ret; |
2819 | } |
2820 | |
2821 | static bool isTrigLibCall(CallInst *CI) { |
2822 | // We can only hope to do anything useful if we can ignore things like errno |
2823 | // and floating-point exceptions. |
2824 | // We already checked the prototype. |
2825 | return CI->doesNotThrow() && CI->doesNotAccessMemory(); |
2826 | } |
2827 | |
2828 | static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, |
2829 | bool UseFloat, Value *&Sin, Value *&Cos, |
2830 | Value *&SinCos, const TargetLibraryInfo *TLI) { |
2831 | Module *M = OrigCallee->getParent(); |
2832 | Type *ArgTy = Arg->getType(); |
2833 | Type *ResTy; |
2834 | StringRef Name; |
2835 | |
2836 | Triple T(OrigCallee->getParent()->getTargetTriple()); |
2837 | if (UseFloat) { |
2838 | Name = "__sincospif_stret" ; |
2839 | |
2840 | assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now" ); |
2841 | // x86_64 can't use {float, float} since that would be returned in both |
2842 | // xmm0 and xmm1, which isn't what a real struct would do. |
2843 | ResTy = T.getArch() == Triple::x86_64 |
2844 | ? static_cast<Type *>(FixedVectorType::get(ElementType: ArgTy, NumElts: 2)) |
2845 | : static_cast<Type *>(StructType::get(elt1: ArgTy, elts: ArgTy)); |
2846 | } else { |
2847 | Name = "__sincospi_stret" ; |
2848 | ResTy = StructType::get(elt1: ArgTy, elts: ArgTy); |
2849 | } |
2850 | |
2851 | if (!isLibFuncEmittable(M, TLI, Name)) |
2852 | return false; |
2853 | LibFunc TheLibFunc; |
2854 | TLI->getLibFunc(funcName: Name, F&: TheLibFunc); |
2855 | FunctionCallee Callee = getOrInsertLibFunc( |
2856 | M, TLI: *TLI, TheLibFunc, AttributeList: OrigCallee->getAttributes(), RetTy: ResTy, Args: ArgTy); |
2857 | |
2858 | if (Instruction *ArgInst = dyn_cast<Instruction>(Val: Arg)) { |
2859 | // If the argument is an instruction, it must dominate all uses so put our |
2860 | // sincos call there. |
2861 | B.SetInsertPoint(TheBB: ArgInst->getParent(), IP: ++ArgInst->getIterator()); |
2862 | } else { |
2863 | // Otherwise (e.g. for a constant) the beginning of the function is as |
2864 | // good a place as any. |
2865 | BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); |
2866 | B.SetInsertPoint(TheBB: &EntryBB, IP: EntryBB.begin()); |
2867 | } |
2868 | |
2869 | SinCos = B.CreateCall(Callee, Args: Arg, Name: "sincospi" ); |
2870 | |
2871 | if (SinCos->getType()->isStructTy()) { |
2872 | Sin = B.CreateExtractValue(Agg: SinCos, Idxs: 0, Name: "sinpi" ); |
2873 | Cos = B.CreateExtractValue(Agg: SinCos, Idxs: 1, Name: "cospi" ); |
2874 | } else { |
2875 | Sin = B.CreateExtractElement(Vec: SinCos, Idx: ConstantInt::get(Ty: B.getInt32Ty(), V: 0), |
2876 | Name: "sinpi" ); |
2877 | Cos = B.CreateExtractElement(Vec: SinCos, Idx: ConstantInt::get(Ty: B.getInt32Ty(), V: 1), |
2878 | Name: "cospi" ); |
2879 | } |
2880 | |
2881 | return true; |
2882 | } |
2883 | |
2884 | static Value *optimizeSymmetricCall(CallInst *CI, bool IsEven, |
2885 | IRBuilderBase &B) { |
2886 | Value *X; |
2887 | Value *Src = CI->getArgOperand(i: 0); |
2888 | |
2889 | if (match(V: Src, P: m_OneUse(SubPattern: m_FNeg(X: m_Value(V&: X))))) { |
2890 | IRBuilderBase::FastMathFlagGuard Guard(B); |
2891 | B.setFastMathFlags(CI->getFastMathFlags()); |
2892 | |
2893 | auto *CallInst = copyFlags(Old: *CI, New: B.CreateCall(Callee: CI->getCalledFunction(), Args: {X})); |
2894 | if (IsEven) { |
2895 | // Even function: f(-x) = f(x) |
2896 | return CallInst; |
2897 | } |
2898 | // Odd function: f(-x) = -f(x) |
2899 | return B.CreateFNeg(V: CallInst); |
2900 | } |
2901 | |
2902 | // Even function: f(abs(x)) = f(x), f(copysign(x, y)) = f(x) |
2903 | if (IsEven && (match(V: Src, P: m_FAbs(Op0: m_Value(V&: X))) || |
2904 | match(V: Src, P: m_CopySign(Op0: m_Value(V&: X), Op1: m_Value())))) { |
2905 | IRBuilderBase::FastMathFlagGuard Guard(B); |
2906 | B.setFastMathFlags(CI->getFastMathFlags()); |
2907 | |
2908 | auto *CallInst = copyFlags(Old: *CI, New: B.CreateCall(Callee: CI->getCalledFunction(), Args: {X})); |
2909 | return CallInst; |
2910 | } |
2911 | |
2912 | return nullptr; |
2913 | } |
2914 | |
2915 | Value *LibCallSimplifier::optimizeSymmetric(CallInst *CI, LibFunc Func, |
2916 | IRBuilderBase &B) { |
2917 | switch (Func) { |
2918 | case LibFunc_cos: |
2919 | case LibFunc_cosf: |
2920 | case LibFunc_cosl: |
2921 | return optimizeSymmetricCall(CI, /*IsEven*/ true, B); |
2922 | |
2923 | case LibFunc_sin: |
2924 | case LibFunc_sinf: |
2925 | case LibFunc_sinl: |
2926 | |
2927 | case LibFunc_tan: |
2928 | case LibFunc_tanf: |
2929 | case LibFunc_tanl: |
2930 | |
2931 | case LibFunc_erf: |
2932 | case LibFunc_erff: |
2933 | case LibFunc_erfl: |
2934 | return optimizeSymmetricCall(CI, /*IsEven*/ false, B); |
2935 | |
2936 | default: |
2937 | return nullptr; |
2938 | } |
2939 | } |
2940 | |
2941 | Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, bool IsSin, IRBuilderBase &B) { |
2942 | // Make sure the prototype is as expected, otherwise the rest of the |
2943 | // function is probably invalid and likely to abort. |
2944 | if (!isTrigLibCall(CI)) |
2945 | return nullptr; |
2946 | |
2947 | Value *Arg = CI->getArgOperand(i: 0); |
2948 | SmallVector<CallInst *, 1> SinCalls; |
2949 | SmallVector<CallInst *, 1> CosCalls; |
2950 | SmallVector<CallInst *, 1> SinCosCalls; |
2951 | |
2952 | bool IsFloat = Arg->getType()->isFloatTy(); |
2953 | |
2954 | // Look for all compatible sinpi, cospi and sincospi calls with the same |
2955 | // argument. If there are enough (in some sense) we can make the |
2956 | // substitution. |
2957 | Function *F = CI->getFunction(); |
2958 | for (User *U : Arg->users()) |
2959 | classifyArgUse(Val: U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); |
2960 | |
2961 | // It's only worthwhile if both sinpi and cospi are actually used. |
2962 | if (SinCalls.empty() || CosCalls.empty()) |
2963 | return nullptr; |
2964 | |
2965 | Value *Sin, *Cos, *SinCos; |
2966 | if (!insertSinCosCall(B, OrigCallee: CI->getCalledFunction(), Arg, UseFloat: IsFloat, Sin, Cos, |
2967 | SinCos, TLI)) |
2968 | return nullptr; |
2969 | |
2970 | auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, |
2971 | Value *Res) { |
2972 | for (CallInst *C : Calls) |
2973 | replaceAllUsesWith(I: C, With: Res); |
2974 | }; |
2975 | |
2976 | replaceTrigInsts(SinCalls, Sin); |
2977 | replaceTrigInsts(CosCalls, Cos); |
2978 | replaceTrigInsts(SinCosCalls, SinCos); |
2979 | |
2980 | return IsSin ? Sin : Cos; |
2981 | } |
2982 | |
2983 | void LibCallSimplifier::classifyArgUse( |
2984 | Value *Val, Function *F, bool IsFloat, |
2985 | SmallVectorImpl<CallInst *> &SinCalls, |
2986 | SmallVectorImpl<CallInst *> &CosCalls, |
2987 | SmallVectorImpl<CallInst *> &SinCosCalls) { |
2988 | auto *CI = dyn_cast<CallInst>(Val); |
2989 | if (!CI || CI->use_empty()) |
2990 | return; |
2991 | |
2992 | // Don't consider calls in other functions. |
2993 | if (CI->getFunction() != F) |
2994 | return; |
2995 | |
2996 | Module *M = CI->getModule(); |
2997 | Function *Callee = CI->getCalledFunction(); |
2998 | LibFunc Func; |
2999 | if (!Callee || !TLI->getLibFunc(FDecl: *Callee, F&: Func) || |
3000 | !isLibFuncEmittable(M, TLI, TheLibFunc: Func) || |
3001 | !isTrigLibCall(CI)) |
3002 | return; |
3003 | |
3004 | if (IsFloat) { |
3005 | if (Func == LibFunc_sinpif) |
3006 | SinCalls.push_back(Elt: CI); |
3007 | else if (Func == LibFunc_cospif) |
3008 | CosCalls.push_back(Elt: CI); |
3009 | else if (Func == LibFunc_sincospif_stret) |
3010 | SinCosCalls.push_back(Elt: CI); |
3011 | } else { |
3012 | if (Func == LibFunc_sinpi) |
3013 | SinCalls.push_back(Elt: CI); |
3014 | else if (Func == LibFunc_cospi) |
3015 | CosCalls.push_back(Elt: CI); |
3016 | else if (Func == LibFunc_sincospi_stret) |
3017 | SinCosCalls.push_back(Elt: CI); |
3018 | } |
3019 | } |
3020 | |
3021 | //===----------------------------------------------------------------------===// |
3022 | // Integer Library Call Optimizations |
3023 | //===----------------------------------------------------------------------===// |
3024 | |
3025 | Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { |
3026 | // All variants of ffs return int which need not be 32 bits wide. |
3027 | // ffs{,l,ll}(x) -> x != 0 ? (int)llvm.cttz(x)+1 : 0 |
3028 | Type *RetType = CI->getType(); |
3029 | Value *Op = CI->getArgOperand(i: 0); |
3030 | Type *ArgType = Op->getType(); |
3031 | Value *V = B.CreateIntrinsic(ID: Intrinsic::cttz, Types: {ArgType}, Args: {Op, B.getTrue()}, |
3032 | FMFSource: nullptr, Name: "cttz" ); |
3033 | V = B.CreateAdd(LHS: V, RHS: ConstantInt::get(Ty: V->getType(), V: 1)); |
3034 | V = B.CreateIntCast(V, DestTy: RetType, isSigned: false); |
3035 | |
3036 | Value *Cond = B.CreateICmpNE(LHS: Op, RHS: Constant::getNullValue(Ty: ArgType)); |
3037 | return B.CreateSelect(C: Cond, True: V, False: ConstantInt::get(Ty: RetType, V: 0)); |
3038 | } |
3039 | |
3040 | Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { |
3041 | // All variants of fls return int which need not be 32 bits wide. |
3042 | // fls{,l,ll}(x) -> (int)(sizeInBits(x) - llvm.ctlz(x, false)) |
3043 | Value *Op = CI->getArgOperand(i: 0); |
3044 | Type *ArgType = Op->getType(); |
3045 | Value *V = B.CreateIntrinsic(ID: Intrinsic::ctlz, Types: {ArgType}, Args: {Op, B.getFalse()}, |
3046 | FMFSource: nullptr, Name: "ctlz" ); |
3047 | V = B.CreateSub(LHS: ConstantInt::get(Ty: V->getType(), V: ArgType->getIntegerBitWidth()), |
3048 | RHS: V); |
3049 | return B.CreateIntCast(V, DestTy: CI->getType(), isSigned: false); |
3050 | } |
3051 | |
3052 | Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { |
3053 | // abs(x) -> x <s 0 ? -x : x |
3054 | // The negation has 'nsw' because abs of INT_MIN is undefined. |
3055 | Value *X = CI->getArgOperand(i: 0); |
3056 | Value *IsNeg = B.CreateIsNeg(Arg: X); |
3057 | Value *NegX = B.CreateNSWNeg(V: X, Name: "neg" ); |
3058 | return B.CreateSelect(C: IsNeg, True: NegX, False: X); |
3059 | } |
3060 | |
3061 | Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { |
3062 | // isdigit(c) -> (c-'0') <u 10 |
3063 | Value *Op = CI->getArgOperand(i: 0); |
3064 | Type *ArgType = Op->getType(); |
3065 | Op = B.CreateSub(LHS: Op, RHS: ConstantInt::get(Ty: ArgType, V: '0'), Name: "isdigittmp" ); |
3066 | Op = B.CreateICmpULT(LHS: Op, RHS: ConstantInt::get(Ty: ArgType, V: 10), Name: "isdigit" ); |
3067 | return B.CreateZExt(V: Op, DestTy: CI->getType()); |
3068 | } |
3069 | |
3070 | Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { |
3071 | // isascii(c) -> c <u 128 |
3072 | Value *Op = CI->getArgOperand(i: 0); |
3073 | Type *ArgType = Op->getType(); |
3074 | Op = B.CreateICmpULT(LHS: Op, RHS: ConstantInt::get(Ty: ArgType, V: 128), Name: "isascii" ); |
3075 | return B.CreateZExt(V: Op, DestTy: CI->getType()); |
3076 | } |
3077 | |
3078 | Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { |
3079 | // toascii(c) -> c & 0x7f |
3080 | return B.CreateAnd(LHS: CI->getArgOperand(i: 0), |
3081 | RHS: ConstantInt::get(Ty: CI->getType(), V: 0x7F)); |
3082 | } |
3083 | |
3084 | // Fold calls to atoi, atol, and atoll. |
3085 | Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { |
3086 | CI->addParamAttr(ArgNo: 0, Kind: Attribute::NoCapture); |
3087 | |
3088 | StringRef Str; |
3089 | if (!getConstantStringInfo(V: CI->getArgOperand(i: 0), Str)) |
3090 | return nullptr; |
3091 | |
3092 | return convertStrToInt(CI, Str, EndPtr: nullptr, Base: 10, /*AsSigned=*/true, B); |
3093 | } |
3094 | |
3095 | // Fold calls to strtol, strtoll, strtoul, and strtoull. |
3096 | Value *LibCallSimplifier::optimizeStrToInt(CallInst *CI, IRBuilderBase &B, |
3097 | bool AsSigned) { |
3098 | Value *EndPtr = CI->getArgOperand(i: 1); |
3099 | if (isa<ConstantPointerNull>(Val: EndPtr)) { |
3100 | // With a null EndPtr, this function won't capture the main argument. |
3101 | // It would be readonly too, except that it still may write to errno. |
3102 | CI->addParamAttr(ArgNo: 0, Kind: Attribute::NoCapture); |
3103 | EndPtr = nullptr; |
3104 | } else if (!isKnownNonZero(V: EndPtr, Q: DL)) |
3105 | return nullptr; |
3106 | |
3107 | StringRef Str; |
3108 | if (!getConstantStringInfo(V: CI->getArgOperand(i: 0), Str)) |
3109 | return nullptr; |
3110 | |
3111 | if (ConstantInt *CInt = dyn_cast<ConstantInt>(Val: CI->getArgOperand(i: 2))) { |
3112 | return convertStrToInt(CI, Str, EndPtr, Base: CInt->getSExtValue(), AsSigned, B); |
3113 | } |
3114 | |
3115 | return nullptr; |
3116 | } |
3117 | |
3118 | //===----------------------------------------------------------------------===// |
3119 | // Formatting and IO Library Call Optimizations |
3120 | //===----------------------------------------------------------------------===// |
3121 | |
3122 | static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); |
3123 | |
3124 | Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, |
3125 | int StreamArg) { |
3126 | Function *Callee = CI->getCalledFunction(); |
3127 | // Error reporting calls should be cold, mark them as such. |
3128 | // This applies even to non-builtin calls: it is only a hint and applies to |
3129 | // functions that the frontend might not understand as builtins. |
3130 | |
3131 | // This heuristic was suggested in: |
3132 | // Improving Static Branch Prediction in a Compiler |
3133 | // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu |
3134 | // Proceedings of PACT'98, Oct. 1998, IEEE |
3135 | if (!CI->hasFnAttr(Kind: Attribute::Cold) && |
3136 | isReportingError(Callee, CI, StreamArg)) { |
3137 | CI->addFnAttr(Kind: Attribute::Cold); |
3138 | } |
3139 | |
3140 | return nullptr; |
3141 | } |
3142 | |
3143 | static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { |
3144 | if (!Callee || !Callee->isDeclaration()) |
3145 | return false; |
3146 | |
3147 | if (StreamArg < 0) |
3148 | return true; |
3149 | |
3150 | // These functions might be considered cold, but only if their stream |
3151 | // argument is stderr. |
3152 | |
3153 | if (StreamArg >= (int)CI->arg_size()) |
3154 | return false; |
3155 | LoadInst *LI = dyn_cast<LoadInst>(Val: CI->getArgOperand(i: StreamArg)); |
3156 | if (!LI) |
3157 | return false; |
3158 | GlobalVariable *GV = dyn_cast<GlobalVariable>(Val: LI->getPointerOperand()); |
3159 | if (!GV || !GV->isDeclaration()) |
3160 | return false; |
3161 | return GV->getName() == "stderr" ; |
3162 | } |
3163 | |
3164 | Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { |
3165 | // Check for a fixed format string. |
3166 | StringRef FormatStr; |
3167 | if (!getConstantStringInfo(V: CI->getArgOperand(i: 0), Str&: FormatStr)) |
3168 | return nullptr; |
3169 | |
3170 | // Empty format string -> noop. |
3171 | if (FormatStr.empty()) // Tolerate printf's declared void. |
3172 | return CI->use_empty() ? (Value *)CI : ConstantInt::get(Ty: CI->getType(), V: 0); |
3173 | |
3174 | // Do not do any of the following transformations if the printf return value |
3175 | // is used, in general the printf return value is not compatible with either |
3176 | // putchar() or puts(). |
3177 | if (!CI->use_empty()) |
3178 | return nullptr; |
3179 | |
3180 | Type *IntTy = CI->getType(); |
3181 | // printf("x") -> putchar('x'), even for "%" and "%%". |
3182 | if (FormatStr.size() == 1 || FormatStr == "%%" ) { |
3183 | // Convert the character to unsigned char before passing it to putchar |
3184 | // to avoid host-specific sign extension in the IR. Putchar converts |
3185 | // it to unsigned char regardless. |
3186 | Value *IntChar = ConstantInt::get(Ty: IntTy, V: (unsigned char)FormatStr[0]); |
3187 | return copyFlags(Old: *CI, New: emitPutChar(Char: IntChar, B, TLI)); |
3188 | } |
3189 | |
3190 | // Try to remove call or emit putchar/puts. |
3191 | if (FormatStr == "%s" && CI->arg_size() > 1) { |
3192 | StringRef OperandStr; |
3193 | if (!getConstantStringInfo(V: CI->getOperand(i_nocapture: 1), Str&: OperandStr)) |
3194 | return nullptr; |
3195 | // printf("%s", "") --> NOP |
3196 | if (OperandStr.empty()) |
3197 | return (Value *)CI; |
3198 | // printf("%s", "a") --> putchar('a') |
3199 | if (OperandStr.size() == 1) { |
3200 | // Convert the character to unsigned char before passing it to putchar |
3201 | // to avoid host-specific sign extension in the IR. Putchar converts |
3202 | // it to unsigned char regardless. |
3203 | Value *IntChar = ConstantInt::get(Ty: IntTy, V: (unsigned char)OperandStr[0]); |
3204 | return copyFlags(Old: *CI, New: emitPutChar(Char: IntChar, B, TLI)); |
3205 | } |
3206 | // printf("%s", str"\n") --> puts(str) |
3207 | if (OperandStr.back() == '\n') { |
3208 | OperandStr = OperandStr.drop_back(); |
3209 | Value *GV = B.CreateGlobalString(Str: OperandStr, Name: "str" ); |
3210 | return copyFlags(Old: *CI, New: emitPutS(Str: GV, B, TLI)); |
3211 | } |
3212 | return nullptr; |
3213 | } |
3214 | |
3215 | // printf("foo\n") --> puts("foo") |
3216 | if (FormatStr.back() == '\n' && |
3217 | !FormatStr.contains(C: '%')) { // No format characters. |
3218 | // Create a string literal with no \n on it. We expect the constant merge |
3219 | // pass to be run after this pass, to merge duplicate strings. |
3220 | FormatStr = FormatStr.drop_back(); |
3221 | Value *GV = B.CreateGlobalString(Str: FormatStr, Name: "str" ); |
3222 | return copyFlags(Old: *CI, New: emitPutS(Str: GV, B, TLI)); |
3223 | } |
3224 | |
3225 | // Optimize specific format strings. |
3226 | // printf("%c", chr) --> putchar(chr) |
3227 | if (FormatStr == "%c" && CI->arg_size() > 1 && |
3228 | CI->getArgOperand(i: 1)->getType()->isIntegerTy()) { |
3229 | // Convert the argument to the type expected by putchar, i.e., int, which |
3230 | // need not be 32 bits wide but which is the same as printf's return type. |
3231 | Value *IntChar = B.CreateIntCast(V: CI->getArgOperand(i: 1), DestTy: IntTy, isSigned: false); |
3232 | return copyFlags(Old: *CI, New: emitPutChar(Char: IntChar, B, TLI)); |
3233 | } |
3234 | |
3235 | // printf("%s\n", str) --> puts(str) |
3236 | if (FormatStr == "%s\n" && CI->arg_size() > 1 && |
3237 | CI->getArgOperand(i: 1)->getType()->isPointerTy()) |
3238 | return copyFlags(Old: *CI, New: emitPutS(Str: CI->getArgOperand(i: 1), B, TLI)); |
3239 | return nullptr; |
3240 | } |
3241 | |
3242 | Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { |
3243 | |
3244 | Module *M = CI->getModule(); |
3245 | Function *Callee = CI->getCalledFunction(); |
3246 | FunctionType *FT = Callee->getFunctionType(); |
3247 | if (Value *V = optimizePrintFString(CI, B)) { |
3248 | return V; |
3249 | } |
3250 | |
3251 | annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 0); |
3252 | |
3253 | // printf(format, ...) -> iprintf(format, ...) if no floating point |
3254 | // arguments. |
3255 | if (isLibFuncEmittable(M, TLI, TheLibFunc: LibFunc_iprintf) && |
3256 | !callHasFloatingPointArgument(CI)) { |
3257 | FunctionCallee IPrintFFn = getOrInsertLibFunc(M, TLI: *TLI, TheLibFunc: LibFunc_iprintf, T: FT, |
3258 | AttributeList: Callee->getAttributes()); |
3259 | CallInst *New = cast<CallInst>(Val: CI->clone()); |
3260 | New->setCalledFunction(IPrintFFn); |
3261 | B.Insert(I: New); |
3262 | return New; |
3263 | } |
3264 | |
3265 | // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point |
3266 | // arguments. |
3267 | if (isLibFuncEmittable(M, TLI, TheLibFunc: LibFunc_small_printf) && |
3268 | !callHasFP128Argument(CI)) { |
3269 | auto SmallPrintFFn = getOrInsertLibFunc(M, TLI: *TLI, TheLibFunc: LibFunc_small_printf, T: FT, |
3270 | AttributeList: Callee->getAttributes()); |
3271 | CallInst *New = cast<CallInst>(Val: CI->clone()); |
3272 | New->setCalledFunction(SmallPrintFFn); |
3273 | B.Insert(I: New); |
3274 | return New; |
3275 | } |
3276 | |
3277 | return nullptr; |
3278 | } |
3279 | |
3280 | Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, |
3281 | IRBuilderBase &B) { |
3282 | // Check for a fixed format string. |
3283 | StringRef FormatStr; |
3284 | if (!getConstantStringInfo(V: CI->getArgOperand(i: 1), Str&: FormatStr)) |
3285 | return nullptr; |
3286 | |
3287 | // If we just have a format string (nothing else crazy) transform it. |
3288 | Value *Dest = CI->getArgOperand(i: 0); |
3289 | if (CI->arg_size() == 2) { |
3290 | // Make sure there's no % in the constant array. We could try to handle |
3291 | // %% -> % in the future if we cared. |
3292 | if (FormatStr.contains(C: '%')) |
3293 | return nullptr; // we found a format specifier, bail out. |
3294 | |
3295 | // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) |
3296 | B.CreateMemCpy( |
3297 | Dst: Dest, DstAlign: Align(1), Src: CI->getArgOperand(i: 1), SrcAlign: Align(1), |
3298 | Size: ConstantInt::get(Ty: DL.getIntPtrType(C&: CI->getContext()), |
3299 | V: FormatStr.size() + 1)); // Copy the null byte. |
3300 | return ConstantInt::get(Ty: CI->getType(), V: FormatStr.size()); |
3301 | } |
3302 | |
3303 | // The remaining optimizations require the format string to be "%s" or "%c" |
3304 | // and have an extra operand. |
3305 | if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) |
3306 | return nullptr; |
3307 | |
3308 | // Decode the second character of the format string. |
3309 | if (FormatStr[1] == 'c') { |
3310 | // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 |
3311 | if (!CI->getArgOperand(i: 2)->getType()->isIntegerTy()) |
3312 | return nullptr; |
3313 | Value *V = B.CreateTrunc(V: CI->getArgOperand(i: 2), DestTy: B.getInt8Ty(), Name: "char" ); |
3314 | Value *Ptr = Dest; |
3315 | B.CreateStore(Val: V, Ptr); |
3316 | Ptr = B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr, IdxList: B.getInt32(C: 1), Name: "nul" ); |
3317 | B.CreateStore(Val: B.getInt8(C: 0), Ptr); |
3318 | |
3319 | return ConstantInt::get(Ty: CI->getType(), V: 1); |
3320 | } |
3321 | |
3322 | if (FormatStr[1] == 's') { |
3323 | // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, |
3324 | // strlen(str)+1) |
3325 | if (!CI->getArgOperand(i: 2)->getType()->isPointerTy()) |
3326 | return nullptr; |
3327 | |
3328 | if (CI->use_empty()) |
3329 | // sprintf(dest, "%s", str) -> strcpy(dest, str) |
3330 | return copyFlags(Old: *CI, New: emitStrCpy(Dst: Dest, Src: CI->getArgOperand(i: 2), B, TLI)); |
3331 | |
3332 | uint64_t SrcLen = GetStringLength(V: CI->getArgOperand(i: 2)); |
3333 | if (SrcLen) { |
3334 | B.CreateMemCpy( |
3335 | Dst: Dest, DstAlign: Align(1), Src: CI->getArgOperand(i: 2), SrcAlign: Align(1), |
3336 | Size: ConstantInt::get(Ty: DL.getIntPtrType(C&: CI->getContext()), V: SrcLen)); |
3337 | // Returns total number of characters written without null-character. |
3338 | return ConstantInt::get(Ty: CI->getType(), V: SrcLen - 1); |
3339 | } else if (Value *V = emitStpCpy(Dst: Dest, Src: CI->getArgOperand(i: 2), B, TLI)) { |
3340 | // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest |
3341 | Value *PtrDiff = B.CreatePtrDiff(ElemTy: B.getInt8Ty(), LHS: V, RHS: Dest); |
3342 | return B.CreateIntCast(V: PtrDiff, DestTy: CI->getType(), isSigned: false); |
3343 | } |
3344 | |
3345 | bool OptForSize = CI->getFunction()->hasOptSize() || |
3346 | llvm::shouldOptimizeForSize(BB: CI->getParent(), PSI, BFI, |
3347 | QueryType: PGSOQueryType::IRPass); |
3348 | if (OptForSize) |
3349 | return nullptr; |
3350 | |
3351 | Value *Len = emitStrLen(Ptr: CI->getArgOperand(i: 2), B, DL, TLI); |
3352 | if (!Len) |
3353 | return nullptr; |
3354 | Value *IncLen = |
3355 | B.CreateAdd(LHS: Len, RHS: ConstantInt::get(Ty: Len->getType(), V: 1), Name: "leninc" ); |
3356 | B.CreateMemCpy(Dst: Dest, DstAlign: Align(1), Src: CI->getArgOperand(i: 2), SrcAlign: Align(1), Size: IncLen); |
3357 | |
3358 | // The sprintf result is the unincremented number of bytes in the string. |
3359 | return B.CreateIntCast(V: Len, DestTy: CI->getType(), isSigned: false); |
3360 | } |
3361 | return nullptr; |
3362 | } |
3363 | |
3364 | Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { |
3365 | Module *M = CI->getModule(); |
3366 | Function *Callee = CI->getCalledFunction(); |
3367 | FunctionType *FT = Callee->getFunctionType(); |
3368 | if (Value *V = optimizeSPrintFString(CI, B)) { |
3369 | return V; |
3370 | } |
3371 | |
3372 | annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: {0, 1}); |
3373 | |
3374 | // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating |
3375 | // point arguments. |
3376 | if (isLibFuncEmittable(M, TLI, TheLibFunc: LibFunc_siprintf) && |
3377 | !callHasFloatingPointArgument(CI)) { |
3378 | FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, TLI: *TLI, TheLibFunc: LibFunc_siprintf, |
3379 | T: FT, AttributeList: Callee->getAttributes()); |
3380 | CallInst *New = cast<CallInst>(Val: CI->clone()); |
3381 | New->setCalledFunction(SIPrintFFn); |
3382 | B.Insert(I: New); |
3383 | return New; |
3384 | } |
3385 | |
3386 | // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit |
3387 | // floating point arguments. |
3388 | if (isLibFuncEmittable(M, TLI, TheLibFunc: LibFunc_small_sprintf) && |
3389 | !callHasFP128Argument(CI)) { |
3390 | auto SmallSPrintFFn = getOrInsertLibFunc(M, TLI: *TLI, TheLibFunc: LibFunc_small_sprintf, T: FT, |
3391 | AttributeList: Callee->getAttributes()); |
3392 | CallInst *New = cast<CallInst>(Val: CI->clone()); |
3393 | New->setCalledFunction(SmallSPrintFFn); |
3394 | B.Insert(I: New); |
3395 | return New; |
3396 | } |
3397 | |
3398 | return nullptr; |
3399 | } |
3400 | |
3401 | // Transform an snprintf call CI with the bound N to format the string Str |
3402 | // either to a call to memcpy, or to single character a store, or to nothing, |
3403 | // and fold the result to a constant. A nonnull StrArg refers to the string |
3404 | // argument being formatted. Otherwise the call is one with N < 2 and |
3405 | // the "%c" directive to format a single character. |
3406 | Value *LibCallSimplifier::emitSnPrintfMemCpy(CallInst *CI, Value *StrArg, |
3407 | StringRef Str, uint64_t N, |
3408 | IRBuilderBase &B) { |
3409 | assert(StrArg || (N < 2 && Str.size() == 1)); |
3410 | |
3411 | unsigned IntBits = TLI->getIntSize(); |
3412 | uint64_t IntMax = maxIntN(N: IntBits); |
3413 | if (Str.size() > IntMax) |
3414 | // Bail if the string is longer than INT_MAX. POSIX requires |
3415 | // implementations to set errno to EOVERFLOW in this case, in |
3416 | // addition to when N is larger than that (checked by the caller). |
3417 | return nullptr; |
3418 | |
3419 | Value *StrLen = ConstantInt::get(Ty: CI->getType(), V: Str.size()); |
3420 | if (N == 0) |
3421 | return StrLen; |
3422 | |
3423 | // Set to the number of bytes to copy fron StrArg which is also |
3424 | // the offset of the terinating nul. |
3425 | uint64_t NCopy; |
3426 | if (N > Str.size()) |
3427 | // Copy the full string, including the terminating nul (which must |
3428 | // be present regardless of the bound). |
3429 | NCopy = Str.size() + 1; |
3430 | else |
3431 | NCopy = N - 1; |
3432 | |
3433 | Value *DstArg = CI->getArgOperand(i: 0); |
3434 | if (NCopy && StrArg) |
3435 | // Transform the call to lvm.memcpy(dst, fmt, N). |
3436 | copyFlags( |
3437 | Old: *CI, |
3438 | New: B.CreateMemCpy( |
3439 | Dst: DstArg, DstAlign: Align(1), Src: StrArg, SrcAlign: Align(1), |
3440 | Size: ConstantInt::get(Ty: DL.getIntPtrType(C&: CI->getContext()), V: NCopy))); |
3441 | |
3442 | if (N > Str.size()) |
3443 | // Return early when the whole format string, including the final nul, |
3444 | // has been copied. |
3445 | return StrLen; |
3446 | |
3447 | // Otherwise, when truncating the string append a terminating nul. |
3448 | Type *Int8Ty = B.getInt8Ty(); |
3449 | Value *NulOff = B.getIntN(N: IntBits, C: NCopy); |
3450 | Value *DstEnd = B.CreateInBoundsGEP(Ty: Int8Ty, Ptr: DstArg, IdxList: NulOff, Name: "endptr" ); |
3451 | B.CreateStore(Val: ConstantInt::get(Ty: Int8Ty, V: 0), Ptr: DstEnd); |
3452 | return StrLen; |
3453 | } |
3454 | |
3455 | Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, |
3456 | IRBuilderBase &B) { |
3457 | // Check for size |
3458 | ConstantInt *Size = dyn_cast<ConstantInt>(Val: CI->getArgOperand(i: 1)); |
3459 | if (!Size) |
3460 | return nullptr; |
3461 | |
3462 | uint64_t N = Size->getZExtValue(); |
3463 | uint64_t IntMax = maxIntN(N: TLI->getIntSize()); |
3464 | if (N > IntMax) |
3465 | // Bail if the bound exceeds INT_MAX. POSIX requires implementations |
3466 | // to set errno to EOVERFLOW in this case. |
3467 | return nullptr; |
3468 | |
3469 | Value *DstArg = CI->getArgOperand(i: 0); |
3470 | Value *FmtArg = CI->getArgOperand(i: 2); |
3471 | |
3472 | // Check for a fixed format string. |
3473 | StringRef FormatStr; |
3474 | if (!getConstantStringInfo(V: FmtArg, Str&: FormatStr)) |
3475 | return nullptr; |
3476 | |
3477 | // If we just have a format string (nothing else crazy) transform it. |
3478 | if (CI->arg_size() == 3) { |
3479 | if (FormatStr.contains(C: '%')) |
3480 | // Bail if the format string contains a directive and there are |
3481 | // no arguments. We could handle "%%" in the future. |
3482 | return nullptr; |
3483 | |
3484 | return emitSnPrintfMemCpy(CI, StrArg: FmtArg, Str: FormatStr, N, B); |
3485 | } |
3486 | |
3487 | // The remaining optimizations require the format string to be "%s" or "%c" |
3488 | // and have an extra operand. |
3489 | if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() != 4) |
3490 | return nullptr; |
3491 | |
3492 | // Decode the second character of the format string. |
3493 | if (FormatStr[1] == 'c') { |
3494 | if (N <= 1) { |
3495 | // Use an arbitary string of length 1 to transform the call into |
3496 | // either a nul store (N == 1) or a no-op (N == 0) and fold it |
3497 | // to one. |
3498 | StringRef CharStr("*" ); |
3499 | return emitSnPrintfMemCpy(CI, StrArg: nullptr, Str: CharStr, N, B); |
3500 | } |
3501 | |
3502 | // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 |
3503 | if (!CI->getArgOperand(i: 3)->getType()->isIntegerTy()) |
3504 | return nullptr; |
3505 | Value *V = B.CreateTrunc(V: CI->getArgOperand(i: 3), DestTy: B.getInt8Ty(), Name: "char" ); |
3506 | Value *Ptr = DstArg; |
3507 | B.CreateStore(Val: V, Ptr); |
3508 | Ptr = B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr, IdxList: B.getInt32(C: 1), Name: "nul" ); |
3509 | B.CreateStore(Val: B.getInt8(C: 0), Ptr); |
3510 | return ConstantInt::get(Ty: CI->getType(), V: 1); |
3511 | } |
3512 | |
3513 | if (FormatStr[1] != 's') |
3514 | return nullptr; |
3515 | |
3516 | Value *StrArg = CI->getArgOperand(i: 3); |
3517 | // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) |
3518 | StringRef Str; |
3519 | if (!getConstantStringInfo(V: StrArg, Str)) |
3520 | return nullptr; |
3521 | |
3522 | return emitSnPrintfMemCpy(CI, StrArg, Str, N, B); |
3523 | } |
3524 | |
3525 | Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { |
3526 | if (Value *V = optimizeSnPrintFString(CI, B)) { |
3527 | return V; |
3528 | } |
3529 | |
3530 | if (isKnownNonZero(V: CI->getOperand(i_nocapture: 1), Q: DL)) |
3531 | annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 0); |
3532 | return nullptr; |
3533 | } |
3534 | |
3535 | Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, |
3536 | IRBuilderBase &B) { |
3537 | optimizeErrorReporting(CI, B, StreamArg: 0); |
3538 | |
3539 | // All the optimizations depend on the format string. |
3540 | StringRef FormatStr; |
3541 | if (!getConstantStringInfo(V: CI->getArgOperand(i: 1), Str&: FormatStr)) |
3542 | return nullptr; |
3543 | |
3544 | // Do not do any of the following transformations if the fprintf return |
3545 | // value is used, in general the fprintf return value is not compatible |
3546 | // with fwrite(), fputc() or fputs(). |
3547 | if (!CI->use_empty()) |
3548 | return nullptr; |
3549 | |
3550 | // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) |
3551 | if (CI->arg_size() == 2) { |
3552 | // Could handle %% -> % if we cared. |
3553 | if (FormatStr.contains(C: '%')) |
3554 | return nullptr; // We found a format specifier. |
3555 | |
3556 | unsigned SizeTBits = TLI->getSizeTSize(M: *CI->getModule()); |
3557 | Type *SizeTTy = IntegerType::get(C&: CI->getContext(), NumBits: SizeTBits); |
3558 | return copyFlags( |
3559 | Old: *CI, New: emitFWrite(Ptr: CI->getArgOperand(i: 1), |
3560 | Size: ConstantInt::get(Ty: SizeTTy, V: FormatStr.size()), |
3561 | File: CI->getArgOperand(i: 0), B, DL, TLI)); |
3562 | } |
3563 | |
3564 | // The remaining optimizations require the format string to be "%s" or "%c" |
3565 | // and have an extra operand. |
3566 | if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) |
3567 | return nullptr; |
3568 | |
3569 | // Decode the second character of the format string. |
3570 | if (FormatStr[1] == 'c') { |
3571 | // fprintf(F, "%c", chr) --> fputc((int)chr, F) |
3572 | if (!CI->getArgOperand(i: 2)->getType()->isIntegerTy()) |
3573 | return nullptr; |
3574 | Type *IntTy = B.getIntNTy(N: TLI->getIntSize()); |
3575 | Value *V = B.CreateIntCast(V: CI->getArgOperand(i: 2), DestTy: IntTy, /*isSigned*/ true, |
3576 | Name: "chari" ); |
3577 | return copyFlags(Old: *CI, New: emitFPutC(Char: V, File: CI->getArgOperand(i: 0), B, TLI)); |
3578 | } |
3579 | |
3580 | if (FormatStr[1] == 's') { |
3581 | // fprintf(F, "%s", str) --> fputs(str, F) |
3582 | if (!CI->getArgOperand(i: 2)->getType()->isPointerTy()) |
3583 | return nullptr; |
3584 | return copyFlags( |
3585 | Old: *CI, New: emitFPutS(Str: CI->getArgOperand(i: 2), File: CI->getArgOperand(i: 0), B, TLI)); |
3586 | } |
3587 | return nullptr; |
3588 | } |
3589 | |
3590 | Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { |
3591 | Module *M = CI->getModule(); |
3592 | Function *Callee = CI->getCalledFunction(); |
3593 | FunctionType *FT = Callee->getFunctionType(); |
3594 | if (Value *V = optimizeFPrintFString(CI, B)) { |
3595 | return V; |
3596 | } |
3597 | |
3598 | // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no |
3599 | // floating point arguments. |
3600 | if (isLibFuncEmittable(M, TLI, TheLibFunc: LibFunc_fiprintf) && |
3601 | !callHasFloatingPointArgument(CI)) { |
3602 | FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, TLI: *TLI, TheLibFunc: LibFunc_fiprintf, |
3603 | T: FT, AttributeList: Callee->getAttributes()); |
3604 | CallInst *New = cast<CallInst>(Val: CI->clone()); |
3605 | New->setCalledFunction(FIPrintFFn); |
3606 | B.Insert(I: New); |
3607 | return New; |
3608 | } |
3609 | |
3610 | // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no |
3611 | // 128-bit floating point arguments. |
3612 | if (isLibFuncEmittable(M, TLI, TheLibFunc: LibFunc_small_fprintf) && |
3613 | !callHasFP128Argument(CI)) { |
3614 | auto SmallFPrintFFn = |
3615 | getOrInsertLibFunc(M, TLI: *TLI, TheLibFunc: LibFunc_small_fprintf, T: FT, |
3616 | AttributeList: Callee->getAttributes()); |
3617 | CallInst *New = cast<CallInst>(Val: CI->clone()); |
3618 | New->setCalledFunction(SmallFPrintFFn); |
3619 | B.Insert(I: New); |
3620 | return New; |
3621 | } |
3622 | |
3623 | return nullptr; |
3624 | } |
3625 | |
3626 | Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { |
3627 | optimizeErrorReporting(CI, B, StreamArg: 3); |
3628 | |
3629 | // Get the element size and count. |
3630 | ConstantInt *SizeC = dyn_cast<ConstantInt>(Val: CI->getArgOperand(i: 1)); |
3631 | ConstantInt *CountC = dyn_cast<ConstantInt>(Val: CI->getArgOperand(i: 2)); |
3632 | if (SizeC && CountC) { |
3633 | uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); |
3634 | |
3635 | // If this is writing zero records, remove the call (it's a noop). |
3636 | if (Bytes == 0) |
3637 | return ConstantInt::get(Ty: CI->getType(), V: 0); |
3638 | |
3639 | // If this is writing one byte, turn it into fputc. |
3640 | // This optimisation is only valid, if the return value is unused. |
3641 | if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) |
3642 | Value *Char = B.CreateLoad(Ty: B.getInt8Ty(), Ptr: CI->getArgOperand(i: 0), Name: "char" ); |
3643 | Type *IntTy = B.getIntNTy(N: TLI->getIntSize()); |
3644 | Value *Cast = B.CreateIntCast(V: Char, DestTy: IntTy, /*isSigned*/ true, Name: "chari" ); |
3645 | Value *NewCI = emitFPutC(Char: Cast, File: CI->getArgOperand(i: 3), B, TLI); |
3646 | return NewCI ? ConstantInt::get(Ty: CI->getType(), V: 1) : nullptr; |
3647 | } |
3648 | } |
3649 | |
3650 | return nullptr; |
3651 | } |
3652 | |
3653 | Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { |
3654 | optimizeErrorReporting(CI, B, StreamArg: 1); |
3655 | |
3656 | // Don't rewrite fputs to fwrite when optimising for size because fwrite |
3657 | // requires more arguments and thus extra MOVs are required. |
3658 | bool OptForSize = CI->getFunction()->hasOptSize() || |
3659 | llvm::shouldOptimizeForSize(BB: CI->getParent(), PSI, BFI, |
3660 | QueryType: PGSOQueryType::IRPass); |
3661 | if (OptForSize) |
3662 | return nullptr; |
3663 | |
3664 | // We can't optimize if return value is used. |
3665 | if (!CI->use_empty()) |
3666 | return nullptr; |
3667 | |
3668 | // fputs(s,F) --> fwrite(s,strlen(s),1,F) |
3669 | uint64_t Len = GetStringLength(V: CI->getArgOperand(i: 0)); |
3670 | if (!Len) |
3671 | return nullptr; |
3672 | |
3673 | // Known to have no uses (see above). |
3674 | unsigned SizeTBits = TLI->getSizeTSize(M: *CI->getModule()); |
3675 | Type *SizeTTy = IntegerType::get(C&: CI->getContext(), NumBits: SizeTBits); |
3676 | return copyFlags( |
3677 | Old: *CI, |
3678 | New: emitFWrite(Ptr: CI->getArgOperand(i: 0), |
3679 | Size: ConstantInt::get(Ty: SizeTTy, V: Len - 1), |
3680 | File: CI->getArgOperand(i: 1), B, DL, TLI)); |
3681 | } |
3682 | |
3683 | Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { |
3684 | annotateNonNullNoUndefBasedOnAccess(CI, ArgNos: 0); |
3685 | if (!CI->use_empty()) |
3686 | return nullptr; |
3687 | |
3688 | // Check for a constant string. |
3689 | // puts("") -> putchar('\n') |
3690 | StringRef Str; |
3691 | if (getConstantStringInfo(V: CI->getArgOperand(i: 0), Str) && Str.empty()) { |
3692 | // putchar takes an argument of the same type as puts returns, i.e., |
3693 | // int, which need not be 32 bits wide. |
3694 | Type *IntTy = CI->getType(); |
3695 | return copyFlags(Old: *CI, New: emitPutChar(Char: ConstantInt::get(Ty: IntTy, V: '\n'), B, TLI)); |
3696 | } |
3697 | |
3698 | return nullptr; |
3699 | } |
3700 | |
3701 | Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { |
3702 | // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) |
3703 | return copyFlags(Old: *CI, New: B.CreateMemMove(Dst: CI->getArgOperand(i: 1), DstAlign: Align(1), |
3704 | Src: CI->getArgOperand(i: 0), SrcAlign: Align(1), |
3705 | Size: CI->getArgOperand(i: 2))); |
3706 | } |
3707 | |
3708 | bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) { |
3709 | SmallString<20> FloatFuncName = FuncName; |
3710 | FloatFuncName += 'f'; |
3711 | return isLibFuncEmittable(M, TLI, Name: FloatFuncName); |
3712 | } |
3713 | |
3714 | Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, |
3715 | IRBuilderBase &Builder) { |
3716 | Module *M = CI->getModule(); |
3717 | LibFunc Func; |
3718 | Function *Callee = CI->getCalledFunction(); |
3719 | // Check for string/memory library functions. |
3720 | if (TLI->getLibFunc(FDecl: *Callee, F&: Func) && isLibFuncEmittable(M, TLI, TheLibFunc: Func)) { |
3721 | // Make sure we never change the calling convention. |
3722 | assert( |
3723 | (ignoreCallingConv(Func) || |
3724 | TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && |
3725 | "Optimizing string/memory libcall would change the calling convention" ); |
3726 | switch (Func) { |
3727 | case LibFunc_strcat: |
3728 | return optimizeStrCat(CI, B&: Builder); |
3729 | case LibFunc_strncat: |
3730 | return optimizeStrNCat(CI, B&: Builder); |
3731 | case LibFunc_strchr: |
3732 | return optimizeStrChr(CI, B&: Builder); |
3733 | case LibFunc_strrchr: |
3734 | return optimizeStrRChr(CI, B&: Builder); |
3735 | case LibFunc_strcmp: |
3736 | return optimizeStrCmp(CI, B&: Builder); |
3737 | case LibFunc_strncmp: |
3738 | return optimizeStrNCmp(CI, B&: Builder); |
3739 | case LibFunc_strcpy: |
3740 | return optimizeStrCpy(CI, B&: Builder); |
3741 | case LibFunc_stpcpy: |
3742 | return optimizeStpCpy(CI, B&: Builder); |
3743 | case LibFunc_strlcpy: |
3744 | return optimizeStrLCpy(CI, B&: Builder); |
3745 | case LibFunc_stpncpy: |
3746 | return optimizeStringNCpy(CI, /*RetEnd=*/true, B&: Builder); |
3747 | case LibFunc_strncpy: |
3748 | return optimizeStringNCpy(CI, /*RetEnd=*/false, B&: Builder); |
3749 | case LibFunc_strlen: |
3750 | return optimizeStrLen(CI, B&: Builder); |
3751 | case LibFunc_strnlen: |
3752 | return optimizeStrNLen(CI, B&: Builder); |
3753 | case LibFunc_strpbrk: |
3754 | return optimizeStrPBrk(CI, B&: Builder); |
3755 | case LibFunc_strndup: |
3756 | return optimizeStrNDup(CI, B&: Builder); |
3757 | case LibFunc_strtol: |
3758 | case LibFunc_strtod: |
3759 | case LibFunc_strtof: |
3760 | case LibFunc_strtoul: |
3761 | case LibFunc_strtoll: |
3762 | case LibFunc_strtold: |
3763 | case LibFunc_strtoull: |
3764 | return optimizeStrTo(CI, B&: Builder); |
3765 | case LibFunc_strspn: |
3766 | return optimizeStrSpn(CI, B&: Builder); |
3767 | case LibFunc_strcspn: |
3768 | return optimizeStrCSpn(CI, B&: Builder); |
3769 | case LibFunc_strstr: |
3770 | return optimizeStrStr(CI, B&: Builder); |
3771 | case LibFunc_memchr: |
3772 | return optimizeMemChr(CI, B&: Builder); |
3773 | case LibFunc_memrchr: |
3774 | return optimizeMemRChr(CI, B&: Builder); |
3775 | case LibFunc_bcmp: |
3776 | return optimizeBCmp(CI, B&: Builder); |
3777 | case LibFunc_memcmp: |
3778 | return optimizeMemCmp(CI, B&: Builder); |
3779 | case LibFunc_memcpy: |
3780 | return optimizeMemCpy(CI, B&: Builder); |
3781 | case LibFunc_memccpy: |
3782 | return optimizeMemCCpy(CI, B&: Builder); |
3783 | case LibFunc_mempcpy: |
3784 | return optimizeMemPCpy(CI, B&: Builder); |
3785 | case LibFunc_memmove: |
3786 | return optimizeMemMove(CI, B&: Builder); |
3787 | case LibFunc_memset: |
3788 | return optimizeMemSet(CI, B&: Builder); |
3789 | case LibFunc_realloc: |
3790 | return optimizeRealloc(CI, B&: Builder); |
3791 | case LibFunc_wcslen: |
3792 | return optimizeWcslen(CI, B&: Builder); |
3793 | case LibFunc_bcopy: |
3794 | return optimizeBCopy(CI, B&: Builder); |
3795 | case LibFunc_Znwm: |
3796 | case LibFunc_ZnwmRKSt9nothrow_t: |
3797 | case LibFunc_ZnwmSt11align_val_t: |
3798 | case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t: |
3799 | case LibFunc_Znam: |
3800 | case LibFunc_ZnamRKSt9nothrow_t: |
3801 | case LibFunc_ZnamSt11align_val_t: |
3802 | case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t: |
3803 | case LibFunc_Znwm12__hot_cold_t: |
3804 | case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t: |
3805 | case LibFunc_ZnwmSt11align_val_t12__hot_cold_t: |
3806 | case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t: |
3807 | case LibFunc_Znam12__hot_cold_t: |
3808 | case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t: |
3809 | case LibFunc_ZnamSt11align_val_t12__hot_cold_t: |
3810 | case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t: |
3811 | return optimizeNew(CI, B&: Builder, Func); |
3812 | default: |
3813 | break; |
3814 | } |
3815 | } |
3816 | return nullptr; |
3817 | } |
3818 | |
3819 | Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, |
3820 | LibFunc Func, |
3821 | IRBuilderBase &Builder) { |
3822 | const Module *M = CI->getModule(); |
3823 | |
3824 | // Don't optimize calls that require strict floating point semantics. |
3825 | if (CI->isStrictFP()) |
3826 | return nullptr; |
3827 | |
3828 | if (Value *V = optimizeSymmetric(CI, Func, B&: Builder)) |
3829 | return V; |
3830 | |
3831 | switch (Func) { |
3832 | case LibFunc_sinpif: |
3833 | case LibFunc_sinpi: |
3834 | return optimizeSinCosPi(CI, /*IsSin*/true, B&: Builder); |
3835 | case LibFunc_cospif: |
3836 | case LibFunc_cospi: |
3837 | return optimizeSinCosPi(CI, /*IsSin*/false, B&: Builder); |
3838 | case LibFunc_powf: |
3839 | case LibFunc_pow: |
3840 | case LibFunc_powl: |
3841 | return optimizePow(Pow: CI, B&: Builder); |
3842 | case LibFunc_exp2l: |
3843 | case LibFunc_exp2: |
3844 | case LibFunc_exp2f: |
3845 | return optimizeExp2(CI, B&: Builder); |
3846 | case LibFunc_fabsf: |
3847 | case LibFunc_fabs: |
3848 | case LibFunc_fabsl: |
3849 | return replaceUnaryCall(CI, B&: Builder, IID: Intrinsic::fabs); |
3850 | case LibFunc_sqrtf: |
3851 | case LibFunc_sqrt: |
3852 | case LibFunc_sqrtl: |
3853 | return optimizeSqrt(CI, B&: Builder); |
3854 | case LibFunc_logf: |
3855 | case LibFunc_log: |
3856 | case LibFunc_logl: |
3857 | case LibFunc_log10f: |
3858 | case LibFunc_log10: |
3859 | case LibFunc_log10l: |
3860 | case LibFunc_log1pf: |
3861 | case LibFunc_log1p: |
3862 | case LibFunc_log1pl: |
3863 | case LibFunc_log2f: |
3864 | case LibFunc_log2: |
3865 | case LibFunc_log2l: |
3866 | case LibFunc_logbf: |
3867 | case LibFunc_logb: |
3868 | case LibFunc_logbl: |
3869 | return optimizeLog(Log: CI, B&: Builder); |
3870 | case LibFunc_tan: |
3871 | case LibFunc_tanf: |
3872 | case LibFunc_tanl: |
3873 | case LibFunc_sinh: |
3874 | case LibFunc_sinhf: |
3875 | case LibFunc_sinhl: |
3876 | case LibFunc_asinh: |
3877 | case LibFunc_asinhf: |
3878 | case LibFunc_asinhl: |
3879 | case LibFunc_cosh: |
3880 | case LibFunc_coshf: |
3881 | case LibFunc_coshl: |
3882 | case LibFunc_atanh: |
3883 | case LibFunc_atanhf: |
3884 | case LibFunc_atanhl: |
3885 | return optimizeTrigInversionPairs(CI, B&: Builder); |
3886 | case LibFunc_ceil: |
3887 | return replaceUnaryCall(CI, B&: Builder, IID: Intrinsic::ceil); |
3888 | case LibFunc_floor: |
3889 | return replaceUnaryCall(CI, B&: Builder, IID: Intrinsic::floor); |
3890 | case LibFunc_round: |
3891 | return replaceUnaryCall(CI, B&: Builder, IID: Intrinsic::round); |
3892 | case LibFunc_roundeven: |
3893 | return replaceUnaryCall(CI, B&: Builder, IID: Intrinsic::roundeven); |
3894 | case LibFunc_nearbyint: |
3895 | return replaceUnaryCall(CI, B&: Builder, IID: Intrinsic::nearbyint); |
3896 | case LibFunc_rint: |
3897 | return replaceUnaryCall(CI, B&: Builder, IID: Intrinsic::rint); |
3898 | case LibFunc_trunc: |
3899 | return replaceUnaryCall(CI, B&: Builder, IID: Intrinsic::trunc); |
3900 | case LibFunc_acos: |
3901 | case LibFunc_acosh: |
3902 | case LibFunc_asin: |
3903 | case LibFunc_atan: |
3904 | case LibFunc_cbrt: |
3905 | case LibFunc_exp: |
3906 | case LibFunc_exp10: |
3907 | case LibFunc_expm1: |
3908 | case LibFunc_cos: |
3909 | case LibFunc_sin: |
3910 | case LibFunc_tanh: |
3911 | if (UnsafeFPShrink && hasFloatVersion(M, FuncName: CI->getCalledFunction()->getName())) |
3912 | return optimizeUnaryDoubleFP(CI, B&: Builder, TLI, isPrecise: true); |
3913 | return nullptr; |
3914 | case LibFunc_copysign: |
3915 | if (hasFloatVersion(M, FuncName: CI->getCalledFunction()->getName())) |
3916 | return optimizeBinaryDoubleFP(CI, B&: Builder, TLI); |
3917 | return nullptr; |
3918 | case LibFunc_fminf: |
3919 | case LibFunc_fmin: |
3920 | case LibFunc_fminl: |
3921 | case LibFunc_fmaxf: |
3922 | case LibFunc_fmax: |
3923 | case LibFunc_fmaxl: |
3924 | return optimizeFMinFMax(CI, B&: Builder); |
3925 | case LibFunc_cabs: |
3926 | case LibFunc_cabsf: |
3927 | case LibFunc_cabsl: |
3928 | return optimizeCAbs(CI, B&: Builder); |
3929 | default: |
3930 | return nullptr; |
3931 | } |
3932 | } |
3933 | |
3934 | Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { |
3935 | Module *M = CI->getModule(); |
3936 | assert(!CI->isMustTailCall() && "These transforms aren't musttail safe." ); |
3937 | |
3938 | // TODO: Split out the code below that operates on FP calls so that |
3939 | // we can all non-FP calls with the StrictFP attribute to be |
3940 | // optimized. |
3941 | if (CI->isNoBuiltin()) |
3942 | return nullptr; |
3943 | |
3944 | LibFunc Func; |
3945 | Function *Callee = CI->getCalledFunction(); |
3946 | bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); |
3947 | |
3948 | SmallVector<OperandBundleDef, 2> OpBundles; |
3949 | CI->getOperandBundlesAsDefs(Defs&: OpBundles); |
3950 | |
3951 | IRBuilderBase::OperandBundlesGuard Guard(Builder); |
3952 | Builder.setDefaultOperandBundles(OpBundles); |
3953 | |
3954 | // Command-line parameter overrides instruction attribute. |
3955 | // This can't be moved to optimizeFloatingPointLibCall() because it may be |
3956 | // used by the intrinsic optimizations. |
3957 | if (EnableUnsafeFPShrink.getNumOccurrences() > 0) |
3958 | UnsafeFPShrink = EnableUnsafeFPShrink; |
3959 | else if (isa<FPMathOperator>(Val: CI) && CI->isFast()) |
3960 | UnsafeFPShrink = true; |
3961 | |
3962 | // First, check for intrinsics. |
3963 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: CI)) { |
3964 | if (!IsCallingConvC) |
3965 | return nullptr; |
3966 | // The FP intrinsics have corresponding constrained versions so we don't |
3967 | // need to check for the StrictFP attribute here. |
3968 | switch (II->getIntrinsicID()) { |
3969 | case Intrinsic::pow: |
3970 | return optimizePow(Pow: CI, B&: Builder); |
3971 | case Intrinsic::exp2: |
3972 | return optimizeExp2(CI, B&: Builder); |
3973 | case Intrinsic::log: |
3974 | case Intrinsic::log2: |
3975 | case Intrinsic::log10: |
3976 | return optimizeLog(Log: CI, B&: Builder); |
3977 | case Intrinsic::sqrt: |
3978 | return optimizeSqrt(CI, B&: Builder); |
3979 | case Intrinsic::memset: |
3980 | return optimizeMemSet(CI, B&: Builder); |
3981 | case Intrinsic::memcpy: |
3982 | return optimizeMemCpy(CI, B&: Builder); |
3983 | case Intrinsic::memmove: |
3984 | return optimizeMemMove(CI, B&: Builder); |
3985 | default: |
3986 | return nullptr; |
3987 | } |
3988 | } |
3989 | |
3990 | // Also try to simplify calls to fortified library functions. |
3991 | if (Value *SimplifiedFortifiedCI = |
3992 | FortifiedSimplifier.optimizeCall(CI, B&: Builder)) |
3993 | return SimplifiedFortifiedCI; |
3994 | |
3995 | // Then check for known library functions. |
3996 | if (TLI->getLibFunc(FDecl: *Callee, F&: Func) && isLibFuncEmittable(M, TLI, TheLibFunc: Func)) { |
3997 | // We never change the calling convention. |
3998 | if (!ignoreCallingConv(Func) && !IsCallingConvC) |
3999 | return nullptr; |
4000 | if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) |
4001 | return V; |
4002 | if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) |
4003 | return V; |
4004 | switch (Func) { |
4005 | case LibFunc_ffs: |
4006 | case LibFunc_ffsl: |
4007 | case LibFunc_ffsll: |
4008 | return optimizeFFS(CI, B&: Builder); |
4009 | case LibFunc_fls: |
4010 | case LibFunc_flsl: |
4011 | case LibFunc_flsll: |
4012 | return optimizeFls(CI, B&: Builder); |
4013 | case LibFunc_abs: |
4014 | case LibFunc_labs: |
4015 | case LibFunc_llabs: |
4016 | return optimizeAbs(CI, B&: Builder); |
4017 | case LibFunc_isdigit: |
4018 | return optimizeIsDigit(CI, B&: Builder); |
4019 | case LibFunc_isascii: |
4020 | return optimizeIsAscii(CI, B&: Builder); |
4021 | case LibFunc_toascii: |
4022 | return optimizeToAscii(CI, B&: Builder); |
4023 | case LibFunc_atoi: |
4024 | case LibFunc_atol: |
4025 | case LibFunc_atoll: |
4026 | return optimizeAtoi(CI, B&: Builder); |
4027 | case LibFunc_strtol: |
4028 | case LibFunc_strtoll: |
4029 | return optimizeStrToInt(CI, B&: Builder, /*AsSigned=*/true); |
4030 | case LibFunc_strtoul: |
4031 | case LibFunc_strtoull: |
4032 | return optimizeStrToInt(CI, B&: Builder, /*AsSigned=*/false); |
4033 | case LibFunc_printf: |
4034 | return optimizePrintF(CI, B&: Builder); |
4035 | case LibFunc_sprintf: |
4036 | return optimizeSPrintF(CI, B&: Builder); |
4037 | case LibFunc_snprintf: |
4038 | return optimizeSnPrintF(CI, B&: Builder); |
4039 | case LibFunc_fprintf: |
4040 | return optimizeFPrintF(CI, B&: Builder); |
4041 | case LibFunc_fwrite: |
4042 | return optimizeFWrite(CI, B&: Builder); |
4043 | case LibFunc_fputs: |
4044 | return optimizeFPuts(CI, B&: Builder); |
4045 | case LibFunc_puts: |
4046 | return optimizePuts(CI, B&: Builder); |
4047 | case LibFunc_perror: |
4048 | return optimizeErrorReporting(CI, B&: Builder); |
4049 | case LibFunc_vfprintf: |
4050 | case LibFunc_fiprintf: |
4051 | return optimizeErrorReporting(CI, B&: Builder, StreamArg: 0); |
4052 | default: |
4053 | return nullptr; |
4054 | } |
4055 | } |
4056 | return nullptr; |
4057 | } |
4058 | |
4059 | LibCallSimplifier::( |
4060 | const DataLayout &DL, const TargetLibraryInfo *TLI, AssumptionCache *AC, |
4061 | OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, |
4062 | ProfileSummaryInfo *PSI, |
4063 | function_ref<void(Instruction *, Value *)> Replacer, |
4064 | function_ref<void(Instruction *)> Eraser) |
4065 | : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), AC(AC), ORE(ORE), BFI(BFI), |
4066 | PSI(PSI), Replacer(Replacer), Eraser(Eraser) {} |
4067 | |
4068 | void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { |
4069 | // Indirect through the replacer used in this instance. |
4070 | Replacer(I, With); |
4071 | } |
4072 | |
4073 | void LibCallSimplifier::eraseFromParent(Instruction *I) { |
4074 | Eraser(I); |
4075 | } |
4076 | |
4077 | // TODO: |
4078 | // Additional cases that we need to add to this file: |
4079 | // |
4080 | // cbrt: |
4081 | // * cbrt(expN(X)) -> expN(x/3) |
4082 | // * cbrt(sqrt(x)) -> pow(x,1/6) |
4083 | // * cbrt(cbrt(x)) -> pow(x,1/9) |
4084 | // |
4085 | // exp, expf, expl: |
4086 | // * exp(log(x)) -> x |
4087 | // |
4088 | // log, logf, logl: |
4089 | // * log(exp(x)) -> x |
4090 | // * log(exp(y)) -> y*log(e) |
4091 | // * log(exp10(y)) -> y*log(10) |
4092 | // * log(sqrt(x)) -> 0.5*log(x) |
4093 | // |
4094 | // pow, powf, powl: |
4095 | // * pow(sqrt(x),y) -> pow(x,y*0.5) |
4096 | // * pow(pow(x,y),z)-> pow(x,y*z) |
4097 | // |
4098 | // signbit: |
4099 | // * signbit(cnst) -> cnst' |
4100 | // * signbit(nncst) -> 0 (if pstv is a non-negative constant) |
4101 | // |
4102 | // sqrt, sqrtf, sqrtl: |
4103 | // * sqrt(expN(x)) -> expN(x*0.5) |
4104 | // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) |
4105 | // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) |
4106 | // |
4107 | |
4108 | //===----------------------------------------------------------------------===// |
4109 | // Fortified Library Call Optimizations |
4110 | //===----------------------------------------------------------------------===// |
4111 | |
4112 | bool FortifiedLibCallSimplifier::isFortifiedCallFoldable( |
4113 | CallInst *CI, unsigned ObjSizeOp, std::optional<unsigned> SizeOp, |
4114 | std::optional<unsigned> StrOp, std::optional<unsigned> FlagOp) { |
4115 | // If this function takes a flag argument, the implementation may use it to |
4116 | // perform extra checks. Don't fold into the non-checking variant. |
4117 | if (FlagOp) { |
4118 | ConstantInt *Flag = dyn_cast<ConstantInt>(Val: CI->getArgOperand(i: *FlagOp)); |
4119 | if (!Flag || !Flag->isZero()) |
4120 | return false; |
4121 | } |
4122 | |
4123 | if (SizeOp && CI->getArgOperand(i: ObjSizeOp) == CI->getArgOperand(i: *SizeOp)) |
4124 | return true; |
4125 | |
4126 | if (ConstantInt *ObjSizeCI = |
4127 | dyn_cast<ConstantInt>(Val: CI->getArgOperand(i: ObjSizeOp))) { |
4128 | if (ObjSizeCI->isMinusOne()) |
4129 | return true; |
4130 | // If the object size wasn't -1 (unknown), bail out if we were asked to. |
4131 | if (OnlyLowerUnknownSize) |
4132 | return false; |
4133 | if (StrOp) { |
4134 | uint64_t Len = GetStringLength(V: CI->getArgOperand(i: *StrOp)); |
4135 | // If the length is 0 we don't know how long it is and so we can't |
4136 | // remove the check. |
4137 | if (Len) |
4138 | annotateDereferenceableBytes(CI, ArgNos: *StrOp, DereferenceableBytes: Len); |
4139 | else |
4140 | return false; |
4141 | return ObjSizeCI->getZExtValue() >= Len; |
4142 | } |
4143 | |
4144 | if (SizeOp) { |
4145 | if (ConstantInt *SizeCI = |
4146 | dyn_cast<ConstantInt>(Val: CI->getArgOperand(i: *SizeOp))) |
4147 | return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); |
4148 | } |
4149 | } |
4150 | return false; |
4151 | } |
4152 | |
4153 | Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, |
4154 | IRBuilderBase &B) { |
4155 | if (isFortifiedCallFoldable(CI, ObjSizeOp: 3, SizeOp: 2)) { |
4156 | CallInst *NewCI = |
4157 | B.CreateMemCpy(Dst: CI->getArgOperand(i: 0), DstAlign: Align(1), Src: CI->getArgOperand(i: 1), |
4158 | SrcAlign: Align(1), Size: CI->getArgOperand(i: 2)); |
4159 | mergeAttributesAndFlags(NewCI, Old: *CI); |
4160 | return CI->getArgOperand(i: 0); |
4161 | } |
4162 | return nullptr; |
4163 | } |
4164 | |
4165 | Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, |
4166 | IRBuilderBase &B) { |
4167 | if (isFortifiedCallFoldable(CI, ObjSizeOp: 3, SizeOp: 2)) { |
4168 | CallInst *NewCI = |
4169 | B.CreateMemMove(Dst: CI->getArgOperand(i: 0), DstAlign: Align(1), Src: CI->getArgOperand(i: 1), |
4170 | SrcAlign: Align(1), Size: CI->getArgOperand(i: 2)); |
4171 | mergeAttributesAndFlags(NewCI, Old: *CI); |
4172 | return CI->getArgOperand(i: 0); |
4173 | } |
4174 | return nullptr; |
4175 | } |
4176 | |
4177 | Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, |
4178 | IRBuilderBase &B) { |
4179 | if (isFortifiedCallFoldable(CI, ObjSizeOp: 3, SizeOp: 2)) { |
4180 | Value *Val = B.CreateIntCast(V: CI->getArgOperand(i: 1), DestTy: B.getInt8Ty(), isSigned: false); |
4181 | CallInst *NewCI = B.CreateMemSet(Ptr: CI->getArgOperand(i: 0), Val, |
4182 | Size: CI->getArgOperand(i: 2), Align: Align(1)); |
4183 | mergeAttributesAndFlags(NewCI, Old: *CI); |
4184 | return CI->getArgOperand(i: 0); |
4185 | } |
4186 | return nullptr; |
4187 | } |
4188 | |
4189 | Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, |
4190 | IRBuilderBase &B) { |
4191 | const DataLayout &DL = CI->getDataLayout(); |
4192 | if (isFortifiedCallFoldable(CI, ObjSizeOp: 3, SizeOp: 2)) |
4193 | if (Value *Call = emitMemPCpy(Dst: CI->getArgOperand(i: 0), Src: CI->getArgOperand(i: 1), |
4194 | Len: CI->getArgOperand(i: 2), B, DL, TLI)) { |
4195 | return mergeAttributesAndFlags(NewCI: cast<CallInst>(Val: Call), Old: *CI); |
4196 | } |
4197 | return nullptr; |
4198 | } |
4199 | |
4200 | Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, |
4201 | IRBuilderBase &B, |
4202 | LibFunc Func) { |
4203 | const DataLayout &DL = CI->getDataLayout(); |
4204 | Value *Dst = CI->getArgOperand(i: 0), *Src = CI->getArgOperand(i: 1), |
4205 | *ObjSize = CI->getArgOperand(i: 2); |
4206 | |
4207 | // __stpcpy_chk(x,x,...) -> x+strlen(x) |
4208 | if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { |
4209 | Value *StrLen = emitStrLen(Ptr: Src, B, DL, TLI); |
4210 | return StrLen ? B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: Dst, IdxList: StrLen) : nullptr; |
4211 | } |
4212 | |
4213 | // If a) we don't have any length information, or b) we know this will |
4214 | // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our |
4215 | // st[rp]cpy_chk call which may fail at runtime if the size is too long. |
4216 | // TODO: It might be nice to get a maximum length out of the possible |
4217 | // string lengths for varying. |
4218 | if (isFortifiedCallFoldable(CI, ObjSizeOp: 2, SizeOp: std::nullopt, StrOp: 1)) { |
4219 | if (Func == LibFunc_strcpy_chk) |
4220 | return copyFlags(Old: *CI, New: emitStrCpy(Dst, Src, B, TLI)); |
4221 | else |
4222 | return copyFlags(Old: *CI, New: emitStpCpy(Dst, Src, B, TLI)); |
4223 | } |
4224 | |
4225 | if (OnlyLowerUnknownSize) |
4226 | return nullptr; |
4227 | |
4228 | // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. |
4229 | uint64_t Len = GetStringLength(V: Src); |
4230 | if (Len) |
4231 | annotateDereferenceableBytes(CI, ArgNos: 1, DereferenceableBytes: Len); |
4232 | else |
4233 | return nullptr; |
4234 | |
4235 | unsigned SizeTBits = TLI->getSizeTSize(M: *CI->getModule()); |
4236 | Type *SizeTTy = IntegerType::get(C&: CI->getContext(), NumBits: SizeTBits); |
4237 | Value *LenV = ConstantInt::get(Ty: SizeTTy, V: Len); |
4238 | Value *Ret = emitMemCpyChk(Dst, Src, Len: LenV, ObjSize, B, DL, TLI); |
4239 | // If the function was an __stpcpy_chk, and we were able to fold it into |
4240 | // a __memcpy_chk, we still need to return the correct end pointer. |
4241 | if (Ret && Func == LibFunc_stpcpy_chk) |
4242 | return B.CreateInBoundsGEP(Ty: B.getInt8Ty(), Ptr: Dst, |
4243 | IdxList: ConstantInt::get(Ty: SizeTTy, V: Len - 1)); |
4244 | return copyFlags(Old: *CI, New: cast<CallInst>(Val: Ret)); |
4245 | } |
4246 | |
4247 | Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, |
4248 | IRBuilderBase &B) { |
4249 | if (isFortifiedCallFoldable(CI, ObjSizeOp: 1, SizeOp: std::nullopt, StrOp: 0)) |
4250 | return copyFlags(Old: *CI, New: emitStrLen(Ptr: CI->getArgOperand(i: 0), B, |
4251 | DL: CI->getDataLayout(), TLI)); |
4252 | return nullptr; |
4253 | } |
4254 | |
4255 | Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, |
4256 | IRBuilderBase &B, |
4257 | LibFunc Func) { |
4258 | if (isFortifiedCallFoldable(CI, ObjSizeOp: 3, SizeOp: 2)) { |
4259 | if (Func == LibFunc_strncpy_chk) |
4260 | return copyFlags(Old: *CI, |
4261 | New: emitStrNCpy(Dst: CI->getArgOperand(i: 0), Src: CI->getArgOperand(i: 1), |
4262 | Len: CI->getArgOperand(i: 2), B, TLI)); |
4263 | else |
4264 | return copyFlags(Old: *CI, |
4265 | New: emitStpNCpy(Dst: CI->getArgOperand(i: 0), Src: CI->getArgOperand(i: 1), |
4266 | Len: CI->getArgOperand(i: 2), B, TLI)); |
4267 | } |
4268 | |
4269 | return nullptr; |
4270 | } |
4271 | |
4272 | Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, |
4273 | IRBuilderBase &B) { |
4274 | if (isFortifiedCallFoldable(CI, ObjSizeOp: 4, SizeOp: 3)) |
4275 | return copyFlags( |
4276 | Old: *CI, New: emitMemCCpy(Ptr1: CI->getArgOperand(i: 0), Ptr2: CI->getArgOperand(i: 1), |
4277 | Val: CI->getArgOperand(i: 2), Len: CI->getArgOperand(i: 3), B, TLI)); |
4278 | |
4279 | return nullptr; |
4280 | } |
4281 | |
4282 | Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, |
4283 | IRBuilderBase &B) { |
4284 | if (isFortifiedCallFoldable(CI, ObjSizeOp: 3, SizeOp: 1, StrOp: std::nullopt, FlagOp: 2)) { |
4285 | SmallVector<Value *, 8> VariadicArgs(drop_begin(RangeOrContainer: CI->args(), N: 5)); |
4286 | return copyFlags(Old: *CI, |
4287 | New: emitSNPrintf(Dest: CI->getArgOperand(i: 0), Size: CI->getArgOperand(i: 1), |
4288 | Fmt: CI->getArgOperand(i: 4), Args: VariadicArgs, B, TLI)); |
4289 | } |
4290 | |
4291 | return nullptr; |
4292 | } |
4293 | |
4294 | Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, |
4295 | IRBuilderBase &B) { |
4296 | if (isFortifiedCallFoldable(CI, ObjSizeOp: 2, SizeOp: std::nullopt, StrOp: std::nullopt, FlagOp: 1)) { |
4297 | SmallVector<Value *, 8> VariadicArgs(drop_begin(RangeOrContainer: CI->args(), N: 4)); |
4298 | return copyFlags(Old: *CI, |
4299 | New: emitSPrintf(Dest: CI->getArgOperand(i: 0), Fmt: CI->getArgOperand(i: 3), |
4300 | VariadicArgs, B, TLI)); |
4301 | } |
4302 | |
4303 | return nullptr; |
4304 | } |
4305 | |
4306 | Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, |
4307 | IRBuilderBase &B) { |
4308 | if (isFortifiedCallFoldable(CI, ObjSizeOp: 2)) |
4309 | return copyFlags( |
4310 | Old: *CI, New: emitStrCat(Dest: CI->getArgOperand(i: 0), Src: CI->getArgOperand(i: 1), B, TLI)); |
4311 | |
4312 | return nullptr; |
4313 | } |
4314 | |
4315 | Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, |
4316 | IRBuilderBase &B) { |
4317 | if (isFortifiedCallFoldable(CI, ObjSizeOp: 3)) |
4318 | return copyFlags(Old: *CI, |
4319 | New: emitStrLCat(Dest: CI->getArgOperand(i: 0), Src: CI->getArgOperand(i: 1), |
4320 | Size: CI->getArgOperand(i: 2), B, TLI)); |
4321 | |
4322 | return nullptr; |
4323 | } |
4324 | |
4325 | Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, |
4326 | IRBuilderBase &B) { |
4327 | if (isFortifiedCallFoldable(CI, ObjSizeOp: 3)) |
4328 | return copyFlags(Old: *CI, |
4329 | New: emitStrNCat(Dest: CI->getArgOperand(i: 0), Src: CI->getArgOperand(i: 1), |
4330 | Size: CI->getArgOperand(i: 2), B, TLI)); |
4331 | |
4332 | return nullptr; |
4333 | } |
4334 | |
4335 | Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, |
4336 | IRBuilderBase &B) { |
4337 | if (isFortifiedCallFoldable(CI, ObjSizeOp: 3)) |
4338 | return copyFlags(Old: *CI, |
4339 | New: emitStrLCpy(Dest: CI->getArgOperand(i: 0), Src: CI->getArgOperand(i: 1), |
4340 | Size: CI->getArgOperand(i: 2), B, TLI)); |
4341 | |
4342 | return nullptr; |
4343 | } |
4344 | |
4345 | Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, |
4346 | IRBuilderBase &B) { |
4347 | if (isFortifiedCallFoldable(CI, ObjSizeOp: 3, SizeOp: 1, StrOp: std::nullopt, FlagOp: 2)) |
4348 | return copyFlags( |
4349 | Old: *CI, New: emitVSNPrintf(Dest: CI->getArgOperand(i: 0), Size: CI->getArgOperand(i: 1), |
4350 | Fmt: CI->getArgOperand(i: 4), VAList: CI->getArgOperand(i: 5), B, TLI)); |
4351 | |
4352 | return nullptr; |
4353 | } |
4354 | |
4355 | Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, |
4356 | IRBuilderBase &B) { |
4357 | if (isFortifiedCallFoldable(CI, ObjSizeOp: 2, SizeOp: std::nullopt, StrOp: std::nullopt, FlagOp: 1)) |
4358 | return copyFlags(Old: *CI, |
4359 | New: emitVSPrintf(Dest: CI->getArgOperand(i: 0), Fmt: CI->getArgOperand(i: 3), |
4360 | VAList: CI->getArgOperand(i: 4), B, TLI)); |
4361 | |
4362 | return nullptr; |
4363 | } |
4364 | |
4365 | Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, |
4366 | IRBuilderBase &Builder) { |
4367 | // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. |
4368 | // Some clang users checked for _chk libcall availability using: |
4369 | // __has_builtin(__builtin___memcpy_chk) |
4370 | // When compiling with -fno-builtin, this is always true. |
4371 | // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we |
4372 | // end up with fortified libcalls, which isn't acceptable in a freestanding |
4373 | // environment which only provides their non-fortified counterparts. |
4374 | // |
4375 | // Until we change clang and/or teach external users to check for availability |
4376 | // differently, disregard the "nobuiltin" attribute and TLI::has. |
4377 | // |
4378 | // PR23093. |
4379 | |
4380 | LibFunc Func; |
4381 | Function *Callee = CI->getCalledFunction(); |
4382 | bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); |
4383 | |
4384 | SmallVector<OperandBundleDef, 2> OpBundles; |
4385 | CI->getOperandBundlesAsDefs(Defs&: OpBundles); |
4386 | |
4387 | IRBuilderBase::OperandBundlesGuard Guard(Builder); |
4388 | Builder.setDefaultOperandBundles(OpBundles); |
4389 | |
4390 | // First, check that this is a known library functions and that the prototype |
4391 | // is correct. |
4392 | if (!TLI->getLibFunc(FDecl: *Callee, F&: Func)) |
4393 | return nullptr; |
4394 | |
4395 | // We never change the calling convention. |
4396 | if (!ignoreCallingConv(Func) && !IsCallingConvC) |
4397 | return nullptr; |
4398 | |
4399 | switch (Func) { |
4400 | case LibFunc_memcpy_chk: |
4401 | return optimizeMemCpyChk(CI, B&: Builder); |
4402 | case LibFunc_mempcpy_chk: |
4403 | return optimizeMemPCpyChk(CI, B&: Builder); |
4404 | case LibFunc_memmove_chk: |
4405 | return optimizeMemMoveChk(CI, B&: Builder); |
4406 | case LibFunc_memset_chk: |
4407 | return optimizeMemSetChk(CI, B&: Builder); |
4408 | case LibFunc_stpcpy_chk: |
4409 | case LibFunc_strcpy_chk: |
4410 | return optimizeStrpCpyChk(CI, B&: Builder, Func); |
4411 | case LibFunc_strlen_chk: |
4412 | return optimizeStrLenChk(CI, B&: Builder); |
4413 | case LibFunc_stpncpy_chk: |
4414 | case LibFunc_strncpy_chk: |
4415 | return optimizeStrpNCpyChk(CI, B&: Builder, Func); |
4416 | case LibFunc_memccpy_chk: |
4417 | return optimizeMemCCpyChk(CI, B&: Builder); |
4418 | case LibFunc_snprintf_chk: |
4419 | return optimizeSNPrintfChk(CI, B&: Builder); |
4420 | case LibFunc_sprintf_chk: |
4421 | return optimizeSPrintfChk(CI, B&: Builder); |
4422 | case LibFunc_strcat_chk: |
4423 | return optimizeStrCatChk(CI, B&: Builder); |
4424 | case LibFunc_strlcat_chk: |
4425 | return optimizeStrLCat(CI, B&: Builder); |
4426 | case LibFunc_strncat_chk: |
4427 | return optimizeStrNCatChk(CI, B&: Builder); |
4428 | case LibFunc_strlcpy_chk: |
4429 | return optimizeStrLCpyChk(CI, B&: Builder); |
4430 | case LibFunc_vsnprintf_chk: |
4431 | return optimizeVSNPrintfChk(CI, B&: Builder); |
4432 | case LibFunc_vsprintf_chk: |
4433 | return optimizeVSPrintfChk(CI, B&: Builder); |
4434 | default: |
4435 | break; |
4436 | } |
4437 | return nullptr; |
4438 | } |
4439 | |
4440 | FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( |
4441 | const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) |
4442 | : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} |
4443 | |