1 | //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines the MapValue function, which is shared by various parts of |
10 | // the lib/Transforms/Utils library. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "llvm/Transforms/Utils/ValueMapper.h" |
15 | #include "llvm/ADT/ArrayRef.h" |
16 | #include "llvm/ADT/DenseMap.h" |
17 | #include "llvm/ADT/DenseSet.h" |
18 | #include "llvm/ADT/STLExtras.h" |
19 | #include "llvm/ADT/SmallVector.h" |
20 | #include "llvm/IR/Argument.h" |
21 | #include "llvm/IR/BasicBlock.h" |
22 | #include "llvm/IR/Constant.h" |
23 | #include "llvm/IR/Constants.h" |
24 | #include "llvm/IR/DebugInfoMetadata.h" |
25 | #include "llvm/IR/DerivedTypes.h" |
26 | #include "llvm/IR/Function.h" |
27 | #include "llvm/IR/GlobalAlias.h" |
28 | #include "llvm/IR/GlobalIFunc.h" |
29 | #include "llvm/IR/GlobalObject.h" |
30 | #include "llvm/IR/GlobalVariable.h" |
31 | #include "llvm/IR/InlineAsm.h" |
32 | #include "llvm/IR/Instruction.h" |
33 | #include "llvm/IR/Instructions.h" |
34 | #include "llvm/IR/IntrinsicInst.h" |
35 | #include "llvm/IR/Metadata.h" |
36 | #include "llvm/IR/Operator.h" |
37 | #include "llvm/IR/Type.h" |
38 | #include "llvm/IR/Value.h" |
39 | #include "llvm/Support/Casting.h" |
40 | #include "llvm/Support/Debug.h" |
41 | #include <cassert> |
42 | #include <limits> |
43 | #include <memory> |
44 | #include <utility> |
45 | |
46 | using namespace llvm; |
47 | |
48 | #define DEBUG_TYPE "value-mapper" |
49 | |
50 | // Out of line method to get vtable etc for class. |
51 | void ValueMapTypeRemapper::anchor() {} |
52 | void ValueMaterializer::anchor() {} |
53 | |
54 | namespace { |
55 | |
56 | /// A basic block used in a BlockAddress whose function body is not yet |
57 | /// materialized. |
58 | struct DelayedBasicBlock { |
59 | BasicBlock *OldBB; |
60 | std::unique_ptr<BasicBlock> TempBB; |
61 | |
62 | DelayedBasicBlock(const BlockAddress &Old) |
63 | : OldBB(Old.getBasicBlock()), |
64 | TempBB(BasicBlock::Create(Context&: Old.getContext())) {} |
65 | }; |
66 | |
67 | struct WorklistEntry { |
68 | enum EntryKind { |
69 | MapGlobalInit, |
70 | MapAppendingVar, |
71 | MapAliasOrIFunc, |
72 | RemapFunction |
73 | }; |
74 | struct GVInitTy { |
75 | GlobalVariable *GV; |
76 | Constant *Init; |
77 | }; |
78 | struct AppendingGVTy { |
79 | GlobalVariable *GV; |
80 | Constant *InitPrefix; |
81 | }; |
82 | struct AliasOrIFuncTy { |
83 | GlobalValue *GV; |
84 | Constant *Target; |
85 | }; |
86 | |
87 | unsigned Kind : 2; |
88 | unsigned MCID : 29; |
89 | unsigned AppendingGVIsOldCtorDtor : 1; |
90 | unsigned AppendingGVNumNewMembers; |
91 | union { |
92 | GVInitTy GVInit; |
93 | AppendingGVTy AppendingGV; |
94 | AliasOrIFuncTy AliasOrIFunc; |
95 | Function *RemapF; |
96 | } Data; |
97 | }; |
98 | |
99 | struct MappingContext { |
100 | ValueToValueMapTy *VM; |
101 | ValueMaterializer *Materializer = nullptr; |
102 | |
103 | /// Construct a MappingContext with a value map and materializer. |
104 | explicit MappingContext(ValueToValueMapTy &VM, |
105 | ValueMaterializer *Materializer = nullptr) |
106 | : VM(&VM), Materializer(Materializer) {} |
107 | }; |
108 | |
109 | class Mapper { |
110 | friend class MDNodeMapper; |
111 | |
112 | #ifndef NDEBUG |
113 | DenseSet<GlobalValue *> AlreadyScheduled; |
114 | #endif |
115 | |
116 | RemapFlags Flags; |
117 | ValueMapTypeRemapper *TypeMapper; |
118 | unsigned CurrentMCID = 0; |
119 | SmallVector<MappingContext, 2> MCs; |
120 | SmallVector<WorklistEntry, 4> Worklist; |
121 | SmallVector<DelayedBasicBlock, 1> DelayedBBs; |
122 | SmallVector<Constant *, 16> AppendingInits; |
123 | |
124 | public: |
125 | Mapper(ValueToValueMapTy &VM, RemapFlags Flags, |
126 | ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) |
127 | : Flags(Flags), TypeMapper(TypeMapper), |
128 | MCs(1, MappingContext(VM, Materializer)) {} |
129 | |
130 | /// ValueMapper should explicitly call \a flush() before destruction. |
131 | ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed" ); } |
132 | |
133 | bool hasWorkToDo() const { return !Worklist.empty(); } |
134 | |
135 | unsigned |
136 | registerAlternateMappingContext(ValueToValueMapTy &VM, |
137 | ValueMaterializer *Materializer = nullptr) { |
138 | MCs.push_back(Elt: MappingContext(VM, Materializer)); |
139 | return MCs.size() - 1; |
140 | } |
141 | |
142 | void addFlags(RemapFlags Flags); |
143 | |
144 | void remapGlobalObjectMetadata(GlobalObject &GO); |
145 | |
146 | Value *mapValue(const Value *V); |
147 | void remapInstruction(Instruction *I); |
148 | void remapFunction(Function &F); |
149 | void remapDbgRecord(DbgRecord &DVR); |
150 | |
151 | Constant *mapConstant(const Constant *C) { |
152 | return cast_or_null<Constant>(Val: mapValue(V: C)); |
153 | } |
154 | |
155 | /// Map metadata. |
156 | /// |
157 | /// Find the mapping for MD. Guarantees that the return will be resolved |
158 | /// (not an MDNode, or MDNode::isResolved() returns true). |
159 | Metadata *mapMetadata(const Metadata *MD); |
160 | |
161 | void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, |
162 | unsigned MCID); |
163 | void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, |
164 | bool IsOldCtorDtor, |
165 | ArrayRef<Constant *> NewMembers, |
166 | unsigned MCID); |
167 | void scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target, |
168 | unsigned MCID); |
169 | void scheduleRemapFunction(Function &F, unsigned MCID); |
170 | |
171 | void flush(); |
172 | |
173 | private: |
174 | void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, |
175 | bool IsOldCtorDtor, |
176 | ArrayRef<Constant *> NewMembers); |
177 | |
178 | ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } |
179 | ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } |
180 | |
181 | Value *mapBlockAddress(const BlockAddress &BA); |
182 | |
183 | /// Map metadata that doesn't require visiting operands. |
184 | std::optional<Metadata *> mapSimpleMetadata(const Metadata *MD); |
185 | |
186 | Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); |
187 | Metadata *mapToSelf(const Metadata *MD); |
188 | }; |
189 | |
190 | class MDNodeMapper { |
191 | Mapper &M; |
192 | |
193 | /// Data about a node in \a UniquedGraph. |
194 | struct Data { |
195 | bool HasChanged = false; |
196 | unsigned ID = std::numeric_limits<unsigned>::max(); |
197 | TempMDNode Placeholder; |
198 | }; |
199 | |
200 | /// A graph of uniqued nodes. |
201 | struct UniquedGraph { |
202 | SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties. |
203 | SmallVector<MDNode *, 16> POT; // Post-order traversal. |
204 | |
205 | /// Propagate changed operands through the post-order traversal. |
206 | /// |
207 | /// Iteratively update \a Data::HasChanged for each node based on \a |
208 | /// Data::HasChanged of its operands, until fixed point. |
209 | void propagateChanges(); |
210 | |
211 | /// Get a forward reference to a node to use as an operand. |
212 | Metadata &getFwdReference(MDNode &Op); |
213 | }; |
214 | |
215 | /// Worklist of distinct nodes whose operands need to be remapped. |
216 | SmallVector<MDNode *, 16> DistinctWorklist; |
217 | |
218 | // Storage for a UniquedGraph. |
219 | SmallDenseMap<const Metadata *, Data, 32> InfoStorage; |
220 | SmallVector<MDNode *, 16> POTStorage; |
221 | |
222 | public: |
223 | MDNodeMapper(Mapper &M) : M(M) {} |
224 | |
225 | /// Map a metadata node (and its transitive operands). |
226 | /// |
227 | /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative |
228 | /// algorithm handles distinct nodes and uniqued node subgraphs using |
229 | /// different strategies. |
230 | /// |
231 | /// Distinct nodes are immediately mapped and added to \a DistinctWorklist |
232 | /// using \a mapDistinctNode(). Their mapping can always be computed |
233 | /// immediately without visiting operands, even if their operands change. |
234 | /// |
235 | /// The mapping for uniqued nodes depends on whether their operands change. |
236 | /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of |
237 | /// a node to calculate uniqued node mappings in bulk. Distinct leafs are |
238 | /// added to \a DistinctWorklist with \a mapDistinctNode(). |
239 | /// |
240 | /// After mapping \c N itself, this function remaps the operands of the |
241 | /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c |
242 | /// N has been mapped. |
243 | Metadata *map(const MDNode &N); |
244 | |
245 | private: |
246 | /// Map a top-level uniqued node and the uniqued subgraph underneath it. |
247 | /// |
248 | /// This builds up a post-order traversal of the (unmapped) uniqued subgraph |
249 | /// underneath \c FirstN and calculates the nodes' mapping. Each node uses |
250 | /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its |
251 | /// operands uses the identity mapping. |
252 | /// |
253 | /// The algorithm works as follows: |
254 | /// |
255 | /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and |
256 | /// save the post-order traversal in the given \a UniquedGraph, tracking |
257 | /// nodes' operands change. |
258 | /// |
259 | /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands |
260 | /// through the \a UniquedGraph until fixed point, following the rule |
261 | /// that if a node changes, any node that references must also change. |
262 | /// |
263 | /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes |
264 | /// (referencing new operands) where necessary. |
265 | Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); |
266 | |
267 | /// Try to map the operand of an \a MDNode. |
268 | /// |
269 | /// If \c Op is already mapped, return the mapping. If it's not an \a |
270 | /// MDNode, compute and return the mapping. If it's a distinct \a MDNode, |
271 | /// return the result of \a mapDistinctNode(). |
272 | /// |
273 | /// \return std::nullopt if \c Op is an unmapped uniqued \a MDNode. |
274 | /// \post getMappedOp(Op) only returns std::nullopt if this returns |
275 | /// std::nullopt. |
276 | std::optional<Metadata *> tryToMapOperand(const Metadata *Op); |
277 | |
278 | /// Map a distinct node. |
279 | /// |
280 | /// Return the mapping for the distinct node \c N, saving the result in \a |
281 | /// DistinctWorklist for later remapping. |
282 | /// |
283 | /// \pre \c N is not yet mapped. |
284 | /// \pre \c N.isDistinct(). |
285 | MDNode *mapDistinctNode(const MDNode &N); |
286 | |
287 | /// Get a previously mapped node. |
288 | std::optional<Metadata *> getMappedOp(const Metadata *Op) const; |
289 | |
290 | /// Create a post-order traversal of an unmapped uniqued node subgraph. |
291 | /// |
292 | /// This traverses the metadata graph deeply enough to map \c FirstN. It |
293 | /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any |
294 | /// metadata that has already been mapped will not be part of the POT. |
295 | /// |
296 | /// Each node that has a changed operand from outside the graph (e.g., a |
297 | /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) |
298 | /// is marked with \a Data::HasChanged. |
299 | /// |
300 | /// \return \c true if any nodes in \c G have \a Data::HasChanged. |
301 | /// \post \c G.POT is a post-order traversal ending with \c FirstN. |
302 | /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs |
303 | /// to change because of operands outside the graph. |
304 | bool createPOT(UniquedGraph &G, const MDNode &FirstN); |
305 | |
306 | /// Visit the operands of a uniqued node in the POT. |
307 | /// |
308 | /// Visit the operands in the range from \c I to \c E, returning the first |
309 | /// uniqued node we find that isn't yet in \c G. \c I is always advanced to |
310 | /// where to continue the loop through the operands. |
311 | /// |
312 | /// This sets \c HasChanged if any of the visited operands change. |
313 | MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I, |
314 | MDNode::op_iterator E, bool &HasChanged); |
315 | |
316 | /// Map all the nodes in the given uniqued graph. |
317 | /// |
318 | /// This visits all the nodes in \c G in post-order, using the identity |
319 | /// mapping or creating a new node depending on \a Data::HasChanged. |
320 | /// |
321 | /// \pre \a getMappedOp() returns std::nullopt for nodes in \c G, but not for |
322 | /// any of their operands outside of \c G. \pre \a Data::HasChanged is true |
323 | /// for a node in \c G iff any of its operands have changed. \post \a |
324 | /// getMappedOp() returns the mapped node for every node in \c G. |
325 | void mapNodesInPOT(UniquedGraph &G); |
326 | |
327 | /// Remap a node's operands using the given functor. |
328 | /// |
329 | /// Iterate through the operands of \c N and update them in place using \c |
330 | /// mapOperand. |
331 | /// |
332 | /// \pre N.isDistinct() or N.isTemporary(). |
333 | template <class OperandMapper> |
334 | void remapOperands(MDNode &N, OperandMapper mapOperand); |
335 | }; |
336 | |
337 | } // end anonymous namespace |
338 | |
339 | Value *Mapper::mapValue(const Value *V) { |
340 | ValueToValueMapTy::iterator I = getVM().find(Val: V); |
341 | |
342 | // If the value already exists in the map, use it. |
343 | if (I != getVM().end()) { |
344 | assert(I->second && "Unexpected null mapping" ); |
345 | return I->second; |
346 | } |
347 | |
348 | // If we have a materializer and it can materialize a value, use that. |
349 | if (auto *Materializer = getMaterializer()) { |
350 | if (Value *NewV = Materializer->materialize(V: const_cast<Value *>(V))) { |
351 | getVM()[V] = NewV; |
352 | return NewV; |
353 | } |
354 | } |
355 | |
356 | // Global values do not need to be seeded into the VM if they |
357 | // are using the identity mapping. |
358 | if (isa<GlobalValue>(Val: V)) { |
359 | if (Flags & RF_NullMapMissingGlobalValues) |
360 | return nullptr; |
361 | return getVM()[V] = const_cast<Value *>(V); |
362 | } |
363 | |
364 | if (const InlineAsm *IA = dyn_cast<InlineAsm>(Val: V)) { |
365 | // Inline asm may need *type* remapping. |
366 | FunctionType *NewTy = IA->getFunctionType(); |
367 | if (TypeMapper) { |
368 | NewTy = cast<FunctionType>(Val: TypeMapper->remapType(SrcTy: NewTy)); |
369 | |
370 | if (NewTy != IA->getFunctionType()) |
371 | V = InlineAsm::get(Ty: NewTy, AsmString: IA->getAsmString(), Constraints: IA->getConstraintString(), |
372 | hasSideEffects: IA->hasSideEffects(), isAlignStack: IA->isAlignStack(), |
373 | asmDialect: IA->getDialect(), canThrow: IA->canThrow()); |
374 | } |
375 | |
376 | return getVM()[V] = const_cast<Value *>(V); |
377 | } |
378 | |
379 | if (const auto *MDV = dyn_cast<MetadataAsValue>(Val: V)) { |
380 | const Metadata *MD = MDV->getMetadata(); |
381 | |
382 | if (auto *LAM = dyn_cast<LocalAsMetadata>(Val: MD)) { |
383 | // Look through to grab the local value. |
384 | if (Value *LV = mapValue(V: LAM->getValue())) { |
385 | if (V == LAM->getValue()) |
386 | return const_cast<Value *>(V); |
387 | return MetadataAsValue::get(Context&: V->getContext(), MD: ValueAsMetadata::get(V: LV)); |
388 | } |
389 | |
390 | // FIXME: always return nullptr once Verifier::verifyDominatesUse() |
391 | // ensures metadata operands only reference defined SSA values. |
392 | return (Flags & RF_IgnoreMissingLocals) |
393 | ? nullptr |
394 | : MetadataAsValue::get( |
395 | Context&: V->getContext(), |
396 | MD: MDTuple::get(Context&: V->getContext(), MDs: std::nullopt)); |
397 | } |
398 | if (auto *AL = dyn_cast<DIArgList>(Val: MD)) { |
399 | SmallVector<ValueAsMetadata *, 4> MappedArgs; |
400 | for (auto *VAM : AL->getArgs()) { |
401 | // Map both Local and Constant VAMs here; they will both ultimately |
402 | // be mapped via mapValue. The exceptions are constants when we have no |
403 | // module level changes and locals when they have no existing mapped |
404 | // value and RF_IgnoreMissingLocals is set; these have identity |
405 | // mappings. |
406 | if ((Flags & RF_NoModuleLevelChanges) && isa<ConstantAsMetadata>(Val: VAM)) { |
407 | MappedArgs.push_back(Elt: VAM); |
408 | } else if (Value *LV = mapValue(V: VAM->getValue())) { |
409 | MappedArgs.push_back( |
410 | Elt: LV == VAM->getValue() ? VAM : ValueAsMetadata::get(V: LV)); |
411 | } else if ((Flags & RF_IgnoreMissingLocals) && isa<LocalAsMetadata>(Val: VAM)) { |
412 | MappedArgs.push_back(Elt: VAM); |
413 | } else { |
414 | // If we cannot map the value, set the argument as undef. |
415 | MappedArgs.push_back(Elt: ValueAsMetadata::get( |
416 | V: UndefValue::get(T: VAM->getValue()->getType()))); |
417 | } |
418 | } |
419 | return MetadataAsValue::get(Context&: V->getContext(), |
420 | MD: DIArgList::get(Context&: V->getContext(), Args: MappedArgs)); |
421 | } |
422 | |
423 | // If this is a module-level metadata and we know that nothing at the module |
424 | // level is changing, then use an identity mapping. |
425 | if (Flags & RF_NoModuleLevelChanges) |
426 | return getVM()[V] = const_cast<Value *>(V); |
427 | |
428 | // Map the metadata and turn it into a value. |
429 | auto *MappedMD = mapMetadata(MD); |
430 | if (MD == MappedMD) |
431 | return getVM()[V] = const_cast<Value *>(V); |
432 | return getVM()[V] = MetadataAsValue::get(Context&: V->getContext(), MD: MappedMD); |
433 | } |
434 | |
435 | // Okay, this either must be a constant (which may or may not be mappable) or |
436 | // is something that is not in the mapping table. |
437 | Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val: V)); |
438 | if (!C) |
439 | return nullptr; |
440 | |
441 | if (BlockAddress *BA = dyn_cast<BlockAddress>(Val: C)) |
442 | return mapBlockAddress(BA: *BA); |
443 | |
444 | if (const auto *E = dyn_cast<DSOLocalEquivalent>(Val: C)) { |
445 | auto *Val = mapValue(V: E->getGlobalValue()); |
446 | GlobalValue *GV = dyn_cast<GlobalValue>(Val); |
447 | if (GV) |
448 | return getVM()[E] = DSOLocalEquivalent::get(GV); |
449 | |
450 | auto *Func = cast<Function>(Val: Val->stripPointerCastsAndAliases()); |
451 | Type *NewTy = E->getType(); |
452 | if (TypeMapper) |
453 | NewTy = TypeMapper->remapType(SrcTy: NewTy); |
454 | return getVM()[E] = llvm::ConstantExpr::getBitCast( |
455 | C: DSOLocalEquivalent::get(GV: Func), Ty: NewTy); |
456 | } |
457 | |
458 | if (const auto *NC = dyn_cast<NoCFIValue>(Val: C)) { |
459 | auto *Val = mapValue(V: NC->getGlobalValue()); |
460 | GlobalValue *GV = cast<GlobalValue>(Val); |
461 | return getVM()[NC] = NoCFIValue::get(GV); |
462 | } |
463 | |
464 | auto mapValueOrNull = [this](Value *V) { |
465 | auto Mapped = mapValue(V); |
466 | assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) && |
467 | "Unexpected null mapping for constant operand without " |
468 | "NullMapMissingGlobalValues flag" ); |
469 | return Mapped; |
470 | }; |
471 | |
472 | // Otherwise, we have some other constant to remap. Start by checking to see |
473 | // if all operands have an identity remapping. |
474 | unsigned OpNo = 0, NumOperands = C->getNumOperands(); |
475 | Value *Mapped = nullptr; |
476 | for (; OpNo != NumOperands; ++OpNo) { |
477 | Value *Op = C->getOperand(i: OpNo); |
478 | Mapped = mapValueOrNull(Op); |
479 | if (!Mapped) |
480 | return nullptr; |
481 | if (Mapped != Op) |
482 | break; |
483 | } |
484 | |
485 | // See if the type mapper wants to remap the type as well. |
486 | Type *NewTy = C->getType(); |
487 | if (TypeMapper) |
488 | NewTy = TypeMapper->remapType(SrcTy: NewTy); |
489 | |
490 | // If the result type and all operands match up, then just insert an identity |
491 | // mapping. |
492 | if (OpNo == NumOperands && NewTy == C->getType()) |
493 | return getVM()[V] = C; |
494 | |
495 | // Okay, we need to create a new constant. We've already processed some or |
496 | // all of the operands, set them all up now. |
497 | SmallVector<Constant*, 8> Ops; |
498 | Ops.reserve(N: NumOperands); |
499 | for (unsigned j = 0; j != OpNo; ++j) |
500 | Ops.push_back(Elt: cast<Constant>(Val: C->getOperand(i: j))); |
501 | |
502 | // If one of the operands mismatch, push it and the other mapped operands. |
503 | if (OpNo != NumOperands) { |
504 | Ops.push_back(Elt: cast<Constant>(Val: Mapped)); |
505 | |
506 | // Map the rest of the operands that aren't processed yet. |
507 | for (++OpNo; OpNo != NumOperands; ++OpNo) { |
508 | Mapped = mapValueOrNull(C->getOperand(i: OpNo)); |
509 | if (!Mapped) |
510 | return nullptr; |
511 | Ops.push_back(Elt: cast<Constant>(Val: Mapped)); |
512 | } |
513 | } |
514 | Type *NewSrcTy = nullptr; |
515 | if (TypeMapper) |
516 | if (auto *GEPO = dyn_cast<GEPOperator>(Val: C)) |
517 | NewSrcTy = TypeMapper->remapType(SrcTy: GEPO->getSourceElementType()); |
518 | |
519 | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: C)) |
520 | return getVM()[V] = CE->getWithOperands(Ops, Ty: NewTy, OnlyIfReduced: false, SrcTy: NewSrcTy); |
521 | if (isa<ConstantArray>(Val: C)) |
522 | return getVM()[V] = ConstantArray::get(T: cast<ArrayType>(Val: NewTy), V: Ops); |
523 | if (isa<ConstantStruct>(Val: C)) |
524 | return getVM()[V] = ConstantStruct::get(T: cast<StructType>(Val: NewTy), V: Ops); |
525 | if (isa<ConstantVector>(Val: C)) |
526 | return getVM()[V] = ConstantVector::get(V: Ops); |
527 | // If this is a no-operand constant, it must be because the type was remapped. |
528 | if (isa<PoisonValue>(Val: C)) |
529 | return getVM()[V] = PoisonValue::get(T: NewTy); |
530 | if (isa<UndefValue>(Val: C)) |
531 | return getVM()[V] = UndefValue::get(T: NewTy); |
532 | if (isa<ConstantAggregateZero>(Val: C)) |
533 | return getVM()[V] = ConstantAggregateZero::get(Ty: NewTy); |
534 | if (isa<ConstantTargetNone>(Val: C)) |
535 | return getVM()[V] = Constant::getNullValue(Ty: NewTy); |
536 | assert(isa<ConstantPointerNull>(C)); |
537 | return getVM()[V] = ConstantPointerNull::get(T: cast<PointerType>(Val: NewTy)); |
538 | } |
539 | |
540 | void Mapper::remapDbgRecord(DbgRecord &DR) { |
541 | // Remap DILocations. |
542 | auto *MappedDILoc = mapMetadata(MD: DR.getDebugLoc()); |
543 | DR.setDebugLoc(DebugLoc(cast<DILocation>(Val: MappedDILoc))); |
544 | |
545 | if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(Val: &DR)) { |
546 | // Remap labels. |
547 | DLR->setLabel(cast<DILabel>(Val: mapMetadata(MD: DLR->getLabel()))); |
548 | return; |
549 | } |
550 | |
551 | DbgVariableRecord &V = cast<DbgVariableRecord>(Val&: DR); |
552 | // Remap variables. |
553 | auto *MappedVar = mapMetadata(MD: V.getVariable()); |
554 | V.setVariable(cast<DILocalVariable>(Val: MappedVar)); |
555 | |
556 | bool IgnoreMissingLocals = Flags & RF_IgnoreMissingLocals; |
557 | |
558 | if (V.isDbgAssign()) { |
559 | auto *NewAddr = mapValue(V: V.getAddress()); |
560 | if (!IgnoreMissingLocals && !NewAddr) |
561 | V.setKillAddress(); |
562 | else if (NewAddr) |
563 | V.setAddress(NewAddr); |
564 | V.setAssignId(cast<DIAssignID>(Val: mapMetadata(MD: V.getAssignID()))); |
565 | } |
566 | |
567 | // Find Value operands and remap those. |
568 | SmallVector<Value *, 4> Vals, NewVals; |
569 | for (Value *Val : V.location_ops()) |
570 | Vals.push_back(Elt: Val); |
571 | for (Value *Val : Vals) |
572 | NewVals.push_back(Elt: mapValue(V: Val)); |
573 | |
574 | // If there are no changes to the Value operands, finished. |
575 | if (Vals == NewVals) |
576 | return; |
577 | |
578 | // Otherwise, do some replacement. |
579 | if (!IgnoreMissingLocals && |
580 | llvm::any_of(Range&: NewVals, P: [&](Value *V) { return V == nullptr; })) { |
581 | V.setKillLocation(); |
582 | } else { |
583 | // Either we have all non-empty NewVals, or we're permitted to ignore |
584 | // missing locals. |
585 | for (unsigned int I = 0; I < Vals.size(); ++I) |
586 | if (NewVals[I]) |
587 | V.replaceVariableLocationOp(OpIdx: I, NewValue: NewVals[I]); |
588 | } |
589 | } |
590 | |
591 | Value *Mapper::mapBlockAddress(const BlockAddress &BA) { |
592 | Function *F = cast<Function>(Val: mapValue(V: BA.getFunction())); |
593 | |
594 | // F may not have materialized its initializer. In that case, create a |
595 | // dummy basic block for now, and replace it once we've materialized all |
596 | // the initializers. |
597 | BasicBlock *BB; |
598 | if (F->empty()) { |
599 | DelayedBBs.push_back(Elt: DelayedBasicBlock(BA)); |
600 | BB = DelayedBBs.back().TempBB.get(); |
601 | } else { |
602 | BB = cast_or_null<BasicBlock>(Val: mapValue(V: BA.getBasicBlock())); |
603 | } |
604 | |
605 | return getVM()[&BA] = BlockAddress::get(F, BB: BB ? BB : BA.getBasicBlock()); |
606 | } |
607 | |
608 | Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { |
609 | getVM().MD()[Key].reset(MD: Val); |
610 | return Val; |
611 | } |
612 | |
613 | Metadata *Mapper::mapToSelf(const Metadata *MD) { |
614 | return mapToMetadata(Key: MD, Val: const_cast<Metadata *>(MD)); |
615 | } |
616 | |
617 | std::optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) { |
618 | if (!Op) |
619 | return nullptr; |
620 | |
621 | if (std::optional<Metadata *> MappedOp = M.mapSimpleMetadata(MD: Op)) { |
622 | #ifndef NDEBUG |
623 | if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) |
624 | assert((!*MappedOp || M.getVM().count(CMD->getValue()) || |
625 | M.getVM().getMappedMD(Op)) && |
626 | "Expected Value to be memoized" ); |
627 | else |
628 | assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) && |
629 | "Expected result to be memoized" ); |
630 | #endif |
631 | return *MappedOp; |
632 | } |
633 | |
634 | const MDNode &N = *cast<MDNode>(Val: Op); |
635 | if (N.isDistinct()) |
636 | return mapDistinctNode(N); |
637 | return std::nullopt; |
638 | } |
639 | |
640 | MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { |
641 | assert(N.isDistinct() && "Expected a distinct node" ); |
642 | assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node" ); |
643 | Metadata *NewM = nullptr; |
644 | |
645 | if (M.Flags & RF_ReuseAndMutateDistinctMDs) { |
646 | NewM = M.mapToSelf(MD: &N); |
647 | } else { |
648 | NewM = MDNode::replaceWithDistinct(N: N.clone()); |
649 | LLVM_DEBUG(dbgs() << "\nMap " << N << "\n" |
650 | << "To " << *NewM << "\n\n" ); |
651 | M.mapToMetadata(Key: &N, Val: NewM); |
652 | } |
653 | DistinctWorklist.push_back(Elt: cast<MDNode>(Val: NewM)); |
654 | |
655 | return DistinctWorklist.back(); |
656 | } |
657 | |
658 | static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, |
659 | Value *MappedV) { |
660 | if (CMD.getValue() == MappedV) |
661 | return const_cast<ConstantAsMetadata *>(&CMD); |
662 | return MappedV ? ConstantAsMetadata::getConstant(C: MappedV) : nullptr; |
663 | } |
664 | |
665 | std::optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { |
666 | if (!Op) |
667 | return nullptr; |
668 | |
669 | if (std::optional<Metadata *> MappedOp = M.getVM().getMappedMD(MD: Op)) |
670 | return *MappedOp; |
671 | |
672 | if (isa<MDString>(Val: Op)) |
673 | return const_cast<Metadata *>(Op); |
674 | |
675 | if (auto *CMD = dyn_cast<ConstantAsMetadata>(Val: Op)) |
676 | return wrapConstantAsMetadata(CMD: *CMD, MappedV: M.getVM().lookup(Val: CMD->getValue())); |
677 | |
678 | return std::nullopt; |
679 | } |
680 | |
681 | Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { |
682 | auto Where = Info.find(Val: &Op); |
683 | assert(Where != Info.end() && "Expected a valid reference" ); |
684 | |
685 | auto &OpD = Where->second; |
686 | if (!OpD.HasChanged) |
687 | return Op; |
688 | |
689 | // Lazily construct a temporary node. |
690 | if (!OpD.Placeholder) |
691 | OpD.Placeholder = Op.clone(); |
692 | |
693 | return *OpD.Placeholder; |
694 | } |
695 | |
696 | template <class OperandMapper> |
697 | void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { |
698 | assert(!N.isUniqued() && "Expected distinct or temporary nodes" ); |
699 | for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { |
700 | Metadata *Old = N.getOperand(I); |
701 | Metadata *New = mapOperand(Old); |
702 | if (Old != New) |
703 | LLVM_DEBUG(dbgs() << "Replacing Op " << Old << " with " << New << " in " |
704 | << N << "\n" ); |
705 | |
706 | if (Old != New) |
707 | N.replaceOperandWith(I, New); |
708 | } |
709 | } |
710 | |
711 | namespace { |
712 | |
713 | /// An entry in the worklist for the post-order traversal. |
714 | struct POTWorklistEntry { |
715 | MDNode *N; ///< Current node. |
716 | MDNode::op_iterator Op; ///< Current operand of \c N. |
717 | |
718 | /// Keep a flag of whether operands have changed in the worklist to avoid |
719 | /// hitting the map in \a UniquedGraph. |
720 | bool HasChanged = false; |
721 | |
722 | POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {} |
723 | }; |
724 | |
725 | } // end anonymous namespace |
726 | |
727 | bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { |
728 | assert(G.Info.empty() && "Expected a fresh traversal" ); |
729 | assert(FirstN.isUniqued() && "Expected uniqued node in POT" ); |
730 | |
731 | // Construct a post-order traversal of the uniqued subgraph under FirstN. |
732 | bool AnyChanges = false; |
733 | SmallVector<POTWorklistEntry, 16> Worklist; |
734 | Worklist.push_back(Elt: POTWorklistEntry(const_cast<MDNode &>(FirstN))); |
735 | (void)G.Info[&FirstN]; |
736 | while (!Worklist.empty()) { |
737 | // Start or continue the traversal through the this node's operands. |
738 | auto &WE = Worklist.back(); |
739 | if (MDNode *N = visitOperands(G, I&: WE.Op, E: WE.N->op_end(), HasChanged&: WE.HasChanged)) { |
740 | // Push a new node to traverse first. |
741 | Worklist.push_back(Elt: POTWorklistEntry(*N)); |
742 | continue; |
743 | } |
744 | |
745 | // Push the node onto the POT. |
746 | assert(WE.N->isUniqued() && "Expected only uniqued nodes" ); |
747 | assert(WE.Op == WE.N->op_end() && "Expected to visit all operands" ); |
748 | auto &D = G.Info[WE.N]; |
749 | AnyChanges |= D.HasChanged = WE.HasChanged; |
750 | D.ID = G.POT.size(); |
751 | G.POT.push_back(Elt: WE.N); |
752 | |
753 | // Pop the node off the worklist. |
754 | Worklist.pop_back(); |
755 | } |
756 | return AnyChanges; |
757 | } |
758 | |
759 | MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I, |
760 | MDNode::op_iterator E, bool &HasChanged) { |
761 | while (I != E) { |
762 | Metadata *Op = *I++; // Increment even on early return. |
763 | if (std::optional<Metadata *> MappedOp = tryToMapOperand(Op)) { |
764 | // Check if the operand changes. |
765 | HasChanged |= Op != *MappedOp; |
766 | continue; |
767 | } |
768 | |
769 | // A uniqued metadata node. |
770 | MDNode &OpN = *cast<MDNode>(Val: Op); |
771 | assert(OpN.isUniqued() && |
772 | "Only uniqued operands cannot be mapped immediately" ); |
773 | if (G.Info.insert(KV: std::make_pair(x: &OpN, y: Data())).second) |
774 | return &OpN; // This is a new one. Return it. |
775 | } |
776 | return nullptr; |
777 | } |
778 | |
779 | void MDNodeMapper::UniquedGraph::propagateChanges() { |
780 | bool AnyChanges; |
781 | do { |
782 | AnyChanges = false; |
783 | for (MDNode *N : POT) { |
784 | auto &D = Info[N]; |
785 | if (D.HasChanged) |
786 | continue; |
787 | |
788 | if (llvm::none_of(Range: N->operands(), P: [&](const Metadata *Op) { |
789 | auto Where = Info.find(Val: Op); |
790 | return Where != Info.end() && Where->second.HasChanged; |
791 | })) |
792 | continue; |
793 | |
794 | AnyChanges = D.HasChanged = true; |
795 | } |
796 | } while (AnyChanges); |
797 | } |
798 | |
799 | void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { |
800 | // Construct uniqued nodes, building forward references as necessary. |
801 | SmallVector<MDNode *, 16> CyclicNodes; |
802 | for (auto *N : G.POT) { |
803 | auto &D = G.Info[N]; |
804 | if (!D.HasChanged) { |
805 | // The node hasn't changed. |
806 | M.mapToSelf(MD: N); |
807 | continue; |
808 | } |
809 | |
810 | // Remember whether this node had a placeholder. |
811 | bool HadPlaceholder(D.Placeholder); |
812 | |
813 | // Clone the uniqued node and remap the operands. |
814 | TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); |
815 | remapOperands(N&: *ClonedN, mapOperand: [this, &D, &G](Metadata *Old) { |
816 | if (std::optional<Metadata *> MappedOp = getMappedOp(Op: Old)) |
817 | return *MappedOp; |
818 | (void)D; |
819 | assert(G.Info[Old].ID > D.ID && "Expected a forward reference" ); |
820 | return &G.getFwdReference(Op&: *cast<MDNode>(Val: Old)); |
821 | }); |
822 | |
823 | auto *NewN = MDNode::replaceWithUniqued(N: std::move(ClonedN)); |
824 | if (N && NewN && N != NewN) { |
825 | LLVM_DEBUG(dbgs() << "\nMap " << *N << "\n" |
826 | << "To " << *NewN << "\n\n" ); |
827 | } |
828 | |
829 | M.mapToMetadata(Key: N, Val: NewN); |
830 | |
831 | // Nodes that were referenced out of order in the POT are involved in a |
832 | // uniquing cycle. |
833 | if (HadPlaceholder) |
834 | CyclicNodes.push_back(Elt: NewN); |
835 | } |
836 | |
837 | // Resolve cycles. |
838 | for (auto *N : CyclicNodes) |
839 | if (!N->isResolved()) |
840 | N->resolveCycles(); |
841 | } |
842 | |
843 | Metadata *MDNodeMapper::map(const MDNode &N) { |
844 | assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive" ); |
845 | assert(!(M.Flags & RF_NoModuleLevelChanges) && |
846 | "MDNodeMapper::map assumes module-level changes" ); |
847 | |
848 | // Require resolved nodes whenever metadata might be remapped. |
849 | assert(N.isResolved() && "Unexpected unresolved node" ); |
850 | |
851 | Metadata *MappedN = |
852 | N.isUniqued() ? mapTopLevelUniquedNode(FirstN: N) : mapDistinctNode(N); |
853 | while (!DistinctWorklist.empty()) |
854 | remapOperands(N&: *DistinctWorklist.pop_back_val(), mapOperand: [this](Metadata *Old) { |
855 | if (std::optional<Metadata *> MappedOp = tryToMapOperand(Op: Old)) |
856 | return *MappedOp; |
857 | return mapTopLevelUniquedNode(FirstN: *cast<MDNode>(Val: Old)); |
858 | }); |
859 | return MappedN; |
860 | } |
861 | |
862 | Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { |
863 | assert(FirstN.isUniqued() && "Expected uniqued node" ); |
864 | |
865 | // Create a post-order traversal of uniqued nodes under FirstN. |
866 | UniquedGraph G; |
867 | if (!createPOT(G, FirstN)) { |
868 | // Return early if no nodes have changed. |
869 | for (const MDNode *N : G.POT) |
870 | M.mapToSelf(MD: N); |
871 | return &const_cast<MDNode &>(FirstN); |
872 | } |
873 | |
874 | // Update graph with all nodes that have changed. |
875 | G.propagateChanges(); |
876 | |
877 | // Map all the nodes in the graph. |
878 | mapNodesInPOT(G); |
879 | |
880 | // Return the original node, remapped. |
881 | return *getMappedOp(Op: &FirstN); |
882 | } |
883 | |
884 | std::optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { |
885 | // If the value already exists in the map, use it. |
886 | if (std::optional<Metadata *> NewMD = getVM().getMappedMD(MD)) |
887 | return *NewMD; |
888 | |
889 | if (isa<MDString>(Val: MD)) |
890 | return const_cast<Metadata *>(MD); |
891 | |
892 | // This is a module-level metadata. If nothing at the module level is |
893 | // changing, use an identity mapping. |
894 | if ((Flags & RF_NoModuleLevelChanges)) |
895 | return const_cast<Metadata *>(MD); |
896 | |
897 | if (auto *CMD = dyn_cast<ConstantAsMetadata>(Val: MD)) { |
898 | // Don't memoize ConstantAsMetadata. Instead of lasting until the |
899 | // LLVMContext is destroyed, they can be deleted when the GlobalValue they |
900 | // reference is destructed. These aren't super common, so the extra |
901 | // indirection isn't that expensive. |
902 | return wrapConstantAsMetadata(CMD: *CMD, MappedV: mapValue(V: CMD->getValue())); |
903 | } |
904 | |
905 | assert(isa<MDNode>(MD) && "Expected a metadata node" ); |
906 | |
907 | return std::nullopt; |
908 | } |
909 | |
910 | Metadata *Mapper::mapMetadata(const Metadata *MD) { |
911 | assert(MD && "Expected valid metadata" ); |
912 | assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata" ); |
913 | |
914 | if (std::optional<Metadata *> NewMD = mapSimpleMetadata(MD)) |
915 | return *NewMD; |
916 | |
917 | return MDNodeMapper(*this).map(N: *cast<MDNode>(Val: MD)); |
918 | } |
919 | |
920 | void Mapper::flush() { |
921 | // Flush out the worklist of global values. |
922 | while (!Worklist.empty()) { |
923 | WorklistEntry E = Worklist.pop_back_val(); |
924 | CurrentMCID = E.MCID; |
925 | switch (E.Kind) { |
926 | case WorklistEntry::MapGlobalInit: |
927 | E.Data.GVInit.GV->setInitializer(mapConstant(C: E.Data.GVInit.Init)); |
928 | remapGlobalObjectMetadata(GO&: *E.Data.GVInit.GV); |
929 | break; |
930 | case WorklistEntry::MapAppendingVar: { |
931 | unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; |
932 | // mapAppendingVariable call can change AppendingInits if initalizer for |
933 | // the variable depends on another appending global, because of that inits |
934 | // need to be extracted and updated before the call. |
935 | SmallVector<Constant *, 8> NewInits( |
936 | drop_begin(RangeOrContainer&: AppendingInits, N: PrefixSize)); |
937 | AppendingInits.resize(N: PrefixSize); |
938 | mapAppendingVariable(GV&: *E.Data.AppendingGV.GV, |
939 | InitPrefix: E.Data.AppendingGV.InitPrefix, |
940 | IsOldCtorDtor: E.AppendingGVIsOldCtorDtor, NewMembers: ArrayRef(NewInits)); |
941 | break; |
942 | } |
943 | case WorklistEntry::MapAliasOrIFunc: { |
944 | GlobalValue *GV = E.Data.AliasOrIFunc.GV; |
945 | Constant *Target = mapConstant(C: E.Data.AliasOrIFunc.Target); |
946 | if (auto *GA = dyn_cast<GlobalAlias>(Val: GV)) |
947 | GA->setAliasee(Target); |
948 | else if (auto *GI = dyn_cast<GlobalIFunc>(Val: GV)) |
949 | GI->setResolver(Target); |
950 | else |
951 | llvm_unreachable("Not alias or ifunc" ); |
952 | break; |
953 | } |
954 | case WorklistEntry::RemapFunction: |
955 | remapFunction(F&: *E.Data.RemapF); |
956 | break; |
957 | } |
958 | } |
959 | CurrentMCID = 0; |
960 | |
961 | // Finish logic for block addresses now that all global values have been |
962 | // handled. |
963 | while (!DelayedBBs.empty()) { |
964 | DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); |
965 | BasicBlock *BB = cast_or_null<BasicBlock>(Val: mapValue(V: DBB.OldBB)); |
966 | DBB.TempBB->replaceAllUsesWith(V: BB ? BB : DBB.OldBB); |
967 | } |
968 | } |
969 | |
970 | void Mapper::remapInstruction(Instruction *I) { |
971 | // Remap operands. |
972 | for (Use &Op : I->operands()) { |
973 | Value *V = mapValue(V: Op); |
974 | // If we aren't ignoring missing entries, assert that something happened. |
975 | if (V) |
976 | Op = V; |
977 | else |
978 | assert((Flags & RF_IgnoreMissingLocals) && |
979 | "Referenced value not in value map!" ); |
980 | } |
981 | |
982 | // Remap phi nodes' incoming blocks. |
983 | if (PHINode *PN = dyn_cast<PHINode>(Val: I)) { |
984 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
985 | Value *V = mapValue(V: PN->getIncomingBlock(i)); |
986 | // If we aren't ignoring missing entries, assert that something happened. |
987 | if (V) |
988 | PN->setIncomingBlock(i, BB: cast<BasicBlock>(Val: V)); |
989 | else |
990 | assert((Flags & RF_IgnoreMissingLocals) && |
991 | "Referenced block not in value map!" ); |
992 | } |
993 | } |
994 | |
995 | // Remap attached metadata. |
996 | SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; |
997 | I->getAllMetadata(MDs); |
998 | for (const auto &MI : MDs) { |
999 | MDNode *Old = MI.second; |
1000 | MDNode *New = cast_or_null<MDNode>(Val: mapMetadata(MD: Old)); |
1001 | if (New != Old) |
1002 | I->setMetadata(KindID: MI.first, Node: New); |
1003 | } |
1004 | |
1005 | if (!TypeMapper) |
1006 | return; |
1007 | |
1008 | // If the instruction's type is being remapped, do so now. |
1009 | if (auto *CB = dyn_cast<CallBase>(Val: I)) { |
1010 | SmallVector<Type *, 3> Tys; |
1011 | FunctionType *FTy = CB->getFunctionType(); |
1012 | Tys.reserve(N: FTy->getNumParams()); |
1013 | for (Type *Ty : FTy->params()) |
1014 | Tys.push_back(Elt: TypeMapper->remapType(SrcTy: Ty)); |
1015 | CB->mutateFunctionType(FTy: FunctionType::get( |
1016 | Result: TypeMapper->remapType(SrcTy: I->getType()), Params: Tys, isVarArg: FTy->isVarArg())); |
1017 | |
1018 | LLVMContext &C = CB->getContext(); |
1019 | AttributeList Attrs = CB->getAttributes(); |
1020 | for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { |
1021 | for (int AttrIdx = Attribute::FirstTypeAttr; |
1022 | AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) { |
1023 | Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx; |
1024 | if (Type *Ty = |
1025 | Attrs.getAttributeAtIndex(Index: i, Kind: TypedAttr).getValueAsType()) { |
1026 | Attrs = Attrs.replaceAttributeTypeAtIndex(C, ArgNo: i, Kind: TypedAttr, |
1027 | ReplacementTy: TypeMapper->remapType(SrcTy: Ty)); |
1028 | break; |
1029 | } |
1030 | } |
1031 | } |
1032 | CB->setAttributes(Attrs); |
1033 | return; |
1034 | } |
1035 | if (auto *AI = dyn_cast<AllocaInst>(Val: I)) |
1036 | AI->setAllocatedType(TypeMapper->remapType(SrcTy: AI->getAllocatedType())); |
1037 | if (auto *GEP = dyn_cast<GetElementPtrInst>(Val: I)) { |
1038 | GEP->setSourceElementType( |
1039 | TypeMapper->remapType(SrcTy: GEP->getSourceElementType())); |
1040 | GEP->setResultElementType( |
1041 | TypeMapper->remapType(SrcTy: GEP->getResultElementType())); |
1042 | } |
1043 | I->mutateType(Ty: TypeMapper->remapType(SrcTy: I->getType())); |
1044 | } |
1045 | |
1046 | void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) { |
1047 | SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; |
1048 | GO.getAllMetadata(MDs); |
1049 | GO.clearMetadata(); |
1050 | for (const auto &I : MDs) |
1051 | GO.addMetadata(KindID: I.first, MD&: *cast<MDNode>(Val: mapMetadata(MD: I.second))); |
1052 | } |
1053 | |
1054 | void Mapper::remapFunction(Function &F) { |
1055 | // Remap the operands. |
1056 | for (Use &Op : F.operands()) |
1057 | if (Op) |
1058 | Op = mapValue(V: Op); |
1059 | |
1060 | // Remap the metadata attachments. |
1061 | remapGlobalObjectMetadata(GO&: F); |
1062 | |
1063 | // Remap the argument types. |
1064 | if (TypeMapper) |
1065 | for (Argument &A : F.args()) |
1066 | A.mutateType(Ty: TypeMapper->remapType(SrcTy: A.getType())); |
1067 | |
1068 | // Remap the instructions. |
1069 | for (BasicBlock &BB : F) { |
1070 | for (Instruction &I : BB) { |
1071 | remapInstruction(I: &I); |
1072 | for (DbgRecord &DR : I.getDbgRecordRange()) |
1073 | remapDbgRecord(DR); |
1074 | } |
1075 | } |
1076 | } |
1077 | |
1078 | void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, |
1079 | bool IsOldCtorDtor, |
1080 | ArrayRef<Constant *> NewMembers) { |
1081 | SmallVector<Constant *, 16> Elements; |
1082 | if (InitPrefix) { |
1083 | unsigned NumElements = |
1084 | cast<ArrayType>(Val: InitPrefix->getType())->getNumElements(); |
1085 | for (unsigned I = 0; I != NumElements; ++I) |
1086 | Elements.push_back(Elt: InitPrefix->getAggregateElement(Elt: I)); |
1087 | } |
1088 | |
1089 | PointerType *VoidPtrTy; |
1090 | Type *EltTy; |
1091 | if (IsOldCtorDtor) { |
1092 | // FIXME: This upgrade is done during linking to support the C API. See |
1093 | // also IRLinker::linkAppendingVarProto() in IRMover.cpp. |
1094 | VoidPtrTy = PointerType::getUnqual(C&: GV.getContext()); |
1095 | auto &ST = *cast<StructType>(Val: NewMembers.front()->getType()); |
1096 | Type *Tys[3] = {ST.getElementType(N: 0), ST.getElementType(N: 1), VoidPtrTy}; |
1097 | EltTy = StructType::get(Context&: GV.getContext(), Elements: Tys, isPacked: false); |
1098 | } |
1099 | |
1100 | for (auto *V : NewMembers) { |
1101 | Constant *NewV; |
1102 | if (IsOldCtorDtor) { |
1103 | auto *S = cast<ConstantStruct>(Val: V); |
1104 | auto *E1 = cast<Constant>(Val: mapValue(V: S->getOperand(i_nocapture: 0))); |
1105 | auto *E2 = cast<Constant>(Val: mapValue(V: S->getOperand(i_nocapture: 1))); |
1106 | Constant *Null = Constant::getNullValue(Ty: VoidPtrTy); |
1107 | NewV = ConstantStruct::get(T: cast<StructType>(Val: EltTy), Vs: E1, Vs: E2, Vs: Null); |
1108 | } else { |
1109 | NewV = cast_or_null<Constant>(Val: mapValue(V)); |
1110 | } |
1111 | Elements.push_back(Elt: NewV); |
1112 | } |
1113 | |
1114 | GV.setInitializer( |
1115 | ConstantArray::get(T: cast<ArrayType>(Val: GV.getValueType()), V: Elements)); |
1116 | } |
1117 | |
1118 | void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, |
1119 | unsigned MCID) { |
1120 | assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule" ); |
1121 | assert(MCID < MCs.size() && "Invalid mapping context" ); |
1122 | |
1123 | WorklistEntry WE; |
1124 | WE.Kind = WorklistEntry::MapGlobalInit; |
1125 | WE.MCID = MCID; |
1126 | WE.Data.GVInit.GV = &GV; |
1127 | WE.Data.GVInit.Init = &Init; |
1128 | Worklist.push_back(Elt: WE); |
1129 | } |
1130 | |
1131 | void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, |
1132 | Constant *InitPrefix, |
1133 | bool IsOldCtorDtor, |
1134 | ArrayRef<Constant *> NewMembers, |
1135 | unsigned MCID) { |
1136 | assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule" ); |
1137 | assert(MCID < MCs.size() && "Invalid mapping context" ); |
1138 | |
1139 | WorklistEntry WE; |
1140 | WE.Kind = WorklistEntry::MapAppendingVar; |
1141 | WE.MCID = MCID; |
1142 | WE.Data.AppendingGV.GV = &GV; |
1143 | WE.Data.AppendingGV.InitPrefix = InitPrefix; |
1144 | WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; |
1145 | WE.AppendingGVNumNewMembers = NewMembers.size(); |
1146 | Worklist.push_back(Elt: WE); |
1147 | AppendingInits.append(in_start: NewMembers.begin(), in_end: NewMembers.end()); |
1148 | } |
1149 | |
1150 | void Mapper::scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target, |
1151 | unsigned MCID) { |
1152 | assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule" ); |
1153 | assert((isa<GlobalAlias>(GV) || isa<GlobalIFunc>(GV)) && |
1154 | "Should be alias or ifunc" ); |
1155 | assert(MCID < MCs.size() && "Invalid mapping context" ); |
1156 | |
1157 | WorklistEntry WE; |
1158 | WE.Kind = WorklistEntry::MapAliasOrIFunc; |
1159 | WE.MCID = MCID; |
1160 | WE.Data.AliasOrIFunc.GV = &GV; |
1161 | WE.Data.AliasOrIFunc.Target = &Target; |
1162 | Worklist.push_back(Elt: WE); |
1163 | } |
1164 | |
1165 | void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { |
1166 | assert(AlreadyScheduled.insert(&F).second && "Should not reschedule" ); |
1167 | assert(MCID < MCs.size() && "Invalid mapping context" ); |
1168 | |
1169 | WorklistEntry WE; |
1170 | WE.Kind = WorklistEntry::RemapFunction; |
1171 | WE.MCID = MCID; |
1172 | WE.Data.RemapF = &F; |
1173 | Worklist.push_back(Elt: WE); |
1174 | } |
1175 | |
1176 | void Mapper::addFlags(RemapFlags Flags) { |
1177 | assert(!hasWorkToDo() && "Expected to have flushed the worklist" ); |
1178 | this->Flags = this->Flags | Flags; |
1179 | } |
1180 | |
1181 | static Mapper *getAsMapper(void *pImpl) { |
1182 | return reinterpret_cast<Mapper *>(pImpl); |
1183 | } |
1184 | |
1185 | namespace { |
1186 | |
1187 | class FlushingMapper { |
1188 | Mapper &M; |
1189 | |
1190 | public: |
1191 | explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { |
1192 | assert(!M.hasWorkToDo() && "Expected to be flushed" ); |
1193 | } |
1194 | |
1195 | ~FlushingMapper() { M.flush(); } |
1196 | |
1197 | Mapper *operator->() const { return &M; } |
1198 | }; |
1199 | |
1200 | } // end anonymous namespace |
1201 | |
1202 | ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, |
1203 | ValueMapTypeRemapper *TypeMapper, |
1204 | ValueMaterializer *Materializer) |
1205 | : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {} |
1206 | |
1207 | ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } |
1208 | |
1209 | unsigned |
1210 | ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, |
1211 | ValueMaterializer *Materializer) { |
1212 | return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); |
1213 | } |
1214 | |
1215 | void ValueMapper::addFlags(RemapFlags Flags) { |
1216 | FlushingMapper(pImpl)->addFlags(Flags); |
1217 | } |
1218 | |
1219 | Value *ValueMapper::mapValue(const Value &V) { |
1220 | return FlushingMapper(pImpl)->mapValue(V: &V); |
1221 | } |
1222 | |
1223 | Constant *ValueMapper::mapConstant(const Constant &C) { |
1224 | return cast_or_null<Constant>(Val: mapValue(V: C)); |
1225 | } |
1226 | |
1227 | Metadata *ValueMapper::mapMetadata(const Metadata &MD) { |
1228 | return FlushingMapper(pImpl)->mapMetadata(MD: &MD); |
1229 | } |
1230 | |
1231 | MDNode *ValueMapper::mapMDNode(const MDNode &N) { |
1232 | return cast_or_null<MDNode>(Val: mapMetadata(MD: N)); |
1233 | } |
1234 | |
1235 | void ValueMapper::remapInstruction(Instruction &I) { |
1236 | FlushingMapper(pImpl)->remapInstruction(I: &I); |
1237 | } |
1238 | |
1239 | void ValueMapper::remapDbgRecord(Module *M, DbgRecord &DR) { |
1240 | FlushingMapper(pImpl)->remapDbgRecord(DR); |
1241 | } |
1242 | |
1243 | void ValueMapper::remapDbgRecordRange( |
1244 | Module *M, iterator_range<DbgRecord::self_iterator> Range) { |
1245 | for (DbgRecord &DR : Range) { |
1246 | remapDbgRecord(M, DR); |
1247 | } |
1248 | } |
1249 | |
1250 | void ValueMapper::remapFunction(Function &F) { |
1251 | FlushingMapper(pImpl)->remapFunction(F); |
1252 | } |
1253 | |
1254 | void ValueMapper::remapGlobalObjectMetadata(GlobalObject &GO) { |
1255 | FlushingMapper(pImpl)->remapGlobalObjectMetadata(GO); |
1256 | } |
1257 | |
1258 | void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, |
1259 | Constant &Init, |
1260 | unsigned MCID) { |
1261 | getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); |
1262 | } |
1263 | |
1264 | void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, |
1265 | Constant *InitPrefix, |
1266 | bool IsOldCtorDtor, |
1267 | ArrayRef<Constant *> NewMembers, |
1268 | unsigned MCID) { |
1269 | getAsMapper(pImpl)->scheduleMapAppendingVariable( |
1270 | GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); |
1271 | } |
1272 | |
1273 | void ValueMapper::scheduleMapGlobalAlias(GlobalAlias &GA, Constant &Aliasee, |
1274 | unsigned MCID) { |
1275 | getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GV&: GA, Target&: Aliasee, MCID); |
1276 | } |
1277 | |
1278 | void ValueMapper::scheduleMapGlobalIFunc(GlobalIFunc &GI, Constant &Resolver, |
1279 | unsigned MCID) { |
1280 | getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GV&: GI, Target&: Resolver, MCID); |
1281 | } |
1282 | |
1283 | void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { |
1284 | getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); |
1285 | } |
1286 | |