1//===-- DifferenceEngine.cpp - Structural function/module comparison ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This header defines the implementation of the LLVM difference
10// engine, which structurally compares global values within a module.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DifferenceEngine.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/DenseSet.h"
17#include "llvm/ADT/SmallString.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringSet.h"
20#include "llvm/IR/BasicBlock.h"
21#include "llvm/IR/CFG.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/Function.h"
24#include "llvm/IR/Instructions.h"
25#include "llvm/IR/Module.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Support/type_traits.h"
29#include <utility>
30
31using namespace llvm;
32
33namespace {
34
35/// A priority queue, implemented as a heap.
36template <class T, class Sorter, unsigned InlineCapacity>
37class PriorityQueue {
38 Sorter Precedes;
39 llvm::SmallVector<T, InlineCapacity> Storage;
40
41public:
42 PriorityQueue(const Sorter &Precedes) : Precedes(Precedes) {}
43
44 /// Checks whether the heap is empty.
45 bool empty() const { return Storage.empty(); }
46
47 /// Insert a new value on the heap.
48 void insert(const T &V) {
49 unsigned Index = Storage.size();
50 Storage.push_back(V);
51 if (Index == 0) return;
52
53 T *data = Storage.data();
54 while (true) {
55 unsigned Target = (Index + 1) / 2 - 1;
56 if (!Precedes(data[Index], data[Target])) return;
57 std::swap(data[Index], data[Target]);
58 if (Target == 0) return;
59 Index = Target;
60 }
61 }
62
63 /// Remove the minimum value in the heap. Only valid on a non-empty heap.
64 T remove_min() {
65 assert(!empty());
66 T tmp = Storage[0];
67
68 unsigned NewSize = Storage.size() - 1;
69 if (NewSize) {
70 // Move the slot at the end to the beginning.
71 if (std::is_trivially_copyable<T>::value)
72 Storage[0] = Storage[NewSize];
73 else
74 std::swap(Storage[0], Storage[NewSize]);
75
76 // Bubble the root up as necessary.
77 unsigned Index = 0;
78 while (true) {
79 // With a 1-based index, the children would be Index*2 and Index*2+1.
80 unsigned R = (Index + 1) * 2;
81 unsigned L = R - 1;
82
83 // If R is out of bounds, we're done after this in any case.
84 if (R >= NewSize) {
85 // If L is also out of bounds, we're done immediately.
86 if (L >= NewSize) break;
87
88 // Otherwise, test whether we should swap L and Index.
89 if (Precedes(Storage[L], Storage[Index]))
90 std::swap(Storage[L], Storage[Index]);
91 break;
92 }
93
94 // Otherwise, we need to compare with the smaller of L and R.
95 // Prefer R because it's closer to the end of the array.
96 unsigned IndexToTest = (Precedes(Storage[L], Storage[R]) ? L : R);
97
98 // If Index is >= the min of L and R, then heap ordering is restored.
99 if (!Precedes(Storage[IndexToTest], Storage[Index]))
100 break;
101
102 // Otherwise, keep bubbling up.
103 std::swap(Storage[IndexToTest], Storage[Index]);
104 Index = IndexToTest;
105 }
106 }
107 Storage.pop_back();
108
109 return tmp;
110 }
111};
112
113/// A function-scope difference engine.
114class FunctionDifferenceEngine {
115 DifferenceEngine &Engine;
116
117 // Some initializers may reference the variable we're currently checking. This
118 // can cause an infinite loop. The Saved[LR]HS ivars can be checked to prevent
119 // recursing.
120 const Value *SavedLHS;
121 const Value *SavedRHS;
122
123 // The current mapping from old local values to new local values.
124 DenseMap<const Value *, const Value *> Values;
125
126 // The current mapping from old blocks to new blocks.
127 DenseMap<const BasicBlock *, const BasicBlock *> Blocks;
128
129 // The tentative mapping from old local values while comparing a pair of
130 // basic blocks. Once the pair has been processed, the tentative mapping is
131 // committed to the Values map.
132 DenseSet<std::pair<const Value *, const Value *>> TentativeValues;
133
134 // Equivalence Assumptions
135 //
136 // For basic blocks in loops, some values in phi nodes may depend on
137 // values from not yet processed basic blocks in the loop. When encountering
138 // such values, we optimistically asssume their equivalence and store this
139 // assumption in a BlockDiffCandidate for the pair of compared BBs.
140 //
141 // Once we have diffed all BBs, for every BlockDiffCandidate, we check all
142 // stored assumptions using the Values map that stores proven equivalences
143 // between the old and new values, and report a diff if an assumption cannot
144 // be proven to be true.
145 //
146 // Note that after having made an assumption, all further determined
147 // equivalences implicitly depend on that assumption. These will not be
148 // reverted or reported if the assumption proves to be false, because these
149 // are considered indirect diffs caused by earlier direct diffs.
150 //
151 // We aim to avoid false negatives in llvm-diff, that is, ensure that
152 // whenever no diff is reported, the functions are indeed equal. If
153 // assumptions were made, this is not entirely clear, because in principle we
154 // could end up with a circular proof where the proof of equivalence of two
155 // nodes is depending on the assumption of their equivalence.
156 //
157 // To see that assumptions do not add false negatives, note that if we do not
158 // report a diff, this means that there is an equivalence mapping between old
159 // and new values that is consistent with all assumptions made. The circular
160 // dependency that exists on an IR value level does not exist at run time,
161 // because the values selected by the phi nodes must always already have been
162 // computed. Hence, we can prove equivalence of the old and new functions by
163 // considering step-wise parallel execution, and incrementally proving
164 // equivalence of every new computed value. Another way to think about it is
165 // to imagine cloning the loop BBs for every iteration, turning the loops
166 // into (possibly infinite) DAGs, and proving equivalence by induction on the
167 // iteration, using the computed value mapping.
168
169 // The class BlockDiffCandidate stores pairs which either have already been
170 // proven to differ, or pairs whose equivalence depends on assumptions to be
171 // verified later.
172 struct BlockDiffCandidate {
173 const BasicBlock *LBB;
174 const BasicBlock *RBB;
175 // Maps old values to assumed-to-be-equivalent new values
176 SmallDenseMap<const Value *, const Value *> EquivalenceAssumptions;
177 // If set, we already know the blocks differ.
178 bool KnownToDiffer;
179 };
180
181 // List of block diff candidates in the order found by processing.
182 // We generate reports in this order.
183 // For every LBB, there may only be one corresponding RBB.
184 SmallVector<BlockDiffCandidate> BlockDiffCandidates;
185 // Maps LBB to the index of its BlockDiffCandidate, if existing.
186 DenseMap<const BasicBlock *, uint64_t> BlockDiffCandidateIndices;
187
188 // Note: Every LBB must always be queried together with the same RBB.
189 // The returned reference is not permanently valid and should not be stored.
190 BlockDiffCandidate &getOrCreateBlockDiffCandidate(const BasicBlock *LBB,
191 const BasicBlock *RBB) {
192 auto It = BlockDiffCandidateIndices.find(Val: LBB);
193 // Check if LBB already has a diff candidate
194 if (It == BlockDiffCandidateIndices.end()) {
195 // Add new one
196 BlockDiffCandidateIndices[LBB] = BlockDiffCandidates.size();
197 BlockDiffCandidates.push_back(
198 Elt: {.LBB: LBB, .RBB: RBB, .EquivalenceAssumptions: SmallDenseMap<const Value *, const Value *>(), .KnownToDiffer: false});
199 return BlockDiffCandidates.back();
200 }
201 // Use existing one
202 BlockDiffCandidate &Result = BlockDiffCandidates[It->second];
203 assert(Result.RBB == RBB && "Inconsistent basic block pairing!");
204 return Result;
205 }
206
207 // Optionally passed to equivalence checker functions, so these can add
208 // assumptions in BlockDiffCandidates. Its presence controls whether
209 // assumptions are generated.
210 struct AssumptionContext {
211 // The two basic blocks that need the two compared values to be equivalent.
212 const BasicBlock *LBB;
213 const BasicBlock *RBB;
214 };
215
216 unsigned getUnprocPredCount(const BasicBlock *Block) const {
217 return llvm::count_if(Range: predecessors(BB: Block), P: [&](const BasicBlock *Pred) {
218 return !Blocks.contains(Val: Pred);
219 });
220 }
221
222 typedef std::pair<const BasicBlock *, const BasicBlock *> BlockPair;
223
224 /// A type which sorts a priority queue by the number of unprocessed
225 /// predecessor blocks it has remaining.
226 ///
227 /// This is actually really expensive to calculate.
228 struct QueueSorter {
229 const FunctionDifferenceEngine &fde;
230 explicit QueueSorter(const FunctionDifferenceEngine &fde) : fde(fde) {}
231
232 bool operator()(BlockPair &Old, BlockPair &New) {
233 return fde.getUnprocPredCount(Block: Old.first)
234 < fde.getUnprocPredCount(Block: New.first);
235 }
236 };
237
238 /// A queue of unified blocks to process.
239 PriorityQueue<BlockPair, QueueSorter, 20> Queue;
240
241 /// Try to unify the given two blocks. Enqueues them for processing
242 /// if they haven't already been processed.
243 ///
244 /// Returns true if there was a problem unifying them.
245 bool tryUnify(const BasicBlock *L, const BasicBlock *R) {
246 const BasicBlock *&Ref = Blocks[L];
247
248 if (Ref) {
249 if (Ref == R) return false;
250
251 Engine.logf(text: "successor %l cannot be equivalent to %r; "
252 "it's already equivalent to %r")
253 << L << R << Ref;
254 return true;
255 }
256
257 Ref = R;
258 Queue.insert(V: BlockPair(L, R));
259 return false;
260 }
261
262 /// Unifies two instructions, given that they're known not to have
263 /// structural differences.
264 void unify(const Instruction *L, const Instruction *R) {
265 DifferenceEngine::Context C(Engine, L, R);
266
267 bool Result = diff(L, R, Complain: true, TryUnify: true, AllowAssumptions: true);
268 assert(!Result && "structural differences second time around?");
269 (void) Result;
270 if (!L->use_empty())
271 Values[L] = R;
272 }
273
274 void processQueue() {
275 while (!Queue.empty()) {
276 BlockPair Pair = Queue.remove_min();
277 diff(L: Pair.first, R: Pair.second);
278 }
279 }
280
281 void checkAndReportDiffCandidates() {
282 for (BlockDiffCandidate &BDC : BlockDiffCandidates) {
283
284 // Check assumptions
285 for (const auto &[L, R] : BDC.EquivalenceAssumptions) {
286 auto It = Values.find(Val: L);
287 if (It == Values.end() || It->second != R) {
288 BDC.KnownToDiffer = true;
289 break;
290 }
291 }
292
293 // Run block diff if the BBs differ
294 if (BDC.KnownToDiffer) {
295 DifferenceEngine::Context C(Engine, BDC.LBB, BDC.RBB);
296 runBlockDiff(LI: BDC.LBB->begin(), RI: BDC.RBB->begin());
297 }
298 }
299 }
300
301 void diff(const BasicBlock *L, const BasicBlock *R) {
302 DifferenceEngine::Context C(Engine, L, R);
303
304 BasicBlock::const_iterator LI = L->begin(), LE = L->end();
305 BasicBlock::const_iterator RI = R->begin();
306
307 do {
308 assert(LI != LE && RI != R->end());
309 const Instruction *LeftI = &*LI, *RightI = &*RI;
310
311 // If the instructions differ, start the more sophisticated diff
312 // algorithm at the start of the block.
313 if (diff(L: LeftI, R: RightI, Complain: false, TryUnify: false, AllowAssumptions: true)) {
314 TentativeValues.clear();
315 // Register (L, R) as diffing pair. Note that we could directly emit a
316 // block diff here, but this way we ensure all diffs are emitted in one
317 // consistent order, independent of whether the diffs were detected
318 // immediately or via invalid assumptions.
319 getOrCreateBlockDiffCandidate(LBB: L, RBB: R).KnownToDiffer = true;
320 return;
321 }
322
323 // Otherwise, tentatively unify them.
324 if (!LeftI->use_empty())
325 TentativeValues.insert(V: std::make_pair(x&: LeftI, y&: RightI));
326
327 ++LI;
328 ++RI;
329 } while (LI != LE); // This is sufficient: we can't get equality of
330 // terminators if there are residual instructions.
331
332 // Unify everything in the block, non-tentatively this time.
333 TentativeValues.clear();
334 for (LI = L->begin(), RI = R->begin(); LI != LE; ++LI, ++RI)
335 unify(L: &*LI, R: &*RI);
336 }
337
338 bool matchForBlockDiff(const Instruction *L, const Instruction *R);
339 void runBlockDiff(BasicBlock::const_iterator LI,
340 BasicBlock::const_iterator RI);
341
342 bool diffCallSites(const CallBase &L, const CallBase &R, bool Complain) {
343 // FIXME: call attributes
344 AssumptionContext AC = {.LBB: L.getParent(), .RBB: R.getParent()};
345 if (!equivalentAsOperands(L: L.getCalledOperand(), R: R.getCalledOperand(),
346 AC: &AC)) {
347 if (Complain) Engine.log(text: "called functions differ");
348 return true;
349 }
350 if (L.arg_size() != R.arg_size()) {
351 if (Complain) Engine.log(text: "argument counts differ");
352 return true;
353 }
354 for (unsigned I = 0, E = L.arg_size(); I != E; ++I)
355 if (!equivalentAsOperands(L: L.getArgOperand(i: I), R: R.getArgOperand(i: I), AC: &AC)) {
356 if (Complain)
357 Engine.logf(text: "arguments %l and %r differ")
358 << L.getArgOperand(i: I) << R.getArgOperand(i: I);
359 return true;
360 }
361 return false;
362 }
363
364 // If AllowAssumptions is enabled, whenever we encounter a pair of values
365 // that we cannot prove to be equivalent, we assume equivalence and store that
366 // assumption to be checked later in BlockDiffCandidates.
367 bool diff(const Instruction *L, const Instruction *R, bool Complain,
368 bool TryUnify, bool AllowAssumptions) {
369 // FIXME: metadata (if Complain is set)
370 AssumptionContext ACValue = {.LBB: L->getParent(), .RBB: R->getParent()};
371 // nullptr AssumptionContext disables assumption generation.
372 const AssumptionContext *AC = AllowAssumptions ? &ACValue : nullptr;
373
374 // Different opcodes always imply different operations.
375 if (L->getOpcode() != R->getOpcode()) {
376 if (Complain) Engine.log(text: "different instruction types");
377 return true;
378 }
379
380 if (isa<CmpInst>(Val: L)) {
381 if (cast<CmpInst>(Val: L)->getPredicate()
382 != cast<CmpInst>(Val: R)->getPredicate()) {
383 if (Complain) Engine.log(text: "different predicates");
384 return true;
385 }
386 } else if (isa<CallInst>(Val: L)) {
387 return diffCallSites(L: cast<CallInst>(Val: *L), R: cast<CallInst>(Val: *R), Complain);
388 } else if (isa<PHINode>(Val: L)) {
389 const PHINode &LI = cast<PHINode>(Val: *L);
390 const PHINode &RI = cast<PHINode>(Val: *R);
391
392 // This is really weird; type uniquing is broken?
393 if (LI.getType() != RI.getType()) {
394 if (!LI.getType()->isPointerTy() || !RI.getType()->isPointerTy()) {
395 if (Complain) Engine.log(text: "different phi types");
396 return true;
397 }
398 }
399
400 if (LI.getNumIncomingValues() != RI.getNumIncomingValues()) {
401 if (Complain)
402 Engine.log(text: "PHI node # of incoming values differ");
403 return true;
404 }
405
406 for (unsigned I = 0; I < LI.getNumIncomingValues(); ++I) {
407 if (TryUnify)
408 tryUnify(L: LI.getIncomingBlock(i: I), R: RI.getIncomingBlock(i: I));
409
410 if (!equivalentAsOperands(L: LI.getIncomingValue(i: I),
411 R: RI.getIncomingValue(i: I), AC)) {
412 if (Complain)
413 Engine.log(text: "PHI node incoming values differ");
414 return true;
415 }
416 }
417
418 return false;
419
420 // Terminators.
421 } else if (isa<InvokeInst>(Val: L)) {
422 const InvokeInst &LI = cast<InvokeInst>(Val: *L);
423 const InvokeInst &RI = cast<InvokeInst>(Val: *R);
424 if (diffCallSites(L: LI, R: RI, Complain))
425 return true;
426
427 if (TryUnify) {
428 tryUnify(L: LI.getNormalDest(), R: RI.getNormalDest());
429 tryUnify(L: LI.getUnwindDest(), R: RI.getUnwindDest());
430 }
431 return false;
432
433 } else if (isa<CallBrInst>(Val: L)) {
434 const CallBrInst &LI = cast<CallBrInst>(Val: *L);
435 const CallBrInst &RI = cast<CallBrInst>(Val: *R);
436 if (LI.getNumIndirectDests() != RI.getNumIndirectDests()) {
437 if (Complain)
438 Engine.log(text: "callbr # of indirect destinations differ");
439 return true;
440 }
441
442 // Perform the "try unify" step so that we can equate the indirect
443 // destinations before checking the call site.
444 for (unsigned I = 0; I < LI.getNumIndirectDests(); I++)
445 tryUnify(L: LI.getIndirectDest(i: I), R: RI.getIndirectDest(i: I));
446
447 if (diffCallSites(L: LI, R: RI, Complain))
448 return true;
449
450 if (TryUnify)
451 tryUnify(L: LI.getDefaultDest(), R: RI.getDefaultDest());
452 return false;
453
454 } else if (isa<BranchInst>(Val: L)) {
455 const BranchInst *LI = cast<BranchInst>(Val: L);
456 const BranchInst *RI = cast<BranchInst>(Val: R);
457 if (LI->isConditional() != RI->isConditional()) {
458 if (Complain) Engine.log(text: "branch conditionality differs");
459 return true;
460 }
461
462 if (LI->isConditional()) {
463 if (!equivalentAsOperands(L: LI->getCondition(), R: RI->getCondition(), AC)) {
464 if (Complain) Engine.log(text: "branch conditions differ");
465 return true;
466 }
467 if (TryUnify) tryUnify(L: LI->getSuccessor(i: 1), R: RI->getSuccessor(i: 1));
468 }
469 if (TryUnify) tryUnify(L: LI->getSuccessor(i: 0), R: RI->getSuccessor(i: 0));
470 return false;
471
472 } else if (isa<IndirectBrInst>(Val: L)) {
473 const IndirectBrInst *LI = cast<IndirectBrInst>(Val: L);
474 const IndirectBrInst *RI = cast<IndirectBrInst>(Val: R);
475 if (LI->getNumDestinations() != RI->getNumDestinations()) {
476 if (Complain) Engine.log(text: "indirectbr # of destinations differ");
477 return true;
478 }
479
480 if (!equivalentAsOperands(L: LI->getAddress(), R: RI->getAddress(), AC)) {
481 if (Complain) Engine.log(text: "indirectbr addresses differ");
482 return true;
483 }
484
485 if (TryUnify) {
486 for (unsigned i = 0; i < LI->getNumDestinations(); i++) {
487 tryUnify(L: LI->getDestination(i), R: RI->getDestination(i));
488 }
489 }
490 return false;
491
492 } else if (isa<SwitchInst>(Val: L)) {
493 const SwitchInst *LI = cast<SwitchInst>(Val: L);
494 const SwitchInst *RI = cast<SwitchInst>(Val: R);
495 if (!equivalentAsOperands(L: LI->getCondition(), R: RI->getCondition(), AC)) {
496 if (Complain) Engine.log(text: "switch conditions differ");
497 return true;
498 }
499 if (TryUnify) tryUnify(L: LI->getDefaultDest(), R: RI->getDefaultDest());
500
501 bool Difference = false;
502
503 DenseMap<const ConstantInt *, const BasicBlock *> LCases;
504 for (auto Case : LI->cases())
505 LCases[Case.getCaseValue()] = Case.getCaseSuccessor();
506
507 for (auto Case : RI->cases()) {
508 const ConstantInt *CaseValue = Case.getCaseValue();
509 const BasicBlock *LCase = LCases[CaseValue];
510 if (LCase) {
511 if (TryUnify)
512 tryUnify(L: LCase, R: Case.getCaseSuccessor());
513 LCases.erase(Val: CaseValue);
514 } else if (Complain || !Difference) {
515 if (Complain)
516 Engine.logf(text: "right switch has extra case %r") << CaseValue;
517 Difference = true;
518 }
519 }
520 if (!Difference)
521 for (DenseMap<const ConstantInt *, const BasicBlock *>::iterator
522 I = LCases.begin(),
523 E = LCases.end();
524 I != E; ++I) {
525 if (Complain)
526 Engine.logf(text: "left switch has extra case %l") << I->first;
527 Difference = true;
528 }
529 return Difference;
530 } else if (isa<UnreachableInst>(Val: L)) {
531 return false;
532 }
533
534 if (L->getNumOperands() != R->getNumOperands()) {
535 if (Complain) Engine.log(text: "instructions have different operand counts");
536 return true;
537 }
538
539 for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
540 Value *LO = L->getOperand(i: I), *RO = R->getOperand(i: I);
541 if (!equivalentAsOperands(L: LO, R: RO, AC)) {
542 if (Complain) Engine.logf(text: "operands %l and %r differ") << LO << RO;
543 return true;
544 }
545 }
546
547 return false;
548 }
549
550public:
551 bool equivalentAsOperands(const Constant *L, const Constant *R,
552 const AssumptionContext *AC) {
553 // Use equality as a preliminary filter.
554 if (L == R)
555 return true;
556
557 if (L->getValueID() != R->getValueID())
558 return false;
559
560 // Ask the engine about global values.
561 if (isa<GlobalValue>(Val: L))
562 return Engine.equivalentAsOperands(L: cast<GlobalValue>(Val: L),
563 R: cast<GlobalValue>(Val: R));
564
565 // Compare constant expressions structurally.
566 if (isa<ConstantExpr>(Val: L))
567 return equivalentAsOperands(L: cast<ConstantExpr>(Val: L), R: cast<ConstantExpr>(Val: R),
568 AC);
569
570 // Constants of the "same type" don't always actually have the same
571 // type; I don't know why. Just white-list them.
572 if (isa<ConstantPointerNull>(Val: L) || isa<UndefValue>(Val: L) || isa<ConstantAggregateZero>(Val: L))
573 return true;
574
575 // Block addresses only match if we've already encountered the
576 // block. FIXME: tentative matches?
577 if (isa<BlockAddress>(Val: L))
578 return Blocks[cast<BlockAddress>(Val: L)->getBasicBlock()]
579 == cast<BlockAddress>(Val: R)->getBasicBlock();
580
581 // If L and R are ConstantVectors, compare each element
582 if (isa<ConstantVector>(Val: L)) {
583 const ConstantVector *CVL = cast<ConstantVector>(Val: L);
584 const ConstantVector *CVR = cast<ConstantVector>(Val: R);
585 if (CVL->getType()->getNumElements() != CVR->getType()->getNumElements())
586 return false;
587 for (unsigned i = 0; i < CVL->getType()->getNumElements(); i++) {
588 if (!equivalentAsOperands(L: CVL->getOperand(i_nocapture: i), R: CVR->getOperand(i_nocapture: i), AC))
589 return false;
590 }
591 return true;
592 }
593
594 // If L and R are ConstantArrays, compare the element count and types.
595 if (isa<ConstantArray>(Val: L)) {
596 const ConstantArray *CAL = cast<ConstantArray>(Val: L);
597 const ConstantArray *CAR = cast<ConstantArray>(Val: R);
598 // Sometimes a type may be equivalent, but not uniquified---e.g. it may
599 // contain a GEP instruction. Do a deeper comparison of the types.
600 if (CAL->getType()->getNumElements() != CAR->getType()->getNumElements())
601 return false;
602
603 for (unsigned I = 0; I < CAL->getType()->getNumElements(); ++I) {
604 if (!equivalentAsOperands(L: CAL->getAggregateElement(Elt: I),
605 R: CAR->getAggregateElement(Elt: I), AC))
606 return false;
607 }
608
609 return true;
610 }
611
612 // If L and R are ConstantStructs, compare each field and type.
613 if (isa<ConstantStruct>(Val: L)) {
614 const ConstantStruct *CSL = cast<ConstantStruct>(Val: L);
615 const ConstantStruct *CSR = cast<ConstantStruct>(Val: R);
616
617 const StructType *LTy = cast<StructType>(Val: CSL->getType());
618 const StructType *RTy = cast<StructType>(Val: CSR->getType());
619
620 // The StructTypes should have the same attributes. Don't use
621 // isLayoutIdentical(), because that just checks the element pointers,
622 // which may not work here.
623 if (LTy->getNumElements() != RTy->getNumElements() ||
624 LTy->isPacked() != RTy->isPacked())
625 return false;
626
627 for (unsigned I = 0; I < LTy->getNumElements(); I++) {
628 const Value *LAgg = CSL->getAggregateElement(Elt: I);
629 const Value *RAgg = CSR->getAggregateElement(Elt: I);
630
631 if (LAgg == SavedLHS || RAgg == SavedRHS) {
632 if (LAgg != SavedLHS || RAgg != SavedRHS)
633 // If the left and right operands aren't both re-analyzing the
634 // variable, then the initialiers don't match, so report "false".
635 // Otherwise, we skip these operands..
636 return false;
637
638 continue;
639 }
640
641 if (!equivalentAsOperands(L: LAgg, R: RAgg, AC)) {
642 return false;
643 }
644 }
645
646 return true;
647 }
648
649 return false;
650 }
651
652 bool equivalentAsOperands(const ConstantExpr *L, const ConstantExpr *R,
653 const AssumptionContext *AC) {
654 if (L == R)
655 return true;
656
657 if (L->getOpcode() != R->getOpcode())
658 return false;
659
660 switch (L->getOpcode()) {
661 case Instruction::GetElementPtr:
662 // FIXME: inbounds?
663 break;
664
665 default:
666 break;
667 }
668
669 if (L->getNumOperands() != R->getNumOperands())
670 return false;
671
672 for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
673 const auto *LOp = L->getOperand(i_nocapture: I);
674 const auto *ROp = R->getOperand(i_nocapture: I);
675
676 if (LOp == SavedLHS || ROp == SavedRHS) {
677 if (LOp != SavedLHS || ROp != SavedRHS)
678 // If the left and right operands aren't both re-analyzing the
679 // variable, then the initialiers don't match, so report "false".
680 // Otherwise, we skip these operands..
681 return false;
682
683 continue;
684 }
685
686 if (!equivalentAsOperands(L: LOp, R: ROp, AC))
687 return false;
688 }
689
690 return true;
691 }
692
693 // There are cases where we cannot determine whether two values are
694 // equivalent, because it depends on not yet processed basic blocks -- see the
695 // documentation on assumptions.
696 //
697 // AC is the context in which we are currently performing a diff.
698 // When we encounter a pair of values for which we can neither prove
699 // equivalence nor the opposite, we do the following:
700 // * If AC is nullptr, we treat the pair as non-equivalent.
701 // * If AC is set, we add an assumption for the basic blocks given by AC,
702 // and treat the pair as equivalent. The assumption is checked later.
703 bool equivalentAsOperands(const Value *L, const Value *R,
704 const AssumptionContext *AC) {
705 // Fall out if the values have different kind.
706 // This possibly shouldn't take priority over oracles.
707 if (L->getValueID() != R->getValueID())
708 return false;
709
710 // Value subtypes: Argument, Constant, Instruction, BasicBlock,
711 // InlineAsm, MDNode, MDString, PseudoSourceValue
712
713 if (isa<Constant>(Val: L))
714 return equivalentAsOperands(L: cast<Constant>(Val: L), R: cast<Constant>(Val: R), AC);
715
716 if (isa<Instruction>(Val: L)) {
717 auto It = Values.find(Val: L);
718 if (It != Values.end())
719 return It->second == R;
720
721 if (TentativeValues.count(V: std::make_pair(x&: L, y&: R)))
722 return true;
723
724 // L and R might be equivalent, this could depend on not yet processed
725 // basic blocks, so we cannot decide here.
726 if (AC) {
727 // Add an assumption, unless there is a conflict with an existing one
728 BlockDiffCandidate &BDC =
729 getOrCreateBlockDiffCandidate(LBB: AC->LBB, RBB: AC->RBB);
730 auto InsertionResult = BDC.EquivalenceAssumptions.insert(KV: {L, R});
731 if (!InsertionResult.second && InsertionResult.first->second != R) {
732 // We already have a conflicting equivalence assumption for L, so at
733 // least one must be wrong, and we know that there is a diff.
734 BDC.KnownToDiffer = true;
735 BDC.EquivalenceAssumptions.clear();
736 return false;
737 }
738 // Optimistically assume equivalence, and check later once all BBs
739 // have been processed.
740 return true;
741 }
742
743 // Assumptions disabled, so pessimistically assume non-equivalence.
744 return false;
745 }
746
747 if (isa<Argument>(Val: L))
748 return Values[L] == R;
749
750 if (isa<BasicBlock>(Val: L))
751 return Blocks[cast<BasicBlock>(Val: L)] != R;
752
753 // Pretend everything else is identical.
754 return true;
755 }
756
757 // Avoid a gcc warning about accessing 'this' in an initializer.
758 FunctionDifferenceEngine *this_() { return this; }
759
760public:
761 FunctionDifferenceEngine(DifferenceEngine &Engine,
762 const Value *SavedLHS = nullptr,
763 const Value *SavedRHS = nullptr)
764 : Engine(Engine), SavedLHS(SavedLHS), SavedRHS(SavedRHS),
765 Queue(QueueSorter(*this_())) {}
766
767 void diff(const Function *L, const Function *R) {
768 assert(Values.empty() && "Multiple diffs per engine are not supported!");
769
770 if (L->arg_size() != R->arg_size())
771 Engine.log(text: "different argument counts");
772
773 // Map the arguments.
774 for (Function::const_arg_iterator LI = L->arg_begin(), LE = L->arg_end(),
775 RI = R->arg_begin(), RE = R->arg_end();
776 LI != LE && RI != RE; ++LI, ++RI)
777 Values[&*LI] = &*RI;
778
779 tryUnify(L: &*L->begin(), R: &*R->begin());
780 processQueue();
781 checkAndReportDiffCandidates();
782 }
783};
784
785struct DiffEntry {
786 DiffEntry() = default;
787
788 unsigned Cost = 0;
789 llvm::SmallVector<char, 8> Path; // actually of DifferenceEngine::DiffChange
790};
791
792bool FunctionDifferenceEngine::matchForBlockDiff(const Instruction *L,
793 const Instruction *R) {
794 return !diff(L, R, Complain: false, TryUnify: false, AllowAssumptions: false);
795}
796
797void FunctionDifferenceEngine::runBlockDiff(BasicBlock::const_iterator LStart,
798 BasicBlock::const_iterator RStart) {
799 BasicBlock::const_iterator LE = LStart->getParent()->end();
800 BasicBlock::const_iterator RE = RStart->getParent()->end();
801
802 unsigned NL = std::distance(first: LStart, last: LE);
803
804 SmallVector<DiffEntry, 20> Paths1(NL+1);
805 SmallVector<DiffEntry, 20> Paths2(NL+1);
806
807 DiffEntry *Cur = Paths1.data();
808 DiffEntry *Next = Paths2.data();
809
810 const unsigned LeftCost = 2;
811 const unsigned RightCost = 2;
812 const unsigned MatchCost = 0;
813
814 assert(TentativeValues.empty());
815
816 // Initialize the first column.
817 for (unsigned I = 0; I != NL+1; ++I) {
818 Cur[I].Cost = I * LeftCost;
819 for (unsigned J = 0; J != I; ++J)
820 Cur[I].Path.push_back(Elt: DC_left);
821 }
822
823 for (BasicBlock::const_iterator RI = RStart; RI != RE; ++RI) {
824 // Initialize the first row.
825 Next[0] = Cur[0];
826 Next[0].Cost += RightCost;
827 Next[0].Path.push_back(Elt: DC_right);
828
829 unsigned Index = 1;
830 for (BasicBlock::const_iterator LI = LStart; LI != LE; ++LI, ++Index) {
831 if (matchForBlockDiff(L: &*LI, R: &*RI)) {
832 Next[Index] = Cur[Index-1];
833 Next[Index].Cost += MatchCost;
834 Next[Index].Path.push_back(Elt: DC_match);
835 TentativeValues.insert(V: std::make_pair(x: &*LI, y: &*RI));
836 } else if (Next[Index-1].Cost <= Cur[Index].Cost) {
837 Next[Index] = Next[Index-1];
838 Next[Index].Cost += LeftCost;
839 Next[Index].Path.push_back(Elt: DC_left);
840 } else {
841 Next[Index] = Cur[Index];
842 Next[Index].Cost += RightCost;
843 Next[Index].Path.push_back(Elt: DC_right);
844 }
845 }
846
847 std::swap(a&: Cur, b&: Next);
848 }
849
850 // We don't need the tentative values anymore; everything from here
851 // on out should be non-tentative.
852 TentativeValues.clear();
853
854 SmallVectorImpl<char> &Path = Cur[NL].Path;
855 BasicBlock::const_iterator LI = LStart, RI = RStart;
856
857 DiffLogBuilder Diff(Engine.getConsumer());
858
859 // Drop trailing matches.
860 while (Path.size() && Path.back() == DC_match)
861 Path.pop_back();
862
863 // Skip leading matches.
864 SmallVectorImpl<char>::iterator
865 PI = Path.begin(), PE = Path.end();
866 while (PI != PE && *PI == DC_match) {
867 unify(L: &*LI, R: &*RI);
868 ++PI;
869 ++LI;
870 ++RI;
871 }
872
873 for (; PI != PE; ++PI) {
874 switch (static_cast<DiffChange>(*PI)) {
875 case DC_match:
876 assert(LI != LE && RI != RE);
877 {
878 const Instruction *L = &*LI, *R = &*RI;
879 unify(L, R);
880 Diff.addMatch(L, R);
881 }
882 ++LI; ++RI;
883 break;
884
885 case DC_left:
886 assert(LI != LE);
887 Diff.addLeft(L: &*LI);
888 ++LI;
889 break;
890
891 case DC_right:
892 assert(RI != RE);
893 Diff.addRight(R: &*RI);
894 ++RI;
895 break;
896 }
897 }
898
899 // Finishing unifying and complaining about the tails of the block,
900 // which should be matches all the way through.
901 while (LI != LE) {
902 assert(RI != RE);
903 unify(L: &*LI, R: &*RI);
904 ++LI;
905 ++RI;
906 }
907
908 // If the terminators have different kinds, but one is an invoke and the
909 // other is an unconditional branch immediately following a call, unify
910 // the results and the destinations.
911 const Instruction *LTerm = LStart->getParent()->getTerminator();
912 const Instruction *RTerm = RStart->getParent()->getTerminator();
913 if (isa<BranchInst>(Val: LTerm) && isa<InvokeInst>(Val: RTerm)) {
914 if (cast<BranchInst>(Val: LTerm)->isConditional()) return;
915 BasicBlock::const_iterator I = LTerm->getIterator();
916 if (I == LStart->getParent()->begin()) return;
917 --I;
918 if (!isa<CallInst>(Val: *I)) return;
919 const CallInst *LCall = cast<CallInst>(Val: &*I);
920 const InvokeInst *RInvoke = cast<InvokeInst>(Val: RTerm);
921 if (!equivalentAsOperands(L: LCall->getCalledOperand(),
922 R: RInvoke->getCalledOperand(), AC: nullptr))
923 return;
924 if (!LCall->use_empty())
925 Values[LCall] = RInvoke;
926 tryUnify(L: LTerm->getSuccessor(Idx: 0), R: RInvoke->getNormalDest());
927 } else if (isa<InvokeInst>(Val: LTerm) && isa<BranchInst>(Val: RTerm)) {
928 if (cast<BranchInst>(Val: RTerm)->isConditional()) return;
929 BasicBlock::const_iterator I = RTerm->getIterator();
930 if (I == RStart->getParent()->begin()) return;
931 --I;
932 if (!isa<CallInst>(Val: *I)) return;
933 const CallInst *RCall = cast<CallInst>(Val&: I);
934 const InvokeInst *LInvoke = cast<InvokeInst>(Val: LTerm);
935 if (!equivalentAsOperands(L: LInvoke->getCalledOperand(),
936 R: RCall->getCalledOperand(), AC: nullptr))
937 return;
938 if (!LInvoke->use_empty())
939 Values[LInvoke] = RCall;
940 tryUnify(L: LInvoke->getNormalDest(), R: RTerm->getSuccessor(Idx: 0));
941 }
942}
943}
944
945void DifferenceEngine::Oracle::anchor() { }
946
947void DifferenceEngine::diff(const Function *L, const Function *R) {
948 Context C(*this, L, R);
949
950 // FIXME: types
951 // FIXME: attributes and CC
952 // FIXME: parameter attributes
953
954 // If both are declarations, we're done.
955 if (L->empty() && R->empty())
956 return;
957 else if (L->empty())
958 log(text: "left function is declaration, right function is definition");
959 else if (R->empty())
960 log(text: "right function is declaration, left function is definition");
961 else
962 FunctionDifferenceEngine(*this).diff(L, R);
963}
964
965void DifferenceEngine::diff(const Module *L, const Module *R) {
966 StringSet<> LNames;
967 SmallVector<std::pair<const Function *, const Function *>, 20> Queue;
968
969 unsigned LeftAnonCount = 0;
970 unsigned RightAnonCount = 0;
971
972 for (Module::const_iterator I = L->begin(), E = L->end(); I != E; ++I) {
973 const Function *LFn = &*I;
974 StringRef Name = LFn->getName();
975 if (Name.empty()) {
976 ++LeftAnonCount;
977 continue;
978 }
979
980 LNames.insert(key: Name);
981
982 if (Function *RFn = R->getFunction(Name: LFn->getName()))
983 Queue.push_back(Elt: std::make_pair(x&: LFn, y&: RFn));
984 else
985 logf(text: "function %l exists only in left module") << LFn;
986 }
987
988 for (Module::const_iterator I = R->begin(), E = R->end(); I != E; ++I) {
989 const Function *RFn = &*I;
990 StringRef Name = RFn->getName();
991 if (Name.empty()) {
992 ++RightAnonCount;
993 continue;
994 }
995
996 if (!LNames.count(Key: Name))
997 logf(text: "function %r exists only in right module") << RFn;
998 }
999
1000 if (LeftAnonCount != 0 || RightAnonCount != 0) {
1001 SmallString<32> Tmp;
1002 logf(text: ("not comparing " + Twine(LeftAnonCount) +
1003 " anonymous functions in the left module and " +
1004 Twine(RightAnonCount) + " in the right module")
1005 .toStringRef(Out&: Tmp));
1006 }
1007
1008 for (SmallVectorImpl<std::pair<const Function *, const Function *>>::iterator
1009 I = Queue.begin(),
1010 E = Queue.end();
1011 I != E; ++I)
1012 diff(L: I->first, R: I->second);
1013}
1014
1015bool DifferenceEngine::equivalentAsOperands(const GlobalValue *L,
1016 const GlobalValue *R) {
1017 if (globalValueOracle) return (*globalValueOracle)(L, R);
1018
1019 if (isa<GlobalVariable>(Val: L) && isa<GlobalVariable>(Val: R)) {
1020 const GlobalVariable *GVL = cast<GlobalVariable>(Val: L);
1021 const GlobalVariable *GVR = cast<GlobalVariable>(Val: R);
1022 if (GVL->hasLocalLinkage() && GVL->hasUniqueInitializer() &&
1023 GVR->hasLocalLinkage() && GVR->hasUniqueInitializer())
1024 return FunctionDifferenceEngine(*this, GVL, GVR)
1025 .equivalentAsOperands(L: GVL->getInitializer(), R: GVR->getInitializer(),
1026 AC: nullptr);
1027 }
1028
1029 return L->getName() == R->getName();
1030}
1031