1 | //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// |
9 | /// \file |
10 | /// This file implements the ELF-specific dumper for llvm-readobj. |
11 | /// |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "ARMEHABIPrinter.h" |
15 | #include "DwarfCFIEHPrinter.h" |
16 | #include "ObjDumper.h" |
17 | #include "StackMapPrinter.h" |
18 | #include "llvm-readobj.h" |
19 | #include "llvm/ADT/ArrayRef.h" |
20 | #include "llvm/ADT/BitVector.h" |
21 | #include "llvm/ADT/DenseMap.h" |
22 | #include "llvm/ADT/DenseSet.h" |
23 | #include "llvm/ADT/MapVector.h" |
24 | #include "llvm/ADT/STLExtras.h" |
25 | #include "llvm/ADT/SmallString.h" |
26 | #include "llvm/ADT/SmallVector.h" |
27 | #include "llvm/ADT/StringExtras.h" |
28 | #include "llvm/ADT/StringRef.h" |
29 | #include "llvm/ADT/Twine.h" |
30 | #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h" |
31 | #include "llvm/BinaryFormat/ELF.h" |
32 | #include "llvm/BinaryFormat/MsgPackDocument.h" |
33 | #include "llvm/Demangle/Demangle.h" |
34 | #include "llvm/Object/Archive.h" |
35 | #include "llvm/Object/ELF.h" |
36 | #include "llvm/Object/ELFObjectFile.h" |
37 | #include "llvm/Object/ELFTypes.h" |
38 | #include "llvm/Object/Error.h" |
39 | #include "llvm/Object/ObjectFile.h" |
40 | #include "llvm/Object/RelocationResolver.h" |
41 | #include "llvm/Object/StackMapParser.h" |
42 | #include "llvm/Support/AMDGPUMetadata.h" |
43 | #include "llvm/Support/ARMAttributeParser.h" |
44 | #include "llvm/Support/ARMBuildAttributes.h" |
45 | #include "llvm/Support/Casting.h" |
46 | #include "llvm/Support/Compiler.h" |
47 | #include "llvm/Support/Endian.h" |
48 | #include "llvm/Support/ErrorHandling.h" |
49 | #include "llvm/Support/Format.h" |
50 | #include "llvm/Support/FormatVariadic.h" |
51 | #include "llvm/Support/FormattedStream.h" |
52 | #include "llvm/Support/HexagonAttributeParser.h" |
53 | #include "llvm/Support/LEB128.h" |
54 | #include "llvm/Support/MSP430AttributeParser.h" |
55 | #include "llvm/Support/MSP430Attributes.h" |
56 | #include "llvm/Support/MathExtras.h" |
57 | #include "llvm/Support/MipsABIFlags.h" |
58 | #include "llvm/Support/RISCVAttributeParser.h" |
59 | #include "llvm/Support/RISCVAttributes.h" |
60 | #include "llvm/Support/ScopedPrinter.h" |
61 | #include "llvm/Support/SystemZ/zOSSupport.h" |
62 | #include "llvm/Support/raw_ostream.h" |
63 | #include <algorithm> |
64 | #include <array> |
65 | #include <cinttypes> |
66 | #include <cstddef> |
67 | #include <cstdint> |
68 | #include <cstdlib> |
69 | #include <iterator> |
70 | #include <memory> |
71 | #include <optional> |
72 | #include <string> |
73 | #include <system_error> |
74 | #include <vector> |
75 | |
76 | using namespace llvm; |
77 | using namespace llvm::object; |
78 | using namespace llvm::support; |
79 | using namespace ELF; |
80 | |
81 | #define LLVM_READOBJ_ENUM_CASE(ns, enum) \ |
82 | case ns::enum: \ |
83 | return #enum; |
84 | |
85 | #define ENUM_ENT(enum, altName) \ |
86 | { #enum, altName, ELF::enum } |
87 | |
88 | #define ENUM_ENT_1(enum) \ |
89 | { #enum, #enum, ELF::enum } |
90 | |
91 | namespace { |
92 | |
93 | template <class ELFT> struct RelSymbol { |
94 | RelSymbol(const typename ELFT::Sym *S, StringRef N) |
95 | : Sym(S), Name(N.str()) {} |
96 | const typename ELFT::Sym *Sym; |
97 | std::string Name; |
98 | }; |
99 | |
100 | /// Represents a contiguous uniform range in the file. We cannot just create a |
101 | /// range directly because when creating one of these from the .dynamic table |
102 | /// the size, entity size and virtual address are different entries in arbitrary |
103 | /// order (DT_REL, DT_RELSZ, DT_RELENT for example). |
104 | struct DynRegionInfo { |
105 | DynRegionInfo(const Binary &Owner, const ObjDumper &D) |
106 | : Obj(&Owner), Dumper(&D) {} |
107 | DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A, |
108 | uint64_t S, uint64_t ES) |
109 | : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {} |
110 | |
111 | /// Address in current address space. |
112 | const uint8_t *Addr = nullptr; |
113 | /// Size in bytes of the region. |
114 | uint64_t Size = 0; |
115 | /// Size of each entity in the region. |
116 | uint64_t EntSize = 0; |
117 | |
118 | /// Owner object. Used for error reporting. |
119 | const Binary *Obj; |
120 | /// Dumper used for error reporting. |
121 | const ObjDumper *Dumper; |
122 | /// Error prefix. Used for error reporting to provide more information. |
123 | std::string Context; |
124 | /// Region size name. Used for error reporting. |
125 | StringRef SizePrintName = "size" ; |
126 | /// Entry size name. Used for error reporting. If this field is empty, errors |
127 | /// will not mention the entry size. |
128 | StringRef EntSizePrintName = "entry size" ; |
129 | |
130 | template <typename Type> ArrayRef<Type> getAsArrayRef() const { |
131 | const Type *Start = reinterpret_cast<const Type *>(Addr); |
132 | if (!Start) |
133 | return {Start, Start}; |
134 | |
135 | const uint64_t Offset = |
136 | Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart(); |
137 | const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize(); |
138 | |
139 | if (Size > ObjSize - Offset) { |
140 | Dumper->reportUniqueWarning( |
141 | Msg: "unable to read data at 0x" + Twine::utohexstr(Val: Offset) + |
142 | " of size 0x" + Twine::utohexstr(Val: Size) + " (" + SizePrintName + |
143 | "): it goes past the end of the file of size 0x" + |
144 | Twine::utohexstr(Val: ObjSize)); |
145 | return {Start, Start}; |
146 | } |
147 | |
148 | if (EntSize == sizeof(Type) && (Size % EntSize == 0)) |
149 | return {Start, Start + (Size / EntSize)}; |
150 | |
151 | std::string Msg; |
152 | if (!Context.empty()) |
153 | Msg += Context + " has " ; |
154 | |
155 | Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Val: Size) + ")" ) |
156 | .str(); |
157 | if (!EntSizePrintName.empty()) |
158 | Msg += |
159 | (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(Val: EntSize) + ")" ) |
160 | .str(); |
161 | |
162 | Dumper->reportUniqueWarning(Msg); |
163 | return {Start, Start}; |
164 | } |
165 | }; |
166 | |
167 | struct GroupMember { |
168 | StringRef Name; |
169 | uint64_t Index; |
170 | }; |
171 | |
172 | struct GroupSection { |
173 | StringRef Name; |
174 | std::string Signature; |
175 | uint64_t ShName; |
176 | uint64_t Index; |
177 | uint32_t Link; |
178 | uint32_t Info; |
179 | uint32_t Type; |
180 | std::vector<GroupMember> Members; |
181 | }; |
182 | |
183 | namespace { |
184 | |
185 | struct NoteType { |
186 | uint32_t ID; |
187 | StringRef Name; |
188 | }; |
189 | |
190 | } // namespace |
191 | |
192 | template <class ELFT> class Relocation { |
193 | public: |
194 | Relocation(const typename ELFT::Rel &R, bool IsMips64EL) |
195 | : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)), |
196 | Offset(R.r_offset), Info(R.r_info) {} |
197 | |
198 | Relocation(const typename ELFT::Rela &R, bool IsMips64EL) |
199 | : Relocation((const typename ELFT::Rel &)R, IsMips64EL) { |
200 | Addend = R.r_addend; |
201 | } |
202 | |
203 | uint32_t Type; |
204 | uint32_t Symbol; |
205 | typename ELFT::uint Offset; |
206 | typename ELFT::uint Info; |
207 | std::optional<int64_t> Addend; |
208 | }; |
209 | |
210 | template <class ELFT> class MipsGOTParser; |
211 | |
212 | template <typename ELFT> class ELFDumper : public ObjDumper { |
213 | LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) |
214 | |
215 | public: |
216 | ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer); |
217 | |
218 | void printUnwindInfo() override; |
219 | void printNeededLibraries() override; |
220 | void printHashTable() override; |
221 | void printGnuHashTable() override; |
222 | void printLoadName() override; |
223 | void printVersionInfo() override; |
224 | void printArchSpecificInfo() override; |
225 | void printStackMap() const override; |
226 | void printMemtag() override; |
227 | ArrayRef<uint8_t> getMemtagGlobalsSectionContents(uint64_t ExpectedAddr); |
228 | |
229 | // Hash histogram shows statistics of how efficient the hash was for the |
230 | // dynamic symbol table. The table shows the number of hash buckets for |
231 | // different lengths of chains as an absolute number and percentage of the |
232 | // total buckets, and the cumulative coverage of symbols for each set of |
233 | // buckets. |
234 | void printHashHistograms() override; |
235 | |
236 | const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; }; |
237 | |
238 | std::string describe(const Elf_Shdr &Sec) const; |
239 | |
240 | unsigned getHashTableEntSize() const { |
241 | // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH |
242 | // sections. This violates the ELF specification. |
243 | if (Obj.getHeader().e_machine == ELF::EM_S390 || |
244 | Obj.getHeader().e_machine == ELF::EM_ALPHA) |
245 | return 8; |
246 | return 4; |
247 | } |
248 | |
249 | std::vector<EnumEntry<unsigned>> |
250 | getOtherFlagsFromSymbol(const Elf_Ehdr &, const Elf_Sym &Symbol) const; |
251 | |
252 | Elf_Dyn_Range dynamic_table() const { |
253 | // A valid .dynamic section contains an array of entries terminated |
254 | // with a DT_NULL entry. However, sometimes the section content may |
255 | // continue past the DT_NULL entry, so to dump the section correctly, |
256 | // we first find the end of the entries by iterating over them. |
257 | Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>(); |
258 | |
259 | size_t Size = 0; |
260 | while (Size < Table.size()) |
261 | if (Table[Size++].getTag() == DT_NULL) |
262 | break; |
263 | |
264 | return Table.slice(0, Size); |
265 | } |
266 | |
267 | Elf_Sym_Range dynamic_symbols() const { |
268 | if (!DynSymRegion) |
269 | return Elf_Sym_Range(); |
270 | return DynSymRegion->template getAsArrayRef<Elf_Sym>(); |
271 | } |
272 | |
273 | const Elf_Shdr *findSectionByName(StringRef Name) const; |
274 | |
275 | StringRef getDynamicStringTable() const { return DynamicStringTable; } |
276 | |
277 | protected: |
278 | virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0; |
279 | virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0; |
280 | virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0; |
281 | |
282 | void |
283 | printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart, |
284 | function_ref<void(StringRef, uint64_t)> OnLibEntry); |
285 | |
286 | virtual void printRelRelaReloc(const Relocation<ELFT> &R, |
287 | const RelSymbol<ELFT> &RelSym) = 0; |
288 | virtual void (unsigned Type, StringRef Name, |
289 | const DynRegionInfo &Reg) {} |
290 | void printReloc(const Relocation<ELFT> &R, unsigned RelIndex, |
291 | const Elf_Shdr &Sec, const Elf_Shdr *SymTab); |
292 | void printDynamicReloc(const Relocation<ELFT> &R); |
293 | void printDynamicRelocationsHelper(); |
294 | void printRelocationsHelper(const Elf_Shdr &Sec); |
295 | void forEachRelocationDo( |
296 | const Elf_Shdr &Sec, |
297 | llvm::function_ref<void(const Relocation<ELFT> &, unsigned, |
298 | const Elf_Shdr &, const Elf_Shdr *)> |
299 | RelRelaFn); |
300 | |
301 | virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset, |
302 | bool NonVisibilityBitsUsed, |
303 | bool ) const {}; |
304 | virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, |
305 | DataRegion<Elf_Word> ShndxTable, |
306 | std::optional<StringRef> StrTable, bool IsDynamic, |
307 | bool NonVisibilityBitsUsed, |
308 | bool ) const = 0; |
309 | |
310 | virtual void printMipsABIFlags() = 0; |
311 | virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0; |
312 | virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0; |
313 | |
314 | virtual void printMemtag( |
315 | const ArrayRef<std::pair<std::string, std::string>> DynamicEntries, |
316 | const ArrayRef<uint8_t> AndroidNoteDesc, |
317 | const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) = 0; |
318 | |
319 | virtual void printHashHistogram(const Elf_Hash &HashTable) const; |
320 | virtual void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable) const; |
321 | virtual void printHashHistogramStats(size_t NBucket, size_t MaxChain, |
322 | size_t TotalSyms, ArrayRef<size_t> Count, |
323 | bool IsGnu) const = 0; |
324 | |
325 | Expected<ArrayRef<Elf_Versym>> |
326 | getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab, |
327 | StringRef *StrTab, const Elf_Shdr **SymTabSec) const; |
328 | StringRef getPrintableSectionName(const Elf_Shdr &Sec) const; |
329 | |
330 | std::vector<GroupSection> getGroups(); |
331 | |
332 | // Returns the function symbol index for the given address. Matches the |
333 | // symbol's section with FunctionSec when specified. |
334 | // Returns std::nullopt if no function symbol can be found for the address or |
335 | // in case it is not defined in the specified section. |
336 | SmallVector<uint32_t> getSymbolIndexesForFunctionAddress( |
337 | uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec); |
338 | bool printFunctionStackSize(uint64_t SymValue, |
339 | std::optional<const Elf_Shdr *> FunctionSec, |
340 | const Elf_Shdr &StackSizeSec, DataExtractor Data, |
341 | uint64_t *Offset); |
342 | void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec, |
343 | unsigned Ndx, const Elf_Shdr *SymTab, |
344 | const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec, |
345 | const RelocationResolver &Resolver, DataExtractor Data); |
346 | virtual void printStackSizeEntry(uint64_t Size, |
347 | ArrayRef<std::string> FuncNames) = 0; |
348 | |
349 | void printRelocatableStackSizes(std::function<void()> ); |
350 | void printNonRelocatableStackSizes(std::function<void()> ); |
351 | |
352 | const object::ELFObjectFile<ELFT> &ObjF; |
353 | const ELFFile<ELFT> &Obj; |
354 | StringRef FileName; |
355 | |
356 | Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size, |
357 | uint64_t EntSize) { |
358 | if (Offset + Size < Offset || Offset + Size > Obj.getBufSize()) |
359 | return createError("offset (0x" + Twine::utohexstr(Val: Offset) + |
360 | ") + size (0x" + Twine::utohexstr(Val: Size) + |
361 | ") is greater than the file size (0x" + |
362 | Twine::utohexstr(Val: Obj.getBufSize()) + ")" ); |
363 | return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize); |
364 | } |
365 | |
366 | void printAttributes(unsigned, std::unique_ptr<ELFAttributeParser>, |
367 | llvm::endianness); |
368 | void printMipsReginfo(); |
369 | void printMipsOptions(); |
370 | |
371 | std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic(); |
372 | void loadDynamicTable(); |
373 | void parseDynamicTable(); |
374 | |
375 | Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym, |
376 | bool &IsDefault) const; |
377 | Expected<SmallVector<std::optional<VersionEntry>, 0> *> getVersionMap() const; |
378 | |
379 | DynRegionInfo DynRelRegion; |
380 | DynRegionInfo DynRelaRegion; |
381 | DynRegionInfo DynCrelRegion; |
382 | DynRegionInfo DynRelrRegion; |
383 | DynRegionInfo DynPLTRelRegion; |
384 | std::optional<DynRegionInfo> DynSymRegion; |
385 | DynRegionInfo DynSymTabShndxRegion; |
386 | DynRegionInfo DynamicTable; |
387 | StringRef DynamicStringTable; |
388 | const Elf_Hash *HashTable = nullptr; |
389 | const Elf_GnuHash *GnuHashTable = nullptr; |
390 | const Elf_Shdr *DotSymtabSec = nullptr; |
391 | const Elf_Shdr *DotDynsymSec = nullptr; |
392 | const Elf_Shdr *DotAddrsigSec = nullptr; |
393 | DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables; |
394 | std::optional<uint64_t> SONameOffset; |
395 | std::optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap; |
396 | |
397 | const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version |
398 | const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r |
399 | const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d |
400 | |
401 | std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex, |
402 | DataRegion<Elf_Word> ShndxTable, |
403 | std::optional<StringRef> StrTable, |
404 | bool IsDynamic) const; |
405 | Expected<unsigned> |
406 | getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex, |
407 | DataRegion<Elf_Word> ShndxTable) const; |
408 | Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol, |
409 | unsigned SectionIndex) const; |
410 | std::string getStaticSymbolName(uint32_t Index) const; |
411 | StringRef getDynamicString(uint64_t Value) const; |
412 | |
413 | std::pair<Elf_Sym_Range, std::optional<StringRef>> getSymtabAndStrtab() const; |
414 | void printSymbolsHelper(bool IsDynamic, bool ) const; |
415 | std::string getDynamicEntry(uint64_t Type, uint64_t Value) const; |
416 | |
417 | Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R, |
418 | const Elf_Shdr *SymTab) const; |
419 | |
420 | ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const; |
421 | |
422 | private: |
423 | mutable SmallVector<std::optional<VersionEntry>, 0> VersionMap; |
424 | }; |
425 | |
426 | template <class ELFT> |
427 | std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const { |
428 | return ::describe(Obj, Sec); |
429 | } |
430 | |
431 | namespace { |
432 | |
433 | template <class ELFT> struct SymtabLink { |
434 | typename ELFT::SymRange Symbols; |
435 | StringRef StringTable; |
436 | const typename ELFT::Shdr *SymTab; |
437 | }; |
438 | |
439 | // Returns the linked symbol table, symbols and associated string table for a |
440 | // given section. |
441 | template <class ELFT> |
442 | Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj, |
443 | const typename ELFT::Shdr &Sec, |
444 | unsigned ExpectedType) { |
445 | Expected<const typename ELFT::Shdr *> SymtabOrErr = |
446 | Obj.getSection(Sec.sh_link); |
447 | if (!SymtabOrErr) |
448 | return createError("invalid section linked to " + describe(Obj, Sec) + |
449 | ": " + toString(SymtabOrErr.takeError())); |
450 | |
451 | if ((*SymtabOrErr)->sh_type != ExpectedType) |
452 | return createError( |
453 | "invalid section linked to " + describe(Obj, Sec) + ": expected " + |
454 | object::getELFSectionTypeName(Machine: Obj.getHeader().e_machine, Type: ExpectedType) + |
455 | ", but got " + |
456 | object::getELFSectionTypeName(Machine: Obj.getHeader().e_machine, |
457 | Type: (*SymtabOrErr)->sh_type)); |
458 | |
459 | Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr); |
460 | if (!StrTabOrErr) |
461 | return createError( |
462 | "can't get a string table for the symbol table linked to " + |
463 | describe(Obj, Sec) + ": " + toString(E: StrTabOrErr.takeError())); |
464 | |
465 | Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr); |
466 | if (!SymsOrErr) |
467 | return createError("unable to read symbols from the " + describe(Obj, Sec) + |
468 | ": " + toString(SymsOrErr.takeError())); |
469 | |
470 | return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr}; |
471 | } |
472 | |
473 | } // namespace |
474 | |
475 | template <class ELFT> |
476 | Expected<ArrayRef<typename ELFT::Versym>> |
477 | ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab, |
478 | StringRef *StrTab, |
479 | const Elf_Shdr **SymTabSec) const { |
480 | assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec)); |
481 | if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) % |
482 | sizeof(uint16_t) != |
483 | 0) |
484 | return createError("the " + describe(Sec) + " is misaligned" ); |
485 | |
486 | Expected<ArrayRef<Elf_Versym>> VersionsOrErr = |
487 | Obj.template getSectionContentsAsArray<Elf_Versym>(Sec); |
488 | if (!VersionsOrErr) |
489 | return createError("cannot read content of " + describe(Sec) + ": " + |
490 | toString(VersionsOrErr.takeError())); |
491 | |
492 | Expected<SymtabLink<ELFT>> SymTabOrErr = |
493 | getLinkAsSymtab(Obj, Sec, SHT_DYNSYM); |
494 | if (!SymTabOrErr) { |
495 | reportUniqueWarning(SymTabOrErr.takeError()); |
496 | return *VersionsOrErr; |
497 | } |
498 | |
499 | if (SymTabOrErr->Symbols.size() != VersionsOrErr->size()) |
500 | reportUniqueWarning(describe(Sec) + ": the number of entries (" + |
501 | Twine(VersionsOrErr->size()) + |
502 | ") does not match the number of symbols (" + |
503 | Twine(SymTabOrErr->Symbols.size()) + |
504 | ") in the symbol table with index " + |
505 | Twine(Sec.sh_link)); |
506 | |
507 | if (SymTab) { |
508 | *SymTab = SymTabOrErr->Symbols; |
509 | *StrTab = SymTabOrErr->StringTable; |
510 | *SymTabSec = SymTabOrErr->SymTab; |
511 | } |
512 | return *VersionsOrErr; |
513 | } |
514 | |
515 | template <class ELFT> |
516 | std::pair<typename ELFDumper<ELFT>::Elf_Sym_Range, std::optional<StringRef>> |
517 | ELFDumper<ELFT>::getSymtabAndStrtab() const { |
518 | assert(DotSymtabSec); |
519 | Elf_Sym_Range Syms(nullptr, nullptr); |
520 | std::optional<StringRef> StrTable; |
521 | if (Expected<StringRef> StrTableOrErr = |
522 | Obj.getStringTableForSymtab(*DotSymtabSec)) |
523 | StrTable = *StrTableOrErr; |
524 | else |
525 | reportUniqueWarning( |
526 | "unable to get the string table for the SHT_SYMTAB section: " + |
527 | toString(E: StrTableOrErr.takeError())); |
528 | |
529 | if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec)) |
530 | Syms = *SymsOrErr; |
531 | else |
532 | reportUniqueWarning("unable to read symbols from the SHT_SYMTAB section: " + |
533 | toString(SymsOrErr.takeError())); |
534 | return {Syms, StrTable}; |
535 | } |
536 | |
537 | template <class ELFT> |
538 | void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic, |
539 | bool ) const { |
540 | std::optional<StringRef> StrTable; |
541 | size_t Entries = 0; |
542 | Elf_Sym_Range Syms(nullptr, nullptr); |
543 | const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec; |
544 | |
545 | if (IsDynamic) { |
546 | StrTable = DynamicStringTable; |
547 | Syms = dynamic_symbols(); |
548 | Entries = Syms.size(); |
549 | } else if (DotSymtabSec) { |
550 | std::tie(Syms, StrTable) = getSymtabAndStrtab(); |
551 | Entries = DotSymtabSec->getEntityCount(); |
552 | } |
553 | if (Syms.empty()) |
554 | return; |
555 | |
556 | // The st_other field has 2 logical parts. The first two bits hold the symbol |
557 | // visibility (STV_*) and the remainder hold other platform-specific values. |
558 | bool NonVisibilityBitsUsed = |
559 | llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; }); |
560 | |
561 | DataRegion<Elf_Word> ShndxTable = |
562 | IsDynamic ? DataRegion<Elf_Word>( |
563 | (const Elf_Word *)this->DynSymTabShndxRegion.Addr, |
564 | this->getElfObject().getELFFile().end()) |
565 | : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec)); |
566 | |
567 | printSymtabMessage(Symtab: SymtabSec, Offset: Entries, NonVisibilityBitsUsed, ExtraSymInfo); |
568 | for (const Elf_Sym &Sym : Syms) |
569 | printSymbol(Symbol: Sym, SymIndex: &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic, |
570 | NonVisibilityBitsUsed, ExtraSymInfo); |
571 | } |
572 | |
573 | template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> { |
574 | formatted_raw_ostream &OS; |
575 | |
576 | public: |
577 | LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) |
578 | |
579 | GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer) |
580 | : ELFDumper<ELFT>(ObjF, Writer), |
581 | OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) { |
582 | assert(&this->W.getOStream() == &llvm::fouts()); |
583 | } |
584 | |
585 | void printFileSummary(StringRef FileStr, ObjectFile &Obj, |
586 | ArrayRef<std::string> InputFilenames, |
587 | const Archive *A) override; |
588 | void printFileHeaders() override; |
589 | void printGroupSections() override; |
590 | void printRelocations() override; |
591 | void printSectionHeaders() override; |
592 | void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols, |
593 | bool ) override; |
594 | void printHashSymbols() override; |
595 | void printSectionDetails() override; |
596 | void printDependentLibs() override; |
597 | void printDynamicTable() override; |
598 | void printDynamicRelocations() override; |
599 | void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset, |
600 | bool NonVisibilityBitsUsed, |
601 | bool ) const override; |
602 | void printProgramHeaders(bool , |
603 | cl::boolOrDefault PrintSectionMapping) override; |
604 | void printVersionSymbolSection(const Elf_Shdr *Sec) override; |
605 | void printVersionDefinitionSection(const Elf_Shdr *Sec) override; |
606 | void printVersionDependencySection(const Elf_Shdr *Sec) override; |
607 | void printCGProfile() override; |
608 | void printBBAddrMaps(bool PrettyPGOAnalysis) override; |
609 | void printAddrsig() override; |
610 | void printNotes() override; |
611 | void printELFLinkerOptions() override; |
612 | void printStackSizes() override; |
613 | void printMemtag( |
614 | const ArrayRef<std::pair<std::string, std::string>> DynamicEntries, |
615 | const ArrayRef<uint8_t> AndroidNoteDesc, |
616 | const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) override; |
617 | void printHashHistogramStats(size_t NBucket, size_t MaxChain, |
618 | size_t TotalSyms, ArrayRef<size_t> Count, |
619 | bool IsGnu) const override; |
620 | |
621 | private: |
622 | void printHashTableSymbols(const Elf_Hash &HashTable); |
623 | void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable); |
624 | |
625 | struct Field { |
626 | std::string Str; |
627 | unsigned Column; |
628 | |
629 | Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {} |
630 | Field(unsigned Col) : Column(Col) {} |
631 | }; |
632 | |
633 | template <typename T, typename TEnum> |
634 | std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues, |
635 | TEnum EnumMask1 = {}, TEnum EnumMask2 = {}, |
636 | TEnum EnumMask3 = {}) const { |
637 | std::string Str; |
638 | for (const EnumEntry<TEnum> &Flag : EnumValues) { |
639 | if (Flag.Value == 0) |
640 | continue; |
641 | |
642 | TEnum EnumMask{}; |
643 | if (Flag.Value & EnumMask1) |
644 | EnumMask = EnumMask1; |
645 | else if (Flag.Value & EnumMask2) |
646 | EnumMask = EnumMask2; |
647 | else if (Flag.Value & EnumMask3) |
648 | EnumMask = EnumMask3; |
649 | bool IsEnum = (Flag.Value & EnumMask) != 0; |
650 | if ((!IsEnum && (Value & Flag.Value) == Flag.Value) || |
651 | (IsEnum && (Value & EnumMask) == Flag.Value)) { |
652 | if (!Str.empty()) |
653 | Str += ", " ; |
654 | Str += Flag.AltName; |
655 | } |
656 | } |
657 | return Str; |
658 | } |
659 | |
660 | formatted_raw_ostream &printField(struct Field F) const { |
661 | if (F.Column != 0) |
662 | OS.PadToColumn(NewCol: F.Column); |
663 | OS << F.Str; |
664 | OS.flush(); |
665 | return OS; |
666 | } |
667 | void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex, |
668 | DataRegion<Elf_Word> ShndxTable, StringRef StrTable, |
669 | uint32_t Bucket); |
670 | void printRelr(const Elf_Shdr &Sec); |
671 | void printRelRelaReloc(const Relocation<ELFT> &R, |
672 | const RelSymbol<ELFT> &RelSym) override; |
673 | void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, |
674 | DataRegion<Elf_Word> ShndxTable, |
675 | std::optional<StringRef> StrTable, bool IsDynamic, |
676 | bool NonVisibilityBitsUsed, |
677 | bool ) const override; |
678 | void printDynamicRelocHeader(unsigned Type, StringRef Name, |
679 | const DynRegionInfo &Reg) override; |
680 | |
681 | std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex, |
682 | DataRegion<Elf_Word> ShndxTable, |
683 | bool = false) const; |
684 | void printProgramHeaders() override; |
685 | void printSectionMapping() override; |
686 | void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec, |
687 | const Twine &Label, unsigned EntriesNum); |
688 | |
689 | void printStackSizeEntry(uint64_t Size, |
690 | ArrayRef<std::string> FuncNames) override; |
691 | |
692 | void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override; |
693 | void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override; |
694 | void printMipsABIFlags() override; |
695 | }; |
696 | |
697 | template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> { |
698 | public: |
699 | LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) |
700 | |
701 | LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer) |
702 | : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {} |
703 | |
704 | void printFileHeaders() override; |
705 | void printGroupSections() override; |
706 | void printRelocations() override; |
707 | void printSectionHeaders() override; |
708 | void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols, |
709 | bool ) override; |
710 | void printDependentLibs() override; |
711 | void printDynamicTable() override; |
712 | void printDynamicRelocations() override; |
713 | void printProgramHeaders(bool , |
714 | cl::boolOrDefault PrintSectionMapping) override; |
715 | void printVersionSymbolSection(const Elf_Shdr *Sec) override; |
716 | void printVersionDefinitionSection(const Elf_Shdr *Sec) override; |
717 | void printVersionDependencySection(const Elf_Shdr *Sec) override; |
718 | void printCGProfile() override; |
719 | void printBBAddrMaps(bool PrettyPGOAnalysis) override; |
720 | void printAddrsig() override; |
721 | void printNotes() override; |
722 | void printELFLinkerOptions() override; |
723 | void printStackSizes() override; |
724 | void printMemtag( |
725 | const ArrayRef<std::pair<std::string, std::string>> DynamicEntries, |
726 | const ArrayRef<uint8_t> AndroidNoteDesc, |
727 | const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) override; |
728 | void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex, |
729 | DataRegion<Elf_Word> ShndxTable) const; |
730 | void printHashHistogramStats(size_t NBucket, size_t MaxChain, |
731 | size_t TotalSyms, ArrayRef<size_t> Count, |
732 | bool IsGnu) const override; |
733 | |
734 | private: |
735 | void printRelRelaReloc(const Relocation<ELFT> &R, |
736 | const RelSymbol<ELFT> &RelSym) override; |
737 | |
738 | void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, |
739 | DataRegion<Elf_Word> ShndxTable, |
740 | std::optional<StringRef> StrTable, bool IsDynamic, |
741 | bool /*NonVisibilityBitsUsed*/, |
742 | bool /*ExtraSymInfo*/) const override; |
743 | void printProgramHeaders() override; |
744 | void printSectionMapping() override {} |
745 | void printStackSizeEntry(uint64_t Size, |
746 | ArrayRef<std::string> FuncNames) override; |
747 | |
748 | void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override; |
749 | void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override; |
750 | void printMipsABIFlags() override; |
751 | virtual void printZeroSymbolOtherField(const Elf_Sym &Symbol) const; |
752 | |
753 | protected: |
754 | virtual std::string getGroupSectionHeaderName() const; |
755 | void printSymbolOtherField(const Elf_Sym &Symbol) const; |
756 | virtual void printExpandedRelRelaReloc(const Relocation<ELFT> &R, |
757 | StringRef SymbolName, |
758 | StringRef RelocName); |
759 | virtual void printDefaultRelRelaReloc(const Relocation<ELFT> &R, |
760 | StringRef SymbolName, |
761 | StringRef RelocName); |
762 | virtual void printRelocationSectionInfo(const Elf_Shdr &Sec, StringRef Name, |
763 | const unsigned SecNdx); |
764 | virtual void printSectionGroupMembers(StringRef Name, uint64_t Idx) const; |
765 | virtual void printEmptyGroupMessage() const; |
766 | |
767 | ScopedPrinter &W; |
768 | }; |
769 | |
770 | // JSONELFDumper shares most of the same implementation as LLVMELFDumper except |
771 | // it uses a JSONScopedPrinter. |
772 | template <typename ELFT> class JSONELFDumper : public LLVMELFDumper<ELFT> { |
773 | public: |
774 | LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) |
775 | |
776 | JSONELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer) |
777 | : LLVMELFDumper<ELFT>(ObjF, Writer) {} |
778 | |
779 | std::string getGroupSectionHeaderName() const override; |
780 | |
781 | void printFileSummary(StringRef FileStr, ObjectFile &Obj, |
782 | ArrayRef<std::string> InputFilenames, |
783 | const Archive *A) override; |
784 | virtual void printZeroSymbolOtherField(const Elf_Sym &Symbol) const override; |
785 | |
786 | void printDefaultRelRelaReloc(const Relocation<ELFT> &R, |
787 | StringRef SymbolName, |
788 | StringRef RelocName) override; |
789 | |
790 | void printRelocationSectionInfo(const Elf_Shdr &Sec, StringRef Name, |
791 | const unsigned SecNdx) override; |
792 | |
793 | void printSectionGroupMembers(StringRef Name, uint64_t Idx) const override; |
794 | |
795 | void printEmptyGroupMessage() const override; |
796 | |
797 | void printDynamicTable() override; |
798 | |
799 | private: |
800 | void printAuxillaryDynamicTableEntryInfo(const Elf_Dyn &Entry); |
801 | |
802 | std::unique_ptr<DictScope> FileScope; |
803 | }; |
804 | |
805 | } // end anonymous namespace |
806 | |
807 | namespace llvm { |
808 | |
809 | template <class ELFT> |
810 | static std::unique_ptr<ObjDumper> |
811 | createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) { |
812 | if (opts::Output == opts::GNU) |
813 | return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer); |
814 | else if (opts::Output == opts::JSON) |
815 | return std::make_unique<JSONELFDumper<ELFT>>(Obj, Writer); |
816 | return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer); |
817 | } |
818 | |
819 | std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj, |
820 | ScopedPrinter &Writer) { |
821 | // Little-endian 32-bit |
822 | if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(Val: &Obj)) |
823 | return createELFDumper(Obj: *ELFObj, Writer); |
824 | |
825 | // Big-endian 32-bit |
826 | if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(Val: &Obj)) |
827 | return createELFDumper(Obj: *ELFObj, Writer); |
828 | |
829 | // Little-endian 64-bit |
830 | if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(Val: &Obj)) |
831 | return createELFDumper(Obj: *ELFObj, Writer); |
832 | |
833 | // Big-endian 64-bit |
834 | return createELFDumper(Obj: *cast<ELF64BEObjectFile>(Val: &Obj), Writer); |
835 | } |
836 | |
837 | } // end namespace llvm |
838 | |
839 | template <class ELFT> |
840 | Expected<SmallVector<std::optional<VersionEntry>, 0> *> |
841 | ELFDumper<ELFT>::getVersionMap() const { |
842 | // If the VersionMap has already been loaded or if there is no dynamic symtab |
843 | // or version table, there is nothing to do. |
844 | if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection) |
845 | return &VersionMap; |
846 | |
847 | Expected<SmallVector<std::optional<VersionEntry>, 0>> MapOrErr = |
848 | Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection); |
849 | if (MapOrErr) |
850 | VersionMap = *MapOrErr; |
851 | else |
852 | return MapOrErr.takeError(); |
853 | |
854 | return &VersionMap; |
855 | } |
856 | |
857 | template <typename ELFT> |
858 | Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym, |
859 | bool &IsDefault) const { |
860 | // This is a dynamic symbol. Look in the GNU symbol version table. |
861 | if (!SymbolVersionSection) { |
862 | // No version table. |
863 | IsDefault = false; |
864 | return "" ; |
865 | } |
866 | |
867 | assert(DynSymRegion && "DynSymRegion has not been initialised" ); |
868 | // Determine the position in the symbol table of this entry. |
869 | size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) - |
870 | reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) / |
871 | sizeof(Elf_Sym); |
872 | |
873 | // Get the corresponding version index entry. |
874 | Expected<const Elf_Versym *> EntryOrErr = |
875 | Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex); |
876 | if (!EntryOrErr) |
877 | return EntryOrErr.takeError(); |
878 | |
879 | unsigned Version = (*EntryOrErr)->vs_index; |
880 | if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) { |
881 | IsDefault = false; |
882 | return "" ; |
883 | } |
884 | |
885 | Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr = |
886 | getVersionMap(); |
887 | if (!MapOrErr) |
888 | return MapOrErr.takeError(); |
889 | |
890 | return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr, |
891 | Sym.st_shndx == ELF::SHN_UNDEF); |
892 | } |
893 | |
894 | template <typename ELFT> |
895 | Expected<RelSymbol<ELFT>> |
896 | ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R, |
897 | const Elf_Shdr *SymTab) const { |
898 | if (R.Symbol == 0) |
899 | return RelSymbol<ELFT>(nullptr, "" ); |
900 | |
901 | Expected<const Elf_Sym *> SymOrErr = |
902 | Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol); |
903 | if (!SymOrErr) |
904 | return createError("unable to read an entry with index " + Twine(R.Symbol) + |
905 | " from " + describe(Sec: *SymTab) + ": " + |
906 | toString(SymOrErr.takeError())); |
907 | const Elf_Sym *Sym = *SymOrErr; |
908 | if (!Sym) |
909 | return RelSymbol<ELFT>(nullptr, "" ); |
910 | |
911 | Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab); |
912 | if (!StrTableOrErr) |
913 | return StrTableOrErr.takeError(); |
914 | |
915 | const Elf_Sym *FirstSym = |
916 | cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0)); |
917 | std::string SymbolName = |
918 | getFullSymbolName(Symbol: *Sym, SymIndex: Sym - FirstSym, ShndxTable: getShndxTable(Symtab: SymTab), |
919 | StrTable: *StrTableOrErr, IsDynamic: SymTab->sh_type == SHT_DYNSYM); |
920 | return RelSymbol<ELFT>(Sym, SymbolName); |
921 | } |
922 | |
923 | template <typename ELFT> |
924 | ArrayRef<typename ELFT::Word> |
925 | ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const { |
926 | if (Symtab) { |
927 | auto It = ShndxTables.find(Symtab); |
928 | if (It != ShndxTables.end()) |
929 | return It->second; |
930 | } |
931 | return {}; |
932 | } |
933 | |
934 | static std::string maybeDemangle(StringRef Name) { |
935 | return opts::Demangle ? demangle(MangledName: Name) : Name.str(); |
936 | } |
937 | |
938 | template <typename ELFT> |
939 | std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const { |
940 | auto Warn = [&](Error E) -> std::string { |
941 | reportUniqueWarning("unable to read the name of symbol with index " + |
942 | Twine(Index) + ": " + toString(E: std::move(E))); |
943 | return "<?>" ; |
944 | }; |
945 | |
946 | Expected<const typename ELFT::Sym *> SymOrErr = |
947 | Obj.getSymbol(DotSymtabSec, Index); |
948 | if (!SymOrErr) |
949 | return Warn(SymOrErr.takeError()); |
950 | |
951 | Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec); |
952 | if (!StrTabOrErr) |
953 | return Warn(StrTabOrErr.takeError()); |
954 | |
955 | Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr); |
956 | if (!NameOrErr) |
957 | return Warn(NameOrErr.takeError()); |
958 | return maybeDemangle(Name: *NameOrErr); |
959 | } |
960 | |
961 | template <typename ELFT> |
962 | std::string ELFDumper<ELFT>::getFullSymbolName( |
963 | const Elf_Sym &Symbol, unsigned SymIndex, DataRegion<Elf_Word> ShndxTable, |
964 | std::optional<StringRef> StrTable, bool IsDynamic) const { |
965 | if (!StrTable) |
966 | return "<?>" ; |
967 | |
968 | std::string SymbolName; |
969 | if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) { |
970 | SymbolName = maybeDemangle(Name: *NameOrErr); |
971 | } else { |
972 | reportUniqueWarning(NameOrErr.takeError()); |
973 | return "<?>" ; |
974 | } |
975 | |
976 | if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) { |
977 | Expected<unsigned> SectionIndex = |
978 | getSymbolSectionIndex(Symbol, SymIndex, ShndxTable); |
979 | if (!SectionIndex) { |
980 | reportUniqueWarning(SectionIndex.takeError()); |
981 | return "<?>" ; |
982 | } |
983 | Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, SectionIndex: *SectionIndex); |
984 | if (!NameOrErr) { |
985 | reportUniqueWarning(NameOrErr.takeError()); |
986 | return ("<section " + Twine(*SectionIndex) + ">" ).str(); |
987 | } |
988 | return std::string(*NameOrErr); |
989 | } |
990 | |
991 | if (!IsDynamic) |
992 | return SymbolName; |
993 | |
994 | bool IsDefault; |
995 | Expected<StringRef> VersionOrErr = getSymbolVersion(Sym: Symbol, IsDefault); |
996 | if (!VersionOrErr) { |
997 | reportUniqueWarning(VersionOrErr.takeError()); |
998 | return SymbolName + "@<corrupt>" ; |
999 | } |
1000 | |
1001 | if (!VersionOrErr->empty()) { |
1002 | SymbolName += (IsDefault ? "@@" : "@" ); |
1003 | SymbolName += *VersionOrErr; |
1004 | } |
1005 | return SymbolName; |
1006 | } |
1007 | |
1008 | template <typename ELFT> |
1009 | Expected<unsigned> |
1010 | ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex, |
1011 | DataRegion<Elf_Word> ShndxTable) const { |
1012 | unsigned Ndx = Symbol.st_shndx; |
1013 | if (Ndx == SHN_XINDEX) |
1014 | return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, |
1015 | ShndxTable); |
1016 | if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE) |
1017 | return Ndx; |
1018 | |
1019 | auto CreateErr = [&](const Twine &Name, |
1020 | std::optional<unsigned> Offset = std::nullopt) { |
1021 | std::string Desc; |
1022 | if (Offset) |
1023 | Desc = (Name + "+0x" + Twine::utohexstr(Val: *Offset)).str(); |
1024 | else |
1025 | Desc = Name.str(); |
1026 | return createError( |
1027 | Err: "unable to get section index for symbol with st_shndx = 0x" + |
1028 | Twine::utohexstr(Val: Ndx) + " (" + Desc + ")" ); |
1029 | }; |
1030 | |
1031 | if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC) |
1032 | return CreateErr("SHN_LOPROC" , Ndx - ELF::SHN_LOPROC); |
1033 | if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS) |
1034 | return CreateErr("SHN_LOOS" , Ndx - ELF::SHN_LOOS); |
1035 | if (Ndx == ELF::SHN_UNDEF) |
1036 | return CreateErr("SHN_UNDEF" ); |
1037 | if (Ndx == ELF::SHN_ABS) |
1038 | return CreateErr("SHN_ABS" ); |
1039 | if (Ndx == ELF::SHN_COMMON) |
1040 | return CreateErr("SHN_COMMON" ); |
1041 | return CreateErr("SHN_LORESERVE" , Ndx - SHN_LORESERVE); |
1042 | } |
1043 | |
1044 | template <typename ELFT> |
1045 | Expected<StringRef> |
1046 | ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol, |
1047 | unsigned SectionIndex) const { |
1048 | Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex); |
1049 | if (!SecOrErr) |
1050 | return SecOrErr.takeError(); |
1051 | return Obj.getSectionName(**SecOrErr); |
1052 | } |
1053 | |
1054 | template <class ELFO> |
1055 | static const typename ELFO::Elf_Shdr * |
1056 | findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName, |
1057 | uint64_t Addr) { |
1058 | for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections())) |
1059 | if (Shdr.sh_addr == Addr && Shdr.sh_size > 0) |
1060 | return &Shdr; |
1061 | return nullptr; |
1062 | } |
1063 | |
1064 | const EnumEntry<unsigned> ElfClass[] = { |
1065 | {"None" , "none" , ELF::ELFCLASSNONE}, |
1066 | {"32-bit" , "ELF32" , ELF::ELFCLASS32}, |
1067 | {"64-bit" , "ELF64" , ELF::ELFCLASS64}, |
1068 | }; |
1069 | |
1070 | const EnumEntry<unsigned> ElfDataEncoding[] = { |
1071 | {"None" , "none" , ELF::ELFDATANONE}, |
1072 | {"LittleEndian" , "2's complement, little endian" , ELF::ELFDATA2LSB}, |
1073 | {"BigEndian" , "2's complement, big endian" , ELF::ELFDATA2MSB}, |
1074 | }; |
1075 | |
1076 | const EnumEntry<unsigned> ElfObjectFileType[] = { |
1077 | {"None" , "NONE (none)" , ELF::ET_NONE}, |
1078 | {"Relocatable" , "REL (Relocatable file)" , ELF::ET_REL}, |
1079 | {"Executable" , "EXEC (Executable file)" , ELF::ET_EXEC}, |
1080 | {"SharedObject" , "DYN (Shared object file)" , ELF::ET_DYN}, |
1081 | {"Core" , "CORE (Core file)" , ELF::ET_CORE}, |
1082 | }; |
1083 | |
1084 | const EnumEntry<unsigned> ElfOSABI[] = { |
1085 | {"SystemV" , "UNIX - System V" , ELF::ELFOSABI_NONE}, |
1086 | {"HPUX" , "UNIX - HP-UX" , ELF::ELFOSABI_HPUX}, |
1087 | {"NetBSD" , "UNIX - NetBSD" , ELF::ELFOSABI_NETBSD}, |
1088 | {"GNU/Linux" , "UNIX - GNU" , ELF::ELFOSABI_LINUX}, |
1089 | {"GNU/Hurd" , "GNU/Hurd" , ELF::ELFOSABI_HURD}, |
1090 | {"Solaris" , "UNIX - Solaris" , ELF::ELFOSABI_SOLARIS}, |
1091 | {"AIX" , "UNIX - AIX" , ELF::ELFOSABI_AIX}, |
1092 | {"IRIX" , "UNIX - IRIX" , ELF::ELFOSABI_IRIX}, |
1093 | {"FreeBSD" , "UNIX - FreeBSD" , ELF::ELFOSABI_FREEBSD}, |
1094 | {"TRU64" , "UNIX - TRU64" , ELF::ELFOSABI_TRU64}, |
1095 | {"Modesto" , "Novell - Modesto" , ELF::ELFOSABI_MODESTO}, |
1096 | {"OpenBSD" , "UNIX - OpenBSD" , ELF::ELFOSABI_OPENBSD}, |
1097 | {"OpenVMS" , "VMS - OpenVMS" , ELF::ELFOSABI_OPENVMS}, |
1098 | {"NSK" , "HP - Non-Stop Kernel" , ELF::ELFOSABI_NSK}, |
1099 | {"AROS" , "AROS" , ELF::ELFOSABI_AROS}, |
1100 | {"FenixOS" , "FenixOS" , ELF::ELFOSABI_FENIXOS}, |
1101 | {"CloudABI" , "CloudABI" , ELF::ELFOSABI_CLOUDABI}, |
1102 | {"CUDA" , "NVIDIA - CUDA" , ELF::ELFOSABI_CUDA}, |
1103 | {"Standalone" , "Standalone App" , ELF::ELFOSABI_STANDALONE} |
1104 | }; |
1105 | |
1106 | const EnumEntry<unsigned> AMDGPUElfOSABI[] = { |
1107 | {"AMDGPU_HSA" , "AMDGPU - HSA" , ELF::ELFOSABI_AMDGPU_HSA}, |
1108 | {"AMDGPU_PAL" , "AMDGPU - PAL" , ELF::ELFOSABI_AMDGPU_PAL}, |
1109 | {"AMDGPU_MESA3D" , "AMDGPU - MESA3D" , ELF::ELFOSABI_AMDGPU_MESA3D} |
1110 | }; |
1111 | |
1112 | const EnumEntry<unsigned> ARMElfOSABI[] = { |
1113 | {"ARM" , "ARM" , ELF::ELFOSABI_ARM}, |
1114 | {"ARM FDPIC" , "ARM FDPIC" , ELF::ELFOSABI_ARM_FDPIC}, |
1115 | }; |
1116 | |
1117 | const EnumEntry<unsigned> C6000ElfOSABI[] = { |
1118 | {"C6000_ELFABI" , "Bare-metal C6000" , ELF::ELFOSABI_C6000_ELFABI}, |
1119 | {"C6000_LINUX" , "Linux C6000" , ELF::ELFOSABI_C6000_LINUX} |
1120 | }; |
1121 | |
1122 | const EnumEntry<unsigned> ElfMachineType[] = { |
1123 | ENUM_ENT(EM_NONE, "None" ), |
1124 | ENUM_ENT(EM_M32, "WE32100" ), |
1125 | ENUM_ENT(EM_SPARC, "Sparc" ), |
1126 | ENUM_ENT(EM_386, "Intel 80386" ), |
1127 | ENUM_ENT(EM_68K, "MC68000" ), |
1128 | ENUM_ENT(EM_88K, "MC88000" ), |
1129 | ENUM_ENT(EM_IAMCU, "EM_IAMCU" ), |
1130 | ENUM_ENT(EM_860, "Intel 80860" ), |
1131 | ENUM_ENT(EM_MIPS, "MIPS R3000" ), |
1132 | ENUM_ENT(EM_S370, "IBM System/370" ), |
1133 | ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian" ), |
1134 | ENUM_ENT(EM_PARISC, "HPPA" ), |
1135 | ENUM_ENT(EM_VPP500, "Fujitsu VPP500" ), |
1136 | ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+" ), |
1137 | ENUM_ENT(EM_960, "Intel 80960" ), |
1138 | ENUM_ENT(EM_PPC, "PowerPC" ), |
1139 | ENUM_ENT(EM_PPC64, "PowerPC64" ), |
1140 | ENUM_ENT(EM_S390, "IBM S/390" ), |
1141 | ENUM_ENT(EM_SPU, "SPU" ), |
1142 | ENUM_ENT(EM_V800, "NEC V800 series" ), |
1143 | ENUM_ENT(EM_FR20, "Fujistsu FR20" ), |
1144 | ENUM_ENT(EM_RH32, "TRW RH-32" ), |
1145 | ENUM_ENT(EM_RCE, "Motorola RCE" ), |
1146 | ENUM_ENT(EM_ARM, "ARM" ), |
1147 | ENUM_ENT(EM_ALPHA, "EM_ALPHA" ), |
1148 | ENUM_ENT(EM_SH, "Hitachi SH" ), |
1149 | ENUM_ENT(EM_SPARCV9, "Sparc v9" ), |
1150 | ENUM_ENT(EM_TRICORE, "Siemens Tricore" ), |
1151 | ENUM_ENT(EM_ARC, "ARC" ), |
1152 | ENUM_ENT(EM_H8_300, "Hitachi H8/300" ), |
1153 | ENUM_ENT(EM_H8_300H, "Hitachi H8/300H" ), |
1154 | ENUM_ENT(EM_H8S, "Hitachi H8S" ), |
1155 | ENUM_ENT(EM_H8_500, "Hitachi H8/500" ), |
1156 | ENUM_ENT(EM_IA_64, "Intel IA-64" ), |
1157 | ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X" ), |
1158 | ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire" ), |
1159 | ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller" ), |
1160 | ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator" ), |
1161 | ENUM_ENT(EM_PCP, "Siemens PCP" ), |
1162 | ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor" ), |
1163 | ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr" ), |
1164 | ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor" ), |
1165 | ENUM_ENT(EM_ME16, "Toyota ME16 processor" ), |
1166 | ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor" ), |
1167 | ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor" ), |
1168 | ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64" ), |
1169 | ENUM_ENT(EM_PDSP, "Sony DSP processor" ), |
1170 | ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10" ), |
1171 | ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11" ), |
1172 | ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller" ), |
1173 | ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller" ), |
1174 | ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller" ), |
1175 | ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller" ), |
1176 | ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller" ), |
1177 | ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller" ), |
1178 | ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller" ), |
1179 | ENUM_ENT(EM_SVX, "Silicon Graphics SVx" ), |
1180 | ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller" ), |
1181 | ENUM_ENT(EM_VAX, "Digital VAX" ), |
1182 | ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor" ), |
1183 | ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu" ), |
1184 | ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor" ), |
1185 | ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor" ), |
1186 | ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor" ), |
1187 | ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format" ), |
1188 | ENUM_ENT(EM_PRISM, "Vitesse Prism" ), |
1189 | ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller" ), |
1190 | ENUM_ENT(EM_FR30, "Fujitsu FR30" ), |
1191 | ENUM_ENT(EM_D10V, "Mitsubishi D10V" ), |
1192 | ENUM_ENT(EM_D30V, "Mitsubishi D30V" ), |
1193 | ENUM_ENT(EM_V850, "NEC v850" ), |
1194 | ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)" ), |
1195 | ENUM_ENT(EM_MN10300, "Matsushita MN10300" ), |
1196 | ENUM_ENT(EM_MN10200, "Matsushita MN10200" ), |
1197 | ENUM_ENT(EM_PJ, "picoJava" ), |
1198 | ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor" ), |
1199 | ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT" ), |
1200 | ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor" ), |
1201 | ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor" ), |
1202 | ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor" ), |
1203 | ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series" ), |
1204 | ENUM_ENT(EM_TPC, "Tenor Network TPC processor" ), |
1205 | ENUM_ENT(EM_SNP1K, "EM_SNP1K" ), |
1206 | ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller" ), |
1207 | ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers" ), |
1208 | ENUM_ENT(EM_MAX, "MAX Processor" ), |
1209 | ENUM_ENT(EM_CR, "National Semiconductor CompactRISC" ), |
1210 | ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16" ), |
1211 | ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller" ), |
1212 | ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin" ), |
1213 | ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors" ), |
1214 | ENUM_ENT(EM_SEP, "Sharp embedded microprocessor" ), |
1215 | ENUM_ENT(EM_ARCA, "Arca RISC microprocessor" ), |
1216 | ENUM_ENT(EM_UNICORE, "Unicore" ), |
1217 | ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU" ), |
1218 | ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor" ), |
1219 | ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios" ), |
1220 | ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor" ), |
1221 | ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor" ), |
1222 | ENUM_ENT(EM_C166, "Infineon Technologies xc16x" ), |
1223 | ENUM_ENT(EM_M16C, "Renesas M16C" ), |
1224 | ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller" ), |
1225 | ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core" ), |
1226 | ENUM_ENT(EM_M32C, "Renesas M32C" ), |
1227 | ENUM_ENT(EM_TSK3000, "Altium TSK3000 core" ), |
1228 | ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor" ), |
1229 | ENUM_ENT(EM_SHARC, "EM_SHARC" ), |
1230 | ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor" ), |
1231 | ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core" ), |
1232 | ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor" ), |
1233 | ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor" ), |
1234 | ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32" ), |
1235 | ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family" ), |
1236 | ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family" ), |
1237 | ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family" ), |
1238 | ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family" ), |
1239 | ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor" ), |
1240 | ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor" ), |
1241 | ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors" ), |
1242 | ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family" ), |
1243 | ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon" ), |
1244 | ENUM_ENT(EM_8051, "Intel 8051 and variants" ), |
1245 | ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family" ), |
1246 | ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family" ), |
1247 | ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor" ), |
1248 | // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has |
1249 | // an identical number to EM_ECOG1. |
1250 | ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family" ), |
1251 | ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers" ), |
1252 | ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor" ), |
1253 | ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor" ), |
1254 | ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture" ), |
1255 | ENUM_ENT(EM_RX, "Renesas RX" ), |
1256 | ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture" ), |
1257 | ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture" ), |
1258 | ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family" ), |
1259 | ENUM_ENT(EM_CR16, "National Semiconductor CompactRISC 16-bit processor" ), |
1260 | ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit" ), |
1261 | ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core" ), |
1262 | ENUM_ENT(EM_L10M, "EM_L10M" ), |
1263 | ENUM_ENT(EM_K10M, "EM_K10M" ), |
1264 | ENUM_ENT(EM_AARCH64, "AArch64" ), |
1265 | ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family" ), |
1266 | ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller" ), |
1267 | ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family" ), |
1268 | ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family" ), |
1269 | ENUM_ENT(EM_MICROBLAZE, "Xilinx MicroBlaze 32-bit RISC soft processor core" ), |
1270 | ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture" ), |
1271 | ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family" ), |
1272 | ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD" ), |
1273 | ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST" ), |
1274 | ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND" ), |
1275 | ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2" ), |
1276 | ENUM_ENT(EM_OPEN8, "EM_OPEN8" ), |
1277 | ENUM_ENT(EM_RL78, "Renesas RL78" ), |
1278 | ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor" ), |
1279 | ENUM_ENT(EM_78KOR, "EM_78KOR" ), |
1280 | ENUM_ENT(EM_56800EX, "EM_56800EX" ), |
1281 | ENUM_ENT(EM_AMDGPU, "EM_AMDGPU" ), |
1282 | ENUM_ENT(EM_RISCV, "RISC-V" ), |
1283 | ENUM_ENT(EM_LANAI, "EM_LANAI" ), |
1284 | ENUM_ENT(EM_BPF, "EM_BPF" ), |
1285 | ENUM_ENT(EM_VE, "NEC SX-Aurora Vector Engine" ), |
1286 | ENUM_ENT(EM_LOONGARCH, "LoongArch" ), |
1287 | }; |
1288 | |
1289 | const EnumEntry<unsigned> ElfSymbolBindings[] = { |
1290 | {"Local" , "LOCAL" , ELF::STB_LOCAL}, |
1291 | {"Global" , "GLOBAL" , ELF::STB_GLOBAL}, |
1292 | {"Weak" , "WEAK" , ELF::STB_WEAK}, |
1293 | {"Unique" , "UNIQUE" , ELF::STB_GNU_UNIQUE}}; |
1294 | |
1295 | const EnumEntry<unsigned> ElfSymbolVisibilities[] = { |
1296 | {"DEFAULT" , "DEFAULT" , ELF::STV_DEFAULT}, |
1297 | {"INTERNAL" , "INTERNAL" , ELF::STV_INTERNAL}, |
1298 | {"HIDDEN" , "HIDDEN" , ELF::STV_HIDDEN}, |
1299 | {"PROTECTED" , "PROTECTED" , ELF::STV_PROTECTED}}; |
1300 | |
1301 | const EnumEntry<unsigned> AMDGPUSymbolTypes[] = { |
1302 | { "AMDGPU_HSA_KERNEL" , ELF::STT_AMDGPU_HSA_KERNEL } |
1303 | }; |
1304 | |
1305 | static const char *getGroupType(uint32_t Flag) { |
1306 | if (Flag & ELF::GRP_COMDAT) |
1307 | return "COMDAT" ; |
1308 | else |
1309 | return "(unknown)" ; |
1310 | } |
1311 | |
1312 | const EnumEntry<unsigned> ElfSectionFlags[] = { |
1313 | ENUM_ENT(SHF_WRITE, "W" ), |
1314 | ENUM_ENT(SHF_ALLOC, "A" ), |
1315 | ENUM_ENT(SHF_EXECINSTR, "X" ), |
1316 | ENUM_ENT(SHF_MERGE, "M" ), |
1317 | ENUM_ENT(SHF_STRINGS, "S" ), |
1318 | ENUM_ENT(SHF_INFO_LINK, "I" ), |
1319 | ENUM_ENT(SHF_LINK_ORDER, "L" ), |
1320 | ENUM_ENT(SHF_OS_NONCONFORMING, "O" ), |
1321 | ENUM_ENT(SHF_GROUP, "G" ), |
1322 | ENUM_ENT(SHF_TLS, "T" ), |
1323 | ENUM_ENT(SHF_COMPRESSED, "C" ), |
1324 | ENUM_ENT(SHF_EXCLUDE, "E" ), |
1325 | }; |
1326 | |
1327 | const EnumEntry<unsigned> ElfGNUSectionFlags[] = { |
1328 | ENUM_ENT(SHF_GNU_RETAIN, "R" ) |
1329 | }; |
1330 | |
1331 | const EnumEntry<unsigned> ElfSolarisSectionFlags[] = { |
1332 | ENUM_ENT(SHF_SUNW_NODISCARD, "R" ) |
1333 | }; |
1334 | |
1335 | const EnumEntry<unsigned> ElfXCoreSectionFlags[] = { |
1336 | ENUM_ENT(XCORE_SHF_CP_SECTION, "" ), |
1337 | ENUM_ENT(XCORE_SHF_DP_SECTION, "" ) |
1338 | }; |
1339 | |
1340 | const EnumEntry<unsigned> ElfARMSectionFlags[] = { |
1341 | ENUM_ENT(SHF_ARM_PURECODE, "y" ) |
1342 | }; |
1343 | |
1344 | const EnumEntry<unsigned> ElfHexagonSectionFlags[] = { |
1345 | ENUM_ENT(SHF_HEX_GPREL, "" ) |
1346 | }; |
1347 | |
1348 | const EnumEntry<unsigned> ElfMipsSectionFlags[] = { |
1349 | ENUM_ENT(SHF_MIPS_NODUPES, "" ), |
1350 | ENUM_ENT(SHF_MIPS_NAMES, "" ), |
1351 | ENUM_ENT(SHF_MIPS_LOCAL, "" ), |
1352 | ENUM_ENT(SHF_MIPS_NOSTRIP, "" ), |
1353 | ENUM_ENT(SHF_MIPS_GPREL, "" ), |
1354 | ENUM_ENT(SHF_MIPS_MERGE, "" ), |
1355 | ENUM_ENT(SHF_MIPS_ADDR, "" ), |
1356 | ENUM_ENT(SHF_MIPS_STRING, "" ) |
1357 | }; |
1358 | |
1359 | const EnumEntry<unsigned> ElfX86_64SectionFlags[] = { |
1360 | ENUM_ENT(SHF_X86_64_LARGE, "l" ) |
1361 | }; |
1362 | |
1363 | static std::vector<EnumEntry<unsigned>> |
1364 | getSectionFlagsForTarget(unsigned EOSAbi, unsigned EMachine) { |
1365 | std::vector<EnumEntry<unsigned>> Ret(std::begin(arr: ElfSectionFlags), |
1366 | std::end(arr: ElfSectionFlags)); |
1367 | switch (EOSAbi) { |
1368 | case ELFOSABI_SOLARIS: |
1369 | Ret.insert(position: Ret.end(), first: std::begin(arr: ElfSolarisSectionFlags), |
1370 | last: std::end(arr: ElfSolarisSectionFlags)); |
1371 | break; |
1372 | default: |
1373 | Ret.insert(position: Ret.end(), first: std::begin(arr: ElfGNUSectionFlags), |
1374 | last: std::end(arr: ElfGNUSectionFlags)); |
1375 | break; |
1376 | } |
1377 | switch (EMachine) { |
1378 | case EM_ARM: |
1379 | Ret.insert(position: Ret.end(), first: std::begin(arr: ElfARMSectionFlags), |
1380 | last: std::end(arr: ElfARMSectionFlags)); |
1381 | break; |
1382 | case EM_HEXAGON: |
1383 | Ret.insert(position: Ret.end(), first: std::begin(arr: ElfHexagonSectionFlags), |
1384 | last: std::end(arr: ElfHexagonSectionFlags)); |
1385 | break; |
1386 | case EM_MIPS: |
1387 | Ret.insert(position: Ret.end(), first: std::begin(arr: ElfMipsSectionFlags), |
1388 | last: std::end(arr: ElfMipsSectionFlags)); |
1389 | break; |
1390 | case EM_X86_64: |
1391 | Ret.insert(position: Ret.end(), first: std::begin(arr: ElfX86_64SectionFlags), |
1392 | last: std::end(arr: ElfX86_64SectionFlags)); |
1393 | break; |
1394 | case EM_XCORE: |
1395 | Ret.insert(position: Ret.end(), first: std::begin(arr: ElfXCoreSectionFlags), |
1396 | last: std::end(arr: ElfXCoreSectionFlags)); |
1397 | break; |
1398 | default: |
1399 | break; |
1400 | } |
1401 | return Ret; |
1402 | } |
1403 | |
1404 | static std::string getGNUFlags(unsigned EOSAbi, unsigned EMachine, |
1405 | uint64_t Flags) { |
1406 | // Here we are trying to build the flags string in the same way as GNU does. |
1407 | // It is not that straightforward. Imagine we have sh_flags == 0x90000000. |
1408 | // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000. |
1409 | // GNU readelf will not print "E" or "Ep" in this case, but will print just |
1410 | // "p". It only will print "E" when no other processor flag is set. |
1411 | std::string Str; |
1412 | bool HasUnknownFlag = false; |
1413 | bool HasOSFlag = false; |
1414 | bool HasProcFlag = false; |
1415 | std::vector<EnumEntry<unsigned>> FlagsList = |
1416 | getSectionFlagsForTarget(EOSAbi, EMachine); |
1417 | while (Flags) { |
1418 | // Take the least significant bit as a flag. |
1419 | uint64_t Flag = Flags & -Flags; |
1420 | Flags -= Flag; |
1421 | |
1422 | // Find the flag in the known flags list. |
1423 | auto I = llvm::find_if(Range&: FlagsList, P: [=](const EnumEntry<unsigned> &E) { |
1424 | // Flags with empty names are not printed in GNU style output. |
1425 | return E.Value == Flag && !E.AltName.empty(); |
1426 | }); |
1427 | if (I != FlagsList.end()) { |
1428 | Str += I->AltName; |
1429 | continue; |
1430 | } |
1431 | |
1432 | // If we did not find a matching regular flag, then we deal with an OS |
1433 | // specific flag, processor specific flag or an unknown flag. |
1434 | if (Flag & ELF::SHF_MASKOS) { |
1435 | HasOSFlag = true; |
1436 | Flags &= ~ELF::SHF_MASKOS; |
1437 | } else if (Flag & ELF::SHF_MASKPROC) { |
1438 | HasProcFlag = true; |
1439 | // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE |
1440 | // bit if set so that it doesn't also get printed. |
1441 | Flags &= ~ELF::SHF_MASKPROC; |
1442 | } else { |
1443 | HasUnknownFlag = true; |
1444 | } |
1445 | } |
1446 | |
1447 | // "o", "p" and "x" are printed last. |
1448 | if (HasOSFlag) |
1449 | Str += "o" ; |
1450 | if (HasProcFlag) |
1451 | Str += "p" ; |
1452 | if (HasUnknownFlag) |
1453 | Str += "x" ; |
1454 | return Str; |
1455 | } |
1456 | |
1457 | static StringRef segmentTypeToString(unsigned Arch, unsigned Type) { |
1458 | // Check potentially overlapped processor-specific program header type. |
1459 | switch (Arch) { |
1460 | case ELF::EM_ARM: |
1461 | switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); } |
1462 | break; |
1463 | case ELF::EM_MIPS: |
1464 | case ELF::EM_MIPS_RS3_LE: |
1465 | switch (Type) { |
1466 | LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO); |
1467 | LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC); |
1468 | LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS); |
1469 | LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS); |
1470 | } |
1471 | break; |
1472 | case ELF::EM_RISCV: |
1473 | switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_RISCV_ATTRIBUTES); } |
1474 | } |
1475 | |
1476 | switch (Type) { |
1477 | LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL); |
1478 | LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD); |
1479 | LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC); |
1480 | LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP); |
1481 | LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE); |
1482 | LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB); |
1483 | LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR); |
1484 | LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS); |
1485 | |
1486 | LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME); |
1487 | LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND); |
1488 | |
1489 | LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK); |
1490 | LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO); |
1491 | LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY); |
1492 | |
1493 | LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_MUTABLE); |
1494 | LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE); |
1495 | LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED); |
1496 | LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_NOBTCFI); |
1497 | LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_SYSCALLS); |
1498 | LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA); |
1499 | default: |
1500 | return "" ; |
1501 | } |
1502 | } |
1503 | |
1504 | static std::string getGNUPtType(unsigned Arch, unsigned Type) { |
1505 | StringRef Seg = segmentTypeToString(Arch, Type); |
1506 | if (Seg.empty()) |
1507 | return std::string("<unknown>: " ) + to_string(Value: format_hex(N: Type, Width: 1)); |
1508 | |
1509 | // E.g. "PT_ARM_EXIDX" -> "EXIDX". |
1510 | if (Seg.consume_front(Prefix: "PT_ARM_" )) |
1511 | return Seg.str(); |
1512 | |
1513 | // E.g. "PT_MIPS_REGINFO" -> "REGINFO". |
1514 | if (Seg.consume_front(Prefix: "PT_MIPS_" )) |
1515 | return Seg.str(); |
1516 | |
1517 | // E.g. "PT_RISCV_ATTRIBUTES" |
1518 | if (Seg.consume_front(Prefix: "PT_RISCV_" )) |
1519 | return Seg.str(); |
1520 | |
1521 | // E.g. "PT_LOAD" -> "LOAD". |
1522 | assert(Seg.starts_with("PT_" )); |
1523 | return Seg.drop_front(N: 3).str(); |
1524 | } |
1525 | |
1526 | const EnumEntry<unsigned> ElfSegmentFlags[] = { |
1527 | LLVM_READOBJ_ENUM_ENT(ELF, PF_X), |
1528 | LLVM_READOBJ_ENUM_ENT(ELF, PF_W), |
1529 | LLVM_READOBJ_ENUM_ENT(ELF, PF_R) |
1530 | }; |
1531 | |
1532 | const EnumEntry<unsigned> [] = { |
1533 | ENUM_ENT(EF_MIPS_NOREORDER, "noreorder" ), |
1534 | ENUM_ENT(EF_MIPS_PIC, "pic" ), |
1535 | ENUM_ENT(EF_MIPS_CPIC, "cpic" ), |
1536 | ENUM_ENT(EF_MIPS_ABI2, "abi2" ), |
1537 | ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode" ), |
1538 | ENUM_ENT(EF_MIPS_FP64, "fp64" ), |
1539 | ENUM_ENT(EF_MIPS_NAN2008, "nan2008" ), |
1540 | ENUM_ENT(EF_MIPS_ABI_O32, "o32" ), |
1541 | ENUM_ENT(EF_MIPS_ABI_O64, "o64" ), |
1542 | ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32" ), |
1543 | ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64" ), |
1544 | ENUM_ENT(EF_MIPS_MACH_3900, "3900" ), |
1545 | ENUM_ENT(EF_MIPS_MACH_4010, "4010" ), |
1546 | ENUM_ENT(EF_MIPS_MACH_4100, "4100" ), |
1547 | ENUM_ENT(EF_MIPS_MACH_4650, "4650" ), |
1548 | ENUM_ENT(EF_MIPS_MACH_4120, "4120" ), |
1549 | ENUM_ENT(EF_MIPS_MACH_4111, "4111" ), |
1550 | ENUM_ENT(EF_MIPS_MACH_SB1, "sb1" ), |
1551 | ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon" ), |
1552 | ENUM_ENT(EF_MIPS_MACH_XLR, "xlr" ), |
1553 | ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2" ), |
1554 | ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3" ), |
1555 | ENUM_ENT(EF_MIPS_MACH_5400, "5400" ), |
1556 | ENUM_ENT(EF_MIPS_MACH_5900, "5900" ), |
1557 | ENUM_ENT(EF_MIPS_MACH_5500, "5500" ), |
1558 | ENUM_ENT(EF_MIPS_MACH_9000, "9000" ), |
1559 | ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e" ), |
1560 | ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f" ), |
1561 | ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a" ), |
1562 | ENUM_ENT(EF_MIPS_MICROMIPS, "micromips" ), |
1563 | ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16" ), |
1564 | ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx" ), |
1565 | ENUM_ENT(EF_MIPS_ARCH_1, "mips1" ), |
1566 | ENUM_ENT(EF_MIPS_ARCH_2, "mips2" ), |
1567 | ENUM_ENT(EF_MIPS_ARCH_3, "mips3" ), |
1568 | ENUM_ENT(EF_MIPS_ARCH_4, "mips4" ), |
1569 | ENUM_ENT(EF_MIPS_ARCH_5, "mips5" ), |
1570 | ENUM_ENT(EF_MIPS_ARCH_32, "mips32" ), |
1571 | ENUM_ENT(EF_MIPS_ARCH_64, "mips64" ), |
1572 | ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2" ), |
1573 | ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2" ), |
1574 | ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6" ), |
1575 | ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6" ) |
1576 | }; |
1577 | |
1578 | // clang-format off |
1579 | #define AMDGPU_MACH_ENUM_ENTS \ |
1580 | ENUM_ENT(EF_AMDGPU_MACH_NONE, "none"), \ |
1581 | ENUM_ENT(EF_AMDGPU_MACH_R600_R600, "r600"), \ |
1582 | ENUM_ENT(EF_AMDGPU_MACH_R600_R630, "r630"), \ |
1583 | ENUM_ENT(EF_AMDGPU_MACH_R600_RS880, "rs880"), \ |
1584 | ENUM_ENT(EF_AMDGPU_MACH_R600_RV670, "rv670"), \ |
1585 | ENUM_ENT(EF_AMDGPU_MACH_R600_RV710, "rv710"), \ |
1586 | ENUM_ENT(EF_AMDGPU_MACH_R600_RV730, "rv730"), \ |
1587 | ENUM_ENT(EF_AMDGPU_MACH_R600_RV770, "rv770"), \ |
1588 | ENUM_ENT(EF_AMDGPU_MACH_R600_CEDAR, "cedar"), \ |
1589 | ENUM_ENT(EF_AMDGPU_MACH_R600_CYPRESS, "cypress"), \ |
1590 | ENUM_ENT(EF_AMDGPU_MACH_R600_JUNIPER, "juniper"), \ |
1591 | ENUM_ENT(EF_AMDGPU_MACH_R600_REDWOOD, "redwood"), \ |
1592 | ENUM_ENT(EF_AMDGPU_MACH_R600_SUMO, "sumo"), \ |
1593 | ENUM_ENT(EF_AMDGPU_MACH_R600_BARTS, "barts"), \ |
1594 | ENUM_ENT(EF_AMDGPU_MACH_R600_CAICOS, "caicos"), \ |
1595 | ENUM_ENT(EF_AMDGPU_MACH_R600_CAYMAN, "cayman"), \ |
1596 | ENUM_ENT(EF_AMDGPU_MACH_R600_TURKS, "turks"), \ |
1597 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX600, "gfx600"), \ |
1598 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX601, "gfx601"), \ |
1599 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX602, "gfx602"), \ |
1600 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX700, "gfx700"), \ |
1601 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX701, "gfx701"), \ |
1602 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX702, "gfx702"), \ |
1603 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX703, "gfx703"), \ |
1604 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX704, "gfx704"), \ |
1605 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX705, "gfx705"), \ |
1606 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX801, "gfx801"), \ |
1607 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX802, "gfx802"), \ |
1608 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX803, "gfx803"), \ |
1609 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX805, "gfx805"), \ |
1610 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX810, "gfx810"), \ |
1611 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX900, "gfx900"), \ |
1612 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX902, "gfx902"), \ |
1613 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX904, "gfx904"), \ |
1614 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX906, "gfx906"), \ |
1615 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX908, "gfx908"), \ |
1616 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX909, "gfx909"), \ |
1617 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX90A, "gfx90a"), \ |
1618 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX90C, "gfx90c"), \ |
1619 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX940, "gfx940"), \ |
1620 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX941, "gfx941"), \ |
1621 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX942, "gfx942"), \ |
1622 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1010, "gfx1010"), \ |
1623 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1011, "gfx1011"), \ |
1624 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1012, "gfx1012"), \ |
1625 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1013, "gfx1013"), \ |
1626 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1030, "gfx1030"), \ |
1627 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1031, "gfx1031"), \ |
1628 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1032, "gfx1032"), \ |
1629 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1033, "gfx1033"), \ |
1630 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1034, "gfx1034"), \ |
1631 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1035, "gfx1035"), \ |
1632 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1036, "gfx1036"), \ |
1633 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1100, "gfx1100"), \ |
1634 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1101, "gfx1101"), \ |
1635 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1102, "gfx1102"), \ |
1636 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1103, "gfx1103"), \ |
1637 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1150, "gfx1150"), \ |
1638 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1151, "gfx1151"), \ |
1639 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1152, "gfx1152"), \ |
1640 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1200, "gfx1200"), \ |
1641 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1201, "gfx1201"), \ |
1642 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX9_GENERIC, "gfx9-generic"), \ |
1643 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX10_1_GENERIC, "gfx10-1-generic"), \ |
1644 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX10_3_GENERIC, "gfx10-3-generic"), \ |
1645 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX11_GENERIC, "gfx11-generic"), \ |
1646 | ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX12_GENERIC, "gfx12-generic") |
1647 | // clang-format on |
1648 | |
1649 | const EnumEntry<unsigned> [] = { |
1650 | AMDGPU_MACH_ENUM_ENTS, |
1651 | ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_V3, "xnack" ), |
1652 | ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_V3, "sramecc" ), |
1653 | }; |
1654 | |
1655 | const EnumEntry<unsigned> [] = { |
1656 | AMDGPU_MACH_ENUM_ENTS, |
1657 | ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_ANY_V4, "xnack" ), |
1658 | ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_OFF_V4, "xnack-" ), |
1659 | ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_ON_V4, "xnack+" ), |
1660 | ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_ANY_V4, "sramecc" ), |
1661 | ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_OFF_V4, "sramecc-" ), |
1662 | ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_ON_V4, "sramecc+" ), |
1663 | }; |
1664 | |
1665 | const EnumEntry<unsigned> [] = { |
1666 | ENUM_ENT(EF_CUDA_SM20, "sm_20" ), ENUM_ENT(EF_CUDA_SM21, "sm_21" ), |
1667 | ENUM_ENT(EF_CUDA_SM30, "sm_30" ), ENUM_ENT(EF_CUDA_SM32, "sm_32" ), |
1668 | ENUM_ENT(EF_CUDA_SM35, "sm_35" ), ENUM_ENT(EF_CUDA_SM37, "sm_37" ), |
1669 | ENUM_ENT(EF_CUDA_SM50, "sm_50" ), ENUM_ENT(EF_CUDA_SM52, "sm_52" ), |
1670 | ENUM_ENT(EF_CUDA_SM53, "sm_53" ), ENUM_ENT(EF_CUDA_SM60, "sm_60" ), |
1671 | ENUM_ENT(EF_CUDA_SM61, "sm_61" ), ENUM_ENT(EF_CUDA_SM62, "sm_62" ), |
1672 | ENUM_ENT(EF_CUDA_SM70, "sm_70" ), ENUM_ENT(EF_CUDA_SM72, "sm_72" ), |
1673 | ENUM_ENT(EF_CUDA_SM75, "sm_75" ), ENUM_ENT(EF_CUDA_SM80, "sm_80" ), |
1674 | ENUM_ENT(EF_CUDA_SM86, "sm_86" ), ENUM_ENT(EF_CUDA_SM87, "sm_87" ), |
1675 | ENUM_ENT(EF_CUDA_SM89, "sm_89" ), ENUM_ENT(EF_CUDA_SM90, "sm_90" ), |
1676 | }; |
1677 | |
1678 | const EnumEntry<unsigned> [] = { |
1679 | ENUM_ENT(EF_RISCV_RVC, "RVC" ), |
1680 | ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI" ), |
1681 | ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI" ), |
1682 | ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI" ), |
1683 | ENUM_ENT(EF_RISCV_RVE, "RVE" ), |
1684 | ENUM_ENT(EF_RISCV_TSO, "TSO" ), |
1685 | }; |
1686 | |
1687 | const EnumEntry<unsigned> [] = { |
1688 | LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1), |
1689 | LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2), |
1690 | LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25), |
1691 | LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3), |
1692 | LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31), |
1693 | LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35), |
1694 | LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4), |
1695 | LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5), |
1696 | LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51), |
1697 | LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6), |
1698 | LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY), |
1699 | LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1), |
1700 | LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2), |
1701 | LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3), |
1702 | LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4), |
1703 | LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5), |
1704 | LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6), |
1705 | LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7), |
1706 | ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable" ), |
1707 | }; |
1708 | |
1709 | const EnumEntry<unsigned> [] = { |
1710 | ENUM_ENT(EF_LOONGARCH_ABI_SOFT_FLOAT, "SOFT-FLOAT" ), |
1711 | ENUM_ENT(EF_LOONGARCH_ABI_SINGLE_FLOAT, "SINGLE-FLOAT" ), |
1712 | ENUM_ENT(EF_LOONGARCH_ABI_DOUBLE_FLOAT, "DOUBLE-FLOAT" ), |
1713 | ENUM_ENT(EF_LOONGARCH_OBJABI_V0, "OBJ-v0" ), |
1714 | ENUM_ENT(EF_LOONGARCH_OBJABI_V1, "OBJ-v1" ), |
1715 | }; |
1716 | |
1717 | static const EnumEntry<unsigned> [] = { |
1718 | LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_MACH_NONE), |
1719 | LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_INSN), |
1720 | LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_LIT) |
1721 | }; |
1722 | |
1723 | const EnumEntry<unsigned> ElfSymOtherFlags[] = { |
1724 | LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL), |
1725 | LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN), |
1726 | LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED) |
1727 | }; |
1728 | |
1729 | const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = { |
1730 | LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL), |
1731 | LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT), |
1732 | LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC), |
1733 | LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS) |
1734 | }; |
1735 | |
1736 | const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = { |
1737 | LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS) |
1738 | }; |
1739 | |
1740 | const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = { |
1741 | LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL), |
1742 | LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT), |
1743 | LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16) |
1744 | }; |
1745 | |
1746 | const EnumEntry<unsigned> ElfRISCVSymOtherFlags[] = { |
1747 | LLVM_READOBJ_ENUM_ENT(ELF, STO_RISCV_VARIANT_CC)}; |
1748 | |
1749 | static const char *getElfMipsOptionsOdkType(unsigned Odk) { |
1750 | switch (Odk) { |
1751 | LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL); |
1752 | LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO); |
1753 | LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS); |
1754 | LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD); |
1755 | LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH); |
1756 | LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL); |
1757 | LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS); |
1758 | LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND); |
1759 | LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR); |
1760 | LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP); |
1761 | LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT); |
1762 | LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE); |
1763 | default: |
1764 | return "Unknown" ; |
1765 | } |
1766 | } |
1767 | |
1768 | template <typename ELFT> |
1769 | std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *> |
1770 | ELFDumper<ELFT>::findDynamic() { |
1771 | // Try to locate the PT_DYNAMIC header. |
1772 | const Elf_Phdr *DynamicPhdr = nullptr; |
1773 | if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) { |
1774 | for (const Elf_Phdr &Phdr : *PhdrsOrErr) { |
1775 | if (Phdr.p_type != ELF::PT_DYNAMIC) |
1776 | continue; |
1777 | DynamicPhdr = &Phdr; |
1778 | break; |
1779 | } |
1780 | } else { |
1781 | reportUniqueWarning( |
1782 | "unable to read program headers to locate the PT_DYNAMIC segment: " + |
1783 | toString(PhdrsOrErr.takeError())); |
1784 | } |
1785 | |
1786 | // Try to locate the .dynamic section in the sections header table. |
1787 | const Elf_Shdr *DynamicSec = nullptr; |
1788 | for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { |
1789 | if (Sec.sh_type != ELF::SHT_DYNAMIC) |
1790 | continue; |
1791 | DynamicSec = &Sec; |
1792 | break; |
1793 | } |
1794 | |
1795 | if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz > |
1796 | ObjF.getMemoryBufferRef().getBufferSize()) || |
1797 | (DynamicPhdr->p_offset + DynamicPhdr->p_filesz < |
1798 | DynamicPhdr->p_offset))) { |
1799 | reportUniqueWarning( |
1800 | "PT_DYNAMIC segment offset (0x" + |
1801 | Twine::utohexstr(Val: DynamicPhdr->p_offset) + ") + file size (0x" + |
1802 | Twine::utohexstr(Val: DynamicPhdr->p_filesz) + |
1803 | ") exceeds the size of the file (0x" + |
1804 | Twine::utohexstr(Val: ObjF.getMemoryBufferRef().getBufferSize()) + ")" ); |
1805 | // Don't use the broken dynamic header. |
1806 | DynamicPhdr = nullptr; |
1807 | } |
1808 | |
1809 | if (DynamicPhdr && DynamicSec) { |
1810 | if (DynamicSec->sh_addr + DynamicSec->sh_size > |
1811 | DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz || |
1812 | DynamicSec->sh_addr < DynamicPhdr->p_vaddr) |
1813 | reportUniqueWarning(describe(Sec: *DynamicSec) + |
1814 | " is not contained within the " |
1815 | "PT_DYNAMIC segment" ); |
1816 | |
1817 | if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr) |
1818 | reportUniqueWarning(describe(Sec: *DynamicSec) + " is not at the start of " |
1819 | "PT_DYNAMIC segment" ); |
1820 | } |
1821 | |
1822 | return std::make_pair(DynamicPhdr, DynamicSec); |
1823 | } |
1824 | |
1825 | template <typename ELFT> |
1826 | void ELFDumper<ELFT>::loadDynamicTable() { |
1827 | const Elf_Phdr *DynamicPhdr; |
1828 | const Elf_Shdr *DynamicSec; |
1829 | std::tie(DynamicPhdr, DynamicSec) = findDynamic(); |
1830 | if (!DynamicPhdr && !DynamicSec) |
1831 | return; |
1832 | |
1833 | DynRegionInfo FromPhdr(ObjF, *this); |
1834 | bool IsPhdrTableValid = false; |
1835 | if (DynamicPhdr) { |
1836 | // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are |
1837 | // validated in findDynamic() and so createDRI() is not expected to fail. |
1838 | FromPhdr = cantFail(createDRI(Offset: DynamicPhdr->p_offset, Size: DynamicPhdr->p_filesz, |
1839 | EntSize: sizeof(Elf_Dyn))); |
1840 | FromPhdr.SizePrintName = "PT_DYNAMIC size" ; |
1841 | FromPhdr.EntSizePrintName = "" ; |
1842 | IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty(); |
1843 | } |
1844 | |
1845 | // Locate the dynamic table described in a section header. |
1846 | // Ignore sh_entsize and use the expected value for entry size explicitly. |
1847 | // This allows us to dump dynamic sections with a broken sh_entsize |
1848 | // field. |
1849 | DynRegionInfo FromSec(ObjF, *this); |
1850 | bool IsSecTableValid = false; |
1851 | if (DynamicSec) { |
1852 | Expected<DynRegionInfo> RegOrErr = |
1853 | createDRI(Offset: DynamicSec->sh_offset, Size: DynamicSec->sh_size, EntSize: sizeof(Elf_Dyn)); |
1854 | if (RegOrErr) { |
1855 | FromSec = *RegOrErr; |
1856 | FromSec.Context = describe(Sec: *DynamicSec); |
1857 | FromSec.EntSizePrintName = "" ; |
1858 | IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty(); |
1859 | } else { |
1860 | reportUniqueWarning("unable to read the dynamic table from " + |
1861 | describe(Sec: *DynamicSec) + ": " + |
1862 | toString(E: RegOrErr.takeError())); |
1863 | } |
1864 | } |
1865 | |
1866 | // When we only have information from one of the SHT_DYNAMIC section header or |
1867 | // PT_DYNAMIC program header, just use that. |
1868 | if (!DynamicPhdr || !DynamicSec) { |
1869 | if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) { |
1870 | DynamicTable = DynamicPhdr ? FromPhdr : FromSec; |
1871 | parseDynamicTable(); |
1872 | } else { |
1873 | reportUniqueWarning("no valid dynamic table was found" ); |
1874 | } |
1875 | return; |
1876 | } |
1877 | |
1878 | // At this point we have tables found from the section header and from the |
1879 | // dynamic segment. Usually they match, but we have to do sanity checks to |
1880 | // verify that. |
1881 | |
1882 | if (FromPhdr.Addr != FromSec.Addr) |
1883 | reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC " |
1884 | "program header disagree about " |
1885 | "the location of the dynamic table" ); |
1886 | |
1887 | if (!IsPhdrTableValid && !IsSecTableValid) { |
1888 | reportUniqueWarning("no valid dynamic table was found" ); |
1889 | return; |
1890 | } |
1891 | |
1892 | // Information in the PT_DYNAMIC program header has priority over the |
1893 | // information in a section header. |
1894 | if (IsPhdrTableValid) { |
1895 | if (!IsSecTableValid) |
1896 | reportUniqueWarning( |
1897 | "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used" ); |
1898 | DynamicTable = FromPhdr; |
1899 | } else { |
1900 | reportUniqueWarning( |
1901 | "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used" ); |
1902 | DynamicTable = FromSec; |
1903 | } |
1904 | |
1905 | parseDynamicTable(); |
1906 | } |
1907 | |
1908 | template <typename ELFT> |
1909 | ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O, |
1910 | ScopedPrinter &Writer) |
1911 | : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()), |
1912 | FileName(O.getFileName()), DynRelRegion(O, *this), |
1913 | DynRelaRegion(O, *this), DynCrelRegion(O, *this), DynRelrRegion(O, *this), |
1914 | DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this), |
1915 | DynamicTable(O, *this) { |
1916 | if (!O.IsContentValid()) |
1917 | return; |
1918 | |
1919 | typename ELFT::ShdrRange Sections = cantFail(Obj.sections()); |
1920 | for (const Elf_Shdr &Sec : Sections) { |
1921 | switch (Sec.sh_type) { |
1922 | case ELF::SHT_SYMTAB: |
1923 | if (!DotSymtabSec) |
1924 | DotSymtabSec = &Sec; |
1925 | break; |
1926 | case ELF::SHT_DYNSYM: |
1927 | if (!DotDynsymSec) |
1928 | DotDynsymSec = &Sec; |
1929 | |
1930 | if (!DynSymRegion) { |
1931 | Expected<DynRegionInfo> RegOrErr = |
1932 | createDRI(Offset: Sec.sh_offset, Size: Sec.sh_size, EntSize: Sec.sh_entsize); |
1933 | if (RegOrErr) { |
1934 | DynSymRegion = *RegOrErr; |
1935 | DynSymRegion->Context = describe(Sec); |
1936 | |
1937 | if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec)) |
1938 | DynamicStringTable = *E; |
1939 | else |
1940 | reportUniqueWarning("unable to get the string table for the " + |
1941 | describe(Sec) + ": " + toString(E: E.takeError())); |
1942 | } else { |
1943 | reportUniqueWarning("unable to read dynamic symbols from " + |
1944 | describe(Sec) + ": " + |
1945 | toString(E: RegOrErr.takeError())); |
1946 | } |
1947 | } |
1948 | break; |
1949 | case ELF::SHT_SYMTAB_SHNDX: { |
1950 | uint32_t SymtabNdx = Sec.sh_link; |
1951 | if (SymtabNdx >= Sections.size()) { |
1952 | reportUniqueWarning( |
1953 | "unable to get the associated symbol table for " + describe(Sec) + |
1954 | ": sh_link (" + Twine(SymtabNdx) + |
1955 | ") is greater than or equal to the total number of sections (" + |
1956 | Twine(Sections.size()) + ")" ); |
1957 | continue; |
1958 | } |
1959 | |
1960 | if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr = |
1961 | Obj.getSHNDXTable(Sec)) { |
1962 | if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr}) |
1963 | .second) |
1964 | reportUniqueWarning( |
1965 | "multiple SHT_SYMTAB_SHNDX sections are linked to " + |
1966 | describe(Sec)); |
1967 | } else { |
1968 | reportUniqueWarning(ShndxTableOrErr.takeError()); |
1969 | } |
1970 | break; |
1971 | } |
1972 | case ELF::SHT_GNU_versym: |
1973 | if (!SymbolVersionSection) |
1974 | SymbolVersionSection = &Sec; |
1975 | break; |
1976 | case ELF::SHT_GNU_verdef: |
1977 | if (!SymbolVersionDefSection) |
1978 | SymbolVersionDefSection = &Sec; |
1979 | break; |
1980 | case ELF::SHT_GNU_verneed: |
1981 | if (!SymbolVersionNeedSection) |
1982 | SymbolVersionNeedSection = &Sec; |
1983 | break; |
1984 | case ELF::SHT_LLVM_ADDRSIG: |
1985 | if (!DotAddrsigSec) |
1986 | DotAddrsigSec = &Sec; |
1987 | break; |
1988 | } |
1989 | } |
1990 | |
1991 | loadDynamicTable(); |
1992 | } |
1993 | |
1994 | template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() { |
1995 | auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * { |
1996 | auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) { |
1997 | this->reportUniqueWarning(Msg); |
1998 | return Error::success(); |
1999 | }); |
2000 | if (!MappedAddrOrError) { |
2001 | this->reportUniqueWarning("unable to parse DT_" + |
2002 | Obj.getDynamicTagAsString(Tag) + ": " + |
2003 | llvm::toString(MappedAddrOrError.takeError())); |
2004 | return nullptr; |
2005 | } |
2006 | return MappedAddrOrError.get(); |
2007 | }; |
2008 | |
2009 | const char *StringTableBegin = nullptr; |
2010 | uint64_t StringTableSize = 0; |
2011 | std::optional<DynRegionInfo> DynSymFromTable; |
2012 | for (const Elf_Dyn &Dyn : dynamic_table()) { |
2013 | if (Obj.getHeader().e_machine == EM_AARCH64) { |
2014 | switch (Dyn.d_tag) { |
2015 | case ELF::DT_AARCH64_AUTH_RELRSZ: |
2016 | DynRelrRegion.Size = Dyn.getVal(); |
2017 | DynRelrRegion.SizePrintName = "DT_AARCH64_AUTH_RELRSZ value" ; |
2018 | continue; |
2019 | case ELF::DT_AARCH64_AUTH_RELRENT: |
2020 | DynRelrRegion.EntSize = Dyn.getVal(); |
2021 | DynRelrRegion.EntSizePrintName = "DT_AARCH64_AUTH_RELRENT value" ; |
2022 | continue; |
2023 | } |
2024 | } |
2025 | switch (Dyn.d_tag) { |
2026 | case ELF::DT_HASH: |
2027 | HashTable = reinterpret_cast<const Elf_Hash *>( |
2028 | toMappedAddr(Dyn.getTag(), Dyn.getPtr())); |
2029 | break; |
2030 | case ELF::DT_GNU_HASH: |
2031 | GnuHashTable = reinterpret_cast<const Elf_GnuHash *>( |
2032 | toMappedAddr(Dyn.getTag(), Dyn.getPtr())); |
2033 | break; |
2034 | case ELF::DT_STRTAB: |
2035 | StringTableBegin = reinterpret_cast<const char *>( |
2036 | toMappedAddr(Dyn.getTag(), Dyn.getPtr())); |
2037 | break; |
2038 | case ELF::DT_STRSZ: |
2039 | StringTableSize = Dyn.getVal(); |
2040 | break; |
2041 | case ELF::DT_SYMTAB: { |
2042 | // If we can't map the DT_SYMTAB value to an address (e.g. when there are |
2043 | // no program headers), we ignore its value. |
2044 | if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) { |
2045 | DynSymFromTable.emplace(ObjF, *this); |
2046 | DynSymFromTable->Addr = VA; |
2047 | DynSymFromTable->EntSize = sizeof(Elf_Sym); |
2048 | DynSymFromTable->EntSizePrintName = "" ; |
2049 | } |
2050 | break; |
2051 | } |
2052 | case ELF::DT_SYMENT: { |
2053 | uint64_t Val = Dyn.getVal(); |
2054 | if (Val != sizeof(Elf_Sym)) |
2055 | this->reportUniqueWarning("DT_SYMENT value of 0x" + |
2056 | Twine::utohexstr(Val) + |
2057 | " is not the size of a symbol (0x" + |
2058 | Twine::utohexstr(Val: sizeof(Elf_Sym)) + ")" ); |
2059 | break; |
2060 | } |
2061 | case ELF::DT_RELA: |
2062 | DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); |
2063 | break; |
2064 | case ELF::DT_RELASZ: |
2065 | DynRelaRegion.Size = Dyn.getVal(); |
2066 | DynRelaRegion.SizePrintName = "DT_RELASZ value" ; |
2067 | break; |
2068 | case ELF::DT_RELAENT: |
2069 | DynRelaRegion.EntSize = Dyn.getVal(); |
2070 | DynRelaRegion.EntSizePrintName = "DT_RELAENT value" ; |
2071 | break; |
2072 | case ELF::DT_CREL: |
2073 | DynCrelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); |
2074 | break; |
2075 | case ELF::DT_SONAME: |
2076 | SONameOffset = Dyn.getVal(); |
2077 | break; |
2078 | case ELF::DT_REL: |
2079 | DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); |
2080 | break; |
2081 | case ELF::DT_RELSZ: |
2082 | DynRelRegion.Size = Dyn.getVal(); |
2083 | DynRelRegion.SizePrintName = "DT_RELSZ value" ; |
2084 | break; |
2085 | case ELF::DT_RELENT: |
2086 | DynRelRegion.EntSize = Dyn.getVal(); |
2087 | DynRelRegion.EntSizePrintName = "DT_RELENT value" ; |
2088 | break; |
2089 | case ELF::DT_RELR: |
2090 | case ELF::DT_ANDROID_RELR: |
2091 | case ELF::DT_AARCH64_AUTH_RELR: |
2092 | DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); |
2093 | break; |
2094 | case ELF::DT_RELRSZ: |
2095 | case ELF::DT_ANDROID_RELRSZ: |
2096 | case ELF::DT_AARCH64_AUTH_RELRSZ: |
2097 | DynRelrRegion.Size = Dyn.getVal(); |
2098 | DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ |
2099 | ? "DT_RELRSZ value" |
2100 | : "DT_ANDROID_RELRSZ value" ; |
2101 | break; |
2102 | case ELF::DT_RELRENT: |
2103 | case ELF::DT_ANDROID_RELRENT: |
2104 | case ELF::DT_AARCH64_AUTH_RELRENT: |
2105 | DynRelrRegion.EntSize = Dyn.getVal(); |
2106 | DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT |
2107 | ? "DT_RELRENT value" |
2108 | : "DT_ANDROID_RELRENT value" ; |
2109 | break; |
2110 | case ELF::DT_PLTREL: |
2111 | if (Dyn.getVal() == DT_REL) |
2112 | DynPLTRelRegion.EntSize = sizeof(Elf_Rel); |
2113 | else if (Dyn.getVal() == DT_RELA) |
2114 | DynPLTRelRegion.EntSize = sizeof(Elf_Rela); |
2115 | else if (Dyn.getVal() == DT_CREL) |
2116 | DynPLTRelRegion.EntSize = 1; |
2117 | else |
2118 | reportUniqueWarning(Twine("unknown DT_PLTREL value of " ) + |
2119 | Twine((uint64_t)Dyn.getVal())); |
2120 | DynPLTRelRegion.EntSizePrintName = "PLTREL entry size" ; |
2121 | break; |
2122 | case ELF::DT_JMPREL: |
2123 | DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); |
2124 | break; |
2125 | case ELF::DT_PLTRELSZ: |
2126 | DynPLTRelRegion.Size = Dyn.getVal(); |
2127 | DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value" ; |
2128 | break; |
2129 | case ELF::DT_SYMTAB_SHNDX: |
2130 | DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); |
2131 | DynSymTabShndxRegion.EntSize = sizeof(Elf_Word); |
2132 | break; |
2133 | } |
2134 | } |
2135 | |
2136 | if (StringTableBegin) { |
2137 | const uint64_t FileSize = Obj.getBufSize(); |
2138 | const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base(); |
2139 | if (StringTableSize > FileSize - Offset) |
2140 | reportUniqueWarning( |
2141 | "the dynamic string table at 0x" + Twine::utohexstr(Val: Offset) + |
2142 | " goes past the end of the file (0x" + Twine::utohexstr(Val: FileSize) + |
2143 | ") with DT_STRSZ = 0x" + Twine::utohexstr(Val: StringTableSize)); |
2144 | else |
2145 | DynamicStringTable = StringRef(StringTableBegin, StringTableSize); |
2146 | } |
2147 | |
2148 | const bool IsHashTableSupported = getHashTableEntSize() == 4; |
2149 | if (DynSymRegion) { |
2150 | // Often we find the information about the dynamic symbol table |
2151 | // location in the SHT_DYNSYM section header. However, the value in |
2152 | // DT_SYMTAB has priority, because it is used by dynamic loaders to |
2153 | // locate .dynsym at runtime. The location we find in the section header |
2154 | // and the location we find here should match. |
2155 | if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr) |
2156 | reportUniqueWarning( |
2157 | createError(Err: "SHT_DYNSYM section header and DT_SYMTAB disagree about " |
2158 | "the location of the dynamic symbol table" )); |
2159 | |
2160 | // According to the ELF gABI: "The number of symbol table entries should |
2161 | // equal nchain". Check to see if the DT_HASH hash table nchain value |
2162 | // conflicts with the number of symbols in the dynamic symbol table |
2163 | // according to the section header. |
2164 | if (HashTable && IsHashTableSupported) { |
2165 | if (DynSymRegion->EntSize == 0) |
2166 | reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0" ); |
2167 | else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize) |
2168 | reportUniqueWarning( |
2169 | "hash table nchain (" + Twine(HashTable->nchain) + |
2170 | ") differs from symbol count derived from SHT_DYNSYM section " |
2171 | "header (" + |
2172 | Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")" ); |
2173 | } |
2174 | } |
2175 | |
2176 | // Delay the creation of the actual dynamic symbol table until now, so that |
2177 | // checks can always be made against the section header-based properties, |
2178 | // without worrying about tag order. |
2179 | if (DynSymFromTable) { |
2180 | if (!DynSymRegion) { |
2181 | DynSymRegion = DynSymFromTable; |
2182 | } else { |
2183 | DynSymRegion->Addr = DynSymFromTable->Addr; |
2184 | DynSymRegion->EntSize = DynSymFromTable->EntSize; |
2185 | DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName; |
2186 | } |
2187 | } |
2188 | |
2189 | // Derive the dynamic symbol table size from the DT_HASH hash table, if |
2190 | // present. |
2191 | if (HashTable && IsHashTableSupported && DynSymRegion) { |
2192 | const uint64_t FileSize = Obj.getBufSize(); |
2193 | const uint64_t DerivedSize = |
2194 | (uint64_t)HashTable->nchain * DynSymRegion->EntSize; |
2195 | const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base(); |
2196 | if (DerivedSize > FileSize - Offset) |
2197 | reportUniqueWarning( |
2198 | "the size (0x" + Twine::utohexstr(Val: DerivedSize) + |
2199 | ") of the dynamic symbol table at 0x" + Twine::utohexstr(Val: Offset) + |
2200 | ", derived from the hash table, goes past the end of the file (0x" + |
2201 | Twine::utohexstr(Val: FileSize) + ") and will be ignored" ); |
2202 | else |
2203 | DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize; |
2204 | } |
2205 | } |
2206 | |
2207 | template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() { |
2208 | // Dump version symbol section. |
2209 | printVersionSymbolSection(Sec: SymbolVersionSection); |
2210 | |
2211 | // Dump version definition section. |
2212 | printVersionDefinitionSection(Sec: SymbolVersionDefSection); |
2213 | |
2214 | // Dump version dependency section. |
2215 | printVersionDependencySection(Sec: SymbolVersionNeedSection); |
2216 | } |
2217 | |
2218 | #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \ |
2219 | { #enum, prefix##_##enum } |
2220 | |
2221 | const EnumEntry<unsigned> ElfDynamicDTFlags[] = { |
2222 | LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN), |
2223 | LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC), |
2224 | LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL), |
2225 | LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW), |
2226 | LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS) |
2227 | }; |
2228 | |
2229 | const EnumEntry<unsigned> ElfDynamicDTFlags1[] = { |
2230 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW), |
2231 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL), |
2232 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP), |
2233 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE), |
2234 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR), |
2235 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST), |
2236 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN), |
2237 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN), |
2238 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT), |
2239 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS), |
2240 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE), |
2241 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB), |
2242 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP), |
2243 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT), |
2244 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE), |
2245 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE), |
2246 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND), |
2247 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT), |
2248 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF), |
2249 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS), |
2250 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR), |
2251 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED), |
2252 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC), |
2253 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE), |
2254 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT), |
2255 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON), |
2256 | LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE), |
2257 | }; |
2258 | |
2259 | const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = { |
2260 | LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE), |
2261 | LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART), |
2262 | LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT), |
2263 | LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT), |
2264 | LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE), |
2265 | LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY), |
2266 | LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT), |
2267 | LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS), |
2268 | LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT), |
2269 | LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE), |
2270 | LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD), |
2271 | LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART), |
2272 | LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED), |
2273 | LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD), |
2274 | LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF), |
2275 | LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE) |
2276 | }; |
2277 | |
2278 | #undef LLVM_READOBJ_DT_FLAG_ENT |
2279 | |
2280 | template <typename T, typename TFlag> |
2281 | void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) { |
2282 | SmallVector<EnumEntry<TFlag>, 10> SetFlags; |
2283 | for (const EnumEntry<TFlag> &Flag : Flags) |
2284 | if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value) |
2285 | SetFlags.push_back(Flag); |
2286 | |
2287 | for (const EnumEntry<TFlag> &Flag : SetFlags) |
2288 | OS << Flag.Name << " " ; |
2289 | } |
2290 | |
2291 | template <class ELFT> |
2292 | const typename ELFT::Shdr * |
2293 | ELFDumper<ELFT>::findSectionByName(StringRef Name) const { |
2294 | for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) { |
2295 | if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) { |
2296 | if (*NameOrErr == Name) |
2297 | return &Shdr; |
2298 | } else { |
2299 | reportUniqueWarning("unable to read the name of " + describe(Sec: Shdr) + |
2300 | ": " + toString(E: NameOrErr.takeError())); |
2301 | } |
2302 | } |
2303 | return nullptr; |
2304 | } |
2305 | |
2306 | template <class ELFT> |
2307 | std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type, |
2308 | uint64_t Value) const { |
2309 | auto FormatHexValue = [](uint64_t V) { |
2310 | std::string Str; |
2311 | raw_string_ostream OS(Str); |
2312 | const char *ConvChar = |
2313 | (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64; |
2314 | OS << format(Fmt: ConvChar, Vals: V); |
2315 | return OS.str(); |
2316 | }; |
2317 | |
2318 | auto FormatFlags = [](uint64_t V, |
2319 | llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) { |
2320 | std::string Str; |
2321 | raw_string_ostream OS(Str); |
2322 | printFlags(Value: V, Flags: Array, OS); |
2323 | return OS.str(); |
2324 | }; |
2325 | |
2326 | // Handle custom printing of architecture specific tags |
2327 | switch (Obj.getHeader().e_machine) { |
2328 | case EM_AARCH64: |
2329 | switch (Type) { |
2330 | case DT_AARCH64_BTI_PLT: |
2331 | case DT_AARCH64_PAC_PLT: |
2332 | case DT_AARCH64_VARIANT_PCS: |
2333 | case DT_AARCH64_MEMTAG_GLOBALSSZ: |
2334 | return std::to_string(val: Value); |
2335 | case DT_AARCH64_MEMTAG_MODE: |
2336 | switch (Value) { |
2337 | case 0: |
2338 | return "Synchronous (0)" ; |
2339 | case 1: |
2340 | return "Asynchronous (1)" ; |
2341 | default: |
2342 | return (Twine("Unknown (" ) + Twine(Value) + ")" ).str(); |
2343 | } |
2344 | case DT_AARCH64_MEMTAG_HEAP: |
2345 | case DT_AARCH64_MEMTAG_STACK: |
2346 | switch (Value) { |
2347 | case 0: |
2348 | return "Disabled (0)" ; |
2349 | case 1: |
2350 | return "Enabled (1)" ; |
2351 | default: |
2352 | return (Twine("Unknown (" ) + Twine(Value) + ")" ).str(); |
2353 | } |
2354 | case DT_AARCH64_MEMTAG_GLOBALS: |
2355 | return (Twine("0x" ) + utohexstr(X: Value, /*LowerCase=*/true)).str(); |
2356 | default: |
2357 | break; |
2358 | } |
2359 | break; |
2360 | case EM_HEXAGON: |
2361 | switch (Type) { |
2362 | case DT_HEXAGON_VER: |
2363 | return std::to_string(val: Value); |
2364 | case DT_HEXAGON_SYMSZ: |
2365 | case DT_HEXAGON_PLT: |
2366 | return FormatHexValue(Value); |
2367 | default: |
2368 | break; |
2369 | } |
2370 | break; |
2371 | case EM_MIPS: |
2372 | switch (Type) { |
2373 | case DT_MIPS_RLD_VERSION: |
2374 | case DT_MIPS_LOCAL_GOTNO: |
2375 | case DT_MIPS_SYMTABNO: |
2376 | case DT_MIPS_UNREFEXTNO: |
2377 | return std::to_string(val: Value); |
2378 | case DT_MIPS_TIME_STAMP: |
2379 | case DT_MIPS_ICHECKSUM: |
2380 | case DT_MIPS_IVERSION: |
2381 | case DT_MIPS_BASE_ADDRESS: |
2382 | case DT_MIPS_MSYM: |
2383 | case DT_MIPS_CONFLICT: |
2384 | case DT_MIPS_LIBLIST: |
2385 | case DT_MIPS_CONFLICTNO: |
2386 | case DT_MIPS_LIBLISTNO: |
2387 | case DT_MIPS_GOTSYM: |
2388 | case DT_MIPS_HIPAGENO: |
2389 | case DT_MIPS_RLD_MAP: |
2390 | case DT_MIPS_DELTA_CLASS: |
2391 | case DT_MIPS_DELTA_CLASS_NO: |
2392 | case DT_MIPS_DELTA_INSTANCE: |
2393 | case DT_MIPS_DELTA_RELOC: |
2394 | case DT_MIPS_DELTA_RELOC_NO: |
2395 | case DT_MIPS_DELTA_SYM: |
2396 | case DT_MIPS_DELTA_SYM_NO: |
2397 | case DT_MIPS_DELTA_CLASSSYM: |
2398 | case DT_MIPS_DELTA_CLASSSYM_NO: |
2399 | case DT_MIPS_CXX_FLAGS: |
2400 | case DT_MIPS_PIXIE_INIT: |
2401 | case DT_MIPS_SYMBOL_LIB: |
2402 | case DT_MIPS_LOCALPAGE_GOTIDX: |
2403 | case DT_MIPS_LOCAL_GOTIDX: |
2404 | case DT_MIPS_HIDDEN_GOTIDX: |
2405 | case DT_MIPS_PROTECTED_GOTIDX: |
2406 | case DT_MIPS_OPTIONS: |
2407 | case DT_MIPS_INTERFACE: |
2408 | case DT_MIPS_DYNSTR_ALIGN: |
2409 | case DT_MIPS_INTERFACE_SIZE: |
2410 | case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: |
2411 | case DT_MIPS_PERF_SUFFIX: |
2412 | case DT_MIPS_COMPACT_SIZE: |
2413 | case DT_MIPS_GP_VALUE: |
2414 | case DT_MIPS_AUX_DYNAMIC: |
2415 | case DT_MIPS_PLTGOT: |
2416 | case DT_MIPS_RWPLT: |
2417 | case DT_MIPS_RLD_MAP_REL: |
2418 | case DT_MIPS_XHASH: |
2419 | return FormatHexValue(Value); |
2420 | case DT_MIPS_FLAGS: |
2421 | return FormatFlags(Value, ArrayRef(ElfDynamicDTMipsFlags)); |
2422 | default: |
2423 | break; |
2424 | } |
2425 | break; |
2426 | default: |
2427 | break; |
2428 | } |
2429 | |
2430 | switch (Type) { |
2431 | case DT_PLTREL: |
2432 | if (Value == DT_REL) |
2433 | return "REL" ; |
2434 | if (Value == DT_RELA) |
2435 | return "RELA" ; |
2436 | if (Value == DT_CREL) |
2437 | return "CREL" ; |
2438 | [[fallthrough]]; |
2439 | case DT_PLTGOT: |
2440 | case DT_HASH: |
2441 | case DT_STRTAB: |
2442 | case DT_SYMTAB: |
2443 | case DT_RELA: |
2444 | case DT_INIT: |
2445 | case DT_FINI: |
2446 | case DT_REL: |
2447 | case DT_JMPREL: |
2448 | case DT_INIT_ARRAY: |
2449 | case DT_FINI_ARRAY: |
2450 | case DT_PREINIT_ARRAY: |
2451 | case DT_DEBUG: |
2452 | case DT_CREL: |
2453 | case DT_VERDEF: |
2454 | case DT_VERNEED: |
2455 | case DT_VERSYM: |
2456 | case DT_GNU_HASH: |
2457 | case DT_NULL: |
2458 | return FormatHexValue(Value); |
2459 | case DT_RELACOUNT: |
2460 | case DT_RELCOUNT: |
2461 | case DT_VERDEFNUM: |
2462 | case DT_VERNEEDNUM: |
2463 | return std::to_string(val: Value); |
2464 | case DT_PLTRELSZ: |
2465 | case DT_RELASZ: |
2466 | case DT_RELAENT: |
2467 | case DT_STRSZ: |
2468 | case DT_SYMENT: |
2469 | case DT_RELSZ: |
2470 | case DT_RELENT: |
2471 | case DT_INIT_ARRAYSZ: |
2472 | case DT_FINI_ARRAYSZ: |
2473 | case DT_PREINIT_ARRAYSZ: |
2474 | case DT_RELRSZ: |
2475 | case DT_RELRENT: |
2476 | case DT_AARCH64_AUTH_RELRSZ: |
2477 | case DT_AARCH64_AUTH_RELRENT: |
2478 | case DT_ANDROID_RELSZ: |
2479 | case DT_ANDROID_RELASZ: |
2480 | return std::to_string(val: Value) + " (bytes)" ; |
2481 | case DT_NEEDED: |
2482 | case DT_SONAME: |
2483 | case DT_AUXILIARY: |
2484 | case DT_USED: |
2485 | case DT_FILTER: |
2486 | case DT_RPATH: |
2487 | case DT_RUNPATH: { |
2488 | const std::map<uint64_t, const char *> TagNames = { |
2489 | {DT_NEEDED, "Shared library" }, {DT_SONAME, "Library soname" }, |
2490 | {DT_AUXILIARY, "Auxiliary library" }, {DT_USED, "Not needed object" }, |
2491 | {DT_FILTER, "Filter library" }, {DT_RPATH, "Library rpath" }, |
2492 | {DT_RUNPATH, "Library runpath" }, |
2493 | }; |
2494 | |
2495 | return (Twine(TagNames.at(k: Type)) + ": [" + getDynamicString(Value) + "]" ) |
2496 | .str(); |
2497 | } |
2498 | case DT_FLAGS: |
2499 | return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags)); |
2500 | case DT_FLAGS_1: |
2501 | return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags1)); |
2502 | default: |
2503 | return FormatHexValue(Value); |
2504 | } |
2505 | } |
2506 | |
2507 | template <class ELFT> |
2508 | StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const { |
2509 | if (DynamicStringTable.empty() && !DynamicStringTable.data()) { |
2510 | reportUniqueWarning("string table was not found" ); |
2511 | return "<?>" ; |
2512 | } |
2513 | |
2514 | auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) { |
2515 | reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Val: Offset) + |
2516 | Msg); |
2517 | return "<?>" ; |
2518 | }; |
2519 | |
2520 | const uint64_t FileSize = Obj.getBufSize(); |
2521 | const uint64_t Offset = |
2522 | (const uint8_t *)DynamicStringTable.data() - Obj.base(); |
2523 | if (DynamicStringTable.size() > FileSize - Offset) |
2524 | return WarnAndReturn(" with size 0x" + |
2525 | Twine::utohexstr(Val: DynamicStringTable.size()) + |
2526 | " goes past the end of the file (0x" + |
2527 | Twine::utohexstr(Val: FileSize) + ")" , |
2528 | Offset); |
2529 | |
2530 | if (Value >= DynamicStringTable.size()) |
2531 | return WarnAndReturn( |
2532 | ": unable to read the string at 0x" + Twine::utohexstr(Val: Offset + Value) + |
2533 | ": it goes past the end of the table (0x" + |
2534 | Twine::utohexstr(Val: Offset + DynamicStringTable.size()) + ")" , |
2535 | Offset); |
2536 | |
2537 | if (DynamicStringTable.back() != '\0') |
2538 | return WarnAndReturn(": unable to read the string at 0x" + |
2539 | Twine::utohexstr(Val: Offset + Value) + |
2540 | ": the string table is not null-terminated" , |
2541 | Offset); |
2542 | |
2543 | return DynamicStringTable.data() + Value; |
2544 | } |
2545 | |
2546 | template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() { |
2547 | DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF); |
2548 | Ctx.printUnwindInformation(); |
2549 | } |
2550 | |
2551 | // The namespace is needed to fix the compilation with GCC older than 7.0+. |
2552 | namespace { |
2553 | template <> void ELFDumper<ELF32LE>::printUnwindInfo() { |
2554 | if (Obj.getHeader().e_machine == EM_ARM) { |
2555 | ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(), |
2556 | DotSymtabSec); |
2557 | Ctx.PrintUnwindInformation(); |
2558 | } |
2559 | DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF); |
2560 | Ctx.printUnwindInformation(); |
2561 | } |
2562 | } // namespace |
2563 | |
2564 | template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() { |
2565 | ListScope D(W, "NeededLibraries" ); |
2566 | |
2567 | std::vector<StringRef> Libs; |
2568 | for (const auto &Entry : dynamic_table()) |
2569 | if (Entry.d_tag == ELF::DT_NEEDED) |
2570 | Libs.push_back(getDynamicString(Value: Entry.d_un.d_val)); |
2571 | |
2572 | llvm::sort(C&: Libs); |
2573 | |
2574 | for (StringRef L : Libs) |
2575 | W.printString(L); |
2576 | } |
2577 | |
2578 | template <class ELFT> |
2579 | static Error checkHashTable(const ELFDumper<ELFT> &Dumper, |
2580 | const typename ELFT::Hash *H, |
2581 | bool * = nullptr) { |
2582 | const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile(); |
2583 | const uint64_t SecOffset = (const uint8_t *)H - Obj.base(); |
2584 | if (Dumper.getHashTableEntSize() == 8) { |
2585 | auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) { |
2586 | return E.Value == Obj.getHeader().e_machine; |
2587 | }); |
2588 | if (IsHeaderValid) |
2589 | *IsHeaderValid = false; |
2590 | return createError("the hash table at 0x" + Twine::utohexstr(Val: SecOffset) + |
2591 | " is not supported: it contains non-standard 8 " |
2592 | "byte entries on " + |
2593 | It->AltName + " platform" ); |
2594 | } |
2595 | |
2596 | auto MakeError = [&](const Twine &Msg = "" ) { |
2597 | return createError("the hash table at offset 0x" + |
2598 | Twine::utohexstr(Val: SecOffset) + |
2599 | " goes past the end of the file (0x" + |
2600 | Twine::utohexstr(Val: Obj.getBufSize()) + ")" + Msg); |
2601 | }; |
2602 | |
2603 | // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain. |
2604 | const unsigned = 2 * sizeof(typename ELFT::Word); |
2605 | |
2606 | if (IsHeaderValid) |
2607 | *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize; |
2608 | |
2609 | if (Obj.getBufSize() - SecOffset < HeaderSize) |
2610 | return MakeError(); |
2611 | |
2612 | if (Obj.getBufSize() - SecOffset - HeaderSize < |
2613 | ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word)) |
2614 | return MakeError(", nbucket = " + Twine(H->nbucket) + |
2615 | ", nchain = " + Twine(H->nchain)); |
2616 | return Error::success(); |
2617 | } |
2618 | |
2619 | template <class ELFT> |
2620 | static Error checkGNUHashTable(const ELFFile<ELFT> &Obj, |
2621 | const typename ELFT::GnuHash *GnuHashTable, |
2622 | bool * = nullptr) { |
2623 | const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable); |
2624 | assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() && |
2625 | "GnuHashTable must always point to a location inside the file" ); |
2626 | |
2627 | uint64_t TableOffset = TableData - Obj.base(); |
2628 | if (IsHeaderValid) |
2629 | *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize(); |
2630 | if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 + |
2631 | (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >= |
2632 | Obj.getBufSize()) |
2633 | return createError(Err: "unable to dump the SHT_GNU_HASH " |
2634 | "section at 0x" + |
2635 | Twine::utohexstr(Val: TableOffset) + |
2636 | ": it goes past the end of the file" ); |
2637 | return Error::success(); |
2638 | } |
2639 | |
2640 | template <typename ELFT> void ELFDumper<ELFT>::printHashTable() { |
2641 | DictScope D(W, "HashTable" ); |
2642 | if (!HashTable) |
2643 | return; |
2644 | |
2645 | bool ; |
2646 | Error Err = checkHashTable(*this, HashTable, &IsHeaderValid); |
2647 | if (IsHeaderValid) { |
2648 | W.printNumber("Num Buckets" , HashTable->nbucket); |
2649 | W.printNumber("Num Chains" , HashTable->nchain); |
2650 | } |
2651 | |
2652 | if (Err) { |
2653 | reportUniqueWarning(std::move(Err)); |
2654 | return; |
2655 | } |
2656 | |
2657 | W.printList("Buckets" , HashTable->buckets()); |
2658 | W.printList("Chains" , HashTable->chains()); |
2659 | } |
2660 | |
2661 | template <class ELFT> |
2662 | static Expected<ArrayRef<typename ELFT::Word>> |
2663 | getGnuHashTableChains(std::optional<DynRegionInfo> DynSymRegion, |
2664 | const typename ELFT::GnuHash *GnuHashTable) { |
2665 | if (!DynSymRegion) |
2666 | return createError(Err: "no dynamic symbol table found" ); |
2667 | |
2668 | ArrayRef<typename ELFT::Sym> DynSymTable = |
2669 | DynSymRegion->template getAsArrayRef<typename ELFT::Sym>(); |
2670 | size_t NumSyms = DynSymTable.size(); |
2671 | if (!NumSyms) |
2672 | return createError(Err: "the dynamic symbol table is empty" ); |
2673 | |
2674 | if (GnuHashTable->symndx < NumSyms) |
2675 | return GnuHashTable->values(NumSyms); |
2676 | |
2677 | // A normal empty GNU hash table section produced by linker might have |
2678 | // symndx set to the number of dynamic symbols + 1 (for the zero symbol) |
2679 | // and have dummy null values in the Bloom filter and in the buckets |
2680 | // vector (or no values at all). It happens because the value of symndx is not |
2681 | // important for dynamic loaders when the GNU hash table is empty. They just |
2682 | // skip the whole object during symbol lookup. In such cases, the symndx value |
2683 | // is irrelevant and we should not report a warning. |
2684 | ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets(); |
2685 | if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; })) |
2686 | return createError( |
2687 | Err: "the first hashed symbol index (" + Twine(GnuHashTable->symndx) + |
2688 | ") is greater than or equal to the number of dynamic symbols (" + |
2689 | Twine(NumSyms) + ")" ); |
2690 | // There is no way to represent an array of (dynamic symbols count - symndx) |
2691 | // length. |
2692 | return ArrayRef<typename ELFT::Word>(); |
2693 | } |
2694 | |
2695 | template <typename ELFT> |
2696 | void ELFDumper<ELFT>::printGnuHashTable() { |
2697 | DictScope D(W, "GnuHashTable" ); |
2698 | if (!GnuHashTable) |
2699 | return; |
2700 | |
2701 | bool ; |
2702 | Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid); |
2703 | if (IsHeaderValid) { |
2704 | W.printNumber("Num Buckets" , GnuHashTable->nbuckets); |
2705 | W.printNumber("First Hashed Symbol Index" , GnuHashTable->symndx); |
2706 | W.printNumber("Num Mask Words" , GnuHashTable->maskwords); |
2707 | W.printNumber("Shift Count" , GnuHashTable->shift2); |
2708 | } |
2709 | |
2710 | if (Err) { |
2711 | reportUniqueWarning(std::move(Err)); |
2712 | return; |
2713 | } |
2714 | |
2715 | ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter(); |
2716 | W.printHexList("Bloom Filter" , BloomFilter); |
2717 | |
2718 | ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets(); |
2719 | W.printList("Buckets" , Buckets); |
2720 | |
2721 | Expected<ArrayRef<Elf_Word>> Chains = |
2722 | getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable); |
2723 | if (!Chains) { |
2724 | reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH " |
2725 | "section: " + |
2726 | toString(Chains.takeError())); |
2727 | return; |
2728 | } |
2729 | |
2730 | W.printHexList("Values" , *Chains); |
2731 | } |
2732 | |
2733 | template <typename ELFT> void ELFDumper<ELFT>::printHashHistograms() { |
2734 | // Print histogram for the .hash section. |
2735 | if (this->HashTable) { |
2736 | if (Error E = checkHashTable<ELFT>(*this, this->HashTable)) |
2737 | this->reportUniqueWarning(std::move(E)); |
2738 | else |
2739 | printHashHistogram(HashTable: *this->HashTable); |
2740 | } |
2741 | |
2742 | // Print histogram for the .gnu.hash section. |
2743 | if (this->GnuHashTable) { |
2744 | if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable)) |
2745 | this->reportUniqueWarning(std::move(E)); |
2746 | else |
2747 | printGnuHashHistogram(GnuHashTable: *this->GnuHashTable); |
2748 | } |
2749 | } |
2750 | |
2751 | template <typename ELFT> |
2752 | void ELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) const { |
2753 | size_t NBucket = HashTable.nbucket; |
2754 | size_t NChain = HashTable.nchain; |
2755 | ArrayRef<Elf_Word> Buckets = HashTable.buckets(); |
2756 | ArrayRef<Elf_Word> Chains = HashTable.chains(); |
2757 | size_t TotalSyms = 0; |
2758 | // If hash table is correct, we have at least chains with 0 length. |
2759 | size_t MaxChain = 1; |
2760 | |
2761 | if (NChain == 0 || NBucket == 0) |
2762 | return; |
2763 | |
2764 | std::vector<size_t> ChainLen(NBucket, 0); |
2765 | // Go over all buckets and note chain lengths of each bucket (total |
2766 | // unique chain lengths). |
2767 | for (size_t B = 0; B < NBucket; ++B) { |
2768 | BitVector Visited(NChain); |
2769 | for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) { |
2770 | if (C == ELF::STN_UNDEF) |
2771 | break; |
2772 | if (Visited[C]) { |
2773 | this->reportUniqueWarning( |
2774 | ".hash section is invalid: bucket " + Twine(C) + |
2775 | ": a cycle was detected in the linked chain" ); |
2776 | break; |
2777 | } |
2778 | Visited[C] = true; |
2779 | if (MaxChain <= ++ChainLen[B]) |
2780 | ++MaxChain; |
2781 | } |
2782 | TotalSyms += ChainLen[B]; |
2783 | } |
2784 | |
2785 | if (!TotalSyms) |
2786 | return; |
2787 | |
2788 | std::vector<size_t> Count(MaxChain, 0); |
2789 | // Count how long is the chain for each bucket. |
2790 | for (size_t B = 0; B < NBucket; B++) |
2791 | ++Count[ChainLen[B]]; |
2792 | // Print Number of buckets with each chain lengths and their cumulative |
2793 | // coverage of the symbols. |
2794 | printHashHistogramStats(NBucket, MaxChain, TotalSyms, Count, /*IsGnu=*/false); |
2795 | } |
2796 | |
2797 | template <class ELFT> |
2798 | void ELFDumper<ELFT>::printGnuHashHistogram( |
2799 | const Elf_GnuHash &GnuHashTable) const { |
2800 | Expected<ArrayRef<Elf_Word>> ChainsOrErr = |
2801 | getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable); |
2802 | if (!ChainsOrErr) { |
2803 | this->reportUniqueWarning("unable to print the GNU hash table histogram: " + |
2804 | toString(ChainsOrErr.takeError())); |
2805 | return; |
2806 | } |
2807 | |
2808 | ArrayRef<Elf_Word> Chains = *ChainsOrErr; |
2809 | size_t Symndx = GnuHashTable.symndx; |
2810 | size_t TotalSyms = 0; |
2811 | size_t MaxChain = 1; |
2812 | |
2813 | size_t NBucket = GnuHashTable.nbuckets; |
2814 | if (Chains.empty() || NBucket == 0) |
2815 | return; |
2816 | |
2817 | ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets(); |
2818 | std::vector<size_t> ChainLen(NBucket, 0); |
2819 | for (size_t B = 0; B < NBucket; ++B) { |
2820 | if (!Buckets[B]) |
2821 | continue; |
2822 | size_t Len = 1; |
2823 | for (size_t C = Buckets[B] - Symndx; |
2824 | C < Chains.size() && (Chains[C] & 1) == 0; ++C) |
2825 | if (MaxChain < ++Len) |
2826 | ++MaxChain; |
2827 | ChainLen[B] = Len; |
2828 | TotalSyms += Len; |
2829 | } |
2830 | ++MaxChain; |
2831 | |
2832 | if (!TotalSyms) |
2833 | return; |
2834 | |
2835 | std::vector<size_t> Count(MaxChain, 0); |
2836 | for (size_t B = 0; B < NBucket; ++B) |
2837 | ++Count[ChainLen[B]]; |
2838 | // Print Number of buckets with each chain lengths and their cumulative |
2839 | // coverage of the symbols. |
2840 | printHashHistogramStats(NBucket, MaxChain, TotalSyms, Count, /*IsGnu=*/true); |
2841 | } |
2842 | |
2843 | template <typename ELFT> void ELFDumper<ELFT>::printLoadName() { |
2844 | StringRef SOName = "<Not found>" ; |
2845 | if (SONameOffset) |
2846 | SOName = getDynamicString(Value: *SONameOffset); |
2847 | W.printString("LoadName" , SOName); |
2848 | } |
2849 | |
2850 | template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() { |
2851 | switch (Obj.getHeader().e_machine) { |
2852 | case EM_HEXAGON: |
2853 | printAttributes(ELF::SHT_HEXAGON_ATTRIBUTES, |
2854 | std::make_unique<HexagonAttributeParser>(&W), |
2855 | llvm::endianness::little); |
2856 | break; |
2857 | case EM_ARM: |
2858 | printAttributes( |
2859 | ELF::SHT_ARM_ATTRIBUTES, std::make_unique<ARMAttributeParser>(&W), |
2860 | Obj.isLE() ? llvm::endianness::little : llvm::endianness::big); |
2861 | break; |
2862 | case EM_RISCV: |
2863 | if (Obj.isLE()) |
2864 | printAttributes(ELF::SHT_RISCV_ATTRIBUTES, |
2865 | std::make_unique<RISCVAttributeParser>(&W), |
2866 | llvm::endianness::little); |
2867 | else |
2868 | reportUniqueWarning("attribute printing not implemented for big-endian " |
2869 | "RISC-V objects" ); |
2870 | break; |
2871 | case EM_MSP430: |
2872 | printAttributes(ELF::SHT_MSP430_ATTRIBUTES, |
2873 | std::make_unique<MSP430AttributeParser>(&W), |
2874 | llvm::endianness::little); |
2875 | break; |
2876 | case EM_MIPS: { |
2877 | printMipsABIFlags(); |
2878 | printMipsOptions(); |
2879 | printMipsReginfo(); |
2880 | MipsGOTParser<ELFT> Parser(*this); |
2881 | if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols())) |
2882 | reportUniqueWarning(std::move(E)); |
2883 | else if (!Parser.isGotEmpty()) |
2884 | printMipsGOT(Parser); |
2885 | |
2886 | if (Error E = Parser.findPLT(dynamic_table())) |
2887 | reportUniqueWarning(std::move(E)); |
2888 | else if (!Parser.isPltEmpty()) |
2889 | printMipsPLT(Parser); |
2890 | break; |
2891 | } |
2892 | default: |
2893 | break; |
2894 | } |
2895 | } |
2896 | |
2897 | template <class ELFT> |
2898 | void ELFDumper<ELFT>::printAttributes( |
2899 | unsigned AttrShType, std::unique_ptr<ELFAttributeParser> AttrParser, |
2900 | llvm::endianness Endianness) { |
2901 | assert((AttrShType != ELF::SHT_NULL) && AttrParser && |
2902 | "Incomplete ELF attribute implementation" ); |
2903 | DictScope BA(W, "BuildAttributes" ); |
2904 | for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { |
2905 | if (Sec.sh_type != AttrShType) |
2906 | continue; |
2907 | |
2908 | ArrayRef<uint8_t> Contents; |
2909 | if (Expected<ArrayRef<uint8_t>> ContentOrErr = |
2910 | Obj.getSectionContents(Sec)) { |
2911 | Contents = *ContentOrErr; |
2912 | if (Contents.empty()) { |
2913 | reportUniqueWarning("the " + describe(Sec) + " is empty" ); |
2914 | continue; |
2915 | } |
2916 | } else { |
2917 | reportUniqueWarning("unable to read the content of the " + describe(Sec) + |
2918 | ": " + toString(E: ContentOrErr.takeError())); |
2919 | continue; |
2920 | } |
2921 | |
2922 | W.printHex("FormatVersion" , Contents[0]); |
2923 | |
2924 | if (Error E = AttrParser->parse(section: Contents, endian: Endianness)) |
2925 | reportUniqueWarning("unable to dump attributes from the " + |
2926 | describe(Sec) + ": " + toString(E: std::move(E))); |
2927 | } |
2928 | } |
2929 | |
2930 | namespace { |
2931 | |
2932 | template <class ELFT> class MipsGOTParser { |
2933 | public: |
2934 | LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) |
2935 | using Entry = typename ELFT::Addr; |
2936 | using Entries = ArrayRef<Entry>; |
2937 | |
2938 | const bool IsStatic; |
2939 | const ELFFile<ELFT> &Obj; |
2940 | const ELFDumper<ELFT> &Dumper; |
2941 | |
2942 | MipsGOTParser(const ELFDumper<ELFT> &D); |
2943 | Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms); |
2944 | Error findPLT(Elf_Dyn_Range DynTable); |
2945 | |
2946 | bool isGotEmpty() const { return GotEntries.empty(); } |
2947 | bool isPltEmpty() const { return PltEntries.empty(); } |
2948 | |
2949 | uint64_t getGp() const; |
2950 | |
2951 | const Entry *getGotLazyResolver() const; |
2952 | const Entry *getGotModulePointer() const; |
2953 | const Entry *getPltLazyResolver() const; |
2954 | const Entry *getPltModulePointer() const; |
2955 | |
2956 | Entries getLocalEntries() const; |
2957 | Entries getGlobalEntries() const; |
2958 | Entries getOtherEntries() const; |
2959 | Entries getPltEntries() const; |
2960 | |
2961 | uint64_t getGotAddress(const Entry * E) const; |
2962 | int64_t getGotOffset(const Entry * E) const; |
2963 | const Elf_Sym *getGotSym(const Entry *E) const; |
2964 | |
2965 | uint64_t getPltAddress(const Entry * E) const; |
2966 | const Elf_Sym *getPltSym(const Entry *E) const; |
2967 | |
2968 | StringRef getPltStrTable() const { return PltStrTable; } |
2969 | const Elf_Shdr *getPltSymTable() const { return PltSymTable; } |
2970 | |
2971 | private: |
2972 | const Elf_Shdr *GotSec; |
2973 | size_t LocalNum; |
2974 | size_t GlobalNum; |
2975 | |
2976 | const Elf_Shdr *PltSec; |
2977 | const Elf_Shdr *PltRelSec; |
2978 | const Elf_Shdr *PltSymTable; |
2979 | StringRef FileName; |
2980 | |
2981 | Elf_Sym_Range GotDynSyms; |
2982 | StringRef PltStrTable; |
2983 | |
2984 | Entries GotEntries; |
2985 | Entries PltEntries; |
2986 | }; |
2987 | |
2988 | } // end anonymous namespace |
2989 | |
2990 | template <class ELFT> |
2991 | MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D) |
2992 | : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()), |
2993 | Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr), |
2994 | PltRelSec(nullptr), PltSymTable(nullptr), |
2995 | FileName(D.getElfObject().getFileName()) {} |
2996 | |
2997 | template <class ELFT> |
2998 | Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable, |
2999 | Elf_Sym_Range DynSyms) { |
3000 | // See "Global Offset Table" in Chapter 5 in the following document |
3001 | // for detailed GOT description. |
3002 | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
3003 | |
3004 | // Find static GOT secton. |
3005 | if (IsStatic) { |
3006 | GotSec = Dumper.findSectionByName(".got" ); |
3007 | if (!GotSec) |
3008 | return Error::success(); |
3009 | |
3010 | ArrayRef<uint8_t> Content = |
3011 | unwrapOrError(FileName, Obj.getSectionContents(*GotSec)); |
3012 | GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()), |
3013 | Content.size() / sizeof(Entry)); |
3014 | LocalNum = GotEntries.size(); |
3015 | return Error::success(); |
3016 | } |
3017 | |
3018 | // Lookup dynamic table tags which define the GOT layout. |
3019 | std::optional<uint64_t> DtPltGot; |
3020 | std::optional<uint64_t> DtLocalGotNum; |
3021 | std::optional<uint64_t> DtGotSym; |
3022 | for (const auto &Entry : DynTable) { |
3023 | switch (Entry.getTag()) { |
3024 | case ELF::DT_PLTGOT: |
3025 | DtPltGot = Entry.getVal(); |
3026 | break; |
3027 | case ELF::DT_MIPS_LOCAL_GOTNO: |
3028 | DtLocalGotNum = Entry.getVal(); |
3029 | break; |
3030 | case ELF::DT_MIPS_GOTSYM: |
3031 | DtGotSym = Entry.getVal(); |
3032 | break; |
3033 | } |
3034 | } |
3035 | |
3036 | if (!DtPltGot && !DtLocalGotNum && !DtGotSym) |
3037 | return Error::success(); |
3038 | |
3039 | if (!DtPltGot) |
3040 | return createError(Err: "cannot find PLTGOT dynamic tag" ); |
3041 | if (!DtLocalGotNum) |
3042 | return createError(Err: "cannot find MIPS_LOCAL_GOTNO dynamic tag" ); |
3043 | if (!DtGotSym) |
3044 | return createError(Err: "cannot find MIPS_GOTSYM dynamic tag" ); |
3045 | |
3046 | size_t DynSymTotal = DynSyms.size(); |
3047 | if (*DtGotSym > DynSymTotal) |
3048 | return createError(Err: "DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) + |
3049 | ") exceeds the number of dynamic symbols (" + |
3050 | Twine(DynSymTotal) + ")" ); |
3051 | |
3052 | GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot); |
3053 | if (!GotSec) |
3054 | return createError(Err: "there is no non-empty GOT section at 0x" + |
3055 | Twine::utohexstr(Val: *DtPltGot)); |
3056 | |
3057 | LocalNum = *DtLocalGotNum; |
3058 | GlobalNum = DynSymTotal - *DtGotSym; |
3059 | |
3060 | ArrayRef<uint8_t> Content = |
3061 | unwrapOrError(FileName, Obj.getSectionContents(*GotSec)); |
3062 | GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()), |
3063 | Content.size() / sizeof(Entry)); |
3064 | GotDynSyms = DynSyms.drop_front(*DtGotSym); |
3065 | |
3066 | return Error::success(); |
3067 | } |
3068 | |
3069 | template <class ELFT> |
3070 | Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) { |
3071 | // Lookup dynamic table tags which define the PLT layout. |
3072 | std::optional<uint64_t> DtMipsPltGot; |
3073 | std::optional<uint64_t> DtJmpRel; |
3074 | for (const auto &Entry : DynTable) { |
3075 | switch (Entry.getTag()) { |
3076 | case ELF::DT_MIPS_PLTGOT: |
3077 | DtMipsPltGot = Entry.getVal(); |
3078 | break; |
3079 | case ELF::DT_JMPREL: |
3080 | DtJmpRel = Entry.getVal(); |
3081 | break; |
3082 | } |
3083 | } |
3084 | |
3085 | if (!DtMipsPltGot && !DtJmpRel) |
3086 | return Error::success(); |
3087 | |
3088 | // Find PLT section. |
3089 | if (!DtMipsPltGot) |
3090 | return createError(Err: "cannot find MIPS_PLTGOT dynamic tag" ); |
3091 | if (!DtJmpRel) |
3092 | return createError(Err: "cannot find JMPREL dynamic tag" ); |
3093 | |
3094 | PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot); |
3095 | if (!PltSec) |
3096 | return createError(Err: "there is no non-empty PLTGOT section at 0x" + |
3097 | Twine::utohexstr(Val: *DtMipsPltGot)); |
3098 | |
3099 | PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel); |
3100 | if (!PltRelSec) |
3101 | return createError(Err: "there is no non-empty RELPLT section at 0x" + |
3102 | Twine::utohexstr(Val: *DtJmpRel)); |
3103 | |
3104 | if (Expected<ArrayRef<uint8_t>> PltContentOrErr = |
3105 | Obj.getSectionContents(*PltSec)) |
3106 | PltEntries = |
3107 | Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()), |
3108 | PltContentOrErr->size() / sizeof(Entry)); |
3109 | else |
3110 | return createError(Err: "unable to read PLTGOT section content: " + |
3111 | toString(E: PltContentOrErr.takeError())); |
3112 | |
3113 | if (Expected<const Elf_Shdr *> PltSymTableOrErr = |
3114 | Obj.getSection(PltRelSec->sh_link)) |
3115 | PltSymTable = *PltSymTableOrErr; |
3116 | else |
3117 | return createError("unable to get a symbol table linked to the " + |
3118 | describe(Obj, *PltRelSec) + ": " + |
3119 | toString(PltSymTableOrErr.takeError())); |
3120 | |
3121 | if (Expected<StringRef> StrTabOrErr = |
3122 | Obj.getStringTableForSymtab(*PltSymTable)) |
3123 | PltStrTable = *StrTabOrErr; |
3124 | else |
3125 | return createError("unable to get a string table for the " + |
3126 | describe(Obj, *PltSymTable) + ": " + |
3127 | toString(E: StrTabOrErr.takeError())); |
3128 | |
3129 | return Error::success(); |
3130 | } |
3131 | |
3132 | template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const { |
3133 | return GotSec->sh_addr + 0x7ff0; |
3134 | } |
3135 | |
3136 | template <class ELFT> |
3137 | const typename MipsGOTParser<ELFT>::Entry * |
3138 | MipsGOTParser<ELFT>::getGotLazyResolver() const { |
3139 | return LocalNum > 0 ? &GotEntries[0] : nullptr; |
3140 | } |
3141 | |
3142 | template <class ELFT> |
3143 | const typename MipsGOTParser<ELFT>::Entry * |
3144 | MipsGOTParser<ELFT>::getGotModulePointer() const { |
3145 | if (LocalNum < 2) |
3146 | return nullptr; |
3147 | const Entry &E = GotEntries[1]; |
3148 | if ((E >> (sizeof(Entry) * 8 - 1)) == 0) |
3149 | return nullptr; |
3150 | return &E; |
3151 | } |
3152 | |
3153 | template <class ELFT> |
3154 | typename MipsGOTParser<ELFT>::Entries |
3155 | MipsGOTParser<ELFT>::getLocalEntries() const { |
3156 | size_t Skip = getGotModulePointer() ? 2 : 1; |
3157 | if (LocalNum - Skip <= 0) |
3158 | return Entries(); |
3159 | return GotEntries.slice(Skip, LocalNum - Skip); |
3160 | } |
3161 | |
3162 | template <class ELFT> |
3163 | typename MipsGOTParser<ELFT>::Entries |
3164 | MipsGOTParser<ELFT>::getGlobalEntries() const { |
3165 | if (GlobalNum == 0) |
3166 | return Entries(); |
3167 | return GotEntries.slice(LocalNum, GlobalNum); |
3168 | } |
3169 | |
3170 | template <class ELFT> |
3171 | typename MipsGOTParser<ELFT>::Entries |
3172 | MipsGOTParser<ELFT>::getOtherEntries() const { |
3173 | size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum; |
3174 | if (OtherNum == 0) |
3175 | return Entries(); |
3176 | return GotEntries.slice(LocalNum + GlobalNum, OtherNum); |
3177 | } |
3178 | |
3179 | template <class ELFT> |
3180 | uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const { |
3181 | int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry); |
3182 | return GotSec->sh_addr + Offset; |
3183 | } |
3184 | |
3185 | template <class ELFT> |
3186 | int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const { |
3187 | int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry); |
3188 | return Offset - 0x7ff0; |
3189 | } |
3190 | |
3191 | template <class ELFT> |
3192 | const typename MipsGOTParser<ELFT>::Elf_Sym * |
3193 | MipsGOTParser<ELFT>::getGotSym(const Entry *E) const { |
3194 | int64_t Offset = std::distance(GotEntries.data(), E); |
3195 | return &GotDynSyms[Offset - LocalNum]; |
3196 | } |
3197 | |
3198 | template <class ELFT> |
3199 | const typename MipsGOTParser<ELFT>::Entry * |
3200 | MipsGOTParser<ELFT>::getPltLazyResolver() const { |
3201 | return PltEntries.empty() ? nullptr : &PltEntries[0]; |
3202 | } |
3203 | |
3204 | template <class ELFT> |
3205 | const typename MipsGOTParser<ELFT>::Entry * |
3206 | MipsGOTParser<ELFT>::getPltModulePointer() const { |
3207 | return PltEntries.size() < 2 ? nullptr : &PltEntries[1]; |
3208 | } |
3209 | |
3210 | template <class ELFT> |
3211 | typename MipsGOTParser<ELFT>::Entries |
3212 | MipsGOTParser<ELFT>::getPltEntries() const { |
3213 | if (PltEntries.size() <= 2) |
3214 | return Entries(); |
3215 | return PltEntries.slice(2, PltEntries.size() - 2); |
3216 | } |
3217 | |
3218 | template <class ELFT> |
3219 | uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const { |
3220 | int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry); |
3221 | return PltSec->sh_addr + Offset; |
3222 | } |
3223 | |
3224 | template <class ELFT> |
3225 | const typename MipsGOTParser<ELFT>::Elf_Sym * |
3226 | MipsGOTParser<ELFT>::getPltSym(const Entry *E) const { |
3227 | int64_t Offset = std::distance(getPltEntries().data(), E); |
3228 | if (PltRelSec->sh_type == ELF::SHT_REL) { |
3229 | Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec)); |
3230 | return unwrapOrError(FileName, |
3231 | Obj.getRelocationSymbol(Rels[Offset], PltSymTable)); |
3232 | } else { |
3233 | Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec)); |
3234 | return unwrapOrError(FileName, |
3235 | Obj.getRelocationSymbol(Rels[Offset], PltSymTable)); |
3236 | } |
3237 | } |
3238 | |
3239 | const EnumEntry<unsigned> ElfMipsISAExtType[] = { |
3240 | {"None" , Mips::AFL_EXT_NONE}, |
3241 | {"Broadcom SB-1" , Mips::AFL_EXT_SB1}, |
3242 | {"Cavium Networks Octeon" , Mips::AFL_EXT_OCTEON}, |
3243 | {"Cavium Networks Octeon2" , Mips::AFL_EXT_OCTEON2}, |
3244 | {"Cavium Networks OcteonP" , Mips::AFL_EXT_OCTEONP}, |
3245 | {"Cavium Networks Octeon3" , Mips::AFL_EXT_OCTEON3}, |
3246 | {"LSI R4010" , Mips::AFL_EXT_4010}, |
3247 | {"Loongson 2E" , Mips::AFL_EXT_LOONGSON_2E}, |
3248 | {"Loongson 2F" , Mips::AFL_EXT_LOONGSON_2F}, |
3249 | {"Loongson 3A" , Mips::AFL_EXT_LOONGSON_3A}, |
3250 | {"MIPS R4650" , Mips::AFL_EXT_4650}, |
3251 | {"MIPS R5900" , Mips::AFL_EXT_5900}, |
3252 | {"MIPS R10000" , Mips::AFL_EXT_10000}, |
3253 | {"NEC VR4100" , Mips::AFL_EXT_4100}, |
3254 | {"NEC VR4111/VR4181" , Mips::AFL_EXT_4111}, |
3255 | {"NEC VR4120" , Mips::AFL_EXT_4120}, |
3256 | {"NEC VR5400" , Mips::AFL_EXT_5400}, |
3257 | {"NEC VR5500" , Mips::AFL_EXT_5500}, |
3258 | {"RMI Xlr" , Mips::AFL_EXT_XLR}, |
3259 | {"Toshiba R3900" , Mips::AFL_EXT_3900} |
3260 | }; |
3261 | |
3262 | const EnumEntry<unsigned> ElfMipsASEFlags[] = { |
3263 | {"DSP" , Mips::AFL_ASE_DSP}, |
3264 | {"DSPR2" , Mips::AFL_ASE_DSPR2}, |
3265 | {"Enhanced VA Scheme" , Mips::AFL_ASE_EVA}, |
3266 | {"MCU" , Mips::AFL_ASE_MCU}, |
3267 | {"MDMX" , Mips::AFL_ASE_MDMX}, |
3268 | {"MIPS-3D" , Mips::AFL_ASE_MIPS3D}, |
3269 | {"MT" , Mips::AFL_ASE_MT}, |
3270 | {"SmartMIPS" , Mips::AFL_ASE_SMARTMIPS}, |
3271 | {"VZ" , Mips::AFL_ASE_VIRT}, |
3272 | {"MSA" , Mips::AFL_ASE_MSA}, |
3273 | {"MIPS16" , Mips::AFL_ASE_MIPS16}, |
3274 | {"microMIPS" , Mips::AFL_ASE_MICROMIPS}, |
3275 | {"XPA" , Mips::AFL_ASE_XPA}, |
3276 | {"CRC" , Mips::AFL_ASE_CRC}, |
3277 | {"GINV" , Mips::AFL_ASE_GINV}, |
3278 | }; |
3279 | |
3280 | const EnumEntry<unsigned> ElfMipsFpABIType[] = { |
3281 | {"Hard or soft float" , Mips::Val_GNU_MIPS_ABI_FP_ANY}, |
3282 | {"Hard float (double precision)" , Mips::Val_GNU_MIPS_ABI_FP_DOUBLE}, |
3283 | {"Hard float (single precision)" , Mips::Val_GNU_MIPS_ABI_FP_SINGLE}, |
3284 | {"Soft float" , Mips::Val_GNU_MIPS_ABI_FP_SOFT}, |
3285 | {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)" , |
3286 | Mips::Val_GNU_MIPS_ABI_FP_OLD_64}, |
3287 | {"Hard float (32-bit CPU, Any FPU)" , Mips::Val_GNU_MIPS_ABI_FP_XX}, |
3288 | {"Hard float (32-bit CPU, 64-bit FPU)" , Mips::Val_GNU_MIPS_ABI_FP_64}, |
3289 | {"Hard float compat (32-bit CPU, 64-bit FPU)" , |
3290 | Mips::Val_GNU_MIPS_ABI_FP_64A} |
3291 | }; |
3292 | |
3293 | static const EnumEntry<unsigned> ElfMipsFlags1[] { |
3294 | {"ODDSPREG" , Mips::AFL_FLAGS1_ODDSPREG}, |
3295 | }; |
3296 | |
3297 | static int getMipsRegisterSize(uint8_t Flag) { |
3298 | switch (Flag) { |
3299 | case Mips::AFL_REG_NONE: |
3300 | return 0; |
3301 | case Mips::AFL_REG_32: |
3302 | return 32; |
3303 | case Mips::AFL_REG_64: |
3304 | return 64; |
3305 | case Mips::AFL_REG_128: |
3306 | return 128; |
3307 | default: |
3308 | return -1; |
3309 | } |
3310 | } |
3311 | |
3312 | template <class ELFT> |
3313 | static void printMipsReginfoData(ScopedPrinter &W, |
3314 | const Elf_Mips_RegInfo<ELFT> &Reginfo) { |
3315 | W.printHex("GP" , Reginfo.ri_gp_value); |
3316 | W.printHex("General Mask" , Reginfo.ri_gprmask); |
3317 | W.printHex("Co-Proc Mask0" , Reginfo.ri_cprmask[0]); |
3318 | W.printHex("Co-Proc Mask1" , Reginfo.ri_cprmask[1]); |
3319 | W.printHex("Co-Proc Mask2" , Reginfo.ri_cprmask[2]); |
3320 | W.printHex("Co-Proc Mask3" , Reginfo.ri_cprmask[3]); |
3321 | } |
3322 | |
3323 | template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() { |
3324 | const Elf_Shdr *RegInfoSec = findSectionByName(Name: ".reginfo" ); |
3325 | if (!RegInfoSec) { |
3326 | W.startLine() << "There is no .reginfo section in the file.\n" ; |
3327 | return; |
3328 | } |
3329 | |
3330 | Expected<ArrayRef<uint8_t>> ContentsOrErr = |
3331 | Obj.getSectionContents(*RegInfoSec); |
3332 | if (!ContentsOrErr) { |
3333 | this->reportUniqueWarning( |
3334 | "unable to read the content of the .reginfo section (" + |
3335 | describe(Sec: *RegInfoSec) + "): " + toString(E: ContentsOrErr.takeError())); |
3336 | return; |
3337 | } |
3338 | |
3339 | if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) { |
3340 | this->reportUniqueWarning("the .reginfo section has an invalid size (0x" + |
3341 | Twine::utohexstr(Val: ContentsOrErr->size()) + ")" ); |
3342 | return; |
3343 | } |
3344 | |
3345 | DictScope GS(W, "MIPS RegInfo" ); |
3346 | printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>( |
3347 | ContentsOrErr->data())); |
3348 | } |
3349 | |
3350 | template <class ELFT> |
3351 | static Expected<const Elf_Mips_Options<ELFT> *> |
3352 | readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData, |
3353 | bool &IsSupported) { |
3354 | if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>)) |
3355 | return createError(Err: "the .MIPS.options section has an invalid size (0x" + |
3356 | Twine::utohexstr(Val: SecData.size()) + ")" ); |
3357 | |
3358 | const Elf_Mips_Options<ELFT> *O = |
3359 | reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data()); |
3360 | const uint8_t Size = O->size; |
3361 | if (Size > SecData.size()) { |
3362 | const uint64_t Offset = SecData.data() - SecBegin; |
3363 | const uint64_t SecSize = Offset + SecData.size(); |
3364 | return createError(Err: "a descriptor of size 0x" + Twine::utohexstr(Val: Size) + |
3365 | " at offset 0x" + Twine::utohexstr(Val: Offset) + |
3366 | " goes past the end of the .MIPS.options " |
3367 | "section of size 0x" + |
3368 | Twine::utohexstr(Val: SecSize)); |
3369 | } |
3370 | |
3371 | IsSupported = O->kind == ODK_REGINFO; |
3372 | const size_t ExpectedSize = |
3373 | sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>); |
3374 | |
3375 | if (IsSupported) |
3376 | if (Size < ExpectedSize) |
3377 | return createError( |
3378 | Err: "a .MIPS.options entry of kind " + |
3379 | Twine(getElfMipsOptionsOdkType(O->kind)) + |
3380 | " has an invalid size (0x" + Twine::utohexstr(Val: Size) + |
3381 | "), the expected size is 0x" + Twine::utohexstr(Val: ExpectedSize)); |
3382 | |
3383 | SecData = SecData.drop_front(N: Size); |
3384 | return O; |
3385 | } |
3386 | |
3387 | template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() { |
3388 | const Elf_Shdr *MipsOpts = findSectionByName(Name: ".MIPS.options" ); |
3389 | if (!MipsOpts) { |
3390 | W.startLine() << "There is no .MIPS.options section in the file.\n" ; |
3391 | return; |
3392 | } |
3393 | |
3394 | DictScope GS(W, "MIPS Options" ); |
3395 | |
3396 | ArrayRef<uint8_t> Data = |
3397 | unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts)); |
3398 | const uint8_t *const SecBegin = Data.begin(); |
3399 | while (!Data.empty()) { |
3400 | bool IsSupported; |
3401 | Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr = |
3402 | readMipsOptions<ELFT>(SecBegin, Data, IsSupported); |
3403 | if (!OptsOrErr) { |
3404 | reportUniqueWarning(OptsOrErr.takeError()); |
3405 | break; |
3406 | } |
3407 | |
3408 | unsigned Kind = (*OptsOrErr)->kind; |
3409 | const char *Type = getElfMipsOptionsOdkType(Odk: Kind); |
3410 | if (!IsSupported) { |
3411 | W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind |
3412 | << ")\n" ; |
3413 | continue; |
3414 | } |
3415 | |
3416 | DictScope GS(W, Type); |
3417 | if (Kind == ODK_REGINFO) |
3418 | printMipsReginfoData(W, (*OptsOrErr)->getRegInfo()); |
3419 | else |
3420 | llvm_unreachable("unexpected .MIPS.options section descriptor kind" ); |
3421 | } |
3422 | } |
3423 | |
3424 | template <class ELFT> void ELFDumper<ELFT>::printStackMap() const { |
3425 | const Elf_Shdr *StackMapSection = findSectionByName(Name: ".llvm_stackmaps" ); |
3426 | if (!StackMapSection) |
3427 | return; |
3428 | |
3429 | auto Warn = [&](Error &&E) { |
3430 | this->reportUniqueWarning("unable to read the stack map from " + |
3431 | describe(Sec: *StackMapSection) + ": " + |
3432 | toString(E: std::move(E))); |
3433 | }; |
3434 | |
3435 | Expected<ArrayRef<uint8_t>> ContentOrErr = |
3436 | Obj.getSectionContents(*StackMapSection); |
3437 | if (!ContentOrErr) { |
3438 | Warn(ContentOrErr.takeError()); |
3439 | return; |
3440 | } |
3441 | |
3442 | if (Error E = |
3443 | StackMapParser<ELFT::Endianness>::validateHeader(*ContentOrErr)) { |
3444 | Warn(std::move(E)); |
3445 | return; |
3446 | } |
3447 | |
3448 | prettyPrintStackMap(W, StackMapParser<ELFT::Endianness>(*ContentOrErr)); |
3449 | } |
3450 | |
3451 | template <class ELFT> |
3452 | void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex, |
3453 | const Elf_Shdr &Sec, const Elf_Shdr *SymTab) { |
3454 | Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab); |
3455 | if (!Target) |
3456 | reportUniqueWarning("unable to print relocation " + Twine(RelIndex) + |
3457 | " in " + describe(Sec) + ": " + |
3458 | toString(Target.takeError())); |
3459 | else |
3460 | printRelRelaReloc(R, RelSym: *Target); |
3461 | } |
3462 | |
3463 | template <class ELFT> |
3464 | std::vector<EnumEntry<unsigned>> |
3465 | ELFDumper<ELFT>::getOtherFlagsFromSymbol(const Elf_Ehdr &, |
3466 | const Elf_Sym &Symbol) const { |
3467 | std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(arr: ElfSymOtherFlags), |
3468 | std::end(arr: ElfSymOtherFlags)); |
3469 | if (Header.e_machine == EM_MIPS) { |
3470 | // Someone in their infinite wisdom decided to make STO_MIPS_MIPS16 |
3471 | // flag overlap with other ST_MIPS_xxx flags. So consider both |
3472 | // cases separately. |
3473 | if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16) |
3474 | SymOtherFlags.insert(position: SymOtherFlags.end(), |
3475 | first: std::begin(arr: ElfMips16SymOtherFlags), |
3476 | last: std::end(arr: ElfMips16SymOtherFlags)); |
3477 | else |
3478 | SymOtherFlags.insert(position: SymOtherFlags.end(), |
3479 | first: std::begin(arr: ElfMipsSymOtherFlags), |
3480 | last: std::end(arr: ElfMipsSymOtherFlags)); |
3481 | } else if (Header.e_machine == EM_AARCH64) { |
3482 | SymOtherFlags.insert(position: SymOtherFlags.end(), |
3483 | first: std::begin(arr: ElfAArch64SymOtherFlags), |
3484 | last: std::end(arr: ElfAArch64SymOtherFlags)); |
3485 | } else if (Header.e_machine == EM_RISCV) { |
3486 | SymOtherFlags.insert(position: SymOtherFlags.end(), first: std::begin(arr: ElfRISCVSymOtherFlags), |
3487 | last: std::end(arr: ElfRISCVSymOtherFlags)); |
3488 | } |
3489 | return SymOtherFlags; |
3490 | } |
3491 | |
3492 | static inline void printFields(formatted_raw_ostream &OS, StringRef Str1, |
3493 | StringRef Str2) { |
3494 | OS.PadToColumn(NewCol: 2u); |
3495 | OS << Str1; |
3496 | OS.PadToColumn(NewCol: 37u); |
3497 | OS << Str2 << "\n" ; |
3498 | OS.flush(); |
3499 | } |
3500 | |
3501 | template <class ELFT> |
3502 | static std::string (const ELFFile<ELFT> &Obj, |
3503 | StringRef FileName) { |
3504 | const typename ELFT::Ehdr & = Obj.getHeader(); |
3505 | if (ElfHeader.e_shnum != 0) |
3506 | return to_string(ElfHeader.e_shnum); |
3507 | |
3508 | Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections(); |
3509 | if (!ArrOrErr) { |
3510 | // In this case we can ignore an error, because we have already reported a |
3511 | // warning about the broken section header table earlier. |
3512 | consumeError(ArrOrErr.takeError()); |
3513 | return "<?>" ; |
3514 | } |
3515 | |
3516 | if (ArrOrErr->empty()) |
3517 | return "0" ; |
3518 | return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")" ; |
3519 | } |
3520 | |
3521 | template <class ELFT> |
3522 | static std::string (const ELFFile<ELFT> &Obj, |
3523 | StringRef FileName) { |
3524 | const typename ELFT::Ehdr & = Obj.getHeader(); |
3525 | if (ElfHeader.e_shstrndx != SHN_XINDEX) |
3526 | return to_string(ElfHeader.e_shstrndx); |
3527 | |
3528 | Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections(); |
3529 | if (!ArrOrErr) { |
3530 | // In this case we can ignore an error, because we have already reported a |
3531 | // warning about the broken section header table earlier. |
3532 | consumeError(ArrOrErr.takeError()); |
3533 | return "<?>" ; |
3534 | } |
3535 | |
3536 | if (ArrOrErr->empty()) |
3537 | return "65535 (corrupt: out of range)" ; |
3538 | return to_string(ElfHeader.e_shstrndx) + " (" + |
3539 | to_string((*ArrOrErr)[0].sh_link) + ")" ; |
3540 | } |
3541 | |
3542 | static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) { |
3543 | auto It = llvm::find_if(Range: ElfObjectFileType, P: [&](const EnumEntry<unsigned> &E) { |
3544 | return E.Value == Type; |
3545 | }); |
3546 | if (It != ArrayRef(ElfObjectFileType).end()) |
3547 | return It; |
3548 | return nullptr; |
3549 | } |
3550 | |
3551 | template <class ELFT> |
3552 | void GNUELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj, |
3553 | ArrayRef<std::string> InputFilenames, |
3554 | const Archive *A) { |
3555 | if (InputFilenames.size() > 1 || A) { |
3556 | this->W.startLine() << "\n" ; |
3557 | this->W.printString("File" , FileStr); |
3558 | } |
3559 | } |
3560 | |
3561 | template <class ELFT> void GNUELFDumper<ELFT>::() { |
3562 | const Elf_Ehdr &e = this->Obj.getHeader(); |
3563 | OS << "ELF Header:\n" ; |
3564 | OS << " Magic: " ; |
3565 | std::string Str; |
3566 | for (int i = 0; i < ELF::EI_NIDENT; i++) |
3567 | OS << format(Fmt: " %02x" , Vals: static_cast<int>(e.e_ident[i])); |
3568 | OS << "\n" ; |
3569 | Str = enumToString(e.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass)); |
3570 | printFields(OS, Str1: "Class:" , Str2: Str); |
3571 | Str = enumToString(e.e_ident[ELF::EI_DATA], ArrayRef(ElfDataEncoding)); |
3572 | printFields(OS, Str1: "Data:" , Str2: Str); |
3573 | OS.PadToColumn(NewCol: 2u); |
3574 | OS << "Version:" ; |
3575 | OS.PadToColumn(NewCol: 37u); |
3576 | OS << utohexstr(e.e_ident[ELF::EI_VERSION]); |
3577 | if (e.e_version == ELF::EV_CURRENT) |
3578 | OS << " (current)" ; |
3579 | OS << "\n" ; |
3580 | auto OSABI = ArrayRef(ElfOSABI); |
3581 | if (e.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH && |
3582 | e.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) { |
3583 | switch (e.e_machine) { |
3584 | case ELF::EM_ARM: |
3585 | OSABI = ArrayRef(ARMElfOSABI); |
3586 | break; |
3587 | case ELF::EM_AMDGPU: |
3588 | OSABI = ArrayRef(AMDGPUElfOSABI); |
3589 | break; |
3590 | default: |
3591 | break; |
3592 | } |
3593 | } |
3594 | Str = enumToString(e.e_ident[ELF::EI_OSABI], OSABI); |
3595 | printFields(OS, Str1: "OS/ABI:" , Str2: Str); |
3596 | printFields(OS, |
3597 | "ABI Version:" , std::to_string(e.e_ident[ELF::EI_ABIVERSION])); |
3598 | |
3599 | if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) { |
3600 | Str = E->AltName.str(); |
3601 | } else { |
3602 | if (e.e_type >= ET_LOPROC) |
3603 | Str = "Processor Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")" ; |
3604 | else if (e.e_type >= ET_LOOS) |
3605 | Str = "OS Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")" ; |
3606 | else |
3607 | Str = "<unknown>: " + utohexstr(e.e_type, /*LowerCase=*/true); |
3608 | } |
3609 | printFields(OS, Str1: "Type:" , Str2: Str); |
3610 | |
3611 | Str = enumToString(e.e_machine, ArrayRef(ElfMachineType)); |
3612 | printFields(OS, Str1: "Machine:" , Str2: Str); |
3613 | Str = "0x" + utohexstr(e.e_version); |
3614 | printFields(OS, Str1: "Version:" , Str2: Str); |
3615 | Str = "0x" + utohexstr(e.e_entry); |
3616 | printFields(OS, Str1: "Entry point address:" , Str2: Str); |
3617 | Str = to_string(e.e_phoff) + " (bytes into file)" ; |
3618 | printFields(OS, Str1: "Start of program headers:" , Str2: Str); |
3619 | Str = to_string(e.e_shoff) + " (bytes into file)" ; |
3620 | printFields(OS, Str1: "Start of section headers:" , Str2: Str); |
3621 | std::string ElfFlags; |
3622 | if (e.e_machine == EM_MIPS) |
3623 | ElfFlags = printFlags( |
3624 | e.e_flags, ArrayRef(ElfHeaderMipsFlags), unsigned(ELF::EF_MIPS_ARCH), |
3625 | unsigned(ELF::EF_MIPS_ABI), unsigned(ELF::EF_MIPS_MACH)); |
3626 | else if (e.e_machine == EM_RISCV) |
3627 | ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderRISCVFlags)); |
3628 | else if (e.e_machine == EM_AVR) |
3629 | ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderAVRFlags), |
3630 | unsigned(ELF::EF_AVR_ARCH_MASK)); |
3631 | else if (e.e_machine == EM_LOONGARCH) |
3632 | ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderLoongArchFlags), |
3633 | unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK), |
3634 | unsigned(ELF::EF_LOONGARCH_OBJABI_MASK)); |
3635 | else if (e.e_machine == EM_XTENSA) |
3636 | ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderXtensaFlags), |
3637 | unsigned(ELF::EF_XTENSA_MACH)); |
3638 | else if (e.e_machine == EM_CUDA) |
3639 | ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderNVPTXFlags), |
3640 | unsigned(ELF::EF_CUDA_SM)); |
3641 | else if (e.e_machine == EM_AMDGPU) { |
3642 | switch (e.e_ident[ELF::EI_ABIVERSION]) { |
3643 | default: |
3644 | break; |
3645 | case 0: |
3646 | // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags. |
3647 | [[fallthrough]]; |
3648 | case ELF::ELFABIVERSION_AMDGPU_HSA_V3: |
3649 | ElfFlags = |
3650 | printFlags(e.e_flags, ArrayRef(ElfHeaderAMDGPUFlagsABIVersion3), |
3651 | unsigned(ELF::EF_AMDGPU_MACH)); |
3652 | break; |
3653 | case ELF::ELFABIVERSION_AMDGPU_HSA_V4: |
3654 | case ELF::ELFABIVERSION_AMDGPU_HSA_V5: |
3655 | ElfFlags = |
3656 | printFlags(e.e_flags, ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4), |
3657 | unsigned(ELF::EF_AMDGPU_MACH), |
3658 | unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4), |
3659 | unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4)); |
3660 | break; |
3661 | case ELF::ELFABIVERSION_AMDGPU_HSA_V6: { |
3662 | ElfFlags = |
3663 | printFlags(e.e_flags, ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4), |
3664 | unsigned(ELF::EF_AMDGPU_MACH), |
3665 | unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4), |
3666 | unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4)); |
3667 | if (auto GenericV = e.e_flags & ELF::EF_AMDGPU_GENERIC_VERSION) { |
3668 | ElfFlags += |
3669 | ", generic_v" + |
3670 | to_string(GenericV >> ELF::EF_AMDGPU_GENERIC_VERSION_OFFSET); |
3671 | } |
3672 | } break; |
3673 | } |
3674 | } |
3675 | Str = "0x" + utohexstr(e.e_flags); |
3676 | if (!ElfFlags.empty()) |
3677 | Str = Str + ", " + ElfFlags; |
3678 | printFields(OS, Str1: "Flags:" , Str2: Str); |
3679 | Str = to_string(e.e_ehsize) + " (bytes)" ; |
3680 | printFields(OS, Str1: "Size of this header:" , Str2: Str); |
3681 | Str = to_string(e.e_phentsize) + " (bytes)" ; |
3682 | printFields(OS, Str1: "Size of program headers:" , Str2: Str); |
3683 | Str = to_string(e.e_phnum); |
3684 | printFields(OS, Str1: "Number of program headers:" , Str2: Str); |
3685 | Str = to_string(e.e_shentsize) + " (bytes)" ; |
3686 | printFields(OS, Str1: "Size of section headers:" , Str2: Str); |
3687 | Str = getSectionHeadersNumString(this->Obj, this->FileName); |
3688 | printFields(OS, Str1: "Number of section headers:" , Str2: Str); |
3689 | Str = getSectionHeaderTableIndexString(this->Obj, this->FileName); |
3690 | printFields(OS, Str1: "Section header string table index:" , Str2: Str); |
3691 | } |
3692 | |
3693 | template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() { |
3694 | auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx, |
3695 | const Elf_Shdr &Symtab) -> StringRef { |
3696 | Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab); |
3697 | if (!StrTableOrErr) { |
3698 | reportUniqueWarning("unable to get the string table for " + |
3699 | describe(Sec: Symtab) + ": " + |
3700 | toString(E: StrTableOrErr.takeError())); |
3701 | return "<?>" ; |
3702 | } |
3703 | |
3704 | StringRef Strings = *StrTableOrErr; |
3705 | if (Sym.st_name >= Strings.size()) { |
3706 | reportUniqueWarning("unable to get the name of the symbol with index " + |
3707 | Twine(SymNdx) + ": st_name (0x" + |
3708 | Twine::utohexstr(Val: Sym.st_name) + |
3709 | ") is past the end of the string table of size 0x" + |
3710 | Twine::utohexstr(Val: Strings.size())); |
3711 | return "<?>" ; |
3712 | } |
3713 | |
3714 | return StrTableOrErr->data() + Sym.st_name; |
3715 | }; |
3716 | |
3717 | std::vector<GroupSection> Ret; |
3718 | uint64_t I = 0; |
3719 | for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { |
3720 | ++I; |
3721 | if (Sec.sh_type != ELF::SHT_GROUP) |
3722 | continue; |
3723 | |
3724 | StringRef Signature = "<?>" ; |
3725 | if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) { |
3726 | if (Expected<const Elf_Sym *> SymOrErr = |
3727 | Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info)) |
3728 | Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr); |
3729 | else |
3730 | reportUniqueWarning("unable to get the signature symbol for " + |
3731 | describe(Sec) + ": " + |
3732 | toString(SymOrErr.takeError())); |
3733 | } else { |
3734 | reportUniqueWarning("unable to get the symbol table for " + |
3735 | describe(Sec) + ": " + |
3736 | toString(SymtabOrErr.takeError())); |
3737 | } |
3738 | |
3739 | ArrayRef<Elf_Word> Data; |
3740 | if (Expected<ArrayRef<Elf_Word>> ContentsOrErr = |
3741 | Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) { |
3742 | if (ContentsOrErr->empty()) |
3743 | reportUniqueWarning("unable to read the section group flag from the " + |
3744 | describe(Sec) + ": the section is empty" ); |
3745 | else |
3746 | Data = *ContentsOrErr; |
3747 | } else { |
3748 | reportUniqueWarning("unable to get the content of the " + describe(Sec) + |
3749 | ": " + toString(ContentsOrErr.takeError())); |
3750 | } |
3751 | |
3752 | Ret.push_back({getPrintableSectionName(Sec), |
3753 | maybeDemangle(Name: Signature), |
3754 | Sec.sh_name, |
3755 | I - 1, |
3756 | Sec.sh_link, |
3757 | Sec.sh_info, |
3758 | Data.empty() ? Elf_Word(0) : Data[0], |
3759 | {}}); |
3760 | |
3761 | if (Data.empty()) |
3762 | continue; |
3763 | |
3764 | std::vector<GroupMember> &GM = Ret.back().Members; |
3765 | for (uint32_t Ndx : Data.slice(1)) { |
3766 | if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) { |
3767 | GM.push_back({getPrintableSectionName(Sec: **SecOrErr), Ndx}); |
3768 | } else { |
3769 | reportUniqueWarning("unable to get the section with index " + |
3770 | Twine(Ndx) + " when dumping the " + describe(Sec) + |
3771 | ": " + toString(SecOrErr.takeError())); |
3772 | GM.push_back(x: {.Name: "<?>" , .Index: Ndx}); |
3773 | } |
3774 | } |
3775 | } |
3776 | return Ret; |
3777 | } |
3778 | |
3779 | static DenseMap<uint64_t, const GroupSection *> |
3780 | mapSectionsToGroups(ArrayRef<GroupSection> Groups) { |
3781 | DenseMap<uint64_t, const GroupSection *> Ret; |
3782 | for (const GroupSection &G : Groups) |
3783 | for (const GroupMember &GM : G.Members) |
3784 | Ret.insert(KV: {GM.Index, &G}); |
3785 | return Ret; |
3786 | } |
3787 | |
3788 | template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() { |
3789 | std::vector<GroupSection> V = this->getGroups(); |
3790 | DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(Groups: V); |
3791 | for (const GroupSection &G : V) { |
3792 | OS << "\n" |
3793 | << getGroupType(Flag: G.Type) << " group section [" |
3794 | << format_decimal(N: G.Index, Width: 5) << "] `" << G.Name << "' [" << G.Signature |
3795 | << "] contains " << G.Members.size() << " sections:\n" |
3796 | << " [Index] Name\n" ; |
3797 | for (const GroupMember &GM : G.Members) { |
3798 | const GroupSection *MainGroup = Map[GM.Index]; |
3799 | if (MainGroup != &G) |
3800 | this->reportUniqueWarning( |
3801 | "section with index " + Twine(GM.Index) + |
3802 | ", included in the group section with index " + |
3803 | Twine(MainGroup->Index) + |
3804 | ", was also found in the group section with index " + |
3805 | Twine(G.Index)); |
3806 | OS << " [" << format_decimal(N: GM.Index, Width: 5) << "] " << GM.Name << "\n" ; |
3807 | } |
3808 | } |
3809 | |
3810 | if (V.empty()) |
3811 | OS << "There are no section groups in this file.\n" ; |
3812 | } |
3813 | |
3814 | template <class ELFT> |
3815 | void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R, |
3816 | const RelSymbol<ELFT> &RelSym) { |
3817 | // First two fields are bit width dependent. The rest of them are fixed width. |
3818 | unsigned Bias = ELFT::Is64Bits ? 8 : 0; |
3819 | Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias}; |
3820 | unsigned Width = ELFT::Is64Bits ? 16 : 8; |
3821 | |
3822 | Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width)); |
3823 | Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width)); |
3824 | |
3825 | SmallString<32> RelocName; |
3826 | this->Obj.getRelocationTypeName(R.Type, RelocName); |
3827 | Fields[2].Str = RelocName.c_str(); |
3828 | |
3829 | if (RelSym.Sym) |
3830 | Fields[3].Str = |
3831 | to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width)); |
3832 | if (RelSym.Sym && RelSym.Name.empty()) |
3833 | Fields[4].Str = "<null>" ; |
3834 | else |
3835 | Fields[4].Str = std::string(RelSym.Name); |
3836 | |
3837 | for (const Field &F : Fields) |
3838 | printField(F); |
3839 | |
3840 | std::string Addend; |
3841 | if (std::optional<int64_t> A = R.Addend) { |
3842 | int64_t RelAddend = *A; |
3843 | if (!Fields[4].Str.empty()) { |
3844 | if (RelAddend < 0) { |
3845 | Addend = " - " ; |
3846 | RelAddend = -static_cast<uint64_t>(RelAddend); |
3847 | } else { |
3848 | Addend = " + " ; |
3849 | } |
3850 | } |
3851 | Addend += utohexstr(X: RelAddend, /*LowerCase=*/true); |
3852 | } |
3853 | OS << Addend << "\n" ; |
3854 | } |
3855 | |
3856 | template <class ELFT> |
3857 | static void (formatted_raw_ostream &OS, unsigned SType, |
3858 | const typename ELFT::Ehdr &, |
3859 | uint64_t CrelHdr = 0) { |
3860 | bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA; |
3861 | if (ELFT::Is64Bits) |
3862 | OS << " Offset Info Type Symbol's " |
3863 | "Value Symbol's Name" ; |
3864 | else |
3865 | OS << " Offset Info Type Sym. Value Symbol's Name" ; |
3866 | if (IsRela || (SType == ELF::SHT_CREL && (CrelHdr & CREL_HDR_ADDEND))) |
3867 | OS << " + Addend" ; |
3868 | OS << "\n" ; |
3869 | } |
3870 | |
3871 | template <class ELFT> |
3872 | void GNUELFDumper<ELFT>::(unsigned Type, StringRef Name, |
3873 | const DynRegionInfo &Reg) { |
3874 | uint64_t Offset = Reg.Addr - this->Obj.base(); |
3875 | OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x" |
3876 | << utohexstr(X: Offset, /*LowerCase=*/true); |
3877 | if (Type != ELF::SHT_CREL) |
3878 | OS << " contains " << Reg.Size << " bytes" ; |
3879 | OS << ":\n" ; |
3880 | printRelocHeaderFields<ELFT>(OS, Type, this->Obj.getHeader()); |
3881 | } |
3882 | |
3883 | template <class ELFT> |
3884 | static bool isRelocationSec(const typename ELFT::Shdr &Sec, |
3885 | const typename ELFT::Ehdr &) { |
3886 | return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA || |
3887 | Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_CREL || |
3888 | Sec.sh_type == ELF::SHT_ANDROID_REL || |
3889 | Sec.sh_type == ELF::SHT_ANDROID_RELA || |
3890 | Sec.sh_type == ELF::SHT_ANDROID_RELR || |
3891 | (EHeader.e_machine == EM_AARCH64 && |
3892 | Sec.sh_type == ELF::SHT_AARCH64_AUTH_RELR); |
3893 | } |
3894 | |
3895 | template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() { |
3896 | auto PrintAsRelr = [&](const Elf_Shdr &Sec) { |
3897 | return Sec.sh_type == ELF::SHT_RELR || |
3898 | Sec.sh_type == ELF::SHT_ANDROID_RELR || |
3899 | (this->Obj.getHeader().e_machine == EM_AARCH64 && |
3900 | Sec.sh_type == ELF::SHT_AARCH64_AUTH_RELR); |
3901 | }; |
3902 | auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> { |
3903 | // Android's packed relocation section needs to be unpacked first |
3904 | // to get the actual number of entries. |
3905 | if (Sec.sh_type == ELF::SHT_ANDROID_REL || |
3906 | Sec.sh_type == ELF::SHT_ANDROID_RELA) { |
3907 | Expected<std::vector<typename ELFT::Rela>> RelasOrErr = |
3908 | this->Obj.android_relas(Sec); |
3909 | if (!RelasOrErr) |
3910 | return RelasOrErr.takeError(); |
3911 | return RelasOrErr->size(); |
3912 | } |
3913 | |
3914 | if (Sec.sh_type == ELF::SHT_CREL) { |
3915 | Expected<ArrayRef<uint8_t>> ContentsOrErr = |
3916 | this->Obj.getSectionContents(Sec); |
3917 | if (!ContentsOrErr) |
3918 | return ContentsOrErr.takeError(); |
3919 | auto NumOrErr = this->Obj.getCrelHeader(*ContentsOrErr); |
3920 | if (!NumOrErr) |
3921 | return NumOrErr.takeError(); |
3922 | return *NumOrErr / 8; |
3923 | } |
3924 | |
3925 | if (PrintAsRelr(Sec)) { |
3926 | Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec); |
3927 | if (!RelrsOrErr) |
3928 | return RelrsOrErr.takeError(); |
3929 | return this->Obj.decode_relrs(*RelrsOrErr).size(); |
3930 | } |
3931 | |
3932 | return Sec.getEntityCount(); |
3933 | }; |
3934 | |
3935 | bool HasRelocSections = false; |
3936 | for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { |
3937 | if (!isRelocationSec<ELFT>(Sec, this->Obj.getHeader())) |
3938 | continue; |
3939 | HasRelocSections = true; |
3940 | |
3941 | std::string EntriesNum = "<?>" ; |
3942 | if (Expected<size_t> NumOrErr = GetEntriesNum(Sec)) |
3943 | EntriesNum = std::to_string(val: *NumOrErr); |
3944 | else |
3945 | this->reportUniqueWarning("unable to get the number of relocations in " + |
3946 | this->describe(Sec) + ": " + |
3947 | toString(E: NumOrErr.takeError())); |
3948 | |
3949 | uintX_t Offset = Sec.sh_offset; |
3950 | StringRef Name = this->getPrintableSectionName(Sec); |
3951 | OS << "\nRelocation section '" << Name << "' at offset 0x" |
3952 | << utohexstr(Offset, /*LowerCase=*/true) << " contains " << EntriesNum |
3953 | << " entries:\n" ; |
3954 | |
3955 | if (PrintAsRelr(Sec)) { |
3956 | printRelr(Sec); |
3957 | } else { |
3958 | uint64_t CrelHdr = 0; |
3959 | // For CREL, read the header and call printRelocationsHelper only if |
3960 | // GetEntriesNum(Sec) succeeded. |
3961 | if (Sec.sh_type == ELF::SHT_CREL && EntriesNum != "<?>" ) { |
3962 | CrelHdr = cantFail(this->Obj.getCrelHeader( |
3963 | cantFail(this->Obj.getSectionContents(Sec)))); |
3964 | } |
3965 | printRelocHeaderFields<ELFT>(OS, Sec.sh_type, this->Obj.getHeader(), |
3966 | CrelHdr); |
3967 | if (Sec.sh_type != ELF::SHT_CREL || EntriesNum != "<?>" ) |
3968 | this->printRelocationsHelper(Sec); |
3969 | } |
3970 | } |
3971 | if (!HasRelocSections) |
3972 | OS << "\nThere are no relocations in this file.\n" ; |
3973 | } |
3974 | |
3975 | template <class ELFT> void GNUELFDumper<ELFT>::printRelr(const Elf_Shdr &Sec) { |
3976 | Expected<Elf_Relr_Range> RangeOrErr = this->Obj.relrs(Sec); |
3977 | if (!RangeOrErr) { |
3978 | this->reportUniqueWarning("unable to read relocations from " + |
3979 | this->describe(Sec) + ": " + |
3980 | toString(RangeOrErr.takeError())); |
3981 | return; |
3982 | } |
3983 | if (ELFT::Is64Bits) |
3984 | OS << "Index: Entry Address Symbolic Address\n" ; |
3985 | else |
3986 | OS << "Index: Entry Address Symbolic Address\n" ; |
3987 | |
3988 | // If .symtab is available, collect its defined symbols and sort them by |
3989 | // st_value. |
3990 | SmallVector<std::pair<uint64_t, std::string>, 0> Syms; |
3991 | if (this->DotSymtabSec) { |
3992 | Elf_Sym_Range Symtab; |
3993 | std::optional<StringRef> Strtab; |
3994 | std::tie(Symtab, Strtab) = this->getSymtabAndStrtab(); |
3995 | if (Symtab.size() && Strtab) { |
3996 | for (auto [I, Sym] : enumerate(Symtab)) { |
3997 | if (!Sym.st_shndx) |
3998 | continue; |
3999 | Syms.emplace_back(Sym.st_value, |
4000 | this->getFullSymbolName(Sym, I, ArrayRef<Elf_Word>(), |
4001 | *Strtab, false)); |
4002 | } |
4003 | } |
4004 | } |
4005 | llvm::stable_sort(Range&: Syms); |
4006 | |
4007 | typename ELFT::uint Base = 0; |
4008 | size_t I = 0; |
4009 | auto Print = [&](uint64_t Where) { |
4010 | OS << format_hex_no_prefix(Where, ELFT::Is64Bits ? 16 : 8); |
4011 | for (; I < Syms.size() && Syms[I].first <= Where; ++I) |
4012 | ; |
4013 | // Try symbolizing the address. Find the nearest symbol before or at the |
4014 | // address and print the symbol and the address difference. |
4015 | if (I) { |
4016 | OS << " " << Syms[I - 1].second; |
4017 | if (Syms[I - 1].first < Where) |
4018 | OS << " + 0x" << Twine::utohexstr(Val: Where - Syms[I - 1].first); |
4019 | } |
4020 | OS << '\n'; |
4021 | }; |
4022 | for (auto [Index, R] : enumerate(*RangeOrErr)) { |
4023 | typename ELFT::uint Entry = R; |
4024 | OS << formatv("{0:4}: " , Index) |
4025 | << format_hex_no_prefix(Entry, ELFT::Is64Bits ? 16 : 8) << ' '; |
4026 | if ((Entry & 1) == 0) { |
4027 | Print(Entry); |
4028 | Base = Entry + sizeof(typename ELFT::uint); |
4029 | } else { |
4030 | bool First = true; |
4031 | for (auto Where = Base; Entry >>= 1; |
4032 | Where += sizeof(typename ELFT::uint)) { |
4033 | if (Entry & 1) { |
4034 | if (First) |
4035 | First = false; |
4036 | else |
4037 | OS.indent(NumSpaces: ELFT::Is64Bits ? 24 : 16); |
4038 | Print(Where); |
4039 | } |
4040 | } |
4041 | Base += (CHAR_BIT * sizeof(Entry) - 1) * sizeof(typename ELFT::uint); |
4042 | } |
4043 | } |
4044 | } |
4045 | |
4046 | // Print the offset of a particular section from anyone of the ranges: |
4047 | // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER]. |
4048 | // If 'Type' does not fall within any of those ranges, then a string is |
4049 | // returned as '<unknown>' followed by the type value. |
4050 | static std::string getSectionTypeOffsetString(unsigned Type) { |
4051 | if (Type >= SHT_LOOS && Type <= SHT_HIOS) |
4052 | return "LOOS+0x" + utohexstr(X: Type - SHT_LOOS); |
4053 | else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC) |
4054 | return "LOPROC+0x" + utohexstr(X: Type - SHT_LOPROC); |
4055 | else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER) |
4056 | return "LOUSER+0x" + utohexstr(X: Type - SHT_LOUSER); |
4057 | return "0x" + utohexstr(X: Type) + ": <unknown>" ; |
4058 | } |
4059 | |
4060 | static std::string getSectionTypeString(unsigned Machine, unsigned Type) { |
4061 | StringRef Name = getELFSectionTypeName(Machine, Type); |
4062 | |
4063 | // Handle SHT_GNU_* type names. |
4064 | if (Name.consume_front(Prefix: "SHT_GNU_" )) { |
4065 | if (Name == "HASH" ) |
4066 | return "GNU_HASH" ; |
4067 | // E.g. SHT_GNU_verneed -> VERNEED. |
4068 | return Name.upper(); |
4069 | } |
4070 | |
4071 | if (Name == "SHT_SYMTAB_SHNDX" ) |
4072 | return "SYMTAB SECTION INDICES" ; |
4073 | |
4074 | if (Name.consume_front(Prefix: "SHT_" )) |
4075 | return Name.str(); |
4076 | return getSectionTypeOffsetString(Type); |
4077 | } |
4078 | |
4079 | static void printSectionDescription(formatted_raw_ostream &OS, |
4080 | unsigned EMachine) { |
4081 | OS << "Key to Flags:\n" ; |
4082 | OS << " W (write), A (alloc), X (execute), M (merge), S (strings), I " |
4083 | "(info),\n" ; |
4084 | OS << " L (link order), O (extra OS processing required), G (group), T " |
4085 | "(TLS),\n" ; |
4086 | OS << " C (compressed), x (unknown), o (OS specific), E (exclude),\n" ; |
4087 | OS << " R (retain)" ; |
4088 | |
4089 | if (EMachine == EM_X86_64) |
4090 | OS << ", l (large)" ; |
4091 | else if (EMachine == EM_ARM) |
4092 | OS << ", y (purecode)" ; |
4093 | |
4094 | OS << ", p (processor specific)\n" ; |
4095 | } |
4096 | |
4097 | template <class ELFT> void GNUELFDumper<ELFT>::() { |
4098 | ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections()); |
4099 | if (Sections.empty()) { |
4100 | OS << "\nThere are no sections in this file.\n" ; |
4101 | Expected<StringRef> SecStrTableOrErr = |
4102 | this->Obj.getSectionStringTable(Sections, this->WarningHandler); |
4103 | if (!SecStrTableOrErr) |
4104 | this->reportUniqueWarning(SecStrTableOrErr.takeError()); |
4105 | return; |
4106 | } |
4107 | unsigned Bias = ELFT::Is64Bits ? 0 : 8; |
4108 | OS << "There are " << to_string(Sections.size()) |
4109 | << " section headers, starting at offset " |
4110 | << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n" ; |
4111 | OS << "Section Headers:\n" ; |
4112 | Field Fields[11] = { |
4113 | {"[Nr]" , 2}, {"Name" , 7}, {"Type" , 25}, |
4114 | {"Address" , 41}, {"Off" , 58 - Bias}, {"Size" , 65 - Bias}, |
4115 | {"ES" , 72 - Bias}, {"Flg" , 75 - Bias}, {"Lk" , 79 - Bias}, |
4116 | {"Inf" , 82 - Bias}, {"Al" , 86 - Bias}}; |
4117 | for (const Field &F : Fields) |
4118 | printField(F); |
4119 | OS << "\n" ; |
4120 | |
4121 | StringRef SecStrTable; |
4122 | if (Expected<StringRef> SecStrTableOrErr = |
4123 | this->Obj.getSectionStringTable(Sections, this->WarningHandler)) |
4124 | SecStrTable = *SecStrTableOrErr; |
4125 | else |
4126 | this->reportUniqueWarning(SecStrTableOrErr.takeError()); |
4127 | |
4128 | size_t SectionIndex = 0; |
4129 | for (const Elf_Shdr &Sec : Sections) { |
4130 | Fields[0].Str = to_string(Value: SectionIndex); |
4131 | if (SecStrTable.empty()) |
4132 | Fields[1].Str = "<no-strings>" ; |
4133 | else |
4134 | Fields[1].Str = std::string(unwrapOrError<StringRef>( |
4135 | this->FileName, this->Obj.getSectionName(Sec, SecStrTable))); |
4136 | Fields[2].Str = |
4137 | getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type); |
4138 | Fields[3].Str = |
4139 | to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8)); |
4140 | Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6)); |
4141 | Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6)); |
4142 | Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2)); |
4143 | Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_ident[ELF::EI_OSABI], |
4144 | this->Obj.getHeader().e_machine, Sec.sh_flags); |
4145 | Fields[8].Str = to_string(Sec.sh_link); |
4146 | Fields[9].Str = to_string(Sec.sh_info); |
4147 | Fields[10].Str = to_string(Sec.sh_addralign); |
4148 | |
4149 | OS.PadToColumn(NewCol: Fields[0].Column); |
4150 | OS << "[" << right_justify(Fields[0].Str, 2) << "]" ; |
4151 | for (int i = 1; i < 7; i++) |
4152 | printField(F: Fields[i]); |
4153 | OS.PadToColumn(NewCol: Fields[7].Column); |
4154 | OS << right_justify(Fields[7].Str, 3); |
4155 | OS.PadToColumn(NewCol: Fields[8].Column); |
4156 | OS << right_justify(Fields[8].Str, 2); |
4157 | OS.PadToColumn(NewCol: Fields[9].Column); |
4158 | OS << right_justify(Fields[9].Str, 3); |
4159 | OS.PadToColumn(NewCol: Fields[10].Column); |
4160 | OS << right_justify(Fields[10].Str, 2); |
4161 | OS << "\n" ; |
4162 | ++SectionIndex; |
4163 | } |
4164 | printSectionDescription(OS, this->Obj.getHeader().e_machine); |
4165 | } |
4166 | |
4167 | template <class ELFT> |
4168 | void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab, |
4169 | size_t Entries, |
4170 | bool NonVisibilityBitsUsed, |
4171 | bool ) const { |
4172 | StringRef Name; |
4173 | if (Symtab) |
4174 | Name = this->getPrintableSectionName(*Symtab); |
4175 | if (!Name.empty()) |
4176 | OS << "\nSymbol table '" << Name << "'" ; |
4177 | else |
4178 | OS << "\nSymbol table for image" ; |
4179 | OS << " contains " << Entries << " entries:\n" ; |
4180 | |
4181 | if (ELFT::Is64Bits) { |
4182 | OS << " Num: Value Size Type Bind Vis" ; |
4183 | if (ExtraSymInfo) |
4184 | OS << "+Other" ; |
4185 | } else { |
4186 | OS << " Num: Value Size Type Bind Vis" ; |
4187 | if (ExtraSymInfo) |
4188 | OS << "+Other" ; |
4189 | } |
4190 | |
4191 | OS.PadToColumn(NewCol: (ELFT::Is64Bits ? 56 : 48) + (NonVisibilityBitsUsed ? 13 : 0)); |
4192 | if (ExtraSymInfo) |
4193 | OS << "Ndx(SecName) Name [+ Version Info]\n" ; |
4194 | else |
4195 | OS << "Ndx Name\n" ; |
4196 | } |
4197 | |
4198 | template <class ELFT> |
4199 | std::string GNUELFDumper<ELFT>::getSymbolSectionNdx( |
4200 | const Elf_Sym &Symbol, unsigned SymIndex, DataRegion<Elf_Word> ShndxTable, |
4201 | bool ) const { |
4202 | unsigned SectionIndex = Symbol.st_shndx; |
4203 | switch (SectionIndex) { |
4204 | case ELF::SHN_UNDEF: |
4205 | return "UND" ; |
4206 | case ELF::SHN_ABS: |
4207 | return "ABS" ; |
4208 | case ELF::SHN_COMMON: |
4209 | return "COM" ; |
4210 | case ELF::SHN_XINDEX: { |
4211 | Expected<uint32_t> IndexOrErr = |
4212 | object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable); |
4213 | if (!IndexOrErr) { |
4214 | assert(Symbol.st_shndx == SHN_XINDEX && |
4215 | "getExtendedSymbolTableIndex should only fail due to an invalid " |
4216 | "SHT_SYMTAB_SHNDX table/reference" ); |
4217 | this->reportUniqueWarning(IndexOrErr.takeError()); |
4218 | return "RSV[0xffff]" ; |
4219 | } |
4220 | SectionIndex = *IndexOrErr; |
4221 | break; |
4222 | } |
4223 | default: |
4224 | // Find if: |
4225 | // Processor specific |
4226 | if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC) |
4227 | return std::string("PRC[0x" ) + |
4228 | to_string(Value: format_hex_no_prefix(N: SectionIndex, Width: 4)) + "]" ; |
4229 | // OS specific |
4230 | if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS) |
4231 | return std::string("OS[0x" ) + |
4232 | to_string(Value: format_hex_no_prefix(N: SectionIndex, Width: 4)) + "]" ; |
4233 | // Architecture reserved: |
4234 | if (SectionIndex >= ELF::SHN_LORESERVE && |
4235 | SectionIndex <= ELF::SHN_HIRESERVE) |
4236 | return std::string("RSV[0x" ) + |
4237 | to_string(Value: format_hex_no_prefix(N: SectionIndex, Width: 4)) + "]" ; |
4238 | break; |
4239 | } |
4240 | |
4241 | std::string ; |
4242 | if (ExtraSymInfo) { |
4243 | auto Sec = this->Obj.getSection(SectionIndex); |
4244 | if (!Sec) { |
4245 | this->reportUniqueWarning(Sec.takeError()); |
4246 | } else { |
4247 | auto SecName = this->Obj.getSectionName(**Sec); |
4248 | if (!SecName) |
4249 | this->reportUniqueWarning(SecName.takeError()); |
4250 | else |
4251 | Extra = Twine(" (" + *SecName + ")" ).str(); |
4252 | } |
4253 | } |
4254 | return to_string(Value: format_decimal(N: SectionIndex, Width: 3)) + Extra; |
4255 | } |
4256 | |
4257 | template <class ELFT> |
4258 | void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, |
4259 | DataRegion<Elf_Word> ShndxTable, |
4260 | std::optional<StringRef> StrTable, |
4261 | bool IsDynamic, bool NonVisibilityBitsUsed, |
4262 | bool ) const { |
4263 | unsigned Bias = ELFT::Is64Bits ? 8 : 0; |
4264 | Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias, |
4265 | 31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias}; |
4266 | Fields[0].Str = to_string(Value: format_decimal(N: SymIndex, Width: 6)) + ":" ; |
4267 | Fields[1].Str = |
4268 | to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8)); |
4269 | Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5)); |
4270 | |
4271 | unsigned char SymbolType = Symbol.getType(); |
4272 | if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && |
4273 | SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) |
4274 | Fields[3].Str = enumToString(Value: SymbolType, EnumValues: ArrayRef(AMDGPUSymbolTypes)); |
4275 | else |
4276 | Fields[3].Str = enumToString(Value: SymbolType, EnumValues: ArrayRef(ElfSymbolTypes)); |
4277 | |
4278 | Fields[4].Str = |
4279 | enumToString(Symbol.getBinding(), ArrayRef(ElfSymbolBindings)); |
4280 | Fields[5].Str = |
4281 | enumToString(Symbol.getVisibility(), ArrayRef(ElfSymbolVisibilities)); |
4282 | |
4283 | if (Symbol.st_other & ~0x3) { |
4284 | if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) { |
4285 | uint8_t Other = Symbol.st_other & ~0x3; |
4286 | if (Other & STO_AARCH64_VARIANT_PCS) { |
4287 | Other &= ~STO_AARCH64_VARIANT_PCS; |
4288 | Fields[5].Str += " [VARIANT_PCS" ; |
4289 | if (Other != 0) |
4290 | Fields[5].Str.append(" | " + utohexstr(X: Other, /*LowerCase=*/true)); |
4291 | Fields[5].Str.append("]" ); |
4292 | } |
4293 | } else if (this->Obj.getHeader().e_machine == ELF::EM_RISCV) { |
4294 | uint8_t Other = Symbol.st_other & ~0x3; |
4295 | if (Other & STO_RISCV_VARIANT_CC) { |
4296 | Other &= ~STO_RISCV_VARIANT_CC; |
4297 | Fields[5].Str += " [VARIANT_CC" ; |
4298 | if (Other != 0) |
4299 | Fields[5].Str.append(" | " + utohexstr(X: Other, /*LowerCase=*/true)); |
4300 | Fields[5].Str.append("]" ); |
4301 | } |
4302 | } else { |
4303 | Fields[5].Str += |
4304 | " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]" ; |
4305 | } |
4306 | } |
4307 | |
4308 | Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0; |
4309 | Fields[6].Str = |
4310 | getSymbolSectionNdx(Symbol, SymIndex, ShndxTable, ExtraSymInfo); |
4311 | |
4312 | Fields[7].Column += ExtraSymInfo ? 10 : 0; |
4313 | Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable, |
4314 | StrTable, IsDynamic); |
4315 | for (const Field &Entry : Fields) |
4316 | printField(F: Entry); |
4317 | OS << "\n" ; |
4318 | } |
4319 | |
4320 | template <class ELFT> |
4321 | void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol, |
4322 | unsigned SymIndex, |
4323 | DataRegion<Elf_Word> ShndxTable, |
4324 | StringRef StrTable, |
4325 | uint32_t Bucket) { |
4326 | unsigned Bias = ELFT::Is64Bits ? 8 : 0; |
4327 | Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias, |
4328 | 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias}; |
4329 | Fields[0].Str = to_string(Value: format_decimal(N: SymIndex, Width: 5)); |
4330 | Fields[1].Str = to_string(Value: format_decimal(N: Bucket, Width: 3)) + ":" ; |
4331 | |
4332 | Fields[2].Str = to_string( |
4333 | format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8)); |
4334 | Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5)); |
4335 | |
4336 | unsigned char SymbolType = Symbol->getType(); |
4337 | if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && |
4338 | SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) |
4339 | Fields[4].Str = enumToString(Value: SymbolType, EnumValues: ArrayRef(AMDGPUSymbolTypes)); |
4340 | else |
4341 | Fields[4].Str = enumToString(Value: SymbolType, EnumValues: ArrayRef(ElfSymbolTypes)); |
4342 | |
4343 | Fields[5].Str = |
4344 | enumToString(Symbol->getBinding(), ArrayRef(ElfSymbolBindings)); |
4345 | Fields[6].Str = |
4346 | enumToString(Symbol->getVisibility(), ArrayRef(ElfSymbolVisibilities)); |
4347 | Fields[7].Str = getSymbolSectionNdx(Symbol: *Symbol, SymIndex, ShndxTable); |
4348 | Fields[8].Str = |
4349 | this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true); |
4350 | |
4351 | for (const Field &Entry : Fields) |
4352 | printField(F: Entry); |
4353 | OS << "\n" ; |
4354 | } |
4355 | |
4356 | template <class ELFT> |
4357 | void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols, |
4358 | bool PrintDynamicSymbols, |
4359 | bool ) { |
4360 | if (!PrintSymbols && !PrintDynamicSymbols) |
4361 | return; |
4362 | // GNU readelf prints both the .dynsym and .symtab with --symbols. |
4363 | this->printSymbolsHelper(true, ExtraSymInfo); |
4364 | if (PrintSymbols) |
4365 | this->printSymbolsHelper(false, ExtraSymInfo); |
4366 | } |
4367 | |
4368 | template <class ELFT> |
4369 | void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) { |
4370 | if (this->DynamicStringTable.empty()) |
4371 | return; |
4372 | |
4373 | if (ELFT::Is64Bits) |
4374 | OS << " Num Buc: Value Size Type Bind Vis Ndx Name" ; |
4375 | else |
4376 | OS << " Num Buc: Value Size Type Bind Vis Ndx Name" ; |
4377 | OS << "\n" ; |
4378 | |
4379 | Elf_Sym_Range DynSyms = this->dynamic_symbols(); |
4380 | const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0]; |
4381 | if (!FirstSym) { |
4382 | this->reportUniqueWarning( |
4383 | Twine("unable to print symbols for the .hash table: the " |
4384 | "dynamic symbol table " ) + |
4385 | (this->DynSymRegion ? "is empty" : "was not found" )); |
4386 | return; |
4387 | } |
4388 | |
4389 | DataRegion<Elf_Word> ShndxTable( |
4390 | (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); |
4391 | auto Buckets = SysVHash.buckets(); |
4392 | auto Chains = SysVHash.chains(); |
4393 | for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) { |
4394 | if (Buckets[Buc] == ELF::STN_UNDEF) |
4395 | continue; |
4396 | BitVector Visited(SysVHash.nchain); |
4397 | for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) { |
4398 | if (Ch == ELF::STN_UNDEF) |
4399 | break; |
4400 | |
4401 | if (Visited[Ch]) { |
4402 | this->reportUniqueWarning(".hash section is invalid: bucket " + |
4403 | Twine(Ch) + |
4404 | ": a cycle was detected in the linked chain" ); |
4405 | break; |
4406 | } |
4407 | |
4408 | printHashedSymbol(Symbol: FirstSym + Ch, SymIndex: Ch, ShndxTable, StrTable: this->DynamicStringTable, |
4409 | Bucket: Buc); |
4410 | Visited[Ch] = true; |
4411 | } |
4412 | } |
4413 | } |
4414 | |
4415 | template <class ELFT> |
4416 | void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) { |
4417 | if (this->DynamicStringTable.empty()) |
4418 | return; |
4419 | |
4420 | Elf_Sym_Range DynSyms = this->dynamic_symbols(); |
4421 | const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0]; |
4422 | if (!FirstSym) { |
4423 | this->reportUniqueWarning( |
4424 | Twine("unable to print symbols for the .gnu.hash table: the " |
4425 | "dynamic symbol table " ) + |
4426 | (this->DynSymRegion ? "is empty" : "was not found" )); |
4427 | return; |
4428 | } |
4429 | |
4430 | auto GetSymbol = [&](uint64_t SymIndex, |
4431 | uint64_t SymsTotal) -> const Elf_Sym * { |
4432 | if (SymIndex >= SymsTotal) { |
4433 | this->reportUniqueWarning( |
4434 | "unable to print hashed symbol with index " + Twine(SymIndex) + |
4435 | ", which is greater than or equal to the number of dynamic symbols " |
4436 | "(" + |
4437 | Twine::utohexstr(Val: SymsTotal) + ")" ); |
4438 | return nullptr; |
4439 | } |
4440 | return FirstSym + SymIndex; |
4441 | }; |
4442 | |
4443 | Expected<ArrayRef<Elf_Word>> ValuesOrErr = |
4444 | getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash); |
4445 | ArrayRef<Elf_Word> Values; |
4446 | if (!ValuesOrErr) |
4447 | this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH " |
4448 | "section: " + |
4449 | toString(ValuesOrErr.takeError())); |
4450 | else |
4451 | Values = *ValuesOrErr; |
4452 | |
4453 | DataRegion<Elf_Word> ShndxTable( |
4454 | (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); |
4455 | ArrayRef<Elf_Word> Buckets = GnuHash.buckets(); |
4456 | for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) { |
4457 | if (Buckets[Buc] == ELF::STN_UNDEF) |
4458 | continue; |
4459 | uint32_t Index = Buckets[Buc]; |
4460 | // Print whole chain. |
4461 | while (true) { |
4462 | uint32_t SymIndex = Index++; |
4463 | if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size())) |
4464 | printHashedSymbol(Symbol: Sym, SymIndex, ShndxTable, StrTable: this->DynamicStringTable, |
4465 | Bucket: Buc); |
4466 | else |
4467 | break; |
4468 | |
4469 | if (SymIndex < GnuHash.symndx) { |
4470 | this->reportUniqueWarning( |
4471 | "unable to read the hash value for symbol with index " + |
4472 | Twine(SymIndex) + |
4473 | ", which is less than the index of the first hashed symbol (" + |
4474 | Twine(GnuHash.symndx) + ")" ); |
4475 | break; |
4476 | } |
4477 | |
4478 | // Chain ends at symbol with stopper bit. |
4479 | if ((Values[SymIndex - GnuHash.symndx] & 1) == 1) |
4480 | break; |
4481 | } |
4482 | } |
4483 | } |
4484 | |
4485 | template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() { |
4486 | if (this->HashTable) { |
4487 | OS << "\n Symbol table of .hash for image:\n" ; |
4488 | if (Error E = checkHashTable<ELFT>(*this, this->HashTable)) |
4489 | this->reportUniqueWarning(std::move(E)); |
4490 | else |
4491 | printHashTableSymbols(SysVHash: *this->HashTable); |
4492 | } |
4493 | |
4494 | // Try printing the .gnu.hash table. |
4495 | if (this->GnuHashTable) { |
4496 | OS << "\n Symbol table of .gnu.hash for image:\n" ; |
4497 | if (ELFT::Is64Bits) |
4498 | OS << " Num Buc: Value Size Type Bind Vis Ndx Name" ; |
4499 | else |
4500 | OS << " Num Buc: Value Size Type Bind Vis Ndx Name" ; |
4501 | OS << "\n" ; |
4502 | |
4503 | if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable)) |
4504 | this->reportUniqueWarning(std::move(E)); |
4505 | else |
4506 | printGnuHashTableSymbols(GnuHash: *this->GnuHashTable); |
4507 | } |
4508 | } |
4509 | |
4510 | template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() { |
4511 | ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections()); |
4512 | if (Sections.empty()) { |
4513 | OS << "\nThere are no sections in this file.\n" ; |
4514 | Expected<StringRef> SecStrTableOrErr = |
4515 | this->Obj.getSectionStringTable(Sections, this->WarningHandler); |
4516 | if (!SecStrTableOrErr) |
4517 | this->reportUniqueWarning(SecStrTableOrErr.takeError()); |
4518 | return; |
4519 | } |
4520 | OS << "There are " << to_string(Sections.size()) |
4521 | << " section headers, starting at offset " |
4522 | << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n" ; |
4523 | |
4524 | OS << "Section Headers:\n" ; |
4525 | |
4526 | auto PrintFields = [&](ArrayRef<Field> V) { |
4527 | for (const Field &F : V) |
4528 | printField(F); |
4529 | OS << "\n" ; |
4530 | }; |
4531 | |
4532 | PrintFields({{"[Nr]" , 2}, {"Name" , 7}}); |
4533 | |
4534 | constexpr bool Is64 = ELFT::Is64Bits; |
4535 | PrintFields({{"Type" , 7}, |
4536 | {Is64 ? "Address" : "Addr" , 23}, |
4537 | {"Off" , Is64 ? 40 : 32}, |
4538 | {"Size" , Is64 ? 47 : 39}, |
4539 | {"ES" , Is64 ? 54 : 46}, |
4540 | {"Lk" , Is64 ? 59 : 51}, |
4541 | {"Inf" , Is64 ? 62 : 54}, |
4542 | {"Al" , Is64 ? 66 : 57}}); |
4543 | PrintFields({{"Flags" , 7}}); |
4544 | |
4545 | StringRef SecStrTable; |
4546 | if (Expected<StringRef> SecStrTableOrErr = |
4547 | this->Obj.getSectionStringTable(Sections, this->WarningHandler)) |
4548 | SecStrTable = *SecStrTableOrErr; |
4549 | else |
4550 | this->reportUniqueWarning(SecStrTableOrErr.takeError()); |
4551 | |
4552 | size_t SectionIndex = 0; |
4553 | const unsigned AddrSize = Is64 ? 16 : 8; |
4554 | for (const Elf_Shdr &S : Sections) { |
4555 | StringRef Name = "<?>" ; |
4556 | if (Expected<StringRef> NameOrErr = |
4557 | this->Obj.getSectionName(S, SecStrTable)) |
4558 | Name = *NameOrErr; |
4559 | else |
4560 | this->reportUniqueWarning(NameOrErr.takeError()); |
4561 | |
4562 | OS.PadToColumn(NewCol: 2); |
4563 | OS << "[" << right_justify(Str: to_string(Value: SectionIndex), Width: 2) << "]" ; |
4564 | PrintFields({{Name, 7}}); |
4565 | PrintFields( |
4566 | {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7}, |
4567 | {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23}, |
4568 | {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32}, |
4569 | {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39}, |
4570 | {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46}, |
4571 | {to_string(S.sh_link), Is64 ? 59 : 51}, |
4572 | {to_string(S.sh_info), Is64 ? 63 : 55}, |
4573 | {to_string(S.sh_addralign), Is64 ? 66 : 58}}); |
4574 | |
4575 | OS.PadToColumn(NewCol: 7); |
4576 | OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: " ; |
4577 | |
4578 | DenseMap<unsigned, StringRef> FlagToName = { |
4579 | {SHF_WRITE, "WRITE" }, {SHF_ALLOC, "ALLOC" }, |
4580 | {SHF_EXECINSTR, "EXEC" }, {SHF_MERGE, "MERGE" }, |
4581 | {SHF_STRINGS, "STRINGS" }, {SHF_INFO_LINK, "INFO LINK" }, |
4582 | {SHF_LINK_ORDER, "LINK ORDER" }, {SHF_OS_NONCONFORMING, "OS NONCONF" }, |
4583 | {SHF_GROUP, "GROUP" }, {SHF_TLS, "TLS" }, |
4584 | {SHF_COMPRESSED, "COMPRESSED" }, {SHF_EXCLUDE, "EXCLUDE" }}; |
4585 | |
4586 | uint64_t Flags = S.sh_flags; |
4587 | uint64_t UnknownFlags = 0; |
4588 | ListSeparator LS; |
4589 | while (Flags) { |
4590 | // Take the least significant bit as a flag. |
4591 | uint64_t Flag = Flags & -Flags; |
4592 | Flags -= Flag; |
4593 | |
4594 | auto It = FlagToName.find(Val: Flag); |
4595 | if (It != FlagToName.end()) |
4596 | OS << LS << It->second; |
4597 | else |
4598 | UnknownFlags |= Flag; |
4599 | } |
4600 | |
4601 | auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) { |
4602 | uint64_t FlagsToPrint = UnknownFlags & Mask; |
4603 | if (!FlagsToPrint) |
4604 | return; |
4605 | |
4606 | OS << LS << Name << " (" |
4607 | << to_string(Value: format_hex_no_prefix(N: FlagsToPrint, Width: AddrSize)) << ")" ; |
4608 | UnknownFlags &= ~Mask; |
4609 | }; |
4610 | |
4611 | PrintUnknownFlags(SHF_MASKOS, "OS" ); |
4612 | PrintUnknownFlags(SHF_MASKPROC, "PROC" ); |
4613 | PrintUnknownFlags(uint64_t(-1), "UNKNOWN" ); |
4614 | |
4615 | OS << "\n" ; |
4616 | ++SectionIndex; |
4617 | |
4618 | if (!(S.sh_flags & SHF_COMPRESSED)) |
4619 | continue; |
4620 | Expected<ArrayRef<uint8_t>> Data = this->Obj.getSectionContents(S); |
4621 | if (!Data || Data->size() < sizeof(Elf_Chdr)) { |
4622 | consumeError(Err: Data.takeError()); |
4623 | reportWarning(createError(Err: "SHF_COMPRESSED section '" + Name + |
4624 | "' does not have an Elf_Chdr header" ), |
4625 | this->FileName); |
4626 | OS.indent(NumSpaces: 7); |
4627 | OS << "[<corrupt>]" ; |
4628 | } else { |
4629 | OS.indent(NumSpaces: 7); |
4630 | auto *Chdr = reinterpret_cast<const Elf_Chdr *>(Data->data()); |
4631 | if (Chdr->ch_type == ELFCOMPRESS_ZLIB) |
4632 | OS << "ZLIB" ; |
4633 | else if (Chdr->ch_type == ELFCOMPRESS_ZSTD) |
4634 | OS << "ZSTD" ; |
4635 | else |
4636 | OS << format(Fmt: "[<unknown>: 0x%x]" , Vals: unsigned(Chdr->ch_type)); |
4637 | OS << ", " << format_hex_no_prefix(Chdr->ch_size, ELFT::Is64Bits ? 16 : 8) |
4638 | << ", " << Chdr->ch_addralign; |
4639 | } |
4640 | OS << '\n'; |
4641 | } |
4642 | } |
4643 | |
4644 | static inline std::string printPhdrFlags(unsigned Flag) { |
4645 | std::string Str; |
4646 | Str = (Flag & PF_R) ? "R" : " " ; |
4647 | Str += (Flag & PF_W) ? "W" : " " ; |
4648 | Str += (Flag & PF_X) ? "E" : " " ; |
4649 | return Str; |
4650 | } |
4651 | |
4652 | template <class ELFT> |
4653 | static bool checkTLSSections(const typename ELFT::Phdr &Phdr, |
4654 | const typename ELFT::Shdr &Sec) { |
4655 | if (Sec.sh_flags & ELF::SHF_TLS) { |
4656 | // .tbss must only be shown in the PT_TLS segment. |
4657 | if (Sec.sh_type == ELF::SHT_NOBITS) |
4658 | return Phdr.p_type == ELF::PT_TLS; |
4659 | |
4660 | // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO |
4661 | // segments. |
4662 | return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) || |
4663 | (Phdr.p_type == ELF::PT_GNU_RELRO); |
4664 | } |
4665 | |
4666 | // PT_TLS must only have SHF_TLS sections. |
4667 | return Phdr.p_type != ELF::PT_TLS; |
4668 | } |
4669 | |
4670 | template <class ELFT> |
4671 | static bool checkPTDynamic(const typename ELFT::Phdr &Phdr, |
4672 | const typename ELFT::Shdr &Sec) { |
4673 | if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0) |
4674 | return true; |
4675 | |
4676 | // We get here when we have an empty section. Only non-empty sections can be |
4677 | // at the start or at the end of PT_DYNAMIC. |
4678 | // Is section within the phdr both based on offset and VMA? |
4679 | bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) || |
4680 | (Sec.sh_offset > Phdr.p_offset && |
4681 | Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz); |
4682 | bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) || |
4683 | (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz); |
4684 | return CheckOffset && CheckVA; |
4685 | } |
4686 | |
4687 | template <class ELFT> |
4688 | void GNUELFDumper<ELFT>::( |
4689 | bool , cl::boolOrDefault PrintSectionMapping) { |
4690 | const bool ShouldPrintSectionMapping = (PrintSectionMapping != cl::BOU_FALSE); |
4691 | // Exit early if no program header or section mapping details were requested. |
4692 | if (!PrintProgramHeaders && !ShouldPrintSectionMapping) |
4693 | return; |
4694 | |
4695 | if (PrintProgramHeaders) { |
4696 | const Elf_Ehdr & = this->Obj.getHeader(); |
4697 | if (Header.e_phnum == 0) { |
4698 | OS << "\nThere are no program headers in this file.\n" ; |
4699 | } else { |
4700 | printProgramHeaders(); |
4701 | } |
4702 | } |
4703 | |
4704 | if (ShouldPrintSectionMapping) |
4705 | printSectionMapping(); |
4706 | } |
4707 | |
4708 | template <class ELFT> void GNUELFDumper<ELFT>::() { |
4709 | unsigned Bias = ELFT::Is64Bits ? 8 : 0; |
4710 | const Elf_Ehdr & = this->Obj.getHeader(); |
4711 | Field Fields[8] = {2, 17, 26, 37 + Bias, |
4712 | 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias}; |
4713 | OS << "\nElf file type is " |
4714 | << enumToString(Header.e_type, ArrayRef(ElfObjectFileType)) << "\n" |
4715 | << "Entry point " << format_hex(Header.e_entry, 3) << "\n" |
4716 | << "There are " << Header.e_phnum << " program headers," |
4717 | << " starting at offset " << Header.e_phoff << "\n\n" |
4718 | << "Program Headers:\n" ; |
4719 | if (ELFT::Is64Bits) |
4720 | OS << " Type Offset VirtAddr PhysAddr " |
4721 | << " FileSiz MemSiz Flg Align\n" ; |
4722 | else |
4723 | OS << " Type Offset VirtAddr PhysAddr FileSiz " |
4724 | << "MemSiz Flg Align\n" ; |
4725 | |
4726 | unsigned Width = ELFT::Is64Bits ? 18 : 10; |
4727 | unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7; |
4728 | |
4729 | Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers(); |
4730 | if (!PhdrsOrErr) { |
4731 | this->reportUniqueWarning("unable to dump program headers: " + |
4732 | toString(PhdrsOrErr.takeError())); |
4733 | return; |
4734 | } |
4735 | |
4736 | for (const Elf_Phdr &Phdr : *PhdrsOrErr) { |
4737 | Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type); |
4738 | Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8)); |
4739 | Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width)); |
4740 | Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width)); |
4741 | Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth)); |
4742 | Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth)); |
4743 | Fields[6].Str = printPhdrFlags(Phdr.p_flags); |
4744 | Fields[7].Str = to_string(format_hex(Phdr.p_align, 1)); |
4745 | for (const Field &F : Fields) |
4746 | printField(F); |
4747 | if (Phdr.p_type == ELF::PT_INTERP) { |
4748 | OS << "\n" ; |
4749 | auto ReportBadInterp = [&](const Twine &Msg) { |
4750 | this->reportUniqueWarning( |
4751 | "unable to read program interpreter name at offset 0x" + |
4752 | Twine::utohexstr(Val: Phdr.p_offset) + ": " + Msg); |
4753 | }; |
4754 | |
4755 | if (Phdr.p_offset >= this->Obj.getBufSize()) { |
4756 | ReportBadInterp("it goes past the end of the file (0x" + |
4757 | Twine::utohexstr(Val: this->Obj.getBufSize()) + ")" ); |
4758 | continue; |
4759 | } |
4760 | |
4761 | const char *Data = |
4762 | reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset; |
4763 | size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset; |
4764 | size_t Len = strnlen(string: Data, maxlen: MaxSize); |
4765 | if (Len == MaxSize) { |
4766 | ReportBadInterp("it is not null-terminated" ); |
4767 | continue; |
4768 | } |
4769 | |
4770 | OS << " [Requesting program interpreter: " ; |
4771 | OS << StringRef(Data, Len) << "]" ; |
4772 | } |
4773 | OS << "\n" ; |
4774 | } |
4775 | } |
4776 | |
4777 | template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() { |
4778 | OS << "\n Section to Segment mapping:\n Segment Sections...\n" ; |
4779 | DenseSet<const Elf_Shdr *> BelongsToSegment; |
4780 | int Phnum = 0; |
4781 | |
4782 | Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers(); |
4783 | if (!PhdrsOrErr) { |
4784 | this->reportUniqueWarning( |
4785 | "can't read program headers to build section to segment mapping: " + |
4786 | toString(PhdrsOrErr.takeError())); |
4787 | return; |
4788 | } |
4789 | |
4790 | for (const Elf_Phdr &Phdr : *PhdrsOrErr) { |
4791 | std::string Sections; |
4792 | OS << format(Fmt: " %2.2d " , Vals: Phnum++); |
4793 | // Check if each section is in a segment and then print mapping. |
4794 | for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { |
4795 | if (Sec.sh_type == ELF::SHT_NULL) |
4796 | continue; |
4797 | |
4798 | // readelf additionally makes sure it does not print zero sized sections |
4799 | // at end of segments and for PT_DYNAMIC both start and end of section |
4800 | // .tbss must only be shown in PT_TLS section. |
4801 | if (isSectionInSegment<ELFT>(Phdr, Sec) && |
4802 | checkTLSSections<ELFT>(Phdr, Sec) && |
4803 | checkPTDynamic<ELFT>(Phdr, Sec)) { |
4804 | Sections += |
4805 | unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() + |
4806 | " " ; |
4807 | BelongsToSegment.insert(&Sec); |
4808 | } |
4809 | } |
4810 | OS << Sections << "\n" ; |
4811 | OS.flush(); |
4812 | } |
4813 | |
4814 | // Display sections that do not belong to a segment. |
4815 | std::string Sections; |
4816 | for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { |
4817 | if (BelongsToSegment.find(&Sec) == BelongsToSegment.end()) |
4818 | Sections += |
4819 | unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() + |
4820 | ' '; |
4821 | } |
4822 | if (!Sections.empty()) { |
4823 | OS << " None " << Sections << '\n'; |
4824 | OS.flush(); |
4825 | } |
4826 | } |
4827 | |
4828 | namespace { |
4829 | |
4830 | template <class ELFT> |
4831 | RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper, |
4832 | const Relocation<ELFT> &Reloc) { |
4833 | using Elf_Sym = typename ELFT::Sym; |
4834 | auto WarnAndReturn = [&](const Elf_Sym *Sym, |
4835 | const Twine &Reason) -> RelSymbol<ELFT> { |
4836 | Dumper.reportUniqueWarning( |
4837 | "unable to get name of the dynamic symbol with index " + |
4838 | Twine(Reloc.Symbol) + ": " + Reason); |
4839 | return {Sym, "<corrupt>" }; |
4840 | }; |
4841 | |
4842 | ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols(); |
4843 | const Elf_Sym *FirstSym = Symbols.begin(); |
4844 | if (!FirstSym) |
4845 | return WarnAndReturn(nullptr, "no dynamic symbol table found" ); |
4846 | |
4847 | // We might have an object without a section header. In this case the size of |
4848 | // Symbols is zero, because there is no way to know the size of the dynamic |
4849 | // table. We should allow this case and not print a warning. |
4850 | if (!Symbols.empty() && Reloc.Symbol >= Symbols.size()) |
4851 | return WarnAndReturn( |
4852 | nullptr, |
4853 | "index is greater than or equal to the number of dynamic symbols (" + |
4854 | Twine(Symbols.size()) + ")" ); |
4855 | |
4856 | const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile(); |
4857 | const uint64_t FileSize = Obj.getBufSize(); |
4858 | const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) + |
4859 | (uint64_t)Reloc.Symbol * sizeof(Elf_Sym); |
4860 | if (SymOffset + sizeof(Elf_Sym) > FileSize) |
4861 | return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(Val: SymOffset) + |
4862 | " goes past the end of the file (0x" + |
4863 | Twine::utohexstr(Val: FileSize) + ")" ); |
4864 | |
4865 | const Elf_Sym *Sym = FirstSym + Reloc.Symbol; |
4866 | Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable()); |
4867 | if (!ErrOrName) |
4868 | return WarnAndReturn(Sym, toString(E: ErrOrName.takeError())); |
4869 | |
4870 | return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(Name: *ErrOrName)}; |
4871 | } |
4872 | } // namespace |
4873 | |
4874 | template <class ELFT> |
4875 | static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj, |
4876 | typename ELFT::DynRange Tags) { |
4877 | size_t Max = 0; |
4878 | for (const typename ELFT::Dyn &Dyn : Tags) |
4879 | Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size()); |
4880 | return Max; |
4881 | } |
4882 | |
4883 | template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() { |
4884 | Elf_Dyn_Range Table = this->dynamic_table(); |
4885 | if (Table.empty()) |
4886 | return; |
4887 | |
4888 | OS << "Dynamic section at offset " |
4889 | << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) - |
4890 | this->Obj.base(), |
4891 | 1) |
4892 | << " contains " << Table.size() << " entries:\n" ; |
4893 | |
4894 | // The type name is surrounded with round brackets, hence add 2. |
4895 | size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2; |
4896 | // The "Name/Value" column should be indented from the "Type" column by N |
4897 | // spaces, where N = MaxTagSize - length of "Type" (4) + trailing |
4898 | // space (1) = 3. |
4899 | OS << " Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type" |
4900 | << std::string(MaxTagSize - 3, ' ') << "Name/Value\n" ; |
4901 | |
4902 | std::string ValueFmt = " %-" + std::to_string(val: MaxTagSize) + "s " ; |
4903 | for (auto Entry : Table) { |
4904 | uintX_t Tag = Entry.getTag(); |
4905 | std::string Type = |
4906 | std::string("(" ) + this->Obj.getDynamicTagAsString(Tag) + ")" ; |
4907 | std::string Value = this->getDynamicEntry(Tag, Entry.getVal()); |
4908 | OS << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10) |
4909 | << format(Fmt: ValueFmt.c_str(), Vals: Type.c_str()) << Value << "\n" ; |
4910 | } |
4911 | } |
4912 | |
4913 | template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() { |
4914 | this->printDynamicRelocationsHelper(); |
4915 | } |
4916 | |
4917 | template <class ELFT> |
4918 | void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) { |
4919 | printRelRelaReloc(R, RelSym: getSymbolForReloc(*this, R)); |
4920 | } |
4921 | |
4922 | template <class ELFT> |
4923 | void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) { |
4924 | this->forEachRelocationDo( |
4925 | Sec, [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec, |
4926 | const Elf_Shdr *SymTab) { printReloc(R, RelIndex: Ndx, Sec, SymTab); }); |
4927 | } |
4928 | |
4929 | template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() { |
4930 | const bool IsMips64EL = this->Obj.isMips64EL(); |
4931 | auto DumpCrelRegion = [&](DynRegionInfo &Region) { |
4932 | // While the size is unknown, a valid CREL has at least one byte. We can |
4933 | // check whether Addr is in bounds, and then decode CREL until the file |
4934 | // end. |
4935 | Region.Size = Region.EntSize = 1; |
4936 | if (!Region.template getAsArrayRef<uint8_t>().empty()) { |
4937 | const uint64_t Offset = |
4938 | Region.Addr - reinterpret_cast<const uint8_t *>( |
4939 | ObjF.getMemoryBufferRef().getBufferStart()); |
4940 | const uint64_t ObjSize = ObjF.getMemoryBufferRef().getBufferSize(); |
4941 | auto RelsOrRelas = |
4942 | Obj.decodeCrel(ArrayRef<uint8_t>(Region.Addr, ObjSize - Offset)); |
4943 | if (!RelsOrRelas) { |
4944 | reportUniqueWarning(toString(RelsOrRelas.takeError())); |
4945 | } else { |
4946 | for (const Elf_Rel &R : RelsOrRelas->first) |
4947 | printDynamicReloc(R: Relocation<ELFT>(R, false)); |
4948 | for (const Elf_Rela &R : RelsOrRelas->second) |
4949 | printDynamicReloc(R: Relocation<ELFT>(R, false)); |
4950 | } |
4951 | } |
4952 | }; |
4953 | |
4954 | if (this->DynCrelRegion.Addr) { |
4955 | printDynamicRelocHeader(Type: ELF::SHT_CREL, Name: "CREL" , Reg: this->DynCrelRegion); |
4956 | DumpCrelRegion(this->DynCrelRegion); |
4957 | } |
4958 | |
4959 | if (this->DynRelaRegion.Size > 0) { |
4960 | printDynamicRelocHeader(Type: ELF::SHT_RELA, Name: "RELA" , Reg: this->DynRelaRegion); |
4961 | for (const Elf_Rela &Rela : |
4962 | this->DynRelaRegion.template getAsArrayRef<Elf_Rela>()) |
4963 | printDynamicReloc(R: Relocation<ELFT>(Rela, IsMips64EL)); |
4964 | } |
4965 | |
4966 | if (this->DynRelRegion.Size > 0) { |
4967 | printDynamicRelocHeader(Type: ELF::SHT_REL, Name: "REL" , Reg: this->DynRelRegion); |
4968 | for (const Elf_Rel &Rel : |
4969 | this->DynRelRegion.template getAsArrayRef<Elf_Rel>()) |
4970 | printDynamicReloc(R: Relocation<ELFT>(Rel, IsMips64EL)); |
4971 | } |
4972 | |
4973 | if (this->DynRelrRegion.Size > 0) { |
4974 | printDynamicRelocHeader(Type: ELF::SHT_REL, Name: "RELR" , Reg: this->DynRelrRegion); |
4975 | Elf_Relr_Range Relrs = |
4976 | this->DynRelrRegion.template getAsArrayRef<Elf_Relr>(); |
4977 | for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs)) |
4978 | printDynamicReloc(R: Relocation<ELFT>(Rel, IsMips64EL)); |
4979 | } |
4980 | |
4981 | if (this->DynPLTRelRegion.Size) { |
4982 | if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) { |
4983 | printDynamicRelocHeader(Type: ELF::SHT_RELA, Name: "PLT" , Reg: this->DynPLTRelRegion); |
4984 | for (const Elf_Rela &Rela : |
4985 | this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>()) |
4986 | printDynamicReloc(R: Relocation<ELFT>(Rela, IsMips64EL)); |
4987 | } else if (this->DynPLTRelRegion.EntSize == 1) { |
4988 | DumpCrelRegion(this->DynPLTRelRegion); |
4989 | } else { |
4990 | printDynamicRelocHeader(Type: ELF::SHT_REL, Name: "PLT" , Reg: this->DynPLTRelRegion); |
4991 | for (const Elf_Rel &Rel : |
4992 | this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>()) |
4993 | printDynamicReloc(R: Relocation<ELFT>(Rel, IsMips64EL)); |
4994 | } |
4995 | } |
4996 | } |
4997 | |
4998 | template <class ELFT> |
4999 | void GNUELFDumper<ELFT>::printGNUVersionSectionProlog( |
5000 | const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) { |
5001 | // Don't inline the SecName, because it might report a warning to stderr and |
5002 | // corrupt the output. |
5003 | StringRef SecName = this->getPrintableSectionName(Sec); |
5004 | OS << Label << " section '" << SecName << "' " |
5005 | << "contains " << EntriesNum << " entries:\n" ; |
5006 | |
5007 | StringRef LinkedSecName = "<corrupt>" ; |
5008 | if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr = |
5009 | this->Obj.getSection(Sec.sh_link)) |
5010 | LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr); |
5011 | else |
5012 | this->reportUniqueWarning("invalid section linked to " + |
5013 | this->describe(Sec) + ": " + |
5014 | toString(LinkedSecOrErr.takeError())); |
5015 | |
5016 | OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16) |
5017 | << " Offset: " << format_hex(Sec.sh_offset, 8) |
5018 | << " Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n" ; |
5019 | } |
5020 | |
5021 | template <class ELFT> |
5022 | void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) { |
5023 | if (!Sec) |
5024 | return; |
5025 | |
5026 | printGNUVersionSectionProlog(Sec: *Sec, Label: "Version symbols" , |
5027 | EntriesNum: Sec->sh_size / sizeof(Elf_Versym)); |
5028 | Expected<ArrayRef<Elf_Versym>> VerTableOrErr = |
5029 | this->getVersionTable(*Sec, /*SymTab=*/nullptr, |
5030 | /*StrTab=*/nullptr, /*SymTabSec=*/nullptr); |
5031 | if (!VerTableOrErr) { |
5032 | this->reportUniqueWarning(VerTableOrErr.takeError()); |
5033 | return; |
5034 | } |
5035 | |
5036 | SmallVector<std::optional<VersionEntry>, 0> *VersionMap = nullptr; |
5037 | if (Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr = |
5038 | this->getVersionMap()) |
5039 | VersionMap = *MapOrErr; |
5040 | else |
5041 | this->reportUniqueWarning(MapOrErr.takeError()); |
5042 | |
5043 | ArrayRef<Elf_Versym> VerTable = *VerTableOrErr; |
5044 | std::vector<StringRef> Versions; |
5045 | for (size_t I = 0, E = VerTable.size(); I < E; ++I) { |
5046 | unsigned Ndx = VerTable[I].vs_index; |
5047 | if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) { |
5048 | Versions.emplace_back(args: Ndx == VER_NDX_LOCAL ? "*local*" : "*global*" ); |
5049 | continue; |
5050 | } |
5051 | |
5052 | if (!VersionMap) { |
5053 | Versions.emplace_back(args: "<corrupt>" ); |
5054 | continue; |
5055 | } |
5056 | |
5057 | bool IsDefault; |
5058 | Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex( |
5059 | Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/std::nullopt); |
5060 | if (!NameOrErr) { |
5061 | this->reportUniqueWarning("unable to get a version for entry " + |
5062 | Twine(I) + " of " + this->describe(*Sec) + |
5063 | ": " + toString(E: NameOrErr.takeError())); |
5064 | Versions.emplace_back(args: "<corrupt>" ); |
5065 | continue; |
5066 | } |
5067 | Versions.emplace_back(args&: *NameOrErr); |
5068 | } |
5069 | |
5070 | // readelf prints 4 entries per line. |
5071 | uint64_t Entries = VerTable.size(); |
5072 | for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) { |
5073 | OS << " " << format_hex_no_prefix(N: VersymRow, Width: 3) << ":" ; |
5074 | for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) { |
5075 | unsigned Ndx = VerTable[VersymRow + I].vs_index; |
5076 | OS << format(Fmt: "%4x%c" , Vals: Ndx & VERSYM_VERSION, |
5077 | Vals: Ndx & VERSYM_HIDDEN ? 'h' : ' '); |
5078 | OS << left_justify(Str: "(" + std::string(Versions[VersymRow + I]) + ")" , Width: 13); |
5079 | } |
5080 | OS << '\n'; |
5081 | } |
5082 | OS << '\n'; |
5083 | } |
5084 | |
5085 | static std::string versionFlagToString(unsigned Flags) { |
5086 | if (Flags == 0) |
5087 | return "none" ; |
5088 | |
5089 | std::string Ret; |
5090 | auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) { |
5091 | if (!(Flags & Flag)) |
5092 | return; |
5093 | if (!Ret.empty()) |
5094 | Ret += " | " ; |
5095 | Ret += Name; |
5096 | Flags &= ~Flag; |
5097 | }; |
5098 | |
5099 | AddFlag(VER_FLG_BASE, "BASE" ); |
5100 | AddFlag(VER_FLG_WEAK, "WEAK" ); |
5101 | AddFlag(VER_FLG_INFO, "INFO" ); |
5102 | AddFlag(~0, "<unknown>" ); |
5103 | return Ret; |
5104 | } |
5105 | |
5106 | template <class ELFT> |
5107 | void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) { |
5108 | if (!Sec) |
5109 | return; |
5110 | |
5111 | printGNUVersionSectionProlog(Sec: *Sec, Label: "Version definition" , EntriesNum: Sec->sh_info); |
5112 | |
5113 | Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec); |
5114 | if (!V) { |
5115 | this->reportUniqueWarning(V.takeError()); |
5116 | return; |
5117 | } |
5118 | |
5119 | for (const VerDef &Def : *V) { |
5120 | OS << format(Fmt: " 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u Name: %s\n" , |
5121 | Vals: Def.Offset, Vals: Def.Version, |
5122 | Vals: versionFlagToString(Flags: Def.Flags).c_str(), Vals: Def.Ndx, Vals: Def.Cnt, |
5123 | Vals: Def.Name.data()); |
5124 | unsigned I = 0; |
5125 | for (const VerdAux &Aux : Def.AuxV) |
5126 | OS << format(Fmt: " 0x%04x: Parent %u: %s\n" , Vals: Aux.Offset, Vals: ++I, |
5127 | Vals: Aux.Name.data()); |
5128 | } |
5129 | |
5130 | OS << '\n'; |
5131 | } |
5132 | |
5133 | template <class ELFT> |
5134 | void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) { |
5135 | if (!Sec) |
5136 | return; |
5137 | |
5138 | unsigned VerneedNum = Sec->sh_info; |
5139 | printGNUVersionSectionProlog(Sec: *Sec, Label: "Version needs" , EntriesNum: VerneedNum); |
5140 | |
5141 | Expected<std::vector<VerNeed>> V = |
5142 | this->Obj.getVersionDependencies(*Sec, this->WarningHandler); |
5143 | if (!V) { |
5144 | this->reportUniqueWarning(V.takeError()); |
5145 | return; |
5146 | } |
5147 | |
5148 | for (const VerNeed &VN : *V) { |
5149 | OS << format(Fmt: " 0x%04x: Version: %u File: %s Cnt: %u\n" , Vals: VN.Offset, |
5150 | Vals: VN.Version, Vals: VN.File.data(), Vals: VN.Cnt); |
5151 | for (const VernAux &Aux : VN.AuxV) |
5152 | OS << format(Fmt: " 0x%04x: Name: %s Flags: %s Version: %u\n" , Vals: Aux.Offset, |
5153 | Vals: Aux.Name.data(), Vals: versionFlagToString(Flags: Aux.Flags).c_str(), |
5154 | Vals: Aux.Other); |
5155 | } |
5156 | OS << '\n'; |
5157 | } |
5158 | |
5159 | template <class ELFT> |
5160 | void GNUELFDumper<ELFT>::printHashHistogramStats(size_t NBucket, |
5161 | size_t MaxChain, |
5162 | size_t TotalSyms, |
5163 | ArrayRef<size_t> Count, |
5164 | bool IsGnu) const { |
5165 | size_t CumulativeNonZero = 0; |
5166 | OS << "Histogram for" << (IsGnu ? " `.gnu.hash'" : "" ) |
5167 | << " bucket list length (total of " << NBucket << " buckets)\n" |
5168 | << " Length Number % of total Coverage\n" ; |
5169 | for (size_t I = 0; I < MaxChain; ++I) { |
5170 | CumulativeNonZero += Count[I] * I; |
5171 | OS << format(Fmt: "%7lu %-10lu (%5.1f%%) %5.1f%%\n" , Vals: I, Vals: Count[I], |
5172 | Vals: (Count[I] * 100.0) / NBucket, |
5173 | Vals: (CumulativeNonZero * 100.0) / TotalSyms); |
5174 | } |
5175 | } |
5176 | |
5177 | template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() { |
5178 | OS << "GNUStyle::printCGProfile not implemented\n" ; |
5179 | } |
5180 | |
5181 | template <class ELFT> |
5182 | void GNUELFDumper<ELFT>::printBBAddrMaps(bool /*PrettyPGOAnalysis*/) { |
5183 | OS << "GNUStyle::printBBAddrMaps not implemented\n" ; |
5184 | } |
5185 | |
5186 | static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) { |
5187 | std::vector<uint64_t> Ret; |
5188 | const uint8_t *Cur = Data.begin(); |
5189 | const uint8_t *End = Data.end(); |
5190 | while (Cur != End) { |
5191 | unsigned Size; |
5192 | const char *Err = nullptr; |
5193 | Ret.push_back(x: decodeULEB128(p: Cur, n: &Size, end: End, error: &Err)); |
5194 | if (Err) |
5195 | return createError(Err); |
5196 | Cur += Size; |
5197 | } |
5198 | return Ret; |
5199 | } |
5200 | |
5201 | template <class ELFT> |
5202 | static Expected<std::vector<uint64_t>> |
5203 | decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) { |
5204 | Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec); |
5205 | if (!ContentsOrErr) |
5206 | return ContentsOrErr.takeError(); |
5207 | |
5208 | if (Expected<std::vector<uint64_t>> SymsOrErr = |
5209 | toULEB128Array(Data: *ContentsOrErr)) |
5210 | return *SymsOrErr; |
5211 | else |
5212 | return createError("unable to decode " + describe(Obj, Sec) + ": " + |
5213 | toString(E: SymsOrErr.takeError())); |
5214 | } |
5215 | |
5216 | template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() { |
5217 | if (!this->DotAddrsigSec) |
5218 | return; |
5219 | |
5220 | Expected<std::vector<uint64_t>> SymsOrErr = |
5221 | decodeAddrsigSection(this->Obj, *this->DotAddrsigSec); |
5222 | if (!SymsOrErr) { |
5223 | this->reportUniqueWarning(SymsOrErr.takeError()); |
5224 | return; |
5225 | } |
5226 | |
5227 | StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec); |
5228 | OS << "\nAddress-significant symbols section '" << Name << "'" |
5229 | << " contains " << SymsOrErr->size() << " entries:\n" ; |
5230 | OS << " Num: Name\n" ; |
5231 | |
5232 | Field Fields[2] = {0, 8}; |
5233 | size_t SymIndex = 0; |
5234 | for (uint64_t Sym : *SymsOrErr) { |
5235 | Fields[0].Str = to_string(Value: format_decimal(N: ++SymIndex, Width: 6)) + ":" ; |
5236 | Fields[1].Str = this->getStaticSymbolName(Sym); |
5237 | for (const Field &Entry : Fields) |
5238 | printField(F: Entry); |
5239 | OS << "\n" ; |
5240 | } |
5241 | } |
5242 | |
5243 | template <class ELFT> |
5244 | static bool printAArch64PAuthABICoreInfo(raw_ostream &OS, uint32_t DataSize, |
5245 | ArrayRef<uint8_t> Desc) { |
5246 | OS << " AArch64 PAuth ABI core info: " ; |
5247 | // DataSize - size without padding, Desc.size() - size with padding |
5248 | if (DataSize != 16) { |
5249 | OS << format(Fmt: "<corrupted size: expected 16, got %d>" , Vals: DataSize); |
5250 | return false; |
5251 | } |
5252 | |
5253 | uint64_t Platform = |
5254 | support::endian::read64<ELFT::Endianness>(Desc.data() + 0); |
5255 | uint64_t Version = support::endian::read64<ELFT::Endianness>(Desc.data() + 8); |
5256 | |
5257 | const char *PlatformDesc = [Platform]() { |
5258 | switch (Platform) { |
5259 | case AARCH64_PAUTH_PLATFORM_INVALID: |
5260 | return "invalid" ; |
5261 | case AARCH64_PAUTH_PLATFORM_BAREMETAL: |
5262 | return "baremetal" ; |
5263 | case AARCH64_PAUTH_PLATFORM_LLVM_LINUX: |
5264 | return "llvm_linux" ; |
5265 | default: |
5266 | return "unknown" ; |
5267 | } |
5268 | }(); |
5269 | |
5270 | std::string VersionDesc = [Platform, Version]() -> std::string { |
5271 | if (Platform != AARCH64_PAUTH_PLATFORM_LLVM_LINUX) |
5272 | return "" ; |
5273 | if (Version >= (1 << (AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST + 1))) |
5274 | return "unknown" ; |
5275 | |
5276 | std::array<StringRef, AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST + 1> |
5277 | Flags; |
5278 | Flags[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS] = "Intrinsics" ; |
5279 | Flags[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS] = "Calls" ; |
5280 | Flags[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS] = "Returns" ; |
5281 | Flags[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS] = "AuthTraps" ; |
5282 | Flags[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR] = |
5283 | "VTPtrAddressDiscrimination" ; |
5284 | Flags[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR] = |
5285 | "VTPtrTypeDiscrimination" ; |
5286 | Flags[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI] = "InitFini" ; |
5287 | |
5288 | static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI == |
5289 | AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST, |
5290 | "Update when new enum items are defined" ); |
5291 | |
5292 | std::string Desc; |
5293 | for (uint32_t I = 0, End = Flags.size(); I < End; ++I) { |
5294 | if (!(Version & (1ULL << I))) |
5295 | Desc += '!'; |
5296 | Desc += |
5297 | Twine("PointerAuth" + Flags[I] + (I == End - 1 ? "" : ", " )).str(); |
5298 | } |
5299 | return Desc; |
5300 | }(); |
5301 | |
5302 | OS << format(Fmt: "platform 0x%" PRIx64 " (%s), version 0x%" PRIx64, Vals: Platform, |
5303 | Vals: PlatformDesc, Vals: Version); |
5304 | if (!VersionDesc.empty()) |
5305 | OS << format(Fmt: " (%s)" , Vals: VersionDesc.c_str()); |
5306 | |
5307 | return true; |
5308 | } |
5309 | |
5310 | template <typename ELFT> |
5311 | static std::string getGNUProperty(uint32_t Type, uint32_t DataSize, |
5312 | ArrayRef<uint8_t> Data) { |
5313 | std::string str; |
5314 | raw_string_ostream OS(str); |
5315 | uint32_t PrData; |
5316 | auto DumpBit = [&](uint32_t Flag, StringRef Name) { |
5317 | if (PrData & Flag) { |
5318 | PrData &= ~Flag; |
5319 | OS << Name; |
5320 | if (PrData) |
5321 | OS << ", " ; |
5322 | } |
5323 | }; |
5324 | |
5325 | switch (Type) { |
5326 | default: |
5327 | OS << format(Fmt: "<application-specific type 0x%x>" , Vals: Type); |
5328 | return OS.str(); |
5329 | case GNU_PROPERTY_STACK_SIZE: { |
5330 | OS << "stack size: " ; |
5331 | if (DataSize == sizeof(typename ELFT::uint)) |
5332 | OS << formatv(Fmt: "{0:x}" , |
5333 | Vals: (uint64_t)(*(const typename ELFT::Addr *)Data.data())); |
5334 | else |
5335 | OS << format(Fmt: "<corrupt length: 0x%x>" , Vals: DataSize); |
5336 | return OS.str(); |
5337 | } |
5338 | case GNU_PROPERTY_NO_COPY_ON_PROTECTED: |
5339 | OS << "no copy on protected" ; |
5340 | if (DataSize) |
5341 | OS << format(Fmt: " <corrupt length: 0x%x>" , Vals: DataSize); |
5342 | return OS.str(); |
5343 | case GNU_PROPERTY_AARCH64_FEATURE_1_AND: |
5344 | case GNU_PROPERTY_X86_FEATURE_1_AND: |
5345 | OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: " |
5346 | : "x86 feature: " ); |
5347 | if (DataSize != 4) { |
5348 | OS << format(Fmt: "<corrupt length: 0x%x>" , Vals: DataSize); |
5349 | return OS.str(); |
5350 | } |
5351 | PrData = endian::read32<ELFT::Endianness>(Data.data()); |
5352 | if (PrData == 0) { |
5353 | OS << "<None>" ; |
5354 | return OS.str(); |
5355 | } |
5356 | if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { |
5357 | DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI" ); |
5358 | DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC" ); |
5359 | DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_GCS, "GCS" ); |
5360 | } else { |
5361 | DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT" ); |
5362 | DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK" ); |
5363 | } |
5364 | if (PrData) |
5365 | OS << format(Fmt: "<unknown flags: 0x%x>" , Vals: PrData); |
5366 | return OS.str(); |
5367 | case GNU_PROPERTY_AARCH64_FEATURE_PAUTH: |
5368 | printAArch64PAuthABICoreInfo<ELFT>(OS, DataSize, Data); |
5369 | return OS.str(); |
5370 | case GNU_PROPERTY_X86_FEATURE_2_NEEDED: |
5371 | case GNU_PROPERTY_X86_FEATURE_2_USED: |
5372 | OS << "x86 feature " |
5373 | << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: " ); |
5374 | if (DataSize != 4) { |
5375 | OS << format(Fmt: "<corrupt length: 0x%x>" , Vals: DataSize); |
5376 | return OS.str(); |
5377 | } |
5378 | PrData = endian::read32<ELFT::Endianness>(Data.data()); |
5379 | if (PrData == 0) { |
5380 | OS << "<None>" ; |
5381 | return OS.str(); |
5382 | } |
5383 | DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86" ); |
5384 | DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87" ); |
5385 | DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX" ); |
5386 | DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM" ); |
5387 | DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM" ); |
5388 | DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM" ); |
5389 | DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR" ); |
5390 | DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE" ); |
5391 | DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT" ); |
5392 | DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC" ); |
5393 | if (PrData) |
5394 | OS << format(Fmt: "<unknown flags: 0x%x>" , Vals: PrData); |
5395 | return OS.str(); |
5396 | case GNU_PROPERTY_X86_ISA_1_NEEDED: |
5397 | case GNU_PROPERTY_X86_ISA_1_USED: |
5398 | OS << "x86 ISA " |
5399 | << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: " ); |
5400 | if (DataSize != 4) { |
5401 | OS << format(Fmt: "<corrupt length: 0x%x>" , Vals: DataSize); |
5402 | return OS.str(); |
5403 | } |
5404 | PrData = endian::read32<ELFT::Endianness>(Data.data()); |
5405 | if (PrData == 0) { |
5406 | OS << "<None>" ; |
5407 | return OS.str(); |
5408 | } |
5409 | DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline" ); |
5410 | DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2" ); |
5411 | DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3" ); |
5412 | DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4" ); |
5413 | if (PrData) |
5414 | OS << format(Fmt: "<unknown flags: 0x%x>" , Vals: PrData); |
5415 | return OS.str(); |
5416 | } |
5417 | } |
5418 | |
5419 | template <typename ELFT> |
5420 | static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) { |
5421 | using Elf_Word = typename ELFT::Word; |
5422 | |
5423 | SmallVector<std::string, 4> Properties; |
5424 | while (Arr.size() >= 8) { |
5425 | uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data()); |
5426 | uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4); |
5427 | Arr = Arr.drop_front(N: 8); |
5428 | |
5429 | // Take padding size into account if present. |
5430 | uint64_t PaddedSize = alignTo(Value: DataSize, Align: sizeof(typename ELFT::uint)); |
5431 | std::string str; |
5432 | raw_string_ostream OS(str); |
5433 | if (Arr.size() < PaddedSize) { |
5434 | OS << format(Fmt: "<corrupt type (0x%x) datasz: 0x%x>" , Vals: Type, Vals: DataSize); |
5435 | Properties.push_back(Elt: OS.str()); |
5436 | break; |
5437 | } |
5438 | Properties.push_back( |
5439 | getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(N: PaddedSize))); |
5440 | Arr = Arr.drop_front(N: PaddedSize); |
5441 | } |
5442 | |
5443 | if (!Arr.empty()) |
5444 | Properties.push_back(Elt: "<corrupted GNU_PROPERTY_TYPE_0>" ); |
5445 | |
5446 | return Properties; |
5447 | } |
5448 | |
5449 | struct GNUAbiTag { |
5450 | std::string OSName; |
5451 | std::string ABI; |
5452 | bool IsValid; |
5453 | }; |
5454 | |
5455 | template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) { |
5456 | typedef typename ELFT::Word Elf_Word; |
5457 | |
5458 | ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()), |
5459 | reinterpret_cast<const Elf_Word *>(Desc.end())); |
5460 | |
5461 | if (Words.size() < 4) |
5462 | return {.OSName: "" , .ABI: "" , /*IsValid=*/false}; |
5463 | |
5464 | static const char *OSNames[] = { |
5465 | "Linux" , "Hurd" , "Solaris" , "FreeBSD" , "NetBSD" , "Syllable" , "NaCl" , |
5466 | }; |
5467 | StringRef OSName = "Unknown" ; |
5468 | if (Words[0] < std::size(OSNames)) |
5469 | OSName = OSNames[Words[0]]; |
5470 | uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3]; |
5471 | std::string str; |
5472 | raw_string_ostream ABI(str); |
5473 | ABI << Major << "." << Minor << "." << Patch; |
5474 | return {.OSName: std::string(OSName), .ABI: ABI.str(), /*IsValid=*/true}; |
5475 | } |
5476 | |
5477 | static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) { |
5478 | std::string str; |
5479 | raw_string_ostream OS(str); |
5480 | for (uint8_t B : Desc) |
5481 | OS << format_hex_no_prefix(N: B, Width: 2); |
5482 | return OS.str(); |
5483 | } |
5484 | |
5485 | static StringRef getDescAsStringRef(ArrayRef<uint8_t> Desc) { |
5486 | return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size()); |
5487 | } |
5488 | |
5489 | template <typename ELFT> |
5490 | static bool printGNUNote(raw_ostream &OS, uint32_t NoteType, |
5491 | ArrayRef<uint8_t> Desc) { |
5492 | // Return true if we were able to pretty-print the note, false otherwise. |
5493 | switch (NoteType) { |
5494 | default: |
5495 | return false; |
5496 | case ELF::NT_GNU_ABI_TAG: { |
5497 | const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc); |
5498 | if (!AbiTag.IsValid) |
5499 | OS << " <corrupt GNU_ABI_TAG>" ; |
5500 | else |
5501 | OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI; |
5502 | break; |
5503 | } |
5504 | case ELF::NT_GNU_BUILD_ID: { |
5505 | OS << " Build ID: " << getGNUBuildId(Desc); |
5506 | break; |
5507 | } |
5508 | case ELF::NT_GNU_GOLD_VERSION: |
5509 | OS << " Version: " << getDescAsStringRef(Desc); |
5510 | break; |
5511 | case ELF::NT_GNU_PROPERTY_TYPE_0: |
5512 | OS << " Properties:" ; |
5513 | for (const std::string &Property : getGNUPropertyList<ELFT>(Desc)) |
5514 | OS << " " << Property << "\n" ; |
5515 | break; |
5516 | } |
5517 | OS << '\n'; |
5518 | return true; |
5519 | } |
5520 | |
5521 | using AndroidNoteProperties = std::vector<std::pair<StringRef, std::string>>; |
5522 | static AndroidNoteProperties getAndroidNoteProperties(uint32_t NoteType, |
5523 | ArrayRef<uint8_t> Desc) { |
5524 | AndroidNoteProperties Props; |
5525 | switch (NoteType) { |
5526 | case ELF::NT_ANDROID_TYPE_MEMTAG: |
5527 | if (Desc.empty()) { |
5528 | Props.emplace_back(args: "Invalid .note.android.memtag" , args: "" ); |
5529 | return Props; |
5530 | } |
5531 | |
5532 | switch (Desc[0] & NT_MEMTAG_LEVEL_MASK) { |
5533 | case NT_MEMTAG_LEVEL_NONE: |
5534 | Props.emplace_back(args: "Tagging Mode" , args: "NONE" ); |
5535 | break; |
5536 | case NT_MEMTAG_LEVEL_ASYNC: |
5537 | Props.emplace_back(args: "Tagging Mode" , args: "ASYNC" ); |
5538 | break; |
5539 | case NT_MEMTAG_LEVEL_SYNC: |
5540 | Props.emplace_back(args: "Tagging Mode" , args: "SYNC" ); |
5541 | break; |
5542 | default: |
5543 | Props.emplace_back( |
5544 | args: "Tagging Mode" , |
5545 | args: ("Unknown (" + Twine::utohexstr(Val: Desc[0] & NT_MEMTAG_LEVEL_MASK) + ")" ) |
5546 | .str()); |
5547 | break; |
5548 | } |
5549 | Props.emplace_back(args: "Heap" , |
5550 | args: (Desc[0] & NT_MEMTAG_HEAP) ? "Enabled" : "Disabled" ); |
5551 | Props.emplace_back(args: "Stack" , |
5552 | args: (Desc[0] & NT_MEMTAG_STACK) ? "Enabled" : "Disabled" ); |
5553 | break; |
5554 | default: |
5555 | return Props; |
5556 | } |
5557 | return Props; |
5558 | } |
5559 | |
5560 | static bool printAndroidNote(raw_ostream &OS, uint32_t NoteType, |
5561 | ArrayRef<uint8_t> Desc) { |
5562 | // Return true if we were able to pretty-print the note, false otherwise. |
5563 | AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc); |
5564 | if (Props.empty()) |
5565 | return false; |
5566 | for (const auto &KV : Props) |
5567 | OS << " " << KV.first << ": " << KV.second << '\n'; |
5568 | return true; |
5569 | } |
5570 | |
5571 | template <class ELFT> |
5572 | void GNUELFDumper<ELFT>::printMemtag( |
5573 | const ArrayRef<std::pair<std::string, std::string>> DynamicEntries, |
5574 | const ArrayRef<uint8_t> AndroidNoteDesc, |
5575 | const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) { |
5576 | OS << "Memtag Dynamic Entries:\n" ; |
5577 | if (DynamicEntries.empty()) |
5578 | OS << " < none found >\n" ; |
5579 | for (const auto &DynamicEntryKV : DynamicEntries) |
5580 | OS << " " << DynamicEntryKV.first << ": " << DynamicEntryKV.second |
5581 | << "\n" ; |
5582 | |
5583 | if (!AndroidNoteDesc.empty()) { |
5584 | OS << "Memtag Android Note:\n" ; |
5585 | printAndroidNote(OS, NoteType: ELF::NT_ANDROID_TYPE_MEMTAG, Desc: AndroidNoteDesc); |
5586 | } |
5587 | |
5588 | if (Descriptors.empty()) |
5589 | return; |
5590 | |
5591 | OS << "Memtag Global Descriptors:\n" ; |
5592 | for (const auto &[Addr, BytesToTag] : Descriptors) { |
5593 | OS << " 0x" << utohexstr(X: Addr, /*LowerCase=*/true) << ": 0x" |
5594 | << utohexstr(X: BytesToTag, /*LowerCase=*/true) << "\n" ; |
5595 | } |
5596 | } |
5597 | |
5598 | template <typename ELFT> |
5599 | static bool printLLVMOMPOFFLOADNote(raw_ostream &OS, uint32_t NoteType, |
5600 | ArrayRef<uint8_t> Desc) { |
5601 | switch (NoteType) { |
5602 | default: |
5603 | return false; |
5604 | case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION: |
5605 | OS << " Version: " << getDescAsStringRef(Desc); |
5606 | break; |
5607 | case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER: |
5608 | OS << " Producer: " << getDescAsStringRef(Desc); |
5609 | break; |
5610 | case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION: |
5611 | OS << " Producer version: " << getDescAsStringRef(Desc); |
5612 | break; |
5613 | } |
5614 | OS << '\n'; |
5615 | return true; |
5616 | } |
5617 | |
5618 | const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = { |
5619 | {"ASLR_DISABLE" , NT_FREEBSD_FCTL_ASLR_DISABLE}, |
5620 | {"PROTMAX_DISABLE" , NT_FREEBSD_FCTL_PROTMAX_DISABLE}, |
5621 | {"STKGAP_DISABLE" , NT_FREEBSD_FCTL_STKGAP_DISABLE}, |
5622 | {"WXNEEDED" , NT_FREEBSD_FCTL_WXNEEDED}, |
5623 | {"LA48" , NT_FREEBSD_FCTL_LA48}, |
5624 | {"ASG_DISABLE" , NT_FREEBSD_FCTL_ASG_DISABLE}, |
5625 | }; |
5626 | |
5627 | struct FreeBSDNote { |
5628 | std::string Type; |
5629 | std::string Value; |
5630 | }; |
5631 | |
5632 | template <typename ELFT> |
5633 | static std::optional<FreeBSDNote> |
5634 | getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) { |
5635 | if (IsCore) |
5636 | return std::nullopt; // No pretty-printing yet. |
5637 | switch (NoteType) { |
5638 | case ELF::NT_FREEBSD_ABI_TAG: |
5639 | if (Desc.size() != 4) |
5640 | return std::nullopt; |
5641 | return FreeBSDNote{"ABI tag" , |
5642 | utostr(endian::read32<ELFT::Endianness>(Desc.data()))}; |
5643 | case ELF::NT_FREEBSD_ARCH_TAG: |
5644 | return FreeBSDNote{.Type: "Arch tag" , .Value: toStringRef(Input: Desc).str()}; |
5645 | case ELF::NT_FREEBSD_FEATURE_CTL: { |
5646 | if (Desc.size() != 4) |
5647 | return std::nullopt; |
5648 | unsigned Value = endian::read32<ELFT::Endianness>(Desc.data()); |
5649 | std::string FlagsStr; |
5650 | raw_string_ostream OS(FlagsStr); |
5651 | printFlags(Value, Flags: ArrayRef(FreeBSDFeatureCtlFlags), OS); |
5652 | if (OS.str().empty()) |
5653 | OS << "0x" << utohexstr(X: Value); |
5654 | else |
5655 | OS << "(0x" << utohexstr(X: Value) << ")" ; |
5656 | return FreeBSDNote{.Type: "Feature flags" , .Value: OS.str()}; |
5657 | } |
5658 | default: |
5659 | return std::nullopt; |
5660 | } |
5661 | } |
5662 | |
5663 | struct AMDNote { |
5664 | std::string Type; |
5665 | std::string Value; |
5666 | }; |
5667 | |
5668 | template <typename ELFT> |
5669 | static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) { |
5670 | switch (NoteType) { |
5671 | default: |
5672 | return {.Type: "" , .Value: "" }; |
5673 | case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: { |
5674 | struct CodeObjectVersion { |
5675 | support::aligned_ulittle32_t MajorVersion; |
5676 | support::aligned_ulittle32_t MinorVersion; |
5677 | }; |
5678 | if (Desc.size() != sizeof(CodeObjectVersion)) |
5679 | return {.Type: "AMD HSA Code Object Version" , |
5680 | .Value: "Invalid AMD HSA Code Object Version" }; |
5681 | std::string VersionString; |
5682 | raw_string_ostream StrOS(VersionString); |
5683 | auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data()); |
5684 | StrOS << "[Major: " << Version->MajorVersion |
5685 | << ", Minor: " << Version->MinorVersion << "]" ; |
5686 | return {.Type: "AMD HSA Code Object Version" , .Value: VersionString}; |
5687 | } |
5688 | case ELF::NT_AMD_HSA_HSAIL: { |
5689 | struct HSAILProperties { |
5690 | support::aligned_ulittle32_t HSAILMajorVersion; |
5691 | support::aligned_ulittle32_t HSAILMinorVersion; |
5692 | uint8_t Profile; |
5693 | uint8_t MachineModel; |
5694 | uint8_t DefaultFloatRound; |
5695 | }; |
5696 | if (Desc.size() != sizeof(HSAILProperties)) |
5697 | return {.Type: "AMD HSA HSAIL Properties" , .Value: "Invalid AMD HSA HSAIL Properties" }; |
5698 | auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data()); |
5699 | std::string HSAILPropetiesString; |
5700 | raw_string_ostream StrOS(HSAILPropetiesString); |
5701 | StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion |
5702 | << ", HSAIL Minor: " << Properties->HSAILMinorVersion |
5703 | << ", Profile: " << uint32_t(Properties->Profile) |
5704 | << ", Machine Model: " << uint32_t(Properties->MachineModel) |
5705 | << ", Default Float Round: " |
5706 | << uint32_t(Properties->DefaultFloatRound) << "]" ; |
5707 | return {.Type: "AMD HSA HSAIL Properties" , .Value: HSAILPropetiesString}; |
5708 | } |
5709 | case ELF::NT_AMD_HSA_ISA_VERSION: { |
5710 | struct IsaVersion { |
5711 | support::aligned_ulittle16_t VendorNameSize; |
5712 | support::aligned_ulittle16_t ArchitectureNameSize; |
5713 | support::aligned_ulittle32_t Major; |
5714 | support::aligned_ulittle32_t Minor; |
5715 | support::aligned_ulittle32_t Stepping; |
5716 | }; |
5717 | if (Desc.size() < sizeof(IsaVersion)) |
5718 | return {.Type: "AMD HSA ISA Version" , .Value: "Invalid AMD HSA ISA Version" }; |
5719 | auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data()); |
5720 | if (Desc.size() < sizeof(IsaVersion) + |
5721 | Isa->VendorNameSize + Isa->ArchitectureNameSize || |
5722 | Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0) |
5723 | return {.Type: "AMD HSA ISA Version" , .Value: "Invalid AMD HSA ISA Version" }; |
5724 | std::string IsaString; |
5725 | raw_string_ostream StrOS(IsaString); |
5726 | StrOS << "[Vendor: " |
5727 | << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1) |
5728 | << ", Architecture: " |
5729 | << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize, |
5730 | Isa->ArchitectureNameSize - 1) |
5731 | << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor |
5732 | << ", Stepping: " << Isa->Stepping << "]" ; |
5733 | return {.Type: "AMD HSA ISA Version" , .Value: IsaString}; |
5734 | } |
5735 | case ELF::NT_AMD_HSA_METADATA: { |
5736 | if (Desc.size() == 0) |
5737 | return {.Type: "AMD HSA Metadata" , .Value: "" }; |
5738 | return { |
5739 | .Type: "AMD HSA Metadata" , |
5740 | .Value: std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)}; |
5741 | } |
5742 | case ELF::NT_AMD_HSA_ISA_NAME: { |
5743 | if (Desc.size() == 0) |
5744 | return {.Type: "AMD HSA ISA Name" , .Value: "" }; |
5745 | return { |
5746 | .Type: "AMD HSA ISA Name" , |
5747 | .Value: std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())}; |
5748 | } |
5749 | case ELF::NT_AMD_PAL_METADATA: { |
5750 | struct PALMetadata { |
5751 | support::aligned_ulittle32_t Key; |
5752 | support::aligned_ulittle32_t Value; |
5753 | }; |
5754 | if (Desc.size() % sizeof(PALMetadata) != 0) |
5755 | return {.Type: "AMD PAL Metadata" , .Value: "Invalid AMD PAL Metadata" }; |
5756 | auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data()); |
5757 | std::string MetadataString; |
5758 | raw_string_ostream StrOS(MetadataString); |
5759 | for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) { |
5760 | StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]" ; |
5761 | } |
5762 | return {.Type: "AMD PAL Metadata" , .Value: MetadataString}; |
5763 | } |
5764 | } |
5765 | } |
5766 | |
5767 | struct AMDGPUNote { |
5768 | std::string Type; |
5769 | std::string Value; |
5770 | }; |
5771 | |
5772 | template <typename ELFT> |
5773 | static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) { |
5774 | switch (NoteType) { |
5775 | default: |
5776 | return {.Type: "" , .Value: "" }; |
5777 | case ELF::NT_AMDGPU_METADATA: { |
5778 | StringRef MsgPackString = |
5779 | StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size()); |
5780 | msgpack::Document MsgPackDoc; |
5781 | if (!MsgPackDoc.readFromBlob(Blob: MsgPackString, /*Multi=*/false)) |
5782 | return {.Type: "" , .Value: "" }; |
5783 | |
5784 | std::string MetadataString; |
5785 | |
5786 | // FIXME: Metadata Verifier only works with AMDHSA. |
5787 | // This is an ugly workaround to avoid the verifier for other MD |
5788 | // formats (e.g. amdpal) |
5789 | if (MsgPackString.contains(Other: "amdhsa." )) { |
5790 | AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true); |
5791 | if (!Verifier.verify(HSAMetadataRoot&: MsgPackDoc.getRoot())) |
5792 | MetadataString = "Invalid AMDGPU Metadata\n" ; |
5793 | } |
5794 | |
5795 | raw_string_ostream StrOS(MetadataString); |
5796 | if (MsgPackDoc.getRoot().isScalar()) { |
5797 | // TODO: passing a scalar root to toYAML() asserts: |
5798 | // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar && |
5799 | // "plain scalar documents are not supported") |
5800 | // To avoid this crash we print the raw data instead. |
5801 | return {.Type: "" , .Value: "" }; |
5802 | } |
5803 | MsgPackDoc.toYAML(OS&: StrOS); |
5804 | return {.Type: "AMDGPU Metadata" , .Value: StrOS.str()}; |
5805 | } |
5806 | } |
5807 | } |
5808 | |
5809 | struct CoreFileMapping { |
5810 | uint64_t Start, End, Offset; |
5811 | StringRef Filename; |
5812 | }; |
5813 | |
5814 | struct CoreNote { |
5815 | uint64_t PageSize; |
5816 | std::vector<CoreFileMapping> Mappings; |
5817 | }; |
5818 | |
5819 | static Expected<CoreNote> (DataExtractor Desc) { |
5820 | // Expected format of the NT_FILE note description: |
5821 | // 1. # of file mappings (call it N) |
5822 | // 2. Page size |
5823 | // 3. N (start, end, offset) triples |
5824 | // 4. N packed filenames (null delimited) |
5825 | // Each field is an Elf_Addr, except for filenames which are char* strings. |
5826 | |
5827 | CoreNote Ret; |
5828 | const int Bytes = Desc.getAddressSize(); |
5829 | |
5830 | if (!Desc.isValidOffsetForAddress(offset: 2)) |
5831 | return createError(Err: "the note of size 0x" + Twine::utohexstr(Val: Desc.size()) + |
5832 | " is too short, expected at least 0x" + |
5833 | Twine::utohexstr(Val: Bytes * 2)); |
5834 | if (Desc.getData().back() != 0) |
5835 | return createError(Err: "the note is not NUL terminated" ); |
5836 | |
5837 | uint64_t DescOffset = 0; |
5838 | uint64_t FileCount = Desc.getAddress(offset_ptr: &DescOffset); |
5839 | Ret.PageSize = Desc.getAddress(offset_ptr: &DescOffset); |
5840 | |
5841 | if (!Desc.isValidOffsetForAddress(offset: 3 * FileCount * Bytes)) |
5842 | return createError(Err: "unable to read file mappings (found " + |
5843 | Twine(FileCount) + "): the note of size 0x" + |
5844 | Twine::utohexstr(Val: Desc.size()) + " is too short" ); |
5845 | |
5846 | uint64_t FilenamesOffset = 0; |
5847 | DataExtractor Filenames( |
5848 | Desc.getData().drop_front(N: DescOffset + 3 * FileCount * Bytes), |
5849 | Desc.isLittleEndian(), Desc.getAddressSize()); |
5850 | |
5851 | Ret.Mappings.resize(new_size: FileCount); |
5852 | size_t I = 0; |
5853 | for (CoreFileMapping &Mapping : Ret.Mappings) { |
5854 | ++I; |
5855 | if (!Filenames.isValidOffsetForDataOfSize(offset: FilenamesOffset, length: 1)) |
5856 | return createError( |
5857 | Err: "unable to read the file name for the mapping with index " + |
5858 | Twine(I) + ": the note of size 0x" + Twine::utohexstr(Val: Desc.size()) + |
5859 | " is truncated" ); |
5860 | Mapping.Start = Desc.getAddress(offset_ptr: &DescOffset); |
5861 | Mapping.End = Desc.getAddress(offset_ptr: &DescOffset); |
5862 | Mapping.Offset = Desc.getAddress(offset_ptr: &DescOffset); |
5863 | Mapping.Filename = Filenames.getCStrRef(OffsetPtr: &FilenamesOffset); |
5864 | } |
5865 | |
5866 | return Ret; |
5867 | } |
5868 | |
5869 | template <typename ELFT> |
5870 | static void printCoreNote(raw_ostream &OS, const CoreNote &Note) { |
5871 | // Length of "0x<address>" string. |
5872 | const int FieldWidth = ELFT::Is64Bits ? 18 : 10; |
5873 | |
5874 | OS << " Page size: " << format_decimal(N: Note.PageSize, Width: 0) << '\n'; |
5875 | OS << " " << right_justify(Str: "Start" , Width: FieldWidth) << " " |
5876 | << right_justify(Str: "End" , Width: FieldWidth) << " " |
5877 | << right_justify(Str: "Page Offset" , Width: FieldWidth) << '\n'; |
5878 | for (const CoreFileMapping &Mapping : Note.Mappings) { |
5879 | OS << " " << format_hex(N: Mapping.Start, Width: FieldWidth) << " " |
5880 | << format_hex(N: Mapping.End, Width: FieldWidth) << " " |
5881 | << format_hex(N: Mapping.Offset, Width: FieldWidth) << "\n " |
5882 | << Mapping.Filename << '\n'; |
5883 | } |
5884 | } |
5885 | |
5886 | const NoteType GenericNoteTypes[] = { |
5887 | {.ID: ELF::NT_VERSION, .Name: "NT_VERSION (version)" }, |
5888 | {.ID: ELF::NT_ARCH, .Name: "NT_ARCH (architecture)" }, |
5889 | {.ID: ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, .Name: "OPEN" }, |
5890 | {.ID: ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, .Name: "func" }, |
5891 | }; |
5892 | |
5893 | const NoteType GNUNoteTypes[] = { |
5894 | {.ID: ELF::NT_GNU_ABI_TAG, .Name: "NT_GNU_ABI_TAG (ABI version tag)" }, |
5895 | {.ID: ELF::NT_GNU_HWCAP, .Name: "NT_GNU_HWCAP (DSO-supplied software HWCAP info)" }, |
5896 | {.ID: ELF::NT_GNU_BUILD_ID, .Name: "NT_GNU_BUILD_ID (unique build ID bitstring)" }, |
5897 | {.ID: ELF::NT_GNU_GOLD_VERSION, .Name: "NT_GNU_GOLD_VERSION (gold version)" }, |
5898 | {.ID: ELF::NT_GNU_PROPERTY_TYPE_0, .Name: "NT_GNU_PROPERTY_TYPE_0 (property note)" }, |
5899 | }; |
5900 | |
5901 | const NoteType FreeBSDCoreNoteTypes[] = { |
5902 | {.ID: ELF::NT_FREEBSD_THRMISC, .Name: "NT_THRMISC (thrmisc structure)" }, |
5903 | {.ID: ELF::NT_FREEBSD_PROCSTAT_PROC, .Name: "NT_PROCSTAT_PROC (proc data)" }, |
5904 | {.ID: ELF::NT_FREEBSD_PROCSTAT_FILES, .Name: "NT_PROCSTAT_FILES (files data)" }, |
5905 | {.ID: ELF::NT_FREEBSD_PROCSTAT_VMMAP, .Name: "NT_PROCSTAT_VMMAP (vmmap data)" }, |
5906 | {.ID: ELF::NT_FREEBSD_PROCSTAT_GROUPS, .Name: "NT_PROCSTAT_GROUPS (groups data)" }, |
5907 | {.ID: ELF::NT_FREEBSD_PROCSTAT_UMASK, .Name: "NT_PROCSTAT_UMASK (umask data)" }, |
5908 | {.ID: ELF::NT_FREEBSD_PROCSTAT_RLIMIT, .Name: "NT_PROCSTAT_RLIMIT (rlimit data)" }, |
5909 | {.ID: ELF::NT_FREEBSD_PROCSTAT_OSREL, .Name: "NT_PROCSTAT_OSREL (osreldate data)" }, |
5910 | {.ID: ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS, |
5911 | .Name: "NT_PROCSTAT_PSSTRINGS (ps_strings data)" }, |
5912 | {.ID: ELF::NT_FREEBSD_PROCSTAT_AUXV, .Name: "NT_PROCSTAT_AUXV (auxv data)" }, |
5913 | }; |
5914 | |
5915 | const NoteType FreeBSDNoteTypes[] = { |
5916 | {.ID: ELF::NT_FREEBSD_ABI_TAG, .Name: "NT_FREEBSD_ABI_TAG (ABI version tag)" }, |
5917 | {.ID: ELF::NT_FREEBSD_NOINIT_TAG, .Name: "NT_FREEBSD_NOINIT_TAG (no .init tag)" }, |
5918 | {.ID: ELF::NT_FREEBSD_ARCH_TAG, .Name: "NT_FREEBSD_ARCH_TAG (architecture tag)" }, |
5919 | {.ID: ELF::NT_FREEBSD_FEATURE_CTL, |
5920 | .Name: "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)" }, |
5921 | }; |
5922 | |
5923 | const NoteType NetBSDCoreNoteTypes[] = { |
5924 | {.ID: ELF::NT_NETBSDCORE_PROCINFO, |
5925 | .Name: "NT_NETBSDCORE_PROCINFO (procinfo structure)" }, |
5926 | {.ID: ELF::NT_NETBSDCORE_AUXV, .Name: "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)" }, |
5927 | {.ID: ELF::NT_NETBSDCORE_LWPSTATUS, .Name: "PT_LWPSTATUS (ptrace_lwpstatus structure)" }, |
5928 | }; |
5929 | |
5930 | const NoteType OpenBSDCoreNoteTypes[] = { |
5931 | {.ID: ELF::NT_OPENBSD_PROCINFO, .Name: "NT_OPENBSD_PROCINFO (procinfo structure)" }, |
5932 | {.ID: ELF::NT_OPENBSD_AUXV, .Name: "NT_OPENBSD_AUXV (ELF auxiliary vector data)" }, |
5933 | {.ID: ELF::NT_OPENBSD_REGS, .Name: "NT_OPENBSD_REGS (regular registers)" }, |
5934 | {.ID: ELF::NT_OPENBSD_FPREGS, .Name: "NT_OPENBSD_FPREGS (floating point registers)" }, |
5935 | {.ID: ELF::NT_OPENBSD_WCOOKIE, .Name: "NT_OPENBSD_WCOOKIE (window cookie)" }, |
5936 | }; |
5937 | |
5938 | const NoteType AMDNoteTypes[] = { |
5939 | {.ID: ELF::NT_AMD_HSA_CODE_OBJECT_VERSION, |
5940 | .Name: "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)" }, |
5941 | {.ID: ELF::NT_AMD_HSA_HSAIL, .Name: "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)" }, |
5942 | {.ID: ELF::NT_AMD_HSA_ISA_VERSION, .Name: "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)" }, |
5943 | {.ID: ELF::NT_AMD_HSA_METADATA, .Name: "NT_AMD_HSA_METADATA (AMD HSA Metadata)" }, |
5944 | {.ID: ELF::NT_AMD_HSA_ISA_NAME, .Name: "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)" }, |
5945 | {.ID: ELF::NT_AMD_PAL_METADATA, .Name: "NT_AMD_PAL_METADATA (AMD PAL Metadata)" }, |
5946 | }; |
5947 | |
5948 | const NoteType AMDGPUNoteTypes[] = { |
5949 | {.ID: ELF::NT_AMDGPU_METADATA, .Name: "NT_AMDGPU_METADATA (AMDGPU Metadata)" }, |
5950 | }; |
5951 | |
5952 | const NoteType LLVMOMPOFFLOADNoteTypes[] = { |
5953 | {.ID: ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION, |
5954 | .Name: "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)" }, |
5955 | {.ID: ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER, |
5956 | .Name: "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)" }, |
5957 | {.ID: ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION, |
5958 | .Name: "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)" }, |
5959 | }; |
5960 | |
5961 | const NoteType AndroidNoteTypes[] = { |
5962 | {.ID: ELF::NT_ANDROID_TYPE_IDENT, .Name: "NT_ANDROID_TYPE_IDENT" }, |
5963 | {.ID: ELF::NT_ANDROID_TYPE_KUSER, .Name: "NT_ANDROID_TYPE_KUSER" }, |
5964 | {.ID: ELF::NT_ANDROID_TYPE_MEMTAG, |
5965 | .Name: "NT_ANDROID_TYPE_MEMTAG (Android memory tagging information)" }, |
5966 | }; |
5967 | |
5968 | const NoteType CoreNoteTypes[] = { |
5969 | {.ID: ELF::NT_PRSTATUS, .Name: "NT_PRSTATUS (prstatus structure)" }, |
5970 | {.ID: ELF::NT_FPREGSET, .Name: "NT_FPREGSET (floating point registers)" }, |
5971 | {.ID: ELF::NT_PRPSINFO, .Name: "NT_PRPSINFO (prpsinfo structure)" }, |
5972 | {.ID: ELF::NT_TASKSTRUCT, .Name: "NT_TASKSTRUCT (task structure)" }, |
5973 | {.ID: ELF::NT_AUXV, .Name: "NT_AUXV (auxiliary vector)" }, |
5974 | {.ID: ELF::NT_PSTATUS, .Name: "NT_PSTATUS (pstatus structure)" }, |
5975 | {.ID: ELF::NT_FPREGS, .Name: "NT_FPREGS (floating point registers)" }, |
5976 | {.ID: ELF::NT_PSINFO, .Name: "NT_PSINFO (psinfo structure)" }, |
5977 | {.ID: ELF::NT_LWPSTATUS, .Name: "NT_LWPSTATUS (lwpstatus_t structure)" }, |
5978 | {.ID: ELF::NT_LWPSINFO, .Name: "NT_LWPSINFO (lwpsinfo_t structure)" }, |
5979 | {.ID: ELF::NT_WIN32PSTATUS, .Name: "NT_WIN32PSTATUS (win32_pstatus structure)" }, |
5980 | |
5981 | {.ID: ELF::NT_PPC_VMX, .Name: "NT_PPC_VMX (ppc Altivec registers)" }, |
5982 | {.ID: ELF::NT_PPC_VSX, .Name: "NT_PPC_VSX (ppc VSX registers)" }, |
5983 | {.ID: ELF::NT_PPC_TAR, .Name: "NT_PPC_TAR (ppc TAR register)" }, |
5984 | {.ID: ELF::NT_PPC_PPR, .Name: "NT_PPC_PPR (ppc PPR register)" }, |
5985 | {.ID: ELF::NT_PPC_DSCR, .Name: "NT_PPC_DSCR (ppc DSCR register)" }, |
5986 | {.ID: ELF::NT_PPC_EBB, .Name: "NT_PPC_EBB (ppc EBB registers)" }, |
5987 | {.ID: ELF::NT_PPC_PMU, .Name: "NT_PPC_PMU (ppc PMU registers)" }, |
5988 | {.ID: ELF::NT_PPC_TM_CGPR, .Name: "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)" }, |
5989 | {.ID: ELF::NT_PPC_TM_CFPR, |
5990 | .Name: "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)" }, |
5991 | {.ID: ELF::NT_PPC_TM_CVMX, |
5992 | .Name: "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)" }, |
5993 | {.ID: ELF::NT_PPC_TM_CVSX, .Name: "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)" }, |
5994 | {.ID: ELF::NT_PPC_TM_SPR, .Name: "NT_PPC_TM_SPR (ppc TM special purpose registers)" }, |
5995 | {.ID: ELF::NT_PPC_TM_CTAR, .Name: "NT_PPC_TM_CTAR (ppc checkpointed TAR register)" }, |
5996 | {.ID: ELF::NT_PPC_TM_CPPR, .Name: "NT_PPC_TM_CPPR (ppc checkpointed PPR register)" }, |
5997 | {.ID: ELF::NT_PPC_TM_CDSCR, .Name: "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)" }, |
5998 | |
5999 | {.ID: ELF::NT_386_TLS, .Name: "NT_386_TLS (x86 TLS information)" }, |
6000 | {.ID: ELF::NT_386_IOPERM, .Name: "NT_386_IOPERM (x86 I/O permissions)" }, |
6001 | {.ID: ELF::NT_X86_XSTATE, .Name: "NT_X86_XSTATE (x86 XSAVE extended state)" }, |
6002 | |
6003 | {.ID: ELF::NT_S390_HIGH_GPRS, .Name: "NT_S390_HIGH_GPRS (s390 upper register halves)" }, |
6004 | {.ID: ELF::NT_S390_TIMER, .Name: "NT_S390_TIMER (s390 timer register)" }, |
6005 | {.ID: ELF::NT_S390_TODCMP, .Name: "NT_S390_TODCMP (s390 TOD comparator register)" }, |
6006 | {.ID: ELF::NT_S390_TODPREG, .Name: "NT_S390_TODPREG (s390 TOD programmable register)" }, |
6007 | {.ID: ELF::NT_S390_CTRS, .Name: "NT_S390_CTRS (s390 control registers)" }, |
6008 | {.ID: ELF::NT_S390_PREFIX, .Name: "NT_S390_PREFIX (s390 prefix register)" }, |
6009 | {.ID: ELF::NT_S390_LAST_BREAK, |
6010 | .Name: "NT_S390_LAST_BREAK (s390 last breaking event address)" }, |
6011 | {.ID: ELF::NT_S390_SYSTEM_CALL, |
6012 | .Name: "NT_S390_SYSTEM_CALL (s390 system call restart data)" }, |
6013 | {.ID: ELF::NT_S390_TDB, .Name: "NT_S390_TDB (s390 transaction diagnostic block)" }, |
6014 | {.ID: ELF::NT_S390_VXRS_LOW, |
6015 | .Name: "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)" }, |
6016 | {.ID: ELF::NT_S390_VXRS_HIGH, .Name: "NT_S390_VXRS_HIGH (s390 vector registers 16-31)" }, |
6017 | {.ID: ELF::NT_S390_GS_CB, .Name: "NT_S390_GS_CB (s390 guarded-storage registers)" }, |
6018 | {.ID: ELF::NT_S390_GS_BC, |
6019 | .Name: "NT_S390_GS_BC (s390 guarded-storage broadcast control)" }, |
6020 | |
6021 | {.ID: ELF::NT_ARM_VFP, .Name: "NT_ARM_VFP (arm VFP registers)" }, |
6022 | {.ID: ELF::NT_ARM_TLS, .Name: "NT_ARM_TLS (AArch TLS registers)" }, |
6023 | {.ID: ELF::NT_ARM_HW_BREAK, |
6024 | .Name: "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)" }, |
6025 | {.ID: ELF::NT_ARM_HW_WATCH, |
6026 | .Name: "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)" }, |
6027 | {.ID: ELF::NT_ARM_SVE, .Name: "NT_ARM_SVE (AArch64 SVE registers)" }, |
6028 | {.ID: ELF::NT_ARM_PAC_MASK, |
6029 | .Name: "NT_ARM_PAC_MASK (AArch64 Pointer Authentication code masks)" }, |
6030 | {.ID: ELF::NT_ARM_TAGGED_ADDR_CTRL, |
6031 | .Name: "NT_ARM_TAGGED_ADDR_CTRL (AArch64 Tagged Address Control)" }, |
6032 | {.ID: ELF::NT_ARM_SSVE, .Name: "NT_ARM_SSVE (AArch64 Streaming SVE registers)" }, |
6033 | {.ID: ELF::NT_ARM_ZA, .Name: "NT_ARM_ZA (AArch64 SME ZA registers)" }, |
6034 | {.ID: ELF::NT_ARM_ZT, .Name: "NT_ARM_ZT (AArch64 SME ZT registers)" }, |
6035 | |
6036 | {.ID: ELF::NT_FILE, .Name: "NT_FILE (mapped files)" }, |
6037 | {.ID: ELF::NT_PRXFPREG, .Name: "NT_PRXFPREG (user_xfpregs structure)" }, |
6038 | {.ID: ELF::NT_SIGINFO, .Name: "NT_SIGINFO (siginfo_t data)" }, |
6039 | }; |
6040 | |
6041 | template <class ELFT> |
6042 | StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) { |
6043 | uint32_t Type = Note.getType(); |
6044 | auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef { |
6045 | for (const NoteType &N : V) |
6046 | if (N.ID == Type) |
6047 | return N.Name; |
6048 | return "" ; |
6049 | }; |
6050 | |
6051 | StringRef Name = Note.getName(); |
6052 | if (Name == "GNU" ) |
6053 | return FindNote(GNUNoteTypes); |
6054 | if (Name == "FreeBSD" ) { |
6055 | if (ELFType == ELF::ET_CORE) { |
6056 | // FreeBSD also places the generic core notes in the FreeBSD namespace. |
6057 | StringRef Result = FindNote(FreeBSDCoreNoteTypes); |
6058 | if (!Result.empty()) |
6059 | return Result; |
6060 | return FindNote(CoreNoteTypes); |
6061 | } else { |
6062 | return FindNote(FreeBSDNoteTypes); |
6063 | } |
6064 | } |
6065 | if (ELFType == ELF::ET_CORE && Name.starts_with(Prefix: "NetBSD-CORE" )) { |
6066 | StringRef Result = FindNote(NetBSDCoreNoteTypes); |
6067 | if (!Result.empty()) |
6068 | return Result; |
6069 | return FindNote(CoreNoteTypes); |
6070 | } |
6071 | if (ELFType == ELF::ET_CORE && Name.starts_with(Prefix: "OpenBSD" )) { |
6072 | // OpenBSD also places the generic core notes in the OpenBSD namespace. |
6073 | StringRef Result = FindNote(OpenBSDCoreNoteTypes); |
6074 | if (!Result.empty()) |
6075 | return Result; |
6076 | return FindNote(CoreNoteTypes); |
6077 | } |
6078 | if (Name == "AMD" ) |
6079 | return FindNote(AMDNoteTypes); |
6080 | if (Name == "AMDGPU" ) |
6081 | return FindNote(AMDGPUNoteTypes); |
6082 | if (Name == "LLVMOMPOFFLOAD" ) |
6083 | return FindNote(LLVMOMPOFFLOADNoteTypes); |
6084 | if (Name == "Android" ) |
6085 | return FindNote(AndroidNoteTypes); |
6086 | |
6087 | if (ELFType == ELF::ET_CORE) |
6088 | return FindNote(CoreNoteTypes); |
6089 | return FindNote(GenericNoteTypes); |
6090 | } |
6091 | |
6092 | template <class ELFT> |
6093 | static void processNotesHelper( |
6094 | const ELFDumper<ELFT> &Dumper, |
6095 | llvm::function_ref<void(std::optional<StringRef>, typename ELFT::Off, |
6096 | typename ELFT::Addr, size_t)> |
6097 | StartNotesFn, |
6098 | llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn, |
6099 | llvm::function_ref<void()> FinishNotesFn) { |
6100 | const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile(); |
6101 | bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE; |
6102 | |
6103 | ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections()); |
6104 | if (!IsCoreFile && !Sections.empty()) { |
6105 | for (const typename ELFT::Shdr &S : Sections) { |
6106 | if (S.sh_type != SHT_NOTE) |
6107 | continue; |
6108 | StartNotesFn(expectedToStdOptional(Obj.getSectionName(S)), S.sh_offset, |
6109 | S.sh_size, S.sh_addralign); |
6110 | Error Err = Error::success(); |
6111 | size_t I = 0; |
6112 | for (const typename ELFT::Note Note : Obj.notes(S, Err)) { |
6113 | if (Error E = ProcessNoteFn(Note, IsCoreFile)) |
6114 | Dumper.reportUniqueWarning( |
6115 | "unable to read note with index " + Twine(I) + " from the " + |
6116 | describe(Obj, S) + ": " + toString(E: std::move(E))); |
6117 | ++I; |
6118 | } |
6119 | if (Err) |
6120 | Dumper.reportUniqueWarning("unable to read notes from the " + |
6121 | describe(Obj, S) + ": " + |
6122 | toString(E: std::move(Err))); |
6123 | FinishNotesFn(); |
6124 | } |
6125 | return; |
6126 | } |
6127 | |
6128 | Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers(); |
6129 | if (!PhdrsOrErr) { |
6130 | Dumper.reportUniqueWarning( |
6131 | "unable to read program headers to locate the PT_NOTE segment: " + |
6132 | toString(PhdrsOrErr.takeError())); |
6133 | return; |
6134 | } |
6135 | |
6136 | for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) { |
6137 | const typename ELFT::Phdr &P = (*PhdrsOrErr)[I]; |
6138 | if (P.p_type != PT_NOTE) |
6139 | continue; |
6140 | StartNotesFn(/*SecName=*/std::nullopt, P.p_offset, P.p_filesz, P.p_align); |
6141 | Error Err = Error::success(); |
6142 | size_t Index = 0; |
6143 | for (const typename ELFT::Note Note : Obj.notes(P, Err)) { |
6144 | if (Error E = ProcessNoteFn(Note, IsCoreFile)) |
6145 | Dumper.reportUniqueWarning("unable to read note with index " + |
6146 | Twine(Index) + |
6147 | " from the PT_NOTE segment with index " + |
6148 | Twine(I) + ": " + toString(E: std::move(E))); |
6149 | ++Index; |
6150 | } |
6151 | if (Err) |
6152 | Dumper.reportUniqueWarning( |
6153 | "unable to read notes from the PT_NOTE segment with index " + |
6154 | Twine(I) + ": " + toString(E: std::move(Err))); |
6155 | FinishNotesFn(); |
6156 | } |
6157 | } |
6158 | |
6159 | template <class ELFT> void GNUELFDumper<ELFT>::printNotes() { |
6160 | size_t Align = 0; |
6161 | bool = true; |
6162 | auto = [&](std::optional<StringRef> SecName, |
6163 | const typename ELFT::Off Offset, |
6164 | const typename ELFT::Addr Size, size_t Al) { |
6165 | Align = std::max<size_t>(a: Al, b: 4); |
6166 | // Print a newline between notes sections to match GNU readelf. |
6167 | if (!IsFirstHeader) { |
6168 | OS << '\n'; |
6169 | } else { |
6170 | IsFirstHeader = false; |
6171 | } |
6172 | |
6173 | OS << "Displaying notes found " ; |
6174 | |
6175 | if (SecName) |
6176 | OS << "in: " << *SecName << "\n" ; |
6177 | else |
6178 | OS << "at file offset " << format_hex(Offset, 10) << " with length " |
6179 | << format_hex(Size, 10) << ":\n" ; |
6180 | |
6181 | OS << " Owner Data size \tDescription\n" ; |
6182 | }; |
6183 | |
6184 | auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error { |
6185 | StringRef Name = Note.getName(); |
6186 | ArrayRef<uint8_t> Descriptor = Note.getDesc(Align); |
6187 | Elf_Word Type = Note.getType(); |
6188 | |
6189 | // Print the note owner/type. |
6190 | OS << " " << left_justify(Str: Name, Width: 20) << ' ' |
6191 | << format_hex(N: Descriptor.size(), Width: 10) << '\t'; |
6192 | |
6193 | StringRef NoteType = |
6194 | getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type); |
6195 | if (!NoteType.empty()) |
6196 | OS << NoteType << '\n'; |
6197 | else |
6198 | OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n" ; |
6199 | |
6200 | // Print the description, or fallback to printing raw bytes for unknown |
6201 | // owners/if we fail to pretty-print the contents. |
6202 | if (Name == "GNU" ) { |
6203 | if (printGNUNote<ELFT>(OS, Type, Descriptor)) |
6204 | return Error::success(); |
6205 | } else if (Name == "FreeBSD" ) { |
6206 | if (std::optional<FreeBSDNote> N = |
6207 | getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) { |
6208 | OS << " " << N->Type << ": " << N->Value << '\n'; |
6209 | return Error::success(); |
6210 | } |
6211 | } else if (Name == "AMD" ) { |
6212 | const AMDNote N = getAMDNote<ELFT>(Type, Descriptor); |
6213 | if (!N.Type.empty()) { |
6214 | OS << " " << N.Type << ":\n " << N.Value << '\n'; |
6215 | return Error::success(); |
6216 | } |
6217 | } else if (Name == "AMDGPU" ) { |
6218 | const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor); |
6219 | if (!N.Type.empty()) { |
6220 | OS << " " << N.Type << ":\n " << N.Value << '\n'; |
6221 | return Error::success(); |
6222 | } |
6223 | } else if (Name == "LLVMOMPOFFLOAD" ) { |
6224 | if (printLLVMOMPOFFLOADNote<ELFT>(OS, Type, Descriptor)) |
6225 | return Error::success(); |
6226 | } else if (Name == "CORE" ) { |
6227 | if (Type == ELF::NT_FILE) { |
6228 | DataExtractor ( |
6229 | Descriptor, ELFT::Endianness == llvm::endianness::little, |
6230 | sizeof(Elf_Addr)); |
6231 | if (Expected<CoreNote> NoteOrErr = readCoreNote(Desc: DescExtractor)) { |
6232 | printCoreNote<ELFT>(OS, *NoteOrErr); |
6233 | return Error::success(); |
6234 | } else { |
6235 | return NoteOrErr.takeError(); |
6236 | } |
6237 | } |
6238 | } else if (Name == "Android" ) { |
6239 | if (printAndroidNote(OS, Type, Descriptor)) |
6240 | return Error::success(); |
6241 | } |
6242 | if (!Descriptor.empty()) { |
6243 | OS << " description data:" ; |
6244 | for (uint8_t B : Descriptor) |
6245 | OS << " " << format(Fmt: "%02x" , Vals: B); |
6246 | OS << '\n'; |
6247 | } |
6248 | return Error::success(); |
6249 | }; |
6250 | |
6251 | processNotesHelper(*this, /*StartNotesFn=*/PrintHeader, |
6252 | /*ProcessNoteFn=*/ProcessNote, /*FinishNotesFn=*/[]() {}); |
6253 | } |
6254 | |
6255 | template <class ELFT> |
6256 | ArrayRef<uint8_t> |
6257 | ELFDumper<ELFT>::getMemtagGlobalsSectionContents(uint64_t ExpectedAddr) { |
6258 | for (const typename ELFT::Shdr &Sec : cantFail(Obj.sections())) { |
6259 | if (Sec.sh_type != SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC) |
6260 | continue; |
6261 | if (Sec.sh_addr != ExpectedAddr) { |
6262 | reportUniqueWarning( |
6263 | "SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section was unexpectedly at 0x" + |
6264 | Twine::utohexstr(Val: Sec.sh_addr) + |
6265 | ", when DT_AARCH64_MEMTAG_GLOBALS says it should be at 0x" + |
6266 | Twine::utohexstr(Val: ExpectedAddr)); |
6267 | return ArrayRef<uint8_t>(); |
6268 | } |
6269 | Expected<ArrayRef<uint8_t>> Contents = Obj.getSectionContents(Sec); |
6270 | if (auto E = Contents.takeError()) { |
6271 | reportUniqueWarning( |
6272 | "couldn't get SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section contents: " + |
6273 | toString(E: std::move(E))); |
6274 | return ArrayRef<uint8_t>(); |
6275 | } |
6276 | return Contents.get(); |
6277 | } |
6278 | return ArrayRef<uint8_t>(); |
6279 | } |
6280 | |
6281 | // Reserve the lower three bits of the first byte of the step distance when |
6282 | // encoding the memtag descriptors. Found to be the best overall size tradeoff |
6283 | // when compiling Android T with full MTE globals enabled. |
6284 | constexpr uint64_t MemtagStepVarintReservedBits = 3; |
6285 | constexpr uint64_t MemtagGranuleSize = 16; |
6286 | |
6287 | template <typename ELFT> void ELFDumper<ELFT>::printMemtag() { |
6288 | if (Obj.getHeader().e_machine != EM_AARCH64) return; |
6289 | std::vector<std::pair<std::string, std::string>> DynamicEntries; |
6290 | uint64_t MemtagGlobalsSz = 0; |
6291 | uint64_t MemtagGlobals = 0; |
6292 | for (const typename ELFT::Dyn &Entry : dynamic_table()) { |
6293 | uintX_t Tag = Entry.getTag(); |
6294 | switch (Tag) { |
6295 | case DT_AARCH64_MEMTAG_GLOBALSSZ: |
6296 | MemtagGlobalsSz = Entry.getVal(); |
6297 | DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag), |
6298 | getDynamicEntry(Type: Tag, Value: Entry.getVal())); |
6299 | break; |
6300 | case DT_AARCH64_MEMTAG_GLOBALS: |
6301 | MemtagGlobals = Entry.getVal(); |
6302 | DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag), |
6303 | getDynamicEntry(Type: Tag, Value: Entry.getVal())); |
6304 | break; |
6305 | case DT_AARCH64_MEMTAG_MODE: |
6306 | case DT_AARCH64_MEMTAG_HEAP: |
6307 | case DT_AARCH64_MEMTAG_STACK: |
6308 | DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag), |
6309 | getDynamicEntry(Type: Tag, Value: Entry.getVal())); |
6310 | break; |
6311 | } |
6312 | } |
6313 | |
6314 | ArrayRef<uint8_t> AndroidNoteDesc; |
6315 | auto FindAndroidNote = [&](const Elf_Note &Note, bool IsCore) -> Error { |
6316 | if (Note.getName() == "Android" && |
6317 | Note.getType() == ELF::NT_ANDROID_TYPE_MEMTAG) |
6318 | AndroidNoteDesc = Note.getDesc(4); |
6319 | return Error::success(); |
6320 | }; |
6321 | |
6322 | processNotesHelper( |
6323 | *this, |
6324 | /*StartNotesFn=*/ |
6325 | [](std::optional<StringRef>, const typename ELFT::Off, |
6326 | const typename ELFT::Addr, size_t) {}, |
6327 | /*ProcessNoteFn=*/FindAndroidNote, /*FinishNotesFn=*/[]() {}); |
6328 | |
6329 | ArrayRef<uint8_t> Contents = getMemtagGlobalsSectionContents(ExpectedAddr: MemtagGlobals); |
6330 | if (Contents.size() != MemtagGlobalsSz) { |
6331 | reportUniqueWarning( |
6332 | "mismatch between DT_AARCH64_MEMTAG_GLOBALSSZ (0x" + |
6333 | Twine::utohexstr(Val: MemtagGlobalsSz) + |
6334 | ") and SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section size (0x" + |
6335 | Twine::utohexstr(Val: Contents.size()) + ")" ); |
6336 | Contents = ArrayRef<uint8_t>(); |
6337 | } |
6338 | |
6339 | std::vector<std::pair<uint64_t, uint64_t>> GlobalDescriptors; |
6340 | uint64_t Address = 0; |
6341 | // See the AArch64 MemtagABI document for a description of encoding scheme: |
6342 | // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#83encoding-of-sht_aarch64_memtag_globals_dynamic |
6343 | for (size_t I = 0; I < Contents.size();) { |
6344 | const char *Error = nullptr; |
6345 | unsigned DecodedBytes = 0; |
6346 | uint64_t Value = decodeULEB128(p: Contents.data() + I, n: &DecodedBytes, |
6347 | end: Contents.end(), error: &Error); |
6348 | I += DecodedBytes; |
6349 | if (Error) { |
6350 | reportUniqueWarning( |
6351 | "error decoding distance uleb, " + Twine(DecodedBytes) + |
6352 | " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error)); |
6353 | GlobalDescriptors.clear(); |
6354 | break; |
6355 | } |
6356 | uint64_t Distance = Value >> MemtagStepVarintReservedBits; |
6357 | uint64_t GranulesToTag = Value & ((1 << MemtagStepVarintReservedBits) - 1); |
6358 | if (GranulesToTag == 0) { |
6359 | GranulesToTag = decodeULEB128(p: Contents.data() + I, n: &DecodedBytes, |
6360 | end: Contents.end(), error: &Error) + |
6361 | 1; |
6362 | I += DecodedBytes; |
6363 | if (Error) { |
6364 | reportUniqueWarning( |
6365 | "error decoding size-only uleb, " + Twine(DecodedBytes) + |
6366 | " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error)); |
6367 | GlobalDescriptors.clear(); |
6368 | break; |
6369 | } |
6370 | } |
6371 | Address += Distance * MemtagGranuleSize; |
6372 | GlobalDescriptors.emplace_back(args&: Address, args: GranulesToTag * MemtagGranuleSize); |
6373 | Address += GranulesToTag * MemtagGranuleSize; |
6374 | } |
6375 | |
6376 | printMemtag(DynamicEntries, AndroidNoteDesc, GlobalDescriptors); |
6377 | } |
6378 | |
6379 | template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() { |
6380 | OS << "printELFLinkerOptions not implemented!\n" ; |
6381 | } |
6382 | |
6383 | template <class ELFT> |
6384 | void ELFDumper<ELFT>::printDependentLibsHelper( |
6385 | function_ref<void(const Elf_Shdr &)> OnSectionStart, |
6386 | function_ref<void(StringRef, uint64_t)> OnLibEntry) { |
6387 | auto Warn = [this](unsigned SecNdx, StringRef Msg) { |
6388 | this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " + |
6389 | Twine(SecNdx) + " is broken: " + Msg); |
6390 | }; |
6391 | |
6392 | unsigned I = -1; |
6393 | for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) { |
6394 | ++I; |
6395 | if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES) |
6396 | continue; |
6397 | |
6398 | OnSectionStart(Shdr); |
6399 | |
6400 | Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr); |
6401 | if (!ContentsOrErr) { |
6402 | Warn(I, toString(E: ContentsOrErr.takeError())); |
6403 | continue; |
6404 | } |
6405 | |
6406 | ArrayRef<uint8_t> Contents = *ContentsOrErr; |
6407 | if (!Contents.empty() && Contents.back() != 0) { |
6408 | Warn(I, "the content is not null-terminated" ); |
6409 | continue; |
6410 | } |
6411 | |
6412 | for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) { |
6413 | StringRef Lib((const char *)I); |
6414 | OnLibEntry(Lib, I - Contents.begin()); |
6415 | I += Lib.size() + 1; |
6416 | } |
6417 | } |
6418 | } |
6419 | |
6420 | template <class ELFT> |
6421 | void ELFDumper<ELFT>::forEachRelocationDo( |
6422 | const Elf_Shdr &Sec, |
6423 | llvm::function_ref<void(const Relocation<ELFT> &, unsigned, |
6424 | const Elf_Shdr &, const Elf_Shdr *)> |
6425 | RelRelaFn) { |
6426 | auto Warn = [&](Error &&E, |
6427 | const Twine &Prefix = "unable to read relocations from" ) { |
6428 | this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " + |
6429 | toString(E: std::move(E))); |
6430 | }; |
6431 | |
6432 | // SHT_RELR/SHT_ANDROID_RELR/SHT_AARCH64_AUTH_RELR sections do not have an |
6433 | // associated symbol table. For them we should not treat the value of the |
6434 | // sh_link field as an index of a symbol table. |
6435 | const Elf_Shdr *SymTab; |
6436 | if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR && |
6437 | !(Obj.getHeader().e_machine == EM_AARCH64 && |
6438 | Sec.sh_type == ELF::SHT_AARCH64_AUTH_RELR)) { |
6439 | Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link); |
6440 | if (!SymTabOrErr) { |
6441 | Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for" ); |
6442 | return; |
6443 | } |
6444 | SymTab = *SymTabOrErr; |
6445 | } |
6446 | |
6447 | unsigned RelNdx = 0; |
6448 | const bool IsMips64EL = this->Obj.isMips64EL(); |
6449 | switch (Sec.sh_type) { |
6450 | case ELF::SHT_REL: |
6451 | if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) { |
6452 | for (const Elf_Rel &R : *RangeOrErr) |
6453 | RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab); |
6454 | } else { |
6455 | Warn(RangeOrErr.takeError()); |
6456 | } |
6457 | break; |
6458 | case ELF::SHT_RELA: |
6459 | if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) { |
6460 | for (const Elf_Rela &R : *RangeOrErr) |
6461 | RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab); |
6462 | } else { |
6463 | Warn(RangeOrErr.takeError()); |
6464 | } |
6465 | break; |
6466 | case ELF::SHT_AARCH64_AUTH_RELR: |
6467 | if (Obj.getHeader().e_machine != EM_AARCH64) |
6468 | break; |
6469 | [[fallthrough]]; |
6470 | case ELF::SHT_RELR: |
6471 | case ELF::SHT_ANDROID_RELR: { |
6472 | Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec); |
6473 | if (!RangeOrErr) { |
6474 | Warn(RangeOrErr.takeError()); |
6475 | break; |
6476 | } |
6477 | |
6478 | for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr)) |
6479 | RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, |
6480 | /*SymTab=*/nullptr); |
6481 | break; |
6482 | } |
6483 | case ELF::SHT_CREL: { |
6484 | if (auto RelsOrRelas = Obj.crels(Sec)) { |
6485 | for (const Elf_Rel &R : RelsOrRelas->first) |
6486 | RelRelaFn(Relocation<ELFT>(R, false), RelNdx++, Sec, SymTab); |
6487 | for (const Elf_Rela &R : RelsOrRelas->second) |
6488 | RelRelaFn(Relocation<ELFT>(R, false), RelNdx++, Sec, SymTab); |
6489 | } else { |
6490 | Warn(RelsOrRelas.takeError()); |
6491 | } |
6492 | break; |
6493 | } |
6494 | case ELF::SHT_ANDROID_REL: |
6495 | case ELF::SHT_ANDROID_RELA: |
6496 | if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) { |
6497 | for (const Elf_Rela &R : *RelasOrErr) |
6498 | RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab); |
6499 | } else { |
6500 | Warn(RelasOrErr.takeError()); |
6501 | } |
6502 | break; |
6503 | } |
6504 | } |
6505 | |
6506 | template <class ELFT> |
6507 | StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const { |
6508 | StringRef Name = "<?>" ; |
6509 | if (Expected<StringRef> SecNameOrErr = |
6510 | Obj.getSectionName(Sec, this->WarningHandler)) |
6511 | Name = *SecNameOrErr; |
6512 | else |
6513 | this->reportUniqueWarning("unable to get the name of " + describe(Sec) + |
6514 | ": " + toString(E: SecNameOrErr.takeError())); |
6515 | return Name; |
6516 | } |
6517 | |
6518 | template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() { |
6519 | bool SectionStarted = false; |
6520 | struct NameOffset { |
6521 | StringRef Name; |
6522 | uint64_t Offset; |
6523 | }; |
6524 | std::vector<NameOffset> SecEntries; |
6525 | NameOffset Current; |
6526 | auto PrintSection = [&]() { |
6527 | OS << "Dependent libraries section " << Current.Name << " at offset " |
6528 | << format_hex(Current.Offset, 1) << " contains " << SecEntries.size() |
6529 | << " entries:\n" ; |
6530 | for (NameOffset Entry : SecEntries) |
6531 | OS << " [" << format("%6" PRIx64, Entry.Offset) << "] " << Entry.Name |
6532 | << "\n" ; |
6533 | OS << "\n" ; |
6534 | SecEntries.clear(); |
6535 | }; |
6536 | |
6537 | auto OnSectionStart = [&](const Elf_Shdr &Shdr) { |
6538 | if (SectionStarted) |
6539 | PrintSection(); |
6540 | SectionStarted = true; |
6541 | Current.Offset = Shdr.sh_offset; |
6542 | Current.Name = this->getPrintableSectionName(Shdr); |
6543 | }; |
6544 | auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) { |
6545 | SecEntries.push_back(NameOffset{Lib, Offset}); |
6546 | }; |
6547 | |
6548 | this->printDependentLibsHelper(OnSectionStart, OnLibEntry); |
6549 | if (SectionStarted) |
6550 | PrintSection(); |
6551 | } |
6552 | |
6553 | template <class ELFT> |
6554 | SmallVector<uint32_t> ELFDumper<ELFT>::getSymbolIndexesForFunctionAddress( |
6555 | uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec) { |
6556 | SmallVector<uint32_t> SymbolIndexes; |
6557 | if (!this->AddressToIndexMap) { |
6558 | // Populate the address to index map upon the first invocation of this |
6559 | // function. |
6560 | this->AddressToIndexMap.emplace(); |
6561 | if (this->DotSymtabSec) { |
6562 | if (Expected<Elf_Sym_Range> SymsOrError = |
6563 | Obj.symbols(this->DotSymtabSec)) { |
6564 | uint32_t Index = (uint32_t)-1; |
6565 | for (const Elf_Sym &Sym : *SymsOrError) { |
6566 | ++Index; |
6567 | |
6568 | if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC) |
6569 | continue; |
6570 | |
6571 | Expected<uint64_t> SymAddrOrErr = |
6572 | ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress(); |
6573 | if (!SymAddrOrErr) { |
6574 | std::string Name = this->getStaticSymbolName(Index); |
6575 | reportUniqueWarning("unable to get address of symbol '" + Name + |
6576 | "': " + toString(E: SymAddrOrErr.takeError())); |
6577 | return SymbolIndexes; |
6578 | } |
6579 | |
6580 | (*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index); |
6581 | } |
6582 | } else { |
6583 | reportUniqueWarning("unable to read the symbol table: " + |
6584 | toString(SymsOrError.takeError())); |
6585 | } |
6586 | } |
6587 | } |
6588 | |
6589 | auto Symbols = this->AddressToIndexMap->find(SymValue); |
6590 | if (Symbols == this->AddressToIndexMap->end()) |
6591 | return SymbolIndexes; |
6592 | |
6593 | for (uint32_t Index : Symbols->second) { |
6594 | // Check if the symbol is in the right section. FunctionSec == None |
6595 | // means "any section". |
6596 | if (FunctionSec) { |
6597 | const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index)); |
6598 | if (Expected<const Elf_Shdr *> SecOrErr = |
6599 | Obj.getSection(Sym, this->DotSymtabSec, |
6600 | this->getShndxTable(this->DotSymtabSec))) { |
6601 | if (*FunctionSec != *SecOrErr) |
6602 | continue; |
6603 | } else { |
6604 | std::string Name = this->getStaticSymbolName(Index); |
6605 | // Note: it is impossible to trigger this error currently, it is |
6606 | // untested. |
6607 | reportUniqueWarning("unable to get section of symbol '" + Name + |
6608 | "': " + toString(SecOrErr.takeError())); |
6609 | return SymbolIndexes; |
6610 | } |
6611 | } |
6612 | |
6613 | SymbolIndexes.push_back(Elt: Index); |
6614 | } |
6615 | |
6616 | return SymbolIndexes; |
6617 | } |
6618 | |
6619 | template <class ELFT> |
6620 | bool ELFDumper<ELFT>::( |
6621 | uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec, |
6622 | const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) { |
6623 | SmallVector<uint32_t> FuncSymIndexes = |
6624 | this->getSymbolIndexesForFunctionAddress(SymValue, FunctionSec); |
6625 | if (FuncSymIndexes.empty()) |
6626 | reportUniqueWarning( |
6627 | "could not identify function symbol for stack size entry in " + |
6628 | describe(Sec: StackSizeSec)); |
6629 | |
6630 | // Extract the size. The expectation is that Offset is pointing to the right |
6631 | // place, i.e. past the function address. |
6632 | Error Err = Error::success(); |
6633 | uint64_t StackSize = Data.getULEB128(offset_ptr: Offset, Err: &Err); |
6634 | if (Err) { |
6635 | reportUniqueWarning("could not extract a valid stack size from " + |
6636 | describe(Sec: StackSizeSec) + ": " + |
6637 | toString(E: std::move(Err))); |
6638 | return false; |
6639 | } |
6640 | |
6641 | if (FuncSymIndexes.empty()) { |
6642 | printStackSizeEntry(Size: StackSize, FuncNames: {"?" }); |
6643 | } else { |
6644 | SmallVector<std::string> FuncSymNames; |
6645 | for (uint32_t Index : FuncSymIndexes) |
6646 | FuncSymNames.push_back(this->getStaticSymbolName(Index)); |
6647 | printStackSizeEntry(Size: StackSize, FuncNames: FuncSymNames); |
6648 | } |
6649 | |
6650 | return true; |
6651 | } |
6652 | |
6653 | template <class ELFT> |
6654 | void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size, |
6655 | ArrayRef<std::string> FuncNames) { |
6656 | OS.PadToColumn(NewCol: 2); |
6657 | OS << format_decimal(N: Size, Width: 11); |
6658 | OS.PadToColumn(NewCol: 18); |
6659 | |
6660 | OS << join(Begin: FuncNames.begin(), End: FuncNames.end(), Separator: ", " ) << "\n" ; |
6661 | } |
6662 | |
6663 | template <class ELFT> |
6664 | void ELFDumper<ELFT>::(const Relocation<ELFT> &R, |
6665 | const Elf_Shdr &RelocSec, unsigned Ndx, |
6666 | const Elf_Shdr *SymTab, |
6667 | const Elf_Shdr *FunctionSec, |
6668 | const Elf_Shdr &StackSizeSec, |
6669 | const RelocationResolver &Resolver, |
6670 | DataExtractor Data) { |
6671 | // This function ignores potentially erroneous input, unless it is directly |
6672 | // related to stack size reporting. |
6673 | const Elf_Sym *Sym = nullptr; |
6674 | Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab); |
6675 | if (!TargetOrErr) |
6676 | reportUniqueWarning("unable to get the target of relocation with index " + |
6677 | Twine(Ndx) + " in " + describe(Sec: RelocSec) + ": " + |
6678 | toString(TargetOrErr.takeError())); |
6679 | else |
6680 | Sym = TargetOrErr->Sym; |
6681 | |
6682 | uint64_t RelocSymValue = 0; |
6683 | if (Sym) { |
6684 | Expected<const Elf_Shdr *> SectionOrErr = |
6685 | this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab)); |
6686 | if (!SectionOrErr) { |
6687 | reportUniqueWarning( |
6688 | "cannot identify the section for relocation symbol '" + |
6689 | (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError())); |
6690 | } else if (*SectionOrErr != FunctionSec) { |
6691 | reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name + |
6692 | "' is not in the expected section" ); |
6693 | // Pretend that the symbol is in the correct section and report its |
6694 | // stack size anyway. |
6695 | FunctionSec = *SectionOrErr; |
6696 | } |
6697 | |
6698 | RelocSymValue = Sym->st_value; |
6699 | } |
6700 | |
6701 | uint64_t Offset = R.Offset; |
6702 | if (!Data.isValidOffsetForDataOfSize(offset: Offset, length: sizeof(Elf_Addr) + 1)) { |
6703 | reportUniqueWarning("found invalid relocation offset (0x" + |
6704 | Twine::utohexstr(Val: Offset) + ") into " + |
6705 | describe(Sec: StackSizeSec) + |
6706 | " while trying to extract a stack size entry" ); |
6707 | return; |
6708 | } |
6709 | |
6710 | uint64_t SymValue = Resolver(R.Type, Offset, RelocSymValue, |
6711 | Data.getAddress(offset_ptr: &Offset), R.Addend.value_or(0)); |
6712 | this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data, |
6713 | &Offset); |
6714 | } |
6715 | |
6716 | template <class ELFT> |
6717 | void ELFDumper<ELFT>::printNonRelocatableStackSizes( |
6718 | std::function<void()> ) { |
6719 | // This function ignores potentially erroneous input, unless it is directly |
6720 | // related to stack size reporting. |
6721 | for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { |
6722 | if (this->getPrintableSectionName(Sec) != ".stack_sizes" ) |
6723 | continue; |
6724 | PrintHeader(); |
6725 | ArrayRef<uint8_t> Contents = |
6726 | unwrapOrError(this->FileName, Obj.getSectionContents(Sec)); |
6727 | DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr)); |
6728 | uint64_t Offset = 0; |
6729 | while (Offset < Contents.size()) { |
6730 | // The function address is followed by a ULEB representing the stack |
6731 | // size. Check for an extra byte before we try to process the entry. |
6732 | if (!Data.isValidOffsetForDataOfSize(offset: Offset, length: sizeof(Elf_Addr) + 1)) { |
6733 | reportUniqueWarning( |
6734 | describe(Sec) + |
6735 | " ended while trying to extract a stack size entry" ); |
6736 | break; |
6737 | } |
6738 | uint64_t SymValue = Data.getAddress(offset_ptr: &Offset); |
6739 | if (!printFunctionStackSize(SymValue, /*FunctionSec=*/std::nullopt, StackSizeSec: Sec, |
6740 | Data, Offset: &Offset)) |
6741 | break; |
6742 | } |
6743 | } |
6744 | } |
6745 | |
6746 | template <class ELFT> |
6747 | void ELFDumper<ELFT>::printRelocatableStackSizes( |
6748 | std::function<void()> ) { |
6749 | // Build a map between stack size sections and their corresponding relocation |
6750 | // sections. |
6751 | auto IsMatch = [&](const Elf_Shdr &Sec) -> bool { |
6752 | StringRef SectionName; |
6753 | if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec)) |
6754 | SectionName = *NameOrErr; |
6755 | else |
6756 | consumeError(Err: NameOrErr.takeError()); |
6757 | |
6758 | return SectionName == ".stack_sizes" ; |
6759 | }; |
6760 | |
6761 | Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> |
6762 | StackSizeRelocMapOrErr = Obj.getSectionAndRelocations(IsMatch); |
6763 | if (!StackSizeRelocMapOrErr) { |
6764 | reportUniqueWarning("unable to get stack size map section(s): " + |
6765 | toString(StackSizeRelocMapOrErr.takeError())); |
6766 | return; |
6767 | } |
6768 | |
6769 | for (const auto &StackSizeMapEntry : *StackSizeRelocMapOrErr) { |
6770 | PrintHeader(); |
6771 | const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first; |
6772 | const Elf_Shdr *RelocSec = StackSizeMapEntry.second; |
6773 | |
6774 | // Warn about stack size sections without a relocation section. |
6775 | if (!RelocSec) { |
6776 | reportWarning(createError(".stack_sizes (" + describe(Sec: *StackSizesELFSec) + |
6777 | ") does not have a corresponding " |
6778 | "relocation section" ), |
6779 | FileName); |
6780 | continue; |
6781 | } |
6782 | |
6783 | // A .stack_sizes section header's sh_link field is supposed to point |
6784 | // to the section that contains the functions whose stack sizes are |
6785 | // described in it. |
6786 | const Elf_Shdr *FunctionSec = unwrapOrError( |
6787 | this->FileName, Obj.getSection(StackSizesELFSec->sh_link)); |
6788 | |
6789 | SupportsRelocation IsSupportedFn; |
6790 | RelocationResolver Resolver; |
6791 | std::tie(args&: IsSupportedFn, args&: Resolver) = getRelocationResolver(this->ObjF); |
6792 | ArrayRef<uint8_t> Contents = |
6793 | unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec)); |
6794 | DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr)); |
6795 | |
6796 | forEachRelocationDo( |
6797 | Sec: *RelocSec, RelRelaFn: [&](const Relocation<ELFT> &R, unsigned Ndx, |
6798 | const Elf_Shdr &Sec, const Elf_Shdr *SymTab) { |
6799 | if (!IsSupportedFn || !IsSupportedFn(R.Type)) { |
6800 | reportUniqueWarning( |
6801 | describe(Sec: *RelocSec) + |
6802 | " contains an unsupported relocation with index " + Twine(Ndx) + |
6803 | ": " + Obj.getRelocationTypeName(R.Type)); |
6804 | return; |
6805 | } |
6806 | |
6807 | this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec, |
6808 | *StackSizesELFSec, Resolver, Data); |
6809 | }); |
6810 | } |
6811 | } |
6812 | |
6813 | template <class ELFT> |
6814 | void GNUELFDumper<ELFT>::printStackSizes() { |
6815 | bool = false; |
6816 | auto = [&]() { |
6817 | if (HeaderHasBeenPrinted) |
6818 | return; |
6819 | OS << "\nStack Sizes:\n" ; |
6820 | OS.PadToColumn(NewCol: 9); |
6821 | OS << "Size" ; |
6822 | OS.PadToColumn(NewCol: 18); |
6823 | OS << "Functions\n" ; |
6824 | HeaderHasBeenPrinted = true; |
6825 | }; |
6826 | |
6827 | // For non-relocatable objects, look directly for sections whose name starts |
6828 | // with .stack_sizes and process the contents. |
6829 | if (this->Obj.getHeader().e_type == ELF::ET_REL) |
6830 | this->printRelocatableStackSizes(PrintHeader); |
6831 | else |
6832 | this->printNonRelocatableStackSizes(PrintHeader); |
6833 | } |
6834 | |
6835 | template <class ELFT> |
6836 | void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) { |
6837 | size_t Bias = ELFT::Is64Bits ? 8 : 0; |
6838 | auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) { |
6839 | OS.PadToColumn(NewCol: 2); |
6840 | OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias); |
6841 | OS.PadToColumn(NewCol: 11 + Bias); |
6842 | OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)" ; |
6843 | OS.PadToColumn(NewCol: 22 + Bias); |
6844 | OS << format_hex_no_prefix(*E, 8 + Bias); |
6845 | OS.PadToColumn(NewCol: 31 + 2 * Bias); |
6846 | OS << Purpose << "\n" ; |
6847 | }; |
6848 | |
6849 | OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n" ); |
6850 | OS << " Canonical gp value: " |
6851 | << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n" ; |
6852 | |
6853 | OS << " Reserved entries:\n" ; |
6854 | if (ELFT::Is64Bits) |
6855 | OS << " Address Access Initial Purpose\n" ; |
6856 | else |
6857 | OS << " Address Access Initial Purpose\n" ; |
6858 | PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver" ); |
6859 | if (Parser.getGotModulePointer()) |
6860 | PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)" ); |
6861 | |
6862 | if (!Parser.getLocalEntries().empty()) { |
6863 | OS << "\n" ; |
6864 | OS << " Local entries:\n" ; |
6865 | if (ELFT::Is64Bits) |
6866 | OS << " Address Access Initial\n" ; |
6867 | else |
6868 | OS << " Address Access Initial\n" ; |
6869 | for (auto &E : Parser.getLocalEntries()) |
6870 | PrintEntry(&E, "" ); |
6871 | } |
6872 | |
6873 | if (Parser.IsStatic) |
6874 | return; |
6875 | |
6876 | if (!Parser.getGlobalEntries().empty()) { |
6877 | OS << "\n" ; |
6878 | OS << " Global entries:\n" ; |
6879 | if (ELFT::Is64Bits) |
6880 | OS << " Address Access Initial Sym.Val." |
6881 | << " Type Ndx Name\n" ; |
6882 | else |
6883 | OS << " Address Access Initial Sym.Val. Type Ndx Name\n" ; |
6884 | |
6885 | DataRegion<Elf_Word> ShndxTable( |
6886 | (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); |
6887 | for (auto &E : Parser.getGlobalEntries()) { |
6888 | const Elf_Sym &Sym = *Parser.getGotSym(&E); |
6889 | const Elf_Sym &FirstSym = this->dynamic_symbols()[0]; |
6890 | std::string SymName = this->getFullSymbolName( |
6891 | Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false); |
6892 | |
6893 | OS.PadToColumn(NewCol: 2); |
6894 | OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias)); |
6895 | OS.PadToColumn(NewCol: 11 + Bias); |
6896 | OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)" ; |
6897 | OS.PadToColumn(NewCol: 22 + Bias); |
6898 | OS << to_string(format_hex_no_prefix(E, 8 + Bias)); |
6899 | OS.PadToColumn(NewCol: 31 + 2 * Bias); |
6900 | OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias)); |
6901 | OS.PadToColumn(NewCol: 40 + 3 * Bias); |
6902 | OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes)); |
6903 | OS.PadToColumn(NewCol: 48 + 3 * Bias); |
6904 | OS << getSymbolSectionNdx(Symbol: Sym, SymIndex: &Sym - this->dynamic_symbols().begin(), |
6905 | ShndxTable); |
6906 | OS.PadToColumn(NewCol: 52 + 3 * Bias); |
6907 | OS << SymName << "\n" ; |
6908 | } |
6909 | } |
6910 | |
6911 | if (!Parser.getOtherEntries().empty()) |
6912 | OS << "\n Number of TLS and multi-GOT entries " |
6913 | << Parser.getOtherEntries().size() << "\n" ; |
6914 | } |
6915 | |
6916 | template <class ELFT> |
6917 | void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) { |
6918 | size_t Bias = ELFT::Is64Bits ? 8 : 0; |
6919 | auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) { |
6920 | OS.PadToColumn(NewCol: 2); |
6921 | OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias); |
6922 | OS.PadToColumn(NewCol: 11 + Bias); |
6923 | OS << format_hex_no_prefix(*E, 8 + Bias); |
6924 | OS.PadToColumn(NewCol: 20 + 2 * Bias); |
6925 | OS << Purpose << "\n" ; |
6926 | }; |
6927 | |
6928 | OS << "PLT GOT:\n\n" ; |
6929 | |
6930 | OS << " Reserved entries:\n" ; |
6931 | OS << " Address Initial Purpose\n" ; |
6932 | PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver" ); |
6933 | if (Parser.getPltModulePointer()) |
6934 | PrintEntry(Parser.getPltModulePointer(), "Module pointer" ); |
6935 | |
6936 | if (!Parser.getPltEntries().empty()) { |
6937 | OS << "\n" ; |
6938 | OS << " Entries:\n" ; |
6939 | OS << " Address Initial Sym.Val. Type Ndx Name\n" ; |
6940 | DataRegion<Elf_Word> ShndxTable( |
6941 | (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); |
6942 | for (auto &E : Parser.getPltEntries()) { |
6943 | const Elf_Sym &Sym = *Parser.getPltSym(&E); |
6944 | const Elf_Sym &FirstSym = *cantFail( |
6945 | this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0)); |
6946 | std::string SymName = this->getFullSymbolName( |
6947 | Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false); |
6948 | |
6949 | OS.PadToColumn(NewCol: 2); |
6950 | OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias)); |
6951 | OS.PadToColumn(NewCol: 11 + Bias); |
6952 | OS << to_string(format_hex_no_prefix(E, 8 + Bias)); |
6953 | OS.PadToColumn(NewCol: 20 + 2 * Bias); |
6954 | OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias)); |
6955 | OS.PadToColumn(NewCol: 29 + 3 * Bias); |
6956 | OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes)); |
6957 | OS.PadToColumn(NewCol: 37 + 3 * Bias); |
6958 | OS << getSymbolSectionNdx(Symbol: Sym, SymIndex: &Sym - this->dynamic_symbols().begin(), |
6959 | ShndxTable); |
6960 | OS.PadToColumn(NewCol: 41 + 3 * Bias); |
6961 | OS << SymName << "\n" ; |
6962 | } |
6963 | } |
6964 | } |
6965 | |
6966 | template <class ELFT> |
6967 | Expected<const Elf_Mips_ABIFlags<ELFT> *> |
6968 | getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) { |
6969 | const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags" ); |
6970 | if (Sec == nullptr) |
6971 | return nullptr; |
6972 | |
6973 | constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: " ; |
6974 | Expected<ArrayRef<uint8_t>> DataOrErr = |
6975 | Dumper.getElfObject().getELFFile().getSectionContents(*Sec); |
6976 | if (!DataOrErr) |
6977 | return createError(Err: ErrPrefix + toString(E: DataOrErr.takeError())); |
6978 | |
6979 | if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) |
6980 | return createError(Err: ErrPrefix + "it has a wrong size (" + |
6981 | Twine(DataOrErr->size()) + ")" ); |
6982 | return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data()); |
6983 | } |
6984 | |
6985 | template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() { |
6986 | const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr; |
6987 | if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr = |
6988 | getMipsAbiFlagsSection(*this)) |
6989 | Flags = *SecOrErr; |
6990 | else |
6991 | this->reportUniqueWarning(SecOrErr.takeError()); |
6992 | if (!Flags) |
6993 | return; |
6994 | |
6995 | OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n" ; |
6996 | OS << "ISA: MIPS" << int(Flags->isa_level); |
6997 | if (Flags->isa_rev > 1) |
6998 | OS << "r" << int(Flags->isa_rev); |
6999 | OS << "\n" ; |
7000 | OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n" ; |
7001 | OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n" ; |
7002 | OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n" ; |
7003 | OS << "FP ABI: " << enumToString(Flags->fp_abi, ArrayRef(ElfMipsFpABIType)) |
7004 | << "\n" ; |
7005 | OS << "ISA Extension: " |
7006 | << enumToString(Flags->isa_ext, ArrayRef(ElfMipsISAExtType)) << "\n" ; |
7007 | if (Flags->ases == 0) |
7008 | OS << "ASEs: None\n" ; |
7009 | else |
7010 | // FIXME: Print each flag on a separate line. |
7011 | OS << "ASEs: " << printFlags(Flags->ases, ArrayRef(ElfMipsASEFlags)) |
7012 | << "\n" ; |
7013 | OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n" ; |
7014 | OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n" ; |
7015 | OS << "\n" ; |
7016 | } |
7017 | |
7018 | template <class ELFT> void LLVMELFDumper<ELFT>::() { |
7019 | const Elf_Ehdr &E = this->Obj.getHeader(); |
7020 | { |
7021 | DictScope D(W, "ElfHeader" ); |
7022 | { |
7023 | DictScope D(W, "Ident" ); |
7024 | W.printBinary(Label: "Magic" , |
7025 | Value: ArrayRef<unsigned char>(E.e_ident).slice(N: ELF::EI_MAG0, M: 4)); |
7026 | W.printEnum("Class" , E.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass)); |
7027 | W.printEnum("DataEncoding" , E.e_ident[ELF::EI_DATA], |
7028 | ArrayRef(ElfDataEncoding)); |
7029 | W.printNumber("FileVersion" , E.e_ident[ELF::EI_VERSION]); |
7030 | |
7031 | auto OSABI = ArrayRef(ElfOSABI); |
7032 | if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH && |
7033 | E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) { |
7034 | switch (E.e_machine) { |
7035 | case ELF::EM_AMDGPU: |
7036 | OSABI = ArrayRef(AMDGPUElfOSABI); |
7037 | break; |
7038 | case ELF::EM_ARM: |
7039 | OSABI = ArrayRef(ARMElfOSABI); |
7040 | break; |
7041 | case ELF::EM_TI_C6000: |
7042 | OSABI = ArrayRef(C6000ElfOSABI); |
7043 | break; |
7044 | } |
7045 | } |
7046 | W.printEnum("OS/ABI" , E.e_ident[ELF::EI_OSABI], OSABI); |
7047 | W.printNumber("ABIVersion" , E.e_ident[ELF::EI_ABIVERSION]); |
7048 | W.printBinary(Label: "Unused" , |
7049 | Value: ArrayRef<unsigned char>(E.e_ident).slice(N: ELF::EI_PAD)); |
7050 | } |
7051 | |
7052 | std::string TypeStr; |
7053 | if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) { |
7054 | TypeStr = Ent->Name.str(); |
7055 | } else { |
7056 | if (E.e_type >= ET_LOPROC) |
7057 | TypeStr = "Processor Specific" ; |
7058 | else if (E.e_type >= ET_LOOS) |
7059 | TypeStr = "OS Specific" ; |
7060 | else |
7061 | TypeStr = "Unknown" ; |
7062 | } |
7063 | W.printString("Type" , TypeStr + " (0x" + utohexstr(E.e_type) + ")" ); |
7064 | |
7065 | W.printEnum("Machine" , E.e_machine, ArrayRef(ElfMachineType)); |
7066 | W.printNumber("Version" , E.e_version); |
7067 | W.printHex("Entry" , E.e_entry); |
7068 | W.printHex("ProgramHeaderOffset" , E.e_phoff); |
7069 | W.printHex("SectionHeaderOffset" , E.e_shoff); |
7070 | if (E.e_machine == EM_MIPS) |
7071 | W.printFlags("Flags" , E.e_flags, ArrayRef(ElfHeaderMipsFlags), |
7072 | unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI), |
7073 | unsigned(ELF::EF_MIPS_MACH)); |
7074 | else if (E.e_machine == EM_AMDGPU) { |
7075 | switch (E.e_ident[ELF::EI_ABIVERSION]) { |
7076 | default: |
7077 | W.printHex("Flags" , E.e_flags); |
7078 | break; |
7079 | case 0: |
7080 | // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags. |
7081 | [[fallthrough]]; |
7082 | case ELF::ELFABIVERSION_AMDGPU_HSA_V3: |
7083 | W.printFlags("Flags" , E.e_flags, |
7084 | ArrayRef(ElfHeaderAMDGPUFlagsABIVersion3), |
7085 | unsigned(ELF::EF_AMDGPU_MACH)); |
7086 | break; |
7087 | case ELF::ELFABIVERSION_AMDGPU_HSA_V4: |
7088 | case ELF::ELFABIVERSION_AMDGPU_HSA_V5: |
7089 | W.printFlags("Flags" , E.e_flags, |
7090 | ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4), |
7091 | unsigned(ELF::EF_AMDGPU_MACH), |
7092 | unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4), |
7093 | unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4)); |
7094 | break; |
7095 | case ELF::ELFABIVERSION_AMDGPU_HSA_V6: { |
7096 | std::optional<FlagEntry> VerFlagEntry; |
7097 | // The string needs to remain alive from the moment we create a |
7098 | // FlagEntry until printFlags is done. |
7099 | std::string FlagStr; |
7100 | if (auto VersionFlag = E.e_flags & ELF::EF_AMDGPU_GENERIC_VERSION) { |
7101 | unsigned Version = |
7102 | VersionFlag >> ELF::EF_AMDGPU_GENERIC_VERSION_OFFSET; |
7103 | FlagStr = "EF_AMDGPU_GENERIC_VERSION_V" + std::to_string(val: Version); |
7104 | VerFlagEntry = FlagEntry(FlagStr, VersionFlag); |
7105 | } |
7106 | W.printFlags( |
7107 | "Flags" , E.e_flags, ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4), |
7108 | unsigned(ELF::EF_AMDGPU_MACH), |
7109 | unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4), |
7110 | unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4), |
7111 | VerFlagEntry ? ArrayRef(*VerFlagEntry) : ArrayRef<FlagEntry>()); |
7112 | break; |
7113 | } |
7114 | } |
7115 | } else if (E.e_machine == EM_RISCV) |
7116 | W.printFlags("Flags" , E.e_flags, ArrayRef(ElfHeaderRISCVFlags)); |
7117 | else if (E.e_machine == EM_AVR) |
7118 | W.printFlags("Flags" , E.e_flags, ArrayRef(ElfHeaderAVRFlags), |
7119 | unsigned(ELF::EF_AVR_ARCH_MASK)); |
7120 | else if (E.e_machine == EM_LOONGARCH) |
7121 | W.printFlags("Flags" , E.e_flags, ArrayRef(ElfHeaderLoongArchFlags), |
7122 | unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK), |
7123 | unsigned(ELF::EF_LOONGARCH_OBJABI_MASK)); |
7124 | else if (E.e_machine == EM_XTENSA) |
7125 | W.printFlags("Flags" , E.e_flags, ArrayRef(ElfHeaderXtensaFlags), |
7126 | unsigned(ELF::EF_XTENSA_MACH)); |
7127 | else if (E.e_machine == EM_CUDA) |
7128 | W.printFlags("Flags" , E.e_flags, ArrayRef(ElfHeaderNVPTXFlags), |
7129 | unsigned(ELF::EF_CUDA_SM)); |
7130 | else |
7131 | W.printFlags("Flags" , E.e_flags); |
7132 | W.printNumber("HeaderSize" , E.e_ehsize); |
7133 | W.printNumber("ProgramHeaderEntrySize" , E.e_phentsize); |
7134 | W.printNumber("ProgramHeaderCount" , E.e_phnum); |
7135 | W.printNumber("SectionHeaderEntrySize" , E.e_shentsize); |
7136 | W.printString("SectionHeaderCount" , |
7137 | getSectionHeadersNumString(this->Obj, this->FileName)); |
7138 | W.printString("StringTableSectionIndex" , |
7139 | getSectionHeaderTableIndexString(this->Obj, this->FileName)); |
7140 | } |
7141 | } |
7142 | |
7143 | template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() { |
7144 | DictScope Lists(W, "Groups" ); |
7145 | std::vector<GroupSection> V = this->getGroups(); |
7146 | DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(Groups: V); |
7147 | for (const GroupSection &G : V) { |
7148 | DictScope D(W, "Group" ); |
7149 | W.printNumber(Label: "Name" , Str: G.Name, Value: G.ShName); |
7150 | W.printNumber(Label: "Index" , Value: G.Index); |
7151 | W.printNumber(Label: "Link" , Value: G.Link); |
7152 | W.printNumber(Label: "Info" , Value: G.Info); |
7153 | W.printHex(Label: "Type" , Str: getGroupType(Flag: G.Type), Value: G.Type); |
7154 | W.printString(Label: "Signature" , Value: G.Signature); |
7155 | |
7156 | ListScope L(W, getGroupSectionHeaderName()); |
7157 | for (const GroupMember &GM : G.Members) { |
7158 | const GroupSection *MainGroup = Map[GM.Index]; |
7159 | if (MainGroup != &G) |
7160 | this->reportUniqueWarning( |
7161 | "section with index " + Twine(GM.Index) + |
7162 | ", included in the group section with index " + |
7163 | Twine(MainGroup->Index) + |
7164 | ", was also found in the group section with index " + |
7165 | Twine(G.Index)); |
7166 | printSectionGroupMembers(Name: GM.Name, Idx: GM.Index); |
7167 | } |
7168 | } |
7169 | |
7170 | if (V.empty()) |
7171 | printEmptyGroupMessage(); |
7172 | } |
7173 | |
7174 | template <class ELFT> |
7175 | std::string LLVMELFDumper<ELFT>::() const { |
7176 | return "Section(s) in group" ; |
7177 | } |
7178 | |
7179 | template <class ELFT> |
7180 | void LLVMELFDumper<ELFT>::printSectionGroupMembers(StringRef Name, |
7181 | uint64_t Idx) const { |
7182 | W.startLine() << Name << " (" << Idx << ")\n" ; |
7183 | } |
7184 | |
7185 | template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() { |
7186 | ListScope D(W, "Relocations" ); |
7187 | |
7188 | for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { |
7189 | if (!isRelocationSec<ELFT>(Sec, this->Obj.getHeader())) |
7190 | continue; |
7191 | |
7192 | StringRef Name = this->getPrintableSectionName(Sec); |
7193 | unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front(); |
7194 | printRelocationSectionInfo(Sec, Name, SecNdx); |
7195 | } |
7196 | } |
7197 | |
7198 | template <class ELFT> |
7199 | void LLVMELFDumper<ELFT>::printExpandedRelRelaReloc(const Relocation<ELFT> &R, |
7200 | StringRef SymbolName, |
7201 | StringRef RelocName) { |
7202 | DictScope Group(W, "Relocation" ); |
7203 | W.printHex("Offset" , R.Offset); |
7204 | W.printNumber("Type" , RelocName, R.Type); |
7205 | W.printNumber("Symbol" , !SymbolName.empty() ? SymbolName : "-" , R.Symbol); |
7206 | if (R.Addend) |
7207 | W.printHex("Addend" , (uintX_t)*R.Addend); |
7208 | } |
7209 | |
7210 | template <class ELFT> |
7211 | void LLVMELFDumper<ELFT>::printDefaultRelRelaReloc(const Relocation<ELFT> &R, |
7212 | StringRef SymbolName, |
7213 | StringRef RelocName) { |
7214 | raw_ostream &OS = W.startLine(); |
7215 | OS << W.hex(R.Offset) << " " << RelocName << " " |
7216 | << (!SymbolName.empty() ? SymbolName : "-" ); |
7217 | if (R.Addend) |
7218 | OS << " " << W.hex((uintX_t)*R.Addend); |
7219 | OS << "\n" ; |
7220 | } |
7221 | |
7222 | template <class ELFT> |
7223 | void LLVMELFDumper<ELFT>::printRelocationSectionInfo(const Elf_Shdr &Sec, |
7224 | StringRef Name, |
7225 | const unsigned SecNdx) { |
7226 | DictScope D(W, (Twine("Section (" ) + Twine(SecNdx) + ") " + Name).str()); |
7227 | this->printRelocationsHelper(Sec); |
7228 | } |
7229 | |
7230 | template <class ELFT> void LLVMELFDumper<ELFT>::printEmptyGroupMessage() const { |
7231 | W.startLine() << "There are no group sections in the file.\n" ; |
7232 | } |
7233 | |
7234 | template <class ELFT> |
7235 | void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R, |
7236 | const RelSymbol<ELFT> &RelSym) { |
7237 | StringRef SymbolName = RelSym.Name; |
7238 | if (RelSym.Sym && RelSym.Name.empty()) |
7239 | SymbolName = "<null>" ; |
7240 | SmallString<32> RelocName; |
7241 | this->Obj.getRelocationTypeName(R.Type, RelocName); |
7242 | |
7243 | if (opts::ExpandRelocs) { |
7244 | printExpandedRelRelaReloc(R, SymbolName, RelocName); |
7245 | } else { |
7246 | printDefaultRelRelaReloc(R, SymbolName, RelocName); |
7247 | } |
7248 | } |
7249 | |
7250 | template <class ELFT> void LLVMELFDumper<ELFT>::() { |
7251 | ListScope SectionsD(W, "Sections" ); |
7252 | |
7253 | int SectionIndex = -1; |
7254 | std::vector<EnumEntry<unsigned>> FlagsList = |
7255 | getSectionFlagsForTarget(this->Obj.getHeader().e_ident[ELF::EI_OSABI], |
7256 | this->Obj.getHeader().e_machine); |
7257 | for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { |
7258 | DictScope SectionD(W, "Section" ); |
7259 | W.printNumber(Label: "Index" , Value: ++SectionIndex); |
7260 | W.printNumber("Name" , this->getPrintableSectionName(Sec), Sec.sh_name); |
7261 | W.printHex("Type" , |
7262 | object::getELFSectionTypeName(Machine: this->Obj.getHeader().e_machine, |
7263 | Type: Sec.sh_type), |
7264 | Sec.sh_type); |
7265 | W.printFlags("Flags" , Sec.sh_flags, ArrayRef(FlagsList)); |
7266 | W.printHex("Address" , Sec.sh_addr); |
7267 | W.printHex("Offset" , Sec.sh_offset); |
7268 | W.printNumber("Size" , Sec.sh_size); |
7269 | W.printNumber("Link" , Sec.sh_link); |
7270 | W.printNumber("Info" , Sec.sh_info); |
7271 | W.printNumber("AddressAlignment" , Sec.sh_addralign); |
7272 | W.printNumber("EntrySize" , Sec.sh_entsize); |
7273 | |
7274 | if (opts::SectionRelocations) { |
7275 | ListScope D(W, "Relocations" ); |
7276 | this->printRelocationsHelper(Sec); |
7277 | } |
7278 | |
7279 | if (opts::SectionSymbols) { |
7280 | ListScope D(W, "Symbols" ); |
7281 | if (this->DotSymtabSec) { |
7282 | StringRef StrTable = unwrapOrError( |
7283 | this->FileName, |
7284 | this->Obj.getStringTableForSymtab(*this->DotSymtabSec)); |
7285 | ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec); |
7286 | |
7287 | typename ELFT::SymRange Symbols = unwrapOrError( |
7288 | this->FileName, this->Obj.symbols(this->DotSymtabSec)); |
7289 | for (const Elf_Sym &Sym : Symbols) { |
7290 | const Elf_Shdr *SymSec = unwrapOrError( |
7291 | this->FileName, |
7292 | this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable)); |
7293 | if (SymSec == &Sec) |
7294 | printSymbol(Symbol: Sym, SymIndex: &Sym - &Symbols[0], ShndxTable, StrTable, IsDynamic: false, |
7295 | /*NonVisibilityBitsUsed=*/false, |
7296 | /*ExtraSymInfo=*/false); |
7297 | } |
7298 | } |
7299 | } |
7300 | |
7301 | if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) { |
7302 | ArrayRef<uint8_t> Data = |
7303 | unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec)); |
7304 | W.printBinaryBlock( |
7305 | Label: "SectionData" , |
7306 | Value: StringRef(reinterpret_cast<const char *>(Data.data()), Data.size())); |
7307 | } |
7308 | } |
7309 | } |
7310 | |
7311 | template <class ELFT> |
7312 | void LLVMELFDumper<ELFT>::printSymbolSection( |
7313 | const Elf_Sym &Symbol, unsigned SymIndex, |
7314 | DataRegion<Elf_Word> ShndxTable) const { |
7315 | auto GetSectionSpecialType = [&]() -> std::optional<StringRef> { |
7316 | if (Symbol.isUndefined()) |
7317 | return StringRef("Undefined" ); |
7318 | if (Symbol.isProcessorSpecific()) |
7319 | return StringRef("Processor Specific" ); |
7320 | if (Symbol.isOSSpecific()) |
7321 | return StringRef("Operating System Specific" ); |
7322 | if (Symbol.isAbsolute()) |
7323 | return StringRef("Absolute" ); |
7324 | if (Symbol.isCommon()) |
7325 | return StringRef("Common" ); |
7326 | if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX) |
7327 | return StringRef("Reserved" ); |
7328 | return std::nullopt; |
7329 | }; |
7330 | |
7331 | if (std::optional<StringRef> Type = GetSectionSpecialType()) { |
7332 | W.printHex("Section" , *Type, Symbol.st_shndx); |
7333 | return; |
7334 | } |
7335 | |
7336 | Expected<unsigned> SectionIndex = |
7337 | this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable); |
7338 | if (!SectionIndex) { |
7339 | assert(Symbol.st_shndx == SHN_XINDEX && |
7340 | "getSymbolSectionIndex should only fail due to an invalid " |
7341 | "SHT_SYMTAB_SHNDX table/reference" ); |
7342 | this->reportUniqueWarning(SectionIndex.takeError()); |
7343 | W.printHex(Label: "Section" , Str: "Reserved" , Value: SHN_XINDEX); |
7344 | return; |
7345 | } |
7346 | |
7347 | Expected<StringRef> SectionName = |
7348 | this->getSymbolSectionName(Symbol, *SectionIndex); |
7349 | if (!SectionName) { |
7350 | // Don't report an invalid section name if the section headers are missing. |
7351 | // In such situations, all sections will be "invalid". |
7352 | if (!this->ObjF.sections().empty()) |
7353 | this->reportUniqueWarning(SectionName.takeError()); |
7354 | else |
7355 | consumeError(Err: SectionName.takeError()); |
7356 | W.printHex(Label: "Section" , Str: "<?>" , Value: *SectionIndex); |
7357 | } else { |
7358 | W.printHex(Label: "Section" , Str: *SectionName, Value: *SectionIndex); |
7359 | } |
7360 | } |
7361 | |
7362 | template <class ELFT> |
7363 | void LLVMELFDumper<ELFT>::printSymbolOtherField(const Elf_Sym &Symbol) const { |
7364 | std::vector<EnumEntry<unsigned>> SymOtherFlags = |
7365 | this->getOtherFlagsFromSymbol(this->Obj.getHeader(), Symbol); |
7366 | W.printFlags("Other" , Symbol.st_other, ArrayRef(SymOtherFlags), 0x3u); |
7367 | } |
7368 | |
7369 | template <class ELFT> |
7370 | void LLVMELFDumper<ELFT>::printZeroSymbolOtherField( |
7371 | const Elf_Sym &Symbol) const { |
7372 | assert(Symbol.st_other == 0 && "non-zero Other Field" ); |
7373 | // Usually st_other flag is zero. Do not pollute the output |
7374 | // by flags enumeration in that case. |
7375 | W.printNumber(Label: "Other" , Value: 0); |
7376 | } |
7377 | |
7378 | template <class ELFT> |
7379 | void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, |
7380 | DataRegion<Elf_Word> ShndxTable, |
7381 | std::optional<StringRef> StrTable, |
7382 | bool IsDynamic, |
7383 | bool /*NonVisibilityBitsUsed*/, |
7384 | bool /*ExtraSymInfo*/) const { |
7385 | std::string FullSymbolName = this->getFullSymbolName( |
7386 | Symbol, SymIndex, ShndxTable, StrTable, IsDynamic); |
7387 | unsigned char SymbolType = Symbol.getType(); |
7388 | |
7389 | DictScope D(W, "Symbol" ); |
7390 | W.printNumber("Name" , FullSymbolName, Symbol.st_name); |
7391 | W.printHex("Value" , Symbol.st_value); |
7392 | W.printNumber("Size" , Symbol.st_size); |
7393 | W.printEnum("Binding" , Symbol.getBinding(), ArrayRef(ElfSymbolBindings)); |
7394 | if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && |
7395 | SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) |
7396 | W.printEnum(Label: "Type" , Value: SymbolType, EnumValues: ArrayRef(AMDGPUSymbolTypes)); |
7397 | else |
7398 | W.printEnum(Label: "Type" , Value: SymbolType, EnumValues: ArrayRef(ElfSymbolTypes)); |
7399 | if (Symbol.st_other == 0) |
7400 | printZeroSymbolOtherField(Symbol); |
7401 | else |
7402 | printSymbolOtherField(Symbol); |
7403 | printSymbolSection(Symbol, SymIndex, ShndxTable); |
7404 | } |
7405 | |
7406 | template <class ELFT> |
7407 | void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols, |
7408 | bool PrintDynamicSymbols, |
7409 | bool ) { |
7410 | if (PrintSymbols) { |
7411 | ListScope Group(W, "Symbols" ); |
7412 | this->printSymbolsHelper(false, ExtraSymInfo); |
7413 | } |
7414 | if (PrintDynamicSymbols) { |
7415 | ListScope Group(W, "DynamicSymbols" ); |
7416 | this->printSymbolsHelper(true, ExtraSymInfo); |
7417 | } |
7418 | } |
7419 | |
7420 | template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() { |
7421 | Elf_Dyn_Range Table = this->dynamic_table(); |
7422 | if (Table.empty()) |
7423 | return; |
7424 | |
7425 | W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n" ; |
7426 | |
7427 | size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table); |
7428 | // The "Name/Value" column should be indented from the "Type" column by N |
7429 | // spaces, where N = MaxTagSize - length of "Type" (4) + trailing |
7430 | // space (1) = -3. |
7431 | W.startLine() << " Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ') |
7432 | << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n" ; |
7433 | |
7434 | std::string ValueFmt = "%-" + std::to_string(val: MaxTagSize) + "s " ; |
7435 | for (auto Entry : Table) { |
7436 | uintX_t Tag = Entry.getTag(); |
7437 | std::string Value = this->getDynamicEntry(Tag, Entry.getVal()); |
7438 | W.startLine() << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true) |
7439 | << " " |
7440 | << format(ValueFmt.c_str(), |
7441 | this->Obj.getDynamicTagAsString(Tag).c_str()) |
7442 | << Value << "\n" ; |
7443 | } |
7444 | W.startLine() << "]\n" ; |
7445 | } |
7446 | |
7447 | template <class ELFT> |
7448 | void JSONELFDumper<ELFT>::printAuxillaryDynamicTableEntryInfo( |
7449 | const Elf_Dyn &Entry) { |
7450 | auto FormatFlags = [this, Value = Entry.getVal()](auto Flags) { |
7451 | ListScope L(this->W, "Flags" ); |
7452 | for (const auto &Flag : Flags) { |
7453 | if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value) |
7454 | this->W.printString(Flag.Name); |
7455 | } |
7456 | }; |
7457 | switch (Entry.getTag()) { |
7458 | case DT_SONAME: |
7459 | this->W.printString("Name" , this->getDynamicString(Entry.getVal())); |
7460 | break; |
7461 | case DT_AUXILIARY: |
7462 | case DT_FILTER: |
7463 | case DT_NEEDED: |
7464 | this->W.printString("Library" , this->getDynamicString(Entry.getVal())); |
7465 | break; |
7466 | case DT_USED: |
7467 | this->W.printString("Object" , this->getDynamicString(Entry.getVal())); |
7468 | break; |
7469 | case DT_RPATH: |
7470 | case DT_RUNPATH: { |
7471 | StringRef Value = this->getDynamicString(Entry.getVal()); |
7472 | ListScope L(this->W, "Path" ); |
7473 | while (!Value.empty()) { |
7474 | auto [Front, Back] = Value.split(Separator: ':'); |
7475 | this->W.printString(Front); |
7476 | Value = Back; |
7477 | } |
7478 | break; |
7479 | } |
7480 | case DT_FLAGS: |
7481 | FormatFlags(ArrayRef(ElfDynamicDTFlags)); |
7482 | break; |
7483 | case DT_FLAGS_1: |
7484 | FormatFlags(ArrayRef(ElfDynamicDTFlags1)); |
7485 | break; |
7486 | default: |
7487 | return; |
7488 | } |
7489 | } |
7490 | |
7491 | template <class ELFT> void JSONELFDumper<ELFT>::printDynamicTable() { |
7492 | Elf_Dyn_Range Table = this->dynamic_table(); |
7493 | ListScope L(this->W, "DynamicSection" ); |
7494 | for (const auto &Entry : Table) { |
7495 | DictScope D(this->W); |
7496 | uintX_t Tag = Entry.getTag(); |
7497 | this->W.printHex("Tag" , Tag); |
7498 | this->W.printString("Type" , this->Obj.getDynamicTagAsString(Tag)); |
7499 | this->W.printHex("Value" , Entry.getVal()); |
7500 | this->printAuxillaryDynamicTableEntryInfo(Entry); |
7501 | } |
7502 | } |
7503 | |
7504 | template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() { |
7505 | W.startLine() << "Dynamic Relocations {\n" ; |
7506 | W.indent(); |
7507 | this->printDynamicRelocationsHelper(); |
7508 | W.unindent(); |
7509 | W.startLine() << "}\n" ; |
7510 | } |
7511 | |
7512 | template <class ELFT> |
7513 | void LLVMELFDumper<ELFT>::( |
7514 | bool , cl::boolOrDefault PrintSectionMapping) { |
7515 | if (PrintProgramHeaders) |
7516 | printProgramHeaders(); |
7517 | if (PrintSectionMapping == cl::BOU_TRUE) |
7518 | printSectionMapping(); |
7519 | } |
7520 | |
7521 | template <class ELFT> void LLVMELFDumper<ELFT>::() { |
7522 | ListScope L(W, "ProgramHeaders" ); |
7523 | |
7524 | Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers(); |
7525 | if (!PhdrsOrErr) { |
7526 | this->reportUniqueWarning("unable to dump program headers: " + |
7527 | toString(PhdrsOrErr.takeError())); |
7528 | return; |
7529 | } |
7530 | |
7531 | for (const Elf_Phdr &Phdr : *PhdrsOrErr) { |
7532 | DictScope P(W, "ProgramHeader" ); |
7533 | StringRef Type = |
7534 | segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type); |
7535 | |
7536 | W.printHex("Type" , Type.empty() ? "Unknown" : Type, Phdr.p_type); |
7537 | W.printHex("Offset" , Phdr.p_offset); |
7538 | W.printHex("VirtualAddress" , Phdr.p_vaddr); |
7539 | W.printHex("PhysicalAddress" , Phdr.p_paddr); |
7540 | W.printNumber("FileSize" , Phdr.p_filesz); |
7541 | W.printNumber("MemSize" , Phdr.p_memsz); |
7542 | W.printFlags("Flags" , Phdr.p_flags, ArrayRef(ElfSegmentFlags)); |
7543 | W.printNumber("Alignment" , Phdr.p_align); |
7544 | } |
7545 | } |
7546 | |
7547 | template <class ELFT> |
7548 | void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) { |
7549 | ListScope SS(W, "VersionSymbols" ); |
7550 | if (!Sec) |
7551 | return; |
7552 | |
7553 | StringRef StrTable; |
7554 | ArrayRef<Elf_Sym> Syms; |
7555 | const Elf_Shdr *SymTabSec; |
7556 | Expected<ArrayRef<Elf_Versym>> VerTableOrErr = |
7557 | this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec); |
7558 | if (!VerTableOrErr) { |
7559 | this->reportUniqueWarning(VerTableOrErr.takeError()); |
7560 | return; |
7561 | } |
7562 | |
7563 | if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size()) |
7564 | return; |
7565 | |
7566 | ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec); |
7567 | for (size_t I = 0, E = Syms.size(); I < E; ++I) { |
7568 | DictScope S(W, "Symbol" ); |
7569 | W.printNumber("Version" , (*VerTableOrErr)[I].vs_index & VERSYM_VERSION); |
7570 | W.printString("Name" , |
7571 | this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable, |
7572 | /*IsDynamic=*/true)); |
7573 | } |
7574 | } |
7575 | |
7576 | const EnumEntry<unsigned> SymVersionFlags[] = { |
7577 | {"Base" , "BASE" , VER_FLG_BASE}, |
7578 | {"Weak" , "WEAK" , VER_FLG_WEAK}, |
7579 | {"Info" , "INFO" , VER_FLG_INFO}}; |
7580 | |
7581 | template <class ELFT> |
7582 | void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) { |
7583 | ListScope SD(W, "VersionDefinitions" ); |
7584 | if (!Sec) |
7585 | return; |
7586 | |
7587 | Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec); |
7588 | if (!V) { |
7589 | this->reportUniqueWarning(V.takeError()); |
7590 | return; |
7591 | } |
7592 | |
7593 | for (const VerDef &D : *V) { |
7594 | DictScope Def(W, "Definition" ); |
7595 | W.printNumber(Label: "Version" , Value: D.Version); |
7596 | W.printFlags(Label: "Flags" , Value: D.Flags, Flags: ArrayRef(SymVersionFlags)); |
7597 | W.printNumber(Label: "Index" , Value: D.Ndx); |
7598 | W.printNumber(Label: "Hash" , Value: D.Hash); |
7599 | W.printString(Label: "Name" , Value: D.Name.c_str()); |
7600 | W.printList( |
7601 | "Predecessors" , D.AuxV, |
7602 | [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); }); |
7603 | } |
7604 | } |
7605 | |
7606 | template <class ELFT> |
7607 | void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) { |
7608 | ListScope SD(W, "VersionRequirements" ); |
7609 | if (!Sec) |
7610 | return; |
7611 | |
7612 | Expected<std::vector<VerNeed>> V = |
7613 | this->Obj.getVersionDependencies(*Sec, this->WarningHandler); |
7614 | if (!V) { |
7615 | this->reportUniqueWarning(V.takeError()); |
7616 | return; |
7617 | } |
7618 | |
7619 | for (const VerNeed &VN : *V) { |
7620 | DictScope Entry(W, "Dependency" ); |
7621 | W.printNumber(Label: "Version" , Value: VN.Version); |
7622 | W.printNumber(Label: "Count" , Value: VN.Cnt); |
7623 | W.printString(Label: "FileName" , Value: VN.File.c_str()); |
7624 | |
7625 | ListScope L(W, "Entries" ); |
7626 | for (const VernAux &Aux : VN.AuxV) { |
7627 | DictScope Entry(W, "Entry" ); |
7628 | W.printNumber(Label: "Hash" , Value: Aux.Hash); |
7629 | W.printFlags(Label: "Flags" , Value: Aux.Flags, Flags: ArrayRef(SymVersionFlags)); |
7630 | W.printNumber(Label: "Index" , Value: Aux.Other); |
7631 | W.printString(Label: "Name" , Value: Aux.Name.c_str()); |
7632 | } |
7633 | } |
7634 | } |
7635 | |
7636 | template <class ELFT> |
7637 | void LLVMELFDumper<ELFT>::printHashHistogramStats(size_t NBucket, |
7638 | size_t MaxChain, |
7639 | size_t TotalSyms, |
7640 | ArrayRef<size_t> Count, |
7641 | bool IsGnu) const { |
7642 | StringRef HistName = IsGnu ? "GnuHashHistogram" : "HashHistogram" ; |
7643 | StringRef BucketName = IsGnu ? "Bucket" : "Chain" ; |
7644 | StringRef ListName = IsGnu ? "Buckets" : "Chains" ; |
7645 | DictScope Outer(W, HistName); |
7646 | W.printNumber(Label: "TotalBuckets" , Value: NBucket); |
7647 | ListScope Buckets(W, ListName); |
7648 | size_t CumulativeNonZero = 0; |
7649 | for (size_t I = 0; I < MaxChain; ++I) { |
7650 | CumulativeNonZero += Count[I] * I; |
7651 | DictScope Bucket(W, BucketName); |
7652 | W.printNumber(Label: "Length" , Value: I); |
7653 | W.printNumber(Label: "Count" , Value: Count[I]); |
7654 | W.printNumber(Label: "Percentage" , Value: (float)(Count[I] * 100.0) / NBucket); |
7655 | W.printNumber(Label: "Coverage" , Value: (float)(CumulativeNonZero * 100.0) / TotalSyms); |
7656 | } |
7657 | } |
7658 | |
7659 | // Returns true if rel/rela section exists, and populates SymbolIndices. |
7660 | // Otherwise returns false. |
7661 | template <class ELFT> |
7662 | static bool getSymbolIndices(const typename ELFT::Shdr *CGRelSection, |
7663 | const ELFFile<ELFT> &Obj, |
7664 | const LLVMELFDumper<ELFT> *Dumper, |
7665 | SmallVector<uint32_t, 128> &SymbolIndices) { |
7666 | if (!CGRelSection) { |
7667 | Dumper->reportUniqueWarning( |
7668 | "relocation section for a call graph section doesn't exist" ); |
7669 | return false; |
7670 | } |
7671 | |
7672 | if (CGRelSection->sh_type == SHT_REL) { |
7673 | typename ELFT::RelRange CGProfileRel; |
7674 | Expected<typename ELFT::RelRange> CGProfileRelOrError = |
7675 | Obj.rels(*CGRelSection); |
7676 | if (!CGProfileRelOrError) { |
7677 | Dumper->reportUniqueWarning("unable to load relocations for " |
7678 | "SHT_LLVM_CALL_GRAPH_PROFILE section: " + |
7679 | toString(CGProfileRelOrError.takeError())); |
7680 | return false; |
7681 | } |
7682 | |
7683 | CGProfileRel = *CGProfileRelOrError; |
7684 | for (const typename ELFT::Rel &Rel : CGProfileRel) |
7685 | SymbolIndices.push_back(Elt: Rel.getSymbol(Obj.isMips64EL())); |
7686 | } else { |
7687 | // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert |
7688 | // the format to SHT_RELA |
7689 | // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035) |
7690 | typename ELFT::RelaRange CGProfileRela; |
7691 | Expected<typename ELFT::RelaRange> CGProfileRelaOrError = |
7692 | Obj.relas(*CGRelSection); |
7693 | if (!CGProfileRelaOrError) { |
7694 | Dumper->reportUniqueWarning("unable to load relocations for " |
7695 | "SHT_LLVM_CALL_GRAPH_PROFILE section: " + |
7696 | toString(CGProfileRelaOrError.takeError())); |
7697 | return false; |
7698 | } |
7699 | |
7700 | CGProfileRela = *CGProfileRelaOrError; |
7701 | for (const typename ELFT::Rela &Rela : CGProfileRela) |
7702 | SymbolIndices.push_back(Elt: Rela.getSymbol(Obj.isMips64EL())); |
7703 | } |
7704 | |
7705 | return true; |
7706 | } |
7707 | |
7708 | template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() { |
7709 | auto IsMatch = [](const Elf_Shdr &Sec) -> bool { |
7710 | return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE; |
7711 | }; |
7712 | |
7713 | Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SecToRelocMapOrErr = |
7714 | this->Obj.getSectionAndRelocations(IsMatch); |
7715 | if (!SecToRelocMapOrErr) { |
7716 | this->reportUniqueWarning("unable to get CG Profile section(s): " + |
7717 | toString(SecToRelocMapOrErr.takeError())); |
7718 | return; |
7719 | } |
7720 | |
7721 | for (const auto &CGMapEntry : *SecToRelocMapOrErr) { |
7722 | const Elf_Shdr *CGSection = CGMapEntry.first; |
7723 | const Elf_Shdr *CGRelSection = CGMapEntry.second; |
7724 | |
7725 | Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr = |
7726 | this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection); |
7727 | if (!CGProfileOrErr) { |
7728 | this->reportUniqueWarning( |
7729 | "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " + |
7730 | toString(CGProfileOrErr.takeError())); |
7731 | return; |
7732 | } |
7733 | |
7734 | SmallVector<uint32_t, 128> SymbolIndices; |
7735 | bool UseReloc = |
7736 | getSymbolIndices<ELFT>(CGRelSection, this->Obj, this, SymbolIndices); |
7737 | if (UseReloc && SymbolIndices.size() != CGProfileOrErr->size() * 2) { |
7738 | this->reportUniqueWarning( |
7739 | "number of from/to pairs does not match number of frequencies" ); |
7740 | UseReloc = false; |
7741 | } |
7742 | |
7743 | ListScope L(W, "CGProfile" ); |
7744 | for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) { |
7745 | const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I]; |
7746 | DictScope D(W, "CGProfileEntry" ); |
7747 | if (UseReloc) { |
7748 | uint32_t From = SymbolIndices[I * 2]; |
7749 | uint32_t To = SymbolIndices[I * 2 + 1]; |
7750 | W.printNumber("From" , this->getStaticSymbolName(From), From); |
7751 | W.printNumber("To" , this->getStaticSymbolName(To), To); |
7752 | } |
7753 | W.printNumber("Weight" , CGPE.cgp_weight); |
7754 | } |
7755 | } |
7756 | } |
7757 | |
7758 | template <class ELFT> |
7759 | void LLVMELFDumper<ELFT>::printBBAddrMaps(bool PrettyPGOAnalysis) { |
7760 | bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL; |
7761 | using Elf_Shdr = typename ELFT::Shdr; |
7762 | auto IsMatch = [](const Elf_Shdr &Sec) -> bool { |
7763 | return Sec.sh_type == ELF::SHT_LLVM_BB_ADDR_MAP; |
7764 | }; |
7765 | Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SecRelocMapOrErr = |
7766 | this->Obj.getSectionAndRelocations(IsMatch); |
7767 | if (!SecRelocMapOrErr) { |
7768 | this->reportUniqueWarning( |
7769 | "failed to get SHT_LLVM_BB_ADDR_MAP section(s): " + |
7770 | toString(SecRelocMapOrErr.takeError())); |
7771 | return; |
7772 | } |
7773 | for (auto const &[Sec, RelocSec] : *SecRelocMapOrErr) { |
7774 | std::optional<const Elf_Shdr *> FunctionSec; |
7775 | if (IsRelocatable) |
7776 | FunctionSec = |
7777 | unwrapOrError(this->FileName, this->Obj.getSection(Sec->sh_link)); |
7778 | ListScope L(W, "BBAddrMap" ); |
7779 | if (IsRelocatable && !RelocSec) { |
7780 | this->reportUniqueWarning("unable to get relocation section for " + |
7781 | this->describe(*Sec)); |
7782 | continue; |
7783 | } |
7784 | std::vector<PGOAnalysisMap> PGOAnalyses; |
7785 | Expected<std::vector<BBAddrMap>> BBAddrMapOrErr = |
7786 | this->Obj.decodeBBAddrMap(*Sec, RelocSec, &PGOAnalyses); |
7787 | if (!BBAddrMapOrErr) { |
7788 | this->reportUniqueWarning("unable to dump " + this->describe(*Sec) + |
7789 | ": " + toString(E: BBAddrMapOrErr.takeError())); |
7790 | continue; |
7791 | } |
7792 | for (const auto &[AM, PAM] : zip_equal(t&: *BBAddrMapOrErr, u&: PGOAnalyses)) { |
7793 | DictScope D(W, "Function" ); |
7794 | W.printHex(Label: "At" , Value: AM.getFunctionAddress()); |
7795 | SmallVector<uint32_t> FuncSymIndex = |
7796 | this->getSymbolIndexesForFunctionAddress(AM.getFunctionAddress(), |
7797 | FunctionSec); |
7798 | std::string FuncName = "<?>" ; |
7799 | if (FuncSymIndex.empty()) |
7800 | this->reportUniqueWarning( |
7801 | "could not identify function symbol for address (0x" + |
7802 | Twine::utohexstr(Val: AM.getFunctionAddress()) + ") in " + |
7803 | this->describe(*Sec)); |
7804 | else |
7805 | FuncName = this->getStaticSymbolName(FuncSymIndex.front()); |
7806 | W.printString(Label: "Name" , Value: FuncName); |
7807 | { |
7808 | ListScope BBRL(W, "BB Ranges" ); |
7809 | for (const BBAddrMap::BBRangeEntry &BBR : AM.BBRanges) { |
7810 | DictScope BBRD(W); |
7811 | W.printHex(Label: "Base Address" , Value: BBR.BaseAddress); |
7812 | ListScope BBEL(W, "BB Entries" ); |
7813 | for (const BBAddrMap::BBEntry &BBE : BBR.BBEntries) { |
7814 | DictScope BBED(W); |
7815 | W.printNumber(Label: "ID" , Value: BBE.ID); |
7816 | W.printHex(Label: "Offset" , Value: BBE.Offset); |
7817 | W.printHex(Label: "Size" , Value: BBE.Size); |
7818 | W.printBoolean(Label: "HasReturn" , Value: BBE.hasReturn()); |
7819 | W.printBoolean(Label: "HasTailCall" , Value: BBE.hasTailCall()); |
7820 | W.printBoolean(Label: "IsEHPad" , Value: BBE.isEHPad()); |
7821 | W.printBoolean(Label: "CanFallThrough" , Value: BBE.canFallThrough()); |
7822 | W.printBoolean(Label: "HasIndirectBranch" , Value: BBE.hasIndirectBranch()); |
7823 | } |
7824 | } |
7825 | } |
7826 | |
7827 | if (PAM.FeatEnable.hasPGOAnalysis()) { |
7828 | DictScope PD(W, "PGO analyses" ); |
7829 | |
7830 | if (PAM.FeatEnable.FuncEntryCount) |
7831 | W.printNumber(Label: "FuncEntryCount" , Value: PAM.FuncEntryCount); |
7832 | |
7833 | if (PAM.FeatEnable.hasPGOAnalysisBBData()) { |
7834 | ListScope L(W, "PGO BB entries" ); |
7835 | for (const PGOAnalysisMap::PGOBBEntry &PBBE : PAM.BBEntries) { |
7836 | DictScope L(W); |
7837 | |
7838 | if (PAM.FeatEnable.BBFreq) { |
7839 | if (PrettyPGOAnalysis) { |
7840 | std::string BlockFreqStr; |
7841 | raw_string_ostream SS(BlockFreqStr); |
7842 | printRelativeBlockFreq(OS&: SS, EntryFreq: PAM.BBEntries.front().BlockFreq, |
7843 | Freq: PBBE.BlockFreq); |
7844 | W.printString(Label: "Frequency" , Value: BlockFreqStr); |
7845 | } else { |
7846 | W.printNumber(Label: "Frequency" , Value: PBBE.BlockFreq.getFrequency()); |
7847 | } |
7848 | } |
7849 | |
7850 | if (PAM.FeatEnable.BrProb) { |
7851 | ListScope L(W, "Successors" ); |
7852 | for (const auto &Succ : PBBE.Successors) { |
7853 | DictScope L(W); |
7854 | W.printNumber(Label: "ID" , Value: Succ.ID); |
7855 | if (PrettyPGOAnalysis) { |
7856 | W.printObject(Label: "Probability" , Value: Succ.Prob); |
7857 | } else { |
7858 | W.printHex(Label: "Probability" , Value: Succ.Prob.getNumerator()); |
7859 | } |
7860 | } |
7861 | } |
7862 | } |
7863 | } |
7864 | } |
7865 | } |
7866 | } |
7867 | } |
7868 | |
7869 | template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() { |
7870 | ListScope L(W, "Addrsig" ); |
7871 | if (!this->DotAddrsigSec) |
7872 | return; |
7873 | |
7874 | Expected<std::vector<uint64_t>> SymsOrErr = |
7875 | decodeAddrsigSection(this->Obj, *this->DotAddrsigSec); |
7876 | if (!SymsOrErr) { |
7877 | this->reportUniqueWarning(SymsOrErr.takeError()); |
7878 | return; |
7879 | } |
7880 | |
7881 | for (uint64_t Sym : *SymsOrErr) |
7882 | W.printNumber("Sym" , this->getStaticSymbolName(Sym), Sym); |
7883 | } |
7884 | |
7885 | template <typename ELFT> |
7886 | static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc, |
7887 | ScopedPrinter &W) { |
7888 | // Return true if we were able to pretty-print the note, false otherwise. |
7889 | switch (NoteType) { |
7890 | default: |
7891 | return false; |
7892 | case ELF::NT_GNU_ABI_TAG: { |
7893 | const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc); |
7894 | if (!AbiTag.IsValid) { |
7895 | W.printString(Label: "ABI" , Value: "<corrupt GNU_ABI_TAG>" ); |
7896 | return false; |
7897 | } else { |
7898 | W.printString(Label: "OS" , Value: AbiTag.OSName); |
7899 | W.printString(Label: "ABI" , Value: AbiTag.ABI); |
7900 | } |
7901 | break; |
7902 | } |
7903 | case ELF::NT_GNU_BUILD_ID: { |
7904 | W.printString(Label: "Build ID" , Value: getGNUBuildId(Desc)); |
7905 | break; |
7906 | } |
7907 | case ELF::NT_GNU_GOLD_VERSION: |
7908 | W.printString(Label: "Version" , Value: getDescAsStringRef(Desc)); |
7909 | break; |
7910 | case ELF::NT_GNU_PROPERTY_TYPE_0: |
7911 | ListScope D(W, "Property" ); |
7912 | for (const std::string &Property : getGNUPropertyList<ELFT>(Desc)) |
7913 | W.printString(Value: Property); |
7914 | break; |
7915 | } |
7916 | return true; |
7917 | } |
7918 | |
7919 | static bool printAndroidNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc, |
7920 | ScopedPrinter &W) { |
7921 | // Return true if we were able to pretty-print the note, false otherwise. |
7922 | AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc); |
7923 | if (Props.empty()) |
7924 | return false; |
7925 | for (const auto &KV : Props) |
7926 | W.printString(Label: KV.first, Value: KV.second); |
7927 | return true; |
7928 | } |
7929 | |
7930 | template <class ELFT> |
7931 | void LLVMELFDumper<ELFT>::printMemtag( |
7932 | const ArrayRef<std::pair<std::string, std::string>> DynamicEntries, |
7933 | const ArrayRef<uint8_t> AndroidNoteDesc, |
7934 | const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) { |
7935 | { |
7936 | ListScope L(W, "Memtag Dynamic Entries:" ); |
7937 | if (DynamicEntries.empty()) |
7938 | W.printString(Value: "< none found >" ); |
7939 | for (const auto &DynamicEntryKV : DynamicEntries) |
7940 | W.printString(Label: DynamicEntryKV.first, Value: DynamicEntryKV.second); |
7941 | } |
7942 | |
7943 | if (!AndroidNoteDesc.empty()) { |
7944 | ListScope L(W, "Memtag Android Note:" ); |
7945 | printAndroidNoteLLVMStyle(NoteType: ELF::NT_ANDROID_TYPE_MEMTAG, Desc: AndroidNoteDesc, W); |
7946 | } |
7947 | |
7948 | if (Descriptors.empty()) |
7949 | return; |
7950 | |
7951 | { |
7952 | ListScope L(W, "Memtag Global Descriptors:" ); |
7953 | for (const auto &[Addr, BytesToTag] : Descriptors) { |
7954 | W.printHex(Label: "0x" + utohexstr(X: Addr), Value: BytesToTag); |
7955 | } |
7956 | } |
7957 | } |
7958 | |
7959 | template <typename ELFT> |
7960 | static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType, |
7961 | ArrayRef<uint8_t> Desc, |
7962 | ScopedPrinter &W) { |
7963 | switch (NoteType) { |
7964 | default: |
7965 | return false; |
7966 | case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION: |
7967 | W.printString(Label: "Version" , Value: getDescAsStringRef(Desc)); |
7968 | break; |
7969 | case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER: |
7970 | W.printString(Label: "Producer" , Value: getDescAsStringRef(Desc)); |
7971 | break; |
7972 | case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION: |
7973 | W.printString(Label: "Producer version" , Value: getDescAsStringRef(Desc)); |
7974 | break; |
7975 | } |
7976 | return true; |
7977 | } |
7978 | |
7979 | static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) { |
7980 | W.printNumber(Label: "Page Size" , Value: Note.PageSize); |
7981 | ListScope D(W, "Mappings" ); |
7982 | for (const CoreFileMapping &Mapping : Note.Mappings) { |
7983 | DictScope D(W); |
7984 | W.printHex(Label: "Start" , Value: Mapping.Start); |
7985 | W.printHex(Label: "End" , Value: Mapping.End); |
7986 | W.printHex(Label: "Offset" , Value: Mapping.Offset); |
7987 | W.printString(Label: "Filename" , Value: Mapping.Filename); |
7988 | } |
7989 | } |
7990 | |
7991 | template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() { |
7992 | ListScope L(W, "NoteSections" ); |
7993 | |
7994 | std::unique_ptr<DictScope> NoteSectionScope; |
7995 | std::unique_ptr<ListScope> NotesScope; |
7996 | size_t Align = 0; |
7997 | auto StartNotes = [&](std::optional<StringRef> SecName, |
7998 | const typename ELFT::Off Offset, |
7999 | const typename ELFT::Addr Size, size_t Al) { |
8000 | Align = std::max<size_t>(a: Al, b: 4); |
8001 | NoteSectionScope = std::make_unique<DictScope>(args&: W, args: "NoteSection" ); |
8002 | W.printString(Label: "Name" , Value: SecName ? *SecName : "<?>" ); |
8003 | W.printHex("Offset" , Offset); |
8004 | W.printHex("Size" , Size); |
8005 | NotesScope = std::make_unique<ListScope>(args&: W, args: "Notes" ); |
8006 | }; |
8007 | |
8008 | auto EndNotes = [&] { |
8009 | NotesScope.reset(); |
8010 | NoteSectionScope.reset(); |
8011 | }; |
8012 | |
8013 | auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error { |
8014 | DictScope D2(W); |
8015 | StringRef Name = Note.getName(); |
8016 | ArrayRef<uint8_t> Descriptor = Note.getDesc(Align); |
8017 | Elf_Word Type = Note.getType(); |
8018 | |
8019 | // Print the note owner/type. |
8020 | W.printString(Label: "Owner" , Value: Name); |
8021 | W.printHex(Label: "Data size" , Value: Descriptor.size()); |
8022 | |
8023 | StringRef NoteType = |
8024 | getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type); |
8025 | if (!NoteType.empty()) |
8026 | W.printString(Label: "Type" , Value: NoteType); |
8027 | else |
8028 | W.printString("Type" , |
8029 | "Unknown (" + to_string(format_hex(Type, 10)) + ")" ); |
8030 | |
8031 | // Print the description, or fallback to printing raw bytes for unknown |
8032 | // owners/if we fail to pretty-print the contents. |
8033 | if (Name == "GNU" ) { |
8034 | if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W)) |
8035 | return Error::success(); |
8036 | } else if (Name == "FreeBSD" ) { |
8037 | if (std::optional<FreeBSDNote> N = |
8038 | getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) { |
8039 | W.printString(Label: N->Type, Value: N->Value); |
8040 | return Error::success(); |
8041 | } |
8042 | } else if (Name == "AMD" ) { |
8043 | const AMDNote N = getAMDNote<ELFT>(Type, Descriptor); |
8044 | if (!N.Type.empty()) { |
8045 | W.printString(Label: N.Type, Value: N.Value); |
8046 | return Error::success(); |
8047 | } |
8048 | } else if (Name == "AMDGPU" ) { |
8049 | const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor); |
8050 | if (!N.Type.empty()) { |
8051 | W.printString(Label: N.Type, Value: N.Value); |
8052 | return Error::success(); |
8053 | } |
8054 | } else if (Name == "LLVMOMPOFFLOAD" ) { |
8055 | if (printLLVMOMPOFFLOADNoteLLVMStyle<ELFT>(Type, Descriptor, W)) |
8056 | return Error::success(); |
8057 | } else if (Name == "CORE" ) { |
8058 | if (Type == ELF::NT_FILE) { |
8059 | DataExtractor ( |
8060 | Descriptor, ELFT::Endianness == llvm::endianness::little, |
8061 | sizeof(Elf_Addr)); |
8062 | if (Expected<CoreNote> N = readCoreNote(Desc: DescExtractor)) { |
8063 | printCoreNoteLLVMStyle(Note: *N, W); |
8064 | return Error::success(); |
8065 | } else { |
8066 | return N.takeError(); |
8067 | } |
8068 | } |
8069 | } else if (Name == "Android" ) { |
8070 | if (printAndroidNoteLLVMStyle(Type, Descriptor, W)) |
8071 | return Error::success(); |
8072 | } |
8073 | if (!Descriptor.empty()) { |
8074 | W.printBinaryBlock(Label: "Description data" , Value: Descriptor); |
8075 | } |
8076 | return Error::success(); |
8077 | }; |
8078 | |
8079 | processNotesHelper(*this, /*StartNotesFn=*/StartNotes, |
8080 | /*ProcessNoteFn=*/ProcessNote, /*FinishNotesFn=*/EndNotes); |
8081 | } |
8082 | |
8083 | template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() { |
8084 | ListScope L(W, "LinkerOptions" ); |
8085 | |
8086 | unsigned I = -1; |
8087 | for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) { |
8088 | ++I; |
8089 | if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS) |
8090 | continue; |
8091 | |
8092 | Expected<ArrayRef<uint8_t>> ContentsOrErr = |
8093 | this->Obj.getSectionContents(Shdr); |
8094 | if (!ContentsOrErr) { |
8095 | this->reportUniqueWarning("unable to read the content of the " |
8096 | "SHT_LLVM_LINKER_OPTIONS section: " + |
8097 | toString(E: ContentsOrErr.takeError())); |
8098 | continue; |
8099 | } |
8100 | if (ContentsOrErr->empty()) |
8101 | continue; |
8102 | |
8103 | if (ContentsOrErr->back() != 0) { |
8104 | this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " + |
8105 | Twine(I) + |
8106 | " is broken: the " |
8107 | "content is not null-terminated" ); |
8108 | continue; |
8109 | } |
8110 | |
8111 | SmallVector<StringRef, 16> Strings; |
8112 | toStringRef(Input: ContentsOrErr->drop_back()).split(A&: Strings, Separator: '\0'); |
8113 | if (Strings.size() % 2 != 0) { |
8114 | this->reportUniqueWarning( |
8115 | "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) + |
8116 | " is broken: an incomplete " |
8117 | "key-value pair was found. The last possible key was: \"" + |
8118 | Strings.back() + "\"" ); |
8119 | continue; |
8120 | } |
8121 | |
8122 | for (size_t I = 0; I < Strings.size(); I += 2) |
8123 | W.printString(Label: Strings[I], Value: Strings[I + 1]); |
8124 | } |
8125 | } |
8126 | |
8127 | template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() { |
8128 | ListScope L(W, "DependentLibs" ); |
8129 | this->printDependentLibsHelper( |
8130 | [](const Elf_Shdr &) {}, |
8131 | [this](StringRef Lib, uint64_t) { W.printString(Value: Lib); }); |
8132 | } |
8133 | |
8134 | template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() { |
8135 | ListScope L(W, "StackSizes" ); |
8136 | if (this->Obj.getHeader().e_type == ELF::ET_REL) |
8137 | this->printRelocatableStackSizes([]() {}); |
8138 | else |
8139 | this->printNonRelocatableStackSizes([]() {}); |
8140 | } |
8141 | |
8142 | template <class ELFT> |
8143 | void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size, |
8144 | ArrayRef<std::string> FuncNames) { |
8145 | DictScope D(W, "Entry" ); |
8146 | W.printList(Label: "Functions" , List: FuncNames); |
8147 | W.printHex(Label: "Size" , Value: Size); |
8148 | } |
8149 | |
8150 | template <class ELFT> |
8151 | void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) { |
8152 | auto PrintEntry = [&](const Elf_Addr *E) { |
8153 | W.printHex("Address" , Parser.getGotAddress(E)); |
8154 | W.printNumber("Access" , Parser.getGotOffset(E)); |
8155 | W.printHex("Initial" , *E); |
8156 | }; |
8157 | |
8158 | DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT" ); |
8159 | |
8160 | W.printHex("Canonical gp value" , Parser.getGp()); |
8161 | { |
8162 | ListScope RS(W, "Reserved entries" ); |
8163 | { |
8164 | DictScope D(W, "Entry" ); |
8165 | PrintEntry(Parser.getGotLazyResolver()); |
8166 | W.printString(Label: "Purpose" , Value: StringRef("Lazy resolver" )); |
8167 | } |
8168 | |
8169 | if (Parser.getGotModulePointer()) { |
8170 | DictScope D(W, "Entry" ); |
8171 | PrintEntry(Parser.getGotModulePointer()); |
8172 | W.printString(Label: "Purpose" , Value: StringRef("Module pointer (GNU extension)" )); |
8173 | } |
8174 | } |
8175 | { |
8176 | ListScope LS(W, "Local entries" ); |
8177 | for (auto &E : Parser.getLocalEntries()) { |
8178 | DictScope D(W, "Entry" ); |
8179 | PrintEntry(&E); |
8180 | } |
8181 | } |
8182 | |
8183 | if (Parser.IsStatic) |
8184 | return; |
8185 | |
8186 | { |
8187 | ListScope GS(W, "Global entries" ); |
8188 | for (auto &E : Parser.getGlobalEntries()) { |
8189 | DictScope D(W, "Entry" ); |
8190 | |
8191 | PrintEntry(&E); |
8192 | |
8193 | const Elf_Sym &Sym = *Parser.getGotSym(&E); |
8194 | W.printHex("Value" , Sym.st_value); |
8195 | W.printEnum("Type" , Sym.getType(), ArrayRef(ElfSymbolTypes)); |
8196 | |
8197 | const unsigned SymIndex = &Sym - this->dynamic_symbols().begin(); |
8198 | DataRegion<Elf_Word> ShndxTable( |
8199 | (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); |
8200 | printSymbolSection(Symbol: Sym, SymIndex, ShndxTable); |
8201 | |
8202 | std::string SymName = this->getFullSymbolName( |
8203 | Sym, SymIndex, ShndxTable, this->DynamicStringTable, true); |
8204 | W.printNumber("Name" , SymName, Sym.st_name); |
8205 | } |
8206 | } |
8207 | |
8208 | W.printNumber(Label: "Number of TLS and multi-GOT entries" , |
8209 | Value: uint64_t(Parser.getOtherEntries().size())); |
8210 | } |
8211 | |
8212 | template <class ELFT> |
8213 | void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) { |
8214 | auto PrintEntry = [&](const Elf_Addr *E) { |
8215 | W.printHex("Address" , Parser.getPltAddress(E)); |
8216 | W.printHex("Initial" , *E); |
8217 | }; |
8218 | |
8219 | DictScope GS(W, "PLT GOT" ); |
8220 | |
8221 | { |
8222 | ListScope RS(W, "Reserved entries" ); |
8223 | { |
8224 | DictScope D(W, "Entry" ); |
8225 | PrintEntry(Parser.getPltLazyResolver()); |
8226 | W.printString(Label: "Purpose" , Value: StringRef("PLT lazy resolver" )); |
8227 | } |
8228 | |
8229 | if (auto E = Parser.getPltModulePointer()) { |
8230 | DictScope D(W, "Entry" ); |
8231 | PrintEntry(E); |
8232 | W.printString(Label: "Purpose" , Value: StringRef("Module pointer" )); |
8233 | } |
8234 | } |
8235 | { |
8236 | ListScope LS(W, "Entries" ); |
8237 | DataRegion<Elf_Word> ShndxTable( |
8238 | (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); |
8239 | for (auto &E : Parser.getPltEntries()) { |
8240 | DictScope D(W, "Entry" ); |
8241 | PrintEntry(&E); |
8242 | |
8243 | const Elf_Sym &Sym = *Parser.getPltSym(&E); |
8244 | W.printHex("Value" , Sym.st_value); |
8245 | W.printEnum("Type" , Sym.getType(), ArrayRef(ElfSymbolTypes)); |
8246 | printSymbolSection(Symbol: Sym, SymIndex: &Sym - this->dynamic_symbols().begin(), |
8247 | ShndxTable); |
8248 | |
8249 | const Elf_Sym *FirstSym = cantFail( |
8250 | this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0)); |
8251 | std::string SymName = this->getFullSymbolName( |
8252 | Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true); |
8253 | W.printNumber("Name" , SymName, Sym.st_name); |
8254 | } |
8255 | } |
8256 | } |
8257 | |
8258 | template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() { |
8259 | const Elf_Mips_ABIFlags<ELFT> *Flags; |
8260 | if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr = |
8261 | getMipsAbiFlagsSection(*this)) { |
8262 | Flags = *SecOrErr; |
8263 | if (!Flags) { |
8264 | W.startLine() << "There is no .MIPS.abiflags section in the file.\n" ; |
8265 | return; |
8266 | } |
8267 | } else { |
8268 | this->reportUniqueWarning(SecOrErr.takeError()); |
8269 | return; |
8270 | } |
8271 | |
8272 | raw_ostream &OS = W.getOStream(); |
8273 | DictScope GS(W, "MIPS ABI Flags" ); |
8274 | |
8275 | W.printNumber("Version" , Flags->version); |
8276 | W.startLine() << "ISA: " ; |
8277 | if (Flags->isa_rev <= 1) |
8278 | OS << format("MIPS%u" , Flags->isa_level); |
8279 | else |
8280 | OS << format("MIPS%ur%u" , Flags->isa_level, Flags->isa_rev); |
8281 | OS << "\n" ; |
8282 | W.printEnum("ISA Extension" , Flags->isa_ext, ArrayRef(ElfMipsISAExtType)); |
8283 | W.printFlags("ASEs" , Flags->ases, ArrayRef(ElfMipsASEFlags)); |
8284 | W.printEnum("FP ABI" , Flags->fp_abi, ArrayRef(ElfMipsFpABIType)); |
8285 | W.printNumber("GPR size" , getMipsRegisterSize(Flags->gpr_size)); |
8286 | W.printNumber("CPR1 size" , getMipsRegisterSize(Flags->cpr1_size)); |
8287 | W.printNumber("CPR2 size" , getMipsRegisterSize(Flags->cpr2_size)); |
8288 | W.printFlags("Flags 1" , Flags->flags1, ArrayRef(ElfMipsFlags1)); |
8289 | W.printHex("Flags 2" , Flags->flags2); |
8290 | } |
8291 | |
8292 | template <class ELFT> |
8293 | void JSONELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj, |
8294 | ArrayRef<std::string> InputFilenames, |
8295 | const Archive *A) { |
8296 | FileScope = std::make_unique<DictScope>(this->W); |
8297 | DictScope D(this->W, "FileSummary" ); |
8298 | this->W.printString("File" , FileStr); |
8299 | this->W.printString("Format" , Obj.getFileFormatName()); |
8300 | this->W.printString("Arch" , Triple::getArchTypeName(Kind: Obj.getArch())); |
8301 | this->W.printString( |
8302 | "AddressSize" , |
8303 | std::string(formatv(Fmt: "{0}bit" , Vals: 8 * Obj.getBytesInAddress()))); |
8304 | this->printLoadName(); |
8305 | } |
8306 | |
8307 | template <class ELFT> |
8308 | void JSONELFDumper<ELFT>::printZeroSymbolOtherField( |
8309 | const Elf_Sym &Symbol) const { |
8310 | // We want the JSON format to be uniform, since it is machine readable, so |
8311 | // always print the `Other` field the same way. |
8312 | this->printSymbolOtherField(Symbol); |
8313 | } |
8314 | |
8315 | template <class ELFT> |
8316 | void JSONELFDumper<ELFT>::printDefaultRelRelaReloc(const Relocation<ELFT> &R, |
8317 | StringRef SymbolName, |
8318 | StringRef RelocName) { |
8319 | this->printExpandedRelRelaReloc(R, SymbolName, RelocName); |
8320 | } |
8321 | |
8322 | template <class ELFT> |
8323 | void JSONELFDumper<ELFT>::printRelocationSectionInfo(const Elf_Shdr &Sec, |
8324 | StringRef Name, |
8325 | const unsigned SecNdx) { |
8326 | DictScope Group(this->W); |
8327 | this->W.printNumber("SectionIndex" , SecNdx); |
8328 | ListScope D(this->W, "Relocs" ); |
8329 | this->printRelocationsHelper(Sec); |
8330 | } |
8331 | |
8332 | template <class ELFT> |
8333 | std::string JSONELFDumper<ELFT>::() const { |
8334 | return "GroupSections" ; |
8335 | } |
8336 | |
8337 | template <class ELFT> |
8338 | void JSONELFDumper<ELFT>::printSectionGroupMembers(StringRef Name, |
8339 | uint64_t Idx) const { |
8340 | DictScope Grp(this->W); |
8341 | this->W.printString("Name" , Name); |
8342 | this->W.printNumber("Index" , Idx); |
8343 | } |
8344 | |
8345 | template <class ELFT> void JSONELFDumper<ELFT>::printEmptyGroupMessage() const { |
8346 | // JSON output does not need to print anything for empty groups |
8347 | } |
8348 | |