1//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This tablegen backend emits a target specifier matcher for converting parsed
10// assembly operands in the MCInst structures. It also emits a matcher for
11// custom operand parsing.
12//
13// Converting assembly operands into MCInst structures
14// ---------------------------------------------------
15//
16// The input to the target specific matcher is a list of literal tokens and
17// operands. The target specific parser should generally eliminate any syntax
18// which is not relevant for matching; for example, comma tokens should have
19// already been consumed and eliminated by the parser. Most instructions will
20// end up with a single literal token (the instruction name) and some number of
21// operands.
22//
23// Some example inputs, for X86:
24// 'addl' (immediate ...) (register ...)
25// 'add' (immediate ...) (memory ...)
26// 'call' '*' %epc
27//
28// The assembly matcher is responsible for converting this input into a precise
29// machine instruction (i.e., an instruction with a well defined encoding). This
30// mapping has several properties which complicate matching:
31//
32// - It may be ambiguous; many architectures can legally encode particular
33// variants of an instruction in different ways (for example, using a smaller
34// encoding for small immediates). Such ambiguities should never be
35// arbitrarily resolved by the assembler, the assembler is always responsible
36// for choosing the "best" available instruction.
37//
38// - It may depend on the subtarget or the assembler context. Instructions
39// which are invalid for the current mode, but otherwise unambiguous (e.g.,
40// an SSE instruction in a file being assembled for i486) should be accepted
41// and rejected by the assembler front end. However, if the proper encoding
42// for an instruction is dependent on the assembler context then the matcher
43// is responsible for selecting the correct machine instruction for the
44// current mode.
45//
46// The core matching algorithm attempts to exploit the regularity in most
47// instruction sets to quickly determine the set of possibly matching
48// instructions, and the simplify the generated code. Additionally, this helps
49// to ensure that the ambiguities are intentionally resolved by the user.
50//
51// The matching is divided into two distinct phases:
52//
53// 1. Classification: Each operand is mapped to the unique set which (a)
54// contains it, and (b) is the largest such subset for which a single
55// instruction could match all members.
56//
57// For register classes, we can generate these subgroups automatically. For
58// arbitrary operands, we expect the user to define the classes and their
59// relations to one another (for example, 8-bit signed immediates as a
60// subset of 32-bit immediates).
61//
62// By partitioning the operands in this way, we guarantee that for any
63// tuple of classes, any single instruction must match either all or none
64// of the sets of operands which could classify to that tuple.
65//
66// In addition, the subset relation amongst classes induces a partial order
67// on such tuples, which we use to resolve ambiguities.
68//
69// 2. The input can now be treated as a tuple of classes (static tokens are
70// simple singleton sets). Each such tuple should generally map to a single
71// instruction (we currently ignore cases where this isn't true, whee!!!),
72// which we can emit a simple matcher for.
73//
74// Custom Operand Parsing
75// ----------------------
76//
77// Some targets need a custom way to parse operands, some specific instructions
78// can contain arguments that can represent processor flags and other kinds of
79// identifiers that need to be mapped to specific values in the final encoded
80// instructions. The target specific custom operand parsing works in the
81// following way:
82//
83// 1. A operand match table is built, each entry contains a mnemonic, an
84// operand class, a mask for all operand positions for that same
85// class/mnemonic and target features to be checked while trying to match.
86//
87// 2. The operand matcher will try every possible entry with the same
88// mnemonic and will check if the target feature for this mnemonic also
89// matches. After that, if the operand to be matched has its index
90// present in the mask, a successful match occurs. Otherwise, fallback
91// to the regular operand parsing.
92//
93// 3. For a match success, each operand class that has a 'ParserMethod'
94// becomes part of a switch from where the custom method is called.
95//
96//===----------------------------------------------------------------------===//
97
98#include "Common/CodeGenInstAlias.h"
99#include "Common/CodeGenInstruction.h"
100#include "Common/CodeGenRegisters.h"
101#include "Common/CodeGenTarget.h"
102#include "Common/SubtargetFeatureInfo.h"
103#include "Common/Types.h"
104#include "llvm/ADT/CachedHashString.h"
105#include "llvm/ADT/PointerUnion.h"
106#include "llvm/ADT/STLExtras.h"
107#include "llvm/ADT/SmallPtrSet.h"
108#include "llvm/ADT/SmallVector.h"
109#include "llvm/ADT/StringExtras.h"
110#include "llvm/Support/CommandLine.h"
111#include "llvm/Support/Debug.h"
112#include "llvm/Support/ErrorHandling.h"
113#include "llvm/TableGen/Error.h"
114#include "llvm/TableGen/Record.h"
115#include "llvm/TableGen/StringMatcher.h"
116#include "llvm/TableGen/StringToOffsetTable.h"
117#include "llvm/TableGen/TableGenBackend.h"
118#include <cassert>
119#include <cctype>
120#include <forward_list>
121#include <map>
122#include <set>
123
124using namespace llvm;
125
126#define DEBUG_TYPE "asm-matcher-emitter"
127
128cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher");
129
130static cl::opt<std::string>
131 MatchPrefix("match-prefix", cl::init(Val: ""),
132 cl::desc("Only match instructions with the given prefix"),
133 cl::cat(AsmMatcherEmitterCat));
134
135namespace {
136class AsmMatcherInfo;
137
138// Register sets are used as keys in some second-order sets TableGen creates
139// when generating its data structures. This means that the order of two
140// RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
141// can even affect compiler output (at least seen in diagnostics produced when
142// all matches fail). So we use a type that sorts them consistently.
143typedef std::set<Record *, LessRecordByID> RegisterSet;
144
145class AsmMatcherEmitter {
146 RecordKeeper &Records;
147
148public:
149 AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
150
151 void run(raw_ostream &o);
152};
153
154/// ClassInfo - Helper class for storing the information about a particular
155/// class of operands which can be matched.
156struct ClassInfo {
157 enum ClassInfoKind {
158 /// Invalid kind, for use as a sentinel value.
159 Invalid = 0,
160
161 /// The class for a particular token.
162 Token,
163
164 /// The (first) register class, subsequent register classes are
165 /// RegisterClass0+1, and so on.
166 RegisterClass0,
167
168 /// The (first) user defined class, subsequent user defined classes are
169 /// UserClass0+1, and so on.
170 UserClass0 = 1 << 16
171 };
172
173 /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
174 /// N) for the Nth user defined class.
175 unsigned Kind;
176
177 /// SuperClasses - The super classes of this class. Note that for simplicities
178 /// sake user operands only record their immediate super class, while register
179 /// operands include all superclasses.
180 std::vector<ClassInfo *> SuperClasses;
181
182 /// Name - The full class name, suitable for use in an enum.
183 std::string Name;
184
185 /// ClassName - The unadorned generic name for this class (e.g., Token).
186 std::string ClassName;
187
188 /// ValueName - The name of the value this class represents; for a token this
189 /// is the literal token string, for an operand it is the TableGen class (or
190 /// empty if this is a derived class).
191 std::string ValueName;
192
193 /// PredicateMethod - The name of the operand method to test whether the
194 /// operand matches this class; this is not valid for Token or register kinds.
195 std::string PredicateMethod;
196
197 /// RenderMethod - The name of the operand method to add this operand to an
198 /// MCInst; this is not valid for Token or register kinds.
199 std::string RenderMethod;
200
201 /// ParserMethod - The name of the operand method to do a target specific
202 /// parsing on the operand.
203 std::string ParserMethod;
204
205 /// For register classes: the records for all the registers in this class.
206 RegisterSet Registers;
207
208 /// For custom match classes: the diagnostic kind for when the predicate
209 /// fails.
210 std::string DiagnosticType;
211
212 /// For custom match classes: the diagnostic string for when the predicate
213 /// fails.
214 std::string DiagnosticString;
215
216 /// Is this operand optional and not always required.
217 bool IsOptional;
218
219 /// DefaultMethod - The name of the method that returns the default operand
220 /// for optional operand
221 std::string DefaultMethod;
222
223public:
224 /// isRegisterClass() - Check if this is a register class.
225 bool isRegisterClass() const {
226 return Kind >= RegisterClass0 && Kind < UserClass0;
227 }
228
229 /// isUserClass() - Check if this is a user defined class.
230 bool isUserClass() const { return Kind >= UserClass0; }
231
232 /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
233 /// are related if they are in the same class hierarchy.
234 bool isRelatedTo(const ClassInfo &RHS) const {
235 // Tokens are only related to tokens.
236 if (Kind == Token || RHS.Kind == Token)
237 return Kind == Token && RHS.Kind == Token;
238
239 // Registers classes are only related to registers classes, and only if
240 // their intersection is non-empty.
241 if (isRegisterClass() || RHS.isRegisterClass()) {
242 if (!isRegisterClass() || !RHS.isRegisterClass())
243 return false;
244
245 std::vector<Record *> Tmp;
246 std::set_intersection(first1: Registers.begin(), last1: Registers.end(),
247 first2: RHS.Registers.begin(), last2: RHS.Registers.end(),
248 result: std::back_inserter(x&: Tmp), comp: LessRecordByID());
249
250 return !Tmp.empty();
251 }
252
253 // Otherwise we have two users operands; they are related if they are in the
254 // same class hierarchy.
255 //
256 // FIXME: This is an oversimplification, they should only be related if they
257 // intersect, however we don't have that information.
258 assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
259 const ClassInfo *Root = this;
260 while (!Root->SuperClasses.empty())
261 Root = Root->SuperClasses.front();
262
263 const ClassInfo *RHSRoot = &RHS;
264 while (!RHSRoot->SuperClasses.empty())
265 RHSRoot = RHSRoot->SuperClasses.front();
266
267 return Root == RHSRoot;
268 }
269
270 /// isSubsetOf - Test whether this class is a subset of \p RHS.
271 bool isSubsetOf(const ClassInfo &RHS) const {
272 // This is a subset of RHS if it is the same class...
273 if (this == &RHS)
274 return true;
275
276 // ... or if any of its super classes are a subset of RHS.
277 SmallVector<const ClassInfo *, 16> Worklist(SuperClasses.begin(),
278 SuperClasses.end());
279 SmallPtrSet<const ClassInfo *, 16> Visited;
280 while (!Worklist.empty()) {
281 auto *CI = Worklist.pop_back_val();
282 if (CI == &RHS)
283 return true;
284 for (auto *Super : CI->SuperClasses)
285 if (Visited.insert(Ptr: Super).second)
286 Worklist.push_back(Elt: Super);
287 }
288
289 return false;
290 }
291
292 int getTreeDepth() const {
293 int Depth = 0;
294 const ClassInfo *Root = this;
295 while (!Root->SuperClasses.empty()) {
296 Depth++;
297 Root = Root->SuperClasses.front();
298 }
299 return Depth;
300 }
301
302 const ClassInfo *findRoot() const {
303 const ClassInfo *Root = this;
304 while (!Root->SuperClasses.empty())
305 Root = Root->SuperClasses.front();
306 return Root;
307 }
308
309 /// Compare two classes. This does not produce a total ordering, but does
310 /// guarantee that subclasses are sorted before their parents, and that the
311 /// ordering is transitive.
312 bool operator<(const ClassInfo &RHS) const {
313 if (this == &RHS)
314 return false;
315
316 // First, enforce the ordering between the three different types of class.
317 // Tokens sort before registers, which sort before user classes.
318 if (Kind == Token) {
319 if (RHS.Kind != Token)
320 return true;
321 assert(RHS.Kind == Token);
322 } else if (isRegisterClass()) {
323 if (RHS.Kind == Token)
324 return false;
325 else if (RHS.isUserClass())
326 return true;
327 assert(RHS.isRegisterClass());
328 } else if (isUserClass()) {
329 if (!RHS.isUserClass())
330 return false;
331 assert(RHS.isUserClass());
332 } else {
333 llvm_unreachable("Unknown ClassInfoKind");
334 }
335
336 if (Kind == Token || isUserClass()) {
337 // Related tokens and user classes get sorted by depth in the inheritence
338 // tree (so that subclasses are before their parents).
339 if (isRelatedTo(RHS)) {
340 if (getTreeDepth() > RHS.getTreeDepth())
341 return true;
342 if (getTreeDepth() < RHS.getTreeDepth())
343 return false;
344 } else {
345 // Unrelated tokens and user classes are ordered by the name of their
346 // root nodes, so that there is a consistent ordering between
347 // unconnected trees.
348 return findRoot()->ValueName < RHS.findRoot()->ValueName;
349 }
350 } else if (isRegisterClass()) {
351 // For register sets, sort by number of registers. This guarantees that
352 // a set will always sort before all of it's strict supersets.
353 if (Registers.size() != RHS.Registers.size())
354 return Registers.size() < RHS.Registers.size();
355 } else {
356 llvm_unreachable("Unknown ClassInfoKind");
357 }
358
359 // FIXME: We should be able to just return false here, as we only need a
360 // partial order (we use stable sorts, so this is deterministic) and the
361 // name of a class shouldn't be significant. However, some of the backends
362 // accidentally rely on this behaviour, so it will have to stay like this
363 // until they are fixed.
364 return ValueName < RHS.ValueName;
365 }
366};
367
368class AsmVariantInfo {
369public:
370 StringRef RegisterPrefix;
371 StringRef TokenizingCharacters;
372 StringRef SeparatorCharacters;
373 StringRef BreakCharacters;
374 StringRef Name;
375 int AsmVariantNo;
376};
377
378bool getPreferSmallerInstructions(CodeGenTarget const &Target) {
379 return Target.getAsmParser()->getValueAsBit(FieldName: "PreferSmallerInstructions");
380}
381
382/// MatchableInfo - Helper class for storing the necessary information for an
383/// instruction or alias which is capable of being matched.
384struct MatchableInfo {
385 struct AsmOperand {
386 /// Token - This is the token that the operand came from.
387 StringRef Token;
388
389 /// The unique class instance this operand should match.
390 ClassInfo *Class;
391
392 /// The operand name this is, if anything.
393 StringRef SrcOpName;
394
395 /// The operand name this is, before renaming for tied operands.
396 StringRef OrigSrcOpName;
397
398 /// The suboperand index within SrcOpName, or -1 for the entire operand.
399 int SubOpIdx;
400
401 /// Whether the token is "isolated", i.e., it is preceded and followed
402 /// by separators.
403 bool IsIsolatedToken;
404
405 /// Register record if this token is singleton register.
406 Record *SingletonReg;
407
408 explicit AsmOperand(bool IsIsolatedToken, StringRef T)
409 : Token(T), Class(nullptr), SubOpIdx(-1),
410 IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {}
411 };
412
413 /// ResOperand - This represents a single operand in the result instruction
414 /// generated by the match. In cases (like addressing modes) where a single
415 /// assembler operand expands to multiple MCOperands, this represents the
416 /// single assembler operand, not the MCOperand.
417 struct ResOperand {
418 enum {
419 /// RenderAsmOperand - This represents an operand result that is
420 /// generated by calling the render method on the assembly operand. The
421 /// corresponding AsmOperand is specified by AsmOperandNum.
422 RenderAsmOperand,
423
424 /// TiedOperand - This represents a result operand that is a duplicate of
425 /// a previous result operand.
426 TiedOperand,
427
428 /// ImmOperand - This represents an immediate value that is dumped into
429 /// the operand.
430 ImmOperand,
431
432 /// RegOperand - This represents a fixed register that is dumped in.
433 RegOperand
434 } Kind;
435
436 /// Tuple containing the index of the (earlier) result operand that should
437 /// be copied from, as well as the indices of the corresponding (parsed)
438 /// operands in the asm string.
439 struct TiedOperandsTuple {
440 unsigned ResOpnd;
441 unsigned SrcOpnd1Idx;
442 unsigned SrcOpnd2Idx;
443 };
444
445 union {
446 /// This is the operand # in the AsmOperands list that this should be
447 /// copied from.
448 unsigned AsmOperandNum;
449
450 /// Description of tied operands.
451 TiedOperandsTuple TiedOperands;
452
453 /// ImmVal - This is the immediate value added to the instruction.
454 int64_t ImmVal;
455
456 /// Register - This is the register record.
457 Record *Register;
458 };
459
460 /// MINumOperands - The number of MCInst operands populated by this
461 /// operand.
462 unsigned MINumOperands;
463
464 static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
465 ResOperand X;
466 X.Kind = RenderAsmOperand;
467 X.AsmOperandNum = AsmOpNum;
468 X.MINumOperands = NumOperands;
469 return X;
470 }
471
472 static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1,
473 unsigned SrcOperand2) {
474 ResOperand X;
475 X.Kind = TiedOperand;
476 X.TiedOperands = {.ResOpnd: TiedOperandNum, .SrcOpnd1Idx: SrcOperand1, .SrcOpnd2Idx: SrcOperand2};
477 X.MINumOperands = 1;
478 return X;
479 }
480
481 static ResOperand getImmOp(int64_t Val) {
482 ResOperand X;
483 X.Kind = ImmOperand;
484 X.ImmVal = Val;
485 X.MINumOperands = 1;
486 return X;
487 }
488
489 static ResOperand getRegOp(Record *Reg) {
490 ResOperand X;
491 X.Kind = RegOperand;
492 X.Register = Reg;
493 X.MINumOperands = 1;
494 return X;
495 }
496 };
497
498 /// AsmVariantID - Target's assembly syntax variant no.
499 int AsmVariantID;
500
501 /// AsmString - The assembly string for this instruction (with variants
502 /// removed), e.g. "movsx $src, $dst".
503 std::string AsmString;
504
505 /// TheDef - This is the definition of the instruction or InstAlias that this
506 /// matchable came from.
507 Record *const TheDef;
508
509 // ResInstSize - The size of the resulting instruction for this matchable.
510 unsigned ResInstSize;
511
512 /// DefRec - This is the definition that it came from.
513 PointerUnion<const CodeGenInstruction *, const CodeGenInstAlias *> DefRec;
514
515 const CodeGenInstruction *getResultInst() const {
516 if (isa<const CodeGenInstruction *>(Val: DefRec))
517 return cast<const CodeGenInstruction *>(Val: DefRec);
518 return cast<const CodeGenInstAlias *>(Val: DefRec)->ResultInst;
519 }
520
521 /// ResOperands - This is the operand list that should be built for the result
522 /// MCInst.
523 SmallVector<ResOperand, 8> ResOperands;
524
525 /// Mnemonic - This is the first token of the matched instruction, its
526 /// mnemonic.
527 StringRef Mnemonic;
528
529 /// AsmOperands - The textual operands that this instruction matches,
530 /// annotated with a class and where in the OperandList they were defined.
531 /// This directly corresponds to the tokenized AsmString after the mnemonic is
532 /// removed.
533 SmallVector<AsmOperand, 8> AsmOperands;
534
535 /// Predicates - The required subtarget features to match this instruction.
536 SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;
537
538 /// ConversionFnKind - The enum value which is passed to the generated
539 /// convertToMCInst to convert parsed operands into an MCInst for this
540 /// function.
541 std::string ConversionFnKind;
542
543 /// If this instruction is deprecated in some form.
544 bool HasDeprecation = false;
545
546 /// If this is an alias, this is use to determine whether or not to using
547 /// the conversion function defined by the instruction's AsmMatchConverter
548 /// or to use the function generated by the alias.
549 bool UseInstAsmMatchConverter;
550
551 MatchableInfo(const CodeGenInstruction &CGI)
552 : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef),
553 ResInstSize(TheDef->getValueAsInt(FieldName: "Size")), DefRec(&CGI),
554 UseInstAsmMatchConverter(true) {}
555
556 MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
557 : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef),
558 ResInstSize(Alias->ResultInst->TheDef->getValueAsInt(FieldName: "Size")),
559 DefRec(Alias.release()), UseInstAsmMatchConverter(TheDef->getValueAsBit(
560 FieldName: "UseInstAsmMatchConverter")) {}
561
562 // Could remove this and the dtor if PointerUnion supported unique_ptr
563 // elements with a dynamic failure/assertion (like the one below) in the case
564 // where it was copied while being in an owning state.
565 MatchableInfo(const MatchableInfo &RHS)
566 : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString),
567 TheDef(RHS.TheDef), ResInstSize(RHS.ResInstSize), DefRec(RHS.DefRec),
568 ResOperands(RHS.ResOperands), Mnemonic(RHS.Mnemonic),
569 AsmOperands(RHS.AsmOperands), RequiredFeatures(RHS.RequiredFeatures),
570 ConversionFnKind(RHS.ConversionFnKind),
571 HasDeprecation(RHS.HasDeprecation),
572 UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) {
573 assert(!isa<const CodeGenInstAlias *>(DefRec));
574 }
575
576 ~MatchableInfo() {
577 delete dyn_cast_if_present<const CodeGenInstAlias *>(Val&: DefRec);
578 }
579
580 // Two-operand aliases clone from the main matchable, but mark the second
581 // operand as a tied operand of the first for purposes of the assembler.
582 void formTwoOperandAlias(StringRef Constraint);
583
584 void initialize(const AsmMatcherInfo &Info,
585 SmallPtrSetImpl<Record *> &SingletonRegisters,
586 AsmVariantInfo const &Variant, bool HasMnemonicFirst);
587
588 /// validate - Return true if this matchable is a valid thing to match against
589 /// and perform a bunch of validity checking.
590 bool validate(StringRef CommentDelimiter, bool IsAlias) const;
591
592 /// findAsmOperand - Find the AsmOperand with the specified name and
593 /// suboperand index.
594 int findAsmOperand(StringRef N, int SubOpIdx) const {
595 auto I = find_if(Range: AsmOperands, P: [&](const AsmOperand &Op) {
596 return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx;
597 });
598 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
599 }
600
601 /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
602 /// This does not check the suboperand index.
603 int findAsmOperandNamed(StringRef N, int LastIdx = -1) const {
604 auto I =
605 llvm::find_if(Range: llvm::drop_begin(RangeOrContainer: AsmOperands, N: LastIdx + 1),
606 P: [&](const AsmOperand &Op) { return Op.SrcOpName == N; });
607 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
608 }
609
610 int findAsmOperandOriginallyNamed(StringRef N) const {
611 auto I = find_if(Range: AsmOperands, P: [&](const AsmOperand &Op) {
612 return Op.OrigSrcOpName == N;
613 });
614 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
615 }
616
617 void buildInstructionResultOperands();
618 void buildAliasResultOperands(bool AliasConstraintsAreChecked);
619
620 /// shouldBeMatchedBefore - Compare two matchables for ordering.
621 bool shouldBeMatchedBefore(const MatchableInfo &RHS,
622 bool PreferSmallerInstructions) const {
623 // The primary comparator is the instruction mnemonic.
624 if (int Cmp = Mnemonic.compare_insensitive(RHS: RHS.Mnemonic))
625 return Cmp == -1;
626
627 // (Optionally) Order by the resultant instuctions size.
628 // eg. for ARM thumb instructions smaller encodings should be preferred.
629 if (PreferSmallerInstructions && ResInstSize != RHS.ResInstSize)
630 return ResInstSize < RHS.ResInstSize;
631
632 if (AsmOperands.size() != RHS.AsmOperands.size())
633 return AsmOperands.size() < RHS.AsmOperands.size();
634
635 // Compare lexicographically by operand. The matcher validates that other
636 // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
637 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
638 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
639 return true;
640 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
641 return false;
642 }
643
644 // For X86 AVX/AVX512 instructions, we prefer vex encoding because the
645 // vex encoding size is smaller. Since X86InstrSSE.td is included ahead
646 // of X86InstrAVX512.td, the AVX instruction ID is less than AVX512 ID.
647 // We use the ID to sort AVX instruction before AVX512 instruction in
648 // matching table. As well as InstAlias.
649 if (getResultInst()->TheDef->isSubClassOf(Name: "Instruction") &&
650 getResultInst()->TheDef->getValueAsBit(FieldName: "HasPositionOrder") &&
651 RHS.getResultInst()->TheDef->isSubClassOf(Name: "Instruction") &&
652 RHS.getResultInst()->TheDef->getValueAsBit(FieldName: "HasPositionOrder"))
653 return getResultInst()->TheDef->getID() <
654 RHS.getResultInst()->TheDef->getID();
655
656 // Give matches that require more features higher precedence. This is useful
657 // because we cannot define AssemblerPredicates with the negation of
658 // processor features. For example, ARM v6 "nop" may be either a HINT or
659 // MOV. With v6, we want to match HINT. The assembler has no way to
660 // predicate MOV under "NoV6", but HINT will always match first because it
661 // requires V6 while MOV does not.
662 if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
663 return RequiredFeatures.size() > RHS.RequiredFeatures.size();
664
665 return false;
666 }
667
668 /// couldMatchAmbiguouslyWith - Check whether this matchable could
669 /// ambiguously match the same set of operands as \p RHS (without being a
670 /// strictly superior match).
671 bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS,
672 bool PreferSmallerInstructions) const {
673 // The primary comparator is the instruction mnemonic.
674 if (Mnemonic != RHS.Mnemonic)
675 return false;
676
677 // Different variants can't conflict.
678 if (AsmVariantID != RHS.AsmVariantID)
679 return false;
680
681 // The size of instruction is unambiguous.
682 if (PreferSmallerInstructions && ResInstSize != RHS.ResInstSize)
683 return false;
684
685 // The number of operands is unambiguous.
686 if (AsmOperands.size() != RHS.AsmOperands.size())
687 return false;
688
689 // Otherwise, make sure the ordering of the two instructions is unambiguous
690 // by checking that either (a) a token or operand kind discriminates them,
691 // or (b) the ordering among equivalent kinds is consistent.
692
693 // Tokens and operand kinds are unambiguous (assuming a correct target
694 // specific parser).
695 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
696 if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
697 AsmOperands[i].Class->Kind == ClassInfo::Token)
698 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
699 *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
700 return false;
701
702 // Otherwise, this operand could commute if all operands are equivalent, or
703 // there is a pair of operands that compare less than and a pair that
704 // compare greater than.
705 bool HasLT = false, HasGT = false;
706 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
707 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
708 HasLT = true;
709 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
710 HasGT = true;
711 }
712
713 return HasLT == HasGT;
714 }
715
716 void dump() const;
717
718private:
719 void tokenizeAsmString(AsmMatcherInfo const &Info,
720 AsmVariantInfo const &Variant);
721 void addAsmOperand(StringRef Token, bool IsIsolatedToken = false);
722};
723
724struct OperandMatchEntry {
725 unsigned OperandMask;
726 const MatchableInfo *MI;
727 ClassInfo *CI;
728
729 static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
730 unsigned opMask) {
731 OperandMatchEntry X;
732 X.OperandMask = opMask;
733 X.CI = ci;
734 X.MI = mi;
735 return X;
736 }
737};
738
739class AsmMatcherInfo {
740public:
741 /// Tracked Records
742 RecordKeeper &Records;
743
744 /// The tablegen AsmParser record.
745 Record *AsmParser;
746
747 /// Target - The target information.
748 CodeGenTarget &Target;
749
750 /// The classes which are needed for matching.
751 std::forward_list<ClassInfo> Classes;
752
753 /// The information on the matchables to match.
754 std::vector<std::unique_ptr<MatchableInfo>> Matchables;
755
756 /// Info for custom matching operands by user defined methods.
757 std::vector<OperandMatchEntry> OperandMatchInfo;
758
759 /// Map of Register records to their class information.
760 typedef std::map<Record *, ClassInfo *, LessRecordByID> RegisterClassesTy;
761 RegisterClassesTy RegisterClasses;
762
763 /// Map of Predicate records to their subtarget information.
764 std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
765
766 /// Map of AsmOperandClass records to their class information.
767 std::map<Record *, ClassInfo *> AsmOperandClasses;
768
769 /// Map of RegisterClass records to their class information.
770 std::map<Record *, ClassInfo *> RegisterClassClasses;
771
772private:
773 /// Map of token to class information which has already been constructed.
774 std::map<std::string, ClassInfo *> TokenClasses;
775
776private:
777 /// getTokenClass - Lookup or create the class for the given token.
778 ClassInfo *getTokenClass(StringRef Token);
779
780 /// getOperandClass - Lookup or create the class for the given operand.
781 ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
782 int SubOpIdx);
783 ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
784
785 /// buildRegisterClasses - Build the ClassInfo* instances for register
786 /// classes.
787 void buildRegisterClasses(SmallPtrSetImpl<Record *> &SingletonRegisters);
788
789 /// buildOperandClasses - Build the ClassInfo* instances for user defined
790 /// operand classes.
791 void buildOperandClasses();
792
793 void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
794 unsigned AsmOpIdx);
795 void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
796 MatchableInfo::AsmOperand &Op);
797
798public:
799 AsmMatcherInfo(Record *AsmParser, CodeGenTarget &Target,
800 RecordKeeper &Records);
801
802 /// Construct the various tables used during matching.
803 void buildInfo();
804
805 /// buildOperandMatchInfo - Build the necessary information to handle user
806 /// defined operand parsing methods.
807 void buildOperandMatchInfo();
808
809 /// getSubtargetFeature - Lookup or create the subtarget feature info for the
810 /// given operand.
811 const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
812 assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
813 const auto &I = SubtargetFeatures.find(x: Def);
814 return I == SubtargetFeatures.end() ? nullptr : &I->second;
815 }
816
817 RecordKeeper &getRecords() const { return Records; }
818
819 bool hasOptionalOperands() const {
820 return any_of(Range: Classes,
821 P: [](const ClassInfo &Class) { return Class.IsOptional; });
822 }
823};
824
825} // end anonymous namespace
826
827#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
828LLVM_DUMP_METHOD void MatchableInfo::dump() const {
829 errs() << TheDef->getName() << " -- "
830 << "flattened:\"" << AsmString << "\"\n";
831
832 errs() << " variant: " << AsmVariantID << "\n";
833
834 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
835 const AsmOperand &Op = AsmOperands[i];
836 errs() << " op[" << i << "] = " << Op.Class->ClassName << " - ";
837 errs() << '\"' << Op.Token << "\"\n";
838 }
839}
840#endif
841
842static std::pair<StringRef, StringRef>
843parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
844 // Split via the '='.
845 std::pair<StringRef, StringRef> Ops = S.split(Separator: '=');
846 if (Ops.second == "")
847 PrintFatalError(ErrorLoc: Loc, Msg: "missing '=' in two-operand alias constraint");
848 // Trim whitespace and the leading '$' on the operand names.
849 size_t start = Ops.first.find_first_of(C: '$');
850 if (start == std::string::npos)
851 PrintFatalError(ErrorLoc: Loc, Msg: "expected '$' prefix on asm operand name");
852 Ops.first = Ops.first.slice(Start: start + 1, End: std::string::npos);
853 size_t end = Ops.first.find_last_of(Chars: " \t");
854 Ops.first = Ops.first.slice(Start: 0, End: end);
855 // Now the second operand.
856 start = Ops.second.find_first_of(C: '$');
857 if (start == std::string::npos)
858 PrintFatalError(ErrorLoc: Loc, Msg: "expected '$' prefix on asm operand name");
859 Ops.second = Ops.second.slice(Start: start + 1, End: std::string::npos);
860 end = Ops.second.find_last_of(Chars: " \t");
861 Ops.first = Ops.first.slice(Start: 0, End: end);
862 return Ops;
863}
864
865void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
866 // Figure out which operands are aliased and mark them as tied.
867 std::pair<StringRef, StringRef> Ops =
868 parseTwoOperandConstraint(S: Constraint, Loc: TheDef->getLoc());
869
870 // Find the AsmOperands that refer to the operands we're aliasing.
871 int SrcAsmOperand = findAsmOperandNamed(N: Ops.first);
872 int DstAsmOperand = findAsmOperandNamed(N: Ops.second);
873 if (SrcAsmOperand == -1)
874 PrintFatalError(ErrorLoc: TheDef->getLoc(),
875 Msg: "unknown source two-operand alias operand '" + Ops.first +
876 "'.");
877 if (DstAsmOperand == -1)
878 PrintFatalError(ErrorLoc: TheDef->getLoc(),
879 Msg: "unknown destination two-operand alias operand '" +
880 Ops.second + "'.");
881
882 // Find the ResOperand that refers to the operand we're aliasing away
883 // and update it to refer to the combined operand instead.
884 for (ResOperand &Op : ResOperands) {
885 if (Op.Kind == ResOperand::RenderAsmOperand &&
886 Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
887 Op.AsmOperandNum = DstAsmOperand;
888 break;
889 }
890 }
891 // Remove the AsmOperand for the alias operand.
892 AsmOperands.erase(CI: AsmOperands.begin() + SrcAsmOperand);
893 // Adjust the ResOperand references to any AsmOperands that followed
894 // the one we just deleted.
895 for (ResOperand &Op : ResOperands) {
896 switch (Op.Kind) {
897 default:
898 // Nothing to do for operands that don't reference AsmOperands.
899 break;
900 case ResOperand::RenderAsmOperand:
901 if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
902 --Op.AsmOperandNum;
903 break;
904 }
905 }
906}
907
908/// extractSingletonRegisterForAsmOperand - Extract singleton register,
909/// if present, from specified token.
910static void extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op,
911 const AsmMatcherInfo &Info,
912 StringRef RegisterPrefix) {
913 StringRef Tok = Op.Token;
914
915 // If this token is not an isolated token, i.e., it isn't separated from
916 // other tokens (e.g. with whitespace), don't interpret it as a register name.
917 if (!Op.IsIsolatedToken)
918 return;
919
920 if (RegisterPrefix.empty()) {
921 std::string LoweredTok = Tok.lower();
922 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(Name: LoweredTok))
923 Op.SingletonReg = Reg->TheDef;
924 return;
925 }
926
927 if (!Tok.starts_with(Prefix: RegisterPrefix))
928 return;
929
930 StringRef RegName = Tok.substr(Start: RegisterPrefix.size());
931 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(Name: RegName))
932 Op.SingletonReg = Reg->TheDef;
933
934 // If there is no register prefix (i.e. "%" in "%eax"), then this may
935 // be some random non-register token, just ignore it.
936}
937
938void MatchableInfo::initialize(const AsmMatcherInfo &Info,
939 SmallPtrSetImpl<Record *> &SingletonRegisters,
940 AsmVariantInfo const &Variant,
941 bool HasMnemonicFirst) {
942 AsmVariantID = Variant.AsmVariantNo;
943 AsmString = CodeGenInstruction::FlattenAsmStringVariants(
944 AsmString, Variant: Variant.AsmVariantNo);
945
946 tokenizeAsmString(Info, Variant);
947
948 // The first token of the instruction is the mnemonic, which must be a
949 // simple string, not a $foo variable or a singleton register.
950 if (AsmOperands.empty())
951 PrintFatalError(ErrorLoc: TheDef->getLoc(),
952 Msg: "Instruction '" + TheDef->getName() + "' has no tokens");
953
954 assert(!AsmOperands[0].Token.empty());
955 if (HasMnemonicFirst) {
956 Mnemonic = AsmOperands[0].Token;
957 if (Mnemonic[0] == '$')
958 PrintFatalError(ErrorLoc: TheDef->getLoc(),
959 Msg: "Invalid instruction mnemonic '" + Mnemonic + "'!");
960
961 // Remove the first operand, it is tracked in the mnemonic field.
962 AsmOperands.erase(CI: AsmOperands.begin());
963 } else if (AsmOperands[0].Token[0] != '$')
964 Mnemonic = AsmOperands[0].Token;
965
966 // Compute the require features.
967 for (Record *Predicate : TheDef->getValueAsListOfDefs(FieldName: "Predicates"))
968 if (const SubtargetFeatureInfo *Feature =
969 Info.getSubtargetFeature(Def: Predicate))
970 RequiredFeatures.push_back(Elt: Feature);
971
972 // Collect singleton registers, if used.
973 for (MatchableInfo::AsmOperand &Op : AsmOperands) {
974 extractSingletonRegisterForAsmOperand(Op, Info, RegisterPrefix: Variant.RegisterPrefix);
975 if (Record *Reg = Op.SingletonReg)
976 SingletonRegisters.insert(Ptr: Reg);
977 }
978
979 const RecordVal *DepMask = TheDef->getValue(Name: "DeprecatedFeatureMask");
980 if (!DepMask)
981 DepMask = TheDef->getValue(Name: "ComplexDeprecationPredicate");
982
983 HasDeprecation =
984 DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
985}
986
987/// Append an AsmOperand for the given substring of AsmString.
988void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) {
989 AsmOperands.push_back(Elt: AsmOperand(IsIsolatedToken, Token));
990}
991
992/// tokenizeAsmString - Tokenize a simplified assembly string.
993void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info,
994 AsmVariantInfo const &Variant) {
995 StringRef String = AsmString;
996 size_t Prev = 0;
997 bool InTok = false;
998 bool IsIsolatedToken = true;
999 for (size_t i = 0, e = String.size(); i != e; ++i) {
1000 char Char = String[i];
1001 if (Variant.BreakCharacters.contains(C: Char)) {
1002 if (InTok) {
1003 addAsmOperand(Token: String.slice(Start: Prev, End: i), IsIsolatedToken: false);
1004 Prev = i;
1005 IsIsolatedToken = false;
1006 }
1007 InTok = true;
1008 continue;
1009 }
1010 if (Variant.TokenizingCharacters.contains(C: Char)) {
1011 if (InTok) {
1012 addAsmOperand(Token: String.slice(Start: Prev, End: i), IsIsolatedToken);
1013 InTok = false;
1014 IsIsolatedToken = false;
1015 }
1016 addAsmOperand(Token: String.slice(Start: i, End: i + 1), IsIsolatedToken);
1017 Prev = i + 1;
1018 IsIsolatedToken = true;
1019 continue;
1020 }
1021 if (Variant.SeparatorCharacters.contains(C: Char)) {
1022 if (InTok) {
1023 addAsmOperand(Token: String.slice(Start: Prev, End: i), IsIsolatedToken);
1024 InTok = false;
1025 }
1026 Prev = i + 1;
1027 IsIsolatedToken = true;
1028 continue;
1029 }
1030
1031 switch (Char) {
1032 case '\\':
1033 if (InTok) {
1034 addAsmOperand(Token: String.slice(Start: Prev, End: i), IsIsolatedToken: false);
1035 InTok = false;
1036 IsIsolatedToken = false;
1037 }
1038 ++i;
1039 assert(i != String.size() && "Invalid quoted character");
1040 addAsmOperand(Token: String.slice(Start: i, End: i + 1), IsIsolatedToken);
1041 Prev = i + 1;
1042 IsIsolatedToken = false;
1043 break;
1044
1045 case '$': {
1046 if (InTok) {
1047 addAsmOperand(Token: String.slice(Start: Prev, End: i), IsIsolatedToken);
1048 InTok = false;
1049 IsIsolatedToken = false;
1050 }
1051
1052 // If this isn't "${", start new identifier looking like "$xxx"
1053 if (i + 1 == String.size() || String[i + 1] != '{') {
1054 Prev = i;
1055 break;
1056 }
1057
1058 size_t EndPos = String.find(C: '}', From: i);
1059 assert(EndPos != StringRef::npos &&
1060 "Missing brace in operand reference!");
1061 addAsmOperand(Token: String.slice(Start: i, End: EndPos + 1), IsIsolatedToken);
1062 Prev = EndPos + 1;
1063 i = EndPos;
1064 IsIsolatedToken = false;
1065 break;
1066 }
1067
1068 default:
1069 InTok = true;
1070 break;
1071 }
1072 }
1073 if (InTok && Prev != String.size())
1074 addAsmOperand(Token: String.substr(Start: Prev), IsIsolatedToken);
1075}
1076
1077bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const {
1078 // Reject matchables with no .s string.
1079 if (AsmString.empty())
1080 PrintFatalError(ErrorLoc: TheDef->getLoc(), Msg: "instruction with empty asm string");
1081
1082 // Reject any matchables with a newline in them, they should be marked
1083 // isCodeGenOnly if they are pseudo instructions.
1084 if (AsmString.find(c: '\n') != std::string::npos)
1085 PrintFatalError(ErrorLoc: TheDef->getLoc(),
1086 Msg: "multiline instruction is not valid for the asmparser, "
1087 "mark it isCodeGenOnly");
1088
1089 // Remove comments from the asm string. We know that the asmstring only
1090 // has one line.
1091 if (!CommentDelimiter.empty() &&
1092 StringRef(AsmString).contains(Other: CommentDelimiter))
1093 PrintFatalError(ErrorLoc: TheDef->getLoc(),
1094 Msg: "asmstring for instruction has comment character in it, "
1095 "mark it isCodeGenOnly");
1096
1097 // Reject matchables with operand modifiers, these aren't something we can
1098 // handle, the target should be refactored to use operands instead of
1099 // modifiers.
1100 //
1101 // Also, check for instructions which reference the operand multiple times,
1102 // if they don't define a custom AsmMatcher: this implies a constraint that
1103 // the built-in matching code would not honor.
1104 std::set<std::string> OperandNames;
1105 for (const AsmOperand &Op : AsmOperands) {
1106 StringRef Tok = Op.Token;
1107 if (Tok[0] == '$' && Tok.contains(C: ':'))
1108 PrintFatalError(
1109 ErrorLoc: TheDef->getLoc(),
1110 Msg: "matchable with operand modifier '" + Tok +
1111 "' not supported by asm matcher. Mark isCodeGenOnly!");
1112 // Verify that any operand is only mentioned once.
1113 // We reject aliases and ignore instructions for now.
1114 if (!IsAlias && TheDef->getValueAsString(FieldName: "AsmMatchConverter").empty() &&
1115 Tok[0] == '$' && !OperandNames.insert(x: std::string(Tok)).second) {
1116 LLVM_DEBUG({
1117 errs() << "warning: '" << TheDef->getName() << "': "
1118 << "ignoring instruction with tied operand '" << Tok << "'\n";
1119 });
1120 return false;
1121 }
1122 }
1123
1124 return true;
1125}
1126
1127static std::string getEnumNameForToken(StringRef Str) {
1128 std::string Res;
1129
1130 for (char C : Str) {
1131 switch (C) {
1132 case '*':
1133 Res += "_STAR_";
1134 break;
1135 case '%':
1136 Res += "_PCT_";
1137 break;
1138 case ':':
1139 Res += "_COLON_";
1140 break;
1141 case '!':
1142 Res += "_EXCLAIM_";
1143 break;
1144 case '.':
1145 Res += "_DOT_";
1146 break;
1147 case '<':
1148 Res += "_LT_";
1149 break;
1150 case '>':
1151 Res += "_GT_";
1152 break;
1153 case '-':
1154 Res += "_MINUS_";
1155 break;
1156 case '#':
1157 Res += "_HASH_";
1158 break;
1159 default:
1160 if (isAlnum(C))
1161 Res += C;
1162 else
1163 Res += "_" + utostr(X: (unsigned)C) + "_";
1164 }
1165 }
1166
1167 return Res;
1168}
1169
1170ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
1171 ClassInfo *&Entry = TokenClasses[std::string(Token)];
1172
1173 if (!Entry) {
1174 Classes.emplace_front();
1175 Entry = &Classes.front();
1176 Entry->Kind = ClassInfo::Token;
1177 Entry->ClassName = "Token";
1178 Entry->Name = "MCK_" + getEnumNameForToken(Str: Token);
1179 Entry->ValueName = std::string(Token);
1180 Entry->PredicateMethod = "<invalid>";
1181 Entry->RenderMethod = "<invalid>";
1182 Entry->ParserMethod = "";
1183 Entry->DiagnosticType = "";
1184 Entry->IsOptional = false;
1185 Entry->DefaultMethod = "<invalid>";
1186 }
1187
1188 return Entry;
1189}
1190
1191ClassInfo *
1192AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
1193 int SubOpIdx) {
1194 Record *Rec = OI.Rec;
1195 if (SubOpIdx != -1)
1196 Rec = cast<DefInit>(Val: OI.MIOperandInfo->getArg(Num: SubOpIdx))->getDef();
1197 return getOperandClass(Rec, SubOpIdx);
1198}
1199
1200ClassInfo *AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
1201 if (Rec->isSubClassOf(Name: "RegisterOperand")) {
1202 // RegisterOperand may have an associated ParserMatchClass. If it does,
1203 // use it, else just fall back to the underlying register class.
1204 const RecordVal *R = Rec->getValue(Name: "ParserMatchClass");
1205 if (!R || !R->getValue())
1206 PrintFatalError(ErrorLoc: Rec->getLoc(),
1207 Msg: "Record `" + Rec->getName() +
1208 "' does not have a ParserMatchClass!\n");
1209
1210 if (DefInit *DI = dyn_cast<DefInit>(Val: R->getValue())) {
1211 Record *MatchClass = DI->getDef();
1212 if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1213 return CI;
1214 }
1215
1216 // No custom match class. Just use the register class.
1217 Record *ClassRec = Rec->getValueAsDef(FieldName: "RegClass");
1218 if (!ClassRec)
1219 PrintFatalError(ErrorLoc: Rec->getLoc(),
1220 Msg: "RegisterOperand `" + Rec->getName() +
1221 "' has no associated register class!\n");
1222 if (ClassInfo *CI = RegisterClassClasses[ClassRec])
1223 return CI;
1224 PrintFatalError(ErrorLoc: Rec->getLoc(), Msg: "register class has no class info!");
1225 }
1226
1227 if (Rec->isSubClassOf(Name: "RegisterClass")) {
1228 if (ClassInfo *CI = RegisterClassClasses[Rec])
1229 return CI;
1230 PrintFatalError(ErrorLoc: Rec->getLoc(), Msg: "register class has no class info!");
1231 }
1232
1233 if (!Rec->isSubClassOf(Name: "Operand"))
1234 PrintFatalError(ErrorLoc: Rec->getLoc(),
1235 Msg: "Operand `" + Rec->getName() +
1236 "' does not derive from class Operand!\n");
1237 Record *MatchClass = Rec->getValueAsDef(FieldName: "ParserMatchClass");
1238 if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1239 return CI;
1240
1241 PrintFatalError(ErrorLoc: Rec->getLoc(), Msg: "operand has no match class!");
1242}
1243
1244struct LessRegisterSet {
1245 bool operator()(const RegisterSet &LHS, const RegisterSet &RHS) const {
1246 // std::set<T> defines its own compariso "operator<", but it
1247 // performs a lexicographical comparison by T's innate comparison
1248 // for some reason. We don't want non-deterministic pointer
1249 // comparisons so use this instead.
1250 return std::lexicographical_compare(LHS.begin(), LHS.end(), RHS.begin(),
1251 RHS.end(), LessRecordByID());
1252 }
1253};
1254
1255void AsmMatcherInfo::buildRegisterClasses(
1256 SmallPtrSetImpl<Record *> &SingletonRegisters) {
1257 const auto &Registers = Target.getRegBank().getRegisters();
1258 auto &RegClassList = Target.getRegBank().getRegClasses();
1259
1260 typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
1261
1262 // The register sets used for matching.
1263 RegisterSetSet RegisterSets;
1264
1265 // Gather the defined sets.
1266 for (const CodeGenRegisterClass &RC : RegClassList)
1267 RegisterSets.insert(
1268 x: RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));
1269
1270 // Add any required singleton sets.
1271 for (Record *Rec : SingletonRegisters) {
1272 RegisterSets.insert(x: RegisterSet(&Rec, &Rec + 1));
1273 }
1274
1275 // Introduce derived sets where necessary (when a register does not determine
1276 // a unique register set class), and build the mapping of registers to the set
1277 // they should classify to.
1278 std::map<Record *, RegisterSet> RegisterMap;
1279 for (const CodeGenRegister &CGR : Registers) {
1280 // Compute the intersection of all sets containing this register.
1281 RegisterSet ContainingSet;
1282
1283 for (const RegisterSet &RS : RegisterSets) {
1284 if (!RS.count(x: CGR.TheDef))
1285 continue;
1286
1287 if (ContainingSet.empty()) {
1288 ContainingSet = RS;
1289 continue;
1290 }
1291
1292 RegisterSet Tmp;
1293 std::set_intersection(first1: ContainingSet.begin(), last1: ContainingSet.end(),
1294 first2: RS.begin(), last2: RS.end(),
1295 result: std::inserter(x&: Tmp, i: Tmp.begin()), comp: LessRecordByID());
1296 ContainingSet = std::move(Tmp);
1297 }
1298
1299 if (!ContainingSet.empty()) {
1300 RegisterSets.insert(x: ContainingSet);
1301 RegisterMap.insert(x: std::pair(CGR.TheDef, ContainingSet));
1302 }
1303 }
1304
1305 // Construct the register classes.
1306 std::map<RegisterSet, ClassInfo *, LessRegisterSet> RegisterSetClasses;
1307 unsigned Index = 0;
1308 for (const RegisterSet &RS : RegisterSets) {
1309 Classes.emplace_front();
1310 ClassInfo *CI = &Classes.front();
1311 CI->Kind = ClassInfo::RegisterClass0 + Index;
1312 CI->ClassName = "Reg" + utostr(X: Index);
1313 CI->Name = "MCK_Reg" + utostr(X: Index);
1314 CI->ValueName = "";
1315 CI->PredicateMethod = ""; // unused
1316 CI->RenderMethod = "addRegOperands";
1317 CI->Registers = RS;
1318 // FIXME: diagnostic type.
1319 CI->DiagnosticType = "";
1320 CI->IsOptional = false;
1321 CI->DefaultMethod = ""; // unused
1322 RegisterSetClasses.insert(x: std::pair(RS, CI));
1323 ++Index;
1324 }
1325
1326 // Find the superclasses; we could compute only the subgroup lattice edges,
1327 // but there isn't really a point.
1328 for (const RegisterSet &RS : RegisterSets) {
1329 ClassInfo *CI = RegisterSetClasses[RS];
1330 for (const RegisterSet &RS2 : RegisterSets)
1331 if (RS != RS2 && std::includes(first1: RS2.begin(), last1: RS2.end(), first2: RS.begin(),
1332 last2: RS.end(), comp: LessRecordByID()))
1333 CI->SuperClasses.push_back(x: RegisterSetClasses[RS2]);
1334 }
1335
1336 // Name the register classes which correspond to a user defined RegisterClass.
1337 for (const CodeGenRegisterClass &RC : RegClassList) {
1338 // Def will be NULL for non-user defined register classes.
1339 Record *Def = RC.getDef();
1340 if (!Def)
1341 continue;
1342 ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
1343 RC.getOrder().end())];
1344 if (CI->ValueName.empty()) {
1345 CI->ClassName = RC.getName();
1346 CI->Name = "MCK_" + RC.getName();
1347 CI->ValueName = RC.getName();
1348 } else
1349 CI->ValueName = CI->ValueName + "," + RC.getName();
1350
1351 Init *DiagnosticType = Def->getValueInit(FieldName: "DiagnosticType");
1352 if (StringInit *SI = dyn_cast<StringInit>(Val: DiagnosticType))
1353 CI->DiagnosticType = std::string(SI->getValue());
1354
1355 Init *DiagnosticString = Def->getValueInit(FieldName: "DiagnosticString");
1356 if (StringInit *SI = dyn_cast<StringInit>(Val: DiagnosticString))
1357 CI->DiagnosticString = std::string(SI->getValue());
1358
1359 // If we have a diagnostic string but the diagnostic type is not specified
1360 // explicitly, create an anonymous diagnostic type.
1361 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1362 CI->DiagnosticType = RC.getName();
1363
1364 RegisterClassClasses.insert(x: std::pair(Def, CI));
1365 }
1366
1367 // Populate the map for individual registers.
1368 for (auto &It : RegisterMap)
1369 RegisterClasses[It.first] = RegisterSetClasses[It.second];
1370
1371 // Name the register classes which correspond to singleton registers.
1372 for (Record *Rec : SingletonRegisters) {
1373 ClassInfo *CI = RegisterClasses[Rec];
1374 assert(CI && "Missing singleton register class info!");
1375
1376 if (CI->ValueName.empty()) {
1377 CI->ClassName = std::string(Rec->getName());
1378 CI->Name = "MCK_" + Rec->getName().str();
1379 CI->ValueName = std::string(Rec->getName());
1380 } else
1381 CI->ValueName = CI->ValueName + "," + Rec->getName().str();
1382 }
1383}
1384
1385void AsmMatcherInfo::buildOperandClasses() {
1386 std::vector<Record *> AsmOperands =
1387 Records.getAllDerivedDefinitions(ClassName: "AsmOperandClass");
1388
1389 // Pre-populate AsmOperandClasses map.
1390 for (Record *Rec : AsmOperands) {
1391 Classes.emplace_front();
1392 AsmOperandClasses[Rec] = &Classes.front();
1393 }
1394
1395 unsigned Index = 0;
1396 for (Record *Rec : AsmOperands) {
1397 ClassInfo *CI = AsmOperandClasses[Rec];
1398 CI->Kind = ClassInfo::UserClass0 + Index;
1399
1400 ListInit *Supers = Rec->getValueAsListInit(FieldName: "SuperClasses");
1401 for (Init *I : Supers->getValues()) {
1402 DefInit *DI = dyn_cast<DefInit>(Val: I);
1403 if (!DI) {
1404 PrintError(ErrorLoc: Rec->getLoc(), Msg: "Invalid super class reference!");
1405 continue;
1406 }
1407
1408 ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1409 if (!SC)
1410 PrintError(ErrorLoc: Rec->getLoc(), Msg: "Invalid super class reference!");
1411 else
1412 CI->SuperClasses.push_back(x: SC);
1413 }
1414 CI->ClassName = std::string(Rec->getValueAsString(FieldName: "Name"));
1415 CI->Name = "MCK_" + CI->ClassName;
1416 CI->ValueName = std::string(Rec->getName());
1417
1418 // Get or construct the predicate method name.
1419 Init *PMName = Rec->getValueInit(FieldName: "PredicateMethod");
1420 if (StringInit *SI = dyn_cast<StringInit>(Val: PMName)) {
1421 CI->PredicateMethod = std::string(SI->getValue());
1422 } else {
1423 assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
1424 CI->PredicateMethod = "is" + CI->ClassName;
1425 }
1426
1427 // Get or construct the render method name.
1428 Init *RMName = Rec->getValueInit(FieldName: "RenderMethod");
1429 if (StringInit *SI = dyn_cast<StringInit>(Val: RMName)) {
1430 CI->RenderMethod = std::string(SI->getValue());
1431 } else {
1432 assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
1433 CI->RenderMethod = "add" + CI->ClassName + "Operands";
1434 }
1435
1436 // Get the parse method name or leave it as empty.
1437 Init *PRMName = Rec->getValueInit(FieldName: "ParserMethod");
1438 if (StringInit *SI = dyn_cast<StringInit>(Val: PRMName))
1439 CI->ParserMethod = std::string(SI->getValue());
1440
1441 // Get the diagnostic type and string or leave them as empty.
1442 Init *DiagnosticType = Rec->getValueInit(FieldName: "DiagnosticType");
1443 if (StringInit *SI = dyn_cast<StringInit>(Val: DiagnosticType))
1444 CI->DiagnosticType = std::string(SI->getValue());
1445 Init *DiagnosticString = Rec->getValueInit(FieldName: "DiagnosticString");
1446 if (StringInit *SI = dyn_cast<StringInit>(Val: DiagnosticString))
1447 CI->DiagnosticString = std::string(SI->getValue());
1448 // If we have a DiagnosticString, we need a DiagnosticType for use within
1449 // the matcher.
1450 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1451 CI->DiagnosticType = CI->ClassName;
1452
1453 Init *IsOptional = Rec->getValueInit(FieldName: "IsOptional");
1454 if (BitInit *BI = dyn_cast<BitInit>(Val: IsOptional))
1455 CI->IsOptional = BI->getValue();
1456
1457 // Get or construct the default method name.
1458 Init *DMName = Rec->getValueInit(FieldName: "DefaultMethod");
1459 if (StringInit *SI = dyn_cast<StringInit>(Val: DMName)) {
1460 CI->DefaultMethod = std::string(SI->getValue());
1461 } else {
1462 assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!");
1463 CI->DefaultMethod = "default" + CI->ClassName + "Operands";
1464 }
1465
1466 ++Index;
1467 }
1468}
1469
1470AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, CodeGenTarget &target,
1471 RecordKeeper &records)
1472 : Records(records), AsmParser(asmParser), Target(target) {}
1473
1474/// buildOperandMatchInfo - Build the necessary information to handle user
1475/// defined operand parsing methods.
1476void AsmMatcherInfo::buildOperandMatchInfo() {
1477
1478 /// Map containing a mask with all operands indices that can be found for
1479 /// that class inside a instruction.
1480 typedef std::map<ClassInfo *, unsigned, deref<std::less<>>> OpClassMaskTy;
1481 OpClassMaskTy OpClassMask;
1482
1483 bool CallCustomParserForAllOperands =
1484 AsmParser->getValueAsBit(FieldName: "CallCustomParserForAllOperands");
1485 for (const auto &MI : Matchables) {
1486 OpClassMask.clear();
1487
1488 // Keep track of all operands of this instructions which belong to the
1489 // same class.
1490 unsigned NumOptionalOps = 0;
1491 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
1492 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
1493 if (CallCustomParserForAllOperands || !Op.Class->ParserMethod.empty()) {
1494 unsigned &OperandMask = OpClassMask[Op.Class];
1495 OperandMask |= maskTrailingOnes<unsigned>(N: NumOptionalOps + 1)
1496 << (i - NumOptionalOps);
1497 }
1498 if (Op.Class->IsOptional)
1499 ++NumOptionalOps;
1500 }
1501
1502 // Generate operand match info for each mnemonic/operand class pair.
1503 for (const auto &OCM : OpClassMask) {
1504 unsigned OpMask = OCM.second;
1505 ClassInfo *CI = OCM.first;
1506 OperandMatchInfo.push_back(
1507 x: OperandMatchEntry::create(mi: MI.get(), ci: CI, opMask: OpMask));
1508 }
1509 }
1510}
1511
1512void AsmMatcherInfo::buildInfo() {
1513 // Build information about all of the AssemblerPredicates.
1514 const std::vector<std::pair<Record *, SubtargetFeatureInfo>>
1515 &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records);
1516 SubtargetFeatures.insert(first: SubtargetFeaturePairs.begin(),
1517 last: SubtargetFeaturePairs.end());
1518#ifndef NDEBUG
1519 for (const auto &Pair : SubtargetFeatures)
1520 LLVM_DEBUG(Pair.second.dump());
1521#endif // NDEBUG
1522
1523 bool HasMnemonicFirst = AsmParser->getValueAsBit(FieldName: "HasMnemonicFirst");
1524 bool ReportMultipleNearMisses =
1525 AsmParser->getValueAsBit(FieldName: "ReportMultipleNearMisses");
1526
1527 // Parse the instructions; we need to do this first so that we can gather the
1528 // singleton register classes.
1529 SmallPtrSet<Record *, 16> SingletonRegisters;
1530 unsigned VariantCount = Target.getAsmParserVariantCount();
1531 for (unsigned VC = 0; VC != VariantCount; ++VC) {
1532 Record *AsmVariant = Target.getAsmParserVariant(i: VC);
1533 StringRef CommentDelimiter =
1534 AsmVariant->getValueAsString(FieldName: "CommentDelimiter");
1535 AsmVariantInfo Variant;
1536 Variant.RegisterPrefix = AsmVariant->getValueAsString(FieldName: "RegisterPrefix");
1537 Variant.TokenizingCharacters =
1538 AsmVariant->getValueAsString(FieldName: "TokenizingCharacters");
1539 Variant.SeparatorCharacters =
1540 AsmVariant->getValueAsString(FieldName: "SeparatorCharacters");
1541 Variant.BreakCharacters = AsmVariant->getValueAsString(FieldName: "BreakCharacters");
1542 Variant.Name = AsmVariant->getValueAsString(FieldName: "Name");
1543 Variant.AsmVariantNo = AsmVariant->getValueAsInt(FieldName: "Variant");
1544
1545 for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) {
1546
1547 // If the tblgen -match-prefix option is specified (for tblgen hackers),
1548 // filter the set of instructions we consider.
1549 if (!StringRef(CGI->TheDef->getName()).starts_with(Prefix: MatchPrefix))
1550 continue;
1551
1552 // Ignore "codegen only" instructions.
1553 if (CGI->TheDef->getValueAsBit(FieldName: "isCodeGenOnly"))
1554 continue;
1555
1556 // Ignore instructions for different instructions
1557 StringRef V = CGI->TheDef->getValueAsString(FieldName: "AsmVariantName");
1558 if (!V.empty() && V != Variant.Name)
1559 continue;
1560
1561 auto II = std::make_unique<MatchableInfo>(args: *CGI);
1562
1563 II->initialize(Info: *this, SingletonRegisters, Variant, HasMnemonicFirst);
1564
1565 // Ignore instructions which shouldn't be matched and diagnose invalid
1566 // instruction definitions with an error.
1567 if (!II->validate(CommentDelimiter, IsAlias: false))
1568 continue;
1569
1570 Matchables.push_back(x: std::move(II));
1571 }
1572
1573 // Parse all of the InstAlias definitions and stick them in the list of
1574 // matchables.
1575 std::vector<Record *> AllInstAliases =
1576 Records.getAllDerivedDefinitions(ClassName: "InstAlias");
1577 for (Record *InstAlias : AllInstAliases) {
1578 auto Alias = std::make_unique<CodeGenInstAlias>(args&: InstAlias, args&: Target);
1579
1580 // If the tblgen -match-prefix option is specified (for tblgen hackers),
1581 // filter the set of instruction aliases we consider, based on the target
1582 // instruction.
1583 if (!StringRef(Alias->ResultInst->TheDef->getName())
1584 .starts_with(Prefix: MatchPrefix))
1585 continue;
1586
1587 StringRef V = Alias->TheDef->getValueAsString(FieldName: "AsmVariantName");
1588 if (!V.empty() && V != Variant.Name)
1589 continue;
1590
1591 auto II = std::make_unique<MatchableInfo>(args: std::move(Alias));
1592
1593 II->initialize(Info: *this, SingletonRegisters, Variant, HasMnemonicFirst);
1594
1595 // Validate the alias definitions.
1596 II->validate(CommentDelimiter, IsAlias: true);
1597
1598 Matchables.push_back(x: std::move(II));
1599 }
1600 }
1601
1602 // Build info for the register classes.
1603 buildRegisterClasses(SingletonRegisters);
1604
1605 // Build info for the user defined assembly operand classes.
1606 buildOperandClasses();
1607
1608 // Build the information about matchables, now that we have fully formed
1609 // classes.
1610 std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
1611 for (auto &II : Matchables) {
1612 // Parse the tokens after the mnemonic.
1613 // Note: buildInstructionOperandReference may insert new AsmOperands, so
1614 // don't precompute the loop bound.
1615 for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1616 MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1617 StringRef Token = Op.Token;
1618
1619 // Check for singleton registers.
1620 if (Record *RegRecord = Op.SingletonReg) {
1621 Op.Class = RegisterClasses[RegRecord];
1622 assert(Op.Class && Op.Class->Registers.size() == 1 &&
1623 "Unexpected class for singleton register");
1624 continue;
1625 }
1626
1627 // Check for simple tokens.
1628 if (Token[0] != '$') {
1629 Op.Class = getTokenClass(Token);
1630 continue;
1631 }
1632
1633 if (Token.size() > 1 && isdigit(Token[1])) {
1634 Op.Class = getTokenClass(Token);
1635 continue;
1636 }
1637
1638 // Otherwise this is an operand reference.
1639 StringRef OperandName;
1640 if (Token[1] == '{')
1641 OperandName = Token.substr(Start: 2, N: Token.size() - 3);
1642 else
1643 OperandName = Token.substr(Start: 1);
1644
1645 if (isa<const CodeGenInstruction *>(Val: II->DefRec))
1646 buildInstructionOperandReference(II: II.get(), OpName: OperandName, AsmOpIdx: i);
1647 else
1648 buildAliasOperandReference(II: II.get(), OpName: OperandName, Op);
1649 }
1650
1651 if (isa<const CodeGenInstruction *>(Val: II->DefRec)) {
1652 II->buildInstructionResultOperands();
1653 // If the instruction has a two-operand alias, build up the
1654 // matchable here. We'll add them in bulk at the end to avoid
1655 // confusing this loop.
1656 StringRef Constraint =
1657 II->TheDef->getValueAsString(FieldName: "TwoOperandAliasConstraint");
1658 if (Constraint != "") {
1659 // Start by making a copy of the original matchable.
1660 auto AliasII = std::make_unique<MatchableInfo>(args&: *II);
1661
1662 // Adjust it to be a two-operand alias.
1663 AliasII->formTwoOperandAlias(Constraint);
1664
1665 // Add the alias to the matchables list.
1666 NewMatchables.push_back(x: std::move(AliasII));
1667 }
1668 } else
1669 // FIXME: The tied operands checking is not yet integrated with the
1670 // framework for reporting multiple near misses. To prevent invalid
1671 // formats from being matched with an alias if a tied-operands check
1672 // would otherwise have disallowed it, we just disallow such constructs
1673 // in TableGen completely.
1674 II->buildAliasResultOperands(AliasConstraintsAreChecked: !ReportMultipleNearMisses);
1675 }
1676 if (!NewMatchables.empty())
1677 Matchables.insert(position: Matchables.end(),
1678 first: std::make_move_iterator(i: NewMatchables.begin()),
1679 last: std::make_move_iterator(i: NewMatchables.end()));
1680
1681 // Process token alias definitions and set up the associated superclass
1682 // information.
1683 std::vector<Record *> AllTokenAliases =
1684 Records.getAllDerivedDefinitions(ClassName: "TokenAlias");
1685 for (Record *Rec : AllTokenAliases) {
1686 ClassInfo *FromClass = getTokenClass(Token: Rec->getValueAsString(FieldName: "FromToken"));
1687 ClassInfo *ToClass = getTokenClass(Token: Rec->getValueAsString(FieldName: "ToToken"));
1688 if (FromClass == ToClass)
1689 PrintFatalError(ErrorLoc: Rec->getLoc(),
1690 Msg: "error: Destination value identical to source value.");
1691 FromClass->SuperClasses.push_back(x: ToClass);
1692 }
1693
1694 // Reorder classes so that classes precede super classes.
1695 Classes.sort();
1696
1697#ifdef EXPENSIVE_CHECKS
1698 // Verify that the table is sorted and operator < works transitively.
1699 for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) {
1700 for (auto J = I; J != E; ++J) {
1701 assert(!(*J < *I));
1702 assert(I == J || !J->isSubsetOf(*I));
1703 }
1704 }
1705#endif
1706}
1707
1708/// buildInstructionOperandReference - The specified operand is a reference to a
1709/// named operand such as $src. Resolve the Class and OperandInfo pointers.
1710void AsmMatcherInfo::buildInstructionOperandReference(MatchableInfo *II,
1711 StringRef OperandName,
1712 unsigned AsmOpIdx) {
1713 const CodeGenInstruction &CGI = *cast<const CodeGenInstruction *>(Val&: II->DefRec);
1714 const CGIOperandList &Operands = CGI.Operands;
1715 MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1716
1717 // Map this token to an operand.
1718 unsigned Idx;
1719 if (!Operands.hasOperandNamed(Name: OperandName, OpIdx&: Idx))
1720 PrintFatalError(ErrorLoc: II->TheDef->getLoc(),
1721 Msg: "error: unable to find operand: '" + OperandName + "'");
1722
1723 // If the instruction operand has multiple suboperands, but the parser
1724 // match class for the asm operand is still the default "ImmAsmOperand",
1725 // then handle each suboperand separately.
1726 if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1727 Record *Rec = Operands[Idx].Rec;
1728 assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1729 Record *MatchClass = Rec->getValueAsDef(FieldName: "ParserMatchClass");
1730 if (MatchClass && MatchClass->getValueAsString(FieldName: "Name") == "Imm") {
1731 // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1732 StringRef Token = Op->Token; // save this in case Op gets moved
1733 for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1734 MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token);
1735 NewAsmOp.SubOpIdx = SI;
1736 II->AsmOperands.insert(I: II->AsmOperands.begin() + AsmOpIdx + SI,
1737 Elt: NewAsmOp);
1738 }
1739 // Replace Op with first suboperand.
1740 Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1741 Op->SubOpIdx = 0;
1742 }
1743 }
1744
1745 // Set up the operand class.
1746 Op->Class = getOperandClass(OI: Operands[Idx], SubOpIdx: Op->SubOpIdx);
1747 Op->OrigSrcOpName = OperandName;
1748
1749 // If the named operand is tied, canonicalize it to the untied operand.
1750 // For example, something like:
1751 // (outs GPR:$dst), (ins GPR:$src)
1752 // with an asmstring of
1753 // "inc $src"
1754 // we want to canonicalize to:
1755 // "inc $dst"
1756 // so that we know how to provide the $dst operand when filling in the result.
1757 int OITied = -1;
1758 if (Operands[Idx].MINumOperands == 1)
1759 OITied = Operands[Idx].getTiedRegister();
1760 if (OITied != -1) {
1761 // The tied operand index is an MIOperand index, find the operand that
1762 // contains it.
1763 std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(Op: OITied);
1764 OperandName = Operands[Idx.first].Name;
1765 Op->SubOpIdx = Idx.second;
1766 }
1767
1768 Op->SrcOpName = OperandName;
1769}
1770
1771/// buildAliasOperandReference - When parsing an operand reference out of the
1772/// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1773/// operand reference is by looking it up in the result pattern definition.
1774void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
1775 StringRef OperandName,
1776 MatchableInfo::AsmOperand &Op) {
1777 const CodeGenInstAlias &CGA = *cast<const CodeGenInstAlias *>(Val&: II->DefRec);
1778
1779 // Set up the operand class.
1780 for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1781 if (CGA.ResultOperands[i].isRecord() &&
1782 CGA.ResultOperands[i].getName() == OperandName) {
1783 // It's safe to go with the first one we find, because CodeGenInstAlias
1784 // validates that all operands with the same name have the same record.
1785 Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1786 // Use the match class from the Alias definition, not the
1787 // destination instruction, as we may have an immediate that's
1788 // being munged by the match class.
1789 Op.Class =
1790 getOperandClass(Rec: CGA.ResultOperands[i].getRecord(), SubOpIdx: Op.SubOpIdx);
1791 Op.SrcOpName = OperandName;
1792 Op.OrigSrcOpName = OperandName;
1793 return;
1794 }
1795
1796 PrintFatalError(ErrorLoc: II->TheDef->getLoc(),
1797 Msg: "error: unable to find operand: '" + OperandName + "'");
1798}
1799
1800void MatchableInfo::buildInstructionResultOperands() {
1801 const CodeGenInstruction *ResultInst = getResultInst();
1802
1803 // Loop over all operands of the result instruction, determining how to
1804 // populate them.
1805 for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) {
1806 // If this is a tied operand, just copy from the previously handled operand.
1807 int TiedOp = -1;
1808 if (OpInfo.MINumOperands == 1)
1809 TiedOp = OpInfo.getTiedRegister();
1810 if (TiedOp != -1) {
1811 int TiedSrcOperand = findAsmOperandOriginallyNamed(N: OpInfo.Name);
1812 if (TiedSrcOperand != -1 &&
1813 ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand)
1814 ResOperands.push_back(Elt: ResOperand::getTiedOp(
1815 TiedOperandNum: TiedOp, SrcOperand1: ResOperands[TiedOp].AsmOperandNum, SrcOperand2: TiedSrcOperand));
1816 else
1817 ResOperands.push_back(Elt: ResOperand::getTiedOp(TiedOperandNum: TiedOp, SrcOperand1: 0, SrcOperand2: 0));
1818 continue;
1819 }
1820
1821 int SrcOperand = findAsmOperandNamed(N: OpInfo.Name);
1822 if (OpInfo.Name.empty() || SrcOperand == -1) {
1823 // This may happen for operands that are tied to a suboperand of a
1824 // complex operand. Simply use a dummy value here; nobody should
1825 // use this operand slot.
1826 // FIXME: The long term goal is for the MCOperand list to not contain
1827 // tied operands at all.
1828 ResOperands.push_back(Elt: ResOperand::getImmOp(Val: 0));
1829 continue;
1830 }
1831
1832 // Check if the one AsmOperand populates the entire operand.
1833 unsigned NumOperands = OpInfo.MINumOperands;
1834 if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1835 ResOperands.push_back(Elt: ResOperand::getRenderedOp(AsmOpNum: SrcOperand, NumOperands));
1836 continue;
1837 }
1838
1839 // Add a separate ResOperand for each suboperand.
1840 for (unsigned AI = 0; AI < NumOperands; ++AI) {
1841 assert(AsmOperands[SrcOperand + AI].SubOpIdx == (int)AI &&
1842 AsmOperands[SrcOperand + AI].SrcOpName == OpInfo.Name &&
1843 "unexpected AsmOperands for suboperands");
1844 ResOperands.push_back(Elt: ResOperand::getRenderedOp(AsmOpNum: SrcOperand + AI, NumOperands: 1));
1845 }
1846 }
1847}
1848
1849void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) {
1850 const CodeGenInstAlias &CGA = *cast<const CodeGenInstAlias *>(Val&: DefRec);
1851 const CodeGenInstruction *ResultInst = getResultInst();
1852
1853 // Map of: $reg -> #lastref
1854 // where $reg is the name of the operand in the asm string
1855 // where #lastref is the last processed index where $reg was referenced in
1856 // the asm string.
1857 SmallDenseMap<StringRef, int> OperandRefs;
1858
1859 // Loop over all operands of the result instruction, determining how to
1860 // populate them.
1861 unsigned AliasOpNo = 0;
1862 unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1863 for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1864 const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1865
1866 // If this is a tied operand, just copy from the previously handled operand.
1867 int TiedOp = -1;
1868 if (OpInfo->MINumOperands == 1)
1869 TiedOp = OpInfo->getTiedRegister();
1870 if (TiedOp != -1) {
1871 unsigned SrcOp1 = 0;
1872 unsigned SrcOp2 = 0;
1873
1874 // If an operand has been specified twice in the asm string,
1875 // add the two source operand's indices to the TiedOp so that
1876 // at runtime the 'tied' constraint is checked.
1877 if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) {
1878 SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
1879
1880 // Find the next operand (similarly named operand) in the string.
1881 StringRef Name = AsmOperands[SrcOp1].SrcOpName;
1882 auto Insert = OperandRefs.try_emplace(Key: Name, Args&: SrcOp1);
1883 SrcOp2 = findAsmOperandNamed(N: Name, LastIdx: Insert.first->second);
1884
1885 // Not updating the record in OperandRefs will cause TableGen
1886 // to fail with an error at the end of this function.
1887 if (AliasConstraintsAreChecked)
1888 Insert.first->second = SrcOp2;
1889
1890 // In case it only has one reference in the asm string,
1891 // it doesn't need to be checked for tied constraints.
1892 SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2;
1893 }
1894
1895 // If the alias operand is of a different operand class, we only want
1896 // to benefit from the tied-operands check and just match the operand
1897 // as a normal, but not copy the original (TiedOp) to the result
1898 // instruction. We do this by passing -1 as the tied operand to copy.
1899 if (ResultInst->Operands[i].Rec->getName() !=
1900 ResultInst->Operands[TiedOp].Rec->getName()) {
1901 SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
1902 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1903 StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1904 SrcOp2 = findAsmOperand(N: Name, SubOpIdx: SubIdx);
1905 ResOperands.push_back(
1906 Elt: ResOperand::getTiedOp(TiedOperandNum: (unsigned)-1, SrcOperand1: SrcOp1, SrcOperand2: SrcOp2));
1907 } else {
1908 ResOperands.push_back(Elt: ResOperand::getTiedOp(TiedOperandNum: TiedOp, SrcOperand1: SrcOp1, SrcOperand2: SrcOp2));
1909 continue;
1910 }
1911 }
1912
1913 // Handle all the suboperands for this operand.
1914 const std::string &OpName = OpInfo->Name;
1915 for (; AliasOpNo < LastOpNo &&
1916 CGA.ResultInstOperandIndex[AliasOpNo].first == i;
1917 ++AliasOpNo) {
1918 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1919
1920 // Find out what operand from the asmparser that this MCInst operand
1921 // comes from.
1922 switch (CGA.ResultOperands[AliasOpNo].Kind) {
1923 case CodeGenInstAlias::ResultOperand::K_Record: {
1924 StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1925 int SrcOperand = findAsmOperand(N: Name, SubOpIdx: SubIdx);
1926 if (SrcOperand == -1)
1927 PrintFatalError(ErrorLoc: TheDef->getLoc(),
1928 Msg: "Instruction '" + TheDef->getName() +
1929 "' has operand '" + OpName +
1930 "' that doesn't appear in asm string!");
1931
1932 // Add it to the operand references. If it is added a second time, the
1933 // record won't be updated and it will fail later on.
1934 OperandRefs.try_emplace(Key: Name, Args&: SrcOperand);
1935
1936 unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1937 ResOperands.push_back(
1938 Elt: ResOperand::getRenderedOp(AsmOpNum: SrcOperand, NumOperands));
1939 break;
1940 }
1941 case CodeGenInstAlias::ResultOperand::K_Imm: {
1942 int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1943 ResOperands.push_back(Elt: ResOperand::getImmOp(Val: ImmVal));
1944 break;
1945 }
1946 case CodeGenInstAlias::ResultOperand::K_Reg: {
1947 Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1948 ResOperands.push_back(Elt: ResOperand::getRegOp(Reg));
1949 break;
1950 }
1951 }
1952 }
1953 }
1954
1955 // Check that operands are not repeated more times than is supported.
1956 for (auto &T : OperandRefs) {
1957 if (T.second != -1 && findAsmOperandNamed(N: T.first, LastIdx: T.second) != -1)
1958 PrintFatalError(ErrorLoc: TheDef->getLoc(),
1959 Msg: "Operand '" + T.first + "' can never be matched");
1960 }
1961}
1962
1963static unsigned
1964getConverterOperandID(const std::string &Name,
1965 SmallSetVector<CachedHashString, 16> &Table,
1966 bool &IsNew) {
1967 IsNew = Table.insert(X: CachedHashString(Name));
1968
1969 unsigned ID = IsNew ? Table.size() - 1 : find(Range&: Table, Val: Name) - Table.begin();
1970
1971 assert(ID < Table.size());
1972
1973 return ID;
1974}
1975
1976static unsigned
1977emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
1978 std::vector<std::unique_ptr<MatchableInfo>> &Infos,
1979 bool HasMnemonicFirst, bool HasOptionalOperands,
1980 raw_ostream &OS) {
1981 SmallSetVector<CachedHashString, 16> OperandConversionKinds;
1982 SmallSetVector<CachedHashString, 16> InstructionConversionKinds;
1983 std::vector<std::vector<uint8_t>> ConversionTable;
1984 size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
1985
1986 // TargetOperandClass - This is the target's operand class, like X86Operand.
1987 std::string TargetOperandClass = Target.getName().str() + "Operand";
1988
1989 // Write the convert function to a separate stream, so we can drop it after
1990 // the enum. We'll build up the conversion handlers for the individual
1991 // operand types opportunistically as we encounter them.
1992 std::string ConvertFnBody;
1993 raw_string_ostream CvtOS(ConvertFnBody);
1994 // Start the unified conversion function.
1995 if (HasOptionalOperands) {
1996 CvtOS << "void " << Target.getName() << ClassName << "::\n"
1997 << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1998 << "unsigned Opcode,\n"
1999 << " const OperandVector &Operands,\n"
2000 << " const SmallBitVector &OptionalOperandsMask,\n"
2001 << " ArrayRef<unsigned> DefaultsOffset) {\n";
2002 } else {
2003 CvtOS << "void " << Target.getName() << ClassName << "::\n"
2004 << "convertToMCInst(unsigned Kind, MCInst &Inst, "
2005 << "unsigned Opcode,\n"
2006 << " const OperandVector &Operands) {\n";
2007 }
2008 CvtOS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
2009 CvtOS << " const uint8_t *Converter = ConversionTable[Kind];\n";
2010 CvtOS << " Inst.setOpcode(Opcode);\n";
2011 CvtOS << " for (const uint8_t *p = Converter; *p; p += 2) {\n";
2012 if (HasOptionalOperands) {
2013 // When optional operands are involved, formal and actual operand indices
2014 // may differ. Map the former to the latter by subtracting the number of
2015 // absent optional operands.
2016 // FIXME: This is not an operand index in the CVT_Tied case
2017 CvtOS << " unsigned OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n";
2018 } else {
2019 CvtOS << " unsigned OpIdx = *(p + 1);\n";
2020 }
2021 CvtOS << " switch (*p) {\n";
2022 CvtOS << " default: llvm_unreachable(\"invalid conversion entry!\");\n";
2023 CvtOS << " case CVT_Reg:\n";
2024 CvtOS << " static_cast<" << TargetOperandClass
2025 << " &>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n";
2026 CvtOS << " break;\n";
2027 CvtOS << " case CVT_Tied: {\n";
2028 CvtOS << " assert(*(p + 1) < (size_t)(std::end(TiedAsmOperandTable) -\n";
2029 CvtOS
2030 << " std::begin(TiedAsmOperandTable)) &&\n";
2031 CvtOS << " \"Tied operand not found\");\n";
2032 CvtOS << " unsigned TiedResOpnd = TiedAsmOperandTable[*(p + 1)][0];\n";
2033 CvtOS << " if (TiedResOpnd != (uint8_t)-1)\n";
2034 CvtOS << " Inst.addOperand(Inst.getOperand(TiedResOpnd));\n";
2035 CvtOS << " break;\n";
2036 CvtOS << " }\n";
2037
2038 std::string OperandFnBody;
2039 raw_string_ostream OpOS(OperandFnBody);
2040 // Start the operand number lookup function.
2041 OpOS << "void " << Target.getName() << ClassName << "::\n"
2042 << "convertToMapAndConstraints(unsigned Kind,\n";
2043 OpOS.indent(NumSpaces: 27);
2044 OpOS << "const OperandVector &Operands) {\n"
2045 << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
2046 << " unsigned NumMCOperands = 0;\n"
2047 << " const uint8_t *Converter = ConversionTable[Kind];\n"
2048 << " for (const uint8_t *p = Converter; *p; p += 2) {\n"
2049 << " switch (*p) {\n"
2050 << " default: llvm_unreachable(\"invalid conversion entry!\");\n"
2051 << " case CVT_Reg:\n"
2052 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2053 << " Operands[*(p + 1)]->setConstraint(\"r\");\n"
2054 << " ++NumMCOperands;\n"
2055 << " break;\n"
2056 << " case CVT_Tied:\n"
2057 << " ++NumMCOperands;\n"
2058 << " break;\n";
2059
2060 // Pre-populate the operand conversion kinds with the standard always
2061 // available entries.
2062 OperandConversionKinds.insert(X: CachedHashString("CVT_Done"));
2063 OperandConversionKinds.insert(X: CachedHashString("CVT_Reg"));
2064 OperandConversionKinds.insert(X: CachedHashString("CVT_Tied"));
2065 enum { CVT_Done, CVT_Reg, CVT_Tied };
2066
2067 // Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label.
2068 std::map<std::tuple<uint8_t, uint8_t, uint8_t>, std::string>
2069 TiedOperandsEnumMap;
2070
2071 for (auto &II : Infos) {
2072 // Check if we have a custom match function.
2073 StringRef AsmMatchConverter =
2074 II->getResultInst()->TheDef->getValueAsString(FieldName: "AsmMatchConverter");
2075 if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) {
2076 std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str();
2077 II->ConversionFnKind = Signature;
2078
2079 // Check if we have already generated this signature.
2080 if (!InstructionConversionKinds.insert(X: CachedHashString(Signature)))
2081 continue;
2082
2083 // Remember this converter for the kind enum.
2084 unsigned KindID = OperandConversionKinds.size();
2085 OperandConversionKinds.insert(
2086 X: CachedHashString("CVT_" + getEnumNameForToken(Str: AsmMatchConverter)));
2087
2088 // Add the converter row for this instruction.
2089 ConversionTable.emplace_back();
2090 ConversionTable.back().push_back(x: KindID);
2091 ConversionTable.back().push_back(x: CVT_Done);
2092
2093 // Add the handler to the conversion driver function.
2094 CvtOS << " case CVT_" << getEnumNameForToken(Str: AsmMatchConverter)
2095 << ":\n"
2096 << " " << AsmMatchConverter << "(Inst, Operands);\n"
2097 << " break;\n";
2098
2099 // FIXME: Handle the operand number lookup for custom match functions.
2100 continue;
2101 }
2102
2103 // Build the conversion function signature.
2104 std::string Signature = "Convert";
2105
2106 std::vector<uint8_t> ConversionRow;
2107
2108 // Compute the convert enum and the case body.
2109 MaxRowLength = std::max(a: MaxRowLength, b: II->ResOperands.size() * 2 + 1);
2110
2111 for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) {
2112 const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i];
2113
2114 // Generate code to populate each result operand.
2115 switch (OpInfo.Kind) {
2116 case MatchableInfo::ResOperand::RenderAsmOperand: {
2117 // This comes from something we parsed.
2118 const MatchableInfo::AsmOperand &Op =
2119 II->AsmOperands[OpInfo.AsmOperandNum];
2120
2121 // Registers are always converted the same, don't duplicate the
2122 // conversion function based on them.
2123 Signature += "__";
2124 std::string Class;
2125 Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
2126 Signature += Class;
2127 Signature += utostr(X: OpInfo.MINumOperands);
2128 Signature += "_" + itostr(X: OpInfo.AsmOperandNum);
2129
2130 // Add the conversion kind, if necessary, and get the associated ID
2131 // the index of its entry in the vector).
2132 std::string Name =
2133 "CVT_" +
2134 (Op.Class->isRegisterClass() ? "Reg" : Op.Class->RenderMethod);
2135 if (Op.Class->IsOptional) {
2136 // For optional operands we must also care about DefaultMethod
2137 assert(HasOptionalOperands);
2138 Name += "_" + Op.Class->DefaultMethod;
2139 }
2140 Name = getEnumNameForToken(Str: Name);
2141
2142 bool IsNewConverter = false;
2143 unsigned ID =
2144 getConverterOperandID(Name, Table&: OperandConversionKinds, IsNew&: IsNewConverter);
2145
2146 // Add the operand entry to the instruction kind conversion row.
2147 ConversionRow.push_back(x: ID);
2148 ConversionRow.push_back(x: OpInfo.AsmOperandNum + HasMnemonicFirst);
2149
2150 if (!IsNewConverter)
2151 break;
2152
2153 // This is a new operand kind. Add a handler for it to the
2154 // converter driver.
2155 CvtOS << " case " << Name << ":\n";
2156 if (Op.Class->IsOptional) {
2157 // If optional operand is not present in actual instruction then we
2158 // should call its DefaultMethod before RenderMethod
2159 assert(HasOptionalOperands);
2160 CvtOS << " if (OptionalOperandsMask[*(p + 1) - 1]) {\n"
2161 << " " << Op.Class->DefaultMethod << "()"
2162 << "->" << Op.Class->RenderMethod << "(Inst, "
2163 << OpInfo.MINumOperands << ");\n"
2164 << " } else {\n"
2165 << " static_cast<" << TargetOperandClass
2166 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod
2167 << "(Inst, " << OpInfo.MINumOperands << ");\n"
2168 << " }\n";
2169 } else {
2170 CvtOS << " static_cast<" << TargetOperandClass
2171 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod
2172 << "(Inst, " << OpInfo.MINumOperands << ");\n";
2173 }
2174 CvtOS << " break;\n";
2175
2176 // Add a handler for the operand number lookup.
2177 OpOS << " case " << Name << ":\n"
2178 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
2179
2180 if (Op.Class->isRegisterClass())
2181 OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n";
2182 else
2183 OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n";
2184 OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n"
2185 << " break;\n";
2186 break;
2187 }
2188 case MatchableInfo::ResOperand::TiedOperand: {
2189 // If this operand is tied to a previous one, just copy the MCInst
2190 // operand from the earlier one.We can only tie single MCOperand values.
2191 assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
2192 uint8_t TiedOp = OpInfo.TiedOperands.ResOpnd;
2193 uint8_t SrcOp1 = OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst;
2194 uint8_t SrcOp2 = OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst;
2195 assert((i > TiedOp || TiedOp == (uint8_t)-1) &&
2196 "Tied operand precedes its target!");
2197 auto TiedTupleName = std::string("Tie") + utostr(X: TiedOp) + '_' +
2198 utostr(X: SrcOp1) + '_' + utostr(X: SrcOp2);
2199 Signature += "__" + TiedTupleName;
2200 ConversionRow.push_back(x: CVT_Tied);
2201 ConversionRow.push_back(x: TiedOp);
2202 ConversionRow.push_back(x: SrcOp1);
2203 ConversionRow.push_back(x: SrcOp2);
2204
2205 // Also create an 'enum' for this combination of tied operands.
2206 auto Key = std::tuple(TiedOp, SrcOp1, SrcOp2);
2207 TiedOperandsEnumMap.emplace(args&: Key, args&: TiedTupleName);
2208 break;
2209 }
2210 case MatchableInfo::ResOperand::ImmOperand: {
2211 int64_t Val = OpInfo.ImmVal;
2212 std::string Ty = "imm_" + itostr(X: Val);
2213 Ty = getEnumNameForToken(Str: Ty);
2214 Signature += "__" + Ty;
2215
2216 std::string Name = "CVT_" + Ty;
2217 bool IsNewConverter = false;
2218 unsigned ID =
2219 getConverterOperandID(Name, Table&: OperandConversionKinds, IsNew&: IsNewConverter);
2220 // Add the operand entry to the instruction kind conversion row.
2221 ConversionRow.push_back(x: ID);
2222 ConversionRow.push_back(x: 0);
2223
2224 if (!IsNewConverter)
2225 break;
2226
2227 CvtOS << " case " << Name << ":\n"
2228 << " Inst.addOperand(MCOperand::createImm(" << Val << "));\n"
2229 << " break;\n";
2230
2231 OpOS << " case " << Name << ":\n"
2232 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2233 << " Operands[*(p + 1)]->setConstraint(\"\");\n"
2234 << " ++NumMCOperands;\n"
2235 << " break;\n";
2236 break;
2237 }
2238 case MatchableInfo::ResOperand::RegOperand: {
2239 std::string Reg, Name;
2240 if (!OpInfo.Register) {
2241 Name = "reg0";
2242 Reg = "0";
2243 } else {
2244 Reg = getQualifiedName(R: OpInfo.Register);
2245 Name = "reg" + OpInfo.Register->getName().str();
2246 }
2247 Signature += "__" + Name;
2248 Name = "CVT_" + Name;
2249 bool IsNewConverter = false;
2250 unsigned ID =
2251 getConverterOperandID(Name, Table&: OperandConversionKinds, IsNew&: IsNewConverter);
2252 // Add the operand entry to the instruction kind conversion row.
2253 ConversionRow.push_back(x: ID);
2254 ConversionRow.push_back(x: 0);
2255
2256 if (!IsNewConverter)
2257 break;
2258 CvtOS << " case " << Name << ":\n"
2259 << " Inst.addOperand(MCOperand::createReg(" << Reg << "));\n"
2260 << " break;\n";
2261
2262 OpOS << " case " << Name << ":\n"
2263 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2264 << " Operands[*(p + 1)]->setConstraint(\"m\");\n"
2265 << " ++NumMCOperands;\n"
2266 << " break;\n";
2267 }
2268 }
2269 }
2270
2271 // If there were no operands, add to the signature to that effect
2272 if (Signature == "Convert")
2273 Signature += "_NoOperands";
2274
2275 II->ConversionFnKind = Signature;
2276
2277 // Save the signature. If we already have it, don't add a new row
2278 // to the table.
2279 if (!InstructionConversionKinds.insert(X: CachedHashString(Signature)))
2280 continue;
2281
2282 // Add the row to the table.
2283 ConversionTable.push_back(x: std::move(ConversionRow));
2284 }
2285
2286 // Finish up the converter driver function.
2287 CvtOS << " }\n }\n}\n\n";
2288
2289 // Finish up the operand number lookup function.
2290 OpOS << " }\n }\n}\n\n";
2291
2292 // Output a static table for tied operands.
2293 if (TiedOperandsEnumMap.size()) {
2294 // The number of tied operand combinations will be small in practice,
2295 // but just add the assert to be sure.
2296 assert(TiedOperandsEnumMap.size() <= 254 &&
2297 "Too many tied-operand combinations to reference with "
2298 "an 8bit offset from the conversion table, where index "
2299 "'255' is reserved as operand not to be copied.");
2300
2301 OS << "enum {\n";
2302 for (auto &KV : TiedOperandsEnumMap) {
2303 OS << " " << KV.second << ",\n";
2304 }
2305 OS << "};\n\n";
2306
2307 OS << "static const uint8_t TiedAsmOperandTable[][3] = {\n";
2308 for (auto &KV : TiedOperandsEnumMap) {
2309 OS << " /* " << KV.second << " */ { " << utostr(X: std::get<0>(t: KV.first))
2310 << ", " << utostr(X: std::get<1>(t: KV.first)) << ", "
2311 << utostr(X: std::get<2>(t: KV.first)) << " },\n";
2312 }
2313 OS << "};\n\n";
2314 } else
2315 OS << "static const uint8_t TiedAsmOperandTable[][3] = "
2316 "{ /* empty */ {0, 0, 0} };\n\n";
2317
2318 OS << "namespace {\n";
2319
2320 // Output the operand conversion kind enum.
2321 OS << "enum OperatorConversionKind {\n";
2322 for (const auto &Converter : OperandConversionKinds)
2323 OS << " " << Converter << ",\n";
2324 OS << " CVT_NUM_CONVERTERS\n";
2325 OS << "};\n\n";
2326
2327 // Output the instruction conversion kind enum.
2328 OS << "enum InstructionConversionKind {\n";
2329 for (const auto &Signature : InstructionConversionKinds)
2330 OS << " " << Signature << ",\n";
2331 OS << " CVT_NUM_SIGNATURES\n";
2332 OS << "};\n\n";
2333
2334 OS << "} // end anonymous namespace\n\n";
2335
2336 // Output the conversion table.
2337 OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
2338 << MaxRowLength << "] = {\n";
2339
2340 for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
2341 assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
2342 OS << " // " << InstructionConversionKinds[Row] << "\n";
2343 OS << " { ";
2344 for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) {
2345 OS << OperandConversionKinds[ConversionTable[Row][i]] << ", ";
2346 if (OperandConversionKinds[ConversionTable[Row][i]] !=
2347 CachedHashString("CVT_Tied")) {
2348 OS << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
2349 continue;
2350 }
2351
2352 // For a tied operand, emit a reference to the TiedAsmOperandTable
2353 // that contains the operand to copy, and the parsed operands to
2354 // check for their tied constraints.
2355 auto Key = std::tuple((uint8_t)ConversionTable[Row][i + 1],
2356 (uint8_t)ConversionTable[Row][i + 2],
2357 (uint8_t)ConversionTable[Row][i + 3]);
2358 auto TiedOpndEnum = TiedOperandsEnumMap.find(x: Key);
2359 assert(TiedOpndEnum != TiedOperandsEnumMap.end() &&
2360 "No record for tied operand pair");
2361 OS << TiedOpndEnum->second << ", ";
2362 i += 2;
2363 }
2364 OS << "CVT_Done },\n";
2365 }
2366
2367 OS << "};\n\n";
2368
2369 // Spit out the conversion driver function.
2370 OS << ConvertFnBody;
2371
2372 // Spit out the operand number lookup function.
2373 OS << OperandFnBody;
2374
2375 return ConversionTable.size();
2376}
2377
2378/// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
2379static void emitMatchClassEnumeration(CodeGenTarget &Target,
2380 std::forward_list<ClassInfo> &Infos,
2381 raw_ostream &OS) {
2382 OS << "namespace {\n\n";
2383
2384 OS << "/// MatchClassKind - The kinds of classes which participate in\n"
2385 << "/// instruction matching.\n";
2386 OS << "enum MatchClassKind {\n";
2387 OS << " InvalidMatchClass = 0,\n";
2388 OS << " OptionalMatchClass = 1,\n";
2389 ClassInfo::ClassInfoKind LastKind = ClassInfo::Token;
2390 StringRef LastName = "OptionalMatchClass";
2391 for (const auto &CI : Infos) {
2392 if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) {
2393 OS << " MCK_LAST_TOKEN = " << LastName << ",\n";
2394 } else if (LastKind < ClassInfo::UserClass0 &&
2395 CI.Kind >= ClassInfo::UserClass0) {
2396 OS << " MCK_LAST_REGISTER = " << LastName << ",\n";
2397 }
2398 LastKind = (ClassInfo::ClassInfoKind)CI.Kind;
2399 LastName = CI.Name;
2400
2401 OS << " " << CI.Name << ", // ";
2402 if (CI.Kind == ClassInfo::Token) {
2403 OS << "'" << CI.ValueName << "'\n";
2404 } else if (CI.isRegisterClass()) {
2405 if (!CI.ValueName.empty())
2406 OS << "register class '" << CI.ValueName << "'\n";
2407 else
2408 OS << "derived register class\n";
2409 } else {
2410 OS << "user defined class '" << CI.ValueName << "'\n";
2411 }
2412 }
2413 OS << " NumMatchClassKinds\n";
2414 OS << "};\n\n";
2415
2416 OS << "} // end anonymous namespace\n\n";
2417}
2418
2419/// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be
2420/// used when an assembly operand does not match the expected operand class.
2421static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info,
2422 raw_ostream &OS) {
2423 // If the target does not use DiagnosticString for any operands, don't emit
2424 // an unused function.
2425 if (llvm::all_of(Range&: Info.Classes, P: [](const ClassInfo &CI) {
2426 return CI.DiagnosticString.empty();
2427 }))
2428 return;
2429
2430 OS << "static const char *getMatchKindDiag(" << Info.Target.getName()
2431 << "AsmParser::" << Info.Target.getName()
2432 << "MatchResultTy MatchResult) {\n";
2433 OS << " switch (MatchResult) {\n";
2434
2435 for (const auto &CI : Info.Classes) {
2436 if (!CI.DiagnosticString.empty()) {
2437 assert(!CI.DiagnosticType.empty() &&
2438 "DiagnosticString set without DiagnosticType");
2439 OS << " case " << Info.Target.getName() << "AsmParser::Match_"
2440 << CI.DiagnosticType << ":\n";
2441 OS << " return \"" << CI.DiagnosticString << "\";\n";
2442 }
2443 }
2444
2445 OS << " default:\n";
2446 OS << " return nullptr;\n";
2447
2448 OS << " }\n";
2449 OS << "}\n\n";
2450}
2451
2452static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) {
2453 OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind "
2454 "RegisterClass) {\n";
2455 if (none_of(Range&: Info.Classes, P: [](const ClassInfo &CI) {
2456 return CI.isRegisterClass() && !CI.DiagnosticType.empty();
2457 })) {
2458 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
2459 } else {
2460 OS << " switch (RegisterClass) {\n";
2461 for (const auto &CI : Info.Classes) {
2462 if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) {
2463 OS << " case " << CI.Name << ":\n";
2464 OS << " return " << Info.Target.getName() << "AsmParser::Match_"
2465 << CI.DiagnosticType << ";\n";
2466 }
2467 }
2468
2469 OS << " default:\n";
2470 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
2471
2472 OS << " }\n";
2473 }
2474 OS << "}\n\n";
2475}
2476
2477/// emitValidateOperandClass - Emit the function to validate an operand class.
2478static void emitValidateOperandClass(AsmMatcherInfo &Info, raw_ostream &OS) {
2479 OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
2480 << "MatchClassKind Kind) {\n";
2481 OS << " " << Info.Target.getName() << "Operand &Operand = ("
2482 << Info.Target.getName() << "Operand &)GOp;\n";
2483
2484 // The InvalidMatchClass is not to match any operand.
2485 OS << " if (Kind == InvalidMatchClass)\n";
2486 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n";
2487
2488 // Check for Token operands first.
2489 // FIXME: Use a more specific diagnostic type.
2490 OS << " if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n";
2491 OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
2492 << " MCTargetAsmParser::Match_Success :\n"
2493 << " MCTargetAsmParser::Match_InvalidOperand;\n\n";
2494
2495 // Check the user classes. We don't care what order since we're only
2496 // actually matching against one of them.
2497 OS << " switch (Kind) {\n"
2498 " default: break;\n";
2499 for (const auto &CI : Info.Classes) {
2500 if (!CI.isUserClass())
2501 continue;
2502
2503 OS << " // '" << CI.ClassName << "' class\n";
2504 OS << " case " << CI.Name << ": {\n";
2505 OS << " DiagnosticPredicate DP(Operand." << CI.PredicateMethod
2506 << "());\n";
2507 OS << " if (DP.isMatch())\n";
2508 OS << " return MCTargetAsmParser::Match_Success;\n";
2509 if (!CI.DiagnosticType.empty()) {
2510 OS << " if (DP.isNearMatch())\n";
2511 OS << " return " << Info.Target.getName() << "AsmParser::Match_"
2512 << CI.DiagnosticType << ";\n";
2513 OS << " break;\n";
2514 } else
2515 OS << " break;\n";
2516 OS << " }\n";
2517 }
2518 OS << " } // end switch (Kind)\n\n";
2519
2520 // Check for register operands, including sub-classes.
2521 OS << " if (Operand.isReg()) {\n";
2522 OS << " MatchClassKind OpKind;\n";
2523 OS << " switch (Operand.getReg().id()) {\n";
2524 OS << " default: OpKind = InvalidMatchClass; break;\n";
2525 for (const auto &RC : Info.RegisterClasses)
2526 OS << " case " << RC.first->getValueAsString(FieldName: "Namespace")
2527 << "::" << RC.first->getName() << ": OpKind = " << RC.second->Name
2528 << "; break;\n";
2529 OS << " }\n";
2530 OS << " return isSubclass(OpKind, Kind) ? "
2531 << "(unsigned)MCTargetAsmParser::Match_Success :\n "
2532 << " getDiagKindFromRegisterClass(Kind);\n }\n\n";
2533
2534 // Expected operand is a register, but actual is not.
2535 OS << " if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n";
2536 OS << " return getDiagKindFromRegisterClass(Kind);\n\n";
2537
2538 // Generic fallthrough match failure case for operands that don't have
2539 // specialized diagnostic types.
2540 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
2541 OS << "}\n\n";
2542}
2543
2544/// emitIsSubclass - Emit the subclass predicate function.
2545static void emitIsSubclass(CodeGenTarget &Target,
2546 std::forward_list<ClassInfo> &Infos,
2547 raw_ostream &OS) {
2548 OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
2549 OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
2550 OS << " if (A == B)\n";
2551 OS << " return true;\n\n";
2552
2553 bool EmittedSwitch = false;
2554 for (const auto &A : Infos) {
2555 std::vector<StringRef> SuperClasses;
2556 if (A.IsOptional)
2557 SuperClasses.push_back(x: "OptionalMatchClass");
2558 for (const auto &B : Infos) {
2559 if (&A != &B && A.isSubsetOf(RHS: B))
2560 SuperClasses.push_back(x: B.Name);
2561 }
2562
2563 if (SuperClasses.empty())
2564 continue;
2565
2566 // If this is the first SuperClass, emit the switch header.
2567 if (!EmittedSwitch) {
2568 OS << " switch (A) {\n";
2569 OS << " default:\n";
2570 OS << " return false;\n";
2571 EmittedSwitch = true;
2572 }
2573
2574 OS << "\n case " << A.Name << ":\n";
2575
2576 if (SuperClasses.size() == 1) {
2577 OS << " return B == " << SuperClasses.back() << ";\n";
2578 continue;
2579 }
2580
2581 if (!SuperClasses.empty()) {
2582 OS << " switch (B) {\n";
2583 OS << " default: return false;\n";
2584 for (StringRef SC : SuperClasses)
2585 OS << " case " << SC << ": return true;\n";
2586 OS << " }\n";
2587 } else {
2588 // No case statement to emit
2589 OS << " return false;\n";
2590 }
2591 }
2592
2593 // If there were case statements emitted into the string stream write the
2594 // default.
2595 if (EmittedSwitch)
2596 OS << " }\n";
2597 else
2598 OS << " return false;\n";
2599
2600 OS << "}\n\n";
2601}
2602
2603/// emitMatchTokenString - Emit the function to match a token string to the
2604/// appropriate match class value.
2605static void emitMatchTokenString(CodeGenTarget &Target,
2606 std::forward_list<ClassInfo> &Infos,
2607 raw_ostream &OS) {
2608 // Construct the match list.
2609 std::vector<StringMatcher::StringPair> Matches;
2610 for (const auto &CI : Infos) {
2611 if (CI.Kind == ClassInfo::Token)
2612 Matches.emplace_back(args: CI.ValueName, args: "return " + CI.Name + ";");
2613 }
2614
2615 OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
2616
2617 StringMatcher("Name", Matches, OS).Emit();
2618
2619 OS << " return InvalidMatchClass;\n";
2620 OS << "}\n\n";
2621}
2622
2623/// emitMatchRegisterName - Emit the function to match a string to the target
2624/// specific register enum.
2625static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
2626 raw_ostream &OS) {
2627 // Construct the match list.
2628 std::vector<StringMatcher::StringPair> Matches;
2629 const auto &Regs = Target.getRegBank().getRegisters();
2630 std::string Namespace =
2631 Regs.front().TheDef->getValueAsString(FieldName: "Namespace").str();
2632 for (const CodeGenRegister &Reg : Regs) {
2633 StringRef AsmName = Reg.TheDef->getValueAsString(FieldName: "AsmName");
2634 if (AsmName.empty())
2635 continue;
2636
2637 Matches.emplace_back(args: AsmName.str(), args: "return " + Namespace +
2638 "::" + Reg.getName().str() + ';');
2639 }
2640
2641 OS << "static MCRegister MatchRegisterName(StringRef Name) {\n";
2642
2643 bool IgnoreDuplicates =
2644 AsmParser->getValueAsBit(FieldName: "AllowDuplicateRegisterNames");
2645 StringMatcher("Name", Matches, OS).Emit(Indent: 0, IgnoreDuplicates);
2646
2647 OS << " return " << Namespace << "::NoRegister;\n";
2648 OS << "}\n\n";
2649}
2650
2651/// Emit the function to match a string to the target
2652/// specific register enum.
2653static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser,
2654 raw_ostream &OS) {
2655 // Construct the match list.
2656 std::vector<StringMatcher::StringPair> Matches;
2657 const auto &Regs = Target.getRegBank().getRegisters();
2658 std::string Namespace =
2659 Regs.front().TheDef->getValueAsString(FieldName: "Namespace").str();
2660 for (const CodeGenRegister &Reg : Regs) {
2661
2662 auto AltNames = Reg.TheDef->getValueAsListOfStrings(FieldName: "AltNames");
2663
2664 for (auto AltName : AltNames) {
2665 AltName = StringRef(AltName).trim();
2666
2667 // don't handle empty alternative names
2668 if (AltName.empty())
2669 continue;
2670
2671 Matches.emplace_back(args: AltName.str(), args: "return " + Namespace +
2672 "::" + Reg.getName().str() + ';');
2673 }
2674 }
2675
2676 OS << "static MCRegister MatchRegisterAltName(StringRef Name) {\n";
2677
2678 bool IgnoreDuplicates =
2679 AsmParser->getValueAsBit(FieldName: "AllowDuplicateRegisterNames");
2680 StringMatcher("Name", Matches, OS).Emit(Indent: 0, IgnoreDuplicates);
2681
2682 OS << " return " << Namespace << "::NoRegister;\n";
2683 OS << "}\n\n";
2684}
2685
2686/// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
2687static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
2688 // Get the set of diagnostic types from all of the operand classes.
2689 std::set<StringRef> Types;
2690 for (const auto &OpClassEntry : Info.AsmOperandClasses) {
2691 if (!OpClassEntry.second->DiagnosticType.empty())
2692 Types.insert(x: OpClassEntry.second->DiagnosticType);
2693 }
2694 for (const auto &OpClassEntry : Info.RegisterClassClasses) {
2695 if (!OpClassEntry.second->DiagnosticType.empty())
2696 Types.insert(x: OpClassEntry.second->DiagnosticType);
2697 }
2698
2699 if (Types.empty())
2700 return;
2701
2702 // Now emit the enum entries.
2703 for (StringRef Type : Types)
2704 OS << " Match_" << Type << ",\n";
2705 OS << " END_OPERAND_DIAGNOSTIC_TYPES\n";
2706}
2707
2708/// emitGetSubtargetFeatureName - Emit the helper function to get the
2709/// user-level name for a subtarget feature.
2710static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
2711 OS << "// User-level names for subtarget features that participate in\n"
2712 << "// instruction matching.\n"
2713 << "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
2714 if (!Info.SubtargetFeatures.empty()) {
2715 OS << " switch(Val) {\n";
2716 for (const auto &SF : Info.SubtargetFeatures) {
2717 const SubtargetFeatureInfo &SFI = SF.second;
2718 // FIXME: Totally just a placeholder name to get the algorithm working.
2719 OS << " case " << SFI.getEnumBitName() << ": return \""
2720 << SFI.TheDef->getValueAsString(FieldName: "PredicateName") << "\";\n";
2721 }
2722 OS << " default: return \"(unknown)\";\n";
2723 OS << " }\n";
2724 } else {
2725 // Nothing to emit, so skip the switch
2726 OS << " return \"(unknown)\";\n";
2727 }
2728 OS << "}\n\n";
2729}
2730
2731static std::string GetAliasRequiredFeatures(Record *R,
2732 const AsmMatcherInfo &Info) {
2733 std::vector<Record *> ReqFeatures = R->getValueAsListOfDefs(FieldName: "Predicates");
2734 std::string Result;
2735
2736 if (ReqFeatures.empty())
2737 return Result;
2738
2739 for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
2740 const SubtargetFeatureInfo *F = Info.getSubtargetFeature(Def: ReqFeatures[i]);
2741
2742 if (!F)
2743 PrintFatalError(ErrorLoc: R->getLoc(),
2744 Msg: "Predicate '" + ReqFeatures[i]->getName() +
2745 "' is not marked as an AssemblerPredicate!");
2746
2747 if (i)
2748 Result += " && ";
2749
2750 Result += "Features.test(" + F->getEnumBitName() + ')';
2751 }
2752
2753 return Result;
2754}
2755
2756static void
2757emitMnemonicAliasVariant(raw_ostream &OS, const AsmMatcherInfo &Info,
2758 std::vector<Record *> &Aliases, unsigned Indent = 0,
2759 StringRef AsmParserVariantName = StringRef()) {
2760 // Keep track of all the aliases from a mnemonic. Use an std::map so that the
2761 // iteration order of the map is stable.
2762 std::map<std::string, std::vector<Record *>> AliasesFromMnemonic;
2763
2764 for (Record *R : Aliases) {
2765 // FIXME: Allow AssemblerVariantName to be a comma separated list.
2766 StringRef AsmVariantName = R->getValueAsString(FieldName: "AsmVariantName");
2767 if (AsmVariantName != AsmParserVariantName)
2768 continue;
2769 AliasesFromMnemonic[R->getValueAsString(FieldName: "FromMnemonic").lower()].push_back(
2770 x: R);
2771 }
2772 if (AliasesFromMnemonic.empty())
2773 return;
2774
2775 // Process each alias a "from" mnemonic at a time, building the code executed
2776 // by the string remapper.
2777 std::vector<StringMatcher::StringPair> Cases;
2778 for (const auto &AliasEntry : AliasesFromMnemonic) {
2779 const std::vector<Record *> &ToVec = AliasEntry.second;
2780
2781 // Loop through each alias and emit code that handles each case. If there
2782 // are two instructions without predicates, emit an error. If there is one,
2783 // emit it last.
2784 std::string MatchCode;
2785 int AliasWithNoPredicate = -1;
2786
2787 for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
2788 Record *R = ToVec[i];
2789 std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
2790
2791 // If this unconditionally matches, remember it for later and diagnose
2792 // duplicates.
2793 if (FeatureMask.empty()) {
2794 if (AliasWithNoPredicate != -1 &&
2795 R->getValueAsString(FieldName: "ToMnemonic") !=
2796 ToVec[AliasWithNoPredicate]->getValueAsString(FieldName: "ToMnemonic")) {
2797 // We can't have two different aliases from the same mnemonic with no
2798 // predicate.
2799 PrintError(
2800 ErrorLoc: ToVec[AliasWithNoPredicate]->getLoc(),
2801 Msg: "two different MnemonicAliases with the same 'from' mnemonic!");
2802 PrintFatalError(ErrorLoc: R->getLoc(), Msg: "this is the other MnemonicAlias.");
2803 }
2804
2805 AliasWithNoPredicate = i;
2806 continue;
2807 }
2808 if (R->getValueAsString(FieldName: "ToMnemonic") == AliasEntry.first)
2809 PrintFatalError(ErrorLoc: R->getLoc(), Msg: "MnemonicAlias to the same string");
2810
2811 if (!MatchCode.empty())
2812 MatchCode += "else ";
2813 MatchCode += "if (" + FeatureMask + ")\n";
2814 MatchCode += " Mnemonic = \"";
2815 MatchCode += R->getValueAsString(FieldName: "ToMnemonic").lower();
2816 MatchCode += "\";\n";
2817 }
2818
2819 if (AliasWithNoPredicate != -1) {
2820 Record *R = ToVec[AliasWithNoPredicate];
2821 if (!MatchCode.empty())
2822 MatchCode += "else\n ";
2823 MatchCode += "Mnemonic = \"";
2824 MatchCode += R->getValueAsString(FieldName: "ToMnemonic").lower();
2825 MatchCode += "\";\n";
2826 }
2827
2828 MatchCode += "return;";
2829
2830 Cases.push_back(x: std::pair(AliasEntry.first, MatchCode));
2831 }
2832 StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
2833}
2834
2835/// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
2836/// emit a function for them and return true, otherwise return false.
2837static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
2838 CodeGenTarget &Target) {
2839 // Ignore aliases when match-prefix is set.
2840 if (!MatchPrefix.empty())
2841 return false;
2842
2843 std::vector<Record *> Aliases =
2844 Info.getRecords().getAllDerivedDefinitions(ClassName: "MnemonicAlias");
2845 if (Aliases.empty())
2846 return false;
2847
2848 OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
2849 "const FeatureBitset &Features, unsigned VariantID) {\n";
2850 OS << " switch (VariantID) {\n";
2851 unsigned VariantCount = Target.getAsmParserVariantCount();
2852 for (unsigned VC = 0; VC != VariantCount; ++VC) {
2853 Record *AsmVariant = Target.getAsmParserVariant(i: VC);
2854 int AsmParserVariantNo = AsmVariant->getValueAsInt(FieldName: "Variant");
2855 StringRef AsmParserVariantName = AsmVariant->getValueAsString(FieldName: "Name");
2856 OS << " case " << AsmParserVariantNo << ":\n";
2857 emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
2858 AsmParserVariantName);
2859 OS << " break;\n";
2860 }
2861 OS << " }\n";
2862
2863 // Emit aliases that apply to all variants.
2864 emitMnemonicAliasVariant(OS, Info, Aliases);
2865
2866 OS << "}\n\n";
2867
2868 return true;
2869}
2870
2871static void
2872emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2873 const AsmMatcherInfo &Info, StringRef ClassName,
2874 StringToOffsetTable &StringTable,
2875 unsigned MaxMnemonicIndex, unsigned MaxFeaturesIndex,
2876 bool HasMnemonicFirst, const Record &AsmParser) {
2877 unsigned MaxMask = 0;
2878 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2879 MaxMask |= OMI.OperandMask;
2880 }
2881
2882 // Emit the static custom operand parsing table;
2883 OS << "namespace {\n";
2884 OS << " struct OperandMatchEntry {\n";
2885 OS << " " << getMinimalTypeForRange(Range: MaxMnemonicIndex) << " Mnemonic;\n";
2886 OS << " " << getMinimalTypeForRange(Range: MaxMask) << " OperandMask;\n";
2887 OS << " "
2888 << getMinimalTypeForRange(
2889 Range: std::distance(first: Info.Classes.begin(), last: Info.Classes.end()) +
2890 2 /* Include 'InvalidMatchClass' and 'OptionalMatchClass' */)
2891 << " Class;\n";
2892 OS << " " << getMinimalTypeForRange(Range: MaxFeaturesIndex)
2893 << " RequiredFeaturesIdx;\n\n";
2894 OS << " StringRef getMnemonic() const {\n";
2895 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
2896 OS << " MnemonicTable[Mnemonic]);\n";
2897 OS << " }\n";
2898 OS << " };\n\n";
2899
2900 OS << " // Predicate for searching for an opcode.\n";
2901 OS << " struct LessOpcodeOperand {\n";
2902 OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2903 OS << " return LHS.getMnemonic() < RHS;\n";
2904 OS << " }\n";
2905 OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2906 OS << " return LHS < RHS.getMnemonic();\n";
2907 OS << " }\n";
2908 OS << " bool operator()(const OperandMatchEntry &LHS,";
2909 OS << " const OperandMatchEntry &RHS) {\n";
2910 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
2911 OS << " }\n";
2912 OS << " };\n";
2913
2914 OS << "} // end anonymous namespace\n\n";
2915
2916 OS << "static const OperandMatchEntry OperandMatchTable["
2917 << Info.OperandMatchInfo.size() << "] = {\n";
2918
2919 OS << " /* Operand List Mnemonic, Mask, Operand Class, Features */\n";
2920 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2921 const MatchableInfo &II = *OMI.MI;
2922
2923 OS << " { ";
2924
2925 // Store a pascal-style length byte in the mnemonic.
2926 std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.lower();
2927 OS << StringTable.GetOrAddStringOffset(Str: LenMnemonic, appendZero: false) << " /* "
2928 << II.Mnemonic << " */, ";
2929
2930 OS << OMI.OperandMask;
2931 OS << " /* ";
2932 ListSeparator LS;
2933 for (int i = 0, e = 31; i != e; ++i)
2934 if (OMI.OperandMask & (1 << i))
2935 OS << LS << i;
2936 OS << " */, ";
2937
2938 OS << OMI.CI->Name;
2939
2940 // Write the required features mask.
2941 OS << ", AMFBS";
2942 if (II.RequiredFeatures.empty())
2943 OS << "_None";
2944 else
2945 for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i)
2946 OS << '_' << II.RequiredFeatures[i]->TheDef->getName();
2947
2948 OS << " },\n";
2949 }
2950 OS << "};\n\n";
2951
2952 // Emit the operand class switch to call the correct custom parser for
2953 // the found operand class.
2954 OS << "ParseStatus " << Target.getName() << ClassName << "::\n"
2955 << "tryCustomParseOperand(OperandVector"
2956 << " &Operands,\n unsigned MCK) {\n\n"
2957 << " switch(MCK) {\n";
2958
2959 for (const auto &CI : Info.Classes) {
2960 if (CI.ParserMethod.empty())
2961 continue;
2962 OS << " case " << CI.Name << ":\n"
2963 << " return " << CI.ParserMethod << "(Operands);\n";
2964 }
2965
2966 OS << " default:\n";
2967 OS << " return ParseStatus::NoMatch;\n";
2968 OS << " }\n";
2969 OS << " return ParseStatus::NoMatch;\n";
2970 OS << "}\n\n";
2971
2972 // Emit the static custom operand parser. This code is very similar with
2973 // the other matcher. Also use MatchResultTy here just in case we go for
2974 // a better error handling.
2975 OS << "ParseStatus " << Target.getName() << ClassName << "::\n"
2976 << "MatchOperandParserImpl(OperandVector"
2977 << " &Operands,\n StringRef Mnemonic,\n"
2978 << " bool ParseForAllFeatures) {\n";
2979
2980 // Emit code to get the available features.
2981 OS << " // Get the current feature set.\n";
2982 OS << " const FeatureBitset &AvailableFeatures = "
2983 "getAvailableFeatures();\n\n";
2984
2985 OS << " // Get the next operand index.\n";
2986 OS << " unsigned NextOpNum = Operands.size()"
2987 << (HasMnemonicFirst ? " - 1" : "") << ";\n";
2988
2989 // Emit code to search the table.
2990 OS << " // Search the table.\n";
2991 if (HasMnemonicFirst) {
2992 OS << " auto MnemonicRange =\n";
2993 OS << " std::equal_range(std::begin(OperandMatchTable), "
2994 "std::end(OperandMatchTable),\n";
2995 OS << " Mnemonic, LessOpcodeOperand());\n\n";
2996 } else {
2997 OS << " auto MnemonicRange = std::pair(std::begin(OperandMatchTable),"
2998 " std::end(OperandMatchTable));\n";
2999 OS << " if (!Mnemonic.empty())\n";
3000 OS << " MnemonicRange =\n";
3001 OS << " std::equal_range(std::begin(OperandMatchTable), "
3002 "std::end(OperandMatchTable),\n";
3003 OS << " Mnemonic, LessOpcodeOperand());\n\n";
3004 }
3005
3006 OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
3007 OS << " return ParseStatus::NoMatch;\n\n";
3008
3009 OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n"
3010 << " *ie = MnemonicRange.second; it != ie; ++it) {\n";
3011
3012 OS << " // equal_range guarantees that instruction mnemonic matches.\n";
3013 OS << " assert(Mnemonic == it->getMnemonic());\n\n";
3014
3015 // Emit check that the required features are available.
3016 OS << " // check if the available features match\n";
3017 OS << " const FeatureBitset &RequiredFeatures = "
3018 "FeatureBitsets[it->RequiredFeaturesIdx];\n";
3019 OS << " if (!ParseForAllFeatures && (AvailableFeatures & "
3020 "RequiredFeatures) != RequiredFeatures)\n";
3021 OS << " continue;\n\n";
3022
3023 // Emit check to ensure the operand number matches.
3024 OS << " // check if the operand in question has a custom parser.\n";
3025 OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n";
3026 OS << " continue;\n\n";
3027
3028 // Emit call to the custom parser method
3029 StringRef ParserName = AsmParser.getValueAsString(FieldName: "OperandParserMethod");
3030 if (ParserName.empty())
3031 ParserName = "tryCustomParseOperand";
3032 OS << " // call custom parse method to handle the operand\n";
3033 OS << " ParseStatus Result = " << ParserName << "(Operands, it->Class);\n";
3034 OS << " if (!Result.isNoMatch())\n";
3035 OS << " return Result;\n";
3036 OS << " }\n\n";
3037
3038 OS << " // Okay, we had no match.\n";
3039 OS << " return ParseStatus::NoMatch;\n";
3040 OS << "}\n\n";
3041}
3042
3043static void emitAsmTiedOperandConstraints(CodeGenTarget &Target,
3044 AsmMatcherInfo &Info, raw_ostream &OS,
3045 bool HasOptionalOperands) {
3046 std::string AsmParserName =
3047 std::string(Info.AsmParser->getValueAsString(FieldName: "AsmParserClassName"));
3048 OS << "static bool ";
3049 OS << "checkAsmTiedOperandConstraints(const " << Target.getName()
3050 << AsmParserName << "&AsmParser,\n";
3051 OS << " unsigned Kind, const OperandVector "
3052 "&Operands,\n";
3053 if (HasOptionalOperands)
3054 OS << " ArrayRef<unsigned> DefaultsOffset,\n";
3055 OS << " uint64_t &ErrorInfo) {\n";
3056 OS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
3057 OS << " const uint8_t *Converter = ConversionTable[Kind];\n";
3058 OS << " for (const uint8_t *p = Converter; *p; p += 2) {\n";
3059 OS << " switch (*p) {\n";
3060 OS << " case CVT_Tied: {\n";
3061 OS << " unsigned OpIdx = *(p + 1);\n";
3062 OS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n";
3063 OS << " std::begin(TiedAsmOperandTable)) &&\n";
3064 OS << " \"Tied operand not found\");\n";
3065 OS << " unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n";
3066 OS << " unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n";
3067 if (HasOptionalOperands) {
3068 // When optional operands are involved, formal and actual operand indices
3069 // may differ. Map the former to the latter by subtracting the number of
3070 // absent optional operands.
3071 OS << " OpndNum1 = OpndNum1 - DefaultsOffset[OpndNum1];\n";
3072 OS << " OpndNum2 = OpndNum2 - DefaultsOffset[OpndNum2];\n";
3073 }
3074 OS << " if (OpndNum1 != OpndNum2) {\n";
3075 OS << " auto &SrcOp1 = Operands[OpndNum1];\n";
3076 OS << " auto &SrcOp2 = Operands[OpndNum2];\n";
3077 OS << " if (!AsmParser.areEqualRegs(*SrcOp1, *SrcOp2)) {\n";
3078 OS << " ErrorInfo = OpndNum2;\n";
3079 OS << " return false;\n";
3080 OS << " }\n";
3081 OS << " }\n";
3082 OS << " break;\n";
3083 OS << " }\n";
3084 OS << " default:\n";
3085 OS << " break;\n";
3086 OS << " }\n";
3087 OS << " }\n";
3088 OS << " return true;\n";
3089 OS << "}\n\n";
3090}
3091
3092static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target,
3093 unsigned VariantCount) {
3094 OS << "static std::string " << Target.getName()
3095 << "MnemonicSpellCheck(StringRef S, const FeatureBitset &FBS,"
3096 << " unsigned VariantID) {\n";
3097 if (!VariantCount)
3098 OS << " return \"\";";
3099 else {
3100 OS << " const unsigned MaxEditDist = 2;\n";
3101 OS << " std::vector<StringRef> Candidates;\n";
3102 OS << " StringRef Prev = \"\";\n\n";
3103
3104 OS << " // Find the appropriate table for this asm variant.\n";
3105 OS << " const MatchEntry *Start, *End;\n";
3106 OS << " switch (VariantID) {\n";
3107 OS << " default: llvm_unreachable(\"invalid variant!\");\n";
3108 for (unsigned VC = 0; VC != VariantCount; ++VC) {
3109 Record *AsmVariant = Target.getAsmParserVariant(i: VC);
3110 int AsmVariantNo = AsmVariant->getValueAsInt(FieldName: "Variant");
3111 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3112 << "); End = std::end(MatchTable" << VC << "); break;\n";
3113 }
3114 OS << " }\n\n";
3115 OS << " for (auto I = Start; I < End; I++) {\n";
3116 OS << " // Ignore unsupported instructions.\n";
3117 OS << " const FeatureBitset &RequiredFeatures = "
3118 "FeatureBitsets[I->RequiredFeaturesIdx];\n";
3119 OS << " if ((FBS & RequiredFeatures) != RequiredFeatures)\n";
3120 OS << " continue;\n";
3121 OS << "\n";
3122 OS << " StringRef T = I->getMnemonic();\n";
3123 OS << " // Avoid recomputing the edit distance for the same string.\n";
3124 OS << " if (T == Prev)\n";
3125 OS << " continue;\n";
3126 OS << "\n";
3127 OS << " Prev = T;\n";
3128 OS << " unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n";
3129 OS << " if (Dist <= MaxEditDist)\n";
3130 OS << " Candidates.push_back(T);\n";
3131 OS << " }\n";
3132 OS << "\n";
3133 OS << " if (Candidates.empty())\n";
3134 OS << " return \"\";\n";
3135 OS << "\n";
3136 OS << " std::string Res = \", did you mean: \";\n";
3137 OS << " unsigned i = 0;\n";
3138 OS << " for (; i < Candidates.size() - 1; i++)\n";
3139 OS << " Res += Candidates[i].str() + \", \";\n";
3140 OS << " return Res + Candidates[i].str() + \"?\";\n";
3141 }
3142 OS << "}\n";
3143 OS << "\n";
3144}
3145
3146static void emitMnemonicChecker(raw_ostream &OS, CodeGenTarget &Target,
3147 unsigned VariantCount, bool HasMnemonicFirst,
3148 bool HasMnemonicAliases) {
3149 OS << "static bool " << Target.getName()
3150 << "CheckMnemonic(StringRef Mnemonic,\n";
3151 OS << " "
3152 << "const FeatureBitset &AvailableFeatures,\n";
3153 OS << " "
3154 << "unsigned VariantID) {\n";
3155
3156 if (!VariantCount) {
3157 OS << " return false;\n";
3158 } else {
3159 if (HasMnemonicAliases) {
3160 OS << " // Process all MnemonicAliases to remap the mnemonic.\n";
3161 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);";
3162 OS << "\n\n";
3163 }
3164 OS << " // Find the appropriate table for this asm variant.\n";
3165 OS << " const MatchEntry *Start, *End;\n";
3166 OS << " switch (VariantID) {\n";
3167 OS << " default: llvm_unreachable(\"invalid variant!\");\n";
3168 for (unsigned VC = 0; VC != VariantCount; ++VC) {
3169 Record *AsmVariant = Target.getAsmParserVariant(i: VC);
3170 int AsmVariantNo = AsmVariant->getValueAsInt(FieldName: "Variant");
3171 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3172 << "); End = std::end(MatchTable" << VC << "); break;\n";
3173 }
3174 OS << " }\n\n";
3175
3176 OS << " // Search the table.\n";
3177 if (HasMnemonicFirst) {
3178 OS << " auto MnemonicRange = "
3179 "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
3180 } else {
3181 OS << " auto MnemonicRange = std::pair(Start, End);\n";
3182 OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
3183 OS << " if (!Mnemonic.empty())\n";
3184 OS << " MnemonicRange = "
3185 << "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
3186 }
3187
3188 OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
3189 OS << " return false;\n\n";
3190
3191 OS << " for (const MatchEntry *it = MnemonicRange.first, "
3192 << "*ie = MnemonicRange.second;\n";
3193 OS << " it != ie; ++it) {\n";
3194 OS << " const FeatureBitset &RequiredFeatures =\n";
3195 OS << " FeatureBitsets[it->RequiredFeaturesIdx];\n";
3196 OS << " if ((AvailableFeatures & RequiredFeatures) == ";
3197 OS << "RequiredFeatures)\n";
3198 OS << " return true;\n";
3199 OS << " }\n";
3200 OS << " return false;\n";
3201 }
3202 OS << "}\n";
3203 OS << "\n";
3204}
3205
3206// Emit a function mapping match classes to strings, for debugging.
3207static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos,
3208 raw_ostream &OS) {
3209 OS << "#ifndef NDEBUG\n";
3210 OS << "const char *getMatchClassName(MatchClassKind Kind) {\n";
3211 OS << " switch (Kind) {\n";
3212
3213 OS << " case InvalidMatchClass: return \"InvalidMatchClass\";\n";
3214 OS << " case OptionalMatchClass: return \"OptionalMatchClass\";\n";
3215 for (const auto &CI : Infos) {
3216 OS << " case " << CI.Name << ": return \"" << CI.Name << "\";\n";
3217 }
3218 OS << " case NumMatchClassKinds: return \"NumMatchClassKinds\";\n";
3219
3220 OS << " }\n";
3221 OS << " llvm_unreachable(\"unhandled MatchClassKind!\");\n";
3222 OS << "}\n\n";
3223 OS << "#endif // NDEBUG\n";
3224}
3225
3226static std::string
3227getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
3228 std::string Name = "AMFBS";
3229 for (const auto &Feature : FeatureBitset)
3230 Name += ("_" + Feature->getName()).str();
3231 return Name;
3232}
3233
3234void AsmMatcherEmitter::run(raw_ostream &OS) {
3235 CodeGenTarget Target(Records);
3236 Record *AsmParser = Target.getAsmParser();
3237 StringRef ClassName = AsmParser->getValueAsString(FieldName: "AsmParserClassName");
3238
3239 emitSourceFileHeader(Desc: "Assembly Matcher Source Fragment", OS, Record: Records);
3240
3241 // Compute the information on the instructions to match.
3242 AsmMatcherInfo Info(AsmParser, Target, Records);
3243 Info.buildInfo();
3244
3245 bool PreferSmallerInstructions = getPreferSmallerInstructions(Target);
3246 // Sort the instruction table using the partial order on classes. We use
3247 // stable_sort to ensure that ambiguous instructions are still
3248 // deterministically ordered.
3249 llvm::stable_sort(
3250 Range&: Info.Matchables,
3251 C: [PreferSmallerInstructions](const std::unique_ptr<MatchableInfo> &A,
3252 const std::unique_ptr<MatchableInfo> &B) {
3253 return A->shouldBeMatchedBefore(RHS: *B, PreferSmallerInstructions);
3254 });
3255
3256#ifdef EXPENSIVE_CHECKS
3257 // Verify that the table is sorted and operator < works transitively.
3258 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3259 ++I) {
3260 for (auto J = I; J != E; ++J) {
3261 assert(!(*J)->shouldBeMatchedBefore(**I, PreferSmallerInstructions));
3262 }
3263 }
3264#endif
3265
3266 DEBUG_WITH_TYPE("instruction_info", {
3267 for (const auto &MI : Info.Matchables)
3268 MI->dump();
3269 });
3270
3271 // Check for ambiguous matchables.
3272 DEBUG_WITH_TYPE("ambiguous_instrs", {
3273 unsigned NumAmbiguous = 0;
3274 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3275 ++I) {
3276 for (auto J = std::next(I); J != E; ++J) {
3277 const MatchableInfo &A = **I;
3278 const MatchableInfo &B = **J;
3279
3280 if (A.couldMatchAmbiguouslyWith(B, PreferSmallerInstructions)) {
3281 errs() << "warning: ambiguous matchables:\n";
3282 A.dump();
3283 errs() << "\nis incomparable with:\n";
3284 B.dump();
3285 errs() << "\n\n";
3286 ++NumAmbiguous;
3287 }
3288 }
3289 }
3290 if (NumAmbiguous)
3291 errs() << "warning: " << NumAmbiguous << " ambiguous matchables!\n";
3292 });
3293
3294 // Compute the information on the custom operand parsing.
3295 Info.buildOperandMatchInfo();
3296
3297 bool HasMnemonicFirst = AsmParser->getValueAsBit(FieldName: "HasMnemonicFirst");
3298 bool HasOptionalOperands = Info.hasOptionalOperands();
3299 bool ReportMultipleNearMisses =
3300 AsmParser->getValueAsBit(FieldName: "ReportMultipleNearMisses");
3301
3302 // Write the output.
3303
3304 // Information for the class declaration.
3305 OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
3306 OS << "#undef GET_ASSEMBLER_HEADER\n";
3307 OS << " // This should be included into the middle of the declaration of\n";
3308 OS << " // your subclasses implementation of MCTargetAsmParser.\n";
3309 OS << " FeatureBitset ComputeAvailableFeatures(const FeatureBitset &FB) "
3310 "const;\n";
3311 if (HasOptionalOperands) {
3312 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, "
3313 << "unsigned Opcode,\n"
3314 << " const OperandVector &Operands,\n"
3315 << " const SmallBitVector "
3316 "&OptionalOperandsMask,\n"
3317 << " ArrayRef<unsigned> DefaultsOffset);\n";
3318 } else {
3319 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, "
3320 << "unsigned Opcode,\n"
3321 << " const OperandVector &Operands);\n";
3322 }
3323 OS << " void convertToMapAndConstraints(unsigned Kind,\n ";
3324 OS << " const OperandVector &Operands) override;\n";
3325 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
3326 << " MCInst &Inst,\n";
3327 if (ReportMultipleNearMisses)
3328 OS << " SmallVectorImpl<NearMissInfo> "
3329 "*NearMisses,\n";
3330 else
3331 OS << " uint64_t &ErrorInfo,\n"
3332 << " FeatureBitset &MissingFeatures,\n";
3333 OS << " bool matchingInlineAsm,\n"
3334 << " unsigned VariantID = 0);\n";
3335 if (!ReportMultipleNearMisses)
3336 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
3337 << " MCInst &Inst,\n"
3338 << " uint64_t &ErrorInfo,\n"
3339 << " bool matchingInlineAsm,\n"
3340 << " unsigned VariantID = 0) {\n"
3341 << " FeatureBitset MissingFeatures;\n"
3342 << " return MatchInstructionImpl(Operands, Inst, ErrorInfo, "
3343 "MissingFeatures,\n"
3344 << " matchingInlineAsm, VariantID);\n"
3345 << " }\n\n";
3346
3347 if (!Info.OperandMatchInfo.empty()) {
3348 OS << " ParseStatus MatchOperandParserImpl(\n";
3349 OS << " OperandVector &Operands,\n";
3350 OS << " StringRef Mnemonic,\n";
3351 OS << " bool ParseForAllFeatures = false);\n";
3352
3353 OS << " ParseStatus tryCustomParseOperand(\n";
3354 OS << " OperandVector &Operands,\n";
3355 OS << " unsigned MCK);\n\n";
3356 }
3357
3358 OS << "#endif // GET_ASSEMBLER_HEADER\n\n";
3359
3360 // Emit the operand match diagnostic enum names.
3361 OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
3362 OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3363 emitOperandDiagnosticTypes(Info, OS);
3364 OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3365
3366 OS << "\n#ifdef GET_REGISTER_MATCHER\n";
3367 OS << "#undef GET_REGISTER_MATCHER\n\n";
3368
3369 // Emit the subtarget feature enumeration.
3370 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(
3371 SubtargetFeatures: Info.SubtargetFeatures, OS);
3372
3373 // Emit the function to match a register name to number.
3374 // This should be omitted for Mips target
3375 if (AsmParser->getValueAsBit(FieldName: "ShouldEmitMatchRegisterName"))
3376 emitMatchRegisterName(Target, AsmParser, OS);
3377
3378 if (AsmParser->getValueAsBit(FieldName: "ShouldEmitMatchRegisterAltName"))
3379 emitMatchRegisterAltName(Target, AsmParser, OS);
3380
3381 OS << "#endif // GET_REGISTER_MATCHER\n\n";
3382
3383 OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
3384 OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
3385
3386 // Generate the helper function to get the names for subtarget features.
3387 emitGetSubtargetFeatureName(Info, OS);
3388
3389 OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
3390
3391 OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
3392 OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
3393
3394 // Generate the function that remaps for mnemonic aliases.
3395 bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
3396
3397 // Generate the convertToMCInst function to convert operands into an MCInst.
3398 // Also, generate the convertToMapAndConstraints function for MS-style inline
3399 // assembly. The latter doesn't actually generate a MCInst.
3400 unsigned NumConverters =
3401 emitConvertFuncs(Target, ClassName, Infos&: Info.Matchables, HasMnemonicFirst,
3402 HasOptionalOperands, OS);
3403
3404 // Emit the enumeration for classes which participate in matching.
3405 emitMatchClassEnumeration(Target, Infos&: Info.Classes, OS);
3406
3407 // Emit a function to get the user-visible string to describe an operand
3408 // match failure in diagnostics.
3409 emitOperandMatchErrorDiagStrings(Info, OS);
3410
3411 // Emit a function to map register classes to operand match failure codes.
3412 emitRegisterMatchErrorFunc(Info, OS);
3413
3414 // Emit the routine to match token strings to their match class.
3415 emitMatchTokenString(Target, Infos&: Info.Classes, OS);
3416
3417 // Emit the subclass predicate routine.
3418 emitIsSubclass(Target, Infos&: Info.Classes, OS);
3419
3420 // Emit the routine to validate an operand against a match class.
3421 emitValidateOperandClass(Info, OS);
3422
3423 emitMatchClassKindNames(Infos&: Info.Classes, OS);
3424
3425 // Emit the available features compute function.
3426 SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures(
3427 TargetName: Info.Target.getName(), ClassName, FuncName: "ComputeAvailableFeatures",
3428 SubtargetFeatures&: Info.SubtargetFeatures, OS);
3429
3430 if (!ReportMultipleNearMisses)
3431 emitAsmTiedOperandConstraints(Target, Info, OS, HasOptionalOperands);
3432
3433 StringToOffsetTable StringTable;
3434
3435 size_t MaxNumOperands = 0;
3436 unsigned MaxMnemonicIndex = 0;
3437 bool HasDeprecation = false;
3438 for (const auto &MI : Info.Matchables) {
3439 MaxNumOperands = std::max(a: MaxNumOperands, b: MI->AsmOperands.size());
3440 HasDeprecation |= MI->HasDeprecation;
3441
3442 // Store a pascal-style length byte in the mnemonic.
3443 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.lower();
3444 MaxMnemonicIndex = std::max(
3445 a: MaxMnemonicIndex, b: StringTable.GetOrAddStringOffset(Str: LenMnemonic, appendZero: false));
3446 }
3447
3448 OS << "static const char MnemonicTable[] =\n";
3449 StringTable.EmitString(O&: OS);
3450 OS << ";\n\n";
3451
3452 std::vector<std::vector<Record *>> FeatureBitsets;
3453 for (const auto &MI : Info.Matchables) {
3454 if (MI->RequiredFeatures.empty())
3455 continue;
3456 FeatureBitsets.emplace_back();
3457 for (unsigned I = 0, E = MI->RequiredFeatures.size(); I != E; ++I)
3458 FeatureBitsets.back().push_back(x: MI->RequiredFeatures[I]->TheDef);
3459 }
3460
3461 llvm::sort(C&: FeatureBitsets, Comp: [&](const std::vector<Record *> &A,
3462 const std::vector<Record *> &B) {
3463 if (A.size() < B.size())
3464 return true;
3465 if (A.size() > B.size())
3466 return false;
3467 for (auto Pair : zip(t: A, u: B)) {
3468 if (std::get<0>(t&: Pair)->getName() < std::get<1>(t&: Pair)->getName())
3469 return true;
3470 if (std::get<0>(t&: Pair)->getName() > std::get<1>(t&: Pair)->getName())
3471 return false;
3472 }
3473 return false;
3474 });
3475 FeatureBitsets.erase(first: llvm::unique(R&: FeatureBitsets), last: FeatureBitsets.end());
3476 OS << "// Feature bitsets.\n"
3477 << "enum : " << getMinimalTypeForRange(Range: FeatureBitsets.size()) << " {\n"
3478 << " AMFBS_None,\n";
3479 for (const auto &FeatureBitset : FeatureBitsets) {
3480 if (FeatureBitset.empty())
3481 continue;
3482 OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n";
3483 }
3484 OS << "};\n\n"
3485 << "static constexpr FeatureBitset FeatureBitsets[] = {\n"
3486 << " {}, // AMFBS_None\n";
3487 for (const auto &FeatureBitset : FeatureBitsets) {
3488 if (FeatureBitset.empty())
3489 continue;
3490 OS << " {";
3491 for (const auto &Feature : FeatureBitset) {
3492 const auto &I = Info.SubtargetFeatures.find(x: Feature);
3493 assert(I != Info.SubtargetFeatures.end() && "Didn't import predicate?");
3494 OS << I->second.getEnumBitName() << ", ";
3495 }
3496 OS << "},\n";
3497 }
3498 OS << "};\n\n";
3499
3500 // Emit the static match table; unused classes get initialized to 0 which is
3501 // guaranteed to be InvalidMatchClass.
3502 //
3503 // FIXME: We can reduce the size of this table very easily. First, we change
3504 // it so that store the kinds in separate bit-fields for each index, which
3505 // only needs to be the max width used for classes at that index (we also need
3506 // to reject based on this during classification). If we then make sure to
3507 // order the match kinds appropriately (putting mnemonics last), then we
3508 // should only end up using a few bits for each class, especially the ones
3509 // following the mnemonic.
3510 OS << "namespace {\n";
3511 OS << " struct MatchEntry {\n";
3512 OS << " " << getMinimalTypeForRange(Range: MaxMnemonicIndex) << " Mnemonic;\n";
3513 OS << " uint16_t Opcode;\n";
3514 OS << " " << getMinimalTypeForRange(Range: NumConverters) << " ConvertFn;\n";
3515 OS << " " << getMinimalTypeForRange(Range: FeatureBitsets.size())
3516 << " RequiredFeaturesIdx;\n";
3517 OS << " "
3518 << getMinimalTypeForRange(
3519 Range: std::distance(first: Info.Classes.begin(), last: Info.Classes.end()) +
3520 2 /* Include 'InvalidMatchClass' and 'OptionalMatchClass' */)
3521 << " Classes[" << MaxNumOperands << "];\n";
3522 OS << " StringRef getMnemonic() const {\n";
3523 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
3524 OS << " MnemonicTable[Mnemonic]);\n";
3525 OS << " }\n";
3526 OS << " };\n\n";
3527
3528 OS << " // Predicate for searching for an opcode.\n";
3529 OS << " struct LessOpcode {\n";
3530 OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
3531 OS << " return LHS.getMnemonic() < RHS;\n";
3532 OS << " }\n";
3533 OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
3534 OS << " return LHS < RHS.getMnemonic();\n";
3535 OS << " }\n";
3536 OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
3537 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
3538 OS << " }\n";
3539 OS << " };\n";
3540
3541 OS << "} // end anonymous namespace\n\n";
3542
3543 unsigned VariantCount = Target.getAsmParserVariantCount();
3544 for (unsigned VC = 0; VC != VariantCount; ++VC) {
3545 Record *AsmVariant = Target.getAsmParserVariant(i: VC);
3546 int AsmVariantNo = AsmVariant->getValueAsInt(FieldName: "Variant");
3547
3548 OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
3549
3550 for (const auto &MI : Info.Matchables) {
3551 if (MI->AsmVariantID != AsmVariantNo)
3552 continue;
3553
3554 // Store a pascal-style length byte in the mnemonic.
3555 std::string LenMnemonic =
3556 char(MI->Mnemonic.size()) + MI->Mnemonic.lower();
3557 OS << " { " << StringTable.GetOrAddStringOffset(Str: LenMnemonic, appendZero: false)
3558 << " /* " << MI->Mnemonic << " */, " << Target.getInstNamespace()
3559 << "::" << MI->getResultInst()->TheDef->getName() << ", "
3560 << MI->ConversionFnKind << ", ";
3561
3562 // Write the required features mask.
3563 OS << "AMFBS";
3564 if (MI->RequiredFeatures.empty())
3565 OS << "_None";
3566 else
3567 for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i)
3568 OS << '_' << MI->RequiredFeatures[i]->TheDef->getName();
3569
3570 OS << ", { ";
3571 ListSeparator LS;
3572 for (const MatchableInfo::AsmOperand &Op : MI->AsmOperands)
3573 OS << LS << Op.Class->Name;
3574 OS << " }, },\n";
3575 }
3576
3577 OS << "};\n\n";
3578 }
3579
3580 OS << "#include \"llvm/Support/Debug.h\"\n";
3581 OS << "#include \"llvm/Support/Format.h\"\n\n";
3582
3583 // Finally, build the match function.
3584 OS << "unsigned " << Target.getName() << ClassName << "::\n"
3585 << "MatchInstructionImpl(const OperandVector &Operands,\n";
3586 OS << " MCInst &Inst,\n";
3587 if (ReportMultipleNearMisses)
3588 OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n";
3589 else
3590 OS << " uint64_t &ErrorInfo,\n"
3591 << " FeatureBitset &MissingFeatures,\n";
3592 OS << " bool matchingInlineAsm, unsigned VariantID) {\n";
3593
3594 if (!ReportMultipleNearMisses) {
3595 OS << " // Eliminate obvious mismatches.\n";
3596 OS << " if (Operands.size() > " << (MaxNumOperands + HasMnemonicFirst)
3597 << ") {\n";
3598 OS << " ErrorInfo = " << (MaxNumOperands + HasMnemonicFirst) << ";\n";
3599 OS << " return Match_InvalidOperand;\n";
3600 OS << " }\n\n";
3601 }
3602
3603 // Emit code to get the available features.
3604 OS << " // Get the current feature set.\n";
3605 OS << " const FeatureBitset &AvailableFeatures = "
3606 "getAvailableFeatures();\n\n";
3607
3608 OS << " // Get the instruction mnemonic, which is the first token.\n";
3609 if (HasMnemonicFirst) {
3610 OS << " StringRef Mnemonic = ((" << Target.getName()
3611 << "Operand &)*Operands[0]).getToken();\n\n";
3612 } else {
3613 OS << " StringRef Mnemonic;\n";
3614 OS << " if (Operands[0]->isToken())\n";
3615 OS << " Mnemonic = ((" << Target.getName()
3616 << "Operand &)*Operands[0]).getToken();\n\n";
3617 }
3618
3619 if (HasMnemonicAliases) {
3620 OS << " // Process all MnemonicAliases to remap the mnemonic.\n";
3621 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
3622 }
3623
3624 // Emit code to compute the class list for this operand vector.
3625 if (!ReportMultipleNearMisses) {
3626 OS << " // Some state to try to produce better error messages.\n";
3627 OS << " bool HadMatchOtherThanFeatures = false;\n";
3628 OS << " bool HadMatchOtherThanPredicate = false;\n";
3629 OS << " unsigned RetCode = Match_InvalidOperand;\n";
3630 OS << " MissingFeatures.set();\n";
3631 OS << " // Set ErrorInfo to the operand that mismatches if it is\n";
3632 OS << " // wrong for all instances of the instruction.\n";
3633 OS << " ErrorInfo = ~0ULL;\n";
3634 }
3635
3636 if (HasOptionalOperands) {
3637 OS << " SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n";
3638 }
3639
3640 // Emit code to search the table.
3641 OS << " // Find the appropriate table for this asm variant.\n";
3642 OS << " const MatchEntry *Start, *End;\n";
3643 OS << " switch (VariantID) {\n";
3644 OS << " default: llvm_unreachable(\"invalid variant!\");\n";
3645 for (unsigned VC = 0; VC != VariantCount; ++VC) {
3646 Record *AsmVariant = Target.getAsmParserVariant(i: VC);
3647 int AsmVariantNo = AsmVariant->getValueAsInt(FieldName: "Variant");
3648 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3649 << "); End = std::end(MatchTable" << VC << "); break;\n";
3650 }
3651 OS << " }\n";
3652
3653 OS << " // Search the table.\n";
3654 if (HasMnemonicFirst) {
3655 OS << " auto MnemonicRange = "
3656 "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
3657 } else {
3658 OS << " auto MnemonicRange = std::pair(Start, End);\n";
3659 OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
3660 OS << " if (!Mnemonic.empty())\n";
3661 OS << " MnemonicRange = "
3662 "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
3663 }
3664
3665 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" "
3666 "<<\n"
3667 << " std::distance(MnemonicRange.first, MnemonicRange.second) <<\n"
3668 << " \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n";
3669
3670 OS << " // Return a more specific error code if no mnemonics match.\n";
3671 OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
3672 OS << " return Match_MnemonicFail;\n\n";
3673
3674 OS << " for (const MatchEntry *it = MnemonicRange.first, "
3675 << "*ie = MnemonicRange.second;\n";
3676 OS << " it != ie; ++it) {\n";
3677 OS << " const FeatureBitset &RequiredFeatures = "
3678 "FeatureBitsets[it->RequiredFeaturesIdx];\n";
3679 OS << " bool HasRequiredFeatures =\n";
3680 OS << " (AvailableFeatures & RequiredFeatures) == RequiredFeatures;\n";
3681 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match "
3682 "opcode \"\n";
3683 OS << " << MII.getName(it->Opcode) "
3684 "<< \"\\n\");\n";
3685
3686 if (ReportMultipleNearMisses) {
3687 OS << " // Some state to record ways in which this instruction did not "
3688 "match.\n";
3689 OS << " NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n";
3690 OS << " NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n";
3691 OS << " NearMissInfo EarlyPredicateNearMiss = "
3692 "NearMissInfo::getSuccess();\n";
3693 OS << " NearMissInfo LatePredicateNearMiss = "
3694 "NearMissInfo::getSuccess();\n";
3695 OS << " bool MultipleInvalidOperands = false;\n";
3696 }
3697
3698 if (HasMnemonicFirst) {
3699 OS << " // equal_range guarantees that instruction mnemonic matches.\n";
3700 OS << " assert(Mnemonic == it->getMnemonic());\n";
3701 }
3702
3703 // Emit check that the subclasses match.
3704 if (!ReportMultipleNearMisses)
3705 OS << " bool OperandsValid = true;\n";
3706 if (HasOptionalOperands) {
3707 OS << " OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n";
3708 }
3709 OS << " for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex")
3710 << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex")
3711 << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n";
3712 OS << " auto Formal = "
3713 << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n";
3714 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3715 OS << " dbgs() << \" Matching formal operand class \" "
3716 "<< getMatchClassName(Formal)\n";
3717 OS << " << \" against actual operand at index \" "
3718 "<< ActualIdx);\n";
3719 OS << " if (ActualIdx < Operands.size())\n";
3720 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n";
3721 OS << " Operands[ActualIdx]->print(dbgs()); dbgs() << "
3722 "\"): \");\n";
3723 OS << " else\n";
3724 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n";
3725 OS << " if (ActualIdx >= Operands.size()) {\n";
3726 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand "
3727 "index out of range\\n\");\n";
3728 if (ReportMultipleNearMisses) {
3729 OS << " bool ThisOperandValid = (Formal == "
3730 << "InvalidMatchClass) || "
3731 "isSubclass(Formal, OptionalMatchClass);\n";
3732 OS << " if (!ThisOperandValid) {\n";
3733 OS << " if (!OperandNearMiss) {\n";
3734 OS << " // Record info about match failure for later use.\n";
3735 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording "
3736 "too-few-operands near miss\\n\");\n";
3737 OS << " OperandNearMiss =\n";
3738 OS << " NearMissInfo::getTooFewOperands(Formal, "
3739 "it->Opcode);\n";
3740 OS << " } else if (OperandNearMiss.getKind() != "
3741 "NearMissInfo::NearMissTooFewOperands) {\n";
3742 OS << " // If more than one operand is invalid, give up on this "
3743 "match entry.\n";
3744 OS << " DEBUG_WITH_TYPE(\n";
3745 OS << " \"asm-matcher\",\n";
3746 OS << " dbgs() << \"second invalid operand, giving up on "
3747 "this opcode\\n\");\n";
3748 OS << " MultipleInvalidOperands = true;\n";
3749 OS << " break;\n";
3750 OS << " }\n";
3751 OS << " } else {\n";
3752 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal "
3753 "operand not required\\n\");\n";
3754 OS << " if (isSubclass(Formal, OptionalMatchClass)) {\n";
3755 OS << " OptionalOperandsMask.set(FormalIdx);\n";
3756 OS << " }\n";
3757 OS << " }\n";
3758 OS << " continue;\n";
3759 } else {
3760 OS << " if (Formal == InvalidMatchClass) {\n";
3761 if (HasOptionalOperands) {
3762 OS << " OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands
3763 << ");\n";
3764 }
3765 OS << " break;\n";
3766 OS << " }\n";
3767 OS << " if (isSubclass(Formal, OptionalMatchClass)) {\n";
3768 if (HasOptionalOperands) {
3769 OS << " OptionalOperandsMask.set(FormalIdx);\n";
3770 }
3771 OS << " continue;\n";
3772 OS << " }\n";
3773 OS << " OperandsValid = false;\n";
3774 OS << " ErrorInfo = ActualIdx;\n";
3775 OS << " break;\n";
3776 }
3777 OS << " }\n";
3778 OS << " MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n";
3779 OS << " unsigned Diag = validateOperandClass(Actual, Formal);\n";
3780 OS << " if (Diag == Match_Success) {\n";
3781 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3782 OS << " dbgs() << \"match success using generic "
3783 "matcher\\n\");\n";
3784 OS << " ++ActualIdx;\n";
3785 OS << " continue;\n";
3786 OS << " }\n";
3787 OS << " // If the generic handler indicates an invalid operand\n";
3788 OS << " // failure, check for a special case.\n";
3789 OS << " if (Diag != Match_Success) {\n";
3790 OS << " unsigned TargetDiag = validateTargetOperandClass(Actual, "
3791 "Formal);\n";
3792 OS << " if (TargetDiag == Match_Success) {\n";
3793 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3794 OS << " dbgs() << \"match success using target "
3795 "matcher\\n\");\n";
3796 OS << " ++ActualIdx;\n";
3797 OS << " continue;\n";
3798 OS << " }\n";
3799 OS << " // If the target matcher returned a specific error code use\n";
3800 OS << " // that, else use the one from the generic matcher.\n";
3801 OS << " if (TargetDiag != Match_InvalidOperand && "
3802 "HasRequiredFeatures)\n";
3803 OS << " Diag = TargetDiag;\n";
3804 OS << " }\n";
3805 OS << " // If current formal operand wasn't matched and it is optional\n"
3806 << " // then try to match next formal operand\n";
3807 OS << " if (Diag == Match_InvalidOperand "
3808 << "&& isSubclass(Formal, OptionalMatchClass)) {\n";
3809 if (HasOptionalOperands) {
3810 OS << " OptionalOperandsMask.set(FormalIdx);\n";
3811 }
3812 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring "
3813 "optional operand\\n\");\n";
3814 OS << " continue;\n";
3815 OS << " }\n";
3816
3817 if (ReportMultipleNearMisses) {
3818 OS << " if (!OperandNearMiss) {\n";
3819 OS << " // If this is the first invalid operand we have seen, "
3820 "record some\n";
3821 OS << " // information about it.\n";
3822 OS << " DEBUG_WITH_TYPE(\n";
3823 OS << " \"asm-matcher\",\n";
3824 OS << " dbgs()\n";
3825 OS << " << \"operand match failed, recording near-miss with "
3826 "diag code \"\n";
3827 OS << " << Diag << \"\\n\");\n";
3828 OS << " OperandNearMiss =\n";
3829 OS << " NearMissInfo::getMissedOperand(Diag, Formal, "
3830 "it->Opcode, ActualIdx);\n";
3831 OS << " ++ActualIdx;\n";
3832 OS << " } else {\n";
3833 OS << " // If more than one operand is invalid, give up on this "
3834 "match entry.\n";
3835 OS << " DEBUG_WITH_TYPE(\n";
3836 OS << " \"asm-matcher\",\n";
3837 OS << " dbgs() << \"second operand mismatch, skipping this "
3838 "opcode\\n\");\n";
3839 OS << " MultipleInvalidOperands = true;\n";
3840 OS << " break;\n";
3841 OS << " }\n";
3842 OS << " }\n\n";
3843 } else {
3844 OS << " // If this operand is broken for all of the instances of "
3845 "this\n";
3846 OS << " // mnemonic, keep track of it so we can report loc info.\n";
3847 OS << " // If we already had a match that only failed due to a\n";
3848 OS << " // target predicate, that diagnostic is preferred.\n";
3849 OS << " if (!HadMatchOtherThanPredicate &&\n";
3850 OS << " (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) "
3851 "{\n";
3852 OS << " if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag "
3853 "!= Match_InvalidOperand))\n";
3854 OS << " RetCode = Diag;\n";
3855 OS << " ErrorInfo = ActualIdx;\n";
3856 OS << " }\n";
3857 OS << " // Otherwise, just reject this instance of the mnemonic.\n";
3858 OS << " OperandsValid = false;\n";
3859 OS << " break;\n";
3860 OS << " }\n\n";
3861 }
3862
3863 if (ReportMultipleNearMisses)
3864 OS << " if (MultipleInvalidOperands) {\n";
3865 else
3866 OS << " if (!OperandsValid) {\n";
3867 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: "
3868 "multiple \"\n";
3869 OS << " \"operand mismatches, "
3870 "ignoring \"\n";
3871 OS << " \"this opcode\\n\");\n";
3872 OS << " continue;\n";
3873 OS << " }\n";
3874
3875 // Emit check that the required features are available.
3876 OS << " if (!HasRequiredFeatures) {\n";
3877 if (!ReportMultipleNearMisses)
3878 OS << " HadMatchOtherThanFeatures = true;\n";
3879 OS << " FeatureBitset NewMissingFeatures = RequiredFeatures & "
3880 "~AvailableFeatures;\n";
3881 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target "
3882 "features:\";\n";
3883 OS << " for (unsigned I = 0, E = "
3884 "NewMissingFeatures.size(); I != E; ++I)\n";
3885 OS << " if (NewMissingFeatures[I])\n";
3886 OS << " dbgs() << ' ' << I;\n";
3887 OS << " dbgs() << \"\\n\");\n";
3888 if (ReportMultipleNearMisses) {
3889 OS << " FeaturesNearMiss = "
3890 "NearMissInfo::getMissedFeature(NewMissingFeatures);\n";
3891 } else {
3892 OS << " if (NewMissingFeatures.count() <=\n"
3893 " MissingFeatures.count())\n";
3894 OS << " MissingFeatures = NewMissingFeatures;\n";
3895 OS << " continue;\n";
3896 }
3897 OS << " }\n";
3898 OS << "\n";
3899 OS << " Inst.clear();\n\n";
3900 OS << " Inst.setOpcode(it->Opcode);\n";
3901 // Verify the instruction with the target-specific match predicate function.
3902 OS << " // We have a potential match but have not rendered the operands.\n"
3903 << " // Check the target predicate to handle any context sensitive\n"
3904 " // constraints.\n"
3905 << " // For example, Ties that are referenced multiple times must be\n"
3906 " // checked here to ensure the input is the same for each match\n"
3907 " // constraints. If we leave it any later the ties will have been\n"
3908 " // canonicalized\n"
3909 << " unsigned MatchResult;\n"
3910 << " if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, "
3911 "Operands)) != Match_Success) {\n"
3912 << " Inst.clear();\n";
3913 OS << " DEBUG_WITH_TYPE(\n";
3914 OS << " \"asm-matcher\",\n";
3915 OS << " dbgs() << \"Early target match predicate failed with diag "
3916 "code \"\n";
3917 OS << " << MatchResult << \"\\n\");\n";
3918 if (ReportMultipleNearMisses) {
3919 OS << " EarlyPredicateNearMiss = "
3920 "NearMissInfo::getMissedPredicate(MatchResult);\n";
3921 } else {
3922 OS << " RetCode = MatchResult;\n"
3923 << " HadMatchOtherThanPredicate = true;\n"
3924 << " continue;\n";
3925 }
3926 OS << " }\n\n";
3927
3928 if (ReportMultipleNearMisses) {
3929 OS << " // If we did not successfully match the operands, then we can't "
3930 "convert to\n";
3931 OS << " // an MCInst, so bail out on this instruction variant now.\n";
3932 OS << " if (OperandNearMiss) {\n";
3933 OS << " // If the operand mismatch was the only problem, reprrt it as "
3934 "a near-miss.\n";
3935 OS << " if (NearMisses && !FeaturesNearMiss && "
3936 "!EarlyPredicateNearMiss) {\n";
3937 OS << " DEBUG_WITH_TYPE(\n";
3938 OS << " \"asm-matcher\",\n";
3939 OS << " dbgs()\n";
3940 OS << " << \"Opcode result: one mismatched operand, adding "
3941 "near-miss\\n\");\n";
3942 OS << " NearMisses->push_back(OperandNearMiss);\n";
3943 OS << " } else {\n";
3944 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: "
3945 "multiple \"\n";
3946 OS << " \"types of "
3947 "mismatch, so not \"\n";
3948 OS << " \"reporting "
3949 "near-miss\\n\");\n";
3950 OS << " }\n";
3951 OS << " continue;\n";
3952 OS << " }\n\n";
3953 }
3954
3955 // When converting parsed operands to MCInst we need to know whether optional
3956 // operands were parsed or not so that we can choose the correct converter
3957 // function. We also need to know this when checking tied operand constraints.
3958 // DefaultsOffset is an array of deltas between the formal (MCInst) and the
3959 // actual (parsed operand array) operand indices. When all optional operands
3960 // are present, all elements of the array are zeros. If some of the optional
3961 // operands are absent, the array might look like '0, 0, 1, 1, 1, 2, 2, 3',
3962 // where each increment in value reflects the absence of an optional operand.
3963 if (HasOptionalOperands) {
3964 OS << " unsigned DefaultsOffset[" << (MaxNumOperands + 1)
3965 << "] = { 0 };\n";
3966 OS << " assert(OptionalOperandsMask.size() == " << (MaxNumOperands)
3967 << ");\n";
3968 OS << " for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands)
3969 << "; ++i) {\n";
3970 OS << " DefaultsOffset[i + 1] = NumDefaults;\n";
3971 OS << " NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n";
3972 OS << " }\n\n";
3973 }
3974
3975 OS << " if (matchingInlineAsm) {\n";
3976 OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n";
3977 if (!ReportMultipleNearMisses) {
3978 if (HasOptionalOperands) {
3979 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
3980 "Operands,\n";
3981 OS << " DefaultsOffset, "
3982 "ErrorInfo))\n";
3983 } else {
3984 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
3985 "Operands,\n";
3986 OS << " ErrorInfo))\n";
3987 }
3988 OS << " return Match_InvalidTiedOperand;\n";
3989 OS << "\n";
3990 }
3991 OS << " return Match_Success;\n";
3992 OS << " }\n\n";
3993 OS << " // We have selected a definite instruction, convert the parsed\n"
3994 << " // operands into the appropriate MCInst.\n";
3995 if (HasOptionalOperands) {
3996 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n"
3997 << " OptionalOperandsMask, DefaultsOffset);\n";
3998 } else {
3999 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
4000 }
4001 OS << "\n";
4002
4003 // Verify the instruction with the target-specific match predicate function.
4004 OS << " // We have a potential match. Check the target predicate to\n"
4005 << " // handle any context sensitive constraints.\n"
4006 << " if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
4007 << " Match_Success) {\n"
4008 << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"
4009 << " dbgs() << \"Target match predicate failed with "
4010 "diag code \"\n"
4011 << " << MatchResult << \"\\n\");\n"
4012 << " Inst.clear();\n";
4013 if (ReportMultipleNearMisses) {
4014 OS << " LatePredicateNearMiss = "
4015 "NearMissInfo::getMissedPredicate(MatchResult);\n";
4016 } else {
4017 OS << " RetCode = MatchResult;\n"
4018 << " HadMatchOtherThanPredicate = true;\n"
4019 << " continue;\n";
4020 }
4021 OS << " }\n\n";
4022
4023 if (ReportMultipleNearMisses) {
4024 OS << " int NumNearMisses = ((int)(bool)OperandNearMiss +\n";
4025 OS << " (int)(bool)FeaturesNearMiss +\n";
4026 OS << " (int)(bool)EarlyPredicateNearMiss +\n";
4027 OS << " (int)(bool)LatePredicateNearMiss);\n";
4028 OS << " if (NumNearMisses == 1) {\n";
4029 OS << " // We had exactly one type of near-miss, so add that to the "
4030 "list.\n";
4031 OS << " assert(!OperandNearMiss && \"OperandNearMiss was handled "
4032 "earlier\");\n";
4033 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: "
4034 "found one type of \"\n";
4035 OS << " \"mismatch, so "
4036 "reporting a \"\n";
4037 OS << " \"near-miss\\n\");\n";
4038 OS << " if (NearMisses && FeaturesNearMiss)\n";
4039 OS << " NearMisses->push_back(FeaturesNearMiss);\n";
4040 OS << " else if (NearMisses && EarlyPredicateNearMiss)\n";
4041 OS << " NearMisses->push_back(EarlyPredicateNearMiss);\n";
4042 OS << " else if (NearMisses && LatePredicateNearMiss)\n";
4043 OS << " NearMisses->push_back(LatePredicateNearMiss);\n";
4044 OS << "\n";
4045 OS << " continue;\n";
4046 OS << " } else if (NumNearMisses > 1) {\n";
4047 OS << " // This instruction missed in more than one way, so ignore "
4048 "it.\n";
4049 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: "
4050 "multiple \"\n";
4051 OS << " \"types of mismatch, "
4052 "so not \"\n";
4053 OS << " \"reporting "
4054 "near-miss\\n\");\n";
4055 OS << " continue;\n";
4056 OS << " }\n";
4057 }
4058
4059 // Call the post-processing function, if used.
4060 StringRef InsnCleanupFn = AsmParser->getValueAsString(FieldName: "AsmParserInstCleanup");
4061 if (!InsnCleanupFn.empty())
4062 OS << " " << InsnCleanupFn << "(Inst);\n";
4063
4064 if (HasDeprecation) {
4065 OS << " std::string Info;\n";
4066 OS << " if "
4067 "(!getParser().getTargetParser().getTargetOptions()."
4068 "MCNoDeprecatedWarn &&\n";
4069 OS << " MII.getDeprecatedInfo(Inst, getSTI(), Info)) {\n";
4070 OS << " SMLoc Loc = ((" << Target.getName()
4071 << "Operand &)*Operands[0]).getStartLoc();\n";
4072 OS << " getParser().Warning(Loc, Info, std::nullopt);\n";
4073 OS << " }\n";
4074 }
4075
4076 if (!ReportMultipleNearMisses) {
4077 if (HasOptionalOperands) {
4078 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
4079 "Operands,\n";
4080 OS << " DefaultsOffset, "
4081 "ErrorInfo))\n";
4082 } else {
4083 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
4084 "Operands,\n";
4085 OS << " ErrorInfo))\n";
4086 }
4087 OS << " return Match_InvalidTiedOperand;\n";
4088 OS << "\n";
4089 }
4090
4091 OS << " DEBUG_WITH_TYPE(\n";
4092 OS << " \"asm-matcher\",\n";
4093 OS << " dbgs() << \"Opcode result: complete match, selecting this "
4094 "opcode\\n\");\n";
4095 OS << " return Match_Success;\n";
4096 OS << " }\n\n";
4097
4098 if (ReportMultipleNearMisses) {
4099 OS << " // No instruction variants matched exactly.\n";
4100 OS << " return Match_NearMisses;\n";
4101 } else {
4102 OS << " // Okay, we had no match. Try to return a useful error code.\n";
4103 OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
4104 OS << " return RetCode;\n\n";
4105 OS << " ErrorInfo = 0;\n";
4106 OS << " return Match_MissingFeature;\n";
4107 }
4108 OS << "}\n\n";
4109
4110 if (!Info.OperandMatchInfo.empty())
4111 emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
4112 MaxMnemonicIndex, MaxFeaturesIndex: FeatureBitsets.size(),
4113 HasMnemonicFirst, AsmParser: *AsmParser);
4114
4115 OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
4116
4117 OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n";
4118 OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n";
4119
4120 emitMnemonicSpellChecker(OS, Target, VariantCount);
4121
4122 OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n";
4123
4124 OS << "\n#ifdef GET_MNEMONIC_CHECKER\n";
4125 OS << "#undef GET_MNEMONIC_CHECKER\n\n";
4126
4127 emitMnemonicChecker(OS, Target, VariantCount, HasMnemonicFirst,
4128 HasMnemonicAliases);
4129
4130 OS << "#endif // GET_MNEMONIC_CHECKER\n\n";
4131}
4132
4133static TableGen::Emitter::OptClass<AsmMatcherEmitter>
4134 X("gen-asm-matcher", "Generate assembly instruction matcher");
4135