1 | //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines structures to encapsulate the machine model as described in |
10 | // the target description. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "CodeGenSchedule.h" |
15 | #include "CodeGenInstruction.h" |
16 | #include "CodeGenTarget.h" |
17 | #include "llvm/ADT/MapVector.h" |
18 | #include "llvm/ADT/STLExtras.h" |
19 | #include "llvm/ADT/SmallPtrSet.h" |
20 | #include "llvm/ADT/SmallVector.h" |
21 | #include "llvm/Support/Casting.h" |
22 | #include "llvm/Support/Debug.h" |
23 | #include "llvm/Support/Regex.h" |
24 | #include "llvm/Support/raw_ostream.h" |
25 | #include "llvm/TableGen/Error.h" |
26 | #include <algorithm> |
27 | #include <iterator> |
28 | #include <utility> |
29 | |
30 | using namespace llvm; |
31 | |
32 | #define DEBUG_TYPE "subtarget-emitter" |
33 | |
34 | #ifndef NDEBUG |
35 | static void dumpIdxVec(ArrayRef<unsigned> V) { |
36 | for (unsigned Idx : V) |
37 | dbgs() << Idx << ", " ; |
38 | } |
39 | #endif |
40 | |
41 | namespace { |
42 | |
43 | // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp. |
44 | struct InstrsOp : public SetTheory::Operator { |
45 | void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, |
46 | ArrayRef<SMLoc> Loc) override { |
47 | ST.evaluate(begin: Expr->arg_begin(), end: Expr->arg_end(), Elts, Loc); |
48 | } |
49 | }; |
50 | |
51 | // (instregex "OpcPat",...) Find all instructions matching an opcode pattern. |
52 | struct InstRegexOp : public SetTheory::Operator { |
53 | const CodeGenTarget &Target; |
54 | InstRegexOp(const CodeGenTarget &t) : Target(t) {} |
55 | |
56 | /// Remove any text inside of parentheses from S. |
57 | static std::string removeParens(llvm::StringRef S) { |
58 | std::string Result; |
59 | unsigned Paren = 0; |
60 | // NB: We don't care about escaped parens here. |
61 | for (char C : S) { |
62 | switch (C) { |
63 | case '(': |
64 | ++Paren; |
65 | break; |
66 | case ')': |
67 | --Paren; |
68 | break; |
69 | default: |
70 | if (Paren == 0) |
71 | Result += C; |
72 | } |
73 | } |
74 | return Result; |
75 | } |
76 | |
77 | void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, |
78 | ArrayRef<SMLoc> Loc) override { |
79 | ArrayRef<const CodeGenInstruction *> Instructions = |
80 | Target.getInstructionsByEnumValue(); |
81 | |
82 | unsigned NumGeneric = Target.getNumFixedInstructions(); |
83 | unsigned NumPseudos = Target.getNumPseudoInstructions(); |
84 | auto Generics = Instructions.slice(N: 0, M: NumGeneric); |
85 | auto Pseudos = Instructions.slice(N: NumGeneric, M: NumPseudos); |
86 | auto NonPseudos = Instructions.slice(N: NumGeneric + NumPseudos); |
87 | |
88 | for (Init *Arg : Expr->getArgs()) { |
89 | StringInit *SI = dyn_cast<StringInit>(Val: Arg); |
90 | if (!SI) |
91 | PrintFatalError(ErrorLoc: Loc, Msg: "instregex requires pattern string: " + |
92 | Expr->getAsString()); |
93 | StringRef Original = SI->getValue(); |
94 | // Drop an explicit ^ anchor to not interfere with prefix search. |
95 | bool HadAnchor = Original.consume_front(Prefix: "^" ); |
96 | |
97 | // Extract a prefix that we can binary search on. |
98 | static const char RegexMetachars[] = "()^$|*+?.[]\\{}" ; |
99 | auto FirstMeta = Original.find_first_of(Chars: RegexMetachars); |
100 | if (FirstMeta != StringRef::npos && FirstMeta > 0) { |
101 | // If we have a regex like ABC* we can only use AB as the prefix, as |
102 | // the * acts on C. |
103 | switch (Original[FirstMeta]) { |
104 | case '+': |
105 | case '*': |
106 | case '?': |
107 | --FirstMeta; |
108 | break; |
109 | default: |
110 | break; |
111 | } |
112 | } |
113 | |
114 | // Look for top-level | or ?. We cannot optimize them to binary search. |
115 | if (removeParens(S: Original).find_first_of(s: "|?" ) != std::string::npos) |
116 | FirstMeta = 0; |
117 | |
118 | std::optional<Regex> Regexpr; |
119 | StringRef Prefix = Original.substr(Start: 0, N: FirstMeta); |
120 | StringRef PatStr = Original.substr(Start: FirstMeta); |
121 | if (!PatStr.empty()) { |
122 | // For the rest use a python-style prefix match. |
123 | std::string pat = std::string(PatStr); |
124 | // Add ^ anchor. If we had one originally, don't need the group. |
125 | if (HadAnchor) { |
126 | pat.insert(pos: 0, s: "^" ); |
127 | } else { |
128 | pat.insert(pos: 0, s: "^(" ); |
129 | pat.insert(p: pat.end(), c: ')'); |
130 | } |
131 | Regexpr = Regex(pat); |
132 | } |
133 | |
134 | int NumMatches = 0; |
135 | |
136 | // The generic opcodes are unsorted, handle them manually. |
137 | for (auto *Inst : Generics) { |
138 | StringRef InstName = Inst->TheDef->getName(); |
139 | if (InstName.starts_with(Prefix) && |
140 | (!Regexpr || Regexpr->match(String: InstName.substr(Start: Prefix.size())))) { |
141 | Elts.insert(X: Inst->TheDef); |
142 | NumMatches++; |
143 | } |
144 | } |
145 | |
146 | // Target instructions are split into two ranges: pseudo instructions |
147 | // first, than non-pseudos. Each range is in lexicographical order |
148 | // sorted by name. Find the sub-ranges that start with our prefix. |
149 | struct Comp { |
150 | bool operator()(const CodeGenInstruction *LHS, StringRef RHS) { |
151 | return LHS->TheDef->getName() < RHS; |
152 | } |
153 | bool operator()(StringRef LHS, const CodeGenInstruction *RHS) { |
154 | return LHS < RHS->TheDef->getName() && |
155 | !RHS->TheDef->getName().starts_with(Prefix: LHS); |
156 | } |
157 | }; |
158 | auto Range1 = |
159 | std::equal_range(first: Pseudos.begin(), last: Pseudos.end(), val: Prefix, comp: Comp()); |
160 | auto Range2 = std::equal_range(first: NonPseudos.begin(), last: NonPseudos.end(), |
161 | val: Prefix, comp: Comp()); |
162 | |
163 | // For these ranges we know that instruction names start with the prefix. |
164 | // Check if there's a regex that needs to be checked. |
165 | const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) { |
166 | StringRef InstName = Inst->TheDef->getName(); |
167 | if (!Regexpr || Regexpr->match(String: InstName.substr(Start: Prefix.size()))) { |
168 | Elts.insert(X: Inst->TheDef); |
169 | NumMatches++; |
170 | } |
171 | }; |
172 | std::for_each(first: Range1.first, last: Range1.second, f: HandleNonGeneric); |
173 | std::for_each(first: Range2.first, last: Range2.second, f: HandleNonGeneric); |
174 | |
175 | if (0 == NumMatches) |
176 | PrintFatalError(ErrorLoc: Loc, Msg: "instregex has no matches: " + Original); |
177 | } |
178 | } |
179 | }; |
180 | |
181 | } // end anonymous namespace |
182 | |
183 | /// CodeGenModels ctor interprets machine model records and populates maps. |
184 | CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK, |
185 | const CodeGenTarget &TGT) |
186 | : Records(RK), Target(TGT) { |
187 | |
188 | Sets.addFieldExpander(ClassName: "InstRW" , FieldName: "Instrs" ); |
189 | |
190 | // Allow Set evaluation to recognize the dags used in InstRW records: |
191 | // (instrs Op1, Op1...) |
192 | Sets.addOperator(Name: "instrs" , std::make_unique<InstrsOp>()); |
193 | Sets.addOperator(Name: "instregex" , std::make_unique<InstRegexOp>(args: Target)); |
194 | |
195 | // Instantiate a CodeGenProcModel for each SchedMachineModel with the values |
196 | // that are explicitly referenced in tablegen records. Resources associated |
197 | // with each processor will be derived later. Populate ProcModelMap with the |
198 | // CodeGenProcModel instances. |
199 | collectProcModels(); |
200 | |
201 | // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly |
202 | // defined, and populate SchedReads and SchedWrites vectors. Implicit |
203 | // SchedReadWrites that represent sequences derived from expanded variant will |
204 | // be inferred later. |
205 | collectSchedRW(); |
206 | |
207 | // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly |
208 | // required by an instruction definition, and populate SchedClassIdxMap. Set |
209 | // NumItineraryClasses to the number of explicit itinerary classes referenced |
210 | // by instructions. Set NumInstrSchedClasses to the number of itinerary |
211 | // classes plus any classes implied by instructions that derive from class |
212 | // Sched and provide SchedRW list. This does not infer any new classes from |
213 | // SchedVariant. |
214 | collectSchedClasses(); |
215 | |
216 | // Find instruction itineraries for each processor. Sort and populate |
217 | // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires |
218 | // all itinerary classes to be discovered. |
219 | collectProcItins(); |
220 | |
221 | // Find ItinRW records for each processor and itinerary class. |
222 | // (For per-operand resources mapped to itinerary classes). |
223 | collectProcItinRW(); |
224 | |
225 | // Find UnsupportedFeatures records for each processor. |
226 | // (For per-operand resources mapped to itinerary classes). |
227 | collectProcUnsupportedFeatures(); |
228 | |
229 | // Infer new SchedClasses from SchedVariant. |
230 | inferSchedClasses(); |
231 | |
232 | // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and |
233 | // ProcResourceDefs. |
234 | LLVM_DEBUG( |
235 | dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n" ); |
236 | collectProcResources(); |
237 | |
238 | // Collect optional processor description. |
239 | collectOptionalProcessorInfo(); |
240 | |
241 | // Check MCInstPredicate definitions. |
242 | checkMCInstPredicates(); |
243 | |
244 | // Check STIPredicate definitions. |
245 | checkSTIPredicates(); |
246 | |
247 | // Find STIPredicate definitions for each processor model, and construct |
248 | // STIPredicateFunction objects. |
249 | collectSTIPredicates(); |
250 | |
251 | checkCompleteness(); |
252 | } |
253 | |
254 | void CodeGenSchedModels::checkSTIPredicates() const { |
255 | DenseMap<StringRef, const Record *> Declarations; |
256 | |
257 | // There cannot be multiple declarations with the same name. |
258 | const RecVec Decls = Records.getAllDerivedDefinitions(ClassName: "STIPredicateDecl" ); |
259 | for (const Record *R : Decls) { |
260 | StringRef Name = R->getValueAsString(FieldName: "Name" ); |
261 | const auto It = Declarations.find(Val: Name); |
262 | if (It == Declarations.end()) { |
263 | Declarations[Name] = R; |
264 | continue; |
265 | } |
266 | |
267 | PrintError(ErrorLoc: R->getLoc(), Msg: "STIPredicate " + Name + " multiply declared." ); |
268 | PrintFatalNote(ErrorLoc: It->second->getLoc(), Msg: "Previous declaration was here." ); |
269 | } |
270 | |
271 | // Disallow InstructionEquivalenceClasses with an empty instruction list. |
272 | const RecVec Defs = |
273 | Records.getAllDerivedDefinitions(ClassName: "InstructionEquivalenceClass" ); |
274 | for (const Record *R : Defs) { |
275 | RecVec Opcodes = R->getValueAsListOfDefs(FieldName: "Opcodes" ); |
276 | if (Opcodes.empty()) { |
277 | PrintFatalError(ErrorLoc: R->getLoc(), Msg: "Invalid InstructionEquivalenceClass " |
278 | "defined with an empty opcode list." ); |
279 | } |
280 | } |
281 | } |
282 | |
283 | // Used by function `processSTIPredicate` to construct a mask of machine |
284 | // instruction operands. |
285 | static APInt constructOperandMask(ArrayRef<int64_t> Indices) { |
286 | APInt OperandMask; |
287 | if (Indices.empty()) |
288 | return OperandMask; |
289 | |
290 | int64_t MaxIndex = *llvm::max_element(Range&: Indices); |
291 | assert(MaxIndex >= 0 && "Invalid negative indices in input!" ); |
292 | OperandMask = OperandMask.zext(width: MaxIndex + 1); |
293 | for (const int64_t Index : Indices) { |
294 | assert(Index >= 0 && "Invalid negative indices!" ); |
295 | OperandMask.setBit(Index); |
296 | } |
297 | |
298 | return OperandMask; |
299 | } |
300 | |
301 | static void processSTIPredicate(STIPredicateFunction &Fn, |
302 | const ProcModelMapTy &ProcModelMap) { |
303 | DenseMap<const Record *, unsigned> Opcode2Index; |
304 | using OpcodeMapPair = std::pair<const Record *, OpcodeInfo>; |
305 | std::vector<OpcodeMapPair> OpcodeMappings; |
306 | std::vector<std::pair<APInt, APInt>> OpcodeMasks; |
307 | |
308 | DenseMap<const Record *, unsigned> Predicate2Index; |
309 | unsigned NumUniquePredicates = 0; |
310 | |
311 | // Number unique predicates and opcodes used by InstructionEquivalenceClass |
312 | // definitions. Each unique opcode will be associated with an OpcodeInfo |
313 | // object. |
314 | for (const Record *Def : Fn.getDefinitions()) { |
315 | RecVec Classes = Def->getValueAsListOfDefs(FieldName: "Classes" ); |
316 | for (const Record *EC : Classes) { |
317 | const Record *Pred = EC->getValueAsDef(FieldName: "Predicate" ); |
318 | if (!Predicate2Index.contains(Val: Pred)) |
319 | Predicate2Index[Pred] = NumUniquePredicates++; |
320 | |
321 | RecVec Opcodes = EC->getValueAsListOfDefs(FieldName: "Opcodes" ); |
322 | for (const Record *Opcode : Opcodes) { |
323 | if (!Opcode2Index.contains(Val: Opcode)) { |
324 | Opcode2Index[Opcode] = OpcodeMappings.size(); |
325 | OpcodeMappings.emplace_back(args&: Opcode, args: OpcodeInfo()); |
326 | } |
327 | } |
328 | } |
329 | } |
330 | |
331 | // Initialize vector `OpcodeMasks` with default values. We want to keep track |
332 | // of which processors "use" which opcodes. We also want to be able to |
333 | // identify predicates that are used by different processors for a same |
334 | // opcode. |
335 | // This information is used later on by this algorithm to sort OpcodeMapping |
336 | // elements based on their processor and predicate sets. |
337 | OpcodeMasks.resize(new_size: OpcodeMappings.size()); |
338 | APInt DefaultProcMask(ProcModelMap.size(), 0); |
339 | APInt DefaultPredMask(NumUniquePredicates, 0); |
340 | for (std::pair<APInt, APInt> &MaskPair : OpcodeMasks) |
341 | MaskPair = std::pair(DefaultProcMask, DefaultPredMask); |
342 | |
343 | // Construct a OpcodeInfo object for every unique opcode declared by an |
344 | // InstructionEquivalenceClass definition. |
345 | for (const Record *Def : Fn.getDefinitions()) { |
346 | RecVec Classes = Def->getValueAsListOfDefs(FieldName: "Classes" ); |
347 | const Record *SchedModel = Def->getValueAsDef(FieldName: "SchedModel" ); |
348 | unsigned ProcIndex = ProcModelMap.find(Val: SchedModel)->second; |
349 | APInt ProcMask(ProcModelMap.size(), 0); |
350 | ProcMask.setBit(ProcIndex); |
351 | |
352 | for (const Record *EC : Classes) { |
353 | RecVec Opcodes = EC->getValueAsListOfDefs(FieldName: "Opcodes" ); |
354 | |
355 | std::vector<int64_t> OpIndices = |
356 | EC->getValueAsListOfInts(FieldName: "OperandIndices" ); |
357 | APInt OperandMask = constructOperandMask(Indices: OpIndices); |
358 | |
359 | const Record *Pred = EC->getValueAsDef(FieldName: "Predicate" ); |
360 | APInt PredMask(NumUniquePredicates, 0); |
361 | PredMask.setBit(Predicate2Index[Pred]); |
362 | |
363 | for (const Record *Opcode : Opcodes) { |
364 | unsigned OpcodeIdx = Opcode2Index[Opcode]; |
365 | if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) { |
366 | std::string Message = |
367 | "Opcode " + Opcode->getName().str() + |
368 | " used by multiple InstructionEquivalenceClass definitions." ; |
369 | PrintFatalError(ErrorLoc: EC->getLoc(), Msg: Message); |
370 | } |
371 | OpcodeMasks[OpcodeIdx].first |= ProcMask; |
372 | OpcodeMasks[OpcodeIdx].second |= PredMask; |
373 | OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second; |
374 | |
375 | OI.addPredicateForProcModel(CpuMask: ProcMask, OperandMask, Predicate: Pred); |
376 | } |
377 | } |
378 | } |
379 | |
380 | // Sort OpcodeMappings elements based on their CPU and predicate masks. |
381 | // As a last resort, order elements by opcode identifier. |
382 | llvm::sort( |
383 | C&: OpcodeMappings, Comp: [&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) { |
384 | unsigned LhsIdx = Opcode2Index[Lhs.first]; |
385 | unsigned RhsIdx = Opcode2Index[Rhs.first]; |
386 | const std::pair<APInt, APInt> &LhsMasks = OpcodeMasks[LhsIdx]; |
387 | const std::pair<APInt, APInt> &RhsMasks = OpcodeMasks[RhsIdx]; |
388 | |
389 | auto PopulationCountAndLeftBit = |
390 | [](const APInt &Other) -> std::pair<int, int> { |
391 | return std::pair<int, int>(Other.popcount(), -Other.countl_zero()); |
392 | }; |
393 | auto lhsmask_first = PopulationCountAndLeftBit(LhsMasks.first); |
394 | auto rhsmask_first = PopulationCountAndLeftBit(RhsMasks.first); |
395 | if (lhsmask_first != rhsmask_first) |
396 | return lhsmask_first < rhsmask_first; |
397 | |
398 | auto lhsmask_second = PopulationCountAndLeftBit(LhsMasks.second); |
399 | auto rhsmask_second = PopulationCountAndLeftBit(RhsMasks.second); |
400 | if (lhsmask_second != rhsmask_second) |
401 | return lhsmask_second < rhsmask_second; |
402 | |
403 | return LhsIdx < RhsIdx; |
404 | }); |
405 | |
406 | // Now construct opcode groups. Groups are used by the SubtargetEmitter when |
407 | // expanding the body of a STIPredicate function. In particular, each opcode |
408 | // group is expanded into a sequence of labels in a switch statement. |
409 | // It identifies opcodes for which different processors define same predicates |
410 | // and same opcode masks. |
411 | for (OpcodeMapPair &Info : OpcodeMappings) |
412 | Fn.addOpcode(OpcodeRec: Info.first, Info: std::move(Info.second)); |
413 | } |
414 | |
415 | void CodeGenSchedModels::collectSTIPredicates() { |
416 | // Map STIPredicateDecl records to elements of vector |
417 | // CodeGenSchedModels::STIPredicates. |
418 | DenseMap<const Record *, unsigned> Decl2Index; |
419 | |
420 | RecVec RV = Records.getAllDerivedDefinitions(ClassName: "STIPredicate" ); |
421 | for (const Record *R : RV) { |
422 | const Record *Decl = R->getValueAsDef(FieldName: "Declaration" ); |
423 | |
424 | const auto It = Decl2Index.find(Val: Decl); |
425 | if (It == Decl2Index.end()) { |
426 | Decl2Index[Decl] = STIPredicates.size(); |
427 | STIPredicateFunction Predicate(Decl); |
428 | Predicate.addDefinition(Def: R); |
429 | STIPredicates.emplace_back(args: std::move(Predicate)); |
430 | continue; |
431 | } |
432 | |
433 | STIPredicateFunction &PreviousDef = STIPredicates[It->second]; |
434 | PreviousDef.addDefinition(Def: R); |
435 | } |
436 | |
437 | for (STIPredicateFunction &Fn : STIPredicates) |
438 | processSTIPredicate(Fn, ProcModelMap); |
439 | } |
440 | |
441 | void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask, |
442 | const llvm::APInt &OperandMask, |
443 | const Record *Predicate) { |
444 | auto It = llvm::find_if( |
445 | Range&: Predicates, P: [&OperandMask, &Predicate](const PredicateInfo &P) { |
446 | return P.Predicate == Predicate && P.OperandMask == OperandMask; |
447 | }); |
448 | if (It == Predicates.end()) { |
449 | Predicates.emplace_back(args: CpuMask, args: OperandMask, args&: Predicate); |
450 | return; |
451 | } |
452 | It->ProcModelMask |= CpuMask; |
453 | } |
454 | |
455 | void CodeGenSchedModels::checkMCInstPredicates() const { |
456 | RecVec MCPredicates = Records.getAllDerivedDefinitions(ClassName: "TIIPredicate" ); |
457 | if (MCPredicates.empty()) |
458 | return; |
459 | |
460 | // A target cannot have multiple TIIPredicate definitions with a same name. |
461 | llvm::StringMap<const Record *> TIIPredicates(MCPredicates.size()); |
462 | for (const Record *TIIPred : MCPredicates) { |
463 | StringRef Name = TIIPred->getValueAsString(FieldName: "FunctionName" ); |
464 | StringMap<const Record *>::const_iterator It = TIIPredicates.find(Key: Name); |
465 | if (It == TIIPredicates.end()) { |
466 | TIIPredicates[Name] = TIIPred; |
467 | continue; |
468 | } |
469 | |
470 | PrintError(ErrorLoc: TIIPred->getLoc(), |
471 | Msg: "TIIPredicate " + Name + " is multiply defined." ); |
472 | PrintFatalNote(ErrorLoc: It->second->getLoc(), |
473 | Msg: " Previous definition of " + Name + " was here." ); |
474 | } |
475 | } |
476 | |
477 | void CodeGenSchedModels::collectRetireControlUnits() { |
478 | RecVec Units = Records.getAllDerivedDefinitions(ClassName: "RetireControlUnit" ); |
479 | |
480 | for (Record *RCU : Units) { |
481 | CodeGenProcModel &PM = getProcModel(ModelDef: RCU->getValueAsDef(FieldName: "SchedModel" )); |
482 | if (PM.RetireControlUnit) { |
483 | PrintError(ErrorLoc: RCU->getLoc(), |
484 | Msg: "Expected a single RetireControlUnit definition" ); |
485 | PrintNote(NoteLoc: PM.RetireControlUnit->getLoc(), |
486 | Msg: "Previous definition of RetireControlUnit was here" ); |
487 | } |
488 | PM.RetireControlUnit = RCU; |
489 | } |
490 | } |
491 | |
492 | void CodeGenSchedModels::collectLoadStoreQueueInfo() { |
493 | RecVec Queues = Records.getAllDerivedDefinitions(ClassName: "MemoryQueue" ); |
494 | |
495 | for (Record *Queue : Queues) { |
496 | CodeGenProcModel &PM = getProcModel(ModelDef: Queue->getValueAsDef(FieldName: "SchedModel" )); |
497 | if (Queue->isSubClassOf(Name: "LoadQueue" )) { |
498 | if (PM.LoadQueue) { |
499 | PrintError(ErrorLoc: Queue->getLoc(), Msg: "Expected a single LoadQueue definition" ); |
500 | PrintNote(NoteLoc: PM.LoadQueue->getLoc(), |
501 | Msg: "Previous definition of LoadQueue was here" ); |
502 | } |
503 | |
504 | PM.LoadQueue = Queue; |
505 | } |
506 | |
507 | if (Queue->isSubClassOf(Name: "StoreQueue" )) { |
508 | if (PM.StoreQueue) { |
509 | PrintError(ErrorLoc: Queue->getLoc(), Msg: "Expected a single StoreQueue definition" ); |
510 | PrintNote(NoteLoc: PM.StoreQueue->getLoc(), |
511 | Msg: "Previous definition of StoreQueue was here" ); |
512 | } |
513 | |
514 | PM.StoreQueue = Queue; |
515 | } |
516 | } |
517 | } |
518 | |
519 | /// Collect optional processor information. |
520 | void CodeGenSchedModels::collectOptionalProcessorInfo() { |
521 | // Find register file definitions for each processor. |
522 | collectRegisterFiles(); |
523 | |
524 | // Collect processor RetireControlUnit descriptors if available. |
525 | collectRetireControlUnits(); |
526 | |
527 | // Collect information about load/store queues. |
528 | collectLoadStoreQueueInfo(); |
529 | |
530 | checkCompleteness(); |
531 | } |
532 | |
533 | /// Gather all processor models. |
534 | void CodeGenSchedModels::collectProcModels() { |
535 | RecVec ProcRecords = Records.getAllDerivedDefinitions(ClassName: "Processor" ); |
536 | llvm::sort(C&: ProcRecords, Comp: LessRecordFieldName()); |
537 | |
538 | // Check for duplicated names. |
539 | auto I = std::adjacent_find(first: ProcRecords.begin(), last: ProcRecords.end(), |
540 | binary_pred: [](const Record *Rec1, const Record *Rec2) { |
541 | return Rec1->getValueAsString(FieldName: "Name" ) == |
542 | Rec2->getValueAsString(FieldName: "Name" ); |
543 | }); |
544 | if (I != ProcRecords.end()) |
545 | PrintFatalError(ErrorLoc: (*I)->getLoc(), Msg: "Duplicate processor name " + |
546 | (*I)->getValueAsString(FieldName: "Name" )); |
547 | |
548 | // Reserve space because we can. Reallocation would be ok. |
549 | ProcModels.reserve(n: ProcRecords.size() + 1); |
550 | |
551 | // Use idx=0 for NoModel/NoItineraries. |
552 | Record *NoModelDef = Records.getDef(Name: "NoSchedModel" ); |
553 | Record *NoItinsDef = Records.getDef(Name: "NoItineraries" ); |
554 | ProcModels.emplace_back(args: 0, args: "NoSchedModel" , args&: NoModelDef, args&: NoItinsDef); |
555 | ProcModelMap[NoModelDef] = 0; |
556 | |
557 | // For each processor, find a unique machine model. |
558 | LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n" ); |
559 | for (Record *ProcRecord : ProcRecords) |
560 | addProcModel(ProcDef: ProcRecord); |
561 | } |
562 | |
563 | /// Get a unique processor model based on the defined MachineModel and |
564 | /// ProcessorItineraries. |
565 | void CodeGenSchedModels::addProcModel(Record *ProcDef) { |
566 | Record *ModelKey = getModelOrItinDef(ProcDef); |
567 | if (!ProcModelMap.insert(KV: std::pair(ModelKey, ProcModels.size())).second) |
568 | return; |
569 | |
570 | std::string Name = std::string(ModelKey->getName()); |
571 | if (ModelKey->isSubClassOf(Name: "SchedMachineModel" )) { |
572 | Record *ItinsDef = ModelKey->getValueAsDef(FieldName: "Itineraries" ); |
573 | ProcModels.emplace_back(args: ProcModels.size(), args&: Name, args&: ModelKey, args&: ItinsDef); |
574 | } else { |
575 | // An itinerary is defined without a machine model. Infer a new model. |
576 | if (!ModelKey->getValueAsListOfDefs(FieldName: "IID" ).empty()) |
577 | Name = Name + "Model" ; |
578 | ProcModels.emplace_back(args: ProcModels.size(), args&: Name, |
579 | args: ProcDef->getValueAsDef(FieldName: "SchedModel" ), args&: ModelKey); |
580 | } |
581 | LLVM_DEBUG(ProcModels.back().dump()); |
582 | } |
583 | |
584 | // Recursively find all reachable SchedReadWrite records. |
585 | static void scanSchedRW(Record *RWDef, RecVec &RWDefs, |
586 | SmallPtrSet<Record *, 16> &RWSet) { |
587 | if (!RWSet.insert(Ptr: RWDef).second) |
588 | return; |
589 | RWDefs.push_back(x: RWDef); |
590 | // Reads don't currently have sequence records, but it can be added later. |
591 | if (RWDef->isSubClassOf(Name: "WriteSequence" )) { |
592 | RecVec Seq = RWDef->getValueAsListOfDefs(FieldName: "Writes" ); |
593 | for (Record *WSRec : Seq) |
594 | scanSchedRW(RWDef: WSRec, RWDefs, RWSet); |
595 | } else if (RWDef->isSubClassOf(Name: "SchedVariant" )) { |
596 | // Visit each variant (guarded by a different predicate). |
597 | RecVec Vars = RWDef->getValueAsListOfDefs(FieldName: "Variants" ); |
598 | for (Record *Variant : Vars) { |
599 | // Visit each RW in the sequence selected by the current variant. |
600 | RecVec Selected = Variant->getValueAsListOfDefs(FieldName: "Selected" ); |
601 | for (Record *SelDef : Selected) |
602 | scanSchedRW(RWDef: SelDef, RWDefs, RWSet); |
603 | } |
604 | } |
605 | } |
606 | |
607 | // Collect and sort all SchedReadWrites reachable via tablegen records. |
608 | // More may be inferred later when inferring new SchedClasses from variants. |
609 | void CodeGenSchedModels::collectSchedRW() { |
610 | // Reserve idx=0 for invalid writes/reads. |
611 | SchedWrites.resize(new_size: 1); |
612 | SchedReads.resize(new_size: 1); |
613 | |
614 | SmallPtrSet<Record *, 16> RWSet; |
615 | |
616 | // Find all SchedReadWrites referenced by instruction defs. |
617 | RecVec SWDefs, SRDefs; |
618 | for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { |
619 | Record *SchedDef = Inst->TheDef; |
620 | if (SchedDef->isValueUnset(FieldName: "SchedRW" )) |
621 | continue; |
622 | RecVec RWs = SchedDef->getValueAsListOfDefs(FieldName: "SchedRW" ); |
623 | for (Record *RW : RWs) { |
624 | if (RW->isSubClassOf(Name: "SchedWrite" )) |
625 | scanSchedRW(RWDef: RW, RWDefs&: SWDefs, RWSet); |
626 | else { |
627 | assert(RW->isSubClassOf("SchedRead" ) && "Unknown SchedReadWrite" ); |
628 | scanSchedRW(RWDef: RW, RWDefs&: SRDefs, RWSet); |
629 | } |
630 | } |
631 | } |
632 | // Find all ReadWrites referenced by InstRW. |
633 | RecVec InstRWDefs = Records.getAllDerivedDefinitions(ClassName: "InstRW" ); |
634 | for (Record *InstRWDef : InstRWDefs) { |
635 | // For all OperandReadWrites. |
636 | RecVec RWDefs = InstRWDef->getValueAsListOfDefs(FieldName: "OperandReadWrites" ); |
637 | for (Record *RWDef : RWDefs) { |
638 | if (RWDef->isSubClassOf(Name: "SchedWrite" )) |
639 | scanSchedRW(RWDef, RWDefs&: SWDefs, RWSet); |
640 | else { |
641 | assert(RWDef->isSubClassOf("SchedRead" ) && "Unknown SchedReadWrite" ); |
642 | scanSchedRW(RWDef, RWDefs&: SRDefs, RWSet); |
643 | } |
644 | } |
645 | } |
646 | // Find all ReadWrites referenced by ItinRW. |
647 | RecVec ItinRWDefs = Records.getAllDerivedDefinitions(ClassName: "ItinRW" ); |
648 | for (Record *ItinRWDef : ItinRWDefs) { |
649 | // For all OperandReadWrites. |
650 | RecVec RWDefs = ItinRWDef->getValueAsListOfDefs(FieldName: "OperandReadWrites" ); |
651 | for (Record *RWDef : RWDefs) { |
652 | if (RWDef->isSubClassOf(Name: "SchedWrite" )) |
653 | scanSchedRW(RWDef, RWDefs&: SWDefs, RWSet); |
654 | else { |
655 | assert(RWDef->isSubClassOf("SchedRead" ) && "Unknown SchedReadWrite" ); |
656 | scanSchedRW(RWDef, RWDefs&: SRDefs, RWSet); |
657 | } |
658 | } |
659 | } |
660 | // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted |
661 | // for the loop below that initializes Alias vectors. |
662 | RecVec AliasDefs = Records.getAllDerivedDefinitions(ClassName: "SchedAlias" ); |
663 | llvm::sort(C&: AliasDefs, Comp: LessRecord()); |
664 | for (Record *ADef : AliasDefs) { |
665 | Record *MatchDef = ADef->getValueAsDef(FieldName: "MatchRW" ); |
666 | Record *AliasDef = ADef->getValueAsDef(FieldName: "AliasRW" ); |
667 | if (MatchDef->isSubClassOf(Name: "SchedWrite" )) { |
668 | if (!AliasDef->isSubClassOf(Name: "SchedWrite" )) |
669 | PrintFatalError(ErrorLoc: ADef->getLoc(), Msg: "SchedWrite Alias must be SchedWrite" ); |
670 | scanSchedRW(RWDef: AliasDef, RWDefs&: SWDefs, RWSet); |
671 | } else { |
672 | assert(MatchDef->isSubClassOf("SchedRead" ) && "Unknown SchedReadWrite" ); |
673 | if (!AliasDef->isSubClassOf(Name: "SchedRead" )) |
674 | PrintFatalError(ErrorLoc: ADef->getLoc(), Msg: "SchedRead Alias must be SchedRead" ); |
675 | scanSchedRW(RWDef: AliasDef, RWDefs&: SRDefs, RWSet); |
676 | } |
677 | } |
678 | // Sort and add the SchedReadWrites directly referenced by instructions or |
679 | // itinerary resources. Index reads and writes in separate domains. |
680 | llvm::sort(C&: SWDefs, Comp: LessRecord()); |
681 | for (Record *SWDef : SWDefs) { |
682 | assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite" ); |
683 | SchedWrites.emplace_back(args: SchedWrites.size(), args&: SWDef); |
684 | } |
685 | llvm::sort(C&: SRDefs, Comp: LessRecord()); |
686 | for (Record *SRDef : SRDefs) { |
687 | assert(!getSchedRWIdx(SRDef, /*IsRead-*/ true) && "duplicate SchedWrite" ); |
688 | SchedReads.emplace_back(args: SchedReads.size(), args&: SRDef); |
689 | } |
690 | // Initialize WriteSequence vectors. |
691 | for (CodeGenSchedRW &CGRW : SchedWrites) { |
692 | if (!CGRW.IsSequence) |
693 | continue; |
694 | findRWs(RWDefs: CGRW.TheDef->getValueAsListOfDefs(FieldName: "Writes" ), RWs&: CGRW.Sequence, |
695 | /*IsRead=*/false); |
696 | } |
697 | // Initialize Aliases vectors. |
698 | for (Record *ADef : AliasDefs) { |
699 | Record *AliasDef = ADef->getValueAsDef(FieldName: "AliasRW" ); |
700 | getSchedRW(Def: AliasDef).IsAlias = true; |
701 | Record *MatchDef = ADef->getValueAsDef(FieldName: "MatchRW" ); |
702 | CodeGenSchedRW &RW = getSchedRW(Def: MatchDef); |
703 | if (RW.IsAlias) |
704 | PrintFatalError(ErrorLoc: ADef->getLoc(), Msg: "Cannot Alias an Alias" ); |
705 | RW.Aliases.push_back(x: ADef); |
706 | } |
707 | LLVM_DEBUG( |
708 | dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n" ; |
709 | for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) { |
710 | dbgs() << WIdx << ": " ; |
711 | SchedWrites[WIdx].dump(); |
712 | dbgs() << '\n'; |
713 | } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd; |
714 | ++RIdx) { |
715 | dbgs() << RIdx << ": " ; |
716 | SchedReads[RIdx].dump(); |
717 | dbgs() << '\n'; |
718 | } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite" ); |
719 | for (Record *RWDef |
720 | : RWDefs) { |
721 | if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead" ))) { |
722 | StringRef Name = RWDef->getName(); |
723 | if (Name != "NoWrite" && Name != "ReadDefault" ) |
724 | dbgs() << "Unused SchedReadWrite " << Name << '\n'; |
725 | } |
726 | }); |
727 | } |
728 | |
729 | /// Compute a SchedWrite name from a sequence of writes. |
730 | std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) { |
731 | std::string Name("(" ); |
732 | ListSeparator LS("_" ); |
733 | for (unsigned I : Seq) { |
734 | Name += LS; |
735 | Name += getSchedRW(Idx: I, IsRead).Name; |
736 | } |
737 | Name += ')'; |
738 | return Name; |
739 | } |
740 | |
741 | unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def, |
742 | bool IsRead) const { |
743 | const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; |
744 | const auto I = find_if( |
745 | Range: RWVec, P: [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; }); |
746 | return I == RWVec.end() ? 0 : std::distance(first: RWVec.begin(), last: I); |
747 | } |
748 | |
749 | static void splitSchedReadWrites(const RecVec &RWDefs, RecVec &WriteDefs, |
750 | RecVec &ReadDefs) { |
751 | for (Record *RWDef : RWDefs) { |
752 | if (RWDef->isSubClassOf(Name: "SchedWrite" )) |
753 | WriteDefs.push_back(x: RWDef); |
754 | else { |
755 | assert(RWDef->isSubClassOf("SchedRead" ) && "unknown SchedReadWrite" ); |
756 | ReadDefs.push_back(x: RWDef); |
757 | } |
758 | } |
759 | } |
760 | |
761 | // Split the SchedReadWrites defs and call findRWs for each list. |
762 | void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &Writes, |
763 | IdxVec &Reads) const { |
764 | RecVec WriteDefs; |
765 | RecVec ReadDefs; |
766 | splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs); |
767 | findRWs(RWDefs: WriteDefs, RWs&: Writes, IsRead: false); |
768 | findRWs(RWDefs: ReadDefs, RWs&: Reads, IsRead: true); |
769 | } |
770 | |
771 | // Call getSchedRWIdx for all elements in a sequence of SchedRW defs. |
772 | void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs, |
773 | bool IsRead) const { |
774 | for (Record *RWDef : RWDefs) { |
775 | unsigned Idx = getSchedRWIdx(Def: RWDef, IsRead); |
776 | assert(Idx && "failed to collect SchedReadWrite" ); |
777 | RWs.push_back(x: Idx); |
778 | } |
779 | } |
780 | |
781 | void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq, |
782 | bool IsRead) const { |
783 | const CodeGenSchedRW &SchedRW = getSchedRW(Idx: RWIdx, IsRead); |
784 | if (!SchedRW.IsSequence) { |
785 | RWSeq.push_back(x: RWIdx); |
786 | return; |
787 | } |
788 | int Repeat = SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt(FieldName: "Repeat" ) : 1; |
789 | for (int i = 0; i < Repeat; ++i) { |
790 | for (unsigned I : SchedRW.Sequence) { |
791 | expandRWSequence(RWIdx: I, RWSeq, IsRead); |
792 | } |
793 | } |
794 | } |
795 | |
796 | // Expand a SchedWrite as a sequence following any aliases that coincide with |
797 | // the given processor model. |
798 | void CodeGenSchedModels::expandRWSeqForProc( |
799 | unsigned RWIdx, IdxVec &RWSeq, bool IsRead, |
800 | const CodeGenProcModel &ProcModel) const { |
801 | |
802 | const CodeGenSchedRW &SchedWrite = getSchedRW(Idx: RWIdx, IsRead); |
803 | Record *AliasDef = nullptr; |
804 | for (const Record *Rec : SchedWrite.Aliases) { |
805 | const CodeGenSchedRW &AliasRW = getSchedRW(Def: Rec->getValueAsDef(FieldName: "AliasRW" )); |
806 | if (Rec->getValueInit(FieldName: "SchedModel" )->isComplete()) { |
807 | Record *ModelDef = Rec->getValueAsDef(FieldName: "SchedModel" ); |
808 | if (&getProcModel(ModelDef) != &ProcModel) |
809 | continue; |
810 | } |
811 | if (AliasDef) |
812 | PrintFatalError(ErrorLoc: AliasRW.TheDef->getLoc(), |
813 | Msg: "Multiple aliases " |
814 | "defined for processor " + |
815 | ProcModel.ModelName + |
816 | " Ensure only one SchedAlias exists per RW." ); |
817 | AliasDef = AliasRW.TheDef; |
818 | } |
819 | if (AliasDef) { |
820 | expandRWSeqForProc(RWIdx: getSchedRWIdx(Def: AliasDef, IsRead), RWSeq, IsRead, |
821 | ProcModel); |
822 | return; |
823 | } |
824 | if (!SchedWrite.IsSequence) { |
825 | RWSeq.push_back(x: RWIdx); |
826 | return; |
827 | } |
828 | int Repeat = |
829 | SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt(FieldName: "Repeat" ) : 1; |
830 | for (int I = 0, E = Repeat; I < E; ++I) { |
831 | for (unsigned Idx : SchedWrite.Sequence) { |
832 | expandRWSeqForProc(RWIdx: Idx, RWSeq, IsRead, ProcModel); |
833 | } |
834 | } |
835 | } |
836 | |
837 | // Find the existing SchedWrite that models this sequence of writes. |
838 | unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq, |
839 | bool IsRead) { |
840 | std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; |
841 | |
842 | auto I = find_if(Range&: RWVec, P: [Seq](CodeGenSchedRW &RW) { |
843 | return ArrayRef(RW.Sequence) == Seq; |
844 | }); |
845 | // Index zero reserved for invalid RW. |
846 | return I == RWVec.end() ? 0 : std::distance(first: RWVec.begin(), last: I); |
847 | } |
848 | |
849 | /// Add this ReadWrite if it doesn't already exist. |
850 | unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq, |
851 | bool IsRead) { |
852 | assert(!Seq.empty() && "cannot insert empty sequence" ); |
853 | if (Seq.size() == 1) |
854 | return Seq.back(); |
855 | |
856 | unsigned Idx = findRWForSequence(Seq, IsRead); |
857 | if (Idx) |
858 | return Idx; |
859 | |
860 | std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; |
861 | unsigned RWIdx = RWVec.size(); |
862 | CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead)); |
863 | RWVec.push_back(x: SchedRW); |
864 | return RWIdx; |
865 | } |
866 | |
867 | /// Visit all the instruction definitions for this target to gather and |
868 | /// enumerate the itinerary classes. These are the explicitly specified |
869 | /// SchedClasses. More SchedClasses may be inferred. |
870 | void CodeGenSchedModels::collectSchedClasses() { |
871 | |
872 | // NoItinerary is always the first class at Idx=0 |
873 | assert(SchedClasses.empty() && "Expected empty sched class" ); |
874 | SchedClasses.emplace_back(args: 0, args: "NoInstrModel" , args: Records.getDef(Name: "NoItinerary" )); |
875 | SchedClasses.back().ProcIndices.push_back(x: 0); |
876 | |
877 | // Create a SchedClass for each unique combination of itinerary class and |
878 | // SchedRW list. |
879 | for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { |
880 | Record *ItinDef = Inst->TheDef->getValueAsDef(FieldName: "Itinerary" ); |
881 | IdxVec Writes, Reads; |
882 | if (!Inst->TheDef->isValueUnset(FieldName: "SchedRW" )) |
883 | findRWs(RWDefs: Inst->TheDef->getValueAsListOfDefs(FieldName: "SchedRW" ), Writes, Reads); |
884 | |
885 | // ProcIdx == 0 indicates the class applies to all processors. |
886 | unsigned SCIdx = addSchedClass(ItinDef, OperWrites: Writes, OperReads: Reads, /*ProcIndices*/ {0}); |
887 | InstrClassMap[Inst->TheDef] = SCIdx; |
888 | } |
889 | // Create classes for InstRW defs. |
890 | RecVec InstRWDefs = Records.getAllDerivedDefinitions(ClassName: "InstRW" ); |
891 | llvm::sort(C&: InstRWDefs, Comp: LessRecord()); |
892 | LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n" ); |
893 | for (Record *RWDef : InstRWDefs) |
894 | createInstRWClass(InstRWDef: RWDef); |
895 | |
896 | NumInstrSchedClasses = SchedClasses.size(); |
897 | |
898 | bool EnableDump = false; |
899 | LLVM_DEBUG(EnableDump = true); |
900 | if (!EnableDump) |
901 | return; |
902 | |
903 | LLVM_DEBUG( |
904 | dbgs() |
905 | << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n" ); |
906 | for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { |
907 | StringRef InstName = Inst->TheDef->getName(); |
908 | unsigned SCIdx = getSchedClassIdx(Inst: *Inst); |
909 | if (!SCIdx) { |
910 | LLVM_DEBUG({ |
911 | if (!Inst->hasNoSchedulingInfo) |
912 | dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n'; |
913 | }); |
914 | continue; |
915 | } |
916 | CodeGenSchedClass &SC = getSchedClass(Idx: SCIdx); |
917 | if (SC.ProcIndices[0] != 0) |
918 | PrintFatalError(ErrorLoc: Inst->TheDef->getLoc(), |
919 | Msg: "Instruction's sched class " |
920 | "must not be subtarget specific." ); |
921 | |
922 | IdxVec ProcIndices; |
923 | if (SC.ItinClassDef->getName() != "NoItinerary" ) { |
924 | ProcIndices.push_back(x: 0); |
925 | dbgs() << "Itinerary for " << InstName << ": " |
926 | << SC.ItinClassDef->getName() << '\n'; |
927 | } |
928 | if (!SC.Writes.empty()) { |
929 | ProcIndices.push_back(x: 0); |
930 | LLVM_DEBUG({ |
931 | dbgs() << "SchedRW machine model for " << InstName; |
932 | for (unsigned int Write : SC.Writes) |
933 | dbgs() << " " << SchedWrites[Write].Name; |
934 | for (unsigned int Read : SC.Reads) |
935 | dbgs() << " " << SchedReads[Read].Name; |
936 | dbgs() << '\n'; |
937 | }); |
938 | } |
939 | const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; |
940 | for (Record *RWDef : RWDefs) { |
941 | const CodeGenProcModel &ProcModel = |
942 | getProcModel(ModelDef: RWDef->getValueAsDef(FieldName: "SchedModel" )); |
943 | ProcIndices.push_back(x: ProcModel.Index); |
944 | LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for " |
945 | << InstName); |
946 | IdxVec Writes; |
947 | IdxVec Reads; |
948 | findRWs(RWDefs: RWDef->getValueAsListOfDefs(FieldName: "OperandReadWrites" ), Writes, Reads); |
949 | LLVM_DEBUG({ |
950 | for (unsigned WIdx : Writes) |
951 | dbgs() << " " << SchedWrites[WIdx].Name; |
952 | for (unsigned RIdx : Reads) |
953 | dbgs() << " " << SchedReads[RIdx].Name; |
954 | dbgs() << '\n'; |
955 | }); |
956 | } |
957 | // If ProcIndices contains zero, the class applies to all processors. |
958 | LLVM_DEBUG({ |
959 | if (!llvm::is_contained(ProcIndices, 0)) { |
960 | for (const CodeGenProcModel &PM : ProcModels) { |
961 | if (!llvm::is_contained(ProcIndices, PM.Index)) |
962 | dbgs() << "No machine model for " << Inst->TheDef->getName() |
963 | << " on processor " << PM.ModelName << '\n'; |
964 | } |
965 | } |
966 | }); |
967 | } |
968 | } |
969 | |
970 | // Get the SchedClass index for an instruction. |
971 | unsigned |
972 | CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const { |
973 | return InstrClassMap.lookup(Val: Inst.TheDef); |
974 | } |
975 | |
976 | std::string |
977 | CodeGenSchedModels::createSchedClassName(Record *ItinClassDef, |
978 | ArrayRef<unsigned> OperWrites, |
979 | ArrayRef<unsigned> OperReads) { |
980 | |
981 | std::string Name; |
982 | if (ItinClassDef && ItinClassDef->getName() != "NoItinerary" ) |
983 | Name = std::string(ItinClassDef->getName()); |
984 | for (unsigned Idx : OperWrites) { |
985 | if (!Name.empty()) |
986 | Name += '_'; |
987 | Name += SchedWrites[Idx].Name; |
988 | } |
989 | for (unsigned Idx : OperReads) { |
990 | Name += '_'; |
991 | Name += SchedReads[Idx].Name; |
992 | } |
993 | return Name; |
994 | } |
995 | |
996 | std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) { |
997 | |
998 | std::string Name; |
999 | ListSeparator LS("_" ); |
1000 | for (const Record *InstDef : InstDefs) { |
1001 | Name += LS; |
1002 | Name += InstDef->getName(); |
1003 | } |
1004 | return Name; |
1005 | } |
1006 | |
1007 | /// Add an inferred sched class from an itinerary class and per-operand list of |
1008 | /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of |
1009 | /// processors that may utilize this class. |
1010 | unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef, |
1011 | ArrayRef<unsigned> OperWrites, |
1012 | ArrayRef<unsigned> OperReads, |
1013 | ArrayRef<unsigned> ProcIndices) { |
1014 | assert(!ProcIndices.empty() && "expect at least one ProcIdx" ); |
1015 | |
1016 | auto IsKeyEqual = [=](const CodeGenSchedClass &SC) { |
1017 | return SC.isKeyEqual(IC: ItinClassDef, W: OperWrites, R: OperReads); |
1018 | }; |
1019 | |
1020 | auto I = find_if(Range: make_range(x: schedClassBegin(), y: schedClassEnd()), P: IsKeyEqual); |
1021 | unsigned Idx = I == schedClassEnd() ? 0 : std::distance(first: schedClassBegin(), last: I); |
1022 | if (Idx || SchedClasses[0].isKeyEqual(IC: ItinClassDef, W: OperWrites, R: OperReads)) { |
1023 | IdxVec PI; |
1024 | std::set_union(first1: SchedClasses[Idx].ProcIndices.begin(), |
1025 | last1: SchedClasses[Idx].ProcIndices.end(), first2: ProcIndices.begin(), |
1026 | last2: ProcIndices.end(), result: std::back_inserter(x&: PI)); |
1027 | SchedClasses[Idx].ProcIndices = std::move(PI); |
1028 | return Idx; |
1029 | } |
1030 | Idx = SchedClasses.size(); |
1031 | SchedClasses.emplace_back( |
1032 | args&: Idx, args: createSchedClassName(ItinClassDef, OperWrites, OperReads), |
1033 | args&: ItinClassDef); |
1034 | CodeGenSchedClass &SC = SchedClasses.back(); |
1035 | SC.Writes = OperWrites; |
1036 | SC.Reads = OperReads; |
1037 | SC.ProcIndices = ProcIndices; |
1038 | |
1039 | return Idx; |
1040 | } |
1041 | |
1042 | // Create classes for each set of opcodes that are in the same InstReadWrite |
1043 | // definition across all processors. |
1044 | void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) { |
1045 | // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that |
1046 | // intersects with an existing class via a previous InstRWDef. Instrs that do |
1047 | // not intersect with an existing class refer back to their former class as |
1048 | // determined from ItinDef or SchedRW. |
1049 | SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs; |
1050 | // Sort Instrs into sets. |
1051 | const RecVec *InstDefs = Sets.expand(Set: InstRWDef); |
1052 | if (InstDefs->empty()) |
1053 | PrintFatalError(ErrorLoc: InstRWDef->getLoc(), Msg: "No matching instruction opcodes" ); |
1054 | |
1055 | for (Record *InstDef : *InstDefs) { |
1056 | InstClassMapTy::const_iterator Pos = InstrClassMap.find(Val: InstDef); |
1057 | if (Pos == InstrClassMap.end()) |
1058 | PrintFatalError(ErrorLoc: InstDef->getLoc(), Msg: "No sched class for instruction." ); |
1059 | unsigned SCIdx = Pos->second; |
1060 | ClassInstrs[SCIdx].push_back(Elt: InstDef); |
1061 | } |
1062 | // For each set of Instrs, create a new class if necessary, and map or remap |
1063 | // the Instrs to it. |
1064 | for (auto &Entry : ClassInstrs) { |
1065 | unsigned OldSCIdx = Entry.first; |
1066 | ArrayRef<Record *> InstDefs = Entry.second; |
1067 | // If the all instrs in the current class are accounted for, then leave |
1068 | // them mapped to their old class. |
1069 | if (OldSCIdx) { |
1070 | const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs; |
1071 | if (!RWDefs.empty()) { |
1072 | const RecVec *OrigInstDefs = Sets.expand(Set: RWDefs[0]); |
1073 | unsigned OrigNumInstrs = count_if(Range: *OrigInstDefs, P: [&](Record *OIDef) { |
1074 | return InstrClassMap[OIDef] == OldSCIdx; |
1075 | }); |
1076 | if (OrigNumInstrs == InstDefs.size()) { |
1077 | assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 && |
1078 | "expected a generic SchedClass" ); |
1079 | Record *RWModelDef = InstRWDef->getValueAsDef(FieldName: "SchedModel" ); |
1080 | // Make sure we didn't already have a InstRW containing this |
1081 | // instruction on this model. |
1082 | for (Record *RWD : RWDefs) { |
1083 | if (RWD->getValueAsDef(FieldName: "SchedModel" ) == RWModelDef && |
1084 | RWModelDef->getValueAsBit(FieldName: "FullInstRWOverlapCheck" )) { |
1085 | assert(!InstDefs.empty()); // Checked at function start. |
1086 | PrintError( |
1087 | ErrorLoc: InstRWDef->getLoc(), |
1088 | Msg: "Overlapping InstRW definition for \"" + |
1089 | InstDefs.front()->getName() + |
1090 | "\" also matches previous \"" + |
1091 | RWD->getValue(Name: "Instrs" )->getValue()->getAsString() + |
1092 | "\"." ); |
1093 | PrintFatalNote(ErrorLoc: RWD->getLoc(), Msg: "Previous match was here." ); |
1094 | } |
1095 | } |
1096 | LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":" |
1097 | << SchedClasses[OldSCIdx].Name << " on " |
1098 | << RWModelDef->getName() << "\n" ); |
1099 | SchedClasses[OldSCIdx].InstRWs.push_back(x: InstRWDef); |
1100 | continue; |
1101 | } |
1102 | } |
1103 | } |
1104 | unsigned SCIdx = SchedClasses.size(); |
1105 | SchedClasses.emplace_back(args&: SCIdx, args: createSchedClassName(InstDefs), args: nullptr); |
1106 | CodeGenSchedClass &SC = SchedClasses.back(); |
1107 | LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on " |
1108 | << InstRWDef->getValueAsDef("SchedModel" )->getName() |
1109 | << "\n" ); |
1110 | |
1111 | // Preserve ItinDef and Writes/Reads for processors without an InstRW entry. |
1112 | SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef; |
1113 | SC.Writes = SchedClasses[OldSCIdx].Writes; |
1114 | SC.Reads = SchedClasses[OldSCIdx].Reads; |
1115 | SC.ProcIndices.push_back(x: 0); |
1116 | // If we had an old class, copy it's InstRWs to this new class. |
1117 | if (OldSCIdx) { |
1118 | Record *RWModelDef = InstRWDef->getValueAsDef(FieldName: "SchedModel" ); |
1119 | for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) { |
1120 | if (OldRWDef->getValueAsDef(FieldName: "SchedModel" ) == RWModelDef) { |
1121 | assert(!InstDefs.empty()); // Checked at function start. |
1122 | PrintError( |
1123 | ErrorLoc: InstRWDef->getLoc(), |
1124 | Msg: "Overlapping InstRW definition for \"" + |
1125 | InstDefs.front()->getName() + "\" also matches previous \"" + |
1126 | OldRWDef->getValue(Name: "Instrs" )->getValue()->getAsString() + |
1127 | "\"." ); |
1128 | PrintFatalNote(ErrorLoc: OldRWDef->getLoc(), Msg: "Previous match was here." ); |
1129 | } |
1130 | assert(OldRWDef != InstRWDef && "SchedClass has duplicate InstRW def" ); |
1131 | SC.InstRWs.push_back(x: OldRWDef); |
1132 | } |
1133 | } |
1134 | // Map each Instr to this new class. |
1135 | for (Record *InstDef : InstDefs) |
1136 | InstrClassMap[InstDef] = SCIdx; |
1137 | SC.InstRWs.push_back(x: InstRWDef); |
1138 | } |
1139 | } |
1140 | |
1141 | // True if collectProcItins found anything. |
1142 | bool CodeGenSchedModels::hasItineraries() const { |
1143 | for (const CodeGenProcModel &PM : |
1144 | make_range(x: procModelBegin(), y: procModelEnd())) |
1145 | if (PM.hasItineraries()) |
1146 | return true; |
1147 | return false; |
1148 | } |
1149 | |
1150 | // Gather the processor itineraries. |
1151 | void CodeGenSchedModels::collectProcItins() { |
1152 | LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n" ); |
1153 | for (CodeGenProcModel &ProcModel : ProcModels) { |
1154 | if (!ProcModel.hasItineraries()) |
1155 | continue; |
1156 | |
1157 | RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs(FieldName: "IID" ); |
1158 | assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect" ); |
1159 | |
1160 | // Populate ItinDefList with Itinerary records. |
1161 | ProcModel.ItinDefList.resize(new_size: NumInstrSchedClasses); |
1162 | |
1163 | // Insert each itinerary data record in the correct position within |
1164 | // the processor model's ItinDefList. |
1165 | for (Record *ItinData : ItinRecords) { |
1166 | const Record *ItinDef = ItinData->getValueAsDef(FieldName: "TheClass" ); |
1167 | bool FoundClass = false; |
1168 | |
1169 | for (const CodeGenSchedClass &SC : |
1170 | make_range(x: schedClassBegin(), y: schedClassEnd())) { |
1171 | // Multiple SchedClasses may share an itinerary. Update all of them. |
1172 | if (SC.ItinClassDef == ItinDef) { |
1173 | ProcModel.ItinDefList[SC.Index] = ItinData; |
1174 | FoundClass = true; |
1175 | } |
1176 | } |
1177 | if (!FoundClass) { |
1178 | LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName() |
1179 | << " missing class for itinerary " |
1180 | << ItinDef->getName() << '\n'); |
1181 | } |
1182 | } |
1183 | // Check for missing itinerary entries. |
1184 | assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec" ); |
1185 | LLVM_DEBUG( |
1186 | for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) { |
1187 | if (!ProcModel.ItinDefList[i]) |
1188 | dbgs() << ProcModel.ItinsDef->getName() |
1189 | << " missing itinerary for class " << SchedClasses[i].Name |
1190 | << '\n'; |
1191 | }); |
1192 | } |
1193 | } |
1194 | |
1195 | // Gather the read/write types for each itinerary class. |
1196 | void CodeGenSchedModels::collectProcItinRW() { |
1197 | RecVec ItinRWDefs = Records.getAllDerivedDefinitions(ClassName: "ItinRW" ); |
1198 | llvm::sort(C&: ItinRWDefs, Comp: LessRecord()); |
1199 | for (Record *RWDef : ItinRWDefs) { |
1200 | if (!RWDef->getValueInit(FieldName: "SchedModel" )->isComplete()) |
1201 | PrintFatalError(ErrorLoc: RWDef->getLoc(), Msg: "SchedModel is undefined" ); |
1202 | Record *ModelDef = RWDef->getValueAsDef(FieldName: "SchedModel" ); |
1203 | ProcModelMapTy::const_iterator I = ProcModelMap.find(Val: ModelDef); |
1204 | if (I == ProcModelMap.end()) { |
1205 | PrintFatalError(ErrorLoc: RWDef->getLoc(), |
1206 | Msg: "Undefined SchedMachineModel " + ModelDef->getName()); |
1207 | } |
1208 | ProcModels[I->second].ItinRWDefs.push_back(x: RWDef); |
1209 | } |
1210 | } |
1211 | |
1212 | // Gather the unsupported features for processor models. |
1213 | void CodeGenSchedModels::collectProcUnsupportedFeatures() { |
1214 | for (CodeGenProcModel &ProcModel : ProcModels) |
1215 | append_range( |
1216 | C&: ProcModel.UnsupportedFeaturesDefs, |
1217 | R: ProcModel.ModelDef->getValueAsListOfDefs(FieldName: "UnsupportedFeatures" )); |
1218 | } |
1219 | |
1220 | /// Infer new classes from existing classes. In the process, this may create new |
1221 | /// SchedWrites from sequences of existing SchedWrites. |
1222 | void CodeGenSchedModels::inferSchedClasses() { |
1223 | LLVM_DEBUG( |
1224 | dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n" ); |
1225 | LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n" ); |
1226 | |
1227 | // Visit all existing classes and newly created classes. |
1228 | for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) { |
1229 | assert(SchedClasses[Idx].Index == Idx && "bad SCIdx" ); |
1230 | |
1231 | if (SchedClasses[Idx].ItinClassDef) |
1232 | inferFromItinClass(ItinClassDef: SchedClasses[Idx].ItinClassDef, FromClassIdx: Idx); |
1233 | if (!SchedClasses[Idx].InstRWs.empty()) |
1234 | inferFromInstRWs(SCIdx: Idx); |
1235 | if (!SchedClasses[Idx].Writes.empty()) { |
1236 | inferFromRW(OperWrites: SchedClasses[Idx].Writes, OperReads: SchedClasses[Idx].Reads, FromClassIdx: Idx, |
1237 | ProcIndices: SchedClasses[Idx].ProcIndices); |
1238 | } |
1239 | assert(SchedClasses.size() < (NumInstrSchedClasses * 6) && |
1240 | "too many SchedVariants" ); |
1241 | } |
1242 | } |
1243 | |
1244 | /// Infer classes from per-processor itinerary resources. |
1245 | void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef, |
1246 | unsigned FromClassIdx) { |
1247 | for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { |
1248 | const CodeGenProcModel &PM = ProcModels[PIdx]; |
1249 | // For all ItinRW entries. |
1250 | bool HasMatch = false; |
1251 | for (const Record *Rec : PM.ItinRWDefs) { |
1252 | RecVec Matched = Rec->getValueAsListOfDefs(FieldName: "MatchedItinClasses" ); |
1253 | if (!llvm::is_contained(Range&: Matched, Element: ItinClassDef)) |
1254 | continue; |
1255 | if (HasMatch) |
1256 | PrintFatalError(ErrorLoc: Rec->getLoc(), |
1257 | Msg: "Duplicate itinerary class " + ItinClassDef->getName() + |
1258 | " in ItinResources for " + PM.ModelName); |
1259 | HasMatch = true; |
1260 | IdxVec Writes, Reads; |
1261 | findRWs(RWDefs: Rec->getValueAsListOfDefs(FieldName: "OperandReadWrites" ), Writes, Reads); |
1262 | inferFromRW(OperWrites: Writes, OperReads: Reads, FromClassIdx, ProcIndices: PIdx); |
1263 | } |
1264 | } |
1265 | } |
1266 | |
1267 | /// Infer classes from per-processor InstReadWrite definitions. |
1268 | void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) { |
1269 | for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) { |
1270 | assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!" ); |
1271 | Record *Rec = SchedClasses[SCIdx].InstRWs[I]; |
1272 | const RecVec *InstDefs = Sets.expand(Set: Rec); |
1273 | RecIter II = InstDefs->begin(), IE = InstDefs->end(); |
1274 | for (; II != IE; ++II) { |
1275 | if (InstrClassMap[*II] == SCIdx) |
1276 | break; |
1277 | } |
1278 | // If this class no longer has any instructions mapped to it, it has become |
1279 | // irrelevant. |
1280 | if (II == IE) |
1281 | continue; |
1282 | IdxVec Writes, Reads; |
1283 | findRWs(RWDefs: Rec->getValueAsListOfDefs(FieldName: "OperandReadWrites" ), Writes, Reads); |
1284 | unsigned PIdx = getProcModel(ModelDef: Rec->getValueAsDef(FieldName: "SchedModel" )).Index; |
1285 | inferFromRW(OperWrites: Writes, OperReads: Reads, FromClassIdx: SCIdx, ProcIndices: PIdx); // May mutate SchedClasses. |
1286 | SchedClasses[SCIdx].InstRWProcIndices.insert(V: PIdx); |
1287 | } |
1288 | } |
1289 | |
1290 | namespace { |
1291 | |
1292 | // Helper for substituteVariantOperand. |
1293 | struct TransVariant { |
1294 | Record *VarOrSeqDef; // Variant or sequence. |
1295 | unsigned RWIdx; // Index of this variant or sequence's matched type. |
1296 | unsigned ProcIdx; // Processor model index or zero for any. |
1297 | unsigned TransVecIdx; // Index into PredTransitions::TransVec. |
1298 | |
1299 | TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti) |
1300 | : VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {} |
1301 | }; |
1302 | |
1303 | // Associate a predicate with the SchedReadWrite that it guards. |
1304 | // RWIdx is the index of the read/write variant. |
1305 | struct PredCheck { |
1306 | bool IsRead; |
1307 | unsigned RWIdx; |
1308 | Record *Predicate; |
1309 | |
1310 | PredCheck(bool r, unsigned w, Record *p) |
1311 | : IsRead(r), RWIdx(w), Predicate(p) {} |
1312 | }; |
1313 | |
1314 | // A Predicate transition is a list of RW sequences guarded by a PredTerm. |
1315 | struct PredTransition { |
1316 | // A predicate term is a conjunction of PredChecks. |
1317 | SmallVector<PredCheck, 4> PredTerm; |
1318 | SmallVector<SmallVector<unsigned, 4>, 16> WriteSequences; |
1319 | SmallVector<SmallVector<unsigned, 4>, 16> ReadSequences; |
1320 | unsigned ProcIndex = 0; |
1321 | |
1322 | PredTransition() = default; |
1323 | PredTransition(ArrayRef<PredCheck> PT, unsigned ProcId) { |
1324 | PredTerm.assign(in_start: PT.begin(), in_end: PT.end()); |
1325 | ProcIndex = ProcId; |
1326 | } |
1327 | }; |
1328 | |
1329 | // Encapsulate a set of partially constructed transitions. |
1330 | // The results are built by repeated calls to substituteVariants. |
1331 | class PredTransitions { |
1332 | CodeGenSchedModels &SchedModels; |
1333 | |
1334 | public: |
1335 | std::vector<PredTransition> TransVec; |
1336 | |
1337 | PredTransitions(CodeGenSchedModels &sm) : SchedModels(sm) {} |
1338 | |
1339 | bool substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq, |
1340 | bool IsRead, unsigned StartIdx); |
1341 | |
1342 | bool substituteVariants(const PredTransition &Trans); |
1343 | |
1344 | #ifndef NDEBUG |
1345 | void dump() const; |
1346 | #endif |
1347 | |
1348 | private: |
1349 | bool mutuallyExclusive(Record *PredDef, ArrayRef<Record *> Preds, |
1350 | ArrayRef<PredCheck> Term); |
1351 | void getIntersectingVariants(const CodeGenSchedRW &SchedRW, unsigned TransIdx, |
1352 | std::vector<TransVariant> &IntersectingVariants); |
1353 | void pushVariant(const TransVariant &VInfo, bool IsRead); |
1354 | }; |
1355 | |
1356 | } // end anonymous namespace |
1357 | |
1358 | // Return true if this predicate is mutually exclusive with a PredTerm. This |
1359 | // degenerates into checking if the predicate is mutually exclusive with any |
1360 | // predicate in the Term's conjunction. |
1361 | // |
1362 | // All predicates associated with a given SchedRW are considered mutually |
1363 | // exclusive. This should work even if the conditions expressed by the |
1364 | // predicates are not exclusive because the predicates for a given SchedWrite |
1365 | // are always checked in the order they are defined in the .td file. Later |
1366 | // conditions implicitly negate any prior condition. |
1367 | bool PredTransitions::mutuallyExclusive(Record *PredDef, |
1368 | ArrayRef<Record *> Preds, |
1369 | ArrayRef<PredCheck> Term) { |
1370 | for (const PredCheck &PC : Term) { |
1371 | if (PC.Predicate == PredDef) |
1372 | return false; |
1373 | |
1374 | const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(Idx: PC.RWIdx, IsRead: PC.IsRead); |
1375 | assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant" ); |
1376 | RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs(FieldName: "Variants" ); |
1377 | if (any_of(Range&: Variants, P: [PredDef](const Record *R) { |
1378 | return R->getValueAsDef(FieldName: "Predicate" ) == PredDef; |
1379 | })) { |
1380 | // To check if PredDef is mutually exclusive with PC we also need to |
1381 | // check that PC.Predicate is exclusive with all predicates from variant |
1382 | // we're expanding. Consider following RW sequence with two variants |
1383 | // (1 & 2), where A, B and C are predicates from corresponding SchedVars: |
1384 | // |
1385 | // 1:A/B - 2:C/B |
1386 | // |
1387 | // Here C is not mutually exclusive with variant (1), because A doesn't |
1388 | // exist in variant (2). This means we have possible transitions from A |
1389 | // to C and from A to B, and fully expanded sequence would look like: |
1390 | // |
1391 | // if (A & C) return ...; |
1392 | // if (A & B) return ...; |
1393 | // if (B) return ...; |
1394 | // |
1395 | // Now let's consider another sequence: |
1396 | // |
1397 | // 1:A/B - 2:A/B |
1398 | // |
1399 | // Here A in variant (2) is mutually exclusive with variant (1), because |
1400 | // A also exists in (2). This means A->B transition is impossible and |
1401 | // expanded sequence would look like: |
1402 | // |
1403 | // if (A) return ...; |
1404 | // if (B) return ...; |
1405 | if (!llvm::is_contained(Range&: Preds, Element: PC.Predicate)) |
1406 | continue; |
1407 | return true; |
1408 | } |
1409 | } |
1410 | return false; |
1411 | } |
1412 | |
1413 | static std::vector<Record *> getAllPredicates(ArrayRef<TransVariant> Variants, |
1414 | unsigned ProcId) { |
1415 | std::vector<Record *> Preds; |
1416 | for (auto &Variant : Variants) { |
1417 | if (!Variant.VarOrSeqDef->isSubClassOf(Name: "SchedVar" )) |
1418 | continue; |
1419 | Preds.push_back(x: Variant.VarOrSeqDef->getValueAsDef(FieldName: "Predicate" )); |
1420 | } |
1421 | return Preds; |
1422 | } |
1423 | |
1424 | // Populate IntersectingVariants with any variants or aliased sequences of the |
1425 | // given SchedRW whose processor indices and predicates are not mutually |
1426 | // exclusive with the given transition. |
1427 | void PredTransitions::getIntersectingVariants( |
1428 | const CodeGenSchedRW &SchedRW, unsigned TransIdx, |
1429 | std::vector<TransVariant> &IntersectingVariants) { |
1430 | |
1431 | bool GenericRW = false; |
1432 | |
1433 | std::vector<TransVariant> Variants; |
1434 | if (SchedRW.HasVariants) { |
1435 | unsigned VarProcIdx = 0; |
1436 | if (SchedRW.TheDef->getValueInit(FieldName: "SchedModel" )->isComplete()) { |
1437 | Record *ModelDef = SchedRW.TheDef->getValueAsDef(FieldName: "SchedModel" ); |
1438 | VarProcIdx = SchedModels.getProcModel(ModelDef).Index; |
1439 | } |
1440 | if (VarProcIdx == 0 || VarProcIdx == TransVec[TransIdx].ProcIndex) { |
1441 | // Push each variant. Assign TransVecIdx later. |
1442 | const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs(FieldName: "Variants" ); |
1443 | for (Record *VarDef : VarDefs) |
1444 | Variants.emplace_back(args&: VarDef, args: SchedRW.Index, args&: VarProcIdx, args: 0); |
1445 | if (VarProcIdx == 0) |
1446 | GenericRW = true; |
1447 | } |
1448 | } |
1449 | for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); |
1450 | AI != AE; ++AI) { |
1451 | // If either the SchedAlias itself or the SchedReadWrite that it aliases |
1452 | // to is defined within a processor model, constrain all variants to |
1453 | // that processor. |
1454 | unsigned AliasProcIdx = 0; |
1455 | if ((*AI)->getValueInit(FieldName: "SchedModel" )->isComplete()) { |
1456 | Record *ModelDef = (*AI)->getValueAsDef(FieldName: "SchedModel" ); |
1457 | AliasProcIdx = SchedModels.getProcModel(ModelDef).Index; |
1458 | } |
1459 | if (AliasProcIdx && AliasProcIdx != TransVec[TransIdx].ProcIndex) |
1460 | continue; |
1461 | if (!Variants.empty()) { |
1462 | const CodeGenProcModel &PM = |
1463 | *(SchedModels.procModelBegin() + AliasProcIdx); |
1464 | PrintFatalError(ErrorLoc: (*AI)->getLoc(), |
1465 | Msg: "Multiple variants defined for processor " + |
1466 | PM.ModelName + |
1467 | " Ensure only one SchedAlias exists per RW." ); |
1468 | } |
1469 | |
1470 | const CodeGenSchedRW &AliasRW = |
1471 | SchedModels.getSchedRW(Def: (*AI)->getValueAsDef(FieldName: "AliasRW" )); |
1472 | |
1473 | if (AliasRW.HasVariants) { |
1474 | const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs(FieldName: "Variants" ); |
1475 | for (Record *VD : VarDefs) |
1476 | Variants.emplace_back(args&: VD, args: AliasRW.Index, args&: AliasProcIdx, args: 0); |
1477 | } |
1478 | if (AliasRW.IsSequence) |
1479 | Variants.emplace_back(args: AliasRW.TheDef, args: SchedRW.Index, args&: AliasProcIdx, args: 0); |
1480 | if (AliasProcIdx == 0) |
1481 | GenericRW = true; |
1482 | } |
1483 | std::vector<Record *> AllPreds = |
1484 | getAllPredicates(Variants, ProcId: TransVec[TransIdx].ProcIndex); |
1485 | for (TransVariant &Variant : Variants) { |
1486 | // Don't expand variants if the processor models don't intersect. |
1487 | // A zero processor index means any processor. |
1488 | if (Variant.VarOrSeqDef->isSubClassOf(Name: "SchedVar" )) { |
1489 | Record *PredDef = Variant.VarOrSeqDef->getValueAsDef(FieldName: "Predicate" ); |
1490 | if (mutuallyExclusive(PredDef, Preds: AllPreds, Term: TransVec[TransIdx].PredTerm)) |
1491 | continue; |
1492 | } |
1493 | |
1494 | if (IntersectingVariants.empty()) { |
1495 | // The first variant builds on the existing transition. |
1496 | Variant.TransVecIdx = TransIdx; |
1497 | IntersectingVariants.push_back(x: Variant); |
1498 | } else { |
1499 | // Push another copy of the current transition for more variants. |
1500 | Variant.TransVecIdx = TransVec.size(); |
1501 | IntersectingVariants.push_back(x: Variant); |
1502 | TransVec.push_back(x: TransVec[TransIdx]); |
1503 | } |
1504 | } |
1505 | if (GenericRW && IntersectingVariants.empty()) { |
1506 | PrintFatalError(ErrorLoc: SchedRW.TheDef->getLoc(), |
1507 | Msg: "No variant of this type has " |
1508 | "a matching predicate on any processor" ); |
1509 | } |
1510 | } |
1511 | |
1512 | // Push the Reads/Writes selected by this variant onto the PredTransition |
1513 | // specified by VInfo. |
1514 | void PredTransitions::pushVariant(const TransVariant &VInfo, bool IsRead) { |
1515 | PredTransition &Trans = TransVec[VInfo.TransVecIdx]; |
1516 | |
1517 | // If this operand transition is reached through a processor-specific alias, |
1518 | // then the whole transition is specific to this processor. |
1519 | IdxVec SelectedRWs; |
1520 | if (VInfo.VarOrSeqDef->isSubClassOf(Name: "SchedVar" )) { |
1521 | Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef(FieldName: "Predicate" ); |
1522 | Trans.PredTerm.emplace_back(Args&: IsRead, Args: VInfo.RWIdx, Args&: PredDef); |
1523 | RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs(FieldName: "Selected" ); |
1524 | SchedModels.findRWs(RWDefs: SelectedDefs, RWs&: SelectedRWs, IsRead); |
1525 | } else { |
1526 | assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence" ) && |
1527 | "variant must be a SchedVariant or aliased WriteSequence" ); |
1528 | SelectedRWs.push_back(x: SchedModels.getSchedRWIdx(Def: VInfo.VarOrSeqDef, IsRead)); |
1529 | } |
1530 | |
1531 | const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(Idx: VInfo.RWIdx, IsRead); |
1532 | |
1533 | SmallVectorImpl<SmallVector<unsigned, 4>> &RWSequences = |
1534 | IsRead ? Trans.ReadSequences : Trans.WriteSequences; |
1535 | if (SchedRW.IsVariadic) { |
1536 | unsigned OperIdx = RWSequences.size() - 1; |
1537 | // Make N-1 copies of this transition's last sequence. |
1538 | RWSequences.reserve(N: RWSequences.size() + SelectedRWs.size() - 1); |
1539 | RWSequences.insert(I: RWSequences.end(), NumToInsert: SelectedRWs.size() - 1, |
1540 | Elt: RWSequences[OperIdx]); |
1541 | // Push each of the N elements of the SelectedRWs onto a copy of the last |
1542 | // sequence (split the current operand into N operands). |
1543 | // Note that write sequences should be expanded within this loop--the entire |
1544 | // sequence belongs to a single operand. |
1545 | for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); RWI != RWE; |
1546 | ++RWI, ++OperIdx) { |
1547 | IdxVec ExpandedRWs; |
1548 | if (IsRead) |
1549 | ExpandedRWs.push_back(x: *RWI); |
1550 | else |
1551 | SchedModels.expandRWSequence(RWIdx: *RWI, RWSeq&: ExpandedRWs, IsRead); |
1552 | llvm::append_range(C&: RWSequences[OperIdx], R&: ExpandedRWs); |
1553 | } |
1554 | assert(OperIdx == RWSequences.size() && "missed a sequence" ); |
1555 | } else { |
1556 | // Push this transition's expanded sequence onto this transition's last |
1557 | // sequence (add to the current operand's sequence). |
1558 | SmallVectorImpl<unsigned> &Seq = RWSequences.back(); |
1559 | IdxVec ExpandedRWs; |
1560 | for (unsigned int SelectedRW : SelectedRWs) { |
1561 | if (IsRead) |
1562 | ExpandedRWs.push_back(x: SelectedRW); |
1563 | else |
1564 | SchedModels.expandRWSequence(RWIdx: SelectedRW, RWSeq&: ExpandedRWs, IsRead); |
1565 | } |
1566 | llvm::append_range(C&: Seq, R&: ExpandedRWs); |
1567 | } |
1568 | } |
1569 | |
1570 | // RWSeq is a sequence of all Reads or all Writes for the next read or write |
1571 | // operand. StartIdx is an index into TransVec where partial results |
1572 | // starts. RWSeq must be applied to all transitions between StartIdx and the end |
1573 | // of TransVec. |
1574 | bool PredTransitions::substituteVariantOperand( |
1575 | const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) { |
1576 | bool Subst = false; |
1577 | // Visit each original RW within the current sequence. |
1578 | for (unsigned int RWI : RWSeq) { |
1579 | const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(Idx: RWI, IsRead); |
1580 | // Push this RW on all partial PredTransitions or distribute variants. |
1581 | // New PredTransitions may be pushed within this loop which should not be |
1582 | // revisited (TransEnd must be loop invariant). |
1583 | for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size(); |
1584 | TransIdx != TransEnd; ++TransIdx) { |
1585 | // Distribute this partial PredTransition across intersecting variants. |
1586 | // This will push a copies of TransVec[TransIdx] on the back of TransVec. |
1587 | std::vector<TransVariant> IntersectingVariants; |
1588 | getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants); |
1589 | // Now expand each variant on top of its copy of the transition. |
1590 | for (const TransVariant &IV : IntersectingVariants) |
1591 | pushVariant(VInfo: IV, IsRead); |
1592 | if (IntersectingVariants.empty()) { |
1593 | if (IsRead) |
1594 | TransVec[TransIdx].ReadSequences.back().push_back(Elt: RWI); |
1595 | else |
1596 | TransVec[TransIdx].WriteSequences.back().push_back(Elt: RWI); |
1597 | continue; |
1598 | } else { |
1599 | Subst = true; |
1600 | } |
1601 | } |
1602 | } |
1603 | return Subst; |
1604 | } |
1605 | |
1606 | // For each variant of a Read/Write in Trans, substitute the sequence of |
1607 | // Read/Writes guarded by the variant. This is exponential in the number of |
1608 | // variant Read/Writes, but in practice detection of mutually exclusive |
1609 | // predicates should result in linear growth in the total number variants. |
1610 | // |
1611 | // This is one step in a breadth-first search of nested variants. |
1612 | bool PredTransitions::substituteVariants(const PredTransition &Trans) { |
1613 | // Build up a set of partial results starting at the back of |
1614 | // PredTransitions. Remember the first new transition. |
1615 | unsigned StartIdx = TransVec.size(); |
1616 | bool Subst = false; |
1617 | assert(Trans.ProcIndex != 0); |
1618 | TransVec.emplace_back(args: Trans.PredTerm, args: Trans.ProcIndex); |
1619 | |
1620 | // Visit each original write sequence. |
1621 | for (const auto &WriteSequence : Trans.WriteSequences) { |
1622 | // Push a new (empty) write sequence onto all partial Transitions. |
1623 | for (std::vector<PredTransition>::iterator I = TransVec.begin() + StartIdx, |
1624 | E = TransVec.end(); |
1625 | I != E; ++I) { |
1626 | I->WriteSequences.emplace_back(); |
1627 | } |
1628 | Subst |= |
1629 | substituteVariantOperand(RWSeq: WriteSequence, /*IsRead=*/false, StartIdx); |
1630 | } |
1631 | // Visit each original read sequence. |
1632 | for (const auto &ReadSequence : Trans.ReadSequences) { |
1633 | // Push a new (empty) read sequence onto all partial Transitions. |
1634 | for (std::vector<PredTransition>::iterator I = TransVec.begin() + StartIdx, |
1635 | E = TransVec.end(); |
1636 | I != E; ++I) { |
1637 | I->ReadSequences.emplace_back(); |
1638 | } |
1639 | Subst |= substituteVariantOperand(RWSeq: ReadSequence, /*IsRead=*/true, StartIdx); |
1640 | } |
1641 | return Subst; |
1642 | } |
1643 | |
1644 | static void addSequences(CodeGenSchedModels &SchedModels, |
1645 | const SmallVectorImpl<SmallVector<unsigned, 4>> &Seqs, |
1646 | IdxVec &Result, bool IsRead) { |
1647 | for (const auto &S : Seqs) |
1648 | if (!S.empty()) |
1649 | Result.push_back(x: SchedModels.findOrInsertRW(Seq: S, IsRead)); |
1650 | } |
1651 | |
1652 | #ifndef NDEBUG |
1653 | static void dumpRecVec(const RecVec &RV) { |
1654 | for (const Record *R : RV) |
1655 | dbgs() << R->getName() << ", " ; |
1656 | } |
1657 | #endif |
1658 | |
1659 | static void dumpTransition(const CodeGenSchedModels &SchedModels, |
1660 | const CodeGenSchedClass &FromSC, |
1661 | const CodeGenSchedTransition &SCTrans, |
1662 | const RecVec &Preds) { |
1663 | LLVM_DEBUG(dbgs() << "Adding transition from " << FromSC.Name << "(" |
1664 | << FromSC.Index << ") to " |
1665 | << SchedModels.getSchedClass(SCTrans.ToClassIdx).Name << "(" |
1666 | << SCTrans.ToClassIdx << ") on pred term: (" ; |
1667 | dumpRecVec(Preds); |
1668 | dbgs() << ") on processor (" << SCTrans.ProcIndex << ")\n" ); |
1669 | } |
1670 | // Create a new SchedClass for each variant found by inferFromRW. Pass |
1671 | static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions, |
1672 | unsigned FromClassIdx, |
1673 | CodeGenSchedModels &SchedModels) { |
1674 | // For each PredTransition, create a new CodeGenSchedTransition, which usually |
1675 | // requires creating a new SchedClass. |
1676 | for (const auto &LastTransition : LastTransitions) { |
1677 | // Variant expansion (substituteVariants) may create unconditional |
1678 | // transitions. We don't need to build sched classes for them. |
1679 | if (LastTransition.PredTerm.empty()) |
1680 | continue; |
1681 | IdxVec OperWritesVariant, OperReadsVariant; |
1682 | addSequences(SchedModels, Seqs: LastTransition.WriteSequences, Result&: OperWritesVariant, |
1683 | IsRead: false); |
1684 | addSequences(SchedModels, Seqs: LastTransition.ReadSequences, Result&: OperReadsVariant, |
1685 | IsRead: true); |
1686 | CodeGenSchedTransition SCTrans; |
1687 | |
1688 | // Transition should not contain processor indices already assigned to |
1689 | // InstRWs in this scheduling class. |
1690 | const CodeGenSchedClass &FromSC = SchedModels.getSchedClass(Idx: FromClassIdx); |
1691 | if (FromSC.InstRWProcIndices.count(V: LastTransition.ProcIndex)) |
1692 | continue; |
1693 | SCTrans.ProcIndex = LastTransition.ProcIndex; |
1694 | SCTrans.ToClassIdx = |
1695 | SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWrites: OperWritesVariant, |
1696 | OperReads: OperReadsVariant, ProcIndices: LastTransition.ProcIndex); |
1697 | |
1698 | // The final PredTerm is unique set of predicates guarding the transition. |
1699 | RecVec Preds; |
1700 | transform(Range: LastTransition.PredTerm, d_first: std::back_inserter(x&: Preds), |
1701 | F: [](const PredCheck &P) { return P.Predicate; }); |
1702 | Preds.erase(first: llvm::unique(R&: Preds), last: Preds.end()); |
1703 | dumpTransition(SchedModels, FromSC, SCTrans, Preds); |
1704 | SCTrans.PredTerm = std::move(Preds); |
1705 | SchedModels.getSchedClass(Idx: FromClassIdx) |
1706 | .Transitions.push_back(x: std::move(SCTrans)); |
1707 | } |
1708 | } |
1709 | |
1710 | std::vector<unsigned> CodeGenSchedModels::getAllProcIndices() const { |
1711 | std::vector<unsigned> ProcIdVec; |
1712 | for (const auto &PM : ProcModelMap) |
1713 | if (PM.second != 0) |
1714 | ProcIdVec.push_back(x: PM.second); |
1715 | // The order of the keys (Record pointers) of ProcModelMap are not stable. |
1716 | // Sort to stabalize the values. |
1717 | llvm::sort(C&: ProcIdVec); |
1718 | return ProcIdVec; |
1719 | } |
1720 | |
1721 | static std::vector<PredTransition> |
1722 | makePerProcessorTransitions(const PredTransition &Trans, |
1723 | ArrayRef<unsigned> ProcIndices) { |
1724 | std::vector<PredTransition> PerCpuTransVec; |
1725 | for (unsigned ProcId : ProcIndices) { |
1726 | assert(ProcId != 0); |
1727 | PerCpuTransVec.push_back(x: Trans); |
1728 | PerCpuTransVec.back().ProcIndex = ProcId; |
1729 | } |
1730 | return PerCpuTransVec; |
1731 | } |
1732 | |
1733 | // Create new SchedClasses for the given ReadWrite list. If any of the |
1734 | // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant |
1735 | // of the ReadWrite list, following Aliases if necessary. |
1736 | void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites, |
1737 | ArrayRef<unsigned> OperReads, |
1738 | unsigned FromClassIdx, |
1739 | ArrayRef<unsigned> ProcIndices) { |
1740 | LLVM_DEBUG(dbgs() << "INFER RW proc(" ; dumpIdxVec(ProcIndices); |
1741 | dbgs() << ") " ); |
1742 | // Create a seed transition with an empty PredTerm and the expanded sequences |
1743 | // of SchedWrites for the current SchedClass. |
1744 | std::vector<PredTransition> LastTransitions; |
1745 | LastTransitions.emplace_back(); |
1746 | |
1747 | for (unsigned WriteIdx : OperWrites) { |
1748 | IdxVec WriteSeq; |
1749 | expandRWSequence(RWIdx: WriteIdx, RWSeq&: WriteSeq, /*IsRead=*/false); |
1750 | LastTransitions[0].WriteSequences.emplace_back(); |
1751 | SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back(); |
1752 | Seq.append(in_start: WriteSeq.begin(), in_end: WriteSeq.end()); |
1753 | LLVM_DEBUG(dbgs() << "(" ; dumpIdxVec(Seq); dbgs() << ") " ); |
1754 | } |
1755 | LLVM_DEBUG(dbgs() << " Reads: " ); |
1756 | for (unsigned ReadIdx : OperReads) { |
1757 | IdxVec ReadSeq; |
1758 | expandRWSequence(RWIdx: ReadIdx, RWSeq&: ReadSeq, /*IsRead=*/true); |
1759 | LastTransitions[0].ReadSequences.emplace_back(); |
1760 | SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back(); |
1761 | Seq.append(in_start: ReadSeq.begin(), in_end: ReadSeq.end()); |
1762 | LLVM_DEBUG(dbgs() << "(" ; dumpIdxVec(Seq); dbgs() << ") " ); |
1763 | } |
1764 | LLVM_DEBUG(dbgs() << '\n'); |
1765 | |
1766 | LastTransitions = makePerProcessorTransitions( |
1767 | Trans: LastTransitions[0], ProcIndices: llvm::is_contained(Range&: ProcIndices, Element: 0) |
1768 | ? ArrayRef<unsigned>(getAllProcIndices()) |
1769 | : ProcIndices); |
1770 | // Collect all PredTransitions for individual operands. |
1771 | // Iterate until no variant writes remain. |
1772 | bool SubstitutedAny; |
1773 | do { |
1774 | SubstitutedAny = false; |
1775 | PredTransitions Transitions(*this); |
1776 | for (const PredTransition &Trans : LastTransitions) |
1777 | SubstitutedAny |= Transitions.substituteVariants(Trans); |
1778 | LLVM_DEBUG(Transitions.dump()); |
1779 | LastTransitions = std::move(Transitions.TransVec); |
1780 | } while (SubstitutedAny); |
1781 | |
1782 | // WARNING: We are about to mutate the SchedClasses vector. Do not refer to |
1783 | // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions. |
1784 | inferFromTransitions(LastTransitions, FromClassIdx, SchedModels&: *this); |
1785 | } |
1786 | |
1787 | // Check if any processor resource group contains all resource records in |
1788 | // SubUnits. |
1789 | bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) { |
1790 | for (Record *ProcResourceDef : PM.ProcResourceDefs) { |
1791 | if (!ProcResourceDef->isSubClassOf(Name: "ProcResGroup" )) |
1792 | continue; |
1793 | RecVec SuperUnits = ProcResourceDef->getValueAsListOfDefs(FieldName: "Resources" ); |
1794 | RecIter RI = SubUnits.begin(), RE = SubUnits.end(); |
1795 | for (; RI != RE; ++RI) { |
1796 | if (!is_contained(Range&: SuperUnits, Element: *RI)) { |
1797 | break; |
1798 | } |
1799 | } |
1800 | if (RI == RE) |
1801 | return true; |
1802 | } |
1803 | return false; |
1804 | } |
1805 | |
1806 | // Verify that overlapping groups have a common supergroup. |
1807 | void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) { |
1808 | for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { |
1809 | if (!PM.ProcResourceDefs[i]->isSubClassOf(Name: "ProcResGroup" )) |
1810 | continue; |
1811 | RecVec CheckUnits = |
1812 | PM.ProcResourceDefs[i]->getValueAsListOfDefs(FieldName: "Resources" ); |
1813 | for (unsigned j = i + 1; j < e; ++j) { |
1814 | if (!PM.ProcResourceDefs[j]->isSubClassOf(Name: "ProcResGroup" )) |
1815 | continue; |
1816 | RecVec OtherUnits = |
1817 | PM.ProcResourceDefs[j]->getValueAsListOfDefs(FieldName: "Resources" ); |
1818 | if (std::find_first_of(first1: CheckUnits.begin(), last1: CheckUnits.end(), |
1819 | first2: OtherUnits.begin(), |
1820 | last2: OtherUnits.end()) != CheckUnits.end()) { |
1821 | // CheckUnits and OtherUnits overlap |
1822 | llvm::append_range(C&: OtherUnits, R&: CheckUnits); |
1823 | if (!hasSuperGroup(SubUnits&: OtherUnits, PM)) { |
1824 | PrintFatalError(ErrorLoc: (PM.ProcResourceDefs[i])->getLoc(), |
1825 | Msg: "proc resource group overlaps with " + |
1826 | PM.ProcResourceDefs[j]->getName() + |
1827 | " but no supergroup contains both." ); |
1828 | } |
1829 | } |
1830 | } |
1831 | } |
1832 | } |
1833 | |
1834 | // Collect all the RegisterFile definitions available in this target. |
1835 | void CodeGenSchedModels::collectRegisterFiles() { |
1836 | RecVec RegisterFileDefs = Records.getAllDerivedDefinitions(ClassName: "RegisterFile" ); |
1837 | |
1838 | // RegisterFiles is the vector of CodeGenRegisterFile. |
1839 | for (Record *RF : RegisterFileDefs) { |
1840 | // For each register file definition, construct a CodeGenRegisterFile object |
1841 | // and add it to the appropriate scheduling model. |
1842 | CodeGenProcModel &PM = getProcModel(ModelDef: RF->getValueAsDef(FieldName: "SchedModel" )); |
1843 | PM.RegisterFiles.emplace_back(args: CodeGenRegisterFile(RF->getName(), RF)); |
1844 | CodeGenRegisterFile &CGRF = PM.RegisterFiles.back(); |
1845 | CGRF.MaxMovesEliminatedPerCycle = |
1846 | RF->getValueAsInt(FieldName: "MaxMovesEliminatedPerCycle" ); |
1847 | CGRF.AllowZeroMoveEliminationOnly = |
1848 | RF->getValueAsBit(FieldName: "AllowZeroMoveEliminationOnly" ); |
1849 | |
1850 | // Now set the number of physical registers as well as the cost of registers |
1851 | // in each register class. |
1852 | CGRF.NumPhysRegs = RF->getValueAsInt(FieldName: "NumPhysRegs" ); |
1853 | if (!CGRF.NumPhysRegs) { |
1854 | PrintFatalError(ErrorLoc: RF->getLoc(), |
1855 | Msg: "Invalid RegisterFile with zero physical registers" ); |
1856 | } |
1857 | |
1858 | RecVec RegisterClasses = RF->getValueAsListOfDefs(FieldName: "RegClasses" ); |
1859 | std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts(FieldName: "RegCosts" ); |
1860 | ListInit *MoveElimInfo = RF->getValueAsListInit(FieldName: "AllowMoveElimination" ); |
1861 | for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) { |
1862 | int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1; |
1863 | |
1864 | bool AllowMoveElim = false; |
1865 | if (MoveElimInfo->size() > I) { |
1866 | BitInit *Val = cast<BitInit>(Val: MoveElimInfo->getElement(i: I)); |
1867 | AllowMoveElim = Val->getValue(); |
1868 | } |
1869 | |
1870 | CGRF.Costs.emplace_back(args&: RegisterClasses[I], args&: Cost, args&: AllowMoveElim); |
1871 | } |
1872 | } |
1873 | } |
1874 | |
1875 | // Collect and sort WriteRes, ReadAdvance, and ProcResources. |
1876 | void CodeGenSchedModels::collectProcResources() { |
1877 | ProcResourceDefs = Records.getAllDerivedDefinitions(ClassName: "ProcResourceUnits" ); |
1878 | ProcResGroups = Records.getAllDerivedDefinitions(ClassName: "ProcResGroup" ); |
1879 | |
1880 | // Add any subtarget-specific SchedReadWrites that are directly associated |
1881 | // with processor resources. Refer to the parent SchedClass's ProcIndices to |
1882 | // determine which processors they apply to. |
1883 | for (const CodeGenSchedClass &SC : |
1884 | make_range(x: schedClassBegin(), y: schedClassEnd())) { |
1885 | if (SC.ItinClassDef) { |
1886 | collectItinProcResources(ItinClassDef: SC.ItinClassDef); |
1887 | continue; |
1888 | } |
1889 | |
1890 | // This class may have a default ReadWrite list which can be overriden by |
1891 | // InstRW definitions. |
1892 | for (Record *RW : SC.InstRWs) { |
1893 | Record *RWModelDef = RW->getValueAsDef(FieldName: "SchedModel" ); |
1894 | unsigned PIdx = getProcModel(ModelDef: RWModelDef).Index; |
1895 | IdxVec Writes, Reads; |
1896 | findRWs(RWDefs: RW->getValueAsListOfDefs(FieldName: "OperandReadWrites" ), Writes, Reads); |
1897 | collectRWResources(Writes, Reads, ProcIndices: PIdx); |
1898 | } |
1899 | |
1900 | collectRWResources(Writes: SC.Writes, Reads: SC.Reads, ProcIndices: SC.ProcIndices); |
1901 | } |
1902 | // Add resources separately defined by each subtarget. |
1903 | RecVec WRDefs = Records.getAllDerivedDefinitions(ClassName: "WriteRes" ); |
1904 | for (Record *WR : WRDefs) { |
1905 | Record *ModelDef = WR->getValueAsDef(FieldName: "SchedModel" ); |
1906 | addWriteRes(ProcWriteResDef: WR, PIdx: getProcModel(ModelDef).Index); |
1907 | } |
1908 | RecVec SWRDefs = Records.getAllDerivedDefinitions(ClassName: "SchedWriteRes" ); |
1909 | for (Record *SWR : SWRDefs) { |
1910 | Record *ModelDef = SWR->getValueAsDef(FieldName: "SchedModel" ); |
1911 | addWriteRes(ProcWriteResDef: SWR, PIdx: getProcModel(ModelDef).Index); |
1912 | } |
1913 | RecVec RADefs = Records.getAllDerivedDefinitions(ClassName: "ReadAdvance" ); |
1914 | for (Record *RA : RADefs) { |
1915 | Record *ModelDef = RA->getValueAsDef(FieldName: "SchedModel" ); |
1916 | addReadAdvance(ProcReadAdvanceDef: RA, PIdx: getProcModel(ModelDef).Index); |
1917 | } |
1918 | RecVec SRADefs = Records.getAllDerivedDefinitions(ClassName: "SchedReadAdvance" ); |
1919 | for (Record *SRA : SRADefs) { |
1920 | if (SRA->getValueInit(FieldName: "SchedModel" )->isComplete()) { |
1921 | Record *ModelDef = SRA->getValueAsDef(FieldName: "SchedModel" ); |
1922 | addReadAdvance(ProcReadAdvanceDef: SRA, PIdx: getProcModel(ModelDef).Index); |
1923 | } |
1924 | } |
1925 | // Add ProcResGroups that are defined within this processor model, which may |
1926 | // not be directly referenced but may directly specify a buffer size. |
1927 | RecVec ProcResGroups = Records.getAllDerivedDefinitions(ClassName: "ProcResGroup" ); |
1928 | for (Record *PRG : ProcResGroups) { |
1929 | if (!PRG->getValueInit(FieldName: "SchedModel" )->isComplete()) |
1930 | continue; |
1931 | CodeGenProcModel &PM = getProcModel(ModelDef: PRG->getValueAsDef(FieldName: "SchedModel" )); |
1932 | if (!is_contained(Range&: PM.ProcResourceDefs, Element: PRG)) |
1933 | PM.ProcResourceDefs.push_back(x: PRG); |
1934 | } |
1935 | // Add ProcResourceUnits unconditionally. |
1936 | for (Record *PRU : Records.getAllDerivedDefinitions(ClassName: "ProcResourceUnits" )) { |
1937 | if (!PRU->getValueInit(FieldName: "SchedModel" )->isComplete()) |
1938 | continue; |
1939 | CodeGenProcModel &PM = getProcModel(ModelDef: PRU->getValueAsDef(FieldName: "SchedModel" )); |
1940 | if (!is_contained(Range&: PM.ProcResourceDefs, Element: PRU)) |
1941 | PM.ProcResourceDefs.push_back(x: PRU); |
1942 | } |
1943 | // Finalize each ProcModel by sorting the record arrays. |
1944 | for (CodeGenProcModel &PM : ProcModels) { |
1945 | llvm::sort(C&: PM.WriteResDefs, Comp: LessRecord()); |
1946 | llvm::sort(C&: PM.ReadAdvanceDefs, Comp: LessRecord()); |
1947 | llvm::sort(C&: PM.ProcResourceDefs, Comp: LessRecord()); |
1948 | LLVM_DEBUG( |
1949 | PM.dump(); dbgs() << "WriteResDefs: " ; for (auto WriteResDef |
1950 | : PM.WriteResDefs) { |
1951 | if (WriteResDef->isSubClassOf("WriteRes" )) |
1952 | dbgs() << WriteResDef->getValueAsDef("WriteType" )->getName() << " " ; |
1953 | else |
1954 | dbgs() << WriteResDef->getName() << " " ; |
1955 | } dbgs() << "\nReadAdvanceDefs: " ; |
1956 | for (Record *ReadAdvanceDef |
1957 | : PM.ReadAdvanceDefs) { |
1958 | if (ReadAdvanceDef->isSubClassOf("ReadAdvance" )) |
1959 | dbgs() << ReadAdvanceDef->getValueAsDef("ReadType" )->getName() |
1960 | << " " ; |
1961 | else |
1962 | dbgs() << ReadAdvanceDef->getName() << " " ; |
1963 | } dbgs() |
1964 | << "\nProcResourceDefs: " ; |
1965 | for (Record *ProcResourceDef |
1966 | : PM.ProcResourceDefs) { |
1967 | dbgs() << ProcResourceDef->getName() << " " ; |
1968 | } dbgs() |
1969 | << '\n'); |
1970 | verifyProcResourceGroups(PM); |
1971 | } |
1972 | |
1973 | ProcResourceDefs.clear(); |
1974 | ProcResGroups.clear(); |
1975 | } |
1976 | |
1977 | void CodeGenSchedModels::checkCompleteness() { |
1978 | bool Complete = true; |
1979 | for (const CodeGenProcModel &ProcModel : procModels()) { |
1980 | const bool HasItineraries = ProcModel.hasItineraries(); |
1981 | if (!ProcModel.ModelDef->getValueAsBit(FieldName: "CompleteModel" )) |
1982 | continue; |
1983 | for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { |
1984 | if (Inst->hasNoSchedulingInfo) |
1985 | continue; |
1986 | if (ProcModel.isUnsupported(Inst: *Inst)) |
1987 | continue; |
1988 | unsigned SCIdx = getSchedClassIdx(Inst: *Inst); |
1989 | if (!SCIdx) { |
1990 | if (Inst->TheDef->isValueUnset(FieldName: "SchedRW" )) { |
1991 | PrintError(ErrorLoc: Inst->TheDef->getLoc(), |
1992 | Msg: "No schedule information for instruction '" + |
1993 | Inst->TheDef->getName() + "' in SchedMachineModel '" + |
1994 | ProcModel.ModelDef->getName() + "'" ); |
1995 | Complete = false; |
1996 | } |
1997 | continue; |
1998 | } |
1999 | |
2000 | const CodeGenSchedClass &SC = getSchedClass(Idx: SCIdx); |
2001 | if (!SC.Writes.empty()) |
2002 | continue; |
2003 | if (HasItineraries && SC.ItinClassDef != nullptr && |
2004 | SC.ItinClassDef->getName() != "NoItinerary" ) |
2005 | continue; |
2006 | |
2007 | const RecVec &InstRWs = SC.InstRWs; |
2008 | auto I = find_if(Range: InstRWs, P: [&ProcModel](const Record *R) { |
2009 | return R->getValueAsDef(FieldName: "SchedModel" ) == ProcModel.ModelDef; |
2010 | }); |
2011 | if (I == InstRWs.end()) { |
2012 | PrintError(ErrorLoc: Inst->TheDef->getLoc(), Msg: "'" + ProcModel.ModelName + |
2013 | "' lacks information for '" + |
2014 | Inst->TheDef->getName() + "'" ); |
2015 | Complete = false; |
2016 | } |
2017 | } |
2018 | } |
2019 | if (!Complete) { |
2020 | errs() |
2021 | << "\n\nIncomplete schedule models found.\n" |
2022 | << "- Consider setting 'CompleteModel = 0' while developing new " |
2023 | "models.\n" |
2024 | << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = " |
2025 | "1'.\n" |
2026 | << "- Instructions should usually have Sched<[...]> as a superclass, " |
2027 | "you may temporarily use an empty list.\n" |
2028 | << "- Instructions related to unsupported features can be excluded " |
2029 | "with " |
2030 | "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the " |
2031 | "processor model.\n\n" ; |
2032 | PrintFatalError(Msg: "Incomplete schedule model" ); |
2033 | } |
2034 | } |
2035 | |
2036 | // Collect itinerary class resources for each processor. |
2037 | void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) { |
2038 | for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { |
2039 | const CodeGenProcModel &PM = ProcModels[PIdx]; |
2040 | // For all ItinRW entries. |
2041 | bool HasMatch = false; |
2042 | for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); II != IE; |
2043 | ++II) { |
2044 | RecVec Matched = (*II)->getValueAsListOfDefs(FieldName: "MatchedItinClasses" ); |
2045 | if (!llvm::is_contained(Range&: Matched, Element: ItinClassDef)) |
2046 | continue; |
2047 | if (HasMatch) |
2048 | PrintFatalError(ErrorLoc: (*II)->getLoc(), |
2049 | Msg: "Duplicate itinerary class " + ItinClassDef->getName() + |
2050 | " in ItinResources for " + PM.ModelName); |
2051 | HasMatch = true; |
2052 | IdxVec Writes, Reads; |
2053 | findRWs(RWDefs: (*II)->getValueAsListOfDefs(FieldName: "OperandReadWrites" ), Writes, Reads); |
2054 | collectRWResources(Writes, Reads, ProcIndices: PIdx); |
2055 | } |
2056 | } |
2057 | } |
2058 | |
2059 | void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead, |
2060 | ArrayRef<unsigned> ProcIndices) { |
2061 | const CodeGenSchedRW &SchedRW = getSchedRW(Idx: RWIdx, IsRead); |
2062 | if (SchedRW.TheDef) { |
2063 | if (!IsRead && SchedRW.TheDef->isSubClassOf(Name: "SchedWriteRes" )) { |
2064 | for (unsigned Idx : ProcIndices) |
2065 | addWriteRes(ProcWriteResDef: SchedRW.TheDef, PIdx: Idx); |
2066 | } else if (IsRead && SchedRW.TheDef->isSubClassOf(Name: "SchedReadAdvance" )) { |
2067 | for (unsigned Idx : ProcIndices) |
2068 | addReadAdvance(ProcReadAdvanceDef: SchedRW.TheDef, PIdx: Idx); |
2069 | } |
2070 | } |
2071 | for (auto *Alias : SchedRW.Aliases) { |
2072 | IdxVec AliasProcIndices; |
2073 | if (Alias->getValueInit(FieldName: "SchedModel" )->isComplete()) { |
2074 | AliasProcIndices.push_back( |
2075 | x: getProcModel(ModelDef: Alias->getValueAsDef(FieldName: "SchedModel" )).Index); |
2076 | } else |
2077 | AliasProcIndices = ProcIndices; |
2078 | const CodeGenSchedRW &AliasRW = getSchedRW(Def: Alias->getValueAsDef(FieldName: "AliasRW" )); |
2079 | assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes" ); |
2080 | |
2081 | IdxVec ExpandedRWs; |
2082 | expandRWSequence(RWIdx: AliasRW.Index, RWSeq&: ExpandedRWs, IsRead); |
2083 | for (unsigned int ExpandedRW : ExpandedRWs) { |
2084 | collectRWResources(RWIdx: ExpandedRW, IsRead, ProcIndices: AliasProcIndices); |
2085 | } |
2086 | } |
2087 | } |
2088 | |
2089 | // Collect resources for a set of read/write types and processor indices. |
2090 | void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes, |
2091 | ArrayRef<unsigned> Reads, |
2092 | ArrayRef<unsigned> ProcIndices) { |
2093 | for (unsigned Idx : Writes) |
2094 | collectRWResources(RWIdx: Idx, /*IsRead=*/false, ProcIndices); |
2095 | |
2096 | for (unsigned Idx : Reads) |
2097 | collectRWResources(RWIdx: Idx, /*IsRead=*/true, ProcIndices); |
2098 | } |
2099 | |
2100 | // Find the processor's resource units for this kind of resource. |
2101 | Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind, |
2102 | const CodeGenProcModel &PM, |
2103 | ArrayRef<SMLoc> Loc) const { |
2104 | if (ProcResKind->isSubClassOf(Name: "ProcResourceUnits" )) |
2105 | return ProcResKind; |
2106 | |
2107 | Record *ProcUnitDef = nullptr; |
2108 | assert(!ProcResourceDefs.empty()); |
2109 | assert(!ProcResGroups.empty()); |
2110 | |
2111 | for (Record *ProcResDef : ProcResourceDefs) { |
2112 | if (ProcResDef->getValueAsDef(FieldName: "Kind" ) == ProcResKind && |
2113 | ProcResDef->getValueAsDef(FieldName: "SchedModel" ) == PM.ModelDef) { |
2114 | if (ProcUnitDef) { |
2115 | PrintFatalError(ErrorLoc: Loc, |
2116 | Msg: "Multiple ProcessorResourceUnits associated with " + |
2117 | ProcResKind->getName()); |
2118 | } |
2119 | ProcUnitDef = ProcResDef; |
2120 | } |
2121 | } |
2122 | for (Record *ProcResGroup : ProcResGroups) { |
2123 | if (ProcResGroup == ProcResKind && |
2124 | ProcResGroup->getValueAsDef(FieldName: "SchedModel" ) == PM.ModelDef) { |
2125 | if (ProcUnitDef) { |
2126 | PrintFatalError(ErrorLoc: Loc, |
2127 | Msg: "Multiple ProcessorResourceUnits associated with " + |
2128 | ProcResKind->getName()); |
2129 | } |
2130 | ProcUnitDef = ProcResGroup; |
2131 | } |
2132 | } |
2133 | if (!ProcUnitDef) { |
2134 | PrintFatalError(ErrorLoc: Loc, Msg: "No ProcessorResources associated with " + |
2135 | ProcResKind->getName()); |
2136 | } |
2137 | return ProcUnitDef; |
2138 | } |
2139 | |
2140 | // Iteratively add a resource and its super resources. |
2141 | void CodeGenSchedModels::addProcResource(Record *ProcResKind, |
2142 | CodeGenProcModel &PM, |
2143 | ArrayRef<SMLoc> Loc) { |
2144 | while (true) { |
2145 | Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc); |
2146 | |
2147 | // See if this ProcResource is already associated with this processor. |
2148 | if (is_contained(Range&: PM.ProcResourceDefs, Element: ProcResUnits)) |
2149 | return; |
2150 | |
2151 | PM.ProcResourceDefs.push_back(x: ProcResUnits); |
2152 | if (ProcResUnits->isSubClassOf(Name: "ProcResGroup" )) |
2153 | return; |
2154 | |
2155 | if (!ProcResUnits->getValueInit(FieldName: "Super" )->isComplete()) |
2156 | return; |
2157 | |
2158 | ProcResKind = ProcResUnits->getValueAsDef(FieldName: "Super" ); |
2159 | } |
2160 | } |
2161 | |
2162 | // Add resources for a SchedWrite to this processor if they don't exist. |
2163 | void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) { |
2164 | assert(PIdx && "don't add resources to an invalid Processor model" ); |
2165 | |
2166 | RecVec &WRDefs = ProcModels[PIdx].WriteResDefs; |
2167 | if (is_contained(Range&: WRDefs, Element: ProcWriteResDef)) |
2168 | return; |
2169 | WRDefs.push_back(x: ProcWriteResDef); |
2170 | |
2171 | // Visit ProcResourceKinds referenced by the newly discovered WriteRes. |
2172 | RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs(FieldName: "ProcResources" ); |
2173 | for (auto *ProcResDef : ProcResDefs) { |
2174 | addProcResource(ProcResKind: ProcResDef, PM&: ProcModels[PIdx], Loc: ProcWriteResDef->getLoc()); |
2175 | } |
2176 | } |
2177 | |
2178 | // Add resources for a ReadAdvance to this processor if they don't exist. |
2179 | void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef, |
2180 | unsigned PIdx) { |
2181 | for (const Record *ValidWrite : |
2182 | ProcReadAdvanceDef->getValueAsListOfDefs(FieldName: "ValidWrites" )) |
2183 | if (getSchedRWIdx(Def: ValidWrite, /*IsRead=*/false) == 0) |
2184 | PrintFatalError( |
2185 | ErrorLoc: ProcReadAdvanceDef->getLoc(), |
2186 | Msg: "ReadAdvance referencing a ValidWrite that is not used by " |
2187 | "any instruction (" + |
2188 | ValidWrite->getName() + ")" ); |
2189 | |
2190 | RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs; |
2191 | if (is_contained(Range&: RADefs, Element: ProcReadAdvanceDef)) |
2192 | return; |
2193 | RADefs.push_back(x: ProcReadAdvanceDef); |
2194 | } |
2195 | |
2196 | unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const { |
2197 | RecIter PRPos = find(Range: ProcResourceDefs, Val: PRDef); |
2198 | if (PRPos == ProcResourceDefs.end()) |
2199 | PrintFatalError(ErrorLoc: PRDef->getLoc(), Msg: "ProcResource def is not included in " |
2200 | "the ProcResources list for " + |
2201 | ModelName); |
2202 | // Idx=0 is reserved for invalid. |
2203 | return 1 + (PRPos - ProcResourceDefs.begin()); |
2204 | } |
2205 | |
2206 | bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const { |
2207 | for (const Record *TheDef : UnsupportedFeaturesDefs) { |
2208 | for (const Record *PredDef : |
2209 | Inst.TheDef->getValueAsListOfDefs(FieldName: "Predicates" )) { |
2210 | if (TheDef->getName() == PredDef->getName()) |
2211 | return true; |
2212 | } |
2213 | } |
2214 | return false; |
2215 | } |
2216 | |
2217 | bool CodeGenProcModel::hasReadOfWrite(Record *WriteDef) const { |
2218 | for (auto &RADef : ReadAdvanceDefs) { |
2219 | RecVec ValidWrites = RADef->getValueAsListOfDefs(FieldName: "ValidWrites" ); |
2220 | if (is_contained(Range&: ValidWrites, Element: WriteDef)) |
2221 | return true; |
2222 | } |
2223 | return false; |
2224 | } |
2225 | |
2226 | #ifndef NDEBUG |
2227 | void CodeGenProcModel::dump() const { |
2228 | dbgs() << Index << ": " << ModelName << " " |
2229 | << (ModelDef ? ModelDef->getName() : "inferred" ) << " " |
2230 | << (ItinsDef ? ItinsDef->getName() : "no itinerary" ) << '\n'; |
2231 | } |
2232 | |
2233 | void CodeGenSchedRW::dump() const { |
2234 | dbgs() << Name << (IsVariadic ? " (V) " : " " ); |
2235 | if (IsSequence) { |
2236 | dbgs() << "(" ; |
2237 | dumpIdxVec(Sequence); |
2238 | dbgs() << ")" ; |
2239 | } |
2240 | } |
2241 | |
2242 | void CodeGenSchedClass::dump(const CodeGenSchedModels *SchedModels) const { |
2243 | dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n' << " Writes: " ; |
2244 | for (unsigned i = 0, N = Writes.size(); i < N; ++i) { |
2245 | SchedModels->getSchedWrite(Writes[i]).dump(); |
2246 | if (i < N - 1) { |
2247 | dbgs() << '\n'; |
2248 | dbgs().indent(10); |
2249 | } |
2250 | } |
2251 | dbgs() << "\n Reads: " ; |
2252 | for (unsigned i = 0, N = Reads.size(); i < N; ++i) { |
2253 | SchedModels->getSchedRead(Reads[i]).dump(); |
2254 | if (i < N - 1) { |
2255 | dbgs() << '\n'; |
2256 | dbgs().indent(10); |
2257 | } |
2258 | } |
2259 | dbgs() << "\n ProcIdx: " ; |
2260 | dumpIdxVec(ProcIndices); |
2261 | if (!Transitions.empty()) { |
2262 | dbgs() << "\n Transitions for Proc " ; |
2263 | for (const CodeGenSchedTransition &Transition : Transitions) { |
2264 | dbgs() << Transition.ProcIndex << ", " ; |
2265 | } |
2266 | } |
2267 | dbgs() << '\n'; |
2268 | } |
2269 | |
2270 | void PredTransitions::dump() const { |
2271 | dbgs() << "Expanded Variants:\n" ; |
2272 | for (const auto &TI : TransVec) { |
2273 | dbgs() << "{" ; |
2274 | ListSeparator LS; |
2275 | for (const PredCheck &PC : TI.PredTerm) |
2276 | dbgs() << LS << SchedModels.getSchedRW(PC.RWIdx, PC.IsRead).Name << ":" |
2277 | << PC.Predicate->getName(); |
2278 | dbgs() << "},\n => {" ; |
2279 | for (SmallVectorImpl<SmallVector<unsigned, 4>>::const_iterator |
2280 | WSI = TI.WriteSequences.begin(), |
2281 | WSE = TI.WriteSequences.end(); |
2282 | WSI != WSE; ++WSI) { |
2283 | dbgs() << "(" ; |
2284 | ListSeparator LS; |
2285 | for (unsigned N : *WSI) |
2286 | dbgs() << LS << SchedModels.getSchedWrite(N).Name; |
2287 | dbgs() << ")," ; |
2288 | } |
2289 | dbgs() << "}\n" ; |
2290 | } |
2291 | } |
2292 | #endif // NDEBUG |
2293 | |