1 | |
2 | //===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===// |
3 | // |
4 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
5 | // See https://llvm.org/LICENSE.txt for license information. |
6 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
7 | // |
8 | //===----------------------------------------------------------------------===// |
9 | // |
10 | /// \file |
11 | /// This tablegen backend emits code for use by the GlobalISel instruction |
12 | /// selector. See include/llvm/Target/GlobalISel/Target.td. |
13 | /// |
14 | /// This file analyzes the patterns recognized by the SelectionDAGISel tablegen |
15 | /// backend, filters out the ones that are unsupported, maps |
16 | /// SelectionDAG-specific constructs to their GlobalISel counterpart |
17 | /// (when applicable: MVT to LLT; SDNode to generic Instruction). |
18 | /// |
19 | /// Not all patterns are supported: pass the tablegen invocation |
20 | /// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped, |
21 | /// as well as why. |
22 | /// |
23 | /// The generated file defines a single method: |
24 | /// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const; |
25 | /// intended to be used in InstructionSelector::select as the first-step |
26 | /// selector for the patterns that don't require complex C++. |
27 | /// |
28 | /// FIXME: We'll probably want to eventually define a base |
29 | /// "TargetGenInstructionSelector" class. |
30 | /// |
31 | //===----------------------------------------------------------------------===// |
32 | |
33 | #include "Basic/CodeGenIntrinsics.h" |
34 | #include "Common/CodeGenDAGPatterns.h" |
35 | #include "Common/CodeGenInstruction.h" |
36 | #include "Common/CodeGenRegisters.h" |
37 | #include "Common/CodeGenTarget.h" |
38 | #include "Common/GlobalISel/GlobalISelMatchTable.h" |
39 | #include "Common/GlobalISel/GlobalISelMatchTableExecutorEmitter.h" |
40 | #include "Common/InfoByHwMode.h" |
41 | #include "Common/SubtargetFeatureInfo.h" |
42 | #include "llvm/ADT/Statistic.h" |
43 | #include "llvm/CodeGenTypes/LowLevelType.h" |
44 | #include "llvm/CodeGenTypes/MachineValueType.h" |
45 | #include "llvm/Support/CodeGenCoverage.h" |
46 | #include "llvm/Support/CommandLine.h" |
47 | #include "llvm/Support/Error.h" |
48 | #include "llvm/Support/ScopedPrinter.h" |
49 | #include "llvm/TableGen/Error.h" |
50 | #include "llvm/TableGen/Record.h" |
51 | #include "llvm/TableGen/TableGenBackend.h" |
52 | #include <string> |
53 | |
54 | using namespace llvm; |
55 | using namespace llvm::gi; |
56 | |
57 | using action_iterator = RuleMatcher::action_iterator; |
58 | |
59 | #define DEBUG_TYPE "gisel-emitter" |
60 | |
61 | STATISTIC(NumPatternTotal, "Total number of patterns" ); |
62 | STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG" ); |
63 | STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped" ); |
64 | STATISTIC(NumPatternsTested, |
65 | "Number of patterns executed according to coverage information" ); |
66 | |
67 | cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel" ); |
68 | |
69 | static cl::opt<bool> WarnOnSkippedPatterns( |
70 | "warn-on-skipped-patterns" , |
71 | cl::desc("Explain why a pattern was skipped for inclusion " |
72 | "in the GlobalISel selector" ), |
73 | cl::init(Val: false), cl::cat(GlobalISelEmitterCat)); |
74 | |
75 | static cl::opt<bool> GenerateCoverage( |
76 | "instrument-gisel-coverage" , |
77 | cl::desc("Generate coverage instrumentation for GlobalISel" ), |
78 | cl::init(Val: false), cl::cat(GlobalISelEmitterCat)); |
79 | |
80 | static cl::opt<std::string> UseCoverageFile( |
81 | "gisel-coverage-file" , cl::init(Val: "" ), |
82 | cl::desc("Specify file to retrieve coverage information from" ), |
83 | cl::cat(GlobalISelEmitterCat)); |
84 | |
85 | static cl::opt<bool> OptimizeMatchTable( |
86 | "optimize-match-table" , |
87 | cl::desc("Generate an optimized version of the match table" ), |
88 | cl::init(Val: true), cl::cat(GlobalISelEmitterCat)); |
89 | |
90 | namespace { |
91 | |
92 | static std::string explainPredicates(const TreePatternNode &N) { |
93 | std::string Explanation; |
94 | StringRef Separator = "" ; |
95 | for (const TreePredicateCall &Call : N.getPredicateCalls()) { |
96 | const TreePredicateFn &P = Call.Fn; |
97 | Explanation += |
98 | (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str(); |
99 | Separator = ", " ; |
100 | |
101 | if (P.isAlwaysTrue()) |
102 | Explanation += " always-true" ; |
103 | if (P.isImmediatePattern()) |
104 | Explanation += " immediate" ; |
105 | |
106 | if (P.isUnindexed()) |
107 | Explanation += " unindexed" ; |
108 | |
109 | if (P.isNonExtLoad()) |
110 | Explanation += " non-extload" ; |
111 | if (P.isAnyExtLoad()) |
112 | Explanation += " extload" ; |
113 | if (P.isSignExtLoad()) |
114 | Explanation += " sextload" ; |
115 | if (P.isZeroExtLoad()) |
116 | Explanation += " zextload" ; |
117 | |
118 | if (P.isNonTruncStore()) |
119 | Explanation += " non-truncstore" ; |
120 | if (P.isTruncStore()) |
121 | Explanation += " truncstore" ; |
122 | |
123 | if (Record *VT = P.getMemoryVT()) |
124 | Explanation += (" MemVT=" + VT->getName()).str(); |
125 | if (Record *VT = P.getScalarMemoryVT()) |
126 | Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str(); |
127 | |
128 | if (ListInit *AddrSpaces = P.getAddressSpaces()) { |
129 | raw_string_ostream OS(Explanation); |
130 | OS << " AddressSpaces=[" ; |
131 | |
132 | StringRef AddrSpaceSeparator; |
133 | for (Init *Val : AddrSpaces->getValues()) { |
134 | IntInit *IntVal = dyn_cast<IntInit>(Val); |
135 | if (!IntVal) |
136 | continue; |
137 | |
138 | OS << AddrSpaceSeparator << IntVal->getValue(); |
139 | AddrSpaceSeparator = ", " ; |
140 | } |
141 | |
142 | OS << ']'; |
143 | } |
144 | |
145 | int64_t MinAlign = P.getMinAlignment(); |
146 | if (MinAlign > 0) |
147 | Explanation += " MinAlign=" + utostr(X: MinAlign); |
148 | |
149 | if (P.isAtomicOrderingMonotonic()) |
150 | Explanation += " monotonic" ; |
151 | if (P.isAtomicOrderingAcquire()) |
152 | Explanation += " acquire" ; |
153 | if (P.isAtomicOrderingRelease()) |
154 | Explanation += " release" ; |
155 | if (P.isAtomicOrderingAcquireRelease()) |
156 | Explanation += " acq_rel" ; |
157 | if (P.isAtomicOrderingSequentiallyConsistent()) |
158 | Explanation += " seq_cst" ; |
159 | if (P.isAtomicOrderingAcquireOrStronger()) |
160 | Explanation += " >=acquire" ; |
161 | if (P.isAtomicOrderingWeakerThanAcquire()) |
162 | Explanation += " <acquire" ; |
163 | if (P.isAtomicOrderingReleaseOrStronger()) |
164 | Explanation += " >=release" ; |
165 | if (P.isAtomicOrderingWeakerThanRelease()) |
166 | Explanation += " <release" ; |
167 | } |
168 | return Explanation; |
169 | } |
170 | |
171 | std::string explainOperator(Record *Operator) { |
172 | if (Operator->isSubClassOf(Name: "SDNode" )) |
173 | return (" (" + Operator->getValueAsString(FieldName: "Opcode" ) + ")" ).str(); |
174 | |
175 | if (Operator->isSubClassOf(Name: "Intrinsic" )) |
176 | return (" (Operator is an Intrinsic, " + Operator->getName() + ")" ).str(); |
177 | |
178 | if (Operator->isSubClassOf(Name: "ComplexPattern" )) |
179 | return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() + |
180 | ")" ) |
181 | .str(); |
182 | |
183 | if (Operator->isSubClassOf(Name: "SDNodeXForm" )) |
184 | return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() + |
185 | ")" ) |
186 | .str(); |
187 | |
188 | return (" (Operator " + Operator->getName() + " not understood)" ).str(); |
189 | } |
190 | |
191 | /// Helper function to let the emitter report skip reason error messages. |
192 | static Error failedImport(const Twine &Reason) { |
193 | return make_error<StringError>(Args: Reason, Args: inconvertibleErrorCode()); |
194 | } |
195 | |
196 | static Error isTrivialOperatorNode(const TreePatternNode &N) { |
197 | std::string Explanation; |
198 | std::string Separator; |
199 | |
200 | bool HasUnsupportedPredicate = false; |
201 | for (const TreePredicateCall &Call : N.getPredicateCalls()) { |
202 | const TreePredicateFn &Predicate = Call.Fn; |
203 | |
204 | if (Predicate.isAlwaysTrue()) |
205 | continue; |
206 | |
207 | if (Predicate.isImmediatePattern()) |
208 | continue; |
209 | |
210 | if (Predicate.hasNoUse() || Predicate.hasOneUse()) |
211 | continue; |
212 | |
213 | if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() || |
214 | Predicate.isSignExtLoad() || Predicate.isZeroExtLoad()) |
215 | continue; |
216 | |
217 | if (Predicate.isNonTruncStore() || Predicate.isTruncStore()) |
218 | continue; |
219 | |
220 | if (Predicate.isLoad() && Predicate.getMemoryVT()) |
221 | continue; |
222 | |
223 | if (Predicate.isLoad() || Predicate.isStore()) { |
224 | if (Predicate.isUnindexed()) |
225 | continue; |
226 | } |
227 | |
228 | if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { |
229 | const ListInit *AddrSpaces = Predicate.getAddressSpaces(); |
230 | if (AddrSpaces && !AddrSpaces->empty()) |
231 | continue; |
232 | |
233 | if (Predicate.getMinAlignment() > 0) |
234 | continue; |
235 | } |
236 | |
237 | if (Predicate.isAtomic() && Predicate.getMemoryVT()) |
238 | continue; |
239 | |
240 | if (Predicate.isAtomic() && |
241 | (Predicate.isAtomicOrderingMonotonic() || |
242 | Predicate.isAtomicOrderingAcquire() || |
243 | Predicate.isAtomicOrderingRelease() || |
244 | Predicate.isAtomicOrderingAcquireRelease() || |
245 | Predicate.isAtomicOrderingSequentiallyConsistent() || |
246 | Predicate.isAtomicOrderingAcquireOrStronger() || |
247 | Predicate.isAtomicOrderingWeakerThanAcquire() || |
248 | Predicate.isAtomicOrderingReleaseOrStronger() || |
249 | Predicate.isAtomicOrderingWeakerThanRelease())) |
250 | continue; |
251 | |
252 | if (Predicate.hasGISelPredicateCode()) |
253 | continue; |
254 | |
255 | HasUnsupportedPredicate = true; |
256 | Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")" ; |
257 | Separator = ", " ; |
258 | Explanation += (Separator + "first-failing:" + |
259 | Predicate.getOrigPatFragRecord()->getRecord()->getName()) |
260 | .str(); |
261 | break; |
262 | } |
263 | |
264 | if (!HasUnsupportedPredicate) |
265 | return Error::success(); |
266 | |
267 | return failedImport(Reason: Explanation); |
268 | } |
269 | |
270 | static Record *getInitValueAsRegClass(Init *V) { |
271 | if (DefInit *VDefInit = dyn_cast<DefInit>(Val: V)) { |
272 | if (VDefInit->getDef()->isSubClassOf(Name: "RegisterOperand" )) |
273 | return VDefInit->getDef()->getValueAsDef(FieldName: "RegClass" ); |
274 | if (VDefInit->getDef()->isSubClassOf(Name: "RegisterClass" )) |
275 | return VDefInit->getDef(); |
276 | } |
277 | return nullptr; |
278 | } |
279 | |
280 | static std::string getScopedName(unsigned Scope, const std::string &Name) { |
281 | return ("pred:" + Twine(Scope) + ":" + Name).str(); |
282 | } |
283 | |
284 | static std::string getMangledRootDefName(StringRef DefOperandName) { |
285 | return ("DstI[" + DefOperandName + "]" ).str(); |
286 | } |
287 | |
288 | //===- GlobalISelEmitter class --------------------------------------------===// |
289 | |
290 | static Expected<LLTCodeGen> getInstResultType(const TreePatternNode &Dst, |
291 | const CodeGenTarget &Target) { |
292 | // While we allow more than one output (both implicit and explicit defs) |
293 | // below, we only expect one explicit def here. |
294 | assert(Dst.getOperator()->isSubClassOf("Instruction" )); |
295 | CodeGenInstruction &InstInfo = Target.getInstruction(InstRec: Dst.getOperator()); |
296 | if (!InstInfo.Operands.NumDefs) |
297 | return failedImport(Reason: "Dst pattern child needs a def" ); |
298 | |
299 | ArrayRef<TypeSetByHwMode> ChildTypes = Dst.getExtTypes(); |
300 | if (ChildTypes.size() < 1) |
301 | return failedImport(Reason: "Dst pattern child has no result" ); |
302 | |
303 | // If there are multiple results, just take the first one (this is how |
304 | // SelectionDAG does it). |
305 | std::optional<LLTCodeGen> MaybeOpTy; |
306 | if (ChildTypes.front().isMachineValueType()) { |
307 | MaybeOpTy = MVTToLLT(SVT: ChildTypes.front().getMachineValueType().SimpleTy); |
308 | } |
309 | |
310 | if (!MaybeOpTy) |
311 | return failedImport(Reason: "Dst operand has an unsupported type" ); |
312 | return *MaybeOpTy; |
313 | } |
314 | |
315 | class GlobalISelEmitter final : public GlobalISelMatchTableExecutorEmitter { |
316 | public: |
317 | explicit GlobalISelEmitter(RecordKeeper &RK); |
318 | |
319 | void emitAdditionalImpl(raw_ostream &OS) override; |
320 | |
321 | void emitMIPredicateFns(raw_ostream &OS) override; |
322 | void emitI64ImmPredicateFns(raw_ostream &OS) override; |
323 | void emitAPFloatImmPredicateFns(raw_ostream &OS) override; |
324 | void emitAPIntImmPredicateFns(raw_ostream &OS) override; |
325 | void emitTestSimplePredicate(raw_ostream &OS) override; |
326 | void emitRunCustomAction(raw_ostream &OS) override; |
327 | |
328 | void postProcessRule(RuleMatcher &M); |
329 | |
330 | const CodeGenTarget &getTarget() const override { return Target; } |
331 | StringRef getClassName() const override { return ClassName; } |
332 | |
333 | void run(raw_ostream &OS); |
334 | |
335 | private: |
336 | std::string ClassName; |
337 | |
338 | const RecordKeeper &RK; |
339 | const CodeGenDAGPatterns CGP; |
340 | const CodeGenTarget &Target; |
341 | CodeGenRegBank &CGRegs; |
342 | |
343 | std::vector<Record *> AllPatFrags; |
344 | |
345 | /// Keep track of the equivalence between SDNodes and Instruction by mapping |
346 | /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to |
347 | /// check for attributes on the relation such as CheckMMOIsNonAtomic. |
348 | /// This is defined using 'GINodeEquiv' in the target description. |
349 | DenseMap<Record *, Record *> NodeEquivs; |
350 | |
351 | /// Keep track of the equivalence between ComplexPattern's and |
352 | /// GIComplexOperandMatcher. Map entries are specified by subclassing |
353 | /// GIComplexPatternEquiv. |
354 | DenseMap<const Record *, const Record *> ComplexPatternEquivs; |
355 | |
356 | /// Keep track of the equivalence between SDNodeXForm's and |
357 | /// GICustomOperandRenderer. Map entries are specified by subclassing |
358 | /// GISDNodeXFormEquiv. |
359 | DenseMap<const Record *, const Record *> SDNodeXFormEquivs; |
360 | |
361 | /// Keep track of Scores of PatternsToMatch similar to how the DAG does. |
362 | /// This adds compatibility for RuleMatchers to use this for ordering rules. |
363 | DenseMap<uint64_t, int> RuleMatcherScores; |
364 | |
365 | // Rule coverage information. |
366 | std::optional<CodeGenCoverage> RuleCoverage; |
367 | |
368 | /// Variables used to help with collecting of named operands for predicates |
369 | /// with 'let PredicateCodeUsesOperands = 1'. WaitingForNamedOperands is set |
370 | /// to the number of named operands that predicate expects. Store locations in |
371 | /// StoreIdxForName correspond to the order in which operand names appear in |
372 | /// predicate's argument list. |
373 | /// When we visit named operand and WaitingForNamedOperands is not zero, add |
374 | /// matcher that will record operand and decrease counter. |
375 | unsigned WaitingForNamedOperands = 0; |
376 | StringMap<unsigned> StoreIdxForName; |
377 | |
378 | void gatherOpcodeValues(); |
379 | void gatherTypeIDValues(); |
380 | void gatherNodeEquivs(); |
381 | |
382 | Record *findNodeEquiv(Record *N) const; |
383 | const CodeGenInstruction *getEquivNode(Record &Equiv, |
384 | const TreePatternNode &N) const; |
385 | |
386 | Error importRulePredicates(RuleMatcher &M, ArrayRef<Record *> Predicates); |
387 | Expected<InstructionMatcher &> |
388 | createAndImportSelDAGMatcher(RuleMatcher &Rule, |
389 | InstructionMatcher &InsnMatcher, |
390 | const TreePatternNode &Src, unsigned &TempOpIdx); |
391 | Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R, |
392 | unsigned &TempOpIdx) const; |
393 | Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher, |
394 | const TreePatternNode &SrcChild, |
395 | bool OperandIsAPointer, bool OperandIsImmArg, |
396 | unsigned OpIdx, unsigned &TempOpIdx); |
397 | |
398 | Expected<BuildMIAction &> createAndImportInstructionRenderer( |
399 | RuleMatcher &M, InstructionMatcher &InsnMatcher, |
400 | const TreePatternNode &Src, const TreePatternNode &Dst); |
401 | Expected<action_iterator> createAndImportSubInstructionRenderer( |
402 | action_iterator InsertPt, RuleMatcher &M, const TreePatternNode &Dst, |
403 | const TreePatternNode &Src, unsigned TempReg); |
404 | Expected<action_iterator> |
405 | createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M, |
406 | const TreePatternNode &Dst); |
407 | |
408 | Expected<action_iterator> |
409 | importExplicitDefRenderers(action_iterator InsertPt, RuleMatcher &M, |
410 | BuildMIAction &DstMIBuilder, |
411 | const TreePatternNode &Src, |
412 | const TreePatternNode &Dst, unsigned Start = 0); |
413 | |
414 | Expected<action_iterator> importExplicitUseRenderers( |
415 | action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, |
416 | const llvm::TreePatternNode &Dst, const TreePatternNode &Src); |
417 | Expected<action_iterator> importExplicitUseRenderer( |
418 | action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder, |
419 | const TreePatternNode &DstChild, const TreePatternNode &Src); |
420 | Error importDefaultOperandRenderers(action_iterator InsertPt, RuleMatcher &M, |
421 | BuildMIAction &DstMIBuilder, |
422 | const DAGDefaultOperand &DefaultOp) const; |
423 | Error |
424 | importImplicitDefRenderers(BuildMIAction &DstMIBuilder, |
425 | const std::vector<Record *> &ImplicitDefs) const; |
426 | |
427 | /// Analyze pattern \p P, returning a matcher for it if possible. |
428 | /// Otherwise, return an Error explaining why we don't support it. |
429 | Expected<RuleMatcher> runOnPattern(const PatternToMatch &P); |
430 | |
431 | void declareSubtargetFeature(Record *Predicate); |
432 | |
433 | unsigned declareHwModeCheck(StringRef HwModeFeatures); |
434 | |
435 | MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules, bool Optimize, |
436 | bool WithCoverage); |
437 | |
438 | /// Infer a CodeGenRegisterClass for the type of \p SuperRegNode. The returned |
439 | /// CodeGenRegisterClass will support the CodeGenRegisterClass of |
440 | /// \p SubRegNode, and the subregister index defined by \p SubRegIdxNode. |
441 | /// If no register class is found, return std::nullopt. |
442 | std::optional<const CodeGenRegisterClass *> |
443 | inferSuperRegisterClassForNode(const TypeSetByHwMode &Ty, |
444 | const TreePatternNode &SuperRegNode, |
445 | const TreePatternNode &SubRegIdxNode); |
446 | std::optional<CodeGenSubRegIndex *> |
447 | inferSubRegIndexForNode(const TreePatternNode &SubRegIdxNode); |
448 | |
449 | /// Infer a CodeGenRegisterClass which suppoorts \p Ty and \p SubRegIdxNode. |
450 | /// Return std::nullopt if no such class exists. |
451 | std::optional<const CodeGenRegisterClass *> |
452 | inferSuperRegisterClass(const TypeSetByHwMode &Ty, |
453 | const TreePatternNode &SubRegIdxNode); |
454 | |
455 | /// Return the CodeGenRegisterClass associated with \p Leaf if it has one. |
456 | std::optional<const CodeGenRegisterClass *> |
457 | getRegClassFromLeaf(const TreePatternNode &Leaf); |
458 | |
459 | /// Return a CodeGenRegisterClass for \p N if one can be found. Return |
460 | /// std::nullopt otherwise. |
461 | std::optional<const CodeGenRegisterClass *> |
462 | inferRegClassFromPattern(const TreePatternNode &N); |
463 | |
464 | /// Return the size of the MemoryVT in this predicate, if possible. |
465 | std::optional<unsigned> |
466 | getMemSizeBitsFromPredicate(const TreePredicateFn &Predicate); |
467 | |
468 | // Add builtin predicates. |
469 | Expected<InstructionMatcher &> |
470 | addBuiltinPredicates(const Record *SrcGIEquivOrNull, |
471 | const TreePredicateFn &Predicate, |
472 | InstructionMatcher &InsnMatcher, bool &HasAddedMatcher); |
473 | }; |
474 | |
475 | StringRef getPatFragPredicateEnumName(Record *R) { return R->getName(); } |
476 | |
477 | void GlobalISelEmitter::gatherOpcodeValues() { |
478 | InstructionOpcodeMatcher::initOpcodeValuesMap(Target); |
479 | } |
480 | |
481 | void GlobalISelEmitter::gatherTypeIDValues() { |
482 | LLTOperandMatcher::initTypeIDValuesMap(); |
483 | } |
484 | |
485 | void GlobalISelEmitter::gatherNodeEquivs() { |
486 | assert(NodeEquivs.empty()); |
487 | for (Record *Equiv : RK.getAllDerivedDefinitions(ClassName: "GINodeEquiv" )) |
488 | NodeEquivs[Equiv->getValueAsDef(FieldName: "Node" )] = Equiv; |
489 | |
490 | assert(ComplexPatternEquivs.empty()); |
491 | for (Record *Equiv : RK.getAllDerivedDefinitions(ClassName: "GIComplexPatternEquiv" )) { |
492 | Record *SelDAGEquiv = Equiv->getValueAsDef(FieldName: "SelDAGEquivalent" ); |
493 | if (!SelDAGEquiv) |
494 | continue; |
495 | ComplexPatternEquivs[SelDAGEquiv] = Equiv; |
496 | } |
497 | |
498 | assert(SDNodeXFormEquivs.empty()); |
499 | for (Record *Equiv : RK.getAllDerivedDefinitions(ClassName: "GISDNodeXFormEquiv" )) { |
500 | Record *SelDAGEquiv = Equiv->getValueAsDef(FieldName: "SelDAGEquivalent" ); |
501 | if (!SelDAGEquiv) |
502 | continue; |
503 | SDNodeXFormEquivs[SelDAGEquiv] = Equiv; |
504 | } |
505 | } |
506 | |
507 | Record *GlobalISelEmitter::findNodeEquiv(Record *N) const { |
508 | return NodeEquivs.lookup(Val: N); |
509 | } |
510 | |
511 | const CodeGenInstruction * |
512 | GlobalISelEmitter::getEquivNode(Record &Equiv, const TreePatternNode &N) const { |
513 | if (N.getNumChildren() >= 1) { |
514 | // setcc operation maps to two different G_* instructions based on the type. |
515 | if (!Equiv.isValueUnset(FieldName: "IfFloatingPoint" ) && |
516 | MVT(N.getChild(N: 0).getSimpleType(ResNo: 0)).isFloatingPoint()) |
517 | return &Target.getInstruction(InstRec: Equiv.getValueAsDef(FieldName: "IfFloatingPoint" )); |
518 | } |
519 | |
520 | if (!Equiv.isValueUnset(FieldName: "IfConvergent" ) && |
521 | N.getIntrinsicInfo(CDP: CGP)->isConvergent) |
522 | return &Target.getInstruction(InstRec: Equiv.getValueAsDef(FieldName: "IfConvergent" )); |
523 | |
524 | for (const TreePredicateCall &Call : N.getPredicateCalls()) { |
525 | const TreePredicateFn &Predicate = Call.Fn; |
526 | if (!Equiv.isValueUnset(FieldName: "IfSignExtend" ) && |
527 | (Predicate.isLoad() || Predicate.isAtomic()) && |
528 | Predicate.isSignExtLoad()) |
529 | return &Target.getInstruction(InstRec: Equiv.getValueAsDef(FieldName: "IfSignExtend" )); |
530 | if (!Equiv.isValueUnset(FieldName: "IfZeroExtend" ) && |
531 | (Predicate.isLoad() || Predicate.isAtomic()) && |
532 | Predicate.isZeroExtLoad()) |
533 | return &Target.getInstruction(InstRec: Equiv.getValueAsDef(FieldName: "IfZeroExtend" )); |
534 | } |
535 | |
536 | return &Target.getInstruction(InstRec: Equiv.getValueAsDef(FieldName: "I" )); |
537 | } |
538 | |
539 | GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK) |
540 | : GlobalISelMatchTableExecutorEmitter(), RK(RK), CGP(RK), |
541 | Target(CGP.getTargetInfo()), CGRegs(Target.getRegBank()) { |
542 | ClassName = Target.getName().str() + "InstructionSelector" ; |
543 | } |
544 | |
545 | //===- Emitter ------------------------------------------------------------===// |
546 | |
547 | Error GlobalISelEmitter::importRulePredicates(RuleMatcher &M, |
548 | ArrayRef<Record *> Predicates) { |
549 | for (Record *Pred : Predicates) { |
550 | if (Pred->getValueAsString(FieldName: "CondString" ).empty()) |
551 | continue; |
552 | declareSubtargetFeature(Predicate: Pred); |
553 | M.addRequiredFeature(Feature: Pred); |
554 | } |
555 | |
556 | return Error::success(); |
557 | } |
558 | |
559 | std::optional<unsigned> GlobalISelEmitter::getMemSizeBitsFromPredicate( |
560 | const TreePredicateFn &Predicate) { |
561 | std::optional<LLTCodeGen> MemTyOrNone = |
562 | MVTToLLT(SVT: getValueType(Rec: Predicate.getMemoryVT())); |
563 | |
564 | if (!MemTyOrNone) |
565 | return std::nullopt; |
566 | |
567 | // Align so unusual types like i1 don't get rounded down. |
568 | return llvm::alignTo( |
569 | Value: static_cast<unsigned>(MemTyOrNone->get().getSizeInBits()), Align: 8); |
570 | } |
571 | |
572 | Expected<InstructionMatcher &> GlobalISelEmitter::addBuiltinPredicates( |
573 | const Record *SrcGIEquivOrNull, const TreePredicateFn &Predicate, |
574 | InstructionMatcher &InsnMatcher, bool &HasAddedMatcher) { |
575 | if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { |
576 | if (const ListInit *AddrSpaces = Predicate.getAddressSpaces()) { |
577 | SmallVector<unsigned, 4> ParsedAddrSpaces; |
578 | |
579 | for (Init *Val : AddrSpaces->getValues()) { |
580 | IntInit *IntVal = dyn_cast<IntInit>(Val); |
581 | if (!IntVal) |
582 | return failedImport(Reason: "Address space is not an integer" ); |
583 | ParsedAddrSpaces.push_back(Elt: IntVal->getValue()); |
584 | } |
585 | |
586 | if (!ParsedAddrSpaces.empty()) { |
587 | InsnMatcher.addPredicate<MemoryAddressSpacePredicateMatcher>( |
588 | args: 0, args&: ParsedAddrSpaces); |
589 | return InsnMatcher; |
590 | } |
591 | } |
592 | |
593 | int64_t MinAlign = Predicate.getMinAlignment(); |
594 | if (MinAlign > 0) { |
595 | InsnMatcher.addPredicate<MemoryAlignmentPredicateMatcher>(args: 0, args&: MinAlign); |
596 | return InsnMatcher; |
597 | } |
598 | } |
599 | |
600 | // G_LOAD is used for both non-extending and any-extending loads. |
601 | if (Predicate.isLoad() && Predicate.isNonExtLoad()) { |
602 | InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( |
603 | args: 0, args: MemoryVsLLTSizePredicateMatcher::EqualTo, args: 0); |
604 | return InsnMatcher; |
605 | } |
606 | if (Predicate.isLoad() && Predicate.isAnyExtLoad()) { |
607 | InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( |
608 | args: 0, args: MemoryVsLLTSizePredicateMatcher::LessThan, args: 0); |
609 | return InsnMatcher; |
610 | } |
611 | |
612 | if (Predicate.isStore()) { |
613 | if (Predicate.isTruncStore()) { |
614 | if (Predicate.getMemoryVT() != nullptr) { |
615 | // FIXME: If MemoryVT is set, we end up with 2 checks for the MMO size. |
616 | auto MemSizeInBits = getMemSizeBitsFromPredicate(Predicate); |
617 | if (!MemSizeInBits) |
618 | return failedImport(Reason: "MemVT could not be converted to LLT" ); |
619 | |
620 | InsnMatcher.addPredicate<MemorySizePredicateMatcher>(args: 0, args: *MemSizeInBits / |
621 | 8); |
622 | } else { |
623 | InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( |
624 | args: 0, args: MemoryVsLLTSizePredicateMatcher::LessThan, args: 0); |
625 | } |
626 | return InsnMatcher; |
627 | } |
628 | if (Predicate.isNonTruncStore()) { |
629 | // We need to check the sizes match here otherwise we could incorrectly |
630 | // match truncating stores with non-truncating ones. |
631 | InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( |
632 | args: 0, args: MemoryVsLLTSizePredicateMatcher::EqualTo, args: 0); |
633 | } |
634 | } |
635 | |
636 | assert(SrcGIEquivOrNull != nullptr && "Invalid SrcGIEquivOrNull value" ); |
637 | // No check required. We already did it by swapping the opcode. |
638 | if (!SrcGIEquivOrNull->isValueUnset(FieldName: "IfSignExtend" ) && |
639 | Predicate.isSignExtLoad()) |
640 | return InsnMatcher; |
641 | |
642 | // No check required. We already did it by swapping the opcode. |
643 | if (!SrcGIEquivOrNull->isValueUnset(FieldName: "IfZeroExtend" ) && |
644 | Predicate.isZeroExtLoad()) |
645 | return InsnMatcher; |
646 | |
647 | // No check required. G_STORE by itself is a non-extending store. |
648 | if (Predicate.isNonTruncStore()) |
649 | return InsnMatcher; |
650 | |
651 | if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { |
652 | if (Predicate.getMemoryVT() != nullptr) { |
653 | auto MemSizeInBits = getMemSizeBitsFromPredicate(Predicate); |
654 | if (!MemSizeInBits) |
655 | return failedImport(Reason: "MemVT could not be converted to LLT" ); |
656 | |
657 | InsnMatcher.addPredicate<MemorySizePredicateMatcher>(args: 0, |
658 | args: *MemSizeInBits / 8); |
659 | return InsnMatcher; |
660 | } |
661 | } |
662 | |
663 | if (Predicate.isLoad() || Predicate.isStore()) { |
664 | // No check required. A G_LOAD/G_STORE is an unindexed load. |
665 | if (Predicate.isUnindexed()) |
666 | return InsnMatcher; |
667 | } |
668 | |
669 | if (Predicate.isAtomic()) { |
670 | if (Predicate.isAtomicOrderingMonotonic()) { |
671 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(args: "Monotonic" ); |
672 | return InsnMatcher; |
673 | } |
674 | if (Predicate.isAtomicOrderingAcquire()) { |
675 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(args: "Acquire" ); |
676 | return InsnMatcher; |
677 | } |
678 | if (Predicate.isAtomicOrderingRelease()) { |
679 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(args: "Release" ); |
680 | return InsnMatcher; |
681 | } |
682 | if (Predicate.isAtomicOrderingAcquireRelease()) { |
683 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( |
684 | args: "AcquireRelease" ); |
685 | return InsnMatcher; |
686 | } |
687 | if (Predicate.isAtomicOrderingSequentiallyConsistent()) { |
688 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( |
689 | args: "SequentiallyConsistent" ); |
690 | return InsnMatcher; |
691 | } |
692 | } |
693 | |
694 | if (Predicate.isAtomicOrderingAcquireOrStronger()) { |
695 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( |
696 | args: "Acquire" , args: AtomicOrderingMMOPredicateMatcher::AO_OrStronger); |
697 | return InsnMatcher; |
698 | } |
699 | if (Predicate.isAtomicOrderingWeakerThanAcquire()) { |
700 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( |
701 | args: "Acquire" , args: AtomicOrderingMMOPredicateMatcher::AO_WeakerThan); |
702 | return InsnMatcher; |
703 | } |
704 | |
705 | if (Predicate.isAtomicOrderingReleaseOrStronger()) { |
706 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( |
707 | args: "Release" , args: AtomicOrderingMMOPredicateMatcher::AO_OrStronger); |
708 | return InsnMatcher; |
709 | } |
710 | if (Predicate.isAtomicOrderingWeakerThanRelease()) { |
711 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( |
712 | args: "Release" , args: AtomicOrderingMMOPredicateMatcher::AO_WeakerThan); |
713 | return InsnMatcher; |
714 | } |
715 | HasAddedMatcher = false; |
716 | return InsnMatcher; |
717 | } |
718 | |
719 | Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher( |
720 | RuleMatcher &Rule, InstructionMatcher &InsnMatcher, |
721 | const TreePatternNode &Src, unsigned &TempOpIdx) { |
722 | const auto SavedFlags = Rule.setGISelFlags(Src.getGISelFlagsRecord()); |
723 | |
724 | Record *SrcGIEquivOrNull = nullptr; |
725 | const CodeGenInstruction *SrcGIOrNull = nullptr; |
726 | |
727 | // Start with the defined operands (i.e., the results of the root operator). |
728 | if (Src.isLeaf()) { |
729 | Init *SrcInit = Src.getLeafValue(); |
730 | if (isa<IntInit>(Val: SrcInit)) { |
731 | InsnMatcher.addPredicate<InstructionOpcodeMatcher>( |
732 | args: &Target.getInstruction(InstRec: RK.getDef(Name: "G_CONSTANT" ))); |
733 | } else |
734 | return failedImport( |
735 | Reason: "Unable to deduce gMIR opcode to handle Src (which is a leaf)" ); |
736 | } else { |
737 | SrcGIEquivOrNull = findNodeEquiv(N: Src.getOperator()); |
738 | if (!SrcGIEquivOrNull) |
739 | return failedImport(Reason: "Pattern operator lacks an equivalent Instruction" + |
740 | explainOperator(Operator: Src.getOperator())); |
741 | SrcGIOrNull = getEquivNode(Equiv&: *SrcGIEquivOrNull, N: Src); |
742 | |
743 | // The operators look good: match the opcode |
744 | InsnMatcher.addPredicate<InstructionOpcodeMatcher>(args&: SrcGIOrNull); |
745 | } |
746 | |
747 | unsigned OpIdx = 0; |
748 | for (const TypeSetByHwMode &VTy : Src.getExtTypes()) { |
749 | // Results don't have a name unless they are the root node. The caller will |
750 | // set the name if appropriate. |
751 | const bool OperandIsAPointer = |
752 | SrcGIOrNull && SrcGIOrNull->isOutOperandAPointer(i: OpIdx); |
753 | OperandMatcher &OM = InsnMatcher.addOperand(OpIdx: OpIdx++, SymbolicName: "" , AllocatedTemporariesBaseID: TempOpIdx); |
754 | if (auto Error = OM.addTypeCheckPredicate(VTy, OperandIsAPointer)) |
755 | return failedImport(Reason: toString(E: std::move(Error)) + |
756 | " for result of Src pattern operator" ); |
757 | } |
758 | |
759 | for (const TreePredicateCall &Call : Src.getPredicateCalls()) { |
760 | const TreePredicateFn &Predicate = Call.Fn; |
761 | bool HasAddedBuiltinMatcher = true; |
762 | if (Predicate.isAlwaysTrue()) |
763 | continue; |
764 | |
765 | if (Predicate.isImmediatePattern()) { |
766 | InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(args: Predicate); |
767 | continue; |
768 | } |
769 | |
770 | auto InsnMatcherOrError = addBuiltinPredicates( |
771 | SrcGIEquivOrNull, Predicate, InsnMatcher, HasAddedMatcher&: HasAddedBuiltinMatcher); |
772 | if (auto Error = InsnMatcherOrError.takeError()) |
773 | return std::move(Error); |
774 | |
775 | // FIXME: This should be part of addBuiltinPredicates(). If we add this at |
776 | // the start of addBuiltinPredicates() without returning, then there might |
777 | // be cases where we hit the last return before which the |
778 | // HasAddedBuiltinMatcher will be set to false. The predicate could be |
779 | // missed if we add it in the middle or at the end due to return statements |
780 | // after the addPredicate<>() calls. |
781 | if (Predicate.hasNoUse()) { |
782 | InsnMatcher.addPredicate<NoUsePredicateMatcher>(); |
783 | HasAddedBuiltinMatcher = true; |
784 | } |
785 | if (Predicate.hasOneUse()) { |
786 | InsnMatcher.addPredicate<OneUsePredicateMatcher>(); |
787 | HasAddedBuiltinMatcher = true; |
788 | } |
789 | |
790 | if (Predicate.hasGISelPredicateCode()) { |
791 | if (Predicate.usesOperands()) { |
792 | assert(WaitingForNamedOperands == 0 && |
793 | "previous predicate didn't find all operands or " |
794 | "nested predicate that uses operands" ); |
795 | TreePattern *TP = Predicate.getOrigPatFragRecord(); |
796 | WaitingForNamedOperands = TP->getNumArgs(); |
797 | for (unsigned I = 0; I < WaitingForNamedOperands; ++I) |
798 | StoreIdxForName[getScopedName(Scope: Call.Scope, Name: TP->getArgName(i: I))] = I; |
799 | } |
800 | InsnMatcher.addPredicate<GenericInstructionPredicateMatcher>(args: Predicate); |
801 | continue; |
802 | } |
803 | if (!HasAddedBuiltinMatcher) { |
804 | return failedImport(Reason: "Src pattern child has predicate (" + |
805 | explainPredicates(N: Src) + ")" ); |
806 | } |
807 | } |
808 | |
809 | if (SrcGIEquivOrNull && |
810 | SrcGIEquivOrNull->getValueAsBit(FieldName: "CheckMMOIsNonAtomic" )) |
811 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(args: "NotAtomic" ); |
812 | else if (SrcGIEquivOrNull && |
813 | SrcGIEquivOrNull->getValueAsBit(FieldName: "CheckMMOIsAtomic" )) { |
814 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( |
815 | args: "Unordered" , args: AtomicOrderingMMOPredicateMatcher::AO_OrStronger); |
816 | } |
817 | |
818 | if (Src.isLeaf()) { |
819 | Init *SrcInit = Src.getLeafValue(); |
820 | if (IntInit *SrcIntInit = dyn_cast<IntInit>(Val: SrcInit)) { |
821 | OperandMatcher &OM = |
822 | InsnMatcher.addOperand(OpIdx: OpIdx++, SymbolicName: Src.getName(), AllocatedTemporariesBaseID: TempOpIdx); |
823 | OM.addPredicate<LiteralIntOperandMatcher>(args: SrcIntInit->getValue()); |
824 | } else |
825 | return failedImport( |
826 | Reason: "Unable to deduce gMIR opcode to handle Src (which is a leaf)" ); |
827 | } else { |
828 | assert(SrcGIOrNull && |
829 | "Expected to have already found an equivalent Instruction" ); |
830 | if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" || |
831 | SrcGIOrNull->TheDef->getName() == "G_FCONSTANT" ) { |
832 | // imm/fpimm still have operands but we don't need to do anything with it |
833 | // here since we don't support ImmLeaf predicates yet. However, we still |
834 | // need to note the hidden operand to get GIM_CheckNumOperands correct. |
835 | InsnMatcher.addOperand(OpIdx: OpIdx++, SymbolicName: "" , AllocatedTemporariesBaseID: TempOpIdx); |
836 | return InsnMatcher; |
837 | } |
838 | |
839 | if (SrcGIOrNull->TheDef->getName() == "G_FRAME_INDEX" ) { |
840 | InsnMatcher.addOperand(OpIdx: OpIdx++, SymbolicName: Src.getName(), AllocatedTemporariesBaseID: TempOpIdx); |
841 | return InsnMatcher; |
842 | } |
843 | |
844 | // Special case because the operand order is changed from setcc. The |
845 | // predicate operand needs to be swapped from the last operand to the first |
846 | // source. |
847 | |
848 | unsigned NumChildren = Src.getNumChildren(); |
849 | bool IsFCmp = SrcGIOrNull->TheDef->getName() == "G_FCMP" ; |
850 | |
851 | if (IsFCmp || SrcGIOrNull->TheDef->getName() == "G_ICMP" ) { |
852 | const TreePatternNode &SrcChild = Src.getChild(N: NumChildren - 1); |
853 | if (SrcChild.isLeaf()) { |
854 | DefInit *DI = dyn_cast<DefInit>(Val: SrcChild.getLeafValue()); |
855 | Record *CCDef = DI ? DI->getDef() : nullptr; |
856 | if (!CCDef || !CCDef->isSubClassOf(Name: "CondCode" )) |
857 | return failedImport(Reason: "Unable to handle CondCode" ); |
858 | |
859 | OperandMatcher &OM = |
860 | InsnMatcher.addOperand(OpIdx: OpIdx++, SymbolicName: SrcChild.getName(), AllocatedTemporariesBaseID: TempOpIdx); |
861 | StringRef PredType = IsFCmp ? CCDef->getValueAsString(FieldName: "FCmpPredicate" ) |
862 | : CCDef->getValueAsString(FieldName: "ICmpPredicate" ); |
863 | |
864 | if (!PredType.empty()) { |
865 | OM.addPredicate<CmpPredicateOperandMatcher>(args: std::string(PredType)); |
866 | // Process the other 2 operands normally. |
867 | --NumChildren; |
868 | } |
869 | } |
870 | } |
871 | |
872 | // Match the used operands (i.e. the children of the operator). |
873 | bool IsIntrinsic = |
874 | SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" || |
875 | SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS" || |
876 | SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_CONVERGENT" || |
877 | SrcGIOrNull->TheDef->getName() == |
878 | "G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS" ; |
879 | const CodeGenIntrinsic *II = Src.getIntrinsicInfo(CDP: CGP); |
880 | if (IsIntrinsic && !II) |
881 | return failedImport(Reason: "Expected IntInit containing intrinsic ID)" ); |
882 | |
883 | for (unsigned I = 0; I != NumChildren; ++I) { |
884 | const TreePatternNode &SrcChild = Src.getChild(N: I); |
885 | |
886 | // We need to determine the meaning of a literal integer based on the |
887 | // context. If this is a field required to be an immediate (such as an |
888 | // immarg intrinsic argument), the required predicates are different than |
889 | // a constant which may be materialized in a register. If we have an |
890 | // argument that is required to be an immediate, we should not emit an LLT |
891 | // type check, and should not be looking for a G_CONSTANT defined |
892 | // register. |
893 | bool OperandIsImmArg = SrcGIOrNull->isInOperandImmArg(i: I); |
894 | |
895 | // SelectionDAG allows pointers to be represented with iN since it doesn't |
896 | // distinguish between pointers and integers but they are different types |
897 | // in GlobalISel. Coerce integers to pointers to address space 0 if the |
898 | // context indicates a pointer. |
899 | // |
900 | bool OperandIsAPointer = SrcGIOrNull->isInOperandAPointer(i: I); |
901 | |
902 | if (IsIntrinsic) { |
903 | // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately |
904 | // following the defs is an intrinsic ID. |
905 | if (I == 0) { |
906 | OperandMatcher &OM = |
907 | InsnMatcher.addOperand(OpIdx: OpIdx++, SymbolicName: SrcChild.getName(), AllocatedTemporariesBaseID: TempOpIdx); |
908 | OM.addPredicate<IntrinsicIDOperandMatcher>(args&: II); |
909 | continue; |
910 | } |
911 | |
912 | // We have to check intrinsics for llvm_anyptr_ty and immarg parameters. |
913 | // |
914 | // Note that we have to look at the i-1th parameter, because we don't |
915 | // have the intrinsic ID in the intrinsic's parameter list. |
916 | OperandIsAPointer |= II->isParamAPointer(ParamIdx: I - 1); |
917 | OperandIsImmArg |= II->isParamImmArg(ParamIdx: I - 1); |
918 | } |
919 | |
920 | if (auto Error = |
921 | importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer, |
922 | OperandIsImmArg, OpIdx: OpIdx++, TempOpIdx)) |
923 | return std::move(Error); |
924 | } |
925 | } |
926 | |
927 | return InsnMatcher; |
928 | } |
929 | |
930 | Error GlobalISelEmitter::importComplexPatternOperandMatcher( |
931 | OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const { |
932 | const auto &ComplexPattern = ComplexPatternEquivs.find(Val: R); |
933 | if (ComplexPattern == ComplexPatternEquivs.end()) |
934 | return failedImport(Reason: "SelectionDAG ComplexPattern (" + R->getName() + |
935 | ") not mapped to GlobalISel" ); |
936 | |
937 | OM.addPredicate<ComplexPatternOperandMatcher>(args&: OM, args: *ComplexPattern->second); |
938 | TempOpIdx++; |
939 | return Error::success(); |
940 | } |
941 | |
942 | // Get the name to use for a pattern operand. For an anonymous physical register |
943 | // input, this should use the register name. |
944 | static StringRef getSrcChildName(const TreePatternNode &SrcChild, |
945 | Record *&PhysReg) { |
946 | StringRef SrcChildName = SrcChild.getName(); |
947 | if (SrcChildName.empty() && SrcChild.isLeaf()) { |
948 | if (auto *ChildDefInit = dyn_cast<DefInit>(Val: SrcChild.getLeafValue())) { |
949 | auto *ChildRec = ChildDefInit->getDef(); |
950 | if (ChildRec->isSubClassOf(Name: "Register" )) { |
951 | SrcChildName = ChildRec->getName(); |
952 | PhysReg = ChildRec; |
953 | } |
954 | } |
955 | } |
956 | |
957 | return SrcChildName; |
958 | } |
959 | |
960 | Error GlobalISelEmitter::importChildMatcher( |
961 | RuleMatcher &Rule, InstructionMatcher &InsnMatcher, |
962 | const TreePatternNode &SrcChild, bool OperandIsAPointer, |
963 | bool OperandIsImmArg, unsigned OpIdx, unsigned &TempOpIdx) { |
964 | |
965 | Record *PhysReg = nullptr; |
966 | std::string SrcChildName = std::string(getSrcChildName(SrcChild, PhysReg)); |
967 | if (!SrcChild.isLeaf() && |
968 | SrcChild.getOperator()->isSubClassOf(Name: "ComplexPattern" )) { |
969 | // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is |
970 | // "MY_PAT:op1:op2" and the ones with same "name" represent same operand. |
971 | std::string PatternName = std::string(SrcChild.getOperator()->getName()); |
972 | for (unsigned I = 0; I < SrcChild.getNumChildren(); ++I) { |
973 | PatternName += ":" ; |
974 | PatternName += SrcChild.getChild(N: I).getName(); |
975 | } |
976 | SrcChildName = PatternName; |
977 | } |
978 | |
979 | OperandMatcher &OM = |
980 | PhysReg ? InsnMatcher.addPhysRegInput(Reg: PhysReg, OpIdx, TempOpIdx) |
981 | : InsnMatcher.addOperand(OpIdx, SymbolicName: SrcChildName, AllocatedTemporariesBaseID: TempOpIdx); |
982 | if (OM.isSameAsAnotherOperand()) |
983 | return Error::success(); |
984 | |
985 | ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild.getExtTypes(); |
986 | if (ChildTypes.size() != 1) |
987 | return failedImport(Reason: "Src pattern child has multiple results" ); |
988 | |
989 | // Check MBB's before the type check since they are not a known type. |
990 | if (!SrcChild.isLeaf()) { |
991 | if (SrcChild.getOperator()->isSubClassOf(Name: "SDNode" )) { |
992 | auto &ChildSDNI = CGP.getSDNodeInfo(R: SrcChild.getOperator()); |
993 | if (ChildSDNI.getSDClassName() == "BasicBlockSDNode" ) { |
994 | OM.addPredicate<MBBOperandMatcher>(); |
995 | return Error::success(); |
996 | } |
997 | if (SrcChild.getOperator()->getName() == "timm" ) { |
998 | OM.addPredicate<ImmOperandMatcher>(); |
999 | |
1000 | // Add predicates, if any |
1001 | for (const TreePredicateCall &Call : SrcChild.getPredicateCalls()) { |
1002 | const TreePredicateFn &Predicate = Call.Fn; |
1003 | |
1004 | // Only handle immediate patterns for now |
1005 | if (Predicate.isImmediatePattern()) { |
1006 | OM.addPredicate<OperandImmPredicateMatcher>(args: Predicate); |
1007 | } |
1008 | } |
1009 | |
1010 | return Error::success(); |
1011 | } |
1012 | } |
1013 | } |
1014 | |
1015 | // Immediate arguments have no meaningful type to check as they don't have |
1016 | // registers. |
1017 | if (!OperandIsImmArg) { |
1018 | if (auto Error = |
1019 | OM.addTypeCheckPredicate(VTy: ChildTypes.front(), OperandIsAPointer)) |
1020 | return failedImport(Reason: toString(E: std::move(Error)) + " for Src operand (" + |
1021 | to_string(Value: SrcChild) + ")" ); |
1022 | } |
1023 | |
1024 | // Try look up SrcChild for a (named) predicate operand if there is any. |
1025 | if (WaitingForNamedOperands) { |
1026 | auto &ScopedNames = SrcChild.getNamesAsPredicateArg(); |
1027 | if (!ScopedNames.empty()) { |
1028 | auto PA = ScopedNames.begin(); |
1029 | std::string Name = getScopedName(Scope: PA->getScope(), Name: PA->getIdentifier()); |
1030 | OM.addPredicate<RecordNamedOperandMatcher>(args&: StoreIdxForName[Name], args&: Name); |
1031 | --WaitingForNamedOperands; |
1032 | } |
1033 | } |
1034 | |
1035 | // Check for nested instructions. |
1036 | if (!SrcChild.isLeaf()) { |
1037 | if (SrcChild.getOperator()->isSubClassOf(Name: "ComplexPattern" )) { |
1038 | // When a ComplexPattern is used as an operator, it should do the same |
1039 | // thing as when used as a leaf. However, the children of the operator |
1040 | // name the sub-operands that make up the complex operand and we must |
1041 | // prepare to reference them in the renderer too. |
1042 | unsigned RendererID = TempOpIdx; |
1043 | if (auto Error = importComplexPatternOperandMatcher( |
1044 | OM, R: SrcChild.getOperator(), TempOpIdx)) |
1045 | return Error; |
1046 | |
1047 | for (unsigned I = 0, E = SrcChild.getNumChildren(); I != E; ++I) { |
1048 | auto &SubOperand = SrcChild.getChild(N: I); |
1049 | if (!SubOperand.getName().empty()) { |
1050 | if (auto Error = Rule.defineComplexSubOperand( |
1051 | SymbolicName: SubOperand.getName(), ComplexPattern: SrcChild.getOperator(), RendererID, SubOperandID: I, |
1052 | ParentSymbolicName: SrcChildName)) |
1053 | return Error; |
1054 | } |
1055 | } |
1056 | |
1057 | return Error::success(); |
1058 | } |
1059 | |
1060 | auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>( |
1061 | args&: InsnMatcher.getRuleMatcher(), args: SrcChild.getName()); |
1062 | if (!MaybeInsnOperand) { |
1063 | // This isn't strictly true. If the user were to provide exactly the same |
1064 | // matchers as the original operand then we could allow it. However, it's |
1065 | // simpler to not permit the redundant specification. |
1066 | return failedImport( |
1067 | Reason: "Nested instruction cannot be the same as another operand" ); |
1068 | } |
1069 | |
1070 | // Map the node to a gMIR instruction. |
1071 | InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand; |
1072 | auto InsnMatcherOrError = createAndImportSelDAGMatcher( |
1073 | Rule, InsnMatcher&: InsnOperand.getInsnMatcher(), Src: SrcChild, TempOpIdx); |
1074 | if (auto Error = InsnMatcherOrError.takeError()) |
1075 | return Error; |
1076 | |
1077 | return Error::success(); |
1078 | } |
1079 | |
1080 | if (SrcChild.hasAnyPredicate()) |
1081 | return failedImport(Reason: "Src pattern child has unsupported predicate" ); |
1082 | |
1083 | // Check for constant immediates. |
1084 | if (auto *ChildInt = dyn_cast<IntInit>(Val: SrcChild.getLeafValue())) { |
1085 | if (OperandIsImmArg) { |
1086 | // Checks for argument directly in operand list |
1087 | OM.addPredicate<LiteralIntOperandMatcher>(args: ChildInt->getValue()); |
1088 | } else { |
1089 | // Checks for materialized constant |
1090 | OM.addPredicate<ConstantIntOperandMatcher>(args: ChildInt->getValue()); |
1091 | } |
1092 | return Error::success(); |
1093 | } |
1094 | |
1095 | // Check for def's like register classes or ComplexPattern's. |
1096 | if (auto *ChildDefInit = dyn_cast<DefInit>(Val: SrcChild.getLeafValue())) { |
1097 | auto *ChildRec = ChildDefInit->getDef(); |
1098 | |
1099 | // Check for register classes. |
1100 | if (ChildRec->isSubClassOf(Name: "RegisterClass" ) || |
1101 | ChildRec->isSubClassOf(Name: "RegisterOperand" )) { |
1102 | OM.addPredicate<RegisterBankOperandMatcher>( |
1103 | args: Target.getRegisterClass(R: getInitValueAsRegClass(V: ChildDefInit))); |
1104 | return Error::success(); |
1105 | } |
1106 | |
1107 | if (ChildRec->isSubClassOf(Name: "Register" )) { |
1108 | // This just be emitted as a copy to the specific register. |
1109 | ValueTypeByHwMode VT = ChildTypes.front().getValueTypeByHwMode(); |
1110 | const CodeGenRegisterClass *RC = |
1111 | CGRegs.getMinimalPhysRegClass(RegRecord: ChildRec, VT: &VT); |
1112 | if (!RC) { |
1113 | return failedImport( |
1114 | Reason: "Could not determine physical register class of pattern source" ); |
1115 | } |
1116 | |
1117 | OM.addPredicate<RegisterBankOperandMatcher>(args: *RC); |
1118 | return Error::success(); |
1119 | } |
1120 | |
1121 | // Check for ValueType. |
1122 | if (ChildRec->isSubClassOf(Name: "ValueType" )) { |
1123 | // We already added a type check as standard practice so this doesn't need |
1124 | // to do anything. |
1125 | return Error::success(); |
1126 | } |
1127 | |
1128 | // Check for ComplexPattern's. |
1129 | if (ChildRec->isSubClassOf(Name: "ComplexPattern" )) |
1130 | return importComplexPatternOperandMatcher(OM, R: ChildRec, TempOpIdx); |
1131 | |
1132 | if (ChildRec->isSubClassOf(Name: "ImmLeaf" )) { |
1133 | return failedImport( |
1134 | Reason: "Src pattern child def is an unsupported tablegen class (ImmLeaf)" ); |
1135 | } |
1136 | |
1137 | // Place holder for SRCVALUE nodes. Nothing to do here. |
1138 | if (ChildRec->getName() == "srcvalue" ) |
1139 | return Error::success(); |
1140 | |
1141 | const bool ImmAllOnesV = ChildRec->getName() == "immAllOnesV" ; |
1142 | if (ImmAllOnesV || ChildRec->getName() == "immAllZerosV" ) { |
1143 | auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>( |
1144 | args&: InsnMatcher.getRuleMatcher(), args: SrcChild.getName(), args: false); |
1145 | InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand; |
1146 | |
1147 | ValueTypeByHwMode VTy = ChildTypes.front().getValueTypeByHwMode(); |
1148 | |
1149 | const CodeGenInstruction &BuildVector = |
1150 | Target.getInstruction(InstRec: RK.getDef(Name: "G_BUILD_VECTOR" )); |
1151 | const CodeGenInstruction &BuildVectorTrunc = |
1152 | Target.getInstruction(InstRec: RK.getDef(Name: "G_BUILD_VECTOR_TRUNC" )); |
1153 | |
1154 | // Treat G_BUILD_VECTOR as the canonical opcode, and G_BUILD_VECTOR_TRUNC |
1155 | // as an alternative. |
1156 | InsnOperand.getInsnMatcher().addPredicate<InstructionOpcodeMatcher>( |
1157 | args: ArrayRef({&BuildVector, &BuildVectorTrunc})); |
1158 | |
1159 | // TODO: Handle both G_BUILD_VECTOR and G_BUILD_VECTOR_TRUNC We could |
1160 | // theoretically not emit any opcode check, but getOpcodeMatcher currently |
1161 | // has to succeed. |
1162 | OperandMatcher &OM = |
1163 | InsnOperand.getInsnMatcher().addOperand(OpIdx: 0, SymbolicName: "" , AllocatedTemporariesBaseID: TempOpIdx); |
1164 | if (auto Error = |
1165 | OM.addTypeCheckPredicate(VTy, OperandIsAPointer: false /* OperandIsAPointer */)) |
1166 | return failedImport(Reason: toString(E: std::move(Error)) + |
1167 | " for result of Src pattern operator" ); |
1168 | |
1169 | InsnOperand.getInsnMatcher().addPredicate<VectorSplatImmPredicateMatcher>( |
1170 | args: ImmAllOnesV ? VectorSplatImmPredicateMatcher::AllOnes |
1171 | : VectorSplatImmPredicateMatcher::AllZeros); |
1172 | return Error::success(); |
1173 | } |
1174 | |
1175 | return failedImport( |
1176 | Reason: "Src pattern child def is an unsupported tablegen class" ); |
1177 | } |
1178 | |
1179 | return failedImport(Reason: "Src pattern child is an unsupported kind" ); |
1180 | } |
1181 | |
1182 | Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderer( |
1183 | action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder, |
1184 | const TreePatternNode &DstChild, const TreePatternNode &Src) { |
1185 | |
1186 | const auto &SubOperand = Rule.getComplexSubOperand(SymbolicName: DstChild.getName()); |
1187 | if (SubOperand) { |
1188 | DstMIBuilder.addRenderer<RenderComplexPatternOperand>( |
1189 | args&: *std::get<0>(t: *SubOperand), args: DstChild.getName(), args: std::get<1>(t: *SubOperand), |
1190 | args: std::get<2>(t: *SubOperand)); |
1191 | return InsertPt; |
1192 | } |
1193 | |
1194 | if (!DstChild.isLeaf()) { |
1195 | if (DstChild.getOperator()->isSubClassOf(Name: "SDNodeXForm" )) { |
1196 | auto &Child = DstChild.getChild(N: 0); |
1197 | auto I = SDNodeXFormEquivs.find(Val: DstChild.getOperator()); |
1198 | if (I != SDNodeXFormEquivs.end()) { |
1199 | Record *XFormOpc = DstChild.getOperator()->getValueAsDef(FieldName: "Opcode" ); |
1200 | if (XFormOpc->getName() == "timm" ) { |
1201 | // If this is a TargetConstant, there won't be a corresponding |
1202 | // instruction to transform. Instead, this will refer directly to an |
1203 | // operand in an instruction's operand list. |
1204 | DstMIBuilder.addRenderer<CustomOperandRenderer>(args: *I->second, |
1205 | args: Child.getName()); |
1206 | } else { |
1207 | DstMIBuilder.addRenderer<CustomRenderer>(args: *I->second, args: Child.getName()); |
1208 | } |
1209 | |
1210 | return InsertPt; |
1211 | } |
1212 | return failedImport(Reason: "SDNodeXForm " + Child.getName() + |
1213 | " has no custom renderer" ); |
1214 | } |
1215 | |
1216 | // We accept 'bb' here. It's an operator because BasicBlockSDNode isn't |
1217 | // inline, but in MI it's just another operand. |
1218 | if (DstChild.getOperator()->isSubClassOf(Name: "SDNode" )) { |
1219 | auto &ChildSDNI = CGP.getSDNodeInfo(R: DstChild.getOperator()); |
1220 | if (ChildSDNI.getSDClassName() == "BasicBlockSDNode" ) { |
1221 | DstMIBuilder.addRenderer<CopyRenderer>(args: DstChild.getName()); |
1222 | return InsertPt; |
1223 | } |
1224 | } |
1225 | |
1226 | // Similarly, imm is an operator in TreePatternNode's view but must be |
1227 | // rendered as operands. |
1228 | // FIXME: The target should be able to choose sign-extended when appropriate |
1229 | // (e.g. on Mips). |
1230 | if (DstChild.getOperator()->getName() == "timm" ) { |
1231 | DstMIBuilder.addRenderer<CopyRenderer>(args: DstChild.getName()); |
1232 | return InsertPt; |
1233 | } |
1234 | if (DstChild.getOperator()->getName() == "tframeindex" ) { |
1235 | DstMIBuilder.addRenderer<CopyRenderer>(args: DstChild.getName()); |
1236 | return InsertPt; |
1237 | } |
1238 | if (DstChild.getOperator()->getName() == "imm" ) { |
1239 | DstMIBuilder.addRenderer<CopyConstantAsImmRenderer>(args: DstChild.getName()); |
1240 | return InsertPt; |
1241 | } |
1242 | if (DstChild.getOperator()->getName() == "fpimm" ) { |
1243 | DstMIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>( |
1244 | args: DstChild.getName()); |
1245 | return InsertPt; |
1246 | } |
1247 | |
1248 | if (DstChild.getOperator()->isSubClassOf(Name: "Instruction" )) { |
1249 | auto OpTy = getInstResultType(Dst: DstChild, Target); |
1250 | if (!OpTy) |
1251 | return OpTy.takeError(); |
1252 | |
1253 | unsigned TempRegID = Rule.allocateTempRegID(); |
1254 | InsertPt = |
1255 | Rule.insertAction<MakeTempRegisterAction>(InsertPt, args&: *OpTy, args&: TempRegID); |
1256 | DstMIBuilder.addRenderer<TempRegRenderer>(args&: TempRegID); |
1257 | |
1258 | auto InsertPtOrError = createAndImportSubInstructionRenderer( |
1259 | InsertPt: ++InsertPt, M&: Rule, Dst: DstChild, Src, TempReg: TempRegID); |
1260 | if (auto Error = InsertPtOrError.takeError()) |
1261 | return std::move(Error); |
1262 | return InsertPtOrError.get(); |
1263 | } |
1264 | |
1265 | return failedImport(Reason: "Dst pattern child isn't a leaf node or an MBB" + |
1266 | llvm::to_string(Value: DstChild)); |
1267 | } |
1268 | |
1269 | // It could be a specific immediate in which case we should just check for |
1270 | // that immediate. |
1271 | if (const IntInit *ChildIntInit = |
1272 | dyn_cast<IntInit>(Val: DstChild.getLeafValue())) { |
1273 | DstMIBuilder.addRenderer<ImmRenderer>(args: ChildIntInit->getValue()); |
1274 | return InsertPt; |
1275 | } |
1276 | |
1277 | // Otherwise, we're looking for a bog-standard RegisterClass operand. |
1278 | if (auto *ChildDefInit = dyn_cast<DefInit>(Val: DstChild.getLeafValue())) { |
1279 | auto *ChildRec = ChildDefInit->getDef(); |
1280 | |
1281 | ArrayRef<TypeSetByHwMode> ChildTypes = DstChild.getExtTypes(); |
1282 | if (ChildTypes.size() != 1) |
1283 | return failedImport(Reason: "Dst pattern child has multiple results" ); |
1284 | |
1285 | std::optional<LLTCodeGen> OpTyOrNone; |
1286 | if (ChildTypes.front().isMachineValueType()) |
1287 | OpTyOrNone = MVTToLLT(SVT: ChildTypes.front().getMachineValueType().SimpleTy); |
1288 | if (!OpTyOrNone) |
1289 | return failedImport(Reason: "Dst operand has an unsupported type" ); |
1290 | |
1291 | if (ChildRec->isSubClassOf(Name: "Register" )) { |
1292 | DstMIBuilder.addRenderer<AddRegisterRenderer>(args: Target, args&: ChildRec); |
1293 | return InsertPt; |
1294 | } |
1295 | |
1296 | if (ChildRec->isSubClassOf(Name: "RegisterClass" ) || |
1297 | ChildRec->isSubClassOf(Name: "RegisterOperand" ) || |
1298 | ChildRec->isSubClassOf(Name: "ValueType" )) { |
1299 | if (ChildRec->isSubClassOf(Name: "RegisterOperand" ) && |
1300 | !ChildRec->isValueUnset(FieldName: "GIZeroRegister" )) { |
1301 | DstMIBuilder.addRenderer<CopyOrAddZeroRegRenderer>( |
1302 | args: DstChild.getName(), args: ChildRec->getValueAsDef(FieldName: "GIZeroRegister" )); |
1303 | return InsertPt; |
1304 | } |
1305 | |
1306 | DstMIBuilder.addRenderer<CopyRenderer>(args: DstChild.getName()); |
1307 | return InsertPt; |
1308 | } |
1309 | |
1310 | if (ChildRec->isSubClassOf(Name: "SubRegIndex" )) { |
1311 | CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(ChildRec); |
1312 | DstMIBuilder.addRenderer<ImmRenderer>(args: SubIdx->EnumValue); |
1313 | return InsertPt; |
1314 | } |
1315 | |
1316 | if (ChildRec->isSubClassOf(Name: "ComplexPattern" )) { |
1317 | const auto &ComplexPattern = ComplexPatternEquivs.find(Val: ChildRec); |
1318 | if (ComplexPattern == ComplexPatternEquivs.end()) |
1319 | return failedImport( |
1320 | Reason: "SelectionDAG ComplexPattern not mapped to GlobalISel" ); |
1321 | |
1322 | const OperandMatcher &OM = Rule.getOperandMatcher(Name: DstChild.getName()); |
1323 | DstMIBuilder.addRenderer<RenderComplexPatternOperand>( |
1324 | args: *ComplexPattern->second, args: DstChild.getName(), |
1325 | args: OM.getAllocatedTemporariesBaseID()); |
1326 | return InsertPt; |
1327 | } |
1328 | |
1329 | return failedImport( |
1330 | Reason: "Dst pattern child def is an unsupported tablegen class" ); |
1331 | } |
1332 | |
1333 | // Handle the case where the MVT/register class is omitted in the dest pattern |
1334 | // but MVT exists in the source pattern. |
1335 | if (isa<UnsetInit>(Val: DstChild.getLeafValue())) { |
1336 | for (unsigned NumOp = 0; NumOp < Src.getNumChildren(); NumOp++) |
1337 | if (Src.getChild(N: NumOp).getName() == DstChild.getName()) { |
1338 | DstMIBuilder.addRenderer<CopyRenderer>(args: Src.getChild(N: NumOp).getName()); |
1339 | return InsertPt; |
1340 | } |
1341 | } |
1342 | return failedImport(Reason: "Dst pattern child is an unsupported kind" ); |
1343 | } |
1344 | |
1345 | Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer( |
1346 | RuleMatcher &M, InstructionMatcher &InsnMatcher, const TreePatternNode &Src, |
1347 | const TreePatternNode &Dst) { |
1348 | auto InsertPtOrError = createInstructionRenderer(InsertPt: M.actions_end(), M, Dst); |
1349 | if (auto Error = InsertPtOrError.takeError()) |
1350 | return std::move(Error); |
1351 | |
1352 | action_iterator InsertPt = InsertPtOrError.get(); |
1353 | BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get()); |
1354 | |
1355 | for (auto PhysInput : InsnMatcher.getPhysRegInputs()) { |
1356 | InsertPt = M.insertAction<BuildMIAction>( |
1357 | InsertPt, args: M.allocateOutputInsnID(), |
1358 | args: &Target.getInstruction(InstRec: RK.getDef(Name: "COPY" ))); |
1359 | BuildMIAction &CopyToPhysRegMIBuilder = |
1360 | *static_cast<BuildMIAction *>(InsertPt->get()); |
1361 | CopyToPhysRegMIBuilder.addRenderer<AddRegisterRenderer>( |
1362 | args: Target, args&: PhysInput.first, args: true); |
1363 | CopyToPhysRegMIBuilder.addRenderer<CopyPhysRegRenderer>(args&: PhysInput.first); |
1364 | } |
1365 | |
1366 | if (auto Error = |
1367 | importExplicitDefRenderers(InsertPt, M, DstMIBuilder, Src, Dst) |
1368 | .takeError()) |
1369 | return std::move(Error); |
1370 | |
1371 | if (auto Error = |
1372 | importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst, Src) |
1373 | .takeError()) |
1374 | return std::move(Error); |
1375 | |
1376 | return DstMIBuilder; |
1377 | } |
1378 | |
1379 | Expected<action_iterator> |
1380 | GlobalISelEmitter::createAndImportSubInstructionRenderer( |
1381 | const action_iterator InsertPt, RuleMatcher &M, const TreePatternNode &Dst, |
1382 | const TreePatternNode &Src, unsigned TempRegID) { |
1383 | auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst); |
1384 | |
1385 | // TODO: Assert there's exactly one result. |
1386 | |
1387 | if (auto Error = InsertPtOrError.takeError()) |
1388 | return std::move(Error); |
1389 | |
1390 | BuildMIAction &DstMIBuilder = |
1391 | *static_cast<BuildMIAction *>(InsertPtOrError.get()->get()); |
1392 | |
1393 | // Assign the result to TempReg. |
1394 | DstMIBuilder.addRenderer<TempRegRenderer>(args&: TempRegID, args: true); |
1395 | |
1396 | // Handle additional (ignored) results. |
1397 | if (DstMIBuilder.getCGI()->Operands.NumDefs > 1) { |
1398 | InsertPtOrError = importExplicitDefRenderers( |
1399 | InsertPt: std::prev(x: *InsertPtOrError), M, DstMIBuilder, Src, Dst, /*Start=*/1); |
1400 | if (auto Error = InsertPtOrError.takeError()) |
1401 | return std::move(Error); |
1402 | } |
1403 | |
1404 | InsertPtOrError = importExplicitUseRenderers(InsertPt: InsertPtOrError.get(), M, |
1405 | DstMIBuilder, Dst, Src); |
1406 | if (auto Error = InsertPtOrError.takeError()) |
1407 | return std::move(Error); |
1408 | |
1409 | // We need to make sure that when we import an INSERT_SUBREG as a |
1410 | // subinstruction that it ends up being constrained to the correct super |
1411 | // register and subregister classes. |
1412 | auto OpName = Target.getInstruction(InstRec: Dst.getOperator()).TheDef->getName(); |
1413 | if (OpName == "INSERT_SUBREG" ) { |
1414 | auto SubClass = inferRegClassFromPattern(N: Dst.getChild(N: 1)); |
1415 | if (!SubClass) |
1416 | return failedImport( |
1417 | Reason: "Cannot infer register class from INSERT_SUBREG operand #1" ); |
1418 | std::optional<const CodeGenRegisterClass *> SuperClass = |
1419 | inferSuperRegisterClassForNode(Ty: Dst.getExtType(ResNo: 0), SuperRegNode: Dst.getChild(N: 0), |
1420 | SubRegIdxNode: Dst.getChild(N: 2)); |
1421 | if (!SuperClass) |
1422 | return failedImport( |
1423 | Reason: "Cannot infer register class for INSERT_SUBREG operand #0" ); |
1424 | // The destination and the super register source of an INSERT_SUBREG must |
1425 | // be the same register class. |
1426 | M.insertAction<ConstrainOperandToRegClassAction>( |
1427 | InsertPt, args: DstMIBuilder.getInsnID(), args: 0, args: **SuperClass); |
1428 | M.insertAction<ConstrainOperandToRegClassAction>( |
1429 | InsertPt, args: DstMIBuilder.getInsnID(), args: 1, args: **SuperClass); |
1430 | M.insertAction<ConstrainOperandToRegClassAction>( |
1431 | InsertPt, args: DstMIBuilder.getInsnID(), args: 2, args: **SubClass); |
1432 | return InsertPtOrError.get(); |
1433 | } |
1434 | |
1435 | if (OpName == "EXTRACT_SUBREG" ) { |
1436 | // EXTRACT_SUBREG selects into a subregister COPY but unlike most |
1437 | // instructions, the result register class is controlled by the |
1438 | // subregisters of the operand. As a result, we must constrain the result |
1439 | // class rather than check that it's already the right one. |
1440 | auto SuperClass = inferRegClassFromPattern(N: Dst.getChild(N: 0)); |
1441 | if (!SuperClass) |
1442 | return failedImport( |
1443 | Reason: "Cannot infer register class from EXTRACT_SUBREG operand #0" ); |
1444 | |
1445 | auto SubIdx = inferSubRegIndexForNode(SubRegIdxNode: Dst.getChild(N: 1)); |
1446 | if (!SubIdx) |
1447 | return failedImport(Reason: "EXTRACT_SUBREG child #1 is not a subreg index" ); |
1448 | |
1449 | const auto SrcRCDstRCPair = |
1450 | (*SuperClass)->getMatchingSubClassWithSubRegs(RegBank&: CGRegs, SubIdx: *SubIdx); |
1451 | assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass" ); |
1452 | M.insertAction<ConstrainOperandToRegClassAction>( |
1453 | InsertPt, args: DstMIBuilder.getInsnID(), args: 0, args&: *SrcRCDstRCPair->second); |
1454 | M.insertAction<ConstrainOperandToRegClassAction>( |
1455 | InsertPt, args: DstMIBuilder.getInsnID(), args: 1, args&: *SrcRCDstRCPair->first); |
1456 | |
1457 | // We're done with this pattern! It's eligible for GISel emission; return |
1458 | // it. |
1459 | return InsertPtOrError.get(); |
1460 | } |
1461 | |
1462 | // Similar to INSERT_SUBREG, we also have to handle SUBREG_TO_REG as a |
1463 | // subinstruction. |
1464 | if (OpName == "SUBREG_TO_REG" ) { |
1465 | auto SubClass = inferRegClassFromPattern(N: Dst.getChild(N: 1)); |
1466 | if (!SubClass) |
1467 | return failedImport( |
1468 | Reason: "Cannot infer register class from SUBREG_TO_REG child #1" ); |
1469 | auto SuperClass = |
1470 | inferSuperRegisterClass(Ty: Dst.getExtType(ResNo: 0), SubRegIdxNode: Dst.getChild(N: 2)); |
1471 | if (!SuperClass) |
1472 | return failedImport( |
1473 | Reason: "Cannot infer register class for SUBREG_TO_REG operand #0" ); |
1474 | M.insertAction<ConstrainOperandToRegClassAction>( |
1475 | InsertPt, args: DstMIBuilder.getInsnID(), args: 0, args: **SuperClass); |
1476 | M.insertAction<ConstrainOperandToRegClassAction>( |
1477 | InsertPt, args: DstMIBuilder.getInsnID(), args: 2, args: **SubClass); |
1478 | return InsertPtOrError.get(); |
1479 | } |
1480 | |
1481 | if (OpName == "REG_SEQUENCE" ) { |
1482 | auto SuperClass = inferRegClassFromPattern(N: Dst.getChild(N: 0)); |
1483 | M.insertAction<ConstrainOperandToRegClassAction>( |
1484 | InsertPt, args: DstMIBuilder.getInsnID(), args: 0, args: **SuperClass); |
1485 | |
1486 | unsigned Num = Dst.getNumChildren(); |
1487 | for (unsigned I = 1; I != Num; I += 2) { |
1488 | const TreePatternNode &SubRegChild = Dst.getChild(N: I + 1); |
1489 | |
1490 | auto SubIdx = inferSubRegIndexForNode(SubRegIdxNode: SubRegChild); |
1491 | if (!SubIdx) |
1492 | return failedImport(Reason: "REG_SEQUENCE child is not a subreg index" ); |
1493 | |
1494 | const auto SrcRCDstRCPair = |
1495 | (*SuperClass)->getMatchingSubClassWithSubRegs(RegBank&: CGRegs, SubIdx: *SubIdx); |
1496 | assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass" ); |
1497 | M.insertAction<ConstrainOperandToRegClassAction>( |
1498 | InsertPt, args: DstMIBuilder.getInsnID(), args&: I, args&: *SrcRCDstRCPair->second); |
1499 | } |
1500 | |
1501 | return InsertPtOrError.get(); |
1502 | } |
1503 | |
1504 | M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt, |
1505 | args: DstMIBuilder.getInsnID()); |
1506 | return InsertPtOrError.get(); |
1507 | } |
1508 | |
1509 | Expected<action_iterator> GlobalISelEmitter::createInstructionRenderer( |
1510 | action_iterator InsertPt, RuleMatcher &M, const TreePatternNode &Dst) { |
1511 | Record *DstOp = Dst.getOperator(); |
1512 | if (!DstOp->isSubClassOf(Name: "Instruction" )) { |
1513 | if (DstOp->isSubClassOf(Name: "ValueType" )) |
1514 | return failedImport( |
1515 | Reason: "Pattern operator isn't an instruction (it's a ValueType)" ); |
1516 | return failedImport(Reason: "Pattern operator isn't an instruction" ); |
1517 | } |
1518 | CodeGenInstruction *DstI = &Target.getInstruction(InstRec: DstOp); |
1519 | |
1520 | // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction |
1521 | // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy. |
1522 | StringRef Name = DstI->TheDef->getName(); |
1523 | if (Name == "COPY_TO_REGCLASS" || Name == "EXTRACT_SUBREG" ) |
1524 | DstI = &Target.getInstruction(InstRec: RK.getDef(Name: "COPY" )); |
1525 | |
1526 | return M.insertAction<BuildMIAction>(InsertPt, args: M.allocateOutputInsnID(), |
1527 | args&: DstI); |
1528 | } |
1529 | |
1530 | Expected<action_iterator> GlobalISelEmitter::importExplicitDefRenderers( |
1531 | action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, |
1532 | const TreePatternNode &Src, const TreePatternNode &Dst, unsigned Start) { |
1533 | const CodeGenInstruction *DstI = DstMIBuilder.getCGI(); |
1534 | const unsigned SrcNumDefs = Src.getExtTypes().size(); |
1535 | const unsigned DstNumDefs = DstI->Operands.NumDefs; |
1536 | if (DstNumDefs == 0) |
1537 | return InsertPt; |
1538 | |
1539 | for (unsigned I = Start; I < SrcNumDefs; ++I) { |
1540 | std::string OpName = getMangledRootDefName(DefOperandName: DstI->Operands[I].Name); |
1541 | // CopyRenderer saves a StringRef, so cannot pass OpName itself - |
1542 | // let's use a string with an appropriate lifetime. |
1543 | StringRef PermanentRef = M.getOperandMatcher(Name: OpName).getSymbolicName(); |
1544 | DstMIBuilder.addRenderer<CopyRenderer>(args&: PermanentRef); |
1545 | } |
1546 | |
1547 | // Some instructions have multiple defs, but are missing a type entry |
1548 | // (e.g. s_cc_out operands). |
1549 | if (Dst.getExtTypes().size() < DstNumDefs) |
1550 | return failedImport(Reason: "unhandled discarded def" ); |
1551 | |
1552 | for (unsigned I = SrcNumDefs; I < DstNumDefs; ++I) { |
1553 | const TypeSetByHwMode &ExtTy = Dst.getExtType(ResNo: I); |
1554 | if (!ExtTy.isMachineValueType()) |
1555 | return failedImport(Reason: "unsupported typeset" ); |
1556 | |
1557 | auto OpTy = MVTToLLT(SVT: ExtTy.getMachineValueType().SimpleTy); |
1558 | if (!OpTy) |
1559 | return failedImport(Reason: "unsupported type" ); |
1560 | |
1561 | unsigned TempRegID = M.allocateTempRegID(); |
1562 | InsertPt = |
1563 | M.insertAction<MakeTempRegisterAction>(InsertPt, args&: *OpTy, args&: TempRegID); |
1564 | DstMIBuilder.addRenderer<TempRegRenderer>(args&: TempRegID, args: true, args: nullptr, args: true); |
1565 | } |
1566 | |
1567 | return InsertPt; |
1568 | } |
1569 | |
1570 | Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers( |
1571 | action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, |
1572 | const llvm::TreePatternNode &Dst, const llvm::TreePatternNode &Src) { |
1573 | const CodeGenInstruction *DstI = DstMIBuilder.getCGI(); |
1574 | CodeGenInstruction *OrigDstI = &Target.getInstruction(InstRec: Dst.getOperator()); |
1575 | |
1576 | StringRef Name = OrigDstI->TheDef->getName(); |
1577 | unsigned ExpectedDstINumUses = Dst.getNumChildren(); |
1578 | |
1579 | // EXTRACT_SUBREG needs to use a subregister COPY. |
1580 | if (Name == "EXTRACT_SUBREG" ) { |
1581 | if (!Dst.getChild(N: 1).isLeaf()) |
1582 | return failedImport(Reason: "EXTRACT_SUBREG child #1 is not a leaf" ); |
1583 | DefInit *SubRegInit = dyn_cast<DefInit>(Val: Dst.getChild(N: 1).getLeafValue()); |
1584 | if (!SubRegInit) |
1585 | return failedImport(Reason: "EXTRACT_SUBREG child #1 is not a subreg index" ); |
1586 | |
1587 | CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); |
1588 | const TreePatternNode &ValChild = Dst.getChild(N: 0); |
1589 | if (!ValChild.isLeaf()) { |
1590 | // We really have to handle the source instruction, and then insert a |
1591 | // copy from the subregister. |
1592 | auto = getInstResultType(Dst: ValChild, Target); |
1593 | if (!ExtractSrcTy) |
1594 | return ExtractSrcTy.takeError(); |
1595 | |
1596 | unsigned TempRegID = M.allocateTempRegID(); |
1597 | InsertPt = M.insertAction<MakeTempRegisterAction>(InsertPt, args&: *ExtractSrcTy, |
1598 | args&: TempRegID); |
1599 | |
1600 | auto InsertPtOrError = createAndImportSubInstructionRenderer( |
1601 | InsertPt: ++InsertPt, M, Dst: ValChild, Src, TempRegID); |
1602 | if (auto Error = InsertPtOrError.takeError()) |
1603 | return std::move(Error); |
1604 | |
1605 | DstMIBuilder.addRenderer<TempRegRenderer>(args&: TempRegID, args: false, args&: SubIdx); |
1606 | return InsertPt; |
1607 | } |
1608 | |
1609 | // If this is a source operand, this is just a subregister copy. |
1610 | Record *RCDef = getInitValueAsRegClass(V: ValChild.getLeafValue()); |
1611 | if (!RCDef) |
1612 | return failedImport(Reason: "EXTRACT_SUBREG child #0 could not " |
1613 | "be coerced to a register class" ); |
1614 | |
1615 | CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef); |
1616 | |
1617 | const auto SrcRCDstRCPair = |
1618 | RC->getMatchingSubClassWithSubRegs(RegBank&: CGRegs, SubIdx); |
1619 | if (SrcRCDstRCPair) { |
1620 | assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass" ); |
1621 | if (SrcRCDstRCPair->first != RC) |
1622 | return failedImport(Reason: "EXTRACT_SUBREG requires an additional COPY" ); |
1623 | } |
1624 | |
1625 | StringRef RegOperandName = Dst.getChild(N: 0).getName(); |
1626 | if (const auto &SubOperand = M.getComplexSubOperand(SymbolicName: RegOperandName)) { |
1627 | DstMIBuilder.addRenderer<RenderComplexPatternOperand>( |
1628 | args&: *std::get<0>(t: *SubOperand), args&: RegOperandName, args: std::get<1>(t: *SubOperand), |
1629 | args: std::get<2>(t: *SubOperand), args&: SubIdx); |
1630 | return InsertPt; |
1631 | } |
1632 | |
1633 | DstMIBuilder.addRenderer<CopySubRegRenderer>(args&: RegOperandName, args&: SubIdx); |
1634 | return InsertPt; |
1635 | } |
1636 | |
1637 | if (Name == "REG_SEQUENCE" ) { |
1638 | if (!Dst.getChild(N: 0).isLeaf()) |
1639 | return failedImport(Reason: "REG_SEQUENCE child #0 is not a leaf" ); |
1640 | |
1641 | Record *RCDef = getInitValueAsRegClass(V: Dst.getChild(N: 0).getLeafValue()); |
1642 | if (!RCDef) |
1643 | return failedImport(Reason: "REG_SEQUENCE child #0 could not " |
1644 | "be coerced to a register class" ); |
1645 | |
1646 | if ((ExpectedDstINumUses - 1) % 2 != 0) |
1647 | return failedImport(Reason: "Malformed REG_SEQUENCE" ); |
1648 | |
1649 | for (unsigned I = 1; I != ExpectedDstINumUses; I += 2) { |
1650 | const TreePatternNode &ValChild = Dst.getChild(N: I); |
1651 | const TreePatternNode &SubRegChild = Dst.getChild(N: I + 1); |
1652 | |
1653 | if (DefInit *SubRegInit = dyn_cast<DefInit>(Val: SubRegChild.getLeafValue())) { |
1654 | CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); |
1655 | |
1656 | auto InsertPtOrError = |
1657 | importExplicitUseRenderer(InsertPt, Rule&: M, DstMIBuilder, DstChild: ValChild, Src); |
1658 | if (auto Error = InsertPtOrError.takeError()) |
1659 | return std::move(Error); |
1660 | InsertPt = InsertPtOrError.get(); |
1661 | DstMIBuilder.addRenderer<SubRegIndexRenderer>(args&: SubIdx); |
1662 | } |
1663 | } |
1664 | |
1665 | return InsertPt; |
1666 | } |
1667 | |
1668 | // Render the explicit uses. |
1669 | unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs; |
1670 | if (Name == "COPY_TO_REGCLASS" ) { |
1671 | DstINumUses--; // Ignore the class constraint. |
1672 | ExpectedDstINumUses--; |
1673 | } |
1674 | |
1675 | // NumResults - This is the number of results produced by the instruction in |
1676 | // the "outs" list. |
1677 | unsigned NumResults = OrigDstI->Operands.NumDefs; |
1678 | |
1679 | // Number of operands we know the output instruction must have. If it is |
1680 | // variadic, we could have more operands. |
1681 | unsigned NumFixedOperands = DstI->Operands.size(); |
1682 | |
1683 | // Loop over all of the fixed operands of the instruction pattern, emitting |
1684 | // code to fill them all in. The node 'N' usually has number children equal to |
1685 | // the number of input operands of the instruction. However, in cases where |
1686 | // there are predicate operands for an instruction, we need to fill in the |
1687 | // 'execute always' values. Match up the node operands to the instruction |
1688 | // operands to do this. |
1689 | unsigned Child = 0; |
1690 | |
1691 | // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the |
1692 | // number of operands at the end of the list which have default values. |
1693 | // Those can come from the pattern if it provides enough arguments, or be |
1694 | // filled in with the default if the pattern hasn't provided them. But any |
1695 | // operand with a default value _before_ the last mandatory one will be |
1696 | // filled in with their defaults unconditionally. |
1697 | unsigned NonOverridableOperands = NumFixedOperands; |
1698 | while (NonOverridableOperands > NumResults && |
1699 | CGP.operandHasDefault(Op: DstI->Operands[NonOverridableOperands - 1].Rec)) |
1700 | --NonOverridableOperands; |
1701 | |
1702 | unsigned NumDefaultOps = 0; |
1703 | for (unsigned I = 0; I != DstINumUses; ++I) { |
1704 | unsigned InstOpNo = DstI->Operands.NumDefs + I; |
1705 | |
1706 | // Determine what to emit for this operand. |
1707 | Record *OperandNode = DstI->Operands[InstOpNo].Rec; |
1708 | |
1709 | // If the operand has default values, introduce them now. |
1710 | if (CGP.operandHasDefault(Op: OperandNode) && |
1711 | (InstOpNo < NonOverridableOperands || Child >= Dst.getNumChildren())) { |
1712 | // This is a predicate or optional def operand which the pattern has not |
1713 | // overridden, or which we aren't letting it override; emit the 'default |
1714 | // ops' operands. |
1715 | |
1716 | Record *OperandNode = DstI->Operands[InstOpNo].Rec; |
1717 | if (auto Error = importDefaultOperandRenderers( |
1718 | InsertPt, M, DstMIBuilder, DefaultOp: CGP.getDefaultOperand(R: OperandNode))) |
1719 | return std::move(Error); |
1720 | |
1721 | ++NumDefaultOps; |
1722 | continue; |
1723 | } |
1724 | |
1725 | auto InsertPtOrError = importExplicitUseRenderer(InsertPt, Rule&: M, DstMIBuilder, |
1726 | DstChild: Dst.getChild(N: Child), Src); |
1727 | if (auto Error = InsertPtOrError.takeError()) |
1728 | return std::move(Error); |
1729 | InsertPt = InsertPtOrError.get(); |
1730 | ++Child; |
1731 | } |
1732 | |
1733 | if (NumDefaultOps + ExpectedDstINumUses != DstINumUses) |
1734 | return failedImport(Reason: "Expected " + llvm::to_string(Value: DstINumUses) + |
1735 | " used operands but found " + |
1736 | llvm::to_string(Value: ExpectedDstINumUses) + |
1737 | " explicit ones and " + llvm::to_string(Value: NumDefaultOps) + |
1738 | " default ones" ); |
1739 | |
1740 | return InsertPt; |
1741 | } |
1742 | |
1743 | Error GlobalISelEmitter::importDefaultOperandRenderers( |
1744 | action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, |
1745 | const DAGDefaultOperand &DefaultOp) const { |
1746 | for (const auto &Op : DefaultOp.DefaultOps) { |
1747 | const auto &N = *Op; |
1748 | if (!N.isLeaf()) |
1749 | return failedImport(Reason: "Could not add default op" ); |
1750 | |
1751 | const auto *DefaultOp = N.getLeafValue(); |
1752 | |
1753 | if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(Val: DefaultOp)) { |
1754 | std::optional<LLTCodeGen> OpTyOrNone = MVTToLLT(SVT: N.getSimpleType(ResNo: 0)); |
1755 | auto *Def = DefaultDefOp->getDef(); |
1756 | if (Def->getName() == "undef_tied_input" ) { |
1757 | unsigned TempRegID = M.allocateTempRegID(); |
1758 | M.insertAction<MakeTempRegisterAction>(InsertPt, args&: *OpTyOrNone, |
1759 | args&: TempRegID); |
1760 | InsertPt = M.insertAction<BuildMIAction>( |
1761 | InsertPt, args: M.allocateOutputInsnID(), |
1762 | args: &Target.getInstruction(InstRec: RK.getDef(Name: "IMPLICIT_DEF" ))); |
1763 | BuildMIAction &IDMIBuilder = |
1764 | *static_cast<BuildMIAction *>(InsertPt->get()); |
1765 | IDMIBuilder.addRenderer<TempRegRenderer>(args&: TempRegID); |
1766 | DstMIBuilder.addRenderer<TempRegRenderer>(args&: TempRegID); |
1767 | } else { |
1768 | DstMIBuilder.addRenderer<AddRegisterRenderer>(args: Target, args&: Def); |
1769 | } |
1770 | continue; |
1771 | } |
1772 | |
1773 | if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(Val: DefaultOp)) { |
1774 | DstMIBuilder.addRenderer<ImmRenderer>(args: DefaultIntOp->getValue()); |
1775 | continue; |
1776 | } |
1777 | |
1778 | return failedImport(Reason: "Could not add default op" ); |
1779 | } |
1780 | |
1781 | return Error::success(); |
1782 | } |
1783 | |
1784 | Error GlobalISelEmitter::importImplicitDefRenderers( |
1785 | BuildMIAction &DstMIBuilder, |
1786 | const std::vector<Record *> &ImplicitDefs) const { |
1787 | if (!ImplicitDefs.empty()) |
1788 | return failedImport(Reason: "Pattern defines a physical register" ); |
1789 | return Error::success(); |
1790 | } |
1791 | |
1792 | std::optional<const CodeGenRegisterClass *> |
1793 | GlobalISelEmitter::getRegClassFromLeaf(const TreePatternNode &Leaf) { |
1794 | assert(Leaf.isLeaf() && "Expected leaf?" ); |
1795 | Record *RCRec = getInitValueAsRegClass(V: Leaf.getLeafValue()); |
1796 | if (!RCRec) |
1797 | return std::nullopt; |
1798 | CodeGenRegisterClass *RC = CGRegs.getRegClass(RCRec); |
1799 | if (!RC) |
1800 | return std::nullopt; |
1801 | return RC; |
1802 | } |
1803 | |
1804 | std::optional<const CodeGenRegisterClass *> |
1805 | GlobalISelEmitter::inferRegClassFromPattern(const TreePatternNode &N) { |
1806 | if (N.isLeaf()) |
1807 | return getRegClassFromLeaf(Leaf: N); |
1808 | |
1809 | // We don't have a leaf node, so we have to try and infer something. Check |
1810 | // that we have an instruction that we can infer something from. |
1811 | |
1812 | // Only handle things that produce at least one value (if multiple values, |
1813 | // just take the first one). |
1814 | if (N.getNumTypes() < 1) |
1815 | return std::nullopt; |
1816 | Record *OpRec = N.getOperator(); |
1817 | |
1818 | // We only want instructions. |
1819 | if (!OpRec->isSubClassOf(Name: "Instruction" )) |
1820 | return std::nullopt; |
1821 | |
1822 | // Don't want to try and infer things when there could potentially be more |
1823 | // than one candidate register class. |
1824 | auto &Inst = Target.getInstruction(InstRec: OpRec); |
1825 | |
1826 | // Handle any special-case instructions which we can safely infer register |
1827 | // classes from. |
1828 | StringRef InstName = Inst.TheDef->getName(); |
1829 | bool IsRegSequence = InstName == "REG_SEQUENCE" ; |
1830 | if (IsRegSequence || InstName == "COPY_TO_REGCLASS" ) { |
1831 | // If we have a COPY_TO_REGCLASS, then we need to handle it specially. It |
1832 | // has the desired register class as the first child. |
1833 | const TreePatternNode &RCChild = N.getChild(N: IsRegSequence ? 0 : 1); |
1834 | if (!RCChild.isLeaf()) |
1835 | return std::nullopt; |
1836 | return getRegClassFromLeaf(Leaf: RCChild); |
1837 | } |
1838 | if (InstName == "INSERT_SUBREG" ) { |
1839 | const TreePatternNode &Child0 = N.getChild(N: 0); |
1840 | assert(Child0.getNumTypes() == 1 && "Unexpected number of types!" ); |
1841 | const TypeSetByHwMode &VTy = Child0.getExtType(ResNo: 0); |
1842 | return inferSuperRegisterClassForNode(Ty: VTy, SuperRegNode: Child0, SubRegIdxNode: N.getChild(N: 2)); |
1843 | } |
1844 | if (InstName == "EXTRACT_SUBREG" ) { |
1845 | assert(N.getNumTypes() == 1 && "Unexpected number of types!" ); |
1846 | const TypeSetByHwMode &VTy = N.getExtType(ResNo: 0); |
1847 | return inferSuperRegisterClass(Ty: VTy, SubRegIdxNode: N.getChild(N: 1)); |
1848 | } |
1849 | |
1850 | // Handle destination record types that we can safely infer a register class |
1851 | // from. |
1852 | const auto &DstIOperand = Inst.Operands[0]; |
1853 | Record *DstIOpRec = DstIOperand.Rec; |
1854 | if (DstIOpRec->isSubClassOf(Name: "RegisterOperand" )) { |
1855 | DstIOpRec = DstIOpRec->getValueAsDef(FieldName: "RegClass" ); |
1856 | const CodeGenRegisterClass &RC = Target.getRegisterClass(R: DstIOpRec); |
1857 | return &RC; |
1858 | } |
1859 | |
1860 | if (DstIOpRec->isSubClassOf(Name: "RegisterClass" )) { |
1861 | const CodeGenRegisterClass &RC = Target.getRegisterClass(R: DstIOpRec); |
1862 | return &RC; |
1863 | } |
1864 | |
1865 | return std::nullopt; |
1866 | } |
1867 | |
1868 | std::optional<const CodeGenRegisterClass *> |
1869 | GlobalISelEmitter::inferSuperRegisterClass( |
1870 | const TypeSetByHwMode &Ty, const TreePatternNode &SubRegIdxNode) { |
1871 | // We need a ValueTypeByHwMode for getSuperRegForSubReg. |
1872 | if (!Ty.isValueTypeByHwMode(AllowEmpty: false)) |
1873 | return std::nullopt; |
1874 | if (!SubRegIdxNode.isLeaf()) |
1875 | return std::nullopt; |
1876 | DefInit *SubRegInit = dyn_cast<DefInit>(Val: SubRegIdxNode.getLeafValue()); |
1877 | if (!SubRegInit) |
1878 | return std::nullopt; |
1879 | CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); |
1880 | |
1881 | // Use the information we found above to find a minimal register class which |
1882 | // supports the subregister and type we want. |
1883 | auto RC = |
1884 | Target.getSuperRegForSubReg(Ty: Ty.getValueTypeByHwMode(), RegBank&: CGRegs, SubIdx, |
1885 | /* MustBeAllocatable */ true); |
1886 | if (!RC) |
1887 | return std::nullopt; |
1888 | return *RC; |
1889 | } |
1890 | |
1891 | std::optional<const CodeGenRegisterClass *> |
1892 | GlobalISelEmitter::inferSuperRegisterClassForNode( |
1893 | const TypeSetByHwMode &Ty, const TreePatternNode &SuperRegNode, |
1894 | const TreePatternNode &SubRegIdxNode) { |
1895 | // Check if we already have a defined register class for the super register |
1896 | // node. If we do, then we should preserve that rather than inferring anything |
1897 | // from the subregister index node. We can assume that whoever wrote the |
1898 | // pattern in the first place made sure that the super register and |
1899 | // subregister are compatible. |
1900 | if (std::optional<const CodeGenRegisterClass *> SuperRegisterClass = |
1901 | inferRegClassFromPattern(N: SuperRegNode)) |
1902 | return *SuperRegisterClass; |
1903 | return inferSuperRegisterClass(Ty, SubRegIdxNode); |
1904 | } |
1905 | |
1906 | std::optional<CodeGenSubRegIndex *> GlobalISelEmitter::inferSubRegIndexForNode( |
1907 | const TreePatternNode &SubRegIdxNode) { |
1908 | if (!SubRegIdxNode.isLeaf()) |
1909 | return std::nullopt; |
1910 | |
1911 | DefInit *SubRegInit = dyn_cast<DefInit>(Val: SubRegIdxNode.getLeafValue()); |
1912 | if (!SubRegInit) |
1913 | return std::nullopt; |
1914 | return CGRegs.getSubRegIdx(SubRegInit->getDef()); |
1915 | } |
1916 | |
1917 | Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) { |
1918 | // Keep track of the matchers and actions to emit. |
1919 | int Score = P.getPatternComplexity(CGP); |
1920 | RuleMatcher M(P.getSrcRecord()->getLoc()); |
1921 | RuleMatcherScores[M.getRuleID()] = Score; |
1922 | M.addAction<DebugCommentAction>(args: llvm::to_string(Value: P.getSrcPattern()) + |
1923 | " => " + |
1924 | llvm::to_string(Value: P.getDstPattern())); |
1925 | |
1926 | SmallVector<Record *, 4> Predicates; |
1927 | P.getPredicateRecords(PredicateRecs&: Predicates); |
1928 | if (auto Error = importRulePredicates(M, Predicates)) |
1929 | return std::move(Error); |
1930 | |
1931 | if (!P.getHwModeFeatures().empty()) |
1932 | M.addHwModeIdx(Idx: declareHwModeCheck(HwModeFeatures: P.getHwModeFeatures())); |
1933 | |
1934 | // Next, analyze the pattern operators. |
1935 | TreePatternNode &Src = P.getSrcPattern(); |
1936 | TreePatternNode &Dst = P.getDstPattern(); |
1937 | |
1938 | // If the root of either pattern isn't a simple operator, ignore it. |
1939 | if (auto Err = isTrivialOperatorNode(N: Dst)) |
1940 | return failedImport(Reason: "Dst pattern root isn't a trivial operator (" + |
1941 | toString(E: std::move(Err)) + ")" ); |
1942 | if (auto Err = isTrivialOperatorNode(N: Src)) |
1943 | return failedImport(Reason: "Src pattern root isn't a trivial operator (" + |
1944 | toString(E: std::move(Err)) + ")" ); |
1945 | |
1946 | // The different predicates and matchers created during |
1947 | // addInstructionMatcher use the RuleMatcher M to set up their |
1948 | // instruction ID (InsnVarID) that are going to be used when |
1949 | // M is going to be emitted. |
1950 | // However, the code doing the emission still relies on the IDs |
1951 | // returned during that process by the RuleMatcher when issuing |
1952 | // the recordInsn opcodes. |
1953 | // Because of that: |
1954 | // 1. The order in which we created the predicates |
1955 | // and such must be the same as the order in which we emit them, |
1956 | // and |
1957 | // 2. We need to reset the generation of the IDs in M somewhere between |
1958 | // addInstructionMatcher and emit |
1959 | // |
1960 | // FIXME: Long term, we don't want to have to rely on this implicit |
1961 | // naming being the same. One possible solution would be to have |
1962 | // explicit operator for operation capture and reference those. |
1963 | // The plus side is that it would expose opportunities to share |
1964 | // the capture accross rules. The downside is that it would |
1965 | // introduce a dependency between predicates (captures must happen |
1966 | // before their first use.) |
1967 | InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(SymbolicName: Src.getName()); |
1968 | unsigned TempOpIdx = 0; |
1969 | |
1970 | const auto SavedFlags = M.setGISelFlags(P.getSrcRecord()); |
1971 | |
1972 | auto InsnMatcherOrError = |
1973 | createAndImportSelDAGMatcher(Rule&: M, InsnMatcher&: InsnMatcherTemp, Src, TempOpIdx); |
1974 | if (auto Error = InsnMatcherOrError.takeError()) |
1975 | return std::move(Error); |
1976 | InstructionMatcher &InsnMatcher = InsnMatcherOrError.get(); |
1977 | |
1978 | if (Dst.isLeaf()) { |
1979 | Record *RCDef = getInitValueAsRegClass(V: Dst.getLeafValue()); |
1980 | if (RCDef) { |
1981 | const CodeGenRegisterClass &RC = Target.getRegisterClass(R: RCDef); |
1982 | |
1983 | // We need to replace the def and all its uses with the specified |
1984 | // operand. However, we must also insert COPY's wherever needed. |
1985 | // For now, emit a copy and let the register allocator clean up. |
1986 | auto &DstI = Target.getInstruction(InstRec: RK.getDef(Name: "COPY" )); |
1987 | const auto &DstIOperand = DstI.Operands[0]; |
1988 | |
1989 | OperandMatcher &OM0 = InsnMatcher.getOperand(OpIdx: 0); |
1990 | OM0.setSymbolicName(DstIOperand.Name); |
1991 | M.defineOperand(SymbolicName: OM0.getSymbolicName(), OM&: OM0); |
1992 | OM0.addPredicate<RegisterBankOperandMatcher>(args: RC); |
1993 | |
1994 | auto &DstMIBuilder = |
1995 | M.addAction<BuildMIAction>(args: M.allocateOutputInsnID(), args: &DstI); |
1996 | DstMIBuilder.addRenderer<CopyRenderer>(args: DstIOperand.Name); |
1997 | DstMIBuilder.addRenderer<CopyRenderer>(args: Dst.getName()); |
1998 | M.addAction<ConstrainOperandToRegClassAction>(args: 0, args: 0, args: RC); |
1999 | |
2000 | // Erase the root. |
2001 | unsigned RootInsnID = M.getInsnVarID(InsnMatcher); |
2002 | M.addAction<EraseInstAction>(args&: RootInsnID); |
2003 | |
2004 | // We're done with this pattern! It's eligible for GISel emission; return |
2005 | // it. |
2006 | ++NumPatternImported; |
2007 | return std::move(M); |
2008 | } |
2009 | |
2010 | return failedImport(Reason: "Dst pattern root isn't a known leaf" ); |
2011 | } |
2012 | |
2013 | // Start with the defined operands (i.e., the results of the root operator). |
2014 | Record *DstOp = Dst.getOperator(); |
2015 | if (!DstOp->isSubClassOf(Name: "Instruction" )) |
2016 | return failedImport(Reason: "Pattern operator isn't an instruction" ); |
2017 | |
2018 | auto &DstI = Target.getInstruction(InstRec: DstOp); |
2019 | StringRef DstIName = DstI.TheDef->getName(); |
2020 | |
2021 | unsigned DstNumDefs = DstI.Operands.NumDefs, |
2022 | SrcNumDefs = Src.getExtTypes().size(); |
2023 | if (DstNumDefs < SrcNumDefs) { |
2024 | if (DstNumDefs != 0) |
2025 | return failedImport(Reason: "Src pattern result has more defs than dst MI (" + |
2026 | to_string(Value: SrcNumDefs) + " def(s) vs " + |
2027 | to_string(Value: DstNumDefs) + " def(s))" ); |
2028 | |
2029 | bool FoundNoUsePred = false; |
2030 | for (const auto &Pred : InsnMatcher.predicates()) { |
2031 | if ((FoundNoUsePred = isa<NoUsePredicateMatcher>(Val: Pred.get()))) |
2032 | break; |
2033 | } |
2034 | if (!FoundNoUsePred) |
2035 | return failedImport(Reason: "Src pattern result has " + to_string(Value: SrcNumDefs) + |
2036 | " def(s) without the HasNoUse predicate set to true " |
2037 | "but Dst MI has no def" ); |
2038 | } |
2039 | |
2040 | // The root of the match also has constraints on the register bank so that it |
2041 | // matches the result instruction. |
2042 | unsigned OpIdx = 0; |
2043 | unsigned N = std::min(a: DstNumDefs, b: SrcNumDefs); |
2044 | for (unsigned I = 0; I < N; ++I) { |
2045 | const TypeSetByHwMode &VTy = Src.getExtType(ResNo: I); |
2046 | |
2047 | const auto &DstIOperand = DstI.Operands[OpIdx]; |
2048 | PointerUnion<Record *, const CodeGenRegisterClass *> MatchedRC = |
2049 | DstIOperand.Rec; |
2050 | if (DstIName == "COPY_TO_REGCLASS" ) { |
2051 | MatchedRC = getInitValueAsRegClass(V: Dst.getChild(N: 1).getLeafValue()); |
2052 | |
2053 | if (MatchedRC.isNull()) |
2054 | return failedImport( |
2055 | Reason: "COPY_TO_REGCLASS operand #1 isn't a register class" ); |
2056 | } else if (DstIName == "REG_SEQUENCE" ) { |
2057 | MatchedRC = getInitValueAsRegClass(V: Dst.getChild(N: 0).getLeafValue()); |
2058 | if (MatchedRC.isNull()) |
2059 | return failedImport(Reason: "REG_SEQUENCE operand #0 isn't a register class" ); |
2060 | } else if (DstIName == "EXTRACT_SUBREG" ) { |
2061 | auto InferredClass = inferRegClassFromPattern(N: Dst.getChild(N: 0)); |
2062 | if (!InferredClass) |
2063 | return failedImport( |
2064 | Reason: "Could not infer class for EXTRACT_SUBREG operand #0" ); |
2065 | |
2066 | // We can assume that a subregister is in the same bank as it's super |
2067 | // register. |
2068 | MatchedRC = (*InferredClass)->getDef(); |
2069 | } else if (DstIName == "INSERT_SUBREG" ) { |
2070 | auto MaybeSuperClass = |
2071 | inferSuperRegisterClassForNode(Ty: VTy, SuperRegNode: Dst.getChild(N: 0), SubRegIdxNode: Dst.getChild(N: 2)); |
2072 | if (!MaybeSuperClass) |
2073 | return failedImport( |
2074 | Reason: "Cannot infer register class for INSERT_SUBREG operand #0" ); |
2075 | // Move to the next pattern here, because the register class we found |
2076 | // doesn't necessarily have a record associated with it. So, we can't |
2077 | // set DstIOpRec using this. |
2078 | MatchedRC = *MaybeSuperClass; |
2079 | } else if (DstIName == "SUBREG_TO_REG" ) { |
2080 | auto MaybeRegClass = inferSuperRegisterClass(Ty: VTy, SubRegIdxNode: Dst.getChild(N: 2)); |
2081 | if (!MaybeRegClass) |
2082 | return failedImport( |
2083 | Reason: "Cannot infer register class for SUBREG_TO_REG operand #0" ); |
2084 | MatchedRC = *MaybeRegClass; |
2085 | } else if (MatchedRC.get<Record *>()->isSubClassOf(Name: "RegisterOperand" )) |
2086 | MatchedRC = MatchedRC.get<Record *>()->getValueAsDef(FieldName: "RegClass" ); |
2087 | else if (!MatchedRC.get<Record *>()->isSubClassOf(Name: "RegisterClass" )) |
2088 | return failedImport(Reason: "Dst MI def isn't a register class" + to_string(Value: Dst)); |
2089 | |
2090 | OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); |
2091 | // The operand names declared in the DstI instruction are unrelated to |
2092 | // those used in pattern's source and destination DAGs, so mangle the |
2093 | // former to prevent implicitly adding unexpected |
2094 | // GIM_CheckIsSameOperand predicates by the defineOperand method. |
2095 | OM.setSymbolicName(getMangledRootDefName(DefOperandName: DstIOperand.Name)); |
2096 | M.defineOperand(SymbolicName: OM.getSymbolicName(), OM); |
2097 | if (MatchedRC.is<Record *>()) |
2098 | MatchedRC = &Target.getRegisterClass(R: MatchedRC.get<Record *>()); |
2099 | OM.addPredicate<RegisterBankOperandMatcher>( |
2100 | args: *MatchedRC.get<const CodeGenRegisterClass *>()); |
2101 | ++OpIdx; |
2102 | } |
2103 | |
2104 | auto DstMIBuilderOrError = |
2105 | createAndImportInstructionRenderer(M, InsnMatcher, Src, Dst); |
2106 | if (auto Error = DstMIBuilderOrError.takeError()) |
2107 | return std::move(Error); |
2108 | BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get(); |
2109 | |
2110 | // Render the implicit defs. |
2111 | // These are only added to the root of the result. |
2112 | if (auto Error = importImplicitDefRenderers(DstMIBuilder, ImplicitDefs: P.getDstRegs())) |
2113 | return std::move(Error); |
2114 | |
2115 | DstMIBuilder.chooseInsnToMutate(Rule&: M); |
2116 | |
2117 | // Constrain the registers to classes. This is normally derived from the |
2118 | // emitted instruction but a few instructions require special handling. |
2119 | if (DstIName == "COPY_TO_REGCLASS" ) { |
2120 | // COPY_TO_REGCLASS does not provide operand constraints itself but the |
2121 | // result is constrained to the class given by the second child. |
2122 | Record *DstIOpRec = getInitValueAsRegClass(V: Dst.getChild(N: 1).getLeafValue()); |
2123 | |
2124 | if (DstIOpRec == nullptr) |
2125 | return failedImport(Reason: "COPY_TO_REGCLASS operand #1 isn't a register class" ); |
2126 | |
2127 | M.addAction<ConstrainOperandToRegClassAction>( |
2128 | args: 0, args: 0, args: Target.getRegisterClass(R: DstIOpRec)); |
2129 | } else if (DstIName == "EXTRACT_SUBREG" ) { |
2130 | auto SuperClass = inferRegClassFromPattern(N: Dst.getChild(N: 0)); |
2131 | if (!SuperClass) |
2132 | return failedImport( |
2133 | Reason: "Cannot infer register class from EXTRACT_SUBREG operand #0" ); |
2134 | |
2135 | auto SubIdx = inferSubRegIndexForNode(SubRegIdxNode: Dst.getChild(N: 1)); |
2136 | if (!SubIdx) |
2137 | return failedImport(Reason: "EXTRACT_SUBREG child #1 is not a subreg index" ); |
2138 | |
2139 | // It would be nice to leave this constraint implicit but we're required |
2140 | // to pick a register class so constrain the result to a register class |
2141 | // that can hold the correct MVT. |
2142 | // |
2143 | // FIXME: This may introduce an extra copy if the chosen class doesn't |
2144 | // actually contain the subregisters. |
2145 | assert(Src.getExtTypes().size() == 1 && |
2146 | "Expected Src of EXTRACT_SUBREG to have one result type" ); |
2147 | |
2148 | const auto SrcRCDstRCPair = |
2149 | (*SuperClass)->getMatchingSubClassWithSubRegs(RegBank&: CGRegs, SubIdx: *SubIdx); |
2150 | if (!SrcRCDstRCPair) { |
2151 | return failedImport(Reason: "subreg index is incompatible " |
2152 | "with inferred reg class" ); |
2153 | } |
2154 | |
2155 | assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass" ); |
2156 | M.addAction<ConstrainOperandToRegClassAction>(args: 0, args: 0, |
2157 | args&: *SrcRCDstRCPair->second); |
2158 | M.addAction<ConstrainOperandToRegClassAction>(args: 0, args: 1, args&: *SrcRCDstRCPair->first); |
2159 | } else if (DstIName == "INSERT_SUBREG" ) { |
2160 | assert(Src.getExtTypes().size() == 1 && |
2161 | "Expected Src of INSERT_SUBREG to have one result type" ); |
2162 | // We need to constrain the destination, a super regsister source, and a |
2163 | // subregister source. |
2164 | auto SubClass = inferRegClassFromPattern(N: Dst.getChild(N: 1)); |
2165 | if (!SubClass) |
2166 | return failedImport( |
2167 | Reason: "Cannot infer register class from INSERT_SUBREG operand #1" ); |
2168 | auto SuperClass = inferSuperRegisterClassForNode( |
2169 | Ty: Src.getExtType(ResNo: 0), SuperRegNode: Dst.getChild(N: 0), SubRegIdxNode: Dst.getChild(N: 2)); |
2170 | if (!SuperClass) |
2171 | return failedImport( |
2172 | Reason: "Cannot infer register class for INSERT_SUBREG operand #0" ); |
2173 | M.addAction<ConstrainOperandToRegClassAction>(args: 0, args: 0, args: **SuperClass); |
2174 | M.addAction<ConstrainOperandToRegClassAction>(args: 0, args: 1, args: **SuperClass); |
2175 | M.addAction<ConstrainOperandToRegClassAction>(args: 0, args: 2, args: **SubClass); |
2176 | } else if (DstIName == "SUBREG_TO_REG" ) { |
2177 | // We need to constrain the destination and subregister source. |
2178 | assert(Src.getExtTypes().size() == 1 && |
2179 | "Expected Src of SUBREG_TO_REG to have one result type" ); |
2180 | |
2181 | // Attempt to infer the subregister source from the first child. If it has |
2182 | // an explicitly given register class, we'll use that. Otherwise, we will |
2183 | // fail. |
2184 | auto SubClass = inferRegClassFromPattern(N: Dst.getChild(N: 1)); |
2185 | if (!SubClass) |
2186 | return failedImport( |
2187 | Reason: "Cannot infer register class from SUBREG_TO_REG child #1" ); |
2188 | // We don't have a child to look at that might have a super register node. |
2189 | auto SuperClass = |
2190 | inferSuperRegisterClass(Ty: Src.getExtType(ResNo: 0), SubRegIdxNode: Dst.getChild(N: 2)); |
2191 | if (!SuperClass) |
2192 | return failedImport( |
2193 | Reason: "Cannot infer register class for SUBREG_TO_REG operand #0" ); |
2194 | M.addAction<ConstrainOperandToRegClassAction>(args: 0, args: 0, args: **SuperClass); |
2195 | M.addAction<ConstrainOperandToRegClassAction>(args: 0, args: 2, args: **SubClass); |
2196 | } else if (DstIName == "REG_SEQUENCE" ) { |
2197 | auto SuperClass = inferRegClassFromPattern(N: Dst.getChild(N: 0)); |
2198 | |
2199 | M.addAction<ConstrainOperandToRegClassAction>(args: 0, args: 0, args: **SuperClass); |
2200 | |
2201 | unsigned Num = Dst.getNumChildren(); |
2202 | for (unsigned I = 1; I != Num; I += 2) { |
2203 | TreePatternNode &SubRegChild = Dst.getChild(N: I + 1); |
2204 | |
2205 | auto SubIdx = inferSubRegIndexForNode(SubRegIdxNode: SubRegChild); |
2206 | if (!SubIdx) |
2207 | return failedImport(Reason: "REG_SEQUENCE child is not a subreg index" ); |
2208 | |
2209 | const auto SrcRCDstRCPair = |
2210 | (*SuperClass)->getMatchingSubClassWithSubRegs(RegBank&: CGRegs, SubIdx: *SubIdx); |
2211 | |
2212 | M.addAction<ConstrainOperandToRegClassAction>(args: 0, args&: I, |
2213 | args&: *SrcRCDstRCPair->second); |
2214 | } |
2215 | } else { |
2216 | M.addAction<ConstrainOperandsToDefinitionAction>(args: 0); |
2217 | } |
2218 | |
2219 | // Erase the root. |
2220 | unsigned RootInsnID = M.getInsnVarID(InsnMatcher); |
2221 | M.addAction<EraseInstAction>(args&: RootInsnID); |
2222 | |
2223 | // We're done with this pattern! It's eligible for GISel emission; return it. |
2224 | ++NumPatternImported; |
2225 | return std::move(M); |
2226 | } |
2227 | |
2228 | MatchTable |
2229 | GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules, |
2230 | bool Optimize, bool WithCoverage) { |
2231 | std::vector<Matcher *> InputRules; |
2232 | for (Matcher &Rule : Rules) |
2233 | InputRules.push_back(x: &Rule); |
2234 | |
2235 | if (!Optimize) |
2236 | return MatchTable::buildTable(Rules: InputRules, WithCoverage); |
2237 | |
2238 | unsigned CurrentOrdering = 0; |
2239 | StringMap<unsigned> OpcodeOrder; |
2240 | for (RuleMatcher &Rule : Rules) { |
2241 | const StringRef Opcode = Rule.getOpcode(); |
2242 | assert(!Opcode.empty() && "Didn't expect an undefined opcode" ); |
2243 | if (OpcodeOrder.count(Key: Opcode) == 0) |
2244 | OpcodeOrder[Opcode] = CurrentOrdering++; |
2245 | } |
2246 | |
2247 | llvm::stable_sort(Range&: InputRules, C: [&OpcodeOrder](const Matcher *A, |
2248 | const Matcher *B) { |
2249 | auto *L = static_cast<const RuleMatcher *>(A); |
2250 | auto *R = static_cast<const RuleMatcher *>(B); |
2251 | return std::tuple(OpcodeOrder[L->getOpcode()], L->getNumOperands()) < |
2252 | std::tuple(OpcodeOrder[R->getOpcode()], R->getNumOperands()); |
2253 | }); |
2254 | |
2255 | for (Matcher *Rule : InputRules) |
2256 | Rule->optimize(); |
2257 | |
2258 | std::vector<std::unique_ptr<Matcher>> MatcherStorage; |
2259 | std::vector<Matcher *> OptRules = |
2260 | optimizeRules<GroupMatcher>(Rules: InputRules, MatcherStorage); |
2261 | |
2262 | for (Matcher *Rule : OptRules) |
2263 | Rule->optimize(); |
2264 | |
2265 | OptRules = optimizeRules<SwitchMatcher>(Rules: OptRules, MatcherStorage); |
2266 | |
2267 | return MatchTable::buildTable(Rules: OptRules, WithCoverage); |
2268 | } |
2269 | |
2270 | void GlobalISelEmitter::emitAdditionalImpl(raw_ostream &OS) { |
2271 | OS << "bool " << getClassName() |
2272 | << "::selectImpl(MachineInstr &I, CodeGenCoverage " |
2273 | "&CoverageInfo) const {\n" |
2274 | << " const PredicateBitset AvailableFeatures = " |
2275 | "getAvailableFeatures();\n" |
2276 | << " MachineIRBuilder B(I);\n" |
2277 | << " State.MIs.clear();\n" |
2278 | << " State.MIs.push_back(&I);\n\n" |
2279 | << " if (executeMatchTable(*this, State, ExecInfo, B" |
2280 | << ", getMatchTable(), TII, MF->getRegInfo(), TRI, RBI, AvailableFeatures" |
2281 | << ", &CoverageInfo)) {\n" |
2282 | << " return true;\n" |
2283 | << " }\n\n" |
2284 | << " return false;\n" |
2285 | << "}\n\n" ; |
2286 | } |
2287 | |
2288 | void GlobalISelEmitter::emitMIPredicateFns(raw_ostream &OS) { |
2289 | std::vector<Record *> MatchedRecords; |
2290 | std::copy_if(first: AllPatFrags.begin(), last: AllPatFrags.end(), |
2291 | result: std::back_inserter(x&: MatchedRecords), pred: [&](Record *R) { |
2292 | return !R->getValueAsString(FieldName: "GISelPredicateCode" ).empty(); |
2293 | }); |
2294 | emitMIPredicateFnsImpl<Record *>( |
2295 | OS, |
2296 | AdditionalDecls: " const MachineFunction &MF = *MI.getParent()->getParent();\n" |
2297 | " const MachineRegisterInfo &MRI = MF.getRegInfo();\n" |
2298 | " const auto &Operands = State.RecordedOperands;\n" |
2299 | " (void)Operands;\n" |
2300 | " (void)MRI;" , |
2301 | Predicates: ArrayRef<Record *>(MatchedRecords), GetPredEnumName: &getPatFragPredicateEnumName, |
2302 | GetPredCode: [&](Record *R) { return R->getValueAsString(FieldName: "GISelPredicateCode" ); }, |
2303 | Comment: "PatFrag predicates." ); |
2304 | } |
2305 | |
2306 | void GlobalISelEmitter::emitI64ImmPredicateFns(raw_ostream &OS) { |
2307 | std::vector<Record *> MatchedRecords; |
2308 | std::copy_if(first: AllPatFrags.begin(), last: AllPatFrags.end(), |
2309 | result: std::back_inserter(x&: MatchedRecords), pred: [&](Record *R) { |
2310 | bool Unset; |
2311 | return !R->getValueAsString(FieldName: "ImmediateCode" ).empty() && |
2312 | !R->getValueAsBitOrUnset(FieldName: "IsAPFloat" , Unset) && |
2313 | !R->getValueAsBit(FieldName: "IsAPInt" ); |
2314 | }); |
2315 | emitImmPredicateFnsImpl<Record *>( |
2316 | OS, TypeIdentifier: "I64" , ArgType: "int64_t" , Predicates: ArrayRef<Record *>(MatchedRecords), |
2317 | GetPredEnumName: &getPatFragPredicateEnumName, |
2318 | GetPredCode: [&](Record *R) { return R->getValueAsString(FieldName: "ImmediateCode" ); }, |
2319 | Comment: "PatFrag predicates." ); |
2320 | } |
2321 | |
2322 | void GlobalISelEmitter::emitAPFloatImmPredicateFns(raw_ostream &OS) { |
2323 | std::vector<Record *> MatchedRecords; |
2324 | std::copy_if(first: AllPatFrags.begin(), last: AllPatFrags.end(), |
2325 | result: std::back_inserter(x&: MatchedRecords), pred: [&](Record *R) { |
2326 | bool Unset; |
2327 | return !R->getValueAsString(FieldName: "ImmediateCode" ).empty() && |
2328 | R->getValueAsBitOrUnset(FieldName: "IsAPFloat" , Unset); |
2329 | }); |
2330 | emitImmPredicateFnsImpl<Record *>( |
2331 | OS, TypeIdentifier: "APFloat" , ArgType: "const APFloat &" , Predicates: ArrayRef<Record *>(MatchedRecords), |
2332 | GetPredEnumName: &getPatFragPredicateEnumName, |
2333 | GetPredCode: [&](Record *R) { return R->getValueAsString(FieldName: "ImmediateCode" ); }, |
2334 | Comment: "PatFrag predicates." ); |
2335 | } |
2336 | |
2337 | void GlobalISelEmitter::emitAPIntImmPredicateFns(raw_ostream &OS) { |
2338 | std::vector<Record *> MatchedRecords; |
2339 | std::copy_if(first: AllPatFrags.begin(), last: AllPatFrags.end(), |
2340 | result: std::back_inserter(x&: MatchedRecords), pred: [&](Record *R) { |
2341 | return !R->getValueAsString(FieldName: "ImmediateCode" ).empty() && |
2342 | R->getValueAsBit(FieldName: "IsAPInt" ); |
2343 | }); |
2344 | emitImmPredicateFnsImpl<Record *>( |
2345 | OS, TypeIdentifier: "APInt" , ArgType: "const APInt &" , Predicates: ArrayRef<Record *>(MatchedRecords), |
2346 | GetPredEnumName: &getPatFragPredicateEnumName, |
2347 | GetPredCode: [&](Record *R) { return R->getValueAsString(FieldName: "ImmediateCode" ); }, |
2348 | Comment: "PatFrag predicates." ); |
2349 | } |
2350 | |
2351 | void GlobalISelEmitter::emitTestSimplePredicate(raw_ostream &OS) { |
2352 | OS << "bool " << getClassName() << "::testSimplePredicate(unsigned) const {\n" |
2353 | << " llvm_unreachable(\"" + getClassName() + |
2354 | " does not support simple predicates!\");\n" |
2355 | << " return false;\n" |
2356 | << "}\n" ; |
2357 | } |
2358 | |
2359 | void GlobalISelEmitter::emitRunCustomAction(raw_ostream &OS) { |
2360 | OS << "bool " << getClassName() |
2361 | << "::runCustomAction(unsigned, const MatcherState&, NewMIVector &) const " |
2362 | "{\n" |
2363 | << " llvm_unreachable(\"" + getClassName() + |
2364 | " does not support custom C++ actions!\");\n" |
2365 | << "}\n" ; |
2366 | } |
2367 | |
2368 | void GlobalISelEmitter::postProcessRule(RuleMatcher &M) { |
2369 | SmallPtrSet<Record *, 16> UsedRegs; |
2370 | |
2371 | // TODO: deal with subregs? |
2372 | for (auto &A : M.actions()) { |
2373 | auto *MI = dyn_cast<BuildMIAction>(Val: A.get()); |
2374 | if (!MI) |
2375 | continue; |
2376 | |
2377 | for (auto *Use : MI->getCGI()->ImplicitUses) |
2378 | UsedRegs.insert(Ptr: Use); |
2379 | } |
2380 | |
2381 | for (auto &A : M.actions()) { |
2382 | auto *MI = dyn_cast<BuildMIAction>(Val: A.get()); |
2383 | if (!MI) |
2384 | continue; |
2385 | |
2386 | for (auto *Def : MI->getCGI()->ImplicitDefs) { |
2387 | if (!UsedRegs.contains(Ptr: Def)) |
2388 | MI->setDeadImplicitDef(Def); |
2389 | } |
2390 | } |
2391 | } |
2392 | |
2393 | void GlobalISelEmitter::run(raw_ostream &OS) { |
2394 | if (!UseCoverageFile.empty()) { |
2395 | RuleCoverage = CodeGenCoverage(); |
2396 | auto RuleCoverageBufOrErr = MemoryBuffer::getFile(Filename: UseCoverageFile); |
2397 | if (!RuleCoverageBufOrErr) { |
2398 | PrintWarning(WarningLoc: SMLoc(), Msg: "Missing rule coverage data" ); |
2399 | RuleCoverage = std::nullopt; |
2400 | } else { |
2401 | if (!RuleCoverage->parse(Buffer&: *RuleCoverageBufOrErr.get(), BackendName: Target.getName())) { |
2402 | PrintWarning(WarningLoc: SMLoc(), Msg: "Ignoring invalid or missing rule coverage data" ); |
2403 | RuleCoverage = std::nullopt; |
2404 | } |
2405 | } |
2406 | } |
2407 | |
2408 | // Track the run-time opcode values |
2409 | gatherOpcodeValues(); |
2410 | // Track the run-time LLT ID values |
2411 | gatherTypeIDValues(); |
2412 | |
2413 | // Track the GINodeEquiv definitions. |
2414 | gatherNodeEquivs(); |
2415 | |
2416 | AllPatFrags = RK.getAllDerivedDefinitions(ClassName: "PatFrags" ); |
2417 | |
2418 | emitSourceFileHeader( |
2419 | Desc: ("Global Instruction Selector for the " + Target.getName() + " target" ) |
2420 | .str(), |
2421 | OS); |
2422 | std::vector<RuleMatcher> Rules; |
2423 | // Look through the SelectionDAG patterns we found, possibly emitting some. |
2424 | for (const PatternToMatch &Pat : CGP.ptms()) { |
2425 | ++NumPatternTotal; |
2426 | |
2427 | if (Pat.getGISelShouldIgnore()) |
2428 | continue; // skip without warning |
2429 | auto MatcherOrErr = runOnPattern(P: Pat); |
2430 | |
2431 | // The pattern analysis can fail, indicating an unsupported pattern. |
2432 | // Report that if we've been asked to do so. |
2433 | if (auto Err = MatcherOrErr.takeError()) { |
2434 | if (WarnOnSkippedPatterns) { |
2435 | PrintWarning(WarningLoc: Pat.getSrcRecord()->getLoc(), |
2436 | Msg: "Skipped pattern: " + toString(E: std::move(Err))); |
2437 | } else { |
2438 | consumeError(Err: std::move(Err)); |
2439 | } |
2440 | ++NumPatternImportsSkipped; |
2441 | continue; |
2442 | } |
2443 | |
2444 | if (RuleCoverage) { |
2445 | if (RuleCoverage->isCovered(RuleID: MatcherOrErr->getRuleID())) |
2446 | ++NumPatternsTested; |
2447 | else |
2448 | PrintWarning(WarningLoc: Pat.getSrcRecord()->getLoc(), |
2449 | Msg: "Pattern is not covered by a test" ); |
2450 | } |
2451 | Rules.push_back(x: std::move(MatcherOrErr.get())); |
2452 | postProcessRule(M&: Rules.back()); |
2453 | } |
2454 | |
2455 | // Comparison function to order records by name. |
2456 | auto OrderByName = [](const Record *A, const Record *B) { |
2457 | return A->getName() < B->getName(); |
2458 | }; |
2459 | |
2460 | std::vector<Record *> ComplexPredicates = |
2461 | RK.getAllDerivedDefinitions(ClassName: "GIComplexOperandMatcher" ); |
2462 | llvm::sort(C&: ComplexPredicates, Comp: OrderByName); |
2463 | |
2464 | std::vector<StringRef> CustomRendererFns; |
2465 | transform(Range: RK.getAllDerivedDefinitions(ClassName: "GICustomOperandRenderer" ), |
2466 | d_first: std::back_inserter(x&: CustomRendererFns), F: [](const auto &Record) { |
2467 | return Record->getValueAsString("RendererFn" ); |
2468 | }); |
2469 | // Sort and remove duplicates to get a list of unique renderer functions, in |
2470 | // case some were mentioned more than once. |
2471 | llvm::sort(C&: CustomRendererFns); |
2472 | CustomRendererFns.erase(first: llvm::unique(R&: CustomRendererFns), |
2473 | last: CustomRendererFns.end()); |
2474 | |
2475 | // Create a table containing the LLT objects needed by the matcher and an enum |
2476 | // for the matcher to reference them with. |
2477 | std::vector<LLTCodeGen> TypeObjects; |
2478 | append_range(C&: TypeObjects, R&: KnownTypes); |
2479 | llvm::sort(C&: TypeObjects); |
2480 | |
2481 | // Sort rules. |
2482 | llvm::stable_sort(Range&: Rules, C: [&](const RuleMatcher &A, const RuleMatcher &B) { |
2483 | int ScoreA = RuleMatcherScores[A.getRuleID()]; |
2484 | int ScoreB = RuleMatcherScores[B.getRuleID()]; |
2485 | if (ScoreA > ScoreB) |
2486 | return true; |
2487 | if (ScoreB > ScoreA) |
2488 | return false; |
2489 | if (A.isHigherPriorityThan(B)) { |
2490 | assert(!B.isHigherPriorityThan(A) && "Cannot be more important " |
2491 | "and less important at " |
2492 | "the same time" ); |
2493 | return true; |
2494 | } |
2495 | return false; |
2496 | }); |
2497 | |
2498 | unsigned MaxTemporaries = 0; |
2499 | for (const auto &Rule : Rules) |
2500 | MaxTemporaries = std::max(a: MaxTemporaries, b: Rule.countRendererFns()); |
2501 | |
2502 | // Build match table |
2503 | const MatchTable Table = |
2504 | buildMatchTable(Rules, Optimize: OptimizeMatchTable, WithCoverage: GenerateCoverage); |
2505 | |
2506 | emitPredicateBitset(OS, IfDefName: "GET_GLOBALISEL_PREDICATE_BITSET" ); |
2507 | emitTemporariesDecl(OS, IfDefName: "GET_GLOBALISEL_TEMPORARIES_DECL" ); |
2508 | emitTemporariesInit(OS, MaxTemporaries, IfDefName: "GET_GLOBALISEL_TEMPORARIES_INIT" ); |
2509 | emitExecutorImpl(OS, Table, TypeObjects, Rules, ComplexOperandMatchers: ComplexPredicates, |
2510 | CustomOperandRenderers: CustomRendererFns, IfDefName: "GET_GLOBALISEL_IMPL" ); |
2511 | emitPredicatesDecl(OS, IfDefName: "GET_GLOBALISEL_PREDICATES_DECL" ); |
2512 | emitPredicatesInit(OS, IfDefName: "GET_GLOBALISEL_PREDICATES_INIT" ); |
2513 | } |
2514 | |
2515 | void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) { |
2516 | SubtargetFeatures.try_emplace(k: Predicate, args&: Predicate, args: SubtargetFeatures.size()); |
2517 | } |
2518 | |
2519 | unsigned GlobalISelEmitter::declareHwModeCheck(StringRef HwModeFeatures) { |
2520 | return HwModes.emplace(args: HwModeFeatures.str(), args: HwModes.size()).first->second; |
2521 | } |
2522 | |
2523 | } // end anonymous namespace |
2524 | |
2525 | //===----------------------------------------------------------------------===// |
2526 | |
2527 | static TableGen::Emitter::OptClass<GlobalISelEmitter> |
2528 | X("gen-global-isel" , "Generate GlobalISel selector" ); |
2529 | |