1#ifndef MEMPROF_DATA_INC
2#define MEMPROF_DATA_INC
3/*===-- MemProfData.inc - MemProf profiling runtime structures -*- C++ -*-=== *\
4|*
5|* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
6|* See https://llvm.org/LICENSE.txt for license information.
7|* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
8|*
9\*===----------------------------------------------------------------------===*/
10/*
11 * This is the main file that defines all the data structure, signature,
12 * constant literals that are shared across profiling runtime library,
13 * and host tools (reader/writer).
14 *
15 * This file has two identical copies. The primary copy lives in LLVM and
16 * the other one sits in compiler-rt/include/profile directory. To make changes
17 * in this file, first modify the primary copy and copy it over to compiler-rt.
18 * Testing of any change in this file can start only after the two copies are
19 * synced up.
20 *
21\*===----------------------------------------------------------------------===*/
22#include <string.h>
23
24#ifdef _MSC_VER
25#define PACKED(...) __pragma(pack(push,1)) __VA_ARGS__ __pragma(pack(pop))
26#else
27#define PACKED(...) __VA_ARGS__ __attribute__((__packed__))
28#endif
29
30// A 64-bit magic number to uniquely identify the raw binary memprof profile file.
31#define MEMPROF_RAW_MAGIC_64 \
32 ((uint64_t)255 << 56 | (uint64_t)'m' << 48 | (uint64_t)'p' << 40 | (uint64_t)'r' << 32 | \
33 (uint64_t)'o' << 24 | (uint64_t)'f' << 16 | (uint64_t)'r' << 8 | (uint64_t)129)
34
35// The version number of the raw binary format.
36#define MEMPROF_RAW_VERSION 4ULL
37
38// Currently supported versions.
39#define MEMPROF_RAW_SUPPORTED_VERSIONS \
40 { 3ULL, 4ULL }
41
42#define MEMPROF_V3_MIB_SIZE 132ULL;
43
44#define MEMPROF_BUILDID_MAX_SIZE 32ULL
45
46namespace llvm {
47namespace memprof {
48// A struct describing the header used for the raw binary memprof profile format.
49PACKED(struct Header {
50 uint64_t Magic;
51 uint64_t Version;
52 uint64_t TotalSize;
53 uint64_t SegmentOffset;
54 uint64_t MIBOffset;
55 uint64_t StackOffset;
56});
57
58// A struct describing the information necessary to describe a /proc/maps
59// segment entry for a particular binary/library identified by its build id.
60PACKED(struct SegmentEntry {
61 uint64_t Start;
62 uint64_t End;
63 uint64_t Offset;
64 uint64_t BuildIdSize;
65 uint8_t BuildId[MEMPROF_BUILDID_MAX_SIZE] = {0};
66
67 // This constructor is only used in tests so don't set the BuildId.
68 SegmentEntry(uint64_t S, uint64_t E, uint64_t O)
69 : Start(S), End(E), Offset(O), BuildIdSize(0) {}
70
71 SegmentEntry(const SegmentEntry& S) {
72 Start = S.Start;
73 End = S.End;
74 Offset = S.Offset;
75 BuildIdSize = S.BuildIdSize;
76 memcpy(BuildId, S.BuildId, S.BuildIdSize);
77 }
78
79 SegmentEntry& operator=(const SegmentEntry& S) {
80 Start = S.Start;
81 End = S.End;
82 Offset = S.Offset;
83 BuildIdSize = S.BuildIdSize;
84 memcpy(BuildId, S.BuildId, S.BuildIdSize);
85 return *this;
86 }
87
88 bool operator==(const SegmentEntry& S) const {
89 return Start == S.Start && End == S.End && Offset == S.Offset &&
90 BuildIdSize == S.BuildIdSize &&
91 memcmp(BuildId, S.BuildId, S.BuildIdSize) == 0;
92 }
93});
94
95// Packed struct definition for MSVC. We can't use the PACKED macro defined in
96// MemProfData.inc since it would mean we are embedding a directive (the
97// #include for MIBEntryDef) into the macros which is undefined behaviour.
98#ifdef _MSC_VER
99__pragma(pack(push,1))
100#endif
101
102// A struct representing the heap allocation characteristics of a particular
103// runtime context. This struct is shared between the compiler-rt runtime and
104// the raw profile reader. The indexed format uses a separate, self-describing
105// backwards compatible format.
106struct MemInfoBlock{
107
108#define MIBEntryDef(NameTag, Name, Type) Type Name;
109#include "MIBEntryDef.inc"
110#undef MIBEntryDef
111
112bool operator==(const MemInfoBlock& Other) const {
113 bool IsEqual = true;
114#define MIBEntryDef(NameTag, Name, Type) \
115 IsEqual = (IsEqual && Name == Other.Name);
116#include "MIBEntryDef.inc"
117#undef MIBEntryDef
118 return IsEqual;
119}
120
121MemInfoBlock() {
122#define MIBEntryDef(NameTag, Name, Type) Name = Type();
123#include "MIBEntryDef.inc"
124#undef MIBEntryDef
125}
126
127MemInfoBlock(uint32_t Size, uint64_t AccessCount, uint32_t AllocTs,
128 uint32_t DeallocTs, uint32_t AllocCpu, uint32_t DeallocCpu,
129 uintptr_t Histogram, uint32_t HistogramSize)
130 : MemInfoBlock() {
131 AllocCount = 1U;
132 TotalAccessCount = AccessCount;
133 MinAccessCount = AccessCount;
134 MaxAccessCount = AccessCount;
135 TotalSize = Size;
136 MinSize = Size;
137 MaxSize = Size;
138 AllocTimestamp = AllocTs;
139 DeallocTimestamp = DeallocTs;
140 TotalLifetime = DeallocTimestamp - AllocTimestamp;
141 MinLifetime = TotalLifetime;
142 MaxLifetime = TotalLifetime;
143 // Access density is accesses per byte. Multiply by 100 to include the
144 // fractional part.
145 TotalAccessDensity = AccessCount * 100 / Size;
146 MinAccessDensity = TotalAccessDensity;
147 MaxAccessDensity = TotalAccessDensity;
148 // Lifetime access density is the access density per second of lifetime.
149 // Multiply by 1000 to convert denominator lifetime to seconds (using a
150 // minimum lifetime of 1ms to avoid divide by 0. Do the multiplication first
151 // to reduce truncations to 0.
152 TotalLifetimeAccessDensity =
153 TotalAccessDensity * 1000 / (TotalLifetime ? TotalLifetime : 1);
154 MinLifetimeAccessDensity = TotalLifetimeAccessDensity;
155 MaxLifetimeAccessDensity = TotalLifetimeAccessDensity;
156 AllocCpuId = AllocCpu;
157 DeallocCpuId = DeallocCpu;
158 NumMigratedCpu = AllocCpuId != DeallocCpuId;
159 AccessHistogramSize = HistogramSize;
160 AccessHistogram = Histogram;
161}
162
163void Merge(const MemInfoBlock &newMIB) {
164 AllocCount += newMIB.AllocCount;
165
166 TotalAccessCount += newMIB.TotalAccessCount;
167 MinAccessCount = newMIB.MinAccessCount < MinAccessCount ? newMIB.MinAccessCount : MinAccessCount;
168 MaxAccessCount = newMIB.MaxAccessCount > MaxAccessCount ? newMIB.MaxAccessCount : MaxAccessCount;
169
170 TotalSize += newMIB.TotalSize;
171 MinSize = newMIB.MinSize < MinSize ? newMIB.MinSize : MinSize;
172 MaxSize = newMIB.MaxSize > MaxSize ? newMIB.MaxSize : MaxSize;
173
174 TotalLifetime += newMIB.TotalLifetime;
175 MinLifetime = newMIB.MinLifetime < MinLifetime ? newMIB.MinLifetime : MinLifetime;
176 MaxLifetime = newMIB.MaxLifetime > MaxLifetime ? newMIB.MaxLifetime : MaxLifetime;
177
178 TotalAccessDensity += newMIB.TotalAccessDensity;
179 MinAccessDensity = newMIB.MinAccessDensity < MinAccessDensity
180 ? newMIB.MinAccessDensity
181 : MinAccessDensity;
182 MaxAccessDensity = newMIB.MaxAccessDensity > MaxAccessDensity
183 ? newMIB.MaxAccessDensity
184 : MaxAccessDensity;
185
186 TotalLifetimeAccessDensity += newMIB.TotalLifetimeAccessDensity;
187 MinLifetimeAccessDensity =
188 newMIB.MinLifetimeAccessDensity < MinLifetimeAccessDensity
189 ? newMIB.MinLifetimeAccessDensity
190 : MinLifetimeAccessDensity;
191 MaxLifetimeAccessDensity =
192 newMIB.MaxLifetimeAccessDensity > MaxLifetimeAccessDensity
193 ? newMIB.MaxLifetimeAccessDensity
194 : MaxLifetimeAccessDensity;
195
196 // We know newMIB was deallocated later, so just need to check if it was
197 // allocated before last one deallocated.
198 NumLifetimeOverlaps += newMIB.AllocTimestamp < DeallocTimestamp;
199 AllocTimestamp = newMIB.AllocTimestamp;
200 DeallocTimestamp = newMIB.DeallocTimestamp;
201
202 NumSameAllocCpu += AllocCpuId == newMIB.AllocCpuId;
203 NumSameDeallocCpu += DeallocCpuId == newMIB.DeallocCpuId;
204 AllocCpuId = newMIB.AllocCpuId;
205 DeallocCpuId = newMIB.DeallocCpuId;
206
207 // For merging histograms, we always keep the longer histogram, and add
208 // values of shorter histogram to larger one.
209 uintptr_t ShorterHistogram;
210 uint32_t ShorterHistogramSize;
211 if (newMIB.AccessHistogramSize > AccessHistogramSize) {
212 ShorterHistogram = AccessHistogram;
213 ShorterHistogramSize = AccessHistogramSize;
214 // Swap histogram of current to larger histogram
215 AccessHistogram = newMIB.AccessHistogram;
216 AccessHistogramSize = newMIB.AccessHistogramSize;
217 } else {
218 ShorterHistogram = newMIB.AccessHistogram;
219 ShorterHistogramSize = newMIB.AccessHistogramSize;
220 }
221 for (size_t i = 0; i < ShorterHistogramSize; ++i) {
222 ((uint64_t *)AccessHistogram)[i] += ((uint64_t *)ShorterHistogram)[i];
223 }
224}
225
226#ifdef _MSC_VER
227} __pragma(pack(pop));
228#else
229} __attribute__((__packed__));
230#endif
231
232} // namespace memprof
233} // namespace llvm
234
235#endif
236