1//===- FuzzerMutate.cpp - Mutate a test input -----------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8// Mutate a test input.
9//===----------------------------------------------------------------------===//
10
11#include "FuzzerDefs.h"
12#include "FuzzerExtFunctions.h"
13#include "FuzzerIO.h"
14#include "FuzzerMutate.h"
15#include "FuzzerOptions.h"
16#include "FuzzerTracePC.h"
17
18namespace fuzzer {
19
20const size_t Dictionary::kMaxDictSize;
21static const size_t kMaxMutationsToPrint = 10;
22
23static void PrintASCII(const Word &W, const char *PrintAfter) {
24 PrintASCII(W.data(), W.size(), PrintAfter);
25}
26
27MutationDispatcher::MutationDispatcher(Random &Rand,
28 const FuzzingOptions &Options)
29 : Rand(Rand), Options(Options) {
30 DefaultMutators.insert(
31 DefaultMutators.begin(),
32 {
33 {&MutationDispatcher::Mutate_EraseBytes, "EraseBytes"},
34 {&MutationDispatcher::Mutate_InsertByte, "InsertByte"},
35 {&MutationDispatcher::Mutate_InsertRepeatedBytes,
36 "InsertRepeatedBytes"},
37 {&MutationDispatcher::Mutate_ChangeByte, "ChangeByte"},
38 {&MutationDispatcher::Mutate_ChangeBit, "ChangeBit"},
39 {&MutationDispatcher::Mutate_ShuffleBytes, "ShuffleBytes"},
40 {&MutationDispatcher::Mutate_ChangeASCIIInteger, "ChangeASCIIInt"},
41 {&MutationDispatcher::Mutate_ChangeBinaryInteger, "ChangeBinInt"},
42 {&MutationDispatcher::Mutate_CopyPart, "CopyPart"},
43 {&MutationDispatcher::Mutate_CrossOver, "CrossOver"},
44 {&MutationDispatcher::Mutate_AddWordFromManualDictionary,
45 "ManualDict"},
46 {&MutationDispatcher::Mutate_AddWordFromPersistentAutoDictionary,
47 "PersAutoDict"},
48 });
49 if(Options.UseCmp)
50 DefaultMutators.push_back(
51 {&MutationDispatcher::Mutate_AddWordFromTORC, "CMP"});
52
53 if (EF->LLVMFuzzerCustomMutator)
54 Mutators.push_back({&MutationDispatcher::Mutate_Custom, "Custom"});
55 else
56 Mutators = DefaultMutators;
57
58 if (EF->LLVMFuzzerCustomCrossOver)
59 Mutators.push_back(
60 {&MutationDispatcher::Mutate_CustomCrossOver, "CustomCrossOver"});
61}
62
63static char RandCh(Random &Rand) {
64 if (Rand.RandBool())
65 return static_cast<char>(Rand(256));
66 const char Special[] = "!*'();:@&=+$,/?%#[]012Az-`~.\xff\x00";
67 return Special[Rand(sizeof(Special) - 1)];
68}
69
70size_t MutationDispatcher::Mutate_Custom(uint8_t *Data, size_t Size,
71 size_t MaxSize) {
72 if (EF->__msan_unpoison)
73 EF->__msan_unpoison(Data, Size);
74 if (EF->__msan_unpoison_param)
75 EF->__msan_unpoison_param(4);
76 return EF->LLVMFuzzerCustomMutator(Data, Size, MaxSize,
77 Rand.Rand<unsigned int>());
78}
79
80size_t MutationDispatcher::Mutate_CustomCrossOver(uint8_t *Data, size_t Size,
81 size_t MaxSize) {
82 if (Size == 0)
83 return 0;
84 if (!CrossOverWith) return 0;
85 const Unit &Other = *CrossOverWith;
86 if (Other.empty())
87 return 0;
88 CustomCrossOverInPlaceHere.resize(MaxSize);
89 auto &U = CustomCrossOverInPlaceHere;
90
91 if (EF->__msan_unpoison) {
92 EF->__msan_unpoison(Data, Size);
93 EF->__msan_unpoison(Other.data(), Other.size());
94 EF->__msan_unpoison(U.data(), U.size());
95 }
96 if (EF->__msan_unpoison_param)
97 EF->__msan_unpoison_param(7);
98 size_t NewSize = EF->LLVMFuzzerCustomCrossOver(
99 Data, Size, Other.data(), Other.size(), U.data(), U.size(),
100 Rand.Rand<unsigned int>());
101
102 if (!NewSize)
103 return 0;
104 assert(NewSize <= MaxSize && "CustomCrossOver returned overisized unit");
105 memcpy(Data, U.data(), NewSize);
106 return NewSize;
107}
108
109size_t MutationDispatcher::Mutate_ShuffleBytes(uint8_t *Data, size_t Size,
110 size_t MaxSize) {
111 if (Size > MaxSize || Size == 0) return 0;
112 size_t ShuffleAmount =
113 Rand(std::min(Size, (size_t)8)) + 1; // [1,8] and <= Size.
114 size_t ShuffleStart = Rand(Size - ShuffleAmount);
115 assert(ShuffleStart + ShuffleAmount <= Size);
116 std::shuffle(Data + ShuffleStart, Data + ShuffleStart + ShuffleAmount, Rand);
117 return Size;
118}
119
120size_t MutationDispatcher::Mutate_EraseBytes(uint8_t *Data, size_t Size,
121 size_t MaxSize) {
122 if (Size <= 1) return 0;
123 size_t N = Rand(Size / 2) + 1;
124 assert(N < Size);
125 size_t Idx = Rand(Size - N + 1);
126 // Erase Data[Idx:Idx+N].
127 memmove(Data + Idx, Data + Idx + N, Size - Idx - N);
128 // Printf("Erase: %zd %zd => %zd; Idx %zd\n", N, Size, Size - N, Idx);
129 return Size - N;
130}
131
132size_t MutationDispatcher::Mutate_InsertByte(uint8_t *Data, size_t Size,
133 size_t MaxSize) {
134 if (Size >= MaxSize) return 0;
135 size_t Idx = Rand(Size + 1);
136 // Insert new value at Data[Idx].
137 memmove(Data + Idx + 1, Data + Idx, Size - Idx);
138 Data[Idx] = RandCh(Rand);
139 return Size + 1;
140}
141
142size_t MutationDispatcher::Mutate_InsertRepeatedBytes(uint8_t *Data,
143 size_t Size,
144 size_t MaxSize) {
145 const size_t kMinBytesToInsert = 3;
146 if (Size + kMinBytesToInsert >= MaxSize) return 0;
147 size_t MaxBytesToInsert = std::min(MaxSize - Size, (size_t)128);
148 size_t N = Rand(MaxBytesToInsert - kMinBytesToInsert + 1) + kMinBytesToInsert;
149 assert(Size + N <= MaxSize && N);
150 size_t Idx = Rand(Size + 1);
151 // Insert new values at Data[Idx].
152 memmove(Data + Idx + N, Data + Idx, Size - Idx);
153 // Give preference to 0x00 and 0xff.
154 uint8_t Byte = static_cast<uint8_t>(
155 Rand.RandBool() ? Rand(256) : (Rand.RandBool() ? 0 : 255));
156 for (size_t i = 0; i < N; i++)
157 Data[Idx + i] = Byte;
158 return Size + N;
159}
160
161size_t MutationDispatcher::Mutate_ChangeByte(uint8_t *Data, size_t Size,
162 size_t MaxSize) {
163 if (Size > MaxSize) return 0;
164 size_t Idx = Rand(Size);
165 Data[Idx] = RandCh(Rand);
166 return Size;
167}
168
169size_t MutationDispatcher::Mutate_ChangeBit(uint8_t *Data, size_t Size,
170 size_t MaxSize) {
171 if (Size > MaxSize) return 0;
172 size_t Idx = Rand(Size);
173 Data[Idx] ^= 1 << Rand(8);
174 return Size;
175}
176
177size_t MutationDispatcher::Mutate_AddWordFromManualDictionary(uint8_t *Data,
178 size_t Size,
179 size_t MaxSize) {
180 return AddWordFromDictionary(ManualDictionary, Data, Size, MaxSize);
181}
182
183size_t MutationDispatcher::ApplyDictionaryEntry(uint8_t *Data, size_t Size,
184 size_t MaxSize,
185 DictionaryEntry &DE) {
186 const Word &W = DE.GetW();
187 bool UsePositionHint = DE.HasPositionHint() &&
188 DE.GetPositionHint() + W.size() < Size &&
189 Rand.RandBool();
190 if (Rand.RandBool()) { // Insert W.
191 if (Size + W.size() > MaxSize) return 0;
192 size_t Idx = UsePositionHint ? DE.GetPositionHint() : Rand(Size + 1);
193 memmove(Data + Idx + W.size(), Data + Idx, Size - Idx);
194 memcpy(Data + Idx, W.data(), W.size());
195 Size += W.size();
196 } else { // Overwrite some bytes with W.
197 if (W.size() > Size) return 0;
198 size_t Idx =
199 UsePositionHint ? DE.GetPositionHint() : Rand(Size + 1 - W.size());
200 memcpy(Data + Idx, W.data(), W.size());
201 }
202 return Size;
203}
204
205// Somewhere in the past we have observed a comparison instructions
206// with arguments Arg1 Arg2. This function tries to guess a dictionary
207// entry that will satisfy that comparison.
208// It first tries to find one of the arguments (possibly swapped) in the
209// input and if it succeeds it creates a DE with a position hint.
210// Otherwise it creates a DE with one of the arguments w/o a position hint.
211DictionaryEntry MutationDispatcher::MakeDictionaryEntryFromCMP(
212 const void *Arg1, const void *Arg2,
213 const void *Arg1Mutation, const void *Arg2Mutation,
214 size_t ArgSize, const uint8_t *Data,
215 size_t Size) {
216 bool HandleFirst = Rand.RandBool();
217 const void *ExistingBytes, *DesiredBytes;
218 Word W;
219 const uint8_t *End = Data + Size;
220 for (int Arg = 0; Arg < 2; Arg++) {
221 ExistingBytes = HandleFirst ? Arg1 : Arg2;
222 DesiredBytes = HandleFirst ? Arg2Mutation : Arg1Mutation;
223 HandleFirst = !HandleFirst;
224 W.Set(reinterpret_cast<const uint8_t*>(DesiredBytes), ArgSize);
225 const size_t kMaxNumPositions = 8;
226 size_t Positions[kMaxNumPositions];
227 size_t NumPositions = 0;
228 for (const uint8_t *Cur = Data;
229 Cur < End && NumPositions < kMaxNumPositions; Cur++) {
230 Cur =
231 (const uint8_t *)SearchMemory(Cur, End - Cur, ExistingBytes, ArgSize);
232 if (!Cur) break;
233 Positions[NumPositions++] = Cur - Data;
234 }
235 if (!NumPositions) continue;
236 return DictionaryEntry(W, Positions[Rand(NumPositions)]);
237 }
238 DictionaryEntry DE(W);
239 return DE;
240}
241
242
243template <class T>
244DictionaryEntry MutationDispatcher::MakeDictionaryEntryFromCMP(
245 T Arg1, T Arg2, const uint8_t *Data, size_t Size) {
246 if (Rand.RandBool()) Arg1 = Bswap(Arg1);
247 if (Rand.RandBool()) Arg2 = Bswap(Arg2);
248 T Arg1Mutation = static_cast<T>(Arg1 + Rand(-1, 1));
249 T Arg2Mutation = static_cast<T>(Arg2 + Rand(-1, 1));
250 return MakeDictionaryEntryFromCMP(&Arg1, &Arg2, &Arg1Mutation, &Arg2Mutation,
251 sizeof(Arg1), Data, Size);
252}
253
254DictionaryEntry MutationDispatcher::MakeDictionaryEntryFromCMP(
255 const Word &Arg1, const Word &Arg2, const uint8_t *Data, size_t Size) {
256 return MakeDictionaryEntryFromCMP(Arg1.data(), Arg2.data(), Arg1.data(),
257 Arg2.data(), Arg1.size(), Data, Size);
258}
259
260size_t MutationDispatcher::Mutate_AddWordFromTORC(
261 uint8_t *Data, size_t Size, size_t MaxSize) {
262 Word W;
263 DictionaryEntry DE;
264 switch (Rand(4)) {
265 case 0: {
266 auto X = TPC.TORC8.Get(Rand.Rand<size_t>());
267 DE = MakeDictionaryEntryFromCMP(X.A, X.B, Data, Size);
268 } break;
269 case 1: {
270 auto X = TPC.TORC4.Get(Rand.Rand<size_t>());
271 if ((X.A >> 16) == 0 && (X.B >> 16) == 0 && Rand.RandBool())
272 DE = MakeDictionaryEntryFromCMP((uint16_t)X.A, (uint16_t)X.B, Data, Size);
273 else
274 DE = MakeDictionaryEntryFromCMP(X.A, X.B, Data, Size);
275 } break;
276 case 2: {
277 auto X = TPC.TORCW.Get(Rand.Rand<size_t>());
278 DE = MakeDictionaryEntryFromCMP(X.A, X.B, Data, Size);
279 } break;
280 case 3: if (Options.UseMemmem) {
281 auto X = TPC.MMT.Get(Rand.Rand<size_t>());
282 DE = DictionaryEntry(X);
283 } break;
284 default:
285 assert(0);
286 }
287 if (!DE.GetW().size()) return 0;
288 Size = ApplyDictionaryEntry(Data, Size, MaxSize, DE);
289 if (!Size) return 0;
290 DictionaryEntry &DERef =
291 CmpDictionaryEntriesDeque[CmpDictionaryEntriesDequeIdx++ %
292 kCmpDictionaryEntriesDequeSize];
293 DERef = DE;
294 CurrentDictionaryEntrySequence.push_back(&DERef);
295 return Size;
296}
297
298size_t MutationDispatcher::Mutate_AddWordFromPersistentAutoDictionary(
299 uint8_t *Data, size_t Size, size_t MaxSize) {
300 return AddWordFromDictionary(PersistentAutoDictionary, Data, Size, MaxSize);
301}
302
303size_t MutationDispatcher::AddWordFromDictionary(Dictionary &D, uint8_t *Data,
304 size_t Size, size_t MaxSize) {
305 if (Size > MaxSize) return 0;
306 if (D.empty()) return 0;
307 DictionaryEntry &DE = D[Rand(D.size())];
308 Size = ApplyDictionaryEntry(Data, Size, MaxSize, DE);
309 if (!Size) return 0;
310 DE.IncUseCount();
311 CurrentDictionaryEntrySequence.push_back(&DE);
312 return Size;
313}
314
315// Overwrites part of To[0,ToSize) with a part of From[0,FromSize).
316// Returns ToSize.
317size_t MutationDispatcher::CopyPartOf(const uint8_t *From, size_t FromSize,
318 uint8_t *To, size_t ToSize) {
319 // Copy From[FromBeg, FromBeg + CopySize) into To[ToBeg, ToBeg + CopySize).
320 size_t ToBeg = Rand(ToSize);
321 size_t CopySize = Rand(ToSize - ToBeg) + 1;
322 assert(ToBeg + CopySize <= ToSize);
323 CopySize = std::min(CopySize, FromSize);
324 size_t FromBeg = Rand(FromSize - CopySize + 1);
325 assert(FromBeg + CopySize <= FromSize);
326 memmove(To + ToBeg, From + FromBeg, CopySize);
327 return ToSize;
328}
329
330// Inserts part of From[0,ToSize) into To.
331// Returns new size of To on success or 0 on failure.
332size_t MutationDispatcher::InsertPartOf(const uint8_t *From, size_t FromSize,
333 uint8_t *To, size_t ToSize,
334 size_t MaxToSize) {
335 if (ToSize >= MaxToSize) return 0;
336 size_t AvailableSpace = MaxToSize - ToSize;
337 size_t MaxCopySize = std::min(AvailableSpace, FromSize);
338 size_t CopySize = Rand(MaxCopySize) + 1;
339 size_t FromBeg = Rand(FromSize - CopySize + 1);
340 assert(FromBeg + CopySize <= FromSize);
341 size_t ToInsertPos = Rand(ToSize + 1);
342 assert(ToInsertPos + CopySize <= MaxToSize);
343 size_t TailSize = ToSize - ToInsertPos;
344 if (To == From) {
345 MutateInPlaceHere.resize(MaxToSize);
346 memcpy(MutateInPlaceHere.data(), From + FromBeg, CopySize);
347 memmove(To + ToInsertPos + CopySize, To + ToInsertPos, TailSize);
348 memmove(To + ToInsertPos, MutateInPlaceHere.data(), CopySize);
349 } else {
350 memmove(To + ToInsertPos + CopySize, To + ToInsertPos, TailSize);
351 memmove(To + ToInsertPos, From + FromBeg, CopySize);
352 }
353 return ToSize + CopySize;
354}
355
356size_t MutationDispatcher::Mutate_CopyPart(uint8_t *Data, size_t Size,
357 size_t MaxSize) {
358 if (Size > MaxSize || Size == 0) return 0;
359 // If Size == MaxSize, `InsertPartOf(...)` will
360 // fail so there's no point using it in this case.
361 if (Size == MaxSize || Rand.RandBool())
362 return CopyPartOf(Data, Size, Data, Size);
363 else
364 return InsertPartOf(Data, Size, Data, Size, MaxSize);
365}
366
367size_t MutationDispatcher::Mutate_ChangeASCIIInteger(uint8_t *Data, size_t Size,
368 size_t MaxSize) {
369 if (Size > MaxSize) return 0;
370 size_t B = Rand(Size);
371 while (B < Size && !isdigit(Data[B])) B++;
372 if (B == Size) return 0;
373 size_t E = B;
374 while (E < Size && isdigit(Data[E])) E++;
375 assert(B < E);
376 // now we have digits in [B, E).
377 // strtol and friends don't accept non-zero-teminated data, parse it manually.
378 uint64_t Val = Data[B] - '0';
379 for (size_t i = B + 1; i < E; i++)
380 Val = Val * 10 + Data[i] - '0';
381
382 // Mutate the integer value.
383 switch(Rand(5)) {
384 case 0: Val++; break;
385 case 1: Val--; break;
386 case 2: Val /= 2; break;
387 case 3: Val *= 2; break;
388 case 4: Val = Rand(Val * Val); break;
389 default: assert(0);
390 }
391 // Just replace the bytes with the new ones, don't bother moving bytes.
392 for (size_t i = B; i < E; i++) {
393 size_t Idx = E + B - i - 1;
394 assert(Idx >= B && Idx < E);
395 Data[Idx] = (Val % 10) + '0';
396 Val /= 10;
397 }
398 return Size;
399}
400
401template<class T>
402size_t ChangeBinaryInteger(uint8_t *Data, size_t Size, Random &Rand) {
403 if (Size < sizeof(T)) return 0;
404 size_t Off = Rand(Size - sizeof(T) + 1);
405 assert(Off + sizeof(T) <= Size);
406 T Val;
407 if (Off < 64 && !Rand(4)) {
408 Val = static_cast<T>(Size);
409 if (Rand.RandBool())
410 Val = Bswap(Val);
411 } else {
412 memcpy(&Val, Data + Off, sizeof(Val));
413 T Add = static_cast<T>(Rand(21));
414 Add -= 10;
415 if (Rand.RandBool())
416 Val = Bswap(T(Bswap(Val) + Add)); // Add assuming different endiannes.
417 else
418 Val = Val + Add; // Add assuming current endiannes.
419 if (Add == 0 || Rand.RandBool()) // Maybe negate.
420 Val = -Val;
421 }
422 memcpy(Data + Off, &Val, sizeof(Val));
423 return Size;
424}
425
426size_t MutationDispatcher::Mutate_ChangeBinaryInteger(uint8_t *Data,
427 size_t Size,
428 size_t MaxSize) {
429 if (Size > MaxSize) return 0;
430 switch (Rand(4)) {
431 case 3: return ChangeBinaryInteger<uint64_t>(Data, Size, Rand);
432 case 2: return ChangeBinaryInteger<uint32_t>(Data, Size, Rand);
433 case 1: return ChangeBinaryInteger<uint16_t>(Data, Size, Rand);
434 case 0: return ChangeBinaryInteger<uint8_t>(Data, Size, Rand);
435 default: assert(0);
436 }
437 return 0;
438}
439
440size_t MutationDispatcher::Mutate_CrossOver(uint8_t *Data, size_t Size,
441 size_t MaxSize) {
442 if (Size > MaxSize) return 0;
443 if (Size == 0) return 0;
444 if (!CrossOverWith) return 0;
445 const Unit &O = *CrossOverWith;
446 if (O.empty()) return 0;
447 size_t NewSize = 0;
448 switch(Rand(3)) {
449 case 0:
450 MutateInPlaceHere.resize(MaxSize);
451 NewSize = CrossOver(Data, Size, O.data(), O.size(),
452 MutateInPlaceHere.data(), MaxSize);
453 memcpy(Data, MutateInPlaceHere.data(), NewSize);
454 break;
455 case 1:
456 NewSize = InsertPartOf(O.data(), O.size(), Data, Size, MaxSize);
457 if (!NewSize)
458 NewSize = CopyPartOf(O.data(), O.size(), Data, Size);
459 break;
460 case 2:
461 NewSize = CopyPartOf(O.data(), O.size(), Data, Size);
462 break;
463 default: assert(0);
464 }
465 assert(NewSize > 0 && "CrossOver returned empty unit");
466 assert(NewSize <= MaxSize && "CrossOver returned overisized unit");
467 return NewSize;
468}
469
470void MutationDispatcher::StartMutationSequence() {
471 CurrentMutatorSequence.clear();
472 CurrentDictionaryEntrySequence.clear();
473}
474
475// Copy successful dictionary entries to PersistentAutoDictionary.
476void MutationDispatcher::RecordSuccessfulMutationSequence() {
477 for (auto DE : CurrentDictionaryEntrySequence) {
478 // PersistentAutoDictionary.AddWithSuccessCountOne(DE);
479 DE->IncSuccessCount();
480 assert(DE->GetW().size());
481 // Linear search is fine here as this happens seldom.
482 if (!PersistentAutoDictionary.ContainsWord(DE->GetW()))
483 PersistentAutoDictionary.push_back(*DE);
484 }
485}
486
487void MutationDispatcher::PrintRecommendedDictionary() {
488 std::vector<DictionaryEntry> V;
489 for (auto &DE : PersistentAutoDictionary)
490 if (!ManualDictionary.ContainsWord(DE.GetW()))
491 V.push_back(DE);
492 if (V.empty()) return;
493 Printf("###### Recommended dictionary. ######\n");
494 for (auto &DE: V) {
495 assert(DE.GetW().size());
496 Printf("\"");
497 PrintASCII(DE.GetW(), "\"");
498 Printf(" # Uses: %zd\n", DE.GetUseCount());
499 }
500 Printf("###### End of recommended dictionary. ######\n");
501}
502
503void MutationDispatcher::PrintMutationSequence(bool Verbose) {
504 Printf("MS: %zd ", CurrentMutatorSequence.size());
505 size_t EntriesToPrint =
506 Verbose ? CurrentMutatorSequence.size()
507 : std::min(kMaxMutationsToPrint, CurrentMutatorSequence.size());
508 for (size_t i = 0; i < EntriesToPrint; i++)
509 Printf("%s-", CurrentMutatorSequence[i].Name);
510 if (!CurrentDictionaryEntrySequence.empty()) {
511 Printf(" DE: ");
512 EntriesToPrint = Verbose ? CurrentDictionaryEntrySequence.size()
513 : std::min(kMaxMutationsToPrint,
514 CurrentDictionaryEntrySequence.size());
515 for (size_t i = 0; i < EntriesToPrint; i++) {
516 Printf("\"");
517 PrintASCII(CurrentDictionaryEntrySequence[i]->GetW(), "\"-");
518 }
519 }
520}
521
522std::string MutationDispatcher::MutationSequence() {
523 std::string MS;
524 for (const auto &M : CurrentMutatorSequence) {
525 MS += M.Name;
526 MS += "-";
527 }
528 return MS;
529}
530
531size_t MutationDispatcher::Mutate(uint8_t *Data, size_t Size, size_t MaxSize) {
532 return MutateImpl(Data, Size, MaxSize, Mutators);
533}
534
535size_t MutationDispatcher::DefaultMutate(uint8_t *Data, size_t Size,
536 size_t MaxSize) {
537 return MutateImpl(Data, Size, MaxSize, DefaultMutators);
538}
539
540// Mutates Data in place, returns new size.
541size_t MutationDispatcher::MutateImpl(uint8_t *Data, size_t Size,
542 size_t MaxSize,
543 std::vector<Mutator> &Mutators) {
544 assert(MaxSize > 0);
545 // Some mutations may fail (e.g. can't insert more bytes if Size == MaxSize),
546 // in which case they will return 0.
547 // Try several times before returning un-mutated data.
548 for (int Iter = 0; Iter < 100; Iter++) {
549 auto M = Mutators[Rand(Mutators.size())];
550 size_t NewSize = (this->*(M.Fn))(Data, Size, MaxSize);
551 if (NewSize && NewSize <= MaxSize) {
552 if (Options.OnlyASCII)
553 ToASCII(Data, NewSize);
554 CurrentMutatorSequence.push_back(M);
555 return NewSize;
556 }
557 }
558 *Data = ' ';
559 return 1; // Fallback, should not happen frequently.
560}
561
562// Mask represents the set of Data bytes that are worth mutating.
563size_t MutationDispatcher::MutateWithMask(uint8_t *Data, size_t Size,
564 size_t MaxSize,
565 const std::vector<uint8_t> &Mask) {
566 size_t MaskedSize = std::min(Size, Mask.size());
567 // * Copy the worthy bytes into a temporary array T
568 // * Mutate T
569 // * Copy T back.
570 // This is totally unoptimized.
571 auto &T = MutateWithMaskTemp;
572 if (T.size() < Size)
573 T.resize(Size);
574 size_t OneBits = 0;
575 for (size_t I = 0; I < MaskedSize; I++)
576 if (Mask[I])
577 T[OneBits++] = Data[I];
578
579 if (!OneBits) return 0;
580 assert(!T.empty());
581 size_t NewSize = Mutate(T.data(), OneBits, OneBits);
582 assert(NewSize <= OneBits);
583 (void)NewSize;
584 // Even if NewSize < OneBits we still use all OneBits bytes.
585 for (size_t I = 0, J = 0; I < MaskedSize; I++)
586 if (Mask[I])
587 Data[I] = T[J++];
588 return Size;
589}
590
591void MutationDispatcher::AddWordToManualDictionary(const Word &W) {
592 ManualDictionary.push_back(
593 {W, std::numeric_limits<size_t>::max()});
594}
595
596} // namespace fuzzer
597