1 | //===-- sanitizer_common.h --------------------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file is shared between run-time libraries of sanitizers. |
10 | // |
11 | // It declares common functions and classes that are used in both runtimes. |
12 | // Implementation of some functions are provided in sanitizer_common, while |
13 | // others must be defined by run-time library itself. |
14 | //===----------------------------------------------------------------------===// |
15 | #ifndef SANITIZER_COMMON_H |
16 | #define SANITIZER_COMMON_H |
17 | |
18 | #include "sanitizer_flags.h" |
19 | #include "sanitizer_internal_defs.h" |
20 | #include "sanitizer_libc.h" |
21 | #include "sanitizer_list.h" |
22 | #include "sanitizer_mutex.h" |
23 | |
24 | #if defined(_MSC_VER) && !defined(__clang__) |
25 | extern "C" void _ReadWriteBarrier(); |
26 | #pragma intrinsic(_ReadWriteBarrier) |
27 | #endif |
28 | |
29 | namespace __sanitizer { |
30 | |
31 | struct AddressInfo; |
32 | struct BufferedStackTrace; |
33 | struct SignalContext; |
34 | struct StackTrace; |
35 | struct SymbolizedStack; |
36 | |
37 | // Constants. |
38 | const uptr kWordSize = SANITIZER_WORDSIZE / 8; |
39 | const uptr kWordSizeInBits = 8 * kWordSize; |
40 | |
41 | const uptr kCacheLineSize = SANITIZER_CACHE_LINE_SIZE; |
42 | |
43 | const uptr kMaxPathLength = 4096; |
44 | |
45 | const uptr kMaxThreadStackSize = 1 << 30; // 1Gb |
46 | |
47 | const uptr kErrorMessageBufferSize = 1 << 16; |
48 | |
49 | // Denotes fake PC values that come from JIT/JAVA/etc. |
50 | // For such PC values __tsan_symbolize_external_ex() will be called. |
51 | const u64 kExternalPCBit = 1ULL << 60; |
52 | |
53 | extern const char *SanitizerToolName; // Can be changed by the tool. |
54 | |
55 | extern atomic_uint32_t current_verbosity; |
56 | inline void SetVerbosity(int verbosity) { |
57 | atomic_store(a: ¤t_verbosity, v: verbosity, mo: memory_order_relaxed); |
58 | } |
59 | inline int Verbosity() { |
60 | return atomic_load(a: ¤t_verbosity, mo: memory_order_relaxed); |
61 | } |
62 | |
63 | #if SANITIZER_ANDROID && !defined(__aarch64__) |
64 | // 32-bit Android only has 4k pages. |
65 | inline uptr GetPageSize() { return 4096; } |
66 | inline uptr GetPageSizeCached() { return 4096; } |
67 | #else |
68 | uptr GetPageSize(); |
69 | extern uptr PageSizeCached; |
70 | inline uptr GetPageSizeCached() { |
71 | if (!PageSizeCached) |
72 | PageSizeCached = GetPageSize(); |
73 | return PageSizeCached; |
74 | } |
75 | #endif |
76 | |
77 | uptr GetMmapGranularity(); |
78 | uptr GetMaxVirtualAddress(); |
79 | uptr GetMaxUserVirtualAddress(); |
80 | // Threads |
81 | tid_t GetTid(); |
82 | int TgKill(pid_t pid, tid_t tid, int sig); |
83 | uptr GetThreadSelf(); |
84 | void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top, |
85 | uptr *stack_bottom); |
86 | void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, |
87 | uptr *tls_addr, uptr *tls_size); |
88 | |
89 | // Memory management |
90 | void *MmapOrDie(uptr size, const char *mem_type, bool raw_report = false); |
91 | |
92 | inline void *MmapOrDieQuietly(uptr size, const char *mem_type) { |
93 | return MmapOrDie(size, mem_type, /*raw_report*/ raw_report: true); |
94 | } |
95 | void UnmapOrDie(void *addr, uptr size, bool raw_report = false); |
96 | // Behaves just like MmapOrDie, but tolerates out of memory condition, in that |
97 | // case returns nullptr. |
98 | void *MmapOrDieOnFatalError(uptr size, const char *mem_type); |
99 | bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name = nullptr) |
100 | WARN_UNUSED_RESULT; |
101 | bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, |
102 | const char *name = nullptr) WARN_UNUSED_RESULT; |
103 | void *MmapNoReserveOrDie(uptr size, const char *mem_type); |
104 | void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name = nullptr); |
105 | // Behaves just like MmapFixedOrDie, but tolerates out of memory condition, in |
106 | // that case returns nullptr. |
107 | void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, |
108 | const char *name = nullptr); |
109 | void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr); |
110 | void *MmapNoAccess(uptr size); |
111 | // Map aligned chunk of address space; size and alignment are powers of two. |
112 | // Dies on all but out of memory errors, in the latter case returns nullptr. |
113 | void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment, |
114 | const char *mem_type); |
115 | // Disallow access to a memory range. Use MmapFixedNoAccess to allocate an |
116 | // unaccessible memory. |
117 | bool MprotectNoAccess(uptr addr, uptr size); |
118 | bool MprotectReadOnly(uptr addr, uptr size); |
119 | bool MprotectReadWrite(uptr addr, uptr size); |
120 | |
121 | void MprotectMallocZones(void *addr, int prot); |
122 | |
123 | #if SANITIZER_WINDOWS |
124 | // Zero previously mmap'd memory. Currently used only on Windows. |
125 | bool ZeroMmapFixedRegion(uptr fixed_addr, uptr size) WARN_UNUSED_RESULT; |
126 | #endif |
127 | |
128 | #if SANITIZER_LINUX |
129 | // Unmap memory. Currently only used on Linux. |
130 | void UnmapFromTo(uptr from, uptr to); |
131 | #endif |
132 | |
133 | // Maps shadow_size_bytes of shadow memory and returns shadow address. It will |
134 | // be aligned to the mmap granularity * 2^shadow_scale, or to |
135 | // 2^min_shadow_base_alignment if that is larger. The returned address will |
136 | // have max(2^min_shadow_base_alignment, mmap granularity) on the left, and |
137 | // shadow_size_bytes bytes on the right, which on linux is mapped no access. |
138 | // The high_mem_end may be updated if the original shadow size doesn't fit. |
139 | uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale, |
140 | uptr min_shadow_base_alignment, uptr &high_mem_end, |
141 | uptr granularity); |
142 | |
143 | // Let S = max(shadow_size, num_aliases * alias_size, ring_buffer_size). |
144 | // Reserves 2*S bytes of address space to the right of the returned address and |
145 | // ring_buffer_size bytes to the left. The returned address is aligned to 2*S. |
146 | // Also creates num_aliases regions of accessible memory starting at offset S |
147 | // from the returned address. Each region has size alias_size and is backed by |
148 | // the same physical memory. |
149 | uptr MapDynamicShadowAndAliases(uptr shadow_size, uptr alias_size, |
150 | uptr num_aliases, uptr ring_buffer_size); |
151 | |
152 | // Reserve memory range [beg, end]. If madvise_shadow is true then apply |
153 | // madvise (e.g. hugepages, core dumping) requested by options. |
154 | void ReserveShadowMemoryRange(uptr beg, uptr end, const char *name, |
155 | bool madvise_shadow = true); |
156 | |
157 | // Protect size bytes of memory starting at addr. Also try to protect |
158 | // several pages at the start of the address space as specified by |
159 | // zero_base_shadow_start, at most up to the size or zero_base_max_shadow_start. |
160 | void ProtectGap(uptr addr, uptr size, uptr zero_base_shadow_start, |
161 | uptr zero_base_max_shadow_start); |
162 | |
163 | // Find an available address space. |
164 | uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding, |
165 | uptr *largest_gap_found, uptr *max_occupied_addr); |
166 | |
167 | // Used to check if we can map shadow memory to a fixed location. |
168 | bool MemoryRangeIsAvailable(uptr range_start, uptr range_end); |
169 | // Releases memory pages entirely within the [beg, end] address range. Noop if |
170 | // the provided range does not contain at least one entire page. |
171 | void ReleaseMemoryPagesToOS(uptr beg, uptr end); |
172 | void IncreaseTotalMmap(uptr size); |
173 | void DecreaseTotalMmap(uptr size); |
174 | uptr (); |
175 | void SetShadowRegionHugePageMode(uptr addr, uptr length); |
176 | bool DontDumpShadowMemory(uptr addr, uptr length); |
177 | // Check if the built VMA size matches the runtime one. |
178 | void CheckVMASize(); |
179 | void RunMallocHooks(void *ptr, uptr size); |
180 | int RunFreeHooks(void *ptr); |
181 | |
182 | class ReservedAddressRange { |
183 | public: |
184 | uptr Init(uptr size, const char *name = nullptr, uptr fixed_addr = 0); |
185 | uptr InitAligned(uptr size, uptr align, const char *name = nullptr); |
186 | uptr Map(uptr fixed_addr, uptr size, const char *name = nullptr); |
187 | uptr MapOrDie(uptr fixed_addr, uptr size, const char *name = nullptr); |
188 | void Unmap(uptr addr, uptr size); |
189 | void *base() const { return base_; } |
190 | uptr size() const { return size_; } |
191 | |
192 | private: |
193 | void* base_; |
194 | uptr size_; |
195 | const char* name_; |
196 | uptr os_handle_; |
197 | }; |
198 | |
199 | typedef void (*fill_profile_f)(uptr start, uptr , bool file, |
200 | /*out*/ uptr *stats); |
201 | |
202 | // Parse the contents of /proc/self/smaps and generate a memory profile. |
203 | // |cb| is a tool-specific callback that fills the |stats| array. |
204 | void GetMemoryProfile(fill_profile_f cb, uptr *stats); |
205 | void ParseUnixMemoryProfile(fill_profile_f cb, uptr *stats, char *smaps, |
206 | uptr smaps_len); |
207 | |
208 | // Simple low-level (mmap-based) allocator for internal use. Doesn't have |
209 | // constructor, so all instances of LowLevelAllocator should be |
210 | // linker initialized. |
211 | // |
212 | // NOTE: Users should instead use the singleton provided via |
213 | // `GetGlobalLowLevelAllocator()` rather than create a new one. This way, the |
214 | // number of mmap fragments can be reduced and use the same contiguous mmap |
215 | // provided by this singleton. |
216 | class LowLevelAllocator { |
217 | public: |
218 | // Requires an external lock. |
219 | void *Allocate(uptr size); |
220 | |
221 | private: |
222 | char *allocated_end_; |
223 | char *allocated_current_; |
224 | }; |
225 | // Set the min alignment of LowLevelAllocator to at least alignment. |
226 | void SetLowLevelAllocateMinAlignment(uptr alignment); |
227 | typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size); |
228 | // Allows to register tool-specific callbacks for LowLevelAllocator. |
229 | // Passing NULL removes the callback. |
230 | void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback); |
231 | |
232 | LowLevelAllocator &GetGlobalLowLevelAllocator(); |
233 | |
234 | // IO |
235 | void CatastrophicErrorWrite(const char *buffer, uptr length); |
236 | void RawWrite(const char *buffer); |
237 | bool ColorizeReports(); |
238 | void RemoveANSIEscapeSequencesFromString(char *buffer); |
239 | void Printf(const char *format, ...) FORMAT(1, 2); |
240 | void Report(const char *format, ...) FORMAT(1, 2); |
241 | void SetPrintfAndReportCallback(void (*callback)(const char *)); |
242 | #define VReport(level, ...) \ |
243 | do { \ |
244 | if ((uptr)Verbosity() >= (level)) Report(__VA_ARGS__); \ |
245 | } while (0) |
246 | #define VPrintf(level, ...) \ |
247 | do { \ |
248 | if ((uptr)Verbosity() >= (level)) Printf(__VA_ARGS__); \ |
249 | } while (0) |
250 | |
251 | // Lock sanitizer error reporting and protects against nested errors. |
252 | class ScopedErrorReportLock { |
253 | public: |
254 | ScopedErrorReportLock() SANITIZER_ACQUIRE(mutex_) { Lock(); } |
255 | ~ScopedErrorReportLock() SANITIZER_RELEASE(mutex_) { Unlock(); } |
256 | |
257 | static void Lock() SANITIZER_ACQUIRE(mutex_); |
258 | static void Unlock() SANITIZER_RELEASE(mutex_); |
259 | static void CheckLocked() SANITIZER_CHECK_LOCKED(mutex_); |
260 | |
261 | private: |
262 | static atomic_uintptr_t reporting_thread_; |
263 | static StaticSpinMutex mutex_; |
264 | }; |
265 | |
266 | extern uptr stoptheworld_tracer_pid; |
267 | extern uptr stoptheworld_tracer_ppid; |
268 | |
269 | bool IsAccessibleMemoryRange(uptr beg, uptr size); |
270 | |
271 | // Error report formatting. |
272 | const char *StripPathPrefix(const char *filepath, |
273 | const char *strip_file_prefix); |
274 | // Strip the directories from the module name. |
275 | const char *StripModuleName(const char *module); |
276 | |
277 | // OS |
278 | uptr ReadBinaryName(/*out*/char *buf, uptr buf_len); |
279 | uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len); |
280 | uptr ReadBinaryDir(/*out*/ char *buf, uptr buf_len); |
281 | uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len); |
282 | const char *GetProcessName(); |
283 | void UpdateProcessName(); |
284 | void CacheBinaryName(); |
285 | void DisableCoreDumperIfNecessary(); |
286 | void DumpProcessMap(); |
287 | const char *GetEnv(const char *name); |
288 | bool SetEnv(const char *name, const char *value); |
289 | |
290 | u32 GetUid(); |
291 | void ReExec(); |
292 | void CheckASLR(); |
293 | void CheckMPROTECT(); |
294 | char **GetArgv(); |
295 | char **GetEnviron(); |
296 | void PrintCmdline(); |
297 | bool StackSizeIsUnlimited(); |
298 | void SetStackSizeLimitInBytes(uptr limit); |
299 | bool AddressSpaceIsUnlimited(); |
300 | void SetAddressSpaceUnlimited(); |
301 | void AdjustStackSize(void *attr); |
302 | void PlatformPrepareForSandboxing(void *args); |
303 | void SetSandboxingCallback(void (*f)()); |
304 | |
305 | void InitializeCoverage(bool enabled, const char *coverage_dir); |
306 | |
307 | void InitTlsSize(); |
308 | uptr GetTlsSize(); |
309 | |
310 | // Other |
311 | void WaitForDebugger(unsigned seconds, const char *label); |
312 | void SleepForSeconds(unsigned seconds); |
313 | void SleepForMillis(unsigned millis); |
314 | u64 NanoTime(); |
315 | u64 MonotonicNanoTime(); |
316 | int Atexit(void (*function)(void)); |
317 | bool TemplateMatch(const char *templ, const char *str); |
318 | |
319 | // Exit |
320 | void NORETURN Abort(); |
321 | void NORETURN Die(); |
322 | void NORETURN |
323 | CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2); |
324 | void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type, |
325 | const char *mmap_type, error_t err, |
326 | bool raw_report = false); |
327 | void NORETURN ReportMunmapFailureAndDie(void *ptr, uptr size, error_t err, |
328 | bool raw_report = false); |
329 | |
330 | // Returns true if the platform-specific error reported is an OOM error. |
331 | bool ErrorIsOOM(error_t err); |
332 | |
333 | // This reports an error in the form: |
334 | // |
335 | // `ERROR: {{SanitizerToolName}}: out of memory: {{err_msg}}` |
336 | // |
337 | // Downstream tools that read sanitizer output will know that errors starting |
338 | // in this format are specifically OOM errors. |
339 | #define ERROR_OOM(err_msg, ...) \ |
340 | Report("ERROR: %s: out of memory: " err_msg, SanitizerToolName, __VA_ARGS__) |
341 | |
342 | // Specific tools may override behavior of "Die" function to do tool-specific |
343 | // job. |
344 | typedef void (*DieCallbackType)(void); |
345 | |
346 | // It's possible to add several callbacks that would be run when "Die" is |
347 | // called. The callbacks will be run in the opposite order. The tools are |
348 | // strongly recommended to setup all callbacks during initialization, when there |
349 | // is only a single thread. |
350 | bool AddDieCallback(DieCallbackType callback); |
351 | bool RemoveDieCallback(DieCallbackType callback); |
352 | |
353 | void SetUserDieCallback(DieCallbackType callback); |
354 | |
355 | void SetCheckUnwindCallback(void (*callback)()); |
356 | |
357 | // Functions related to signal handling. |
358 | typedef void (*SignalHandlerType)(int, void *, void *); |
359 | HandleSignalMode GetHandleSignalMode(int signum); |
360 | void InstallDeadlySignalHandlers(SignalHandlerType handler); |
361 | |
362 | // Signal reporting. |
363 | // Each sanitizer uses slightly different implementation of stack unwinding. |
364 | typedef void (*UnwindSignalStackCallbackType)(const SignalContext &sig, |
365 | const void *callback_context, |
366 | BufferedStackTrace *stack); |
367 | // Print deadly signal report and die. |
368 | void HandleDeadlySignal(void *siginfo, void *context, u32 tid, |
369 | UnwindSignalStackCallbackType unwind, |
370 | const void *unwind_context); |
371 | |
372 | // Part of HandleDeadlySignal, exposed for asan. |
373 | void StartReportDeadlySignal(); |
374 | // Part of HandleDeadlySignal, exposed for asan. |
375 | void ReportDeadlySignal(const SignalContext &sig, u32 tid, |
376 | UnwindSignalStackCallbackType unwind, |
377 | const void *unwind_context); |
378 | |
379 | // Alternative signal stack (POSIX-only). |
380 | void SetAlternateSignalStack(); |
381 | void UnsetAlternateSignalStack(); |
382 | |
383 | // Construct a one-line string: |
384 | // SUMMARY: SanitizerToolName: error_message |
385 | // and pass it to __sanitizer_report_error_summary. |
386 | // If alt_tool_name is provided, it's used in place of SanitizerToolName. |
387 | void ReportErrorSummary(const char *error_message, |
388 | const char *alt_tool_name = nullptr); |
389 | // Same as above, but construct error_message as: |
390 | // error_type file:line[:column][ function] |
391 | void ReportErrorSummary(const char *error_type, const AddressInfo &info, |
392 | const char *alt_tool_name = nullptr); |
393 | // Same as above, but obtains AddressInfo by symbolizing top stack trace frame. |
394 | void ReportErrorSummary(const char *error_type, const StackTrace *trace, |
395 | const char *alt_tool_name = nullptr); |
396 | // Skips frames which we consider internal and not usefull to the users. |
397 | const SymbolizedStack *SkipInternalFrames(const SymbolizedStack *frames); |
398 | |
399 | void ReportMmapWriteExec(int prot, int mflags); |
400 | |
401 | // Math |
402 | #if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__) |
403 | extern "C" { |
404 | unsigned char _BitScanForward(unsigned long *index, unsigned long mask); |
405 | unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); |
406 | #if defined(_WIN64) |
407 | unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask); |
408 | unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask); |
409 | #endif |
410 | } |
411 | #endif |
412 | |
413 | inline uptr MostSignificantSetBitIndex(uptr x) { |
414 | CHECK_NE(x, 0U); |
415 | unsigned long up; |
416 | #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__) |
417 | # ifdef _WIN64 |
418 | up = SANITIZER_WORDSIZE - 1 - __builtin_clzll(x); |
419 | # else |
420 | up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x); |
421 | # endif |
422 | #elif defined(_WIN64) |
423 | _BitScanReverse64(&up, x); |
424 | #else |
425 | _BitScanReverse(&up, x); |
426 | #endif |
427 | return up; |
428 | } |
429 | |
430 | inline uptr LeastSignificantSetBitIndex(uptr x) { |
431 | CHECK_NE(x, 0U); |
432 | unsigned long up; |
433 | #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__) |
434 | # ifdef _WIN64 |
435 | up = __builtin_ctzll(x); |
436 | # else |
437 | up = __builtin_ctzl(x); |
438 | # endif |
439 | #elif defined(_WIN64) |
440 | _BitScanForward64(&up, x); |
441 | #else |
442 | _BitScanForward(&up, x); |
443 | #endif |
444 | return up; |
445 | } |
446 | |
447 | inline constexpr bool IsPowerOfTwo(uptr x) { return (x & (x - 1)) == 0; } |
448 | |
449 | inline uptr RoundUpToPowerOfTwo(uptr size) { |
450 | CHECK(size); |
451 | if (IsPowerOfTwo(x: size)) return size; |
452 | |
453 | uptr up = MostSignificantSetBitIndex(x: size); |
454 | CHECK_LT(size, (1ULL << (up + 1))); |
455 | CHECK_GT(size, (1ULL << up)); |
456 | return 1ULL << (up + 1); |
457 | } |
458 | |
459 | inline constexpr uptr RoundUpTo(uptr size, uptr boundary) { |
460 | RAW_CHECK(IsPowerOfTwo(boundary)); |
461 | return (size + boundary - 1) & ~(boundary - 1); |
462 | } |
463 | |
464 | inline constexpr uptr RoundDownTo(uptr x, uptr boundary) { |
465 | return x & ~(boundary - 1); |
466 | } |
467 | |
468 | inline constexpr bool IsAligned(uptr a, uptr alignment) { |
469 | return (a & (alignment - 1)) == 0; |
470 | } |
471 | |
472 | inline uptr Log2(uptr x) { |
473 | CHECK(IsPowerOfTwo(x)); |
474 | return LeastSignificantSetBitIndex(x); |
475 | } |
476 | |
477 | // Don't use std::min, std::max or std::swap, to minimize dependency |
478 | // on libstdc++. |
479 | template <class T> |
480 | constexpr T Min(T a, T b) { |
481 | return a < b ? a : b; |
482 | } |
483 | template <class T> |
484 | constexpr T Max(T a, T b) { |
485 | return a > b ? a : b; |
486 | } |
487 | template <class T> |
488 | constexpr T Abs(T a) { |
489 | return a < 0 ? -a : a; |
490 | } |
491 | template<class T> void Swap(T& a, T& b) { |
492 | T tmp = a; |
493 | a = b; |
494 | b = tmp; |
495 | } |
496 | |
497 | // Char handling |
498 | inline bool IsSpace(int c) { |
499 | return (c == ' ') || (c == '\n') || (c == '\t') || |
500 | (c == '\f') || (c == '\r') || (c == '\v'); |
501 | } |
502 | inline bool IsDigit(int c) { |
503 | return (c >= '0') && (c <= '9'); |
504 | } |
505 | inline int ToLower(int c) { |
506 | return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c; |
507 | } |
508 | |
509 | // A low-level vector based on mmap. May incur a significant memory overhead for |
510 | // small vectors. |
511 | // WARNING: The current implementation supports only POD types. |
512 | template <typename T, bool raw_report = false> |
513 | class InternalMmapVectorNoCtor { |
514 | public: |
515 | using value_type = T; |
516 | void Initialize(uptr initial_capacity) { |
517 | capacity_bytes_ = 0; |
518 | size_ = 0; |
519 | data_ = 0; |
520 | reserve(new_size: initial_capacity); |
521 | } |
522 | void Destroy() { UnmapOrDie(data_, capacity_bytes_, raw_report); } |
523 | T &operator[](uptr i) { |
524 | CHECK_LT(i, size_); |
525 | return data_[i]; |
526 | } |
527 | const T &operator[](uptr i) const { |
528 | CHECK_LT(i, size_); |
529 | return data_[i]; |
530 | } |
531 | void push_back(const T &element) { |
532 | if (UNLIKELY(size_ >= capacity())) { |
533 | CHECK_EQ(size_, capacity()); |
534 | uptr new_capacity = RoundUpToPowerOfTwo(size: size_ + 1); |
535 | Realloc(new_capacity); |
536 | } |
537 | internal_memcpy(&data_[size_++], &element, sizeof(T)); |
538 | } |
539 | T &back() { |
540 | CHECK_GT(size_, 0); |
541 | return data_[size_ - 1]; |
542 | } |
543 | void pop_back() { |
544 | CHECK_GT(size_, 0); |
545 | size_--; |
546 | } |
547 | uptr size() const { |
548 | return size_; |
549 | } |
550 | const T *data() const { |
551 | return data_; |
552 | } |
553 | T *data() { |
554 | return data_; |
555 | } |
556 | uptr capacity() const { return capacity_bytes_ / sizeof(T); } |
557 | void reserve(uptr new_size) { |
558 | // Never downsize internal buffer. |
559 | if (new_size > capacity()) |
560 | Realloc(new_capacity: new_size); |
561 | } |
562 | void resize(uptr new_size) { |
563 | if (new_size > size_) { |
564 | reserve(new_size); |
565 | internal_memset(&data_[size_], 0, sizeof(T) * (new_size - size_)); |
566 | } |
567 | size_ = new_size; |
568 | } |
569 | |
570 | void clear() { size_ = 0; } |
571 | bool empty() const { return size() == 0; } |
572 | |
573 | const T *begin() const { |
574 | return data(); |
575 | } |
576 | T *begin() { |
577 | return data(); |
578 | } |
579 | const T *end() const { |
580 | return data() + size(); |
581 | } |
582 | T *end() { |
583 | return data() + size(); |
584 | } |
585 | |
586 | void swap(InternalMmapVectorNoCtor &other) { |
587 | Swap(data_, other.data_); |
588 | Swap(capacity_bytes_, other.capacity_bytes_); |
589 | Swap(size_, other.size_); |
590 | } |
591 | |
592 | private: |
593 | NOINLINE void Realloc(uptr new_capacity) { |
594 | CHECK_GT(new_capacity, 0); |
595 | CHECK_LE(size_, new_capacity); |
596 | uptr new_capacity_bytes = |
597 | RoundUpTo(size: new_capacity * sizeof(T), boundary: GetPageSizeCached()); |
598 | T *new_data = |
599 | (T *)MmapOrDie(size: new_capacity_bytes, mem_type: "InternalMmapVector" , raw_report); |
600 | internal_memcpy(new_data, data_, size_ * sizeof(T)); |
601 | UnmapOrDie(data_, capacity_bytes_, raw_report); |
602 | data_ = new_data; |
603 | capacity_bytes_ = new_capacity_bytes; |
604 | } |
605 | |
606 | T *data_; |
607 | uptr capacity_bytes_; |
608 | uptr size_; |
609 | }; |
610 | |
611 | template <typename T> |
612 | bool operator==(const InternalMmapVectorNoCtor<T> &lhs, |
613 | const InternalMmapVectorNoCtor<T> &rhs) { |
614 | if (lhs.size() != rhs.size()) return false; |
615 | return internal_memcmp(lhs.data(), rhs.data(), lhs.size() * sizeof(T)) == 0; |
616 | } |
617 | |
618 | template <typename T> |
619 | bool operator!=(const InternalMmapVectorNoCtor<T> &lhs, |
620 | const InternalMmapVectorNoCtor<T> &rhs) { |
621 | return !(lhs == rhs); |
622 | } |
623 | |
624 | template<typename T> |
625 | class InternalMmapVector : public InternalMmapVectorNoCtor<T> { |
626 | public: |
627 | InternalMmapVector() { InternalMmapVectorNoCtor<T>::Initialize(0); } |
628 | explicit InternalMmapVector(uptr cnt) { |
629 | InternalMmapVectorNoCtor<T>::Initialize(cnt); |
630 | this->resize(cnt); |
631 | } |
632 | ~InternalMmapVector() { InternalMmapVectorNoCtor<T>::Destroy(); } |
633 | // Disallow copies and moves. |
634 | InternalMmapVector(const InternalMmapVector &) = delete; |
635 | InternalMmapVector &operator=(const InternalMmapVector &) = delete; |
636 | InternalMmapVector(InternalMmapVector &&) = delete; |
637 | InternalMmapVector &operator=(InternalMmapVector &&) = delete; |
638 | }; |
639 | |
640 | class InternalScopedString { |
641 | public: |
642 | InternalScopedString() : buffer_(1) { buffer_[0] = '\0'; } |
643 | |
644 | uptr length() const { return buffer_.size() - 1; } |
645 | void clear() { |
646 | buffer_.resize(new_size: 1); |
647 | buffer_[0] = '\0'; |
648 | } |
649 | void Append(const char *str); |
650 | void AppendF(const char *format, ...) FORMAT(2, 3); |
651 | const char *data() const { return buffer_.data(); } |
652 | char *data() { return buffer_.data(); } |
653 | |
654 | private: |
655 | InternalMmapVector<char> buffer_; |
656 | }; |
657 | |
658 | template <class T> |
659 | struct CompareLess { |
660 | bool operator()(const T &a, const T &b) const { return a < b; } |
661 | }; |
662 | |
663 | // HeapSort for arrays and InternalMmapVector. |
664 | template <class T, class Compare = CompareLess<T>> |
665 | void Sort(T *v, uptr size, Compare comp = {}) { |
666 | if (size < 2) |
667 | return; |
668 | // Stage 1: insert elements to the heap. |
669 | for (uptr i = 1; i < size; i++) { |
670 | uptr j, p; |
671 | for (j = i; j > 0; j = p) { |
672 | p = (j - 1) / 2; |
673 | if (comp(v[p], v[j])) |
674 | Swap(v[j], v[p]); |
675 | else |
676 | break; |
677 | } |
678 | } |
679 | // Stage 2: swap largest element with the last one, |
680 | // and sink the new top. |
681 | for (uptr i = size - 1; i > 0; i--) { |
682 | Swap(v[0], v[i]); |
683 | uptr j, max_ind; |
684 | for (j = 0; j < i; j = max_ind) { |
685 | uptr left = 2 * j + 1; |
686 | uptr right = 2 * j + 2; |
687 | max_ind = j; |
688 | if (left < i && comp(v[max_ind], v[left])) |
689 | max_ind = left; |
690 | if (right < i && comp(v[max_ind], v[right])) |
691 | max_ind = right; |
692 | if (max_ind != j) |
693 | Swap(v[j], v[max_ind]); |
694 | else |
695 | break; |
696 | } |
697 | } |
698 | } |
699 | |
700 | // Works like std::lower_bound: finds the first element that is not less |
701 | // than the val. |
702 | template <class Container, class T, |
703 | class Compare = CompareLess<typename Container::value_type>> |
704 | uptr InternalLowerBound(const Container &v, const T &val, Compare comp = {}) { |
705 | uptr first = 0; |
706 | uptr last = v.size(); |
707 | while (last > first) { |
708 | uptr mid = (first + last) / 2; |
709 | if (comp(v[mid], val)) |
710 | first = mid + 1; |
711 | else |
712 | last = mid; |
713 | } |
714 | return first; |
715 | } |
716 | |
717 | enum ModuleArch { |
718 | kModuleArchUnknown, |
719 | kModuleArchI386, |
720 | kModuleArchX86_64, |
721 | kModuleArchX86_64H, |
722 | kModuleArchARMV6, |
723 | kModuleArchARMV7, |
724 | kModuleArchARMV7S, |
725 | kModuleArchARMV7K, |
726 | kModuleArchARM64, |
727 | kModuleArchLoongArch64, |
728 | kModuleArchRISCV64, |
729 | kModuleArchHexagon |
730 | }; |
731 | |
732 | // Sorts and removes duplicates from the container. |
733 | template <class Container, |
734 | class Compare = CompareLess<typename Container::value_type>> |
735 | void SortAndDedup(Container &v, Compare comp = {}) { |
736 | Sort(v.data(), v.size(), comp); |
737 | uptr size = v.size(); |
738 | if (size < 2) |
739 | return; |
740 | uptr last = 0; |
741 | for (uptr i = 1; i < size; ++i) { |
742 | if (comp(v[last], v[i])) { |
743 | ++last; |
744 | if (last != i) |
745 | v[last] = v[i]; |
746 | } else { |
747 | CHECK(!comp(v[i], v[last])); |
748 | } |
749 | } |
750 | v.resize(last + 1); |
751 | } |
752 | |
753 | constexpr uptr kDefaultFileMaxSize = FIRST_32_SECOND_64(1 << 26, 1 << 28); |
754 | |
755 | // Opens the file 'file_name" and reads up to 'max_len' bytes. |
756 | // The resulting buffer is mmaped and stored in '*buff'. |
757 | // Returns true if file was successfully opened and read. |
758 | bool ReadFileToVector(const char *file_name, |
759 | InternalMmapVectorNoCtor<char> *buff, |
760 | uptr max_len = kDefaultFileMaxSize, |
761 | error_t *errno_p = nullptr); |
762 | |
763 | // Opens the file 'file_name" and reads up to 'max_len' bytes. |
764 | // This function is less I/O efficient than ReadFileToVector as it may reread |
765 | // file multiple times to avoid mmap during read attempts. It's used to read |
766 | // procmap, so short reads with mmap in between can produce inconsistent result. |
767 | // The resulting buffer is mmaped and stored in '*buff'. |
768 | // The size of the mmaped region is stored in '*buff_size'. |
769 | // The total number of read bytes is stored in '*read_len'. |
770 | // Returns true if file was successfully opened and read. |
771 | bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size, |
772 | uptr *read_len, uptr max_len = kDefaultFileMaxSize, |
773 | error_t *errno_p = nullptr); |
774 | |
775 | int GetModuleAndOffsetForPc(uptr pc, char *module_name, uptr module_name_len, |
776 | uptr *pc_offset); |
777 | |
778 | // When adding a new architecture, don't forget to also update |
779 | // script/asan_symbolize.py and sanitizer_symbolizer_libcdep.cpp. |
780 | inline const char *ModuleArchToString(ModuleArch arch) { |
781 | switch (arch) { |
782 | case kModuleArchUnknown: |
783 | return "" ; |
784 | case kModuleArchI386: |
785 | return "i386" ; |
786 | case kModuleArchX86_64: |
787 | return "x86_64" ; |
788 | case kModuleArchX86_64H: |
789 | return "x86_64h" ; |
790 | case kModuleArchARMV6: |
791 | return "armv6" ; |
792 | case kModuleArchARMV7: |
793 | return "armv7" ; |
794 | case kModuleArchARMV7S: |
795 | return "armv7s" ; |
796 | case kModuleArchARMV7K: |
797 | return "armv7k" ; |
798 | case kModuleArchARM64: |
799 | return "arm64" ; |
800 | case kModuleArchLoongArch64: |
801 | return "loongarch64" ; |
802 | case kModuleArchRISCV64: |
803 | return "riscv64" ; |
804 | case kModuleArchHexagon: |
805 | return "hexagon" ; |
806 | } |
807 | CHECK(0 && "Invalid module arch" ); |
808 | return "" ; |
809 | } |
810 | |
811 | #if SANITIZER_APPLE |
812 | const uptr kModuleUUIDSize = 16; |
813 | #else |
814 | const uptr kModuleUUIDSize = 32; |
815 | #endif |
816 | const uptr kMaxSegName = 16; |
817 | |
818 | // Represents a binary loaded into virtual memory (e.g. this can be an |
819 | // executable or a shared object). |
820 | class LoadedModule { |
821 | public: |
822 | LoadedModule() |
823 | : full_name_(nullptr), |
824 | base_address_(0), |
825 | max_address_(0), |
826 | arch_(kModuleArchUnknown), |
827 | uuid_size_(0), |
828 | instrumented_(false) { |
829 | internal_memset(s: uuid_, c: 0, n: kModuleUUIDSize); |
830 | ranges_.clear(); |
831 | } |
832 | void set(const char *module_name, uptr base_address); |
833 | void set(const char *module_name, uptr base_address, ModuleArch arch, |
834 | u8 uuid[kModuleUUIDSize], bool instrumented); |
835 | void setUuid(const char *uuid, uptr size); |
836 | void clear(); |
837 | void addAddressRange(uptr beg, uptr end, bool executable, bool writable, |
838 | const char *name = nullptr); |
839 | bool containsAddress(uptr address) const; |
840 | |
841 | const char *full_name() const { return full_name_; } |
842 | uptr base_address() const { return base_address_; } |
843 | uptr max_address() const { return max_address_; } |
844 | ModuleArch arch() const { return arch_; } |
845 | const u8 *uuid() const { return uuid_; } |
846 | uptr uuid_size() const { return uuid_size_; } |
847 | bool instrumented() const { return instrumented_; } |
848 | |
849 | struct AddressRange { |
850 | AddressRange *next; |
851 | uptr beg; |
852 | uptr end; |
853 | bool executable; |
854 | bool writable; |
855 | char name[kMaxSegName]; |
856 | |
857 | AddressRange(uptr beg, uptr end, bool executable, bool writable, |
858 | const char *name) |
859 | : next(nullptr), |
860 | beg(beg), |
861 | end(end), |
862 | executable(executable), |
863 | writable(writable) { |
864 | internal_strncpy(dst: this->name, src: (name ? name : "" ), ARRAY_SIZE(this->name)); |
865 | } |
866 | }; |
867 | |
868 | const IntrusiveList<AddressRange> &ranges() const { return ranges_; } |
869 | |
870 | private: |
871 | char *full_name_; // Owned. |
872 | uptr base_address_; |
873 | uptr max_address_; |
874 | ModuleArch arch_; |
875 | uptr uuid_size_; |
876 | u8 uuid_[kModuleUUIDSize]; |
877 | bool instrumented_; |
878 | IntrusiveList<AddressRange> ranges_; |
879 | }; |
880 | |
881 | // List of LoadedModules. OS-dependent implementation is responsible for |
882 | // filling this information. |
883 | class ListOfModules { |
884 | public: |
885 | ListOfModules() : initialized(false) {} |
886 | ~ListOfModules() { clear(); } |
887 | void init(); |
888 | void fallbackInit(); // Uses fallback init if available, otherwise clears |
889 | const LoadedModule *begin() const { return modules_.begin(); } |
890 | LoadedModule *begin() { return modules_.begin(); } |
891 | const LoadedModule *end() const { return modules_.end(); } |
892 | LoadedModule *end() { return modules_.end(); } |
893 | uptr size() const { return modules_.size(); } |
894 | const LoadedModule &operator[](uptr i) const { |
895 | CHECK_LT(i, modules_.size()); |
896 | return modules_[i]; |
897 | } |
898 | |
899 | private: |
900 | void clear() { |
901 | for (auto &module : modules_) module.clear(); |
902 | modules_.clear(); |
903 | } |
904 | void clearOrInit() { |
905 | initialized ? clear() : modules_.Initialize(initial_capacity: kInitialCapacity); |
906 | initialized = true; |
907 | } |
908 | |
909 | InternalMmapVectorNoCtor<LoadedModule> modules_; |
910 | // We rarely have more than 16K loaded modules. |
911 | static const uptr kInitialCapacity = 1 << 14; |
912 | bool initialized; |
913 | }; |
914 | |
915 | // Callback type for iterating over a set of memory ranges. |
916 | typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg); |
917 | |
918 | enum AndroidApiLevel { |
919 | ANDROID_NOT_ANDROID = 0, |
920 | ANDROID_KITKAT = 19, |
921 | ANDROID_LOLLIPOP_MR1 = 22, |
922 | ANDROID_POST_LOLLIPOP = 23 |
923 | }; |
924 | |
925 | void WriteToSyslog(const char *buffer); |
926 | |
927 | #if defined(SANITIZER_WINDOWS) && defined(_MSC_VER) && !defined(__clang__) |
928 | #define SANITIZER_WIN_TRACE 1 |
929 | #else |
930 | #define SANITIZER_WIN_TRACE 0 |
931 | #endif |
932 | |
933 | #if SANITIZER_APPLE || SANITIZER_WIN_TRACE |
934 | void LogFullErrorReport(const char *buffer); |
935 | #else |
936 | inline void LogFullErrorReport(const char *buffer) {} |
937 | #endif |
938 | |
939 | #if SANITIZER_LINUX || SANITIZER_APPLE |
940 | void WriteOneLineToSyslog(const char *s); |
941 | void LogMessageOnPrintf(const char *str); |
942 | #else |
943 | inline void WriteOneLineToSyslog(const char *s) {} |
944 | inline void LogMessageOnPrintf(const char *str) {} |
945 | #endif |
946 | |
947 | #if SANITIZER_LINUX || SANITIZER_WIN_TRACE |
948 | // Initialize Android logging. Any writes before this are silently lost. |
949 | void AndroidLogInit(); |
950 | void SetAbortMessage(const char *); |
951 | #else |
952 | inline void AndroidLogInit() {} |
953 | // FIXME: MacOS implementation could use CRSetCrashLogMessage. |
954 | inline void SetAbortMessage(const char *) {} |
955 | #endif |
956 | |
957 | #if SANITIZER_ANDROID |
958 | void SanitizerInitializeUnwinder(); |
959 | AndroidApiLevel AndroidGetApiLevel(); |
960 | #else |
961 | inline void AndroidLogWrite(const char *buffer_unused) {} |
962 | inline void SanitizerInitializeUnwinder() {} |
963 | inline AndroidApiLevel AndroidGetApiLevel() { return ANDROID_NOT_ANDROID; } |
964 | #endif |
965 | |
966 | inline uptr GetPthreadDestructorIterations() { |
967 | #if SANITIZER_ANDROID |
968 | return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1) ? 8 : 4; |
969 | #elif SANITIZER_POSIX |
970 | return 4; |
971 | #else |
972 | // Unused on Windows. |
973 | return 0; |
974 | #endif |
975 | } |
976 | |
977 | void *internal_start_thread(void *(*func)(void*), void *arg); |
978 | void internal_join_thread(void *th); |
979 | void MaybeStartBackgroudThread(); |
980 | |
981 | // Make the compiler think that something is going on there. |
982 | // Use this inside a loop that looks like memset/memcpy/etc to prevent the |
983 | // compiler from recognising it and turning it into an actual call to |
984 | // memset/memcpy/etc. |
985 | static inline void SanitizerBreakOptimization(void *arg) { |
986 | #if defined(_MSC_VER) && !defined(__clang__) |
987 | _ReadWriteBarrier(); |
988 | #else |
989 | __asm__ __volatile__("" : : "r" (arg) : "memory" ); |
990 | #endif |
991 | } |
992 | |
993 | struct SignalContext { |
994 | void *siginfo; |
995 | void *context; |
996 | uptr addr; |
997 | uptr pc; |
998 | uptr sp; |
999 | uptr bp; |
1000 | bool is_memory_access; |
1001 | enum WriteFlag { Unknown, Read, Write } write_flag; |
1002 | |
1003 | // In some cases the kernel cannot provide the true faulting address; `addr` |
1004 | // will be zero then. This field allows to distinguish between these cases |
1005 | // and dereferences of null. |
1006 | bool is_true_faulting_addr; |
1007 | |
1008 | // VS2013 doesn't implement unrestricted unions, so we need a trivial default |
1009 | // constructor |
1010 | SignalContext() = default; |
1011 | |
1012 | // Creates signal context in a platform-specific manner. |
1013 | // SignalContext is going to keep pointers to siginfo and context without |
1014 | // owning them. |
1015 | SignalContext(void *siginfo, void *context) |
1016 | : siginfo(siginfo), |
1017 | context(context), |
1018 | addr(GetAddress()), |
1019 | is_memory_access(IsMemoryAccess()), |
1020 | write_flag(GetWriteFlag()), |
1021 | is_true_faulting_addr(IsTrueFaultingAddress()) { |
1022 | InitPcSpBp(); |
1023 | } |
1024 | |
1025 | static void DumpAllRegisters(void *context); |
1026 | |
1027 | // Type of signal e.g. SIGSEGV or EXCEPTION_ACCESS_VIOLATION. |
1028 | int GetType() const; |
1029 | |
1030 | // String description of the signal. |
1031 | const char *Describe() const; |
1032 | |
1033 | // Returns true if signal is stack overflow. |
1034 | bool IsStackOverflow() const; |
1035 | |
1036 | private: |
1037 | // Platform specific initialization. |
1038 | void InitPcSpBp(); |
1039 | uptr GetAddress() const; |
1040 | WriteFlag GetWriteFlag() const; |
1041 | bool IsMemoryAccess() const; |
1042 | bool IsTrueFaultingAddress() const; |
1043 | }; |
1044 | |
1045 | void InitializePlatformEarly(); |
1046 | |
1047 | template <typename Fn> |
1048 | class RunOnDestruction { |
1049 | public: |
1050 | explicit RunOnDestruction(Fn fn) : fn_(fn) {} |
1051 | ~RunOnDestruction() { fn_(); } |
1052 | |
1053 | private: |
1054 | Fn fn_; |
1055 | }; |
1056 | |
1057 | // A simple scope guard. Usage: |
1058 | // auto cleanup = at_scope_exit([]{ do_cleanup; }); |
1059 | template <typename Fn> |
1060 | RunOnDestruction<Fn> at_scope_exit(Fn fn) { |
1061 | return RunOnDestruction<Fn>(fn); |
1062 | } |
1063 | |
1064 | // Linux on 64-bit s390 had a nasty bug that crashes the whole machine |
1065 | // if a process uses virtual memory over 4TB (as many sanitizers like |
1066 | // to do). This function will abort the process if running on a kernel |
1067 | // that looks vulnerable. |
1068 | #if SANITIZER_LINUX && SANITIZER_S390_64 |
1069 | void AvoidCVE_2016_2143(); |
1070 | #else |
1071 | inline void AvoidCVE_2016_2143() {} |
1072 | #endif |
1073 | |
1074 | struct StackDepotStats { |
1075 | uptr n_uniq_ids; |
1076 | uptr allocated; |
1077 | }; |
1078 | |
1079 | // The default value for allocator_release_to_os_interval_ms common flag to |
1080 | // indicate that sanitizer allocator should not attempt to release memory to OS. |
1081 | const s32 kReleaseToOSIntervalNever = -1; |
1082 | |
1083 | void CheckNoDeepBind(const char *filename, int flag); |
1084 | |
1085 | // Returns the requested amount of random data (up to 256 bytes) that can then |
1086 | // be used to seed a PRNG. Defaults to blocking like the underlying syscall. |
1087 | bool GetRandom(void *buffer, uptr length, bool blocking = true); |
1088 | |
1089 | // Returns the number of logical processors on the system. |
1090 | u32 GetNumberOfCPUs(); |
1091 | extern u32 NumberOfCPUsCached; |
1092 | inline u32 GetNumberOfCPUsCached() { |
1093 | if (!NumberOfCPUsCached) |
1094 | NumberOfCPUsCached = GetNumberOfCPUs(); |
1095 | return NumberOfCPUsCached; |
1096 | } |
1097 | |
1098 | } // namespace __sanitizer |
1099 | |
1100 | inline void *operator new(__sanitizer::usize size, |
1101 | __sanitizer::LowLevelAllocator &alloc) { |
1102 | return alloc.Allocate(size); |
1103 | } |
1104 | |
1105 | #endif // SANITIZER_COMMON_H |
1106 | |