1 | //===-- primary64.h ---------------------------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #ifndef SCUDO_PRIMARY64_H_ |
10 | #define SCUDO_PRIMARY64_H_ |
11 | |
12 | #include "allocator_common.h" |
13 | #include "bytemap.h" |
14 | #include "common.h" |
15 | #include "condition_variable.h" |
16 | #include "list.h" |
17 | #include "local_cache.h" |
18 | #include "mem_map.h" |
19 | #include "memtag.h" |
20 | #include "options.h" |
21 | #include "release.h" |
22 | #include "stats.h" |
23 | #include "string_utils.h" |
24 | #include "thread_annotations.h" |
25 | |
26 | namespace scudo { |
27 | |
28 | // SizeClassAllocator64 is an allocator tuned for 64-bit address space. |
29 | // |
30 | // It starts by reserving NumClasses * 2^RegionSizeLog bytes, equally divided in |
31 | // Regions, specific to each size class. Note that the base of that mapping is |
32 | // random (based to the platform specific map() capabilities). If |
33 | // PrimaryEnableRandomOffset is set, each Region actually starts at a random |
34 | // offset from its base. |
35 | // |
36 | // Regions are mapped incrementally on demand to fulfill allocation requests, |
37 | // those mappings being split into equally sized Blocks based on the size class |
38 | // they belong to. The Blocks created are shuffled to prevent predictable |
39 | // address patterns (the predictability increases with the size of the Blocks). |
40 | // |
41 | // The 1st Region (for size class 0) holds the TransferBatches. This is a |
42 | // structure used to transfer arrays of available pointers from the class size |
43 | // freelist to the thread specific freelist, and back. |
44 | // |
45 | // The memory used by this allocator is never unmapped, but can be partially |
46 | // released if the platform allows for it. |
47 | |
48 | template <typename Config> class SizeClassAllocator64 { |
49 | public: |
50 | typedef typename Config::CompactPtrT CompactPtrT; |
51 | typedef typename Config::SizeClassMap SizeClassMap; |
52 | typedef typename Config::ConditionVariableT ConditionVariableT; |
53 | static const uptr CompactPtrScale = Config::getCompactPtrScale(); |
54 | static const uptr RegionSizeLog = Config::getRegionSizeLog(); |
55 | static const uptr GroupSizeLog = Config::getGroupSizeLog(); |
56 | static_assert(RegionSizeLog >= GroupSizeLog, |
57 | "Group size shouldn't be greater than the region size" ); |
58 | static const uptr GroupScale = GroupSizeLog - CompactPtrScale; |
59 | typedef SizeClassAllocator64<Config> ThisT; |
60 | typedef SizeClassAllocatorLocalCache<ThisT> CacheT; |
61 | typedef TransferBatch<ThisT> TransferBatchT; |
62 | typedef BatchGroup<ThisT> BatchGroupT; |
63 | |
64 | static_assert(sizeof(BatchGroupT) <= sizeof(TransferBatchT), |
65 | "BatchGroupT uses the same class size as TransferBatchT" ); |
66 | |
67 | static uptr getSizeByClassId(uptr ClassId) { |
68 | return (ClassId == SizeClassMap::BatchClassId) |
69 | ? roundUp(X: sizeof(TransferBatchT), Boundary: 1U << CompactPtrScale) |
70 | : SizeClassMap::getSizeByClassId(ClassId); |
71 | } |
72 | |
73 | static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; } |
74 | |
75 | static bool conditionVariableEnabled() { |
76 | return Config::hasConditionVariableT(); |
77 | } |
78 | |
79 | void init(s32 ReleaseToOsInterval) NO_THREAD_SAFETY_ANALYSIS { |
80 | DCHECK(isAligned(reinterpret_cast<uptr>(this), alignof(ThisT))); |
81 | |
82 | const uptr PageSize = getPageSizeCached(); |
83 | const uptr GroupSize = (1UL << GroupSizeLog); |
84 | const uptr PagesInGroup = GroupSize / PageSize; |
85 | const uptr MinSizeClass = getSizeByClassId(ClassId: 1); |
86 | // When trying to release pages back to memory, visiting smaller size |
87 | // classes is expensive. Therefore, we only try to release smaller size |
88 | // classes when the amount of free blocks goes over a certain threshold (See |
89 | // the comment in releaseToOSMaybe() for more details). For example, for |
90 | // size class 32, we only do the release when the size of free blocks is |
91 | // greater than 97% of pages in a group. However, this may introduce another |
92 | // issue that if the number of free blocks is bouncing between 97% ~ 100%. |
93 | // Which means we may try many page releases but only release very few of |
94 | // them (less than 3% in a group). Even though we have |
95 | // `&ReleaseToOsIntervalMs` which slightly reduce the frequency of these |
96 | // calls but it will be better to have another guard to mitigate this issue. |
97 | // |
98 | // Here we add another constraint on the minimum size requirement. The |
99 | // constraint is determined by the size of in-use blocks in the minimal size |
100 | // class. Take size class 32 as an example, |
101 | // |
102 | // +- one memory group -+ |
103 | // +----------------------+------+ |
104 | // | 97% of free blocks | | |
105 | // +----------------------+------+ |
106 | // \ / |
107 | // 3% in-use blocks |
108 | // |
109 | // * The release size threshold is 97%. |
110 | // |
111 | // The 3% size in a group is about 7 pages. For two consecutive |
112 | // releaseToOSMaybe(), we require the difference between `PushedBlocks` |
113 | // should be greater than 7 pages. This mitigates the page releasing |
114 | // thrashing which is caused by memory usage bouncing around the threshold. |
115 | // The smallest size class takes longest time to do the page release so we |
116 | // use its size of in-use blocks as a heuristic. |
117 | SmallerBlockReleasePageDelta = |
118 | PagesInGroup * (1 + MinSizeClass / 16U) / 100; |
119 | |
120 | u32 Seed; |
121 | const u64 Time = getMonotonicTimeFast(); |
122 | if (!getRandom(Buffer: reinterpret_cast<void *>(&Seed), Length: sizeof(Seed))) |
123 | Seed = static_cast<u32>(Time ^ (reinterpret_cast<uptr>(&Seed) >> 12)); |
124 | |
125 | for (uptr I = 0; I < NumClasses; I++) |
126 | getRegionInfo(ClassId: I)->RandState = getRandomU32(State: &Seed); |
127 | |
128 | if (Config::getEnableContiguousRegions()) { |
129 | ReservedMemoryT ReservedMemory = {}; |
130 | // Reserve the space required for the Primary. |
131 | CHECK(ReservedMemory.create(/*Addr=*/0U, RegionSize * NumClasses, |
132 | "scudo:primary_reserve" )); |
133 | const uptr PrimaryBase = ReservedMemory.getBase(); |
134 | |
135 | for (uptr I = 0; I < NumClasses; I++) { |
136 | MemMapT RegionMemMap = ReservedMemory.dispatch( |
137 | Addr: PrimaryBase + (I << RegionSizeLog), Size: RegionSize); |
138 | RegionInfo *Region = getRegionInfo(ClassId: I); |
139 | |
140 | initRegion(Region, ClassId: I, MemMap: RegionMemMap, EnableRandomOffset: Config::getEnableRandomOffset()); |
141 | } |
142 | shuffle(RegionInfoArray, NumClasses, &Seed); |
143 | } |
144 | |
145 | // The binding should be done after region shuffling so that it won't bind |
146 | // the FLLock from the wrong region. |
147 | for (uptr I = 0; I < NumClasses; I++) |
148 | getRegionInfo(ClassId: I)->FLLockCV.bindTestOnly(getRegionInfo(ClassId: I)->FLLock); |
149 | |
150 | // The default value in the primary config has the higher priority. |
151 | if (Config::getDefaultReleaseToOsIntervalMs() != INT32_MIN) |
152 | ReleaseToOsInterval = Config::getDefaultReleaseToOsIntervalMs(); |
153 | setOption(O: Option::ReleaseInterval, Value: static_cast<sptr>(ReleaseToOsInterval)); |
154 | } |
155 | |
156 | void unmapTestOnly() { |
157 | for (uptr I = 0; I < NumClasses; I++) { |
158 | RegionInfo *Region = getRegionInfo(ClassId: I); |
159 | { |
160 | ScopedLock ML(Region->MMLock); |
161 | MemMapT MemMap = Region->MemMapInfo.MemMap; |
162 | if (MemMap.isAllocated()) |
163 | MemMap.unmap(Addr: MemMap.getBase(), Size: MemMap.getCapacity()); |
164 | } |
165 | *Region = {}; |
166 | } |
167 | } |
168 | |
169 | // When all blocks are freed, it has to be the same size as `AllocatedUser`. |
170 | void verifyAllBlocksAreReleasedTestOnly() { |
171 | // `BatchGroup` and `TransferBatch` also use the blocks from BatchClass. |
172 | uptr BatchClassUsedInFreeLists = 0; |
173 | for (uptr I = 0; I < NumClasses; I++) { |
174 | // We have to count BatchClassUsedInFreeLists in other regions first. |
175 | if (I == SizeClassMap::BatchClassId) |
176 | continue; |
177 | RegionInfo *Region = getRegionInfo(ClassId: I); |
178 | ScopedLock ML(Region->MMLock); |
179 | ScopedLock FL(Region->FLLock); |
180 | const uptr BlockSize = getSizeByClassId(ClassId: I); |
181 | uptr TotalBlocks = 0; |
182 | for (BatchGroupT &BG : Region->FreeListInfo.BlockList) { |
183 | // `BG::Batches` are `TransferBatches`. +1 for `BatchGroup`. |
184 | BatchClassUsedInFreeLists += BG.Batches.size() + 1; |
185 | for (const auto &It : BG.Batches) |
186 | TotalBlocks += It.getCount(); |
187 | } |
188 | |
189 | DCHECK_EQ(TotalBlocks, Region->MemMapInfo.AllocatedUser / BlockSize); |
190 | DCHECK_EQ(Region->FreeListInfo.PushedBlocks, |
191 | Region->FreeListInfo.PoppedBlocks); |
192 | } |
193 | |
194 | RegionInfo *Region = getRegionInfo(ClassId: SizeClassMap::BatchClassId); |
195 | ScopedLock ML(Region->MMLock); |
196 | ScopedLock FL(Region->FLLock); |
197 | const uptr BlockSize = getSizeByClassId(ClassId: SizeClassMap::BatchClassId); |
198 | uptr TotalBlocks = 0; |
199 | for (BatchGroupT &BG : Region->FreeListInfo.BlockList) { |
200 | if (LIKELY(!BG.Batches.empty())) { |
201 | for (const auto &It : BG.Batches) |
202 | TotalBlocks += It.getCount(); |
203 | } else { |
204 | // `BatchGroup` with empty freelist doesn't have `TransferBatch` record |
205 | // itself. |
206 | ++TotalBlocks; |
207 | } |
208 | } |
209 | DCHECK_EQ(TotalBlocks + BatchClassUsedInFreeLists, |
210 | Region->MemMapInfo.AllocatedUser / BlockSize); |
211 | DCHECK_GE(Region->FreeListInfo.PoppedBlocks, |
212 | Region->FreeListInfo.PushedBlocks); |
213 | const uptr BlocksInUse = |
214 | Region->FreeListInfo.PoppedBlocks - Region->FreeListInfo.PushedBlocks; |
215 | DCHECK_EQ(BlocksInUse, BatchClassUsedInFreeLists); |
216 | } |
217 | |
218 | u16 popBlocks(CacheT *C, uptr ClassId, CompactPtrT *ToArray, |
219 | const u16 MaxBlockCount) { |
220 | DCHECK_LT(ClassId, NumClasses); |
221 | RegionInfo *Region = getRegionInfo(ClassId); |
222 | u16 PopCount = 0; |
223 | |
224 | { |
225 | ScopedLock L(Region->FLLock); |
226 | PopCount = popBlocksImpl(C, ClassId, Region, ToArray, MaxBlockCount); |
227 | if (PopCount != 0U) |
228 | return PopCount; |
229 | } |
230 | |
231 | bool ReportRegionExhausted = false; |
232 | |
233 | if (conditionVariableEnabled()) { |
234 | PopCount = popBlocksWithCV(C, ClassId, Region, ToArray, MaxBlockCount, |
235 | ReportRegionExhausted); |
236 | } else { |
237 | while (true) { |
238 | // When two threads compete for `Region->MMLock`, we only want one of |
239 | // them to call populateFreeListAndPopBatch(). To avoid both of them |
240 | // doing that, always check the freelist before mapping new pages. |
241 | ScopedLock ML(Region->MMLock); |
242 | { |
243 | ScopedLock FL(Region->FLLock); |
244 | PopCount = popBlocksImpl(C, ClassId, Region, ToArray, MaxBlockCount); |
245 | if (PopCount != 0U) |
246 | return PopCount; |
247 | } |
248 | |
249 | const bool RegionIsExhausted = Region->Exhausted; |
250 | if (!RegionIsExhausted) { |
251 | PopCount = populateFreeListAndPopBlocks(C, ClassId, Region, ToArray, |
252 | MaxBlockCount); |
253 | } |
254 | ReportRegionExhausted = !RegionIsExhausted && Region->Exhausted; |
255 | break; |
256 | } |
257 | } |
258 | |
259 | if (UNLIKELY(ReportRegionExhausted)) { |
260 | Printf(Format: "Can't populate more pages for size class %zu.\n" , |
261 | getSizeByClassId(ClassId)); |
262 | |
263 | // Theoretically, BatchClass shouldn't be used up. Abort immediately when |
264 | // it happens. |
265 | if (ClassId == SizeClassMap::BatchClassId) |
266 | reportOutOfBatchClass(); |
267 | } |
268 | |
269 | return PopCount; |
270 | } |
271 | |
272 | // Push the array of free blocks to the designated batch group. |
273 | void pushBlocks(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size) { |
274 | DCHECK_LT(ClassId, NumClasses); |
275 | DCHECK_GT(Size, 0); |
276 | |
277 | RegionInfo *Region = getRegionInfo(ClassId); |
278 | if (ClassId == SizeClassMap::BatchClassId) { |
279 | ScopedLock L(Region->FLLock); |
280 | pushBatchClassBlocks(Region, Array, Size); |
281 | if (conditionVariableEnabled()) |
282 | Region->FLLockCV.notifyAll(Region->FLLock); |
283 | return; |
284 | } |
285 | |
286 | // TODO(chiahungduan): Consider not doing grouping if the group size is not |
287 | // greater than the block size with a certain scale. |
288 | |
289 | bool SameGroup = true; |
290 | if (GroupSizeLog < RegionSizeLog) { |
291 | // Sort the blocks so that blocks belonging to the same group can be |
292 | // pushed together. |
293 | for (u32 I = 1; I < Size; ++I) { |
294 | if (compactPtrGroup(CompactPtr: Array[I - 1]) != compactPtrGroup(CompactPtr: Array[I])) |
295 | SameGroup = false; |
296 | CompactPtrT Cur = Array[I]; |
297 | u32 J = I; |
298 | while (J > 0 && compactPtrGroup(CompactPtr: Cur) < compactPtrGroup(CompactPtr: Array[J - 1])) { |
299 | Array[J] = Array[J - 1]; |
300 | --J; |
301 | } |
302 | Array[J] = Cur; |
303 | } |
304 | } |
305 | |
306 | { |
307 | ScopedLock L(Region->FLLock); |
308 | pushBlocksImpl(C, ClassId, Region, Array, Size, SameGroup); |
309 | if (conditionVariableEnabled()) |
310 | Region->FLLockCV.notifyAll(Region->FLLock); |
311 | } |
312 | } |
313 | |
314 | void disable() NO_THREAD_SAFETY_ANALYSIS { |
315 | // The BatchClassId must be locked last since other classes can use it. |
316 | for (sptr I = static_cast<sptr>(NumClasses) - 1; I >= 0; I--) { |
317 | if (static_cast<uptr>(I) == SizeClassMap::BatchClassId) |
318 | continue; |
319 | getRegionInfo(ClassId: static_cast<uptr>(I))->MMLock.lock(); |
320 | getRegionInfo(ClassId: static_cast<uptr>(I))->FLLock.lock(); |
321 | } |
322 | getRegionInfo(ClassId: SizeClassMap::BatchClassId)->MMLock.lock(); |
323 | getRegionInfo(ClassId: SizeClassMap::BatchClassId)->FLLock.lock(); |
324 | } |
325 | |
326 | void enable() NO_THREAD_SAFETY_ANALYSIS { |
327 | getRegionInfo(ClassId: SizeClassMap::BatchClassId)->FLLock.unlock(); |
328 | getRegionInfo(ClassId: SizeClassMap::BatchClassId)->MMLock.unlock(); |
329 | for (uptr I = 0; I < NumClasses; I++) { |
330 | if (I == SizeClassMap::BatchClassId) |
331 | continue; |
332 | getRegionInfo(ClassId: I)->FLLock.unlock(); |
333 | getRegionInfo(ClassId: I)->MMLock.unlock(); |
334 | } |
335 | } |
336 | |
337 | template <typename F> void iterateOverBlocks(F Callback) { |
338 | for (uptr I = 0; I < NumClasses; I++) { |
339 | if (I == SizeClassMap::BatchClassId) |
340 | continue; |
341 | RegionInfo *Region = getRegionInfo(ClassId: I); |
342 | // TODO: The call of `iterateOverBlocks` requires disabling |
343 | // SizeClassAllocator64. We may consider locking each region on demand |
344 | // only. |
345 | Region->FLLock.assertHeld(); |
346 | Region->MMLock.assertHeld(); |
347 | const uptr BlockSize = getSizeByClassId(ClassId: I); |
348 | const uptr From = Region->RegionBeg; |
349 | const uptr To = From + Region->MemMapInfo.AllocatedUser; |
350 | for (uptr Block = From; Block < To; Block += BlockSize) |
351 | Callback(Block); |
352 | } |
353 | } |
354 | |
355 | void getStats(ScopedString *Str) { |
356 | // TODO(kostyak): get the RSS per region. |
357 | uptr TotalMapped = 0; |
358 | uptr PoppedBlocks = 0; |
359 | uptr PushedBlocks = 0; |
360 | for (uptr I = 0; I < NumClasses; I++) { |
361 | RegionInfo *Region = getRegionInfo(ClassId: I); |
362 | { |
363 | ScopedLock L(Region->MMLock); |
364 | TotalMapped += Region->MemMapInfo.MappedUser; |
365 | } |
366 | { |
367 | ScopedLock L(Region->FLLock); |
368 | PoppedBlocks += Region->FreeListInfo.PoppedBlocks; |
369 | PushedBlocks += Region->FreeListInfo.PushedBlocks; |
370 | } |
371 | } |
372 | const s32 IntervalMs = atomic_load_relaxed(A: &ReleaseToOsIntervalMs); |
373 | Str->append(Format: "Stats: SizeClassAllocator64: %zuM mapped (%uM rss) in %zu " |
374 | "allocations; remains %zu; ReleaseToOsIntervalMs = %d\n" , |
375 | TotalMapped >> 20, 0U, PoppedBlocks, |
376 | PoppedBlocks - PushedBlocks, IntervalMs >= 0 ? IntervalMs : -1); |
377 | |
378 | for (uptr I = 0; I < NumClasses; I++) { |
379 | RegionInfo *Region = getRegionInfo(ClassId: I); |
380 | ScopedLock L1(Region->MMLock); |
381 | ScopedLock L2(Region->FLLock); |
382 | getStats(Str, I, Region); |
383 | } |
384 | } |
385 | |
386 | void getFragmentationInfo(ScopedString *Str) { |
387 | Str->append( |
388 | Format: "Fragmentation Stats: SizeClassAllocator64: page size = %zu bytes\n" , |
389 | getPageSizeCached()); |
390 | |
391 | for (uptr I = 1; I < NumClasses; I++) { |
392 | RegionInfo *Region = getRegionInfo(ClassId: I); |
393 | ScopedLock L(Region->MMLock); |
394 | getRegionFragmentationInfo(Region, ClassId: I, Str); |
395 | } |
396 | } |
397 | |
398 | bool setOption(Option O, sptr Value) { |
399 | if (O == Option::ReleaseInterval) { |
400 | const s32 Interval = Max( |
401 | Min(static_cast<s32>(Value), Config::getMaxReleaseToOsIntervalMs()), |
402 | Config::getMinReleaseToOsIntervalMs()); |
403 | atomic_store_relaxed(A: &ReleaseToOsIntervalMs, V: Interval); |
404 | return true; |
405 | } |
406 | // Not supported by the Primary, but not an error either. |
407 | return true; |
408 | } |
409 | |
410 | uptr tryReleaseToOS(uptr ClassId, ReleaseToOS ReleaseType) { |
411 | RegionInfo *Region = getRegionInfo(ClassId); |
412 | // Note that the tryLock() may fail spuriously, given that it should rarely |
413 | // happen and page releasing is fine to skip, we don't take certain |
414 | // approaches to ensure one page release is done. |
415 | if (Region->MMLock.tryLock()) { |
416 | uptr BytesReleased = releaseToOSMaybe(Region, ClassId, ReleaseType); |
417 | Region->MMLock.unlock(); |
418 | return BytesReleased; |
419 | } |
420 | return 0; |
421 | } |
422 | |
423 | uptr releaseToOS(ReleaseToOS ReleaseType) { |
424 | uptr TotalReleasedBytes = 0; |
425 | for (uptr I = 0; I < NumClasses; I++) { |
426 | if (I == SizeClassMap::BatchClassId) |
427 | continue; |
428 | RegionInfo *Region = getRegionInfo(ClassId: I); |
429 | ScopedLock L(Region->MMLock); |
430 | TotalReleasedBytes += releaseToOSMaybe(Region, ClassId: I, ReleaseType); |
431 | } |
432 | return TotalReleasedBytes; |
433 | } |
434 | |
435 | const char *getRegionInfoArrayAddress() const { |
436 | return reinterpret_cast<const char *>(RegionInfoArray); |
437 | } |
438 | |
439 | static uptr getRegionInfoArraySize() { return sizeof(RegionInfoArray); } |
440 | |
441 | uptr getCompactPtrBaseByClassId(uptr ClassId) { |
442 | return getRegionInfo(ClassId)->RegionBeg; |
443 | } |
444 | |
445 | CompactPtrT compactPtr(uptr ClassId, uptr Ptr) { |
446 | DCHECK_LE(ClassId, SizeClassMap::LargestClassId); |
447 | return compactPtrInternal(Base: getCompactPtrBaseByClassId(ClassId), Ptr); |
448 | } |
449 | |
450 | void *decompactPtr(uptr ClassId, CompactPtrT CompactPtr) { |
451 | DCHECK_LE(ClassId, SizeClassMap::LargestClassId); |
452 | return reinterpret_cast<void *>( |
453 | decompactPtrInternal(Base: getCompactPtrBaseByClassId(ClassId), CompactPtr)); |
454 | } |
455 | |
456 | static BlockInfo findNearestBlock(const char *RegionInfoData, |
457 | uptr Ptr) NO_THREAD_SAFETY_ANALYSIS { |
458 | const RegionInfo *RegionInfoArray = |
459 | reinterpret_cast<const RegionInfo *>(RegionInfoData); |
460 | |
461 | uptr ClassId; |
462 | uptr MinDistance = -1UL; |
463 | for (uptr I = 0; I != NumClasses; ++I) { |
464 | if (I == SizeClassMap::BatchClassId) |
465 | continue; |
466 | uptr Begin = RegionInfoArray[I].RegionBeg; |
467 | // TODO(chiahungduan): In fact, We need to lock the RegionInfo::MMLock. |
468 | // However, the RegionInfoData is passed with const qualifier and lock the |
469 | // mutex requires modifying RegionInfoData, which means we need to remove |
470 | // the const qualifier. This may lead to another undefined behavior (The |
471 | // first one is accessing `AllocatedUser` without locking. It's better to |
472 | // pass `RegionInfoData` as `void *` then we can lock the mutex properly. |
473 | uptr End = Begin + RegionInfoArray[I].MemMapInfo.AllocatedUser; |
474 | if (Begin > End || End - Begin < SizeClassMap::getSizeByClassId(I)) |
475 | continue; |
476 | uptr RegionDistance; |
477 | if (Begin <= Ptr) { |
478 | if (Ptr < End) |
479 | RegionDistance = 0; |
480 | else |
481 | RegionDistance = Ptr - End; |
482 | } else { |
483 | RegionDistance = Begin - Ptr; |
484 | } |
485 | |
486 | if (RegionDistance < MinDistance) { |
487 | MinDistance = RegionDistance; |
488 | ClassId = I; |
489 | } |
490 | } |
491 | |
492 | BlockInfo B = {}; |
493 | if (MinDistance <= 8192) { |
494 | B.RegionBegin = RegionInfoArray[ClassId].RegionBeg; |
495 | B.RegionEnd = |
496 | B.RegionBegin + RegionInfoArray[ClassId].MemMapInfo.AllocatedUser; |
497 | B.BlockSize = SizeClassMap::getSizeByClassId(ClassId); |
498 | B.BlockBegin = |
499 | B.RegionBegin + uptr(sptr(Ptr - B.RegionBegin) / sptr(B.BlockSize) * |
500 | sptr(B.BlockSize)); |
501 | while (B.BlockBegin < B.RegionBegin) |
502 | B.BlockBegin += B.BlockSize; |
503 | while (B.RegionEnd < B.BlockBegin + B.BlockSize) |
504 | B.BlockBegin -= B.BlockSize; |
505 | } |
506 | return B; |
507 | } |
508 | |
509 | AtomicOptions Options; |
510 | |
511 | private: |
512 | static const uptr RegionSize = 1UL << RegionSizeLog; |
513 | static const uptr NumClasses = SizeClassMap::NumClasses; |
514 | |
515 | static const uptr MapSizeIncrement = Config::getMapSizeIncrement(); |
516 | // Fill at most this number of batches from the newly map'd memory. |
517 | static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U; |
518 | |
519 | struct ReleaseToOsInfo { |
520 | uptr BytesInFreeListAtLastCheckpoint; |
521 | uptr RangesReleased; |
522 | uptr LastReleasedBytes; |
523 | u64 LastReleaseAtNs; |
524 | }; |
525 | |
526 | struct BlocksInfo { |
527 | SinglyLinkedList<BatchGroupT> BlockList = {}; |
528 | uptr PoppedBlocks = 0; |
529 | uptr PushedBlocks = 0; |
530 | }; |
531 | |
532 | struct PagesInfo { |
533 | MemMapT MemMap = {}; |
534 | // Bytes mapped for user memory. |
535 | uptr MappedUser = 0; |
536 | // Bytes allocated for user memory. |
537 | uptr AllocatedUser = 0; |
538 | }; |
539 | |
540 | struct UnpaddedRegionInfo { |
541 | // Mutex for operations on freelist |
542 | HybridMutex FLLock; |
543 | ConditionVariableT FLLockCV GUARDED_BY(FLLock); |
544 | // Mutex for memmap operations |
545 | HybridMutex MMLock ACQUIRED_BEFORE(FLLock); |
546 | // `RegionBeg` is initialized before thread creation and won't be changed. |
547 | uptr RegionBeg = 0; |
548 | u32 RandState GUARDED_BY(MMLock) = 0; |
549 | BlocksInfo FreeListInfo GUARDED_BY(FLLock); |
550 | PagesInfo MemMapInfo GUARDED_BY(MMLock); |
551 | // The minimum size of pushed blocks to trigger page release. |
552 | uptr TryReleaseThreshold GUARDED_BY(MMLock) = 0; |
553 | ReleaseToOsInfo ReleaseInfo GUARDED_BY(MMLock) = {}; |
554 | bool Exhausted GUARDED_BY(MMLock) = false; |
555 | bool isPopulatingFreeList GUARDED_BY(FLLock) = false; |
556 | }; |
557 | struct RegionInfo : UnpaddedRegionInfo { |
558 | char Padding[SCUDO_CACHE_LINE_SIZE - |
559 | (sizeof(UnpaddedRegionInfo) % SCUDO_CACHE_LINE_SIZE)] = {}; |
560 | }; |
561 | static_assert(sizeof(RegionInfo) % SCUDO_CACHE_LINE_SIZE == 0, "" ); |
562 | |
563 | RegionInfo *getRegionInfo(uptr ClassId) { |
564 | DCHECK_LT(ClassId, NumClasses); |
565 | return &RegionInfoArray[ClassId]; |
566 | } |
567 | |
568 | uptr getRegionBaseByClassId(uptr ClassId) { |
569 | RegionInfo *Region = getRegionInfo(ClassId); |
570 | Region->MMLock.assertHeld(); |
571 | |
572 | if (!Config::getEnableContiguousRegions() && |
573 | !Region->MemMapInfo.MemMap.isAllocated()) { |
574 | return 0U; |
575 | } |
576 | return Region->MemMapInfo.MemMap.getBase(); |
577 | } |
578 | |
579 | static CompactPtrT compactPtrInternal(uptr Base, uptr Ptr) { |
580 | return static_cast<CompactPtrT>((Ptr - Base) >> CompactPtrScale); |
581 | } |
582 | |
583 | static uptr decompactPtrInternal(uptr Base, CompactPtrT CompactPtr) { |
584 | return Base + (static_cast<uptr>(CompactPtr) << CompactPtrScale); |
585 | } |
586 | |
587 | static uptr compactPtrGroup(CompactPtrT CompactPtr) { |
588 | const uptr Mask = (static_cast<uptr>(1) << GroupScale) - 1; |
589 | return static_cast<uptr>(CompactPtr) & ~Mask; |
590 | } |
591 | static uptr decompactGroupBase(uptr Base, uptr CompactPtrGroupBase) { |
592 | DCHECK_EQ(CompactPtrGroupBase % (static_cast<uptr>(1) << (GroupScale)), 0U); |
593 | return Base + (CompactPtrGroupBase << CompactPtrScale); |
594 | } |
595 | |
596 | ALWAYS_INLINE static bool isSmallBlock(uptr BlockSize) { |
597 | const uptr PageSize = getPageSizeCached(); |
598 | return BlockSize < PageSize / 16U; |
599 | } |
600 | |
601 | ALWAYS_INLINE static bool isLargeBlock(uptr BlockSize) { |
602 | const uptr PageSize = getPageSizeCached(); |
603 | return BlockSize > PageSize; |
604 | } |
605 | |
606 | ALWAYS_INLINE void initRegion(RegionInfo *Region, uptr ClassId, |
607 | MemMapT MemMap, bool EnableRandomOffset) |
608 | REQUIRES(Region->MMLock) { |
609 | DCHECK(!Region->MemMapInfo.MemMap.isAllocated()); |
610 | DCHECK(MemMap.isAllocated()); |
611 | |
612 | const uptr PageSize = getPageSizeCached(); |
613 | |
614 | Region->MemMapInfo.MemMap = MemMap; |
615 | |
616 | Region->RegionBeg = MemMap.getBase(); |
617 | if (EnableRandomOffset) { |
618 | Region->RegionBeg += |
619 | (getRandomModN(&Region->RandState, 16) + 1) * PageSize; |
620 | } |
621 | |
622 | // Releasing small blocks is expensive, set a higher threshold to avoid |
623 | // frequent page releases. |
624 | if (isSmallBlock(BlockSize: getSizeByClassId(ClassId))) |
625 | Region->TryReleaseThreshold = PageSize * SmallerBlockReleasePageDelta; |
626 | else |
627 | Region->TryReleaseThreshold = PageSize; |
628 | } |
629 | |
630 | void pushBatchClassBlocks(RegionInfo *Region, CompactPtrT *Array, u32 Size) |
631 | REQUIRES(Region->FLLock) { |
632 | DCHECK_EQ(Region, getRegionInfo(SizeClassMap::BatchClassId)); |
633 | |
634 | // Free blocks are recorded by TransferBatch in freelist for all |
635 | // size-classes. In addition, TransferBatch is allocated from BatchClassId. |
636 | // In order not to use additional block to record the free blocks in |
637 | // BatchClassId, they are self-contained. I.e., A TransferBatch records the |
638 | // block address of itself. See the figure below: |
639 | // |
640 | // TransferBatch at 0xABCD |
641 | // +----------------------------+ |
642 | // | Free blocks' addr | |
643 | // | +------+------+------+ | |
644 | // | |0xABCD|... |... | | |
645 | // | +------+------+------+ | |
646 | // +----------------------------+ |
647 | // |
648 | // When we allocate all the free blocks in the TransferBatch, the block used |
649 | // by TransferBatch is also free for use. We don't need to recycle the |
650 | // TransferBatch. Note that the correctness is maintained by the invariant, |
651 | // |
652 | // Each popBlocks() request returns the entire TransferBatch. Returning |
653 | // part of the blocks in a TransferBatch is invalid. |
654 | // |
655 | // This ensures that TransferBatch won't leak the address itself while it's |
656 | // still holding other valid data. |
657 | // |
658 | // Besides, BatchGroup is also allocated from BatchClassId and has its |
659 | // address recorded in the TransferBatch too. To maintain the correctness, |
660 | // |
661 | // The address of BatchGroup is always recorded in the last TransferBatch |
662 | // in the freelist (also imply that the freelist should only be |
663 | // updated with push_front). Once the last TransferBatch is popped, |
664 | // the block used by BatchGroup is also free for use. |
665 | // |
666 | // With this approach, the blocks used by BatchGroup and TransferBatch are |
667 | // reusable and don't need additional space for them. |
668 | |
669 | Region->FreeListInfo.PushedBlocks += Size; |
670 | BatchGroupT *BG = Region->FreeListInfo.BlockList.front(); |
671 | |
672 | if (BG == nullptr) { |
673 | // Construct `BatchGroup` on the last element. |
674 | BG = reinterpret_cast<BatchGroupT *>( |
675 | decompactPtr(ClassId: SizeClassMap::BatchClassId, CompactPtr: Array[Size - 1])); |
676 | --Size; |
677 | BG->Batches.clear(); |
678 | // BatchClass hasn't enabled memory group. Use `0` to indicate there's no |
679 | // memory group here. |
680 | BG->CompactPtrGroupBase = 0; |
681 | // `BG` is also the block of BatchClassId. Note that this is different |
682 | // from `CreateGroup` in `pushBlocksImpl` |
683 | BG->PushedBlocks = 1; |
684 | BG->BytesInBGAtLastCheckpoint = 0; |
685 | BG->MaxCachedPerBatch = |
686 | CacheT::getMaxCached(getSizeByClassId(ClassId: SizeClassMap::BatchClassId)); |
687 | |
688 | Region->FreeListInfo.BlockList.push_front(BG); |
689 | } |
690 | |
691 | if (UNLIKELY(Size == 0)) |
692 | return; |
693 | |
694 | // This happens under 2 cases. |
695 | // 1. just allocated a new `BatchGroup`. |
696 | // 2. Only 1 block is pushed when the freelist is empty. |
697 | if (BG->Batches.empty()) { |
698 | // Construct the `TransferBatch` on the last element. |
699 | TransferBatchT *TB = reinterpret_cast<TransferBatchT *>( |
700 | decompactPtr(ClassId: SizeClassMap::BatchClassId, CompactPtr: Array[Size - 1])); |
701 | TB->clear(); |
702 | // As mentioned above, addresses of `TransferBatch` and `BatchGroup` are |
703 | // recorded in the TransferBatch. |
704 | TB->add(Array[Size - 1]); |
705 | TB->add( |
706 | compactPtr(ClassId: SizeClassMap::BatchClassId, Ptr: reinterpret_cast<uptr>(BG))); |
707 | --Size; |
708 | DCHECK_EQ(BG->PushedBlocks, 1U); |
709 | // `TB` is also the block of BatchClassId. |
710 | BG->PushedBlocks += 1; |
711 | BG->Batches.push_front(TB); |
712 | } |
713 | |
714 | TransferBatchT *CurBatch = BG->Batches.front(); |
715 | DCHECK_NE(CurBatch, nullptr); |
716 | |
717 | for (u32 I = 0; I < Size;) { |
718 | u16 UnusedSlots = |
719 | static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount()); |
720 | if (UnusedSlots == 0) { |
721 | CurBatch = reinterpret_cast<TransferBatchT *>( |
722 | decompactPtr(ClassId: SizeClassMap::BatchClassId, CompactPtr: Array[I])); |
723 | CurBatch->clear(); |
724 | // Self-contained |
725 | CurBatch->add(Array[I]); |
726 | ++I; |
727 | // TODO(chiahungduan): Avoid the use of push_back() in `Batches` of |
728 | // BatchClassId. |
729 | BG->Batches.push_front(CurBatch); |
730 | UnusedSlots = static_cast<u16>(BG->MaxCachedPerBatch - 1); |
731 | } |
732 | // `UnusedSlots` is u16 so the result will be also fit in u16. |
733 | const u16 AppendSize = static_cast<u16>(Min<u32>(A: UnusedSlots, B: Size - I)); |
734 | CurBatch->appendFromArray(&Array[I], AppendSize); |
735 | I += AppendSize; |
736 | } |
737 | |
738 | BG->PushedBlocks += Size; |
739 | } |
740 | |
741 | // Push the blocks to their batch group. The layout will be like, |
742 | // |
743 | // FreeListInfo.BlockList - > BG -> BG -> BG |
744 | // | | | |
745 | // v v v |
746 | // TB TB TB |
747 | // | |
748 | // v |
749 | // TB |
750 | // |
751 | // Each BlockGroup(BG) will associate with unique group id and the free blocks |
752 | // are managed by a list of TransferBatch(TB). To reduce the time of inserting |
753 | // blocks, BGs are sorted and the input `Array` are supposed to be sorted so |
754 | // that we can get better performance of maintaining sorted property. |
755 | // Use `SameGroup=true` to indicate that all blocks in the array are from the |
756 | // same group then we will skip checking the group id of each block. |
757 | void pushBlocksImpl(CacheT *C, uptr ClassId, RegionInfo *Region, |
758 | CompactPtrT *Array, u32 Size, bool SameGroup = false) |
759 | REQUIRES(Region->FLLock) { |
760 | DCHECK_NE(ClassId, SizeClassMap::BatchClassId); |
761 | DCHECK_GT(Size, 0U); |
762 | |
763 | auto CreateGroup = [&](uptr CompactPtrGroupBase) { |
764 | BatchGroupT *BG = |
765 | reinterpret_cast<BatchGroupT *>(C->getBatchClassBlock()); |
766 | BG->Batches.clear(); |
767 | TransferBatchT *TB = |
768 | reinterpret_cast<TransferBatchT *>(C->getBatchClassBlock()); |
769 | TB->clear(); |
770 | |
771 | BG->CompactPtrGroupBase = CompactPtrGroupBase; |
772 | BG->Batches.push_front(TB); |
773 | BG->PushedBlocks = 0; |
774 | BG->BytesInBGAtLastCheckpoint = 0; |
775 | BG->MaxCachedPerBatch = TransferBatchT::MaxNumCached; |
776 | |
777 | return BG; |
778 | }; |
779 | |
780 | auto InsertBlocks = [&](BatchGroupT *BG, CompactPtrT *Array, u32 Size) { |
781 | SinglyLinkedList<TransferBatchT> &Batches = BG->Batches; |
782 | TransferBatchT *CurBatch = Batches.front(); |
783 | DCHECK_NE(CurBatch, nullptr); |
784 | |
785 | for (u32 I = 0; I < Size;) { |
786 | DCHECK_GE(BG->MaxCachedPerBatch, CurBatch->getCount()); |
787 | u16 UnusedSlots = |
788 | static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount()); |
789 | if (UnusedSlots == 0) { |
790 | CurBatch = |
791 | reinterpret_cast<TransferBatchT *>(C->getBatchClassBlock()); |
792 | CurBatch->clear(); |
793 | Batches.push_front(CurBatch); |
794 | UnusedSlots = BG->MaxCachedPerBatch; |
795 | } |
796 | // `UnusedSlots` is u16 so the result will be also fit in u16. |
797 | u16 AppendSize = static_cast<u16>(Min<u32>(A: UnusedSlots, B: Size - I)); |
798 | CurBatch->appendFromArray(&Array[I], AppendSize); |
799 | I += AppendSize; |
800 | } |
801 | |
802 | BG->PushedBlocks += Size; |
803 | }; |
804 | |
805 | Region->FreeListInfo.PushedBlocks += Size; |
806 | BatchGroupT *Cur = Region->FreeListInfo.BlockList.front(); |
807 | |
808 | // In the following, `Cur` always points to the BatchGroup for blocks that |
809 | // will be pushed next. `Prev` is the element right before `Cur`. |
810 | BatchGroupT *Prev = nullptr; |
811 | |
812 | while (Cur != nullptr && |
813 | compactPtrGroup(CompactPtr: Array[0]) > Cur->CompactPtrGroupBase) { |
814 | Prev = Cur; |
815 | Cur = Cur->Next; |
816 | } |
817 | |
818 | if (Cur == nullptr || |
819 | compactPtrGroup(CompactPtr: Array[0]) != Cur->CompactPtrGroupBase) { |
820 | Cur = CreateGroup(compactPtrGroup(CompactPtr: Array[0])); |
821 | if (Prev == nullptr) |
822 | Region->FreeListInfo.BlockList.push_front(Cur); |
823 | else |
824 | Region->FreeListInfo.BlockList.insert(Prev, Cur); |
825 | } |
826 | |
827 | // All the blocks are from the same group, just push without checking group |
828 | // id. |
829 | if (SameGroup) { |
830 | for (u32 I = 0; I < Size; ++I) |
831 | DCHECK_EQ(compactPtrGroup(Array[I]), Cur->CompactPtrGroupBase); |
832 | |
833 | InsertBlocks(Cur, Array, Size); |
834 | return; |
835 | } |
836 | |
837 | // The blocks are sorted by group id. Determine the segment of group and |
838 | // push them to their group together. |
839 | u32 Count = 1; |
840 | for (u32 I = 1; I < Size; ++I) { |
841 | if (compactPtrGroup(CompactPtr: Array[I - 1]) != compactPtrGroup(CompactPtr: Array[I])) { |
842 | DCHECK_EQ(compactPtrGroup(Array[I - 1]), Cur->CompactPtrGroupBase); |
843 | InsertBlocks(Cur, Array + I - Count, Count); |
844 | |
845 | while (Cur != nullptr && |
846 | compactPtrGroup(CompactPtr: Array[I]) > Cur->CompactPtrGroupBase) { |
847 | Prev = Cur; |
848 | Cur = Cur->Next; |
849 | } |
850 | |
851 | if (Cur == nullptr || |
852 | compactPtrGroup(CompactPtr: Array[I]) != Cur->CompactPtrGroupBase) { |
853 | Cur = CreateGroup(compactPtrGroup(CompactPtr: Array[I])); |
854 | DCHECK_NE(Prev, nullptr); |
855 | Region->FreeListInfo.BlockList.insert(Prev, Cur); |
856 | } |
857 | |
858 | Count = 1; |
859 | } else { |
860 | ++Count; |
861 | } |
862 | } |
863 | |
864 | InsertBlocks(Cur, Array + Size - Count, Count); |
865 | } |
866 | |
867 | u16 popBlocksWithCV(CacheT *C, uptr ClassId, RegionInfo *Region, |
868 | CompactPtrT *ToArray, const u16 MaxBlockCount, |
869 | bool &ReportRegionExhausted) { |
870 | u16 PopCount = 0; |
871 | |
872 | while (true) { |
873 | // We only expect one thread doing the freelist refillment and other |
874 | // threads will be waiting for either the completion of the |
875 | // `populateFreeListAndPopBatch()` or `pushBlocks()` called by other |
876 | // threads. |
877 | bool PopulateFreeList = false; |
878 | { |
879 | ScopedLock FL(Region->FLLock); |
880 | if (!Region->isPopulatingFreeList) { |
881 | Region->isPopulatingFreeList = true; |
882 | PopulateFreeList = true; |
883 | } |
884 | } |
885 | |
886 | if (PopulateFreeList) { |
887 | ScopedLock ML(Region->MMLock); |
888 | |
889 | const bool RegionIsExhausted = Region->Exhausted; |
890 | if (!RegionIsExhausted) { |
891 | PopCount = populateFreeListAndPopBlocks(C, ClassId, Region, ToArray, |
892 | MaxBlockCount); |
893 | } |
894 | ReportRegionExhausted = !RegionIsExhausted && Region->Exhausted; |
895 | |
896 | { |
897 | // Before reacquiring the `FLLock`, the freelist may be used up again |
898 | // and some threads are waiting for the freelist refillment by the |
899 | // current thread. It's important to set |
900 | // `Region->isPopulatingFreeList` to false so the threads about to |
901 | // sleep will notice the status change. |
902 | ScopedLock FL(Region->FLLock); |
903 | Region->isPopulatingFreeList = false; |
904 | Region->FLLockCV.notifyAll(Region->FLLock); |
905 | } |
906 | |
907 | break; |
908 | } |
909 | |
910 | // At here, there are two preconditions to be met before waiting, |
911 | // 1. The freelist is empty. |
912 | // 2. Region->isPopulatingFreeList == true, i.e, someone is still doing |
913 | // `populateFreeListAndPopBatch()`. |
914 | // |
915 | // Note that it has the chance that freelist is empty but |
916 | // Region->isPopulatingFreeList == false because all the new populated |
917 | // blocks were used up right after the refillment. Therefore, we have to |
918 | // check if someone is still populating the freelist. |
919 | ScopedLock FL(Region->FLLock); |
920 | PopCount = popBlocksImpl(C, ClassId, Region, ToArray, MaxBlockCount); |
921 | if (PopCount != 0U) |
922 | break; |
923 | |
924 | if (!Region->isPopulatingFreeList) |
925 | continue; |
926 | |
927 | // Now the freelist is empty and someone's doing the refillment. We will |
928 | // wait until anyone refills the freelist or someone finishes doing |
929 | // `populateFreeListAndPopBatch()`. The refillment can be done by |
930 | // `populateFreeListAndPopBatch()`, `pushBlocks()`, |
931 | // `pushBatchClassBlocks()` and `mergeGroupsToReleaseBack()`. |
932 | Region->FLLockCV.wait(Region->FLLock); |
933 | |
934 | PopCount = popBlocksImpl(C, ClassId, Region, ToArray, MaxBlockCount); |
935 | if (PopCount != 0U) |
936 | break; |
937 | } |
938 | |
939 | return PopCount; |
940 | } |
941 | |
942 | u16 popBlocksImpl(CacheT *C, uptr ClassId, RegionInfo *Region, |
943 | CompactPtrT *ToArray, const u16 MaxBlockCount) |
944 | REQUIRES(Region->FLLock) { |
945 | if (Region->FreeListInfo.BlockList.empty()) |
946 | return 0U; |
947 | |
948 | SinglyLinkedList<TransferBatchT> &Batches = |
949 | Region->FreeListInfo.BlockList.front()->Batches; |
950 | |
951 | if (Batches.empty()) { |
952 | DCHECK_EQ(ClassId, SizeClassMap::BatchClassId); |
953 | BatchGroupT *BG = Region->FreeListInfo.BlockList.front(); |
954 | Region->FreeListInfo.BlockList.pop_front(); |
955 | |
956 | // Block used by `BatchGroup` is from BatchClassId. Turn the block into |
957 | // `TransferBatch` with single block. |
958 | TransferBatchT *TB = reinterpret_cast<TransferBatchT *>(BG); |
959 | ToArray[0] = |
960 | compactPtr(ClassId: SizeClassMap::BatchClassId, Ptr: reinterpret_cast<uptr>(TB)); |
961 | Region->FreeListInfo.PoppedBlocks += 1; |
962 | return 1U; |
963 | } |
964 | |
965 | // So far, instead of always filling blocks to `MaxBlockCount`, we only |
966 | // examine single `TransferBatch` to minimize the time spent in the primary |
967 | // allocator. Besides, the sizes of `TransferBatch` and |
968 | // `CacheT::getMaxCached()` may also impact the time spent on accessing the |
969 | // primary allocator. |
970 | // TODO(chiahungduan): Evaluate if we want to always prepare `MaxBlockCount` |
971 | // blocks and/or adjust the size of `TransferBatch` according to |
972 | // `CacheT::getMaxCached()`. |
973 | TransferBatchT *B = Batches.front(); |
974 | DCHECK_NE(B, nullptr); |
975 | DCHECK_GT(B->getCount(), 0U); |
976 | |
977 | // BachClassId should always take all blocks in the TransferBatch. Read the |
978 | // comment in `pushBatchClassBlocks()` for more details. |
979 | const u16 PopCount = ClassId == SizeClassMap::BatchClassId |
980 | ? B->getCount() |
981 | : Min(MaxBlockCount, B->getCount()); |
982 | B->moveNToArray(ToArray, PopCount); |
983 | |
984 | // TODO(chiahungduan): The deallocation of unused BatchClassId blocks can be |
985 | // done without holding `FLLock`. |
986 | if (B->empty()) { |
987 | Batches.pop_front(); |
988 | // `TransferBatch` of BatchClassId is self-contained, no need to |
989 | // deallocate. Read the comment in `pushBatchClassBlocks()` for more |
990 | // details. |
991 | if (ClassId != SizeClassMap::BatchClassId) |
992 | C->deallocate(SizeClassMap::BatchClassId, B); |
993 | |
994 | if (Batches.empty()) { |
995 | BatchGroupT *BG = Region->FreeListInfo.BlockList.front(); |
996 | Region->FreeListInfo.BlockList.pop_front(); |
997 | |
998 | // We don't keep BatchGroup with zero blocks to avoid empty-checking |
999 | // while allocating. Note that block used for constructing BatchGroup is |
1000 | // recorded as free blocks in the last element of BatchGroup::Batches. |
1001 | // Which means, once we pop the last TransferBatch, the block is |
1002 | // implicitly deallocated. |
1003 | if (ClassId != SizeClassMap::BatchClassId) |
1004 | C->deallocate(SizeClassMap::BatchClassId, BG); |
1005 | } |
1006 | } |
1007 | |
1008 | Region->FreeListInfo.PoppedBlocks += PopCount; |
1009 | |
1010 | return PopCount; |
1011 | } |
1012 | |
1013 | NOINLINE u16 populateFreeListAndPopBlocks(CacheT *C, uptr ClassId, |
1014 | RegionInfo *Region, |
1015 | CompactPtrT *ToArray, |
1016 | const u16 MaxBlockCount) |
1017 | REQUIRES(Region->MMLock) EXCLUDES(Region->FLLock) { |
1018 | if (!Config::getEnableContiguousRegions() && |
1019 | !Region->MemMapInfo.MemMap.isAllocated()) { |
1020 | ReservedMemoryT ReservedMemory; |
1021 | if (UNLIKELY(!ReservedMemory.create(/*Addr=*/0U, RegionSize, |
1022 | "scudo:primary_reserve" , |
1023 | MAP_ALLOWNOMEM))) { |
1024 | Printf(Format: "Can't reserve pages for size class %zu.\n" , |
1025 | getSizeByClassId(ClassId)); |
1026 | return 0U; |
1027 | } |
1028 | initRegion(Region, ClassId, |
1029 | MemMap: ReservedMemory.dispatch(Addr: ReservedMemory.getBase(), |
1030 | Size: ReservedMemory.getCapacity()), |
1031 | /*EnableRandomOffset=*/EnableRandomOffset: false); |
1032 | } |
1033 | |
1034 | DCHECK(Region->MemMapInfo.MemMap.isAllocated()); |
1035 | const uptr Size = getSizeByClassId(ClassId); |
1036 | const u16 MaxCount = CacheT::getMaxCached(Size); |
1037 | const uptr RegionBeg = Region->RegionBeg; |
1038 | const uptr MappedUser = Region->MemMapInfo.MappedUser; |
1039 | const uptr TotalUserBytes = |
1040 | Region->MemMapInfo.AllocatedUser + MaxCount * Size; |
1041 | // Map more space for blocks, if necessary. |
1042 | if (TotalUserBytes > MappedUser) { |
1043 | // Do the mmap for the user memory. |
1044 | const uptr MapSize = |
1045 | roundUp(X: TotalUserBytes - MappedUser, Boundary: MapSizeIncrement); |
1046 | const uptr RegionBase = RegionBeg - getRegionBaseByClassId(ClassId); |
1047 | if (UNLIKELY(RegionBase + MappedUser + MapSize > RegionSize)) { |
1048 | Region->Exhausted = true; |
1049 | return 0U; |
1050 | } |
1051 | |
1052 | if (UNLIKELY(!Region->MemMapInfo.MemMap.remap( |
1053 | RegionBeg + MappedUser, MapSize, "scudo:primary" , |
1054 | MAP_ALLOWNOMEM | MAP_RESIZABLE | |
1055 | (useMemoryTagging<Config>(Options.load()) ? MAP_MEMTAG |
1056 | : 0)))) { |
1057 | return 0U; |
1058 | } |
1059 | Region->MemMapInfo.MappedUser += MapSize; |
1060 | C->getStats().add(StatMapped, MapSize); |
1061 | } |
1062 | |
1063 | const u32 NumberOfBlocks = |
1064 | Min(A: MaxNumBatches * MaxCount, |
1065 | B: static_cast<u32>((Region->MemMapInfo.MappedUser - |
1066 | Region->MemMapInfo.AllocatedUser) / |
1067 | Size)); |
1068 | DCHECK_GT(NumberOfBlocks, 0); |
1069 | |
1070 | constexpr u32 ShuffleArraySize = |
1071 | MaxNumBatches * TransferBatchT::MaxNumCached; |
1072 | CompactPtrT ShuffleArray[ShuffleArraySize]; |
1073 | DCHECK_LE(NumberOfBlocks, ShuffleArraySize); |
1074 | |
1075 | const uptr CompactPtrBase = getCompactPtrBaseByClassId(ClassId); |
1076 | uptr P = RegionBeg + Region->MemMapInfo.AllocatedUser; |
1077 | for (u32 I = 0; I < NumberOfBlocks; I++, P += Size) |
1078 | ShuffleArray[I] = compactPtrInternal(Base: CompactPtrBase, Ptr: P); |
1079 | |
1080 | ScopedLock L(Region->FLLock); |
1081 | |
1082 | if (ClassId != SizeClassMap::BatchClassId) { |
1083 | u32 N = 1; |
1084 | uptr CurGroup = compactPtrGroup(CompactPtr: ShuffleArray[0]); |
1085 | for (u32 I = 1; I < NumberOfBlocks; I++) { |
1086 | if (UNLIKELY(compactPtrGroup(ShuffleArray[I]) != CurGroup)) { |
1087 | shuffle(ShuffleArray + I - N, N, &Region->RandState); |
1088 | pushBlocksImpl(C, ClassId, Region, Array: ShuffleArray + I - N, Size: N, |
1089 | /*SameGroup=*/SameGroup: true); |
1090 | N = 1; |
1091 | CurGroup = compactPtrGroup(CompactPtr: ShuffleArray[I]); |
1092 | } else { |
1093 | ++N; |
1094 | } |
1095 | } |
1096 | |
1097 | shuffle(ShuffleArray + NumberOfBlocks - N, N, &Region->RandState); |
1098 | pushBlocksImpl(C, ClassId, Region, Array: &ShuffleArray[NumberOfBlocks - N], Size: N, |
1099 | /*SameGroup=*/SameGroup: true); |
1100 | } else { |
1101 | pushBatchClassBlocks(Region, Array: ShuffleArray, Size: NumberOfBlocks); |
1102 | } |
1103 | |
1104 | const u16 PopCount = |
1105 | popBlocksImpl(C, ClassId, Region, ToArray, MaxBlockCount); |
1106 | DCHECK_NE(PopCount, 0U); |
1107 | |
1108 | // Note that `PushedBlocks` and `PoppedBlocks` are supposed to only record |
1109 | // the requests from `PushBlocks` and `PopBatch` which are external |
1110 | // interfaces. `populateFreeListAndPopBatch` is the internal interface so we |
1111 | // should set the values back to avoid incorrectly setting the stats. |
1112 | Region->FreeListInfo.PushedBlocks -= NumberOfBlocks; |
1113 | |
1114 | const uptr AllocatedUser = Size * NumberOfBlocks; |
1115 | C->getStats().add(StatFree, AllocatedUser); |
1116 | Region->MemMapInfo.AllocatedUser += AllocatedUser; |
1117 | |
1118 | return PopCount; |
1119 | } |
1120 | |
1121 | void getStats(ScopedString *Str, uptr ClassId, RegionInfo *Region) |
1122 | REQUIRES(Region->MMLock, Region->FLLock) { |
1123 | if (Region->MemMapInfo.MappedUser == 0) |
1124 | return; |
1125 | const uptr BlockSize = getSizeByClassId(ClassId); |
1126 | const uptr InUseBlocks = |
1127 | Region->FreeListInfo.PoppedBlocks - Region->FreeListInfo.PushedBlocks; |
1128 | const uptr BytesInFreeList = |
1129 | Region->MemMapInfo.AllocatedUser - InUseBlocks * BlockSize; |
1130 | uptr RegionPushedBytesDelta = 0; |
1131 | if (BytesInFreeList >= |
1132 | Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint) { |
1133 | RegionPushedBytesDelta = |
1134 | BytesInFreeList - Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint; |
1135 | } |
1136 | const uptr TotalChunks = Region->MemMapInfo.AllocatedUser / BlockSize; |
1137 | Str->append( |
1138 | Format: "%s %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu " |
1139 | "inuse: %6zu total: %6zu releases: %6zu last " |
1140 | "released: %6zuK latest pushed bytes: %6zuK region: 0x%zx (0x%zx)\n" , |
1141 | Region->Exhausted ? "E" : " " , ClassId, getSizeByClassId(ClassId), |
1142 | Region->MemMapInfo.MappedUser >> 10, Region->FreeListInfo.PoppedBlocks, |
1143 | Region->FreeListInfo.PushedBlocks, InUseBlocks, TotalChunks, |
1144 | Region->ReleaseInfo.RangesReleased, |
1145 | Region->ReleaseInfo.LastReleasedBytes >> 10, |
1146 | RegionPushedBytesDelta >> 10, Region->RegionBeg, |
1147 | getRegionBaseByClassId(ClassId)); |
1148 | } |
1149 | |
1150 | void getRegionFragmentationInfo(RegionInfo *Region, uptr ClassId, |
1151 | ScopedString *Str) REQUIRES(Region->MMLock) { |
1152 | const uptr BlockSize = getSizeByClassId(ClassId); |
1153 | const uptr AllocatedUserEnd = |
1154 | Region->MemMapInfo.AllocatedUser + Region->RegionBeg; |
1155 | |
1156 | SinglyLinkedList<BatchGroupT> GroupsToRelease; |
1157 | { |
1158 | ScopedLock L(Region->FLLock); |
1159 | GroupsToRelease = Region->FreeListInfo.BlockList; |
1160 | Region->FreeListInfo.BlockList.clear(); |
1161 | } |
1162 | |
1163 | FragmentationRecorder Recorder; |
1164 | if (!GroupsToRelease.empty()) { |
1165 | PageReleaseContext Context = |
1166 | markFreeBlocks(Region, BlockSize, AllocatedUserEnd, |
1167 | CompactPtrBase: getCompactPtrBaseByClassId(ClassId), GroupsToRelease); |
1168 | auto SkipRegion = [](UNUSED uptr RegionIndex) { return false; }; |
1169 | releaseFreeMemoryToOS(Context, Recorder, SkipRegion); |
1170 | |
1171 | mergeGroupsToReleaseBack(Region, GroupsToRelease); |
1172 | } |
1173 | |
1174 | ScopedLock L(Region->FLLock); |
1175 | const uptr PageSize = getPageSizeCached(); |
1176 | const uptr TotalBlocks = Region->MemMapInfo.AllocatedUser / BlockSize; |
1177 | const uptr InUseBlocks = |
1178 | Region->FreeListInfo.PoppedBlocks - Region->FreeListInfo.PushedBlocks; |
1179 | const uptr AllocatedPagesCount = |
1180 | roundUp(Region->MemMapInfo.AllocatedUser, PageSize) / PageSize; |
1181 | DCHECK_GE(AllocatedPagesCount, Recorder.getReleasedPagesCount()); |
1182 | const uptr InUsePages = |
1183 | AllocatedPagesCount - Recorder.getReleasedPagesCount(); |
1184 | const uptr InUseBytes = InUsePages * PageSize; |
1185 | |
1186 | uptr Integral; |
1187 | uptr Fractional; |
1188 | computePercentage(Numerator: BlockSize * InUseBlocks, Denominator: InUsePages * PageSize, Integral: &Integral, |
1189 | Fractional: &Fractional); |
1190 | Str->append(Format: " %02zu (%6zu): inuse/total blocks: %6zu/%6zu inuse/total " |
1191 | "pages: %6zu/%6zu inuse bytes: %6zuK util: %3zu.%02zu%%\n" , |
1192 | ClassId, BlockSize, InUseBlocks, TotalBlocks, InUsePages, |
1193 | AllocatedPagesCount, InUseBytes >> 10, Integral, Fractional); |
1194 | } |
1195 | |
1196 | NOINLINE uptr releaseToOSMaybe(RegionInfo *Region, uptr ClassId, |
1197 | ReleaseToOS ReleaseType = ReleaseToOS::Normal) |
1198 | REQUIRES(Region->MMLock) EXCLUDES(Region->FLLock) { |
1199 | const uptr BlockSize = getSizeByClassId(ClassId); |
1200 | uptr BytesInFreeList; |
1201 | const uptr AllocatedUserEnd = |
1202 | Region->MemMapInfo.AllocatedUser + Region->RegionBeg; |
1203 | SinglyLinkedList<BatchGroupT> GroupsToRelease; |
1204 | |
1205 | { |
1206 | ScopedLock L(Region->FLLock); |
1207 | |
1208 | BytesInFreeList = Region->MemMapInfo.AllocatedUser - |
1209 | (Region->FreeListInfo.PoppedBlocks - |
1210 | Region->FreeListInfo.PushedBlocks) * |
1211 | BlockSize; |
1212 | if (UNLIKELY(BytesInFreeList == 0)) |
1213 | return false; |
1214 | |
1215 | // ==================================================================== // |
1216 | // 1. Check if we have enough free blocks and if it's worth doing a page |
1217 | // release. |
1218 | // ==================================================================== // |
1219 | if (ReleaseType != ReleaseToOS::ForceAll && |
1220 | !hasChanceToReleasePages(Region, BlockSize, BytesInFreeList, |
1221 | ReleaseType)) { |
1222 | return 0; |
1223 | } |
1224 | |
1225 | // ==================================================================== // |
1226 | // 2. Determine which groups can release the pages. Use a heuristic to |
1227 | // gather groups that are candidates for doing a release. |
1228 | // ==================================================================== // |
1229 | if (ReleaseType == ReleaseToOS::ForceAll) { |
1230 | GroupsToRelease = Region->FreeListInfo.BlockList; |
1231 | Region->FreeListInfo.BlockList.clear(); |
1232 | } else { |
1233 | GroupsToRelease = |
1234 | collectGroupsToRelease(Region, BlockSize, AllocatedUserEnd, |
1235 | CompactPtrBase: getCompactPtrBaseByClassId(ClassId)); |
1236 | } |
1237 | if (GroupsToRelease.empty()) |
1238 | return 0; |
1239 | } |
1240 | |
1241 | // Note that we have extracted the `GroupsToRelease` from region freelist. |
1242 | // It's safe to let pushBlocks()/popBlocks() access the remaining region |
1243 | // freelist. In the steps 3 and 4, we will temporarily release the FLLock |
1244 | // and lock it again before step 5. |
1245 | |
1246 | // ==================================================================== // |
1247 | // 3. Mark the free blocks in `GroupsToRelease` in the `PageReleaseContext`. |
1248 | // Then we can tell which pages are in-use by querying |
1249 | // `PageReleaseContext`. |
1250 | // ==================================================================== // |
1251 | PageReleaseContext Context = |
1252 | markFreeBlocks(Region, BlockSize, AllocatedUserEnd, |
1253 | CompactPtrBase: getCompactPtrBaseByClassId(ClassId), GroupsToRelease); |
1254 | if (UNLIKELY(!Context.hasBlockMarked())) { |
1255 | mergeGroupsToReleaseBack(Region, GroupsToRelease); |
1256 | return 0; |
1257 | } |
1258 | |
1259 | // ==================================================================== // |
1260 | // 4. Release the unused physical pages back to the OS. |
1261 | // ==================================================================== // |
1262 | RegionReleaseRecorder<MemMapT> Recorder(&Region->MemMapInfo.MemMap, |
1263 | Region->RegionBeg, |
1264 | Context.getReleaseOffset()); |
1265 | auto SkipRegion = [](UNUSED uptr RegionIndex) { return false; }; |
1266 | releaseFreeMemoryToOS(Context, Recorder, SkipRegion); |
1267 | if (Recorder.getReleasedRangesCount() > 0) { |
1268 | Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList; |
1269 | Region->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount(); |
1270 | Region->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes(); |
1271 | } |
1272 | Region->ReleaseInfo.LastReleaseAtNs = getMonotonicTimeFast(); |
1273 | |
1274 | // ====================================================================== // |
1275 | // 5. Merge the `GroupsToRelease` back to the freelist. |
1276 | // ====================================================================== // |
1277 | mergeGroupsToReleaseBack(Region, GroupsToRelease); |
1278 | |
1279 | return Recorder.getReleasedBytes(); |
1280 | } |
1281 | |
1282 | bool hasChanceToReleasePages(RegionInfo *Region, uptr BlockSize, |
1283 | uptr BytesInFreeList, ReleaseToOS ReleaseType) |
1284 | REQUIRES(Region->MMLock, Region->FLLock) { |
1285 | DCHECK_GE(Region->FreeListInfo.PoppedBlocks, |
1286 | Region->FreeListInfo.PushedBlocks); |
1287 | const uptr PageSize = getPageSizeCached(); |
1288 | |
1289 | // Always update `BytesInFreeListAtLastCheckpoint` with the smallest value |
1290 | // so that we won't underestimate the releasable pages. For example, the |
1291 | // following is the region usage, |
1292 | // |
1293 | // BytesInFreeListAtLastCheckpoint AllocatedUser |
1294 | // v v |
1295 | // |---------------------------------------> |
1296 | // ^ ^ |
1297 | // BytesInFreeList ReleaseThreshold |
1298 | // |
1299 | // In general, if we have collected enough bytes and the amount of free |
1300 | // bytes meets the ReleaseThreshold, we will try to do page release. If we |
1301 | // don't update `BytesInFreeListAtLastCheckpoint` when the current |
1302 | // `BytesInFreeList` is smaller, we may take longer time to wait for enough |
1303 | // freed blocks because we miss the bytes between |
1304 | // (BytesInFreeListAtLastCheckpoint - BytesInFreeList). |
1305 | if (BytesInFreeList <= |
1306 | Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint) { |
1307 | Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList; |
1308 | } |
1309 | |
1310 | const uptr RegionPushedBytesDelta = |
1311 | BytesInFreeList - Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint; |
1312 | if (RegionPushedBytesDelta < PageSize) |
1313 | return false; |
1314 | |
1315 | // Releasing smaller blocks is expensive, so we want to make sure that a |
1316 | // significant amount of bytes are free, and that there has been a good |
1317 | // amount of batches pushed to the freelist before attempting to release. |
1318 | if (isSmallBlock(BlockSize) && ReleaseType == ReleaseToOS::Normal) |
1319 | if (RegionPushedBytesDelta < Region->TryReleaseThreshold) |
1320 | return false; |
1321 | |
1322 | if (ReleaseType == ReleaseToOS::Normal) { |
1323 | const s32 IntervalMs = atomic_load_relaxed(A: &ReleaseToOsIntervalMs); |
1324 | if (IntervalMs < 0) |
1325 | return false; |
1326 | |
1327 | // The constant 8 here is selected from profiling some apps and the number |
1328 | // of unreleased pages in the large size classes is around 16 pages or |
1329 | // more. Choose half of it as a heuristic and which also avoids page |
1330 | // release every time for every pushBlocks() attempt by large blocks. |
1331 | const bool ByPassReleaseInterval = |
1332 | isLargeBlock(BlockSize) && RegionPushedBytesDelta > 8 * PageSize; |
1333 | if (!ByPassReleaseInterval) { |
1334 | if (Region->ReleaseInfo.LastReleaseAtNs + |
1335 | static_cast<u64>(IntervalMs) * 1000000 > |
1336 | getMonotonicTimeFast()) { |
1337 | // Memory was returned recently. |
1338 | return false; |
1339 | } |
1340 | } |
1341 | } // if (ReleaseType == ReleaseToOS::Normal) |
1342 | |
1343 | return true; |
1344 | } |
1345 | |
1346 | SinglyLinkedList<BatchGroupT> |
1347 | collectGroupsToRelease(RegionInfo *Region, const uptr BlockSize, |
1348 | const uptr AllocatedUserEnd, const uptr CompactPtrBase) |
1349 | REQUIRES(Region->MMLock, Region->FLLock) { |
1350 | const uptr GroupSize = (1UL << GroupSizeLog); |
1351 | const uptr PageSize = getPageSizeCached(); |
1352 | SinglyLinkedList<BatchGroupT> GroupsToRelease; |
1353 | |
1354 | // We are examining each group and will take the minimum distance to the |
1355 | // release threshold as the next Region::TryReleaseThreshold(). Note that if |
1356 | // the size of free blocks has reached the release threshold, the distance |
1357 | // to the next release will be PageSize * SmallerBlockReleasePageDelta. See |
1358 | // the comment on `SmallerBlockReleasePageDelta` for more details. |
1359 | uptr MinDistToThreshold = GroupSize; |
1360 | |
1361 | for (BatchGroupT *BG = Region->FreeListInfo.BlockList.front(), |
1362 | *Prev = nullptr; |
1363 | BG != nullptr;) { |
1364 | // Group boundary is always GroupSize-aligned from CompactPtr base. The |
1365 | // layout of memory groups is like, |
1366 | // |
1367 | // (CompactPtrBase) |
1368 | // #1 CompactPtrGroupBase #2 CompactPtrGroupBase ... |
1369 | // | | | |
1370 | // v v v |
1371 | // +-----------------------+-----------------------+ |
1372 | // \ / \ / |
1373 | // --- GroupSize --- --- GroupSize --- |
1374 | // |
1375 | // After decompacting the CompactPtrGroupBase, we expect the alignment |
1376 | // property is held as well. |
1377 | const uptr BatchGroupBase = |
1378 | decompactGroupBase(Base: CompactPtrBase, CompactPtrGroupBase: BG->CompactPtrGroupBase); |
1379 | DCHECK_LE(Region->RegionBeg, BatchGroupBase); |
1380 | DCHECK_GE(AllocatedUserEnd, BatchGroupBase); |
1381 | DCHECK_EQ((Region->RegionBeg - BatchGroupBase) % GroupSize, 0U); |
1382 | // TransferBatches are pushed in front of BG.Batches. The first one may |
1383 | // not have all caches used. |
1384 | const uptr NumBlocks = (BG->Batches.size() - 1) * BG->MaxCachedPerBatch + |
1385 | BG->Batches.front()->getCount(); |
1386 | const uptr BytesInBG = NumBlocks * BlockSize; |
1387 | |
1388 | if (BytesInBG <= BG->BytesInBGAtLastCheckpoint) { |
1389 | BG->BytesInBGAtLastCheckpoint = BytesInBG; |
1390 | Prev = BG; |
1391 | BG = BG->Next; |
1392 | continue; |
1393 | } |
1394 | |
1395 | const uptr PushedBytesDelta = BytesInBG - BG->BytesInBGAtLastCheckpoint; |
1396 | |
1397 | // Given the randomness property, we try to release the pages only if the |
1398 | // bytes used by free blocks exceed certain proportion of group size. Note |
1399 | // that this heuristic only applies when all the spaces in a BatchGroup |
1400 | // are allocated. |
1401 | if (isSmallBlock(BlockSize)) { |
1402 | const uptr BatchGroupEnd = BatchGroupBase + GroupSize; |
1403 | const uptr AllocatedGroupSize = AllocatedUserEnd >= BatchGroupEnd |
1404 | ? GroupSize |
1405 | : AllocatedUserEnd - BatchGroupBase; |
1406 | const uptr ReleaseThreshold = |
1407 | (AllocatedGroupSize * (100 - 1U - BlockSize / 16U)) / 100U; |
1408 | const bool HighDensity = BytesInBG >= ReleaseThreshold; |
1409 | const bool MayHaveReleasedAll = NumBlocks >= (GroupSize / BlockSize); |
1410 | // If all blocks in the group are released, we will do range marking |
1411 | // which is fast. Otherwise, we will wait until we have accumulated |
1412 | // a certain amount of free memory. |
1413 | const bool ReachReleaseDelta = |
1414 | MayHaveReleasedAll |
1415 | ? true |
1416 | : PushedBytesDelta >= PageSize * SmallerBlockReleasePageDelta; |
1417 | |
1418 | if (!HighDensity) { |
1419 | DCHECK_LE(BytesInBG, ReleaseThreshold); |
1420 | // The following is the usage of a memroy group, |
1421 | // |
1422 | // BytesInBG ReleaseThreshold |
1423 | // / \ v |
1424 | // +---+---------------------------+-----+ |
1425 | // | | | | | |
1426 | // +---+---------------------------+-----+ |
1427 | // \ / ^ |
1428 | // PushedBytesDelta GroupEnd |
1429 | MinDistToThreshold = |
1430 | Min(A: MinDistToThreshold, |
1431 | B: ReleaseThreshold - BytesInBG + PushedBytesDelta); |
1432 | } else { |
1433 | // If it reaches high density at this round, the next time we will try |
1434 | // to release is based on SmallerBlockReleasePageDelta |
1435 | MinDistToThreshold = |
1436 | Min(A: MinDistToThreshold, B: PageSize * SmallerBlockReleasePageDelta); |
1437 | } |
1438 | |
1439 | if (!HighDensity || !ReachReleaseDelta) { |
1440 | Prev = BG; |
1441 | BG = BG->Next; |
1442 | continue; |
1443 | } |
1444 | } |
1445 | |
1446 | // If `BG` is the first BatchGroupT in the list, we only need to advance |
1447 | // `BG` and call FreeListInfo.BlockList::pop_front(). No update is needed |
1448 | // for `Prev`. |
1449 | // |
1450 | // (BG) (BG->Next) |
1451 | // Prev Cur BG |
1452 | // | | | |
1453 | // v v v |
1454 | // nil +--+ +--+ |
1455 | // |X | -> | | -> ... |
1456 | // +--+ +--+ |
1457 | // |
1458 | // Otherwise, `Prev` will be used to extract the `Cur` from the |
1459 | // `FreeListInfo.BlockList`. |
1460 | // |
1461 | // (BG) (BG->Next) |
1462 | // Prev Cur BG |
1463 | // | | | |
1464 | // v v v |
1465 | // +--+ +--+ +--+ |
1466 | // | | -> |X | -> | | -> ... |
1467 | // +--+ +--+ +--+ |
1468 | // |
1469 | // After FreeListInfo.BlockList::extract(), |
1470 | // |
1471 | // Prev Cur BG |
1472 | // | | | |
1473 | // v v v |
1474 | // +--+ +--+ +--+ |
1475 | // | |-+ |X | +->| | -> ... |
1476 | // +--+ | +--+ | +--+ |
1477 | // +--------+ |
1478 | // |
1479 | // Note that we need to advance before pushing this BatchGroup to |
1480 | // GroupsToRelease because it's a destructive operation. |
1481 | |
1482 | BatchGroupT *Cur = BG; |
1483 | BG = BG->Next; |
1484 | |
1485 | // Ideally, we may want to update this only after successful release. |
1486 | // However, for smaller blocks, each block marking is a costly operation. |
1487 | // Therefore, we update it earlier. |
1488 | // TODO: Consider updating this after releasing pages if `ReleaseRecorder` |
1489 | // can tell the released bytes in each group. |
1490 | Cur->BytesInBGAtLastCheckpoint = BytesInBG; |
1491 | |
1492 | if (Prev != nullptr) |
1493 | Region->FreeListInfo.BlockList.extract(Prev, Cur); |
1494 | else |
1495 | Region->FreeListInfo.BlockList.pop_front(); |
1496 | GroupsToRelease.push_back(Cur); |
1497 | } |
1498 | |
1499 | // Only small blocks have the adaptive `TryReleaseThreshold`. |
1500 | if (isSmallBlock(BlockSize)) { |
1501 | // If the MinDistToThreshold is not updated, that means each memory group |
1502 | // may have only pushed less than a page size. In that case, just set it |
1503 | // back to normal. |
1504 | if (MinDistToThreshold == GroupSize) |
1505 | MinDistToThreshold = PageSize * SmallerBlockReleasePageDelta; |
1506 | Region->TryReleaseThreshold = MinDistToThreshold; |
1507 | } |
1508 | |
1509 | return GroupsToRelease; |
1510 | } |
1511 | |
1512 | PageReleaseContext |
1513 | markFreeBlocks(RegionInfo *Region, const uptr BlockSize, |
1514 | const uptr AllocatedUserEnd, const uptr CompactPtrBase, |
1515 | SinglyLinkedList<BatchGroupT> &GroupsToRelease) |
1516 | REQUIRES(Region->MMLock) EXCLUDES(Region->FLLock) { |
1517 | const uptr GroupSize = (1UL << GroupSizeLog); |
1518 | auto DecompactPtr = [CompactPtrBase](CompactPtrT CompactPtr) { |
1519 | return decompactPtrInternal(Base: CompactPtrBase, CompactPtr); |
1520 | }; |
1521 | |
1522 | const uptr ReleaseBase = decompactGroupBase( |
1523 | Base: CompactPtrBase, CompactPtrGroupBase: GroupsToRelease.front()->CompactPtrGroupBase); |
1524 | const uptr LastGroupEnd = |
1525 | Min(decompactGroupBase(Base: CompactPtrBase, |
1526 | CompactPtrGroupBase: GroupsToRelease.back()->CompactPtrGroupBase) + |
1527 | GroupSize, |
1528 | AllocatedUserEnd); |
1529 | // The last block may straddle the group boundary. Rounding up to BlockSize |
1530 | // to get the exact range. |
1531 | const uptr ReleaseEnd = |
1532 | roundUpSlow(LastGroupEnd - Region->RegionBeg, BlockSize) + |
1533 | Region->RegionBeg; |
1534 | const uptr ReleaseRangeSize = ReleaseEnd - ReleaseBase; |
1535 | const uptr ReleaseOffset = ReleaseBase - Region->RegionBeg; |
1536 | |
1537 | PageReleaseContext Context(BlockSize, /*NumberOfRegions=*/1U, |
1538 | ReleaseRangeSize, ReleaseOffset); |
1539 | // We may not be able to do the page release in a rare case that we may |
1540 | // fail on PageMap allocation. |
1541 | if (UNLIKELY(!Context.ensurePageMapAllocated())) |
1542 | return Context; |
1543 | |
1544 | for (BatchGroupT &BG : GroupsToRelease) { |
1545 | const uptr BatchGroupBase = |
1546 | decompactGroupBase(Base: CompactPtrBase, CompactPtrGroupBase: BG.CompactPtrGroupBase); |
1547 | const uptr BatchGroupEnd = BatchGroupBase + GroupSize; |
1548 | const uptr AllocatedGroupSize = AllocatedUserEnd >= BatchGroupEnd |
1549 | ? GroupSize |
1550 | : AllocatedUserEnd - BatchGroupBase; |
1551 | const uptr BatchGroupUsedEnd = BatchGroupBase + AllocatedGroupSize; |
1552 | const bool MayContainLastBlockInRegion = |
1553 | BatchGroupUsedEnd == AllocatedUserEnd; |
1554 | const bool BlockAlignedWithUsedEnd = |
1555 | (BatchGroupUsedEnd - Region->RegionBeg) % BlockSize == 0; |
1556 | |
1557 | uptr MaxContainedBlocks = AllocatedGroupSize / BlockSize; |
1558 | if (!BlockAlignedWithUsedEnd) |
1559 | ++MaxContainedBlocks; |
1560 | |
1561 | const uptr NumBlocks = (BG.Batches.size() - 1) * BG.MaxCachedPerBatch + |
1562 | BG.Batches.front()->getCount(); |
1563 | |
1564 | if (NumBlocks == MaxContainedBlocks) { |
1565 | for (const auto &It : BG.Batches) { |
1566 | if (&It != BG.Batches.front()) |
1567 | DCHECK_EQ(It.getCount(), BG.MaxCachedPerBatch); |
1568 | for (u16 I = 0; I < It.getCount(); ++I) |
1569 | DCHECK_EQ(compactPtrGroup(It.get(I)), BG.CompactPtrGroupBase); |
1570 | } |
1571 | |
1572 | Context.markRangeAsAllCounted(From: BatchGroupBase, To: BatchGroupUsedEnd, |
1573 | Base: Region->RegionBeg, /*RegionIndex=*/RegionIndex: 0, |
1574 | RegionSize: Region->MemMapInfo.AllocatedUser); |
1575 | } else { |
1576 | DCHECK_LT(NumBlocks, MaxContainedBlocks); |
1577 | // Note that we don't always visit blocks in each BatchGroup so that we |
1578 | // may miss the chance of releasing certain pages that cross |
1579 | // BatchGroups. |
1580 | Context.markFreeBlocksInRegion( |
1581 | BG.Batches, DecompactPtr, Region->RegionBeg, /*RegionIndex=*/0, |
1582 | Region->MemMapInfo.AllocatedUser, MayContainLastBlockInRegion); |
1583 | } |
1584 | } |
1585 | |
1586 | DCHECK(Context.hasBlockMarked()); |
1587 | |
1588 | return Context; |
1589 | } |
1590 | |
1591 | void mergeGroupsToReleaseBack(RegionInfo *Region, |
1592 | SinglyLinkedList<BatchGroupT> &GroupsToRelease) |
1593 | REQUIRES(Region->MMLock) EXCLUDES(Region->FLLock) { |
1594 | ScopedLock L(Region->FLLock); |
1595 | |
1596 | // After merging two freelists, we may have redundant `BatchGroup`s that |
1597 | // need to be recycled. The number of unused `BatchGroup`s is expected to be |
1598 | // small. Pick a constant which is inferred from real programs. |
1599 | constexpr uptr MaxUnusedSize = 8; |
1600 | CompactPtrT Blocks[MaxUnusedSize]; |
1601 | u32 Idx = 0; |
1602 | RegionInfo *BatchClassRegion = getRegionInfo(ClassId: SizeClassMap::BatchClassId); |
1603 | // We can't call pushBatchClassBlocks() to recycle the unused `BatchGroup`s |
1604 | // when we are manipulating the freelist of `BatchClassRegion`. Instead, we |
1605 | // should just push it back to the freelist when we merge two `BatchGroup`s. |
1606 | // This logic hasn't been implemented because we haven't supported releasing |
1607 | // pages in `BatchClassRegion`. |
1608 | DCHECK_NE(BatchClassRegion, Region); |
1609 | |
1610 | // Merge GroupsToRelease back to the Region::FreeListInfo.BlockList. Note |
1611 | // that both `Region->FreeListInfo.BlockList` and `GroupsToRelease` are |
1612 | // sorted. |
1613 | for (BatchGroupT *BG = Region->FreeListInfo.BlockList.front(), |
1614 | *Prev = nullptr; |
1615 | ;) { |
1616 | if (BG == nullptr || GroupsToRelease.empty()) { |
1617 | if (!GroupsToRelease.empty()) |
1618 | Region->FreeListInfo.BlockList.append_back(&GroupsToRelease); |
1619 | break; |
1620 | } |
1621 | |
1622 | DCHECK(!BG->Batches.empty()); |
1623 | |
1624 | if (BG->CompactPtrGroupBase < |
1625 | GroupsToRelease.front()->CompactPtrGroupBase) { |
1626 | Prev = BG; |
1627 | BG = BG->Next; |
1628 | continue; |
1629 | } |
1630 | |
1631 | BatchGroupT *Cur = GroupsToRelease.front(); |
1632 | TransferBatchT *UnusedTransferBatch = nullptr; |
1633 | GroupsToRelease.pop_front(); |
1634 | |
1635 | if (BG->CompactPtrGroupBase == Cur->CompactPtrGroupBase) { |
1636 | BG->PushedBlocks += Cur->PushedBlocks; |
1637 | // We have updated `BatchGroup::BytesInBGAtLastCheckpoint` while |
1638 | // collecting the `GroupsToRelease`. |
1639 | BG->BytesInBGAtLastCheckpoint = Cur->BytesInBGAtLastCheckpoint; |
1640 | const uptr MaxCachedPerBatch = BG->MaxCachedPerBatch; |
1641 | |
1642 | // Note that the first TransferBatches in both `Batches` may not be |
1643 | // full and only the first TransferBatch can have non-full blocks. Thus |
1644 | // we have to merge them before appending one to another. |
1645 | if (Cur->Batches.front()->getCount() == MaxCachedPerBatch) { |
1646 | BG->Batches.append_back(&Cur->Batches); |
1647 | } else { |
1648 | TransferBatchT *NonFullBatch = Cur->Batches.front(); |
1649 | Cur->Batches.pop_front(); |
1650 | const u16 NonFullBatchCount = NonFullBatch->getCount(); |
1651 | // The remaining Batches in `Cur` are full. |
1652 | BG->Batches.append_back(&Cur->Batches); |
1653 | |
1654 | if (BG->Batches.front()->getCount() == MaxCachedPerBatch) { |
1655 | // Only 1 non-full TransferBatch, push it to the front. |
1656 | BG->Batches.push_front(NonFullBatch); |
1657 | } else { |
1658 | const u16 NumBlocksToMove = static_cast<u16>( |
1659 | Min(A: static_cast<u16>(MaxCachedPerBatch - |
1660 | BG->Batches.front()->getCount()), |
1661 | B: NonFullBatchCount)); |
1662 | BG->Batches.front()->appendFromTransferBatch(NonFullBatch, |
1663 | NumBlocksToMove); |
1664 | if (NonFullBatch->isEmpty()) |
1665 | UnusedTransferBatch = NonFullBatch; |
1666 | else |
1667 | BG->Batches.push_front(NonFullBatch); |
1668 | } |
1669 | } |
1670 | |
1671 | const u32 NeededSlots = UnusedTransferBatch == nullptr ? 1U : 2U; |
1672 | if (UNLIKELY(Idx + NeededSlots > MaxUnusedSize)) { |
1673 | ScopedLock L(BatchClassRegion->FLLock); |
1674 | pushBatchClassBlocks(Region: BatchClassRegion, Array: Blocks, Size: Idx); |
1675 | if (conditionVariableEnabled()) |
1676 | BatchClassRegion->FLLockCV.notifyAll(BatchClassRegion->FLLock); |
1677 | Idx = 0; |
1678 | } |
1679 | Blocks[Idx++] = |
1680 | compactPtr(ClassId: SizeClassMap::BatchClassId, Ptr: reinterpret_cast<uptr>(Cur)); |
1681 | if (UnusedTransferBatch) { |
1682 | Blocks[Idx++] = |
1683 | compactPtr(ClassId: SizeClassMap::BatchClassId, |
1684 | Ptr: reinterpret_cast<uptr>(UnusedTransferBatch)); |
1685 | } |
1686 | Prev = BG; |
1687 | BG = BG->Next; |
1688 | continue; |
1689 | } |
1690 | |
1691 | // At here, the `BG` is the first BatchGroup with CompactPtrGroupBase |
1692 | // larger than the first element in `GroupsToRelease`. We need to insert |
1693 | // `GroupsToRelease::front()` (which is `Cur` below) before `BG`. |
1694 | // |
1695 | // 1. If `Prev` is nullptr, we simply push `Cur` to the front of |
1696 | // FreeListInfo.BlockList. |
1697 | // 2. Otherwise, use `insert()` which inserts an element next to `Prev`. |
1698 | // |
1699 | // Afterwards, we don't need to advance `BG` because the order between |
1700 | // `BG` and the new `GroupsToRelease::front()` hasn't been checked. |
1701 | if (Prev == nullptr) |
1702 | Region->FreeListInfo.BlockList.push_front(Cur); |
1703 | else |
1704 | Region->FreeListInfo.BlockList.insert(Prev, Cur); |
1705 | DCHECK_EQ(Cur->Next, BG); |
1706 | Prev = Cur; |
1707 | } |
1708 | |
1709 | if (Idx != 0) { |
1710 | ScopedLock L(BatchClassRegion->FLLock); |
1711 | pushBatchClassBlocks(Region: BatchClassRegion, Array: Blocks, Size: Idx); |
1712 | if (conditionVariableEnabled()) |
1713 | BatchClassRegion->FLLockCV.notifyAll(BatchClassRegion->FLLock); |
1714 | } |
1715 | |
1716 | if (SCUDO_DEBUG) { |
1717 | BatchGroupT *Prev = Region->FreeListInfo.BlockList.front(); |
1718 | for (BatchGroupT *Cur = Prev->Next; Cur != nullptr; |
1719 | Prev = Cur, Cur = Cur->Next) { |
1720 | CHECK_LT(Prev->CompactPtrGroupBase, Cur->CompactPtrGroupBase); |
1721 | } |
1722 | } |
1723 | |
1724 | if (conditionVariableEnabled()) |
1725 | Region->FLLockCV.notifyAll(Region->FLLock); |
1726 | } |
1727 | |
1728 | // The minimum size of pushed blocks that we will try to release the pages in |
1729 | // that size class. |
1730 | uptr SmallerBlockReleasePageDelta = 0; |
1731 | atomic_s32 ReleaseToOsIntervalMs = {}; |
1732 | alignas(SCUDO_CACHE_LINE_SIZE) RegionInfo RegionInfoArray[NumClasses]; |
1733 | }; |
1734 | |
1735 | } // namespace scudo |
1736 | |
1737 | #endif // SCUDO_PRIMARY64_H_ |
1738 | |