1 | //===----------------------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | // Copyright (c) Microsoft Corporation. |
10 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
11 | |
12 | // This implementation is dedicated to the memory of Mary and Thavatchai. |
13 | |
14 | #ifndef _LIBCPP_SRC_INCLUDE_TO_CHARS_FLOATING_POINT_H |
15 | #define _LIBCPP_SRC_INCLUDE_TO_CHARS_FLOATING_POINT_H |
16 | |
17 | // Avoid formatting to keep the changes with the original code minimal. |
18 | // clang-format off |
19 | |
20 | #include <__algorithm/find.h> |
21 | #include <__algorithm/find_if.h> |
22 | #include <__algorithm/lower_bound.h> |
23 | #include <__algorithm/min.h> |
24 | #include <__assert> |
25 | #include <__config> |
26 | #include <__functional/operations.h> |
27 | #include <__iterator/access.h> |
28 | #include <__iterator/size.h> |
29 | #include <bit> |
30 | #include <cfloat> |
31 | #include <climits> |
32 | |
33 | #include "include/ryu/ryu.h" |
34 | |
35 | _LIBCPP_BEGIN_NAMESPACE_STD |
36 | |
37 | namespace __itoa { |
38 | inline constexpr char _Charconv_digits[] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', |
39 | 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'}; |
40 | static_assert(std::size(_Charconv_digits) == 36); |
41 | } // __itoa |
42 | |
43 | // vvvvvvvvvv DERIVED FROM corecrt_internal_fltintrn.h vvvvvvvvvv |
44 | |
45 | template <class _FloatingType> |
46 | struct _Floating_type_traits; |
47 | |
48 | template <> |
49 | struct _Floating_type_traits<float> { |
50 | static constexpr int32_t _Mantissa_bits = FLT_MANT_DIG; |
51 | static constexpr int32_t _Exponent_bits = sizeof(float) * CHAR_BIT - FLT_MANT_DIG; |
52 | |
53 | static constexpr int32_t _Maximum_binary_exponent = FLT_MAX_EXP - 1; |
54 | static constexpr int32_t _Minimum_binary_exponent = FLT_MIN_EXP - 1; |
55 | |
56 | static constexpr int32_t _Exponent_bias = 127; |
57 | |
58 | static constexpr int32_t _Sign_shift = _Exponent_bits + _Mantissa_bits - 1; |
59 | static constexpr int32_t _Exponent_shift = _Mantissa_bits - 1; |
60 | |
61 | using _Uint_type = uint32_t; |
62 | |
63 | static constexpr uint32_t _Exponent_mask = (1u << _Exponent_bits) - 1; |
64 | static constexpr uint32_t _Normal_mantissa_mask = (1u << _Mantissa_bits) - 1; |
65 | static constexpr uint32_t _Denormal_mantissa_mask = (1u << (_Mantissa_bits - 1)) - 1; |
66 | static constexpr uint32_t _Special_nan_mantissa_mask = 1u << (_Mantissa_bits - 2); |
67 | static constexpr uint32_t _Shifted_sign_mask = 1u << _Sign_shift; |
68 | static constexpr uint32_t _Shifted_exponent_mask = _Exponent_mask << _Exponent_shift; |
69 | }; |
70 | |
71 | template <> |
72 | struct _Floating_type_traits<double> { |
73 | static constexpr int32_t _Mantissa_bits = DBL_MANT_DIG; |
74 | static constexpr int32_t _Exponent_bits = sizeof(double) * CHAR_BIT - DBL_MANT_DIG; |
75 | |
76 | static constexpr int32_t _Maximum_binary_exponent = DBL_MAX_EXP - 1; |
77 | static constexpr int32_t _Minimum_binary_exponent = DBL_MIN_EXP - 1; |
78 | |
79 | static constexpr int32_t _Exponent_bias = 1023; |
80 | |
81 | static constexpr int32_t _Sign_shift = _Exponent_bits + _Mantissa_bits - 1; |
82 | static constexpr int32_t _Exponent_shift = _Mantissa_bits - 1; |
83 | |
84 | using _Uint_type = uint64_t; |
85 | |
86 | static constexpr uint64_t _Exponent_mask = (1ULL << _Exponent_bits) - 1; |
87 | static constexpr uint64_t _Normal_mantissa_mask = (1ULL << _Mantissa_bits) - 1; |
88 | static constexpr uint64_t _Denormal_mantissa_mask = (1ULL << (_Mantissa_bits - 1)) - 1; |
89 | static constexpr uint64_t _Special_nan_mantissa_mask = 1ULL << (_Mantissa_bits - 2); |
90 | static constexpr uint64_t _Shifted_sign_mask = 1ULL << _Sign_shift; |
91 | static constexpr uint64_t _Shifted_exponent_mask = _Exponent_mask << _Exponent_shift; |
92 | }; |
93 | |
94 | // ^^^^^^^^^^ DERIVED FROM corecrt_internal_fltintrn.h ^^^^^^^^^^ |
95 | |
96 | // FUNCTION to_chars (FLOATING-POINT TO STRING) |
97 | template <class _Floating> |
98 | [[nodiscard]] _LIBCPP_HIDE_FROM_ABI |
99 | to_chars_result _Floating_to_chars_hex_precision( |
100 | char* _First, char* const _Last, const _Floating _Value, int _Precision) noexcept { |
101 | |
102 | // * Determine the effective _Precision. |
103 | // * Later, we'll decrement _Precision when printing each hexit after the decimal point. |
104 | |
105 | // The hexits after the decimal point correspond to the explicitly stored fraction bits. |
106 | // float explicitly stores 23 fraction bits. 23 / 4 == 5.75, which is 6 hexits. |
107 | // double explicitly stores 52 fraction bits. 52 / 4 == 13, which is 13 hexits. |
108 | constexpr int _Full_precision = _IsSame<_Floating, float>::value ? 6 : 13; |
109 | constexpr int _Adjusted_explicit_bits = _Full_precision * 4; |
110 | |
111 | if (_Precision < 0) { |
112 | // C11 7.21.6.1 "The fprintf function"/5: "A negative precision argument is taken as if the precision were |
113 | // omitted." /8: "if the precision is missing and FLT_RADIX is a power of 2, then the precision is sufficient |
114 | // for an exact representation of the value" |
115 | _Precision = _Full_precision; |
116 | } |
117 | |
118 | // * Extract the _Ieee_mantissa and _Ieee_exponent. |
119 | using _Traits = _Floating_type_traits<_Floating>; |
120 | using _Uint_type = typename _Traits::_Uint_type; |
121 | |
122 | const _Uint_type _Uint_value = std::bit_cast<_Uint_type>(_Value); |
123 | const _Uint_type _Ieee_mantissa = _Uint_value & _Traits::_Denormal_mantissa_mask; |
124 | const int32_t _Ieee_exponent = static_cast<int32_t>(_Uint_value >> _Traits::_Exponent_shift); |
125 | |
126 | // * Prepare the _Adjusted_mantissa. This is aligned to hexit boundaries, |
127 | // * with the implicit bit restored (0 for zero values and subnormal values, 1 for normal values). |
128 | // * Also calculate the _Unbiased_exponent. This unifies the processing of zero, subnormal, and normal values. |
129 | _Uint_type _Adjusted_mantissa; |
130 | |
131 | if constexpr (_IsSame<_Floating, float>::value) { |
132 | _Adjusted_mantissa = _Ieee_mantissa << 1; // align to hexit boundary (23 isn't divisible by 4) |
133 | } else { |
134 | _Adjusted_mantissa = _Ieee_mantissa; // already aligned (52 is divisible by 4) |
135 | } |
136 | |
137 | int32_t _Unbiased_exponent; |
138 | |
139 | if (_Ieee_exponent == 0) { // zero or subnormal |
140 | // implicit bit is 0 |
141 | |
142 | if (_Ieee_mantissa == 0) { // zero |
143 | // C11 7.21.6.1 "The fprintf function"/8: "If the value is zero, the exponent is zero." |
144 | _Unbiased_exponent = 0; |
145 | } else { // subnormal |
146 | _Unbiased_exponent = 1 - _Traits::_Exponent_bias; |
147 | } |
148 | } else { // normal |
149 | _Adjusted_mantissa |= _Uint_type{1} << _Adjusted_explicit_bits; // implicit bit is 1 |
150 | _Unbiased_exponent = _Ieee_exponent - _Traits::_Exponent_bias; |
151 | } |
152 | |
153 | // _Unbiased_exponent is within [-126, 127] for float, [-1022, 1023] for double. |
154 | |
155 | // * Decompose _Unbiased_exponent into _Sign_character and _Absolute_exponent. |
156 | char _Sign_character; |
157 | uint32_t _Absolute_exponent; |
158 | |
159 | if (_Unbiased_exponent < 0) { |
160 | _Sign_character = '-'; |
161 | _Absolute_exponent = static_cast<uint32_t>(-_Unbiased_exponent); |
162 | } else { |
163 | _Sign_character = '+'; |
164 | _Absolute_exponent = static_cast<uint32_t>(_Unbiased_exponent); |
165 | } |
166 | |
167 | // _Absolute_exponent is within [0, 127] for float, [0, 1023] for double. |
168 | |
169 | // * Perform a single bounds check. |
170 | { |
171 | int32_t _Exponent_length; |
172 | |
173 | if (_Absolute_exponent < 10) { |
174 | _Exponent_length = 1; |
175 | } else if (_Absolute_exponent < 100) { |
176 | _Exponent_length = 2; |
177 | } else if constexpr (_IsSame<_Floating, float>::value) { |
178 | _Exponent_length = 3; |
179 | } else if (_Absolute_exponent < 1000) { |
180 | _Exponent_length = 3; |
181 | } else { |
182 | _Exponent_length = 4; |
183 | } |
184 | |
185 | // _Precision might be enormous; avoid integer overflow by testing it separately. |
186 | ptrdiff_t _Buffer_size = _Last - _First; |
187 | |
188 | if (_Buffer_size < _Precision) { |
189 | return {_Last, errc::value_too_large}; |
190 | } |
191 | |
192 | _Buffer_size -= _Precision; |
193 | |
194 | const int32_t _Length_excluding_precision = 1 // leading hexit |
195 | + static_cast<int32_t>(_Precision > 0) // possible decimal point |
196 | // excluding `+ _Precision`, hexits after decimal point |
197 | + 2 // "p+" or "p-" |
198 | + _Exponent_length; // exponent |
199 | |
200 | if (_Buffer_size < _Length_excluding_precision) { |
201 | return {_Last, errc::value_too_large}; |
202 | } |
203 | } |
204 | |
205 | // * Perform rounding when we've been asked to omit hexits. |
206 | if (_Precision < _Full_precision) { |
207 | // _Precision is within [0, 5] for float, [0, 12] for double. |
208 | |
209 | // _Dropped_bits is within [4, 24] for float, [4, 52] for double. |
210 | const int _Dropped_bits = (_Full_precision - _Precision) * 4; |
211 | |
212 | // Perform rounding by adding an appropriately-shifted bit. |
213 | |
214 | // This can propagate carries all the way into the leading hexit. Examples: |
215 | // "0.ff9" rounded to a precision of 2 is "1.00". |
216 | // "1.ff9" rounded to a precision of 2 is "2.00". |
217 | |
218 | // Note that the leading hexit participates in the rounding decision. Examples: |
219 | // "0.8" rounded to a precision of 0 is "0". |
220 | // "1.8" rounded to a precision of 0 is "2". |
221 | |
222 | // Reference implementation with suboptimal codegen: |
223 | // bool _Should_round_up(bool _Lsb_bit, bool _Round_bit, bool _Has_tail_bits) { |
224 | // // If there are no insignificant set bits, the value is exactly-representable and should not be rounded. |
225 | // // |
226 | // // If there are insignificant set bits, we need to round according to round_to_nearest. |
227 | // // We need to handle two cases: we round up if either [1] the value is slightly greater |
228 | // // than the midpoint between two exactly-representable values or [2] the value is exactly the midpoint |
229 | // // between two exactly-representable values and the greater of the two is even (this is "round-to-even"). |
230 | // return _Round_bit && (_Has_tail_bits || _Lsb_bit); |
231 | //} |
232 | // const bool _Lsb_bit = (_Adjusted_mantissa & (_Uint_type{1} << _Dropped_bits)) != 0; |
233 | // const bool _Round_bit = (_Adjusted_mantissa & (_Uint_type{1} << (_Dropped_bits - 1))) != 0; |
234 | // const bool _Has_tail_bits = (_Adjusted_mantissa & ((_Uint_type{1} << (_Dropped_bits - 1)) - 1)) != 0; |
235 | // const bool _Should_round = _Should_round_up(_Lsb_bit, _Round_bit, _Has_tail_bits); |
236 | // _Adjusted_mantissa += _Uint_type{_Should_round} << _Dropped_bits; |
237 | |
238 | // Example for optimized implementation: Let _Dropped_bits be 8. |
239 | // Bit index: ...[8]76543210 |
240 | // _Adjusted_mantissa: ...[L]RTTTTTTT (not depicting known details, like hexit alignment) |
241 | // By focusing on the bit at index _Dropped_bits, we can avoid unnecessary branching and shifting. |
242 | |
243 | // Bit index: ...[8]76543210 |
244 | // _Lsb_bit: ...[L]RTTTTTTT |
245 | const _Uint_type _Lsb_bit = _Adjusted_mantissa; |
246 | |
247 | // Bit index: ...9[8]76543210 |
248 | // _Round_bit: ...L[R]TTTTTTT0 |
249 | const _Uint_type _Round_bit = _Adjusted_mantissa << 1; |
250 | |
251 | // We can detect (without branching) whether any of the trailing bits are set. |
252 | // Due to _Should_round below, this computation will be used if and only if R is 1, so we can assume that here. |
253 | // Bit index: ...9[8]76543210 |
254 | // _Round_bit: ...L[1]TTTTTTT0 |
255 | // _Has_tail_bits: ....[H]........ |
256 | |
257 | // If all of the trailing bits T are 0, then `_Round_bit - 1` will produce 0 for H (due to R being 1). |
258 | // If any of the trailing bits T are 1, then `_Round_bit - 1` will produce 1 for H (due to R being 1). |
259 | const _Uint_type _Has_tail_bits = _Round_bit - 1; |
260 | |
261 | // Finally, we can use _Should_round_up() logic with bitwise-AND and bitwise-OR, |
262 | // selecting just the bit at index _Dropped_bits. This is the appropriately-shifted bit that we want. |
263 | const _Uint_type _Should_round = _Round_bit & (_Has_tail_bits | _Lsb_bit) & (_Uint_type{1} << _Dropped_bits); |
264 | |
265 | // This rounding technique is dedicated to the memory of Peppermint. =^..^= |
266 | _Adjusted_mantissa += _Should_round; |
267 | } |
268 | |
269 | // * Print the leading hexit, then mask it away. |
270 | { |
271 | const uint32_t _Nibble = static_cast<uint32_t>(_Adjusted_mantissa >> _Adjusted_explicit_bits); |
272 | _LIBCPP_ASSERT_INTERNAL(_Nibble < 3, "" ); |
273 | const char _Leading_hexit = static_cast<char>('0' + _Nibble); |
274 | |
275 | *_First++ = _Leading_hexit; |
276 | |
277 | constexpr _Uint_type _Mask = (_Uint_type{1} << _Adjusted_explicit_bits) - 1; |
278 | _Adjusted_mantissa &= _Mask; |
279 | } |
280 | |
281 | // * Print the decimal point and trailing hexits. |
282 | |
283 | // C11 7.21.6.1 "The fprintf function"/8: |
284 | // "if the precision is zero and the # flag is not specified, no decimal-point character appears." |
285 | if (_Precision > 0) { |
286 | *_First++ = '.'; |
287 | |
288 | int32_t _Number_of_bits_remaining = _Adjusted_explicit_bits; // 24 for float, 52 for double |
289 | |
290 | for (;;) { |
291 | _LIBCPP_ASSERT_INTERNAL(_Number_of_bits_remaining >= 4, "" ); |
292 | _LIBCPP_ASSERT_INTERNAL(_Number_of_bits_remaining % 4 == 0, "" ); |
293 | _Number_of_bits_remaining -= 4; |
294 | |
295 | const uint32_t _Nibble = static_cast<uint32_t>(_Adjusted_mantissa >> _Number_of_bits_remaining); |
296 | _LIBCPP_ASSERT_INTERNAL(_Nibble < 16, "" ); |
297 | const char _Hexit = __itoa::_Charconv_digits[_Nibble]; |
298 | |
299 | *_First++ = _Hexit; |
300 | |
301 | // _Precision is the number of hexits that still need to be printed. |
302 | --_Precision; |
303 | if (_Precision == 0) { |
304 | break; // We're completely done with this phase. |
305 | } |
306 | // Otherwise, we need to keep printing hexits. |
307 | |
308 | if (_Number_of_bits_remaining == 0) { |
309 | // We've finished printing _Adjusted_mantissa, so all remaining hexits are '0'. |
310 | std::memset(_First, '0', static_cast<size_t>(_Precision)); |
311 | _First += _Precision; |
312 | break; |
313 | } |
314 | |
315 | // Mask away the hexit that we just printed, then keep looping. |
316 | // (We skip this when breaking out of the loop above, because _Adjusted_mantissa isn't used later.) |
317 | const _Uint_type _Mask = (_Uint_type{1} << _Number_of_bits_remaining) - 1; |
318 | _Adjusted_mantissa &= _Mask; |
319 | } |
320 | } |
321 | |
322 | // * Print the exponent. |
323 | |
324 | // C11 7.21.6.1 "The fprintf function"/8: "The exponent always contains at least one digit, and only as many more |
325 | // digits as necessary to represent the decimal exponent of 2." |
326 | |
327 | // Performance note: We should take advantage of the known ranges of possible exponents. |
328 | |
329 | *_First++ = 'p'; |
330 | *_First++ = _Sign_character; |
331 | |
332 | // We've already printed '-' if necessary, so uint32_t _Absolute_exponent avoids testing that again. |
333 | return std::to_chars(_First, _Last, _Absolute_exponent); |
334 | } |
335 | |
336 | template <class _Floating> |
337 | [[nodiscard]] _LIBCPP_HIDE_FROM_ABI |
338 | to_chars_result _Floating_to_chars_hex_shortest( |
339 | char* _First, char* const _Last, const _Floating _Value) noexcept { |
340 | |
341 | // This prints "1.728p+0" instead of "2.e5p-1". |
342 | // This prints "0.000002p-126" instead of "1p-149" for float. |
343 | // This prints "0.0000000000001p-1022" instead of "1p-1074" for double. |
344 | // This prioritizes being consistent with printf's de facto behavior (and hex-precision's behavior) |
345 | // over minimizing the number of characters printed. |
346 | |
347 | using _Traits = _Floating_type_traits<_Floating>; |
348 | using _Uint_type = typename _Traits::_Uint_type; |
349 | |
350 | const _Uint_type _Uint_value = std::bit_cast<_Uint_type>(_Value); |
351 | |
352 | if (_Uint_value == 0) { // zero detected; write "0p+0" and return |
353 | // C11 7.21.6.1 "The fprintf function"/8: "If the value is zero, the exponent is zero." |
354 | // Special-casing zero is necessary because of the exponent. |
355 | const char* const _Str = "0p+0" ; |
356 | const size_t _Len = 4; |
357 | |
358 | if (_Last - _First < static_cast<ptrdiff_t>(_Len)) { |
359 | return {_Last, errc::value_too_large}; |
360 | } |
361 | |
362 | std::memcpy(_First, _Str, _Len); |
363 | |
364 | return {_First + _Len, errc{}}; |
365 | } |
366 | |
367 | const _Uint_type _Ieee_mantissa = _Uint_value & _Traits::_Denormal_mantissa_mask; |
368 | const int32_t _Ieee_exponent = static_cast<int32_t>(_Uint_value >> _Traits::_Exponent_shift); |
369 | |
370 | char _Leading_hexit; // implicit bit |
371 | int32_t _Unbiased_exponent; |
372 | |
373 | if (_Ieee_exponent == 0) { // subnormal |
374 | _Leading_hexit = '0'; |
375 | _Unbiased_exponent = 1 - _Traits::_Exponent_bias; |
376 | } else { // normal |
377 | _Leading_hexit = '1'; |
378 | _Unbiased_exponent = _Ieee_exponent - _Traits::_Exponent_bias; |
379 | } |
380 | |
381 | // Performance note: Consider avoiding per-character bounds checking when there's plenty of space. |
382 | |
383 | if (_First == _Last) { |
384 | return {_Last, errc::value_too_large}; |
385 | } |
386 | |
387 | *_First++ = _Leading_hexit; |
388 | |
389 | if (_Ieee_mantissa == 0) { |
390 | // The fraction bits are all 0. Trim them away, including the decimal point. |
391 | } else { |
392 | if (_First == _Last) { |
393 | return {_Last, errc::value_too_large}; |
394 | } |
395 | |
396 | *_First++ = '.'; |
397 | |
398 | // The hexits after the decimal point correspond to the explicitly stored fraction bits. |
399 | // float explicitly stores 23 fraction bits. 23 / 4 == 5.75, so we'll print at most 6 hexits. |
400 | // double explicitly stores 52 fraction bits. 52 / 4 == 13, so we'll print at most 13 hexits. |
401 | _Uint_type _Adjusted_mantissa; |
402 | int32_t _Number_of_bits_remaining; |
403 | |
404 | if constexpr (_IsSame<_Floating, float>::value) { |
405 | _Adjusted_mantissa = _Ieee_mantissa << 1; // align to hexit boundary (23 isn't divisible by 4) |
406 | _Number_of_bits_remaining = 24; // 23 fraction bits + 1 alignment bit |
407 | } else { |
408 | _Adjusted_mantissa = _Ieee_mantissa; // already aligned (52 is divisible by 4) |
409 | _Number_of_bits_remaining = 52; // 52 fraction bits |
410 | } |
411 | |
412 | // do-while: The condition _Adjusted_mantissa != 0 is initially true - we have nonzero fraction bits and we've |
413 | // printed the decimal point. Each iteration, we print a hexit, mask it away, and keep looping if we still have |
414 | // nonzero fraction bits. If there would be trailing '0' hexits, this trims them. If there wouldn't be trailing |
415 | // '0' hexits, the same condition works (as we print the final hexit and mask it away); we don't need to test |
416 | // _Number_of_bits_remaining. |
417 | do { |
418 | _LIBCPP_ASSERT_INTERNAL(_Number_of_bits_remaining >= 4, "" ); |
419 | _LIBCPP_ASSERT_INTERNAL(_Number_of_bits_remaining % 4 == 0, "" ); |
420 | _Number_of_bits_remaining -= 4; |
421 | |
422 | const uint32_t _Nibble = static_cast<uint32_t>(_Adjusted_mantissa >> _Number_of_bits_remaining); |
423 | _LIBCPP_ASSERT_INTERNAL(_Nibble < 16, "" ); |
424 | const char _Hexit = __itoa::_Charconv_digits[_Nibble]; |
425 | |
426 | if (_First == _Last) { |
427 | return {_Last, errc::value_too_large}; |
428 | } |
429 | |
430 | *_First++ = _Hexit; |
431 | |
432 | const _Uint_type _Mask = (_Uint_type{1} << _Number_of_bits_remaining) - 1; |
433 | _Adjusted_mantissa &= _Mask; |
434 | |
435 | } while (_Adjusted_mantissa != 0); |
436 | } |
437 | |
438 | // C11 7.21.6.1 "The fprintf function"/8: "The exponent always contains at least one digit, and only as many more |
439 | // digits as necessary to represent the decimal exponent of 2." |
440 | |
441 | // Performance note: We should take advantage of the known ranges of possible exponents. |
442 | |
443 | // float: _Unbiased_exponent is within [-126, 127]. |
444 | // double: _Unbiased_exponent is within [-1022, 1023]. |
445 | |
446 | if (_Last - _First < 2) { |
447 | return {_Last, errc::value_too_large}; |
448 | } |
449 | |
450 | *_First++ = 'p'; |
451 | |
452 | if (_Unbiased_exponent < 0) { |
453 | *_First++ = '-'; |
454 | _Unbiased_exponent = -_Unbiased_exponent; |
455 | } else { |
456 | *_First++ = '+'; |
457 | } |
458 | |
459 | // We've already printed '-' if necessary, so static_cast<uint32_t> avoids testing that again. |
460 | return std::to_chars(_First, _Last, static_cast<uint32_t>(_Unbiased_exponent)); |
461 | } |
462 | |
463 | // For general precision, we can use lookup tables to avoid performing trial formatting. |
464 | |
465 | // For a simple example, imagine counting the number of digits D in an integer, and needing to know |
466 | // whether D is less than 3, equal to 3/4/5/6, or greater than 6. We could use a lookup table: |
467 | // D | Largest integer with D digits |
468 | // 2 | 99 |
469 | // 3 | 999 |
470 | // 4 | 9'999 |
471 | // 5 | 99'999 |
472 | // 6 | 999'999 |
473 | // 7 | table end |
474 | // Looking up an integer in this table with lower_bound() will work: |
475 | // * Too-small integers, like 7, 70, and 99, will cause lower_bound() to return the D == 2 row. (If all we care |
476 | // about is whether D is less than 3, then it's okay to smash the D == 1 and D == 2 cases together.) |
477 | // * Integers in [100, 999] will cause lower_bound() to return the D == 3 row, and so forth. |
478 | // * Too-large integers, like 1'000'000 and above, will cause lower_bound() to return the end of the table. If we |
479 | // compute D from that index, this will be considered D == 7, which will activate any "greater than 6" logic. |
480 | |
481 | // Floating-point is slightly more complicated. |
482 | |
483 | // The ordinary lookup tables are for X within [-5, 38] for float, and [-5, 308] for double. |
484 | // (-5 absorbs too-negative exponents, outside the P > X >= -4 criterion. 38 and 308 are the maximum exponents.) |
485 | // Due to the P > X condition, we can use a subset of the table for X within [-5, P - 1], suitably clamped. |
486 | |
487 | // When P is small, rounding can affect X. For example: |
488 | // For P == 1, the largest double with X == 0 is: 9.4999999999999982236431605997495353221893310546875 |
489 | // For P == 2, the largest double with X == 0 is: 9.949999999999999289457264239899814128875732421875 |
490 | // For P == 3, the largest double with X == 0 is: 9.9949999999999992184029906638897955417633056640625 |
491 | |
492 | // Exponent adjustment is a concern for P within [1, 7] for float, and [1, 15] for double (determined via |
493 | // brute force). While larger values of P still perform rounding, they can't trigger exponent adjustment. |
494 | // This is because only values with repeated '9' digits can undergo exponent adjustment during rounding, |
495 | // and floating-point granularity limits the number of consecutive '9' digits that can appear. |
496 | |
497 | // So, we need special lookup tables for small values of P. |
498 | // These tables have varying lengths due to the P > X >= -4 criterion. For example: |
499 | // For P == 1, need table entries for X: -5, -4, -3, -2, -1, 0 |
500 | // For P == 2, need table entries for X: -5, -4, -3, -2, -1, 0, 1 |
501 | // For P == 3, need table entries for X: -5, -4, -3, -2, -1, 0, 1, 2 |
502 | // For P == 4, need table entries for X: -5, -4, -3, -2, -1, 0, 1, 2, 3 |
503 | |
504 | // We can concatenate these tables for compact storage, using triangular numbers to access them. |
505 | // The table for P begins at index (P - 1) * (P + 10) / 2 with length P + 5. |
506 | |
507 | // For both the ordinary and special lookup tables, after an index I is returned by lower_bound(), X is I - 5. |
508 | |
509 | // We need to special-case the floating-point value 0.0, which is considered to have X == 0. |
510 | // Otherwise, the lookup tables would consider it to have a highly negative X. |
511 | |
512 | // Finally, because we're working with positive floating-point values, |
513 | // representation comparisons behave identically to floating-point comparisons. |
514 | |
515 | // The following code generated the lookup tables for the scientific exponent X. Don't remove this code. |
516 | #if 0 |
517 | // cl /EHsc /nologo /W4 /MT /O2 /std:c++17 generate_tables.cpp && generate_tables |
518 | |
519 | #include <algorithm> |
520 | #include <assert.h> |
521 | #include <charconv> |
522 | #include <cmath> |
523 | #include <limits> |
524 | #include <map> |
525 | #include <stdint.h> |
526 | #include <stdio.h> |
527 | #include <system_error> |
528 | #include <type_traits> |
529 | #include <vector> |
530 | using namespace std; |
531 | |
532 | template <typename UInt, typename Pred> |
533 | [[nodiscard]] UInt uint_partition_point(UInt first, const UInt last, Pred pred) { |
534 | // Find the beginning of the false partition in [first, last). |
535 | // [first, last) is partitioned when all of the true values occur before all of the false values. |
536 | |
537 | static_assert(is_unsigned_v<UInt>); |
538 | assert(first <= last); |
539 | |
540 | for (UInt n = last - first; n > 0;) { |
541 | const UInt n2 = n / 2; |
542 | const UInt mid = first + n2; |
543 | |
544 | if (pred(mid)) { |
545 | first = mid + 1; |
546 | n = n - n2 - 1; |
547 | } else { |
548 | n = n2; |
549 | } |
550 | } |
551 | |
552 | return first; |
553 | } |
554 | |
555 | template <typename Floating> |
556 | [[nodiscard]] int scientific_exponent_X(const int P, const Floating flt) { |
557 | char buf[400]; // more than enough |
558 | |
559 | // C11 7.21.6.1 "The fprintf function"/8 performs trial formatting with scientific precision P - 1. |
560 | const auto to_result = to_chars(buf, end(buf), flt, chars_format::scientific, P - 1); |
561 | assert(to_result.ec == errc{}); |
562 | |
563 | const char* exp_ptr = find(buf, to_result.ptr, 'e'); |
564 | assert(exp_ptr != to_result.ptr); |
565 | |
566 | ++exp_ptr; // advance past 'e' |
567 | |
568 | if (*exp_ptr == '+') { |
569 | ++exp_ptr; // advance past '+' which from_chars() won't parse |
570 | } |
571 | |
572 | int X; |
573 | const auto from_result = from_chars(exp_ptr, to_result.ptr, X); |
574 | assert(from_result.ec == errc{}); |
575 | return X; |
576 | } |
577 | |
578 | template <typename UInt> |
579 | void print_table(const vector<UInt>& v, const char* const name) { |
580 | constexpr const char* UIntName = _IsSame<UInt, uint32_t>::value ? "uint32_t" : "uint64_t" ; |
581 | |
582 | printf("static constexpr %s %s[%zu] = {\n" , UIntName, name, v.size()); |
583 | |
584 | for (const auto& val : v) { |
585 | if constexpr (_IsSame<UInt, uint32_t>::value) { |
586 | printf("0x%08Xu,\n" , val); |
587 | } else { |
588 | printf("0x%016llXu,\n" , val); |
589 | } |
590 | } |
591 | |
592 | printf("};\n" ); |
593 | } |
594 | |
595 | enum class Mode { Tables, Tests }; |
596 | |
597 | template <typename Floating> |
598 | void generate_tables(const Mode mode) { |
599 | using Limits = numeric_limits<Floating>; |
600 | using UInt = conditional_t<_IsSame<Floating, float>::value, uint32_t, uint64_t>; |
601 | |
602 | map<int, map<int, UInt>> P_X_LargestValWithX; |
603 | |
604 | constexpr int MaxP = Limits::max_exponent10 + 1; // MaxP performs no rounding during trial formatting |
605 | |
606 | for (int P = 1; P <= MaxP; ++P) { |
607 | for (int X = -5; X < P; ++X) { |
608 | constexpr Floating first = static_cast<Floating>(9e-5); // well below 9.5e-5, otherwise arbitrary |
609 | constexpr Floating last = Limits::infinity(); // one bit above Limits::max() |
610 | |
611 | const UInt val_beyond_X = uint_partition_point(reinterpret_cast<const UInt&>(first), |
612 | reinterpret_cast<const UInt&>(last), |
613 | [P, X](const UInt u) { return scientific_exponent_X(P, reinterpret_cast<const Floating&>(u)) <= X; }); |
614 | |
615 | P_X_LargestValWithX[P][X] = val_beyond_X - 1; |
616 | } |
617 | } |
618 | |
619 | constexpr const char* FloatingName = _IsSame<Floating, float>::value ? "float" : "double" ; |
620 | |
621 | constexpr int MaxSpecialP = _IsSame<Floating, float>::value ? 7 : 15; // MaxSpecialP is affected by exponent adjustment |
622 | |
623 | if (mode == Mode::Tables) { |
624 | printf("template <>\n" ); |
625 | printf("struct _General_precision_tables<%s> {\n" , FloatingName); |
626 | |
627 | printf("static constexpr int _Max_special_P = %d;\n" , MaxSpecialP); |
628 | |
629 | vector<UInt> special; |
630 | |
631 | for (int P = 1; P <= MaxSpecialP; ++P) { |
632 | for (int X = -5; X < P; ++X) { |
633 | const UInt val = P_X_LargestValWithX[P][X]; |
634 | special.push_back(val); |
635 | } |
636 | } |
637 | |
638 | print_table(special, "_Special_X_table" ); |
639 | |
640 | for (int P = MaxSpecialP + 1; P < MaxP; ++P) { |
641 | for (int X = -5; X < P; ++X) { |
642 | const UInt val = P_X_LargestValWithX[P][X]; |
643 | assert(val == P_X_LargestValWithX[MaxP][X]); |
644 | } |
645 | } |
646 | |
647 | printf("static constexpr int _Max_P = %d;\n" , MaxP); |
648 | |
649 | vector<UInt> ordinary; |
650 | |
651 | for (int X = -5; X < MaxP; ++X) { |
652 | const UInt val = P_X_LargestValWithX[MaxP][X]; |
653 | ordinary.push_back(val); |
654 | } |
655 | |
656 | print_table(ordinary, "_Ordinary_X_table" ); |
657 | |
658 | printf("};\n" ); |
659 | } else { |
660 | printf("==========\n" ); |
661 | printf("Test cases for %s:\n" , FloatingName); |
662 | |
663 | constexpr int Hexits = _IsSame<Floating, float>::value ? 6 : 13; |
664 | constexpr const char* Suffix = _IsSame<Floating, float>::value ? "f" : "" ; |
665 | |
666 | for (int P = 1; P <= MaxP; ++P) { |
667 | for (int X = -5; X < P; ++X) { |
668 | if (P <= MaxSpecialP || P == 25 || P == MaxP || X == P - 1) { |
669 | const UInt val1 = P_X_LargestValWithX[P][X]; |
670 | const Floating f1 = reinterpret_cast<const Floating&>(val1); |
671 | const UInt val2 = val1 + 1; |
672 | const Floating f2 = reinterpret_cast<const Floating&>(val2); |
673 | |
674 | printf("{%.*a%s, chars_format::general, %d, \"%.*g\"},\n" , Hexits, f1, Suffix, P, P, f1); |
675 | if (isfinite(f2)) { |
676 | printf("{%.*a%s, chars_format::general, %d, \"%.*g\"},\n" , Hexits, f2, Suffix, P, P, f2); |
677 | } |
678 | } |
679 | } |
680 | } |
681 | } |
682 | } |
683 | |
684 | int main() { |
685 | printf("template <class _Floating>\n" ); |
686 | printf("struct _General_precision_tables;\n" ); |
687 | generate_tables<float>(Mode::Tables); |
688 | generate_tables<double>(Mode::Tables); |
689 | generate_tables<float>(Mode::Tests); |
690 | generate_tables<double>(Mode::Tests); |
691 | } |
692 | #endif // 0 |
693 | |
694 | template <class _Floating> |
695 | struct _General_precision_tables; |
696 | |
697 | template <> |
698 | struct _General_precision_tables<float> { |
699 | static constexpr int _Max_special_P = 7; |
700 | |
701 | static constexpr uint32_t _Special_X_table[63] = {0x38C73ABCu, 0x3A79096Bu, 0x3C1BA5E3u, 0x3DC28F5Cu, 0x3F733333u, |
702 | 0x4117FFFFu, 0x38D0AAA7u, 0x3A826AA8u, 0x3C230553u, 0x3DCBC6A7u, 0x3F7EB851u, 0x411F3333u, 0x42C6FFFFu, |
703 | 0x38D19C3Fu, 0x3A8301A7u, 0x3C23C211u, 0x3DCCB295u, 0x3F7FDF3Bu, 0x411FEB85u, 0x42C7E666u, 0x4479DFFFu, |
704 | 0x38D1B468u, 0x3A8310C1u, 0x3C23D4F1u, 0x3DCCCA2Du, 0x3F7FFCB9u, 0x411FFDF3u, 0x42C7FD70u, 0x4479FCCCu, |
705 | 0x461C3DFFu, 0x38D1B6D2u, 0x3A831243u, 0x3C23D6D4u, 0x3DCCCC89u, 0x3F7FFFACu, 0x411FFFCBu, 0x42C7FFBEu, |
706 | 0x4479FFAEu, 0x461C3FCCu, 0x47C34FBFu, 0x38D1B710u, 0x3A83126Au, 0x3C23D704u, 0x3DCCCCC6u, 0x3F7FFFF7u, |
707 | 0x411FFFFAu, 0x42C7FFF9u, 0x4479FFF7u, 0x461C3FFAu, 0x47C34FF9u, 0x497423F7u, 0x38D1B716u, 0x3A83126Eu, |
708 | 0x3C23D709u, 0x3DCCCCCCu, 0x3F7FFFFFu, 0x411FFFFFu, 0x42C7FFFFu, 0x4479FFFFu, 0x461C3FFFu, 0x47C34FFFu, |
709 | 0x497423FFu, 0x4B18967Fu}; |
710 | |
711 | static constexpr int _Max_P = 39; |
712 | |
713 | static constexpr uint32_t _Ordinary_X_table[44] = {0x38D1B717u, 0x3A83126Eu, 0x3C23D70Au, 0x3DCCCCCCu, 0x3F7FFFFFu, |
714 | 0x411FFFFFu, 0x42C7FFFFu, 0x4479FFFFu, 0x461C3FFFu, 0x47C34FFFu, 0x497423FFu, 0x4B18967Fu, 0x4CBEBC1Fu, |
715 | 0x4E6E6B27u, 0x501502F8u, 0x51BA43B7u, 0x5368D4A5u, 0x551184E7u, 0x56B5E620u, 0x58635FA9u, 0x5A0E1BC9u, |
716 | 0x5BB1A2BCu, 0x5D5E0B6Bu, 0x5F0AC723u, 0x60AD78EBu, 0x6258D726u, 0x64078678u, 0x65A96816u, 0x6753C21Bu, |
717 | 0x69045951u, 0x6AA56FA5u, 0x6C4ECB8Fu, 0x6E013F39u, 0x6FA18F07u, 0x7149F2C9u, 0x72FC6F7Cu, 0x749DC5ADu, |
718 | 0x76453719u, 0x77F684DFu, 0x799A130Bu, 0x7B4097CEu, 0x7CF0BDC2u, 0x7E967699u, 0x7F7FFFFFu}; |
719 | }; |
720 | |
721 | template <> |
722 | struct _General_precision_tables<double> { |
723 | static constexpr int _Max_special_P = 15; |
724 | |
725 | static constexpr uint64_t _Special_X_table[195] = {0x3F18E757928E0C9Du, 0x3F4F212D77318FC5u, 0x3F8374BC6A7EF9DBu, |
726 | 0x3FB851EB851EB851u, 0x3FEE666666666666u, 0x4022FFFFFFFFFFFFu, 0x3F1A1554FBDAD751u, 0x3F504D551D68C692u, |
727 | 0x3F8460AA64C2F837u, 0x3FB978D4FDF3B645u, 0x3FEFD70A3D70A3D7u, 0x4023E66666666666u, 0x4058DFFFFFFFFFFFu, |
728 | 0x3F1A3387ECC8EB96u, 0x3F506034F3FD933Eu, 0x3F84784230FCF80Du, 0x3FB99652BD3C3611u, 0x3FEFFBE76C8B4395u, |
729 | 0x4023FD70A3D70A3Du, 0x4058FCCCCCCCCCCCu, 0x408F3BFFFFFFFFFFu, 0x3F1A368D04E0BA6Au, 0x3F506218230C7482u, |
730 | 0x3F847A9E2BCF91A3u, 0x3FB99945B6C3760Bu, 0x3FEFFF972474538Eu, 0x4023FFBE76C8B439u, 0x4058FFAE147AE147u, |
731 | 0x408F3F9999999999u, 0x40C387BFFFFFFFFFu, 0x3F1A36DA54164F19u, 0x3F506248748DF16Fu, 0x3F847ADA91B16DCBu, |
732 | 0x3FB99991361DC93Eu, 0x3FEFFFF583A53B8Eu, 0x4023FFF972474538u, 0x4058FFF7CED91687u, 0x408F3FF5C28F5C28u, |
733 | 0x40C387F999999999u, 0x40F869F7FFFFFFFFu, 0x3F1A36E20F35445Du, 0x3F50624D49814ABAu, 0x3F847AE09BE19D69u, |
734 | 0x3FB99998C2DA04C3u, 0x3FEFFFFEF39085F4u, 0x4023FFFF583A53B8u, 0x4058FFFF2E48E8A7u, 0x408F3FFEF9DB22D0u, |
735 | 0x40C387FF5C28F5C2u, 0x40F869FF33333333u, 0x412E847EFFFFFFFFu, 0x3F1A36E2D51EC34Bu, 0x3F50624DC5333A0Eu, |
736 | 0x3F847AE136800892u, 0x3FB9999984200AB7u, 0x3FEFFFFFE5280D65u, 0x4023FFFFEF39085Fu, 0x4058FFFFEB074A77u, |
737 | 0x408F3FFFE5C91D14u, 0x40C387FFEF9DB22Du, 0x40F869FFEB851EB8u, 0x412E847FE6666666u, 0x416312CFEFFFFFFFu, |
738 | 0x3F1A36E2E8E94FFCu, 0x3F50624DD191D1FDu, 0x3F847AE145F6467Du, 0x3FB999999773D81Cu, 0x3FEFFFFFFD50CE23u, |
739 | 0x4023FFFFFE5280D6u, 0x4058FFFFFDE7210Bu, 0x408F3FFFFD60E94Eu, 0x40C387FFFE5C91D1u, 0x40F869FFFDF3B645u, |
740 | 0x412E847FFD70A3D7u, 0x416312CFFE666666u, 0x4197D783FDFFFFFFu, 0x3F1A36E2EAE3F7A7u, 0x3F50624DD2CE7AC8u, |
741 | 0x3F847AE14782197Bu, 0x3FB9999999629FD9u, 0x3FEFFFFFFFBB47D0u, 0x4023FFFFFFD50CE2u, 0x4058FFFFFFCA501Au, |
742 | 0x408F3FFFFFBCE421u, 0x40C387FFFFD60E94u, 0x40F869FFFFCB923Au, 0x412E847FFFBE76C8u, 0x416312CFFFD70A3Du, |
743 | 0x4197D783FFCCCCCCu, 0x41CDCD64FFBFFFFFu, 0x3F1A36E2EB16A205u, 0x3F50624DD2EE2543u, 0x3F847AE147A9AE94u, |
744 | 0x3FB9999999941A39u, 0x3FEFFFFFFFF920C8u, 0x4023FFFFFFFBB47Du, 0x4058FFFFFFFAA19Cu, 0x408F3FFFFFF94A03u, |
745 | 0x40C387FFFFFBCE42u, 0x40F869FFFFFAC1D2u, 0x412E847FFFF97247u, 0x416312CFFFFBE76Cu, 0x4197D783FFFAE147u, |
746 | 0x41CDCD64FFF99999u, 0x4202A05F1FFBFFFFu, 0x3F1A36E2EB1BB30Fu, 0x3F50624DD2F14FE9u, 0x3F847AE147ADA3E3u, |
747 | 0x3FB9999999990CDCu, 0x3FEFFFFFFFFF5014u, 0x4023FFFFFFFF920Cu, 0x4058FFFFFFFF768Fu, 0x408F3FFFFFFF5433u, |
748 | 0x40C387FFFFFF94A0u, 0x40F869FFFFFF79C8u, 0x412E847FFFFF583Au, 0x416312CFFFFF9724u, 0x4197D783FFFF7CEDu, |
749 | 0x41CDCD64FFFF5C28u, 0x4202A05F1FFF9999u, 0x42374876E7FF7FFFu, 0x3F1A36E2EB1C34C3u, 0x3F50624DD2F1A0FAu, |
750 | 0x3F847AE147AE0938u, 0x3FB9999999998B86u, 0x3FEFFFFFFFFFEE68u, 0x4023FFFFFFFFF501u, 0x4058FFFFFFFFF241u, |
751 | 0x408F3FFFFFFFEED1u, 0x40C387FFFFFFF543u, 0x40F869FFFFFFF294u, 0x412E847FFFFFEF39u, 0x416312CFFFFFF583u, |
752 | 0x4197D783FFFFF2E4u, 0x41CDCD64FFFFEF9Du, 0x4202A05F1FFFF5C2u, 0x42374876E7FFF333u, 0x426D1A94A1FFEFFFu, |
753 | 0x3F1A36E2EB1C41BBu, 0x3F50624DD2F1A915u, 0x3F847AE147AE135Au, 0x3FB9999999999831u, 0x3FEFFFFFFFFFFE3Du, |
754 | 0x4023FFFFFFFFFEE6u, 0x4058FFFFFFFFFEA0u, 0x408F3FFFFFFFFE48u, 0x40C387FFFFFFFEEDu, 0x40F869FFFFFFFEA8u, |
755 | 0x412E847FFFFFFE52u, 0x416312CFFFFFFEF3u, 0x4197D783FFFFFEB0u, 0x41CDCD64FFFFFE5Cu, 0x4202A05F1FFFFEF9u, |
756 | 0x42374876E7FFFEB8u, 0x426D1A94A1FFFE66u, 0x42A2309CE53FFEFFu, 0x3F1A36E2EB1C4307u, 0x3F50624DD2F1A9E4u, |
757 | 0x3F847AE147AE145Eu, 0x3FB9999999999975u, 0x3FEFFFFFFFFFFFD2u, 0x4023FFFFFFFFFFE3u, 0x4058FFFFFFFFFFDCu, |
758 | 0x408F3FFFFFFFFFD4u, 0x40C387FFFFFFFFE4u, 0x40F869FFFFFFFFDDu, 0x412E847FFFFFFFD5u, 0x416312CFFFFFFFE5u, |
759 | 0x4197D783FFFFFFDEu, 0x41CDCD64FFFFFFD6u, 0x4202A05F1FFFFFE5u, 0x42374876E7FFFFDFu, 0x426D1A94A1FFFFD7u, |
760 | 0x42A2309CE53FFFE6u, 0x42D6BCC41E8FFFDFu, 0x3F1A36E2EB1C4328u, 0x3F50624DD2F1A9F9u, 0x3F847AE147AE1477u, |
761 | 0x3FB9999999999995u, 0x3FEFFFFFFFFFFFFBu, 0x4023FFFFFFFFFFFDu, 0x4058FFFFFFFFFFFCu, 0x408F3FFFFFFFFFFBu, |
762 | 0x40C387FFFFFFFFFDu, 0x40F869FFFFFFFFFCu, 0x412E847FFFFFFFFBu, 0x416312CFFFFFFFFDu, 0x4197D783FFFFFFFCu, |
763 | 0x41CDCD64FFFFFFFBu, 0x4202A05F1FFFFFFDu, 0x42374876E7FFFFFCu, 0x426D1A94A1FFFFFBu, 0x42A2309CE53FFFFDu, |
764 | 0x42D6BCC41E8FFFFCu, 0x430C6BF52633FFFBu}; |
765 | |
766 | static constexpr int _Max_P = 309; |
767 | |
768 | static constexpr uint64_t _Ordinary_X_table[314] = {0x3F1A36E2EB1C432Cu, 0x3F50624DD2F1A9FBu, 0x3F847AE147AE147Au, |
769 | 0x3FB9999999999999u, 0x3FEFFFFFFFFFFFFFu, 0x4023FFFFFFFFFFFFu, 0x4058FFFFFFFFFFFFu, 0x408F3FFFFFFFFFFFu, |
770 | 0x40C387FFFFFFFFFFu, 0x40F869FFFFFFFFFFu, 0x412E847FFFFFFFFFu, 0x416312CFFFFFFFFFu, 0x4197D783FFFFFFFFu, |
771 | 0x41CDCD64FFFFFFFFu, 0x4202A05F1FFFFFFFu, 0x42374876E7FFFFFFu, 0x426D1A94A1FFFFFFu, 0x42A2309CE53FFFFFu, |
772 | 0x42D6BCC41E8FFFFFu, 0x430C6BF52633FFFFu, 0x4341C37937E07FFFu, 0x4376345785D89FFFu, 0x43ABC16D674EC7FFu, |
773 | 0x43E158E460913CFFu, 0x4415AF1D78B58C3Fu, 0x444B1AE4D6E2EF4Fu, 0x4480F0CF064DD591u, 0x44B52D02C7E14AF6u, |
774 | 0x44EA784379D99DB4u, 0x45208B2A2C280290u, 0x4554ADF4B7320334u, 0x4589D971E4FE8401u, 0x45C027E72F1F1281u, |
775 | 0x45F431E0FAE6D721u, 0x46293E5939A08CE9u, 0x465F8DEF8808B024u, 0x4693B8B5B5056E16u, 0x46C8A6E32246C99Cu, |
776 | 0x46FED09BEAD87C03u, 0x4733426172C74D82u, 0x476812F9CF7920E2u, 0x479E17B84357691Bu, 0x47D2CED32A16A1B1u, |
777 | 0x48078287F49C4A1Du, 0x483D6329F1C35CA4u, 0x48725DFA371A19E6u, 0x48A6F578C4E0A060u, 0x48DCB2D6F618C878u, |
778 | 0x4911EFC659CF7D4Bu, 0x49466BB7F0435C9Eu, 0x497C06A5EC5433C6u, 0x49B18427B3B4A05Bu, 0x49E5E531A0A1C872u, |
779 | 0x4A1B5E7E08CA3A8Fu, 0x4A511B0EC57E6499u, 0x4A8561D276DDFDC0u, 0x4ABABA4714957D30u, 0x4AF0B46C6CDD6E3Eu, |
780 | 0x4B24E1878814C9CDu, 0x4B5A19E96A19FC40u, 0x4B905031E2503DA8u, 0x4BC4643E5AE44D12u, 0x4BF97D4DF19D6057u, |
781 | 0x4C2FDCA16E04B86Du, 0x4C63E9E4E4C2F344u, 0x4C98E45E1DF3B015u, 0x4CCF1D75A5709C1Au, 0x4D03726987666190u, |
782 | 0x4D384F03E93FF9F4u, 0x4D6E62C4E38FF872u, 0x4DA2FDBB0E39FB47u, 0x4DD7BD29D1C87A19u, 0x4E0DAC74463A989Fu, |
783 | 0x4E428BC8ABE49F63u, 0x4E772EBAD6DDC73Cu, 0x4EACFA698C95390Bu, 0x4EE21C81F7DD43A7u, 0x4F16A3A275D49491u, |
784 | 0x4F4C4C8B1349B9B5u, 0x4F81AFD6EC0E1411u, 0x4FB61BCCA7119915u, 0x4FEBA2BFD0D5FF5Bu, 0x502145B7E285BF98u, |
785 | 0x50559725DB272F7Fu, 0x508AFCEF51F0FB5Eu, 0x50C0DE1593369D1Bu, 0x50F5159AF8044462u, 0x512A5B01B605557Au, |
786 | 0x516078E111C3556Cu, 0x5194971956342AC7u, 0x51C9BCDFABC13579u, 0x5200160BCB58C16Cu, 0x52341B8EBE2EF1C7u, |
787 | 0x526922726DBAAE39u, 0x529F6B0F092959C7u, 0x52D3A2E965B9D81Cu, 0x53088BA3BF284E23u, 0x533EAE8CAEF261ACu, |
788 | 0x53732D17ED577D0Bu, 0x53A7F85DE8AD5C4Eu, 0x53DDF67562D8B362u, 0x5412BA095DC7701Du, 0x5447688BB5394C25u, |
789 | 0x547D42AEA2879F2Eu, 0x54B249AD2594C37Cu, 0x54E6DC186EF9F45Cu, 0x551C931E8AB87173u, 0x5551DBF316B346E7u, |
790 | 0x558652EFDC6018A1u, 0x55BBE7ABD3781ECAu, 0x55F170CB642B133Eu, 0x5625CCFE3D35D80Eu, 0x565B403DCC834E11u, |
791 | 0x569108269FD210CBu, 0x56C54A3047C694FDu, 0x56FA9CBC59B83A3Du, 0x5730A1F5B8132466u, 0x5764CA732617ED7Fu, |
792 | 0x5799FD0FEF9DE8DFu, 0x57D03E29F5C2B18Bu, 0x58044DB473335DEEu, 0x583961219000356Au, 0x586FB969F40042C5u, |
793 | 0x58A3D3E2388029BBu, 0x58D8C8DAC6A0342Au, 0x590EFB1178484134u, 0x59435CEAEB2D28C0u, 0x59783425A5F872F1u, |
794 | 0x59AE412F0F768FADu, 0x59E2E8BD69AA19CCu, 0x5A17A2ECC414A03Fu, 0x5A4D8BA7F519C84Fu, 0x5A827748F9301D31u, |
795 | 0x5AB7151B377C247Eu, 0x5AECDA62055B2D9Du, 0x5B22087D4358FC82u, 0x5B568A9C942F3BA3u, 0x5B8C2D43B93B0A8Bu, |
796 | 0x5BC19C4A53C4E697u, 0x5BF6035CE8B6203Du, 0x5C2B843422E3A84Cu, 0x5C6132A095CE492Fu, 0x5C957F48BB41DB7Bu, |
797 | 0x5CCADF1AEA12525Au, 0x5D00CB70D24B7378u, 0x5D34FE4D06DE5056u, 0x5D6A3DE04895E46Cu, 0x5DA066AC2D5DAEC3u, |
798 | 0x5DD4805738B51A74u, 0x5E09A06D06E26112u, 0x5E400444244D7CABu, 0x5E7405552D60DBD6u, 0x5EA906AA78B912CBu, |
799 | 0x5EDF485516E7577Eu, 0x5F138D352E5096AFu, 0x5F48708279E4BC5Au, 0x5F7E8CA3185DEB71u, 0x5FB317E5EF3AB327u, |
800 | 0x5FE7DDDF6B095FF0u, 0x601DD55745CBB7ECu, 0x6052A5568B9F52F4u, 0x60874EAC2E8727B1u, 0x60BD22573A28F19Du, |
801 | 0x60F2357684599702u, 0x6126C2D4256FFCC2u, 0x615C73892ECBFBF3u, 0x6191C835BD3F7D78u, 0x61C63A432C8F5CD6u, |
802 | 0x61FBC8D3F7B3340Bu, 0x62315D847AD00087u, 0x6265B4E5998400A9u, 0x629B221EFFE500D3u, 0x62D0F5535FEF2084u, |
803 | 0x630532A837EAE8A5u, 0x633A7F5245E5A2CEu, 0x63708F936BAF85C1u, 0x63A4B378469B6731u, 0x63D9E056584240FDu, |
804 | 0x64102C35F729689Eu, 0x6444374374F3C2C6u, 0x647945145230B377u, 0x64AF965966BCE055u, 0x64E3BDF7E0360C35u, |
805 | 0x6518AD75D8438F43u, 0x654ED8D34E547313u, 0x6583478410F4C7ECu, 0x65B819651531F9E7u, 0x65EE1FBE5A7E7861u, |
806 | 0x6622D3D6F88F0B3Cu, 0x665788CCB6B2CE0Cu, 0x668D6AFFE45F818Fu, 0x66C262DFEEBBB0F9u, 0x66F6FB97EA6A9D37u, |
807 | 0x672CBA7DE5054485u, 0x6761F48EAF234AD3u, 0x679671B25AEC1D88u, 0x67CC0E1EF1A724EAu, 0x680188D357087712u, |
808 | 0x6835EB082CCA94D7u, 0x686B65CA37FD3A0Du, 0x68A11F9E62FE4448u, 0x68D56785FBBDD55Au, 0x690AC1677AAD4AB0u, |
809 | 0x6940B8E0ACAC4EAEu, 0x6974E718D7D7625Au, 0x69AA20DF0DCD3AF0u, 0x69E0548B68A044D6u, 0x6A1469AE42C8560Cu, |
810 | 0x6A498419D37A6B8Fu, 0x6A7FE52048590672u, 0x6AB3EF342D37A407u, 0x6AE8EB0138858D09u, 0x6B1F25C186A6F04Cu, |
811 | 0x6B537798F428562Fu, 0x6B88557F31326BBBu, 0x6BBE6ADEFD7F06AAu, 0x6BF302CB5E6F642Au, 0x6C27C37E360B3D35u, |
812 | 0x6C5DB45DC38E0C82u, 0x6C9290BA9A38C7D1u, 0x6CC734E940C6F9C5u, 0x6CFD022390F8B837u, 0x6D3221563A9B7322u, |
813 | 0x6D66A9ABC9424FEBu, 0x6D9C5416BB92E3E6u, 0x6DD1B48E353BCE6Fu, 0x6E0621B1C28AC20Bu, 0x6E3BAA1E332D728Eu, |
814 | 0x6E714A52DFFC6799u, 0x6EA59CE797FB817Fu, 0x6EDB04217DFA61DFu, 0x6F10E294EEBC7D2Bu, 0x6F451B3A2A6B9C76u, |
815 | 0x6F7A6208B5068394u, 0x6FB07D457124123Cu, 0x6FE49C96CD6D16CBu, 0x7019C3BC80C85C7Eu, 0x70501A55D07D39CFu, |
816 | 0x708420EB449C8842u, 0x70B9292615C3AA53u, 0x70EF736F9B3494E8u, 0x7123A825C100DD11u, 0x7158922F31411455u, |
817 | 0x718EB6BAFD91596Bu, 0x71C33234DE7AD7E2u, 0x71F7FEC216198DDBu, 0x722DFE729B9FF152u, 0x7262BF07A143F6D3u, |
818 | 0x72976EC98994F488u, 0x72CD4A7BEBFA31AAu, 0x73024E8D737C5F0Au, 0x7336E230D05B76CDu, 0x736C9ABD04725480u, |
819 | 0x73A1E0B622C774D0u, 0x73D658E3AB795204u, 0x740BEF1C9657A685u, 0x74417571DDF6C813u, 0x7475D2CE55747A18u, |
820 | 0x74AB4781EAD1989Eu, 0x74E10CB132C2FF63u, 0x75154FDD7F73BF3Bu, 0x754AA3D4DF50AF0Au, 0x7580A6650B926D66u, |
821 | 0x75B4CFFE4E7708C0u, 0x75EA03FDE214CAF0u, 0x7620427EAD4CFED6u, 0x7654531E58A03E8Bu, 0x768967E5EEC84E2Eu, |
822 | 0x76BFC1DF6A7A61BAu, 0x76F3D92BA28C7D14u, 0x7728CF768B2F9C59u, 0x775F03542DFB8370u, 0x779362149CBD3226u, |
823 | 0x77C83A99C3EC7EAFu, 0x77FE494034E79E5Bu, 0x7832EDC82110C2F9u, 0x7867A93A2954F3B7u, 0x789D9388B3AA30A5u, |
824 | 0x78D27C35704A5E67u, 0x79071B42CC5CF601u, 0x793CE2137F743381u, 0x79720D4C2FA8A030u, 0x79A6909F3B92C83Du, |
825 | 0x79DC34C70A777A4Cu, 0x7A11A0FC668AAC6Fu, 0x7A46093B802D578Bu, 0x7A7B8B8A6038AD6Eu, 0x7AB137367C236C65u, |
826 | 0x7AE585041B2C477Eu, 0x7B1AE64521F7595Eu, 0x7B50CFEB353A97DAu, 0x7B8503E602893DD1u, 0x7BBA44DF832B8D45u, |
827 | 0x7BF06B0BB1FB384Bu, 0x7C2485CE9E7A065Eu, 0x7C59A742461887F6u, 0x7C9008896BCF54F9u, 0x7CC40AABC6C32A38u, |
828 | 0x7CF90D56B873F4C6u, 0x7D2F50AC6690F1F8u, 0x7D63926BC01A973Bu, 0x7D987706B0213D09u, 0x7DCE94C85C298C4Cu, |
829 | 0x7E031CFD3999F7AFu, 0x7E37E43C8800759Bu, 0x7E6DDD4BAA009302u, 0x7EA2AA4F4A405BE1u, 0x7ED754E31CD072D9u, |
830 | 0x7F0D2A1BE4048F90u, 0x7F423A516E82D9BAu, 0x7F76C8E5CA239028u, 0x7FAC7B1F3CAC7433u, 0x7FE1CCF385EBC89Fu, |
831 | 0x7FEFFFFFFFFFFFFFu}; |
832 | }; |
833 | |
834 | template <class _Floating> |
835 | [[nodiscard]] _LIBCPP_HIDE_FROM_ABI |
836 | to_chars_result _Floating_to_chars_general_precision( |
837 | char* _First, char* const _Last, const _Floating _Value, int _Precision) noexcept { |
838 | |
839 | using _Traits = _Floating_type_traits<_Floating>; |
840 | using _Uint_type = typename _Traits::_Uint_type; |
841 | |
842 | const _Uint_type _Uint_value = std::bit_cast<_Uint_type>(_Value); |
843 | |
844 | if (_Uint_value == 0) { // zero detected; write "0" and return; _Precision is irrelevant due to zero-trimming |
845 | if (_First == _Last) { |
846 | return {_Last, errc::value_too_large}; |
847 | } |
848 | |
849 | *_First++ = '0'; |
850 | |
851 | return {_First, errc{}}; |
852 | } |
853 | |
854 | // C11 7.21.6.1 "The fprintf function"/5: |
855 | // "A negative precision argument is taken as if the precision were omitted." |
856 | // /8: "g,G [...] Let P equal the precision if nonzero, 6 if the precision is omitted, |
857 | // or 1 if the precision is zero." |
858 | |
859 | // Performance note: It's possible to rewrite this for branchless codegen, |
860 | // but profiling will be necessary to determine whether that's faster. |
861 | if (_Precision < 0) { |
862 | _Precision = 6; |
863 | } else if (_Precision == 0) { |
864 | _Precision = 1; |
865 | } else if (_Precision < 1'000'000) { |
866 | // _Precision is ok. |
867 | } else { |
868 | // Avoid integer overflow. |
869 | // Due to general notation's zero-trimming behavior, we can simply clamp _Precision. |
870 | // This is further clamped below. |
871 | _Precision = 1'000'000; |
872 | } |
873 | |
874 | // _Precision is now the Standard's P. |
875 | |
876 | // /8: "Then, if a conversion with style E would have an exponent of X: |
877 | // - if P > X >= -4, the conversion is with style f (or F) and precision P - (X + 1). |
878 | // - otherwise, the conversion is with style e (or E) and precision P - 1." |
879 | |
880 | // /8: "Finally, [...] any trailing zeros are removed from the fractional portion of the result |
881 | // and the decimal-point character is removed if there is no fractional portion remaining." |
882 | |
883 | using _Tables = _General_precision_tables<_Floating>; |
884 | |
885 | const _Uint_type* _Table_begin; |
886 | const _Uint_type* _Table_end; |
887 | |
888 | if (_Precision <= _Tables::_Max_special_P) { |
889 | _Table_begin = _Tables::_Special_X_table + (_Precision - 1) * (_Precision + 10) / 2; |
890 | _Table_end = _Table_begin + _Precision + 5; |
891 | } else { |
892 | _Table_begin = _Tables::_Ordinary_X_table; |
893 | _Table_end = _Table_begin + std::min(_Precision, _Tables::_Max_P) + 5; |
894 | } |
895 | |
896 | // Profiling indicates that linear search is faster than binary search for small tables. |
897 | // Performance note: lambda captures may have a small performance cost. |
898 | const _Uint_type* const _Table_lower_bound = [=] { |
899 | if constexpr (!_IsSame<_Floating, float>::value) { |
900 | if (_Precision > 155) { // threshold determined via profiling |
901 | return std::lower_bound(_Table_begin, _Table_end, _Uint_value, less{}); |
902 | } |
903 | } |
904 | |
905 | return std::find_if(_Table_begin, _Table_end, [=](const _Uint_type _Elem) { return _Uint_value <= _Elem; }); |
906 | }(); |
907 | |
908 | const ptrdiff_t _Table_index = _Table_lower_bound - _Table_begin; |
909 | const int _Scientific_exponent_X = static_cast<int>(_Table_index - 5); |
910 | const bool _Use_fixed_notation = _Precision > _Scientific_exponent_X && _Scientific_exponent_X >= -4; |
911 | |
912 | // Performance note: it might (or might not) be faster to modify Ryu Printf to perform zero-trimming. |
913 | // Such modifications would involve a fairly complicated state machine (notably, both '0' and '9' digits would |
914 | // need to be buffered, due to rounding), and that would have performance costs due to increased branching. |
915 | // Here, we're using a simpler approach: writing into a local buffer, manually zero-trimming, and then copying into |
916 | // the output range. The necessary buffer size is reasonably small, the zero-trimming logic is simple and fast, |
917 | // and the final copying is also fast. |
918 | |
919 | constexpr int _Max_output_length = |
920 | _IsSame<_Floating, float>::value ? 117 : 773; // cases: 0x1.fffffep-126f and 0x1.fffffffffffffp-1022 |
921 | constexpr int _Max_fixed_precision = |
922 | _IsSame<_Floating, float>::value ? 37 : 66; // cases: 0x1.fffffep-14f and 0x1.fffffffffffffp-14 |
923 | constexpr int _Max_scientific_precision = |
924 | _IsSame<_Floating, float>::value ? 111 : 766; // cases: 0x1.fffffep-126f and 0x1.fffffffffffffp-1022 |
925 | |
926 | // Note that _Max_output_length is determined by scientific notation and is more than enough for fixed notation. |
927 | // 0x1.fffffep+127f is 39 digits, plus 1 for '.', plus _Max_fixed_precision for '0' digits, equals 77. |
928 | // 0x1.fffffffffffffp+1023 is 309 digits, plus 1 for '.', plus _Max_fixed_precision for '0' digits, equals 376. |
929 | |
930 | char _Buffer[_Max_output_length]; |
931 | const char* const _Significand_first = _Buffer; // e.g. "1.234" |
932 | const char* _Significand_last = nullptr; |
933 | const char* _Exponent_first = nullptr; // e.g. "e-05" |
934 | const char* _Exponent_last = nullptr; |
935 | int _Effective_precision; // number of digits printed after the decimal point, before trimming |
936 | |
937 | // Write into the local buffer. |
938 | // Clamping _Effective_precision allows _Buffer to be as small as possible, and increases efficiency. |
939 | if (_Use_fixed_notation) { |
940 | _Effective_precision = std::min(_Precision - (_Scientific_exponent_X + 1), _Max_fixed_precision); |
941 | const to_chars_result _Buf_result = |
942 | _Floating_to_chars_fixed_precision(_Buffer, std::end(_Buffer), _Value, _Effective_precision); |
943 | _LIBCPP_ASSERT_INTERNAL(_Buf_result.ec == errc{}, "" ); |
944 | _Significand_last = _Buf_result.ptr; |
945 | } else { |
946 | _Effective_precision = std::min(_Precision - 1, _Max_scientific_precision); |
947 | const to_chars_result _Buf_result = |
948 | _Floating_to_chars_scientific_precision(_Buffer, std::end(_Buffer), _Value, _Effective_precision); |
949 | _LIBCPP_ASSERT_INTERNAL(_Buf_result.ec == errc{}, "" ); |
950 | _Significand_last = std::find(_Buffer, _Buf_result.ptr, 'e'); |
951 | _Exponent_first = _Significand_last; |
952 | _Exponent_last = _Buf_result.ptr; |
953 | } |
954 | |
955 | // If we printed a decimal point followed by digits, perform zero-trimming. |
956 | if (_Effective_precision > 0) { |
957 | while (_Significand_last[-1] == '0') { // will stop at '.' or a nonzero digit |
958 | --_Significand_last; |
959 | } |
960 | |
961 | if (_Significand_last[-1] == '.') { |
962 | --_Significand_last; |
963 | } |
964 | } |
965 | |
966 | // Copy the significand to the output range. |
967 | const ptrdiff_t _Significand_distance = _Significand_last - _Significand_first; |
968 | if (_Last - _First < _Significand_distance) { |
969 | return {_Last, errc::value_too_large}; |
970 | } |
971 | std::memcpy(_First, _Significand_first, static_cast<size_t>(_Significand_distance)); |
972 | _First += _Significand_distance; |
973 | |
974 | // Copy the exponent to the output range. |
975 | if (!_Use_fixed_notation) { |
976 | const ptrdiff_t _Exponent_distance = _Exponent_last - _Exponent_first; |
977 | if (_Last - _First < _Exponent_distance) { |
978 | return {_Last, errc::value_too_large}; |
979 | } |
980 | std::memcpy(_First, _Exponent_first, static_cast<size_t>(_Exponent_distance)); |
981 | _First += _Exponent_distance; |
982 | } |
983 | |
984 | return {_First, errc{}}; |
985 | } |
986 | |
987 | enum class _Floating_to_chars_overload { _Plain, _Format_only, _Format_precision }; |
988 | |
989 | template <_Floating_to_chars_overload _Overload, class _Floating> |
990 | [[nodiscard]] _LIBCPP_HIDE_FROM_ABI |
991 | to_chars_result _Floating_to_chars( |
992 | char* _First, char* const _Last, _Floating _Value, const chars_format _Fmt, const int _Precision) noexcept { |
993 | |
994 | if constexpr (_Overload == _Floating_to_chars_overload::_Plain) { |
995 | _LIBCPP_ASSERT_INTERNAL(_Fmt == chars_format{}, "" ); // plain overload must pass chars_format{} internally |
996 | } else { |
997 | _LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN(_Fmt == chars_format::general || _Fmt == chars_format::scientific |
998 | || _Fmt == chars_format::fixed || _Fmt == chars_format::hex, |
999 | "invalid format in to_chars()" ); |
1000 | } |
1001 | |
1002 | using _Traits = _Floating_type_traits<_Floating>; |
1003 | using _Uint_type = typename _Traits::_Uint_type; |
1004 | |
1005 | _Uint_type _Uint_value = std::bit_cast<_Uint_type>(_Value); |
1006 | |
1007 | const bool _Was_negative = (_Uint_value & _Traits::_Shifted_sign_mask) != 0; |
1008 | |
1009 | if (_Was_negative) { // sign bit detected; write minus sign and clear sign bit |
1010 | if (_First == _Last) { |
1011 | return {_Last, errc::value_too_large}; |
1012 | } |
1013 | |
1014 | *_First++ = '-'; |
1015 | |
1016 | _Uint_value &= ~_Traits::_Shifted_sign_mask; |
1017 | _Value = std::bit_cast<_Floating>(_Uint_value); |
1018 | } |
1019 | |
1020 | if ((_Uint_value & _Traits::_Shifted_exponent_mask) == _Traits::_Shifted_exponent_mask) { |
1021 | // inf/nan detected; write appropriate string and return |
1022 | const char* _Str; |
1023 | size_t _Len; |
1024 | |
1025 | const _Uint_type _Mantissa = _Uint_value & _Traits::_Denormal_mantissa_mask; |
1026 | |
1027 | if (_Mantissa == 0) { |
1028 | _Str = "inf" ; |
1029 | _Len = 3; |
1030 | } else if (_Was_negative && _Mantissa == _Traits::_Special_nan_mantissa_mask) { |
1031 | // When a NaN value has the sign bit set, the quiet bit set, and all other mantissa bits cleared, |
1032 | // the UCRT interprets it to mean "indeterminate", and indicates this by printing "-nan(ind)". |
1033 | _Str = "nan(ind)" ; |
1034 | _Len = 8; |
1035 | } else if ((_Mantissa & _Traits::_Special_nan_mantissa_mask) != 0) { |
1036 | _Str = "nan" ; |
1037 | _Len = 3; |
1038 | } else { |
1039 | _Str = "nan(snan)" ; |
1040 | _Len = 9; |
1041 | } |
1042 | |
1043 | if (_Last - _First < static_cast<ptrdiff_t>(_Len)) { |
1044 | return {_Last, errc::value_too_large}; |
1045 | } |
1046 | |
1047 | std::memcpy(_First, _Str, _Len); |
1048 | |
1049 | return {_First + _Len, errc{}}; |
1050 | } |
1051 | |
1052 | if constexpr (_Overload == _Floating_to_chars_overload::_Plain) { |
1053 | return _Floating_to_chars_ryu(_First, _Last, _Value, chars_format{}); |
1054 | } else if constexpr (_Overload == _Floating_to_chars_overload::_Format_only) { |
1055 | if (_Fmt == chars_format::hex) { |
1056 | return _Floating_to_chars_hex_shortest(_First, _Last, _Value); |
1057 | } |
1058 | |
1059 | return _Floating_to_chars_ryu(_First, _Last, _Value, _Fmt); |
1060 | } else if constexpr (_Overload == _Floating_to_chars_overload::_Format_precision) { |
1061 | switch (_Fmt) { |
1062 | case chars_format::scientific: |
1063 | return _Floating_to_chars_scientific_precision(_First, _Last, _Value, _Precision); |
1064 | case chars_format::fixed: |
1065 | return _Floating_to_chars_fixed_precision(_First, _Last, _Value, _Precision); |
1066 | case chars_format::general: |
1067 | return _Floating_to_chars_general_precision(_First, _Last, _Value, _Precision); |
1068 | case chars_format::hex: |
1069 | default: // avoid MSVC warning C4715: not all control paths return a value |
1070 | return _Floating_to_chars_hex_precision(_First, _Last, _Value, _Precision); |
1071 | } |
1072 | } |
1073 | } |
1074 | |
1075 | // clang-format on |
1076 | |
1077 | _LIBCPP_END_NAMESPACE_STD |
1078 | |
1079 | #endif // _LIBCPP_SRC_INCLUDE_TO_CHARS_FLOATING_POINT_H |
1080 | |