1 | //===----------------------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | // |
8 | // C++ interface to lower levels of libunwind |
9 | //===----------------------------------------------------------------------===// |
10 | |
11 | #ifndef __UNWINDCURSOR_HPP__ |
12 | #define __UNWINDCURSOR_HPP__ |
13 | |
14 | #include "cet_unwind.h" |
15 | #include <stdint.h> |
16 | #include <stdio.h> |
17 | #include <stdlib.h> |
18 | #include <unwind.h> |
19 | |
20 | #ifdef _WIN32 |
21 | #include <windows.h> |
22 | #include <ntverp.h> |
23 | #endif |
24 | #ifdef __APPLE__ |
25 | #include <mach-o/dyld.h> |
26 | #endif |
27 | #ifdef _AIX |
28 | #include <dlfcn.h> |
29 | #include <sys/debug.h> |
30 | #include <sys/pseg.h> |
31 | #endif |
32 | |
33 | #if defined(_LIBUNWIND_TARGET_LINUX) && \ |
34 | (defined(_LIBUNWIND_TARGET_AARCH64) || defined(_LIBUNWIND_TARGET_RISCV) || \ |
35 | defined(_LIBUNWIND_TARGET_S390X)) |
36 | #include <errno.h> |
37 | #include <signal.h> |
38 | #include <sys/syscall.h> |
39 | #include <unistd.h> |
40 | #define _LIBUNWIND_CHECK_LINUX_SIGRETURN 1 |
41 | #endif |
42 | |
43 | #include "AddressSpace.hpp" |
44 | #include "CompactUnwinder.hpp" |
45 | #include "config.h" |
46 | #include "DwarfInstructions.hpp" |
47 | #include "EHHeaderParser.hpp" |
48 | #include "libunwind.h" |
49 | #include "libunwind_ext.h" |
50 | #include "Registers.hpp" |
51 | #include "RWMutex.hpp" |
52 | #include "Unwind-EHABI.h" |
53 | |
54 | #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) |
55 | // Provide a definition for the DISPATCHER_CONTEXT struct for old (Win7 and |
56 | // earlier) SDKs. |
57 | // MinGW-w64 has always provided this struct. |
58 | #if defined(_WIN32) && defined(_LIBUNWIND_TARGET_X86_64) && \ |
59 | !defined(__MINGW32__) && VER_PRODUCTBUILD < 8000 |
60 | struct _DISPATCHER_CONTEXT { |
61 | ULONG64 ControlPc; |
62 | ULONG64 ImageBase; |
63 | PRUNTIME_FUNCTION FunctionEntry; |
64 | ULONG64 EstablisherFrame; |
65 | ULONG64 TargetIp; |
66 | PCONTEXT ContextRecord; |
67 | PEXCEPTION_ROUTINE LanguageHandler; |
68 | PVOID HandlerData; |
69 | PUNWIND_HISTORY_TABLE HistoryTable; |
70 | ULONG ScopeIndex; |
71 | ULONG Fill0; |
72 | }; |
73 | #endif |
74 | |
75 | struct UNWIND_INFO { |
76 | uint8_t Version : 3; |
77 | uint8_t Flags : 5; |
78 | uint8_t SizeOfProlog; |
79 | uint8_t CountOfCodes; |
80 | uint8_t FrameRegister : 4; |
81 | uint8_t FrameOffset : 4; |
82 | uint16_t UnwindCodes[2]; |
83 | }; |
84 | |
85 | extern "C" _Unwind_Reason_Code __libunwind_seh_personality( |
86 | int, _Unwind_Action, uint64_t, _Unwind_Exception *, |
87 | struct _Unwind_Context *); |
88 | |
89 | #endif |
90 | |
91 | namespace libunwind { |
92 | |
93 | #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
94 | /// Cache of recently found FDEs. |
95 | template <typename A> |
96 | class _LIBUNWIND_HIDDEN DwarfFDECache { |
97 | typedef typename A::pint_t pint_t; |
98 | public: |
99 | static constexpr pint_t kSearchAll = static_cast<pint_t>(-1); |
100 | static pint_t findFDE(pint_t mh, pint_t pc); |
101 | static void add(pint_t mh, pint_t ip_start, pint_t ip_end, pint_t fde); |
102 | static void removeAllIn(pint_t mh); |
103 | static void iterateCacheEntries(void (*func)(unw_word_t ip_start, |
104 | unw_word_t ip_end, |
105 | unw_word_t fde, unw_word_t mh)); |
106 | |
107 | private: |
108 | |
109 | struct entry { |
110 | pint_t mh; |
111 | pint_t ip_start; |
112 | pint_t ip_end; |
113 | pint_t fde; |
114 | }; |
115 | |
116 | // These fields are all static to avoid needing an initializer. |
117 | // There is only one instance of this class per process. |
118 | static RWMutex _lock; |
119 | #ifdef __APPLE__ |
120 | static void dyldUnloadHook(const struct mach_header *mh, intptr_t slide); |
121 | static bool _registeredForDyldUnloads; |
122 | #endif |
123 | static entry *_buffer; |
124 | static entry *_bufferUsed; |
125 | static entry *_bufferEnd; |
126 | static entry _initialBuffer[64]; |
127 | }; |
128 | |
129 | template <typename A> |
130 | typename DwarfFDECache<A>::entry * |
131 | DwarfFDECache<A>::_buffer = _initialBuffer; |
132 | |
133 | template <typename A> |
134 | typename DwarfFDECache<A>::entry * |
135 | DwarfFDECache<A>::_bufferUsed = _initialBuffer; |
136 | |
137 | template <typename A> |
138 | typename DwarfFDECache<A>::entry * |
139 | DwarfFDECache<A>::_bufferEnd = &_initialBuffer[64]; |
140 | |
141 | template <typename A> |
142 | typename DwarfFDECache<A>::entry DwarfFDECache<A>::_initialBuffer[64]; |
143 | |
144 | template <typename A> |
145 | RWMutex DwarfFDECache<A>::_lock; |
146 | |
147 | #ifdef __APPLE__ |
148 | template <typename A> |
149 | bool DwarfFDECache<A>::_registeredForDyldUnloads = false; |
150 | #endif |
151 | |
152 | template <typename A> |
153 | typename A::pint_t DwarfFDECache<A>::findFDE(pint_t mh, pint_t pc) { |
154 | pint_t result = 0; |
155 | _LIBUNWIND_LOG_IF_FALSE(_lock.lock_shared()); |
156 | for (entry *p = _buffer; p < _bufferUsed; ++p) { |
157 | if ((mh == p->mh) || (mh == kSearchAll)) { |
158 | if ((p->ip_start <= pc) && (pc < p->ip_end)) { |
159 | result = p->fde; |
160 | break; |
161 | } |
162 | } |
163 | } |
164 | _LIBUNWIND_LOG_IF_FALSE(_lock.unlock_shared()); |
165 | return result; |
166 | } |
167 | |
168 | template <typename A> |
169 | void DwarfFDECache<A>::add(pint_t mh, pint_t ip_start, pint_t ip_end, |
170 | pint_t fde) { |
171 | #if !defined(_LIBUNWIND_NO_HEAP) |
172 | _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); |
173 | if (_bufferUsed >= _bufferEnd) { |
174 | size_t oldSize = (size_t)(_bufferEnd - _buffer); |
175 | size_t newSize = oldSize * 4; |
176 | // Can't use operator new (we are below it). |
177 | entry *newBuffer = (entry *)malloc(size: newSize * sizeof(entry)); |
178 | memcpy(newBuffer, _buffer, oldSize * sizeof(entry)); |
179 | if (_buffer != _initialBuffer) |
180 | free(_buffer); |
181 | _buffer = newBuffer; |
182 | _bufferUsed = &newBuffer[oldSize]; |
183 | _bufferEnd = &newBuffer[newSize]; |
184 | } |
185 | _bufferUsed->mh = mh; |
186 | _bufferUsed->ip_start = ip_start; |
187 | _bufferUsed->ip_end = ip_end; |
188 | _bufferUsed->fde = fde; |
189 | ++_bufferUsed; |
190 | #ifdef __APPLE__ |
191 | if (!_registeredForDyldUnloads) { |
192 | _dyld_register_func_for_remove_image(&dyldUnloadHook); |
193 | _registeredForDyldUnloads = true; |
194 | } |
195 | #endif |
196 | _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); |
197 | #endif |
198 | } |
199 | |
200 | template <typename A> |
201 | void DwarfFDECache<A>::removeAllIn(pint_t mh) { |
202 | _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); |
203 | entry *d = _buffer; |
204 | for (const entry *s = _buffer; s < _bufferUsed; ++s) { |
205 | if (s->mh != mh) { |
206 | if (d != s) |
207 | *d = *s; |
208 | ++d; |
209 | } |
210 | } |
211 | _bufferUsed = d; |
212 | _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); |
213 | } |
214 | |
215 | #ifdef __APPLE__ |
216 | template <typename A> |
217 | void DwarfFDECache<A>::dyldUnloadHook(const struct mach_header *mh, intptr_t ) { |
218 | removeAllIn((pint_t) mh); |
219 | } |
220 | #endif |
221 | |
222 | template <typename A> |
223 | void DwarfFDECache<A>::iterateCacheEntries(void (*func)( |
224 | unw_word_t ip_start, unw_word_t ip_end, unw_word_t fde, unw_word_t mh)) { |
225 | _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); |
226 | for (entry *p = _buffer; p < _bufferUsed; ++p) { |
227 | (*func)(p->ip_start, p->ip_end, p->fde, p->mh); |
228 | } |
229 | _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); |
230 | } |
231 | #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
232 | |
233 | |
234 | #define arrayoffsetof(type, index, field) ((size_t)(&((type *)0)[index].field)) |
235 | |
236 | #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
237 | template <typename A> class UnwindSectionHeader { |
238 | public: |
239 | UnwindSectionHeader(A &addressSpace, typename A::pint_t addr) |
240 | : _addressSpace(addressSpace), _addr(addr) {} |
241 | |
242 | uint32_t version() const { |
243 | return _addressSpace.get32(_addr + |
244 | offsetof(unwind_info_section_header, version)); |
245 | } |
246 | uint32_t commonEncodingsArraySectionOffset() const { |
247 | return _addressSpace.get32(_addr + |
248 | offsetof(unwind_info_section_header, |
249 | commonEncodingsArraySectionOffset)); |
250 | } |
251 | uint32_t commonEncodingsArrayCount() const { |
252 | return _addressSpace.get32(_addr + offsetof(unwind_info_section_header, |
253 | commonEncodingsArrayCount)); |
254 | } |
255 | uint32_t personalityArraySectionOffset() const { |
256 | return _addressSpace.get32(_addr + offsetof(unwind_info_section_header, |
257 | personalityArraySectionOffset)); |
258 | } |
259 | uint32_t personalityArrayCount() const { |
260 | return _addressSpace.get32( |
261 | _addr + offsetof(unwind_info_section_header, personalityArrayCount)); |
262 | } |
263 | uint32_t indexSectionOffset() const { |
264 | return _addressSpace.get32( |
265 | _addr + offsetof(unwind_info_section_header, indexSectionOffset)); |
266 | } |
267 | uint32_t indexCount() const { |
268 | return _addressSpace.get32( |
269 | _addr + offsetof(unwind_info_section_header, indexCount)); |
270 | } |
271 | |
272 | private: |
273 | A &_addressSpace; |
274 | typename A::pint_t _addr; |
275 | }; |
276 | |
277 | template <typename A> class UnwindSectionIndexArray { |
278 | public: |
279 | UnwindSectionIndexArray(A &addressSpace, typename A::pint_t addr) |
280 | : _addressSpace(addressSpace), _addr(addr) {} |
281 | |
282 | uint32_t functionOffset(uint32_t index) const { |
283 | return _addressSpace.get32( |
284 | _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, |
285 | functionOffset)); |
286 | } |
287 | uint32_t secondLevelPagesSectionOffset(uint32_t index) const { |
288 | return _addressSpace.get32( |
289 | _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, |
290 | secondLevelPagesSectionOffset)); |
291 | } |
292 | uint32_t lsdaIndexArraySectionOffset(uint32_t index) const { |
293 | return _addressSpace.get32( |
294 | _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, |
295 | lsdaIndexArraySectionOffset)); |
296 | } |
297 | |
298 | private: |
299 | A &_addressSpace; |
300 | typename A::pint_t _addr; |
301 | }; |
302 | |
303 | template <typename A> class UnwindSectionRegularPageHeader { |
304 | public: |
305 | UnwindSectionRegularPageHeader(A &addressSpace, typename A::pint_t addr) |
306 | : _addressSpace(addressSpace), _addr(addr) {} |
307 | |
308 | uint32_t kind() const { |
309 | return _addressSpace.get32( |
310 | _addr + offsetof(unwind_info_regular_second_level_page_header, kind)); |
311 | } |
312 | uint16_t entryPageOffset() const { |
313 | return _addressSpace.get16( |
314 | _addr + offsetof(unwind_info_regular_second_level_page_header, |
315 | entryPageOffset)); |
316 | } |
317 | uint16_t entryCount() const { |
318 | return _addressSpace.get16( |
319 | _addr + |
320 | offsetof(unwind_info_regular_second_level_page_header, entryCount)); |
321 | } |
322 | |
323 | private: |
324 | A &_addressSpace; |
325 | typename A::pint_t _addr; |
326 | }; |
327 | |
328 | template <typename A> class UnwindSectionRegularArray { |
329 | public: |
330 | UnwindSectionRegularArray(A &addressSpace, typename A::pint_t addr) |
331 | : _addressSpace(addressSpace), _addr(addr) {} |
332 | |
333 | uint32_t functionOffset(uint32_t index) const { |
334 | return _addressSpace.get32( |
335 | _addr + arrayoffsetof(unwind_info_regular_second_level_entry, index, |
336 | functionOffset)); |
337 | } |
338 | uint32_t encoding(uint32_t index) const { |
339 | return _addressSpace.get32( |
340 | _addr + |
341 | arrayoffsetof(unwind_info_regular_second_level_entry, index, encoding)); |
342 | } |
343 | |
344 | private: |
345 | A &_addressSpace; |
346 | typename A::pint_t _addr; |
347 | }; |
348 | |
349 | template <typename A> class UnwindSectionCompressedPageHeader { |
350 | public: |
351 | UnwindSectionCompressedPageHeader(A &addressSpace, typename A::pint_t addr) |
352 | : _addressSpace(addressSpace), _addr(addr) {} |
353 | |
354 | uint32_t kind() const { |
355 | return _addressSpace.get32( |
356 | _addr + |
357 | offsetof(unwind_info_compressed_second_level_page_header, kind)); |
358 | } |
359 | uint16_t entryPageOffset() const { |
360 | return _addressSpace.get16( |
361 | _addr + offsetof(unwind_info_compressed_second_level_page_header, |
362 | entryPageOffset)); |
363 | } |
364 | uint16_t entryCount() const { |
365 | return _addressSpace.get16( |
366 | _addr + |
367 | offsetof(unwind_info_compressed_second_level_page_header, entryCount)); |
368 | } |
369 | uint16_t encodingsPageOffset() const { |
370 | return _addressSpace.get16( |
371 | _addr + offsetof(unwind_info_compressed_second_level_page_header, |
372 | encodingsPageOffset)); |
373 | } |
374 | uint16_t encodingsCount() const { |
375 | return _addressSpace.get16( |
376 | _addr + offsetof(unwind_info_compressed_second_level_page_header, |
377 | encodingsCount)); |
378 | } |
379 | |
380 | private: |
381 | A &_addressSpace; |
382 | typename A::pint_t _addr; |
383 | }; |
384 | |
385 | template <typename A> class UnwindSectionCompressedArray { |
386 | public: |
387 | UnwindSectionCompressedArray(A &addressSpace, typename A::pint_t addr) |
388 | : _addressSpace(addressSpace), _addr(addr) {} |
389 | |
390 | uint32_t functionOffset(uint32_t index) const { |
391 | return UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET( |
392 | _addressSpace.get32(_addr + index * sizeof(uint32_t))); |
393 | } |
394 | uint16_t encodingIndex(uint32_t index) const { |
395 | return UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX( |
396 | _addressSpace.get32(_addr + index * sizeof(uint32_t))); |
397 | } |
398 | |
399 | private: |
400 | A &_addressSpace; |
401 | typename A::pint_t _addr; |
402 | }; |
403 | |
404 | template <typename A> class UnwindSectionLsdaArray { |
405 | public: |
406 | UnwindSectionLsdaArray(A &addressSpace, typename A::pint_t addr) |
407 | : _addressSpace(addressSpace), _addr(addr) {} |
408 | |
409 | uint32_t functionOffset(uint32_t index) const { |
410 | return _addressSpace.get32( |
411 | _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry, |
412 | index, functionOffset)); |
413 | } |
414 | uint32_t lsdaOffset(uint32_t index) const { |
415 | return _addressSpace.get32( |
416 | _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry, |
417 | index, lsdaOffset)); |
418 | } |
419 | |
420 | private: |
421 | A &_addressSpace; |
422 | typename A::pint_t _addr; |
423 | }; |
424 | #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
425 | |
426 | class _LIBUNWIND_HIDDEN AbstractUnwindCursor { |
427 | public: |
428 | // NOTE: provide a class specific placement deallocation function (S5.3.4 p20) |
429 | // This avoids an unnecessary dependency to libc++abi. |
430 | void operator delete(void *, size_t) {} |
431 | |
432 | virtual ~AbstractUnwindCursor() {} |
433 | virtual bool validReg(int) { _LIBUNWIND_ABORT("validReg not implemented" ); } |
434 | virtual unw_word_t getReg(int) { _LIBUNWIND_ABORT("getReg not implemented" ); } |
435 | virtual void setReg(int, unw_word_t) { |
436 | _LIBUNWIND_ABORT("setReg not implemented" ); |
437 | } |
438 | virtual bool validFloatReg(int) { |
439 | _LIBUNWIND_ABORT("validFloatReg not implemented" ); |
440 | } |
441 | virtual unw_fpreg_t getFloatReg(int) { |
442 | _LIBUNWIND_ABORT("getFloatReg not implemented" ); |
443 | } |
444 | virtual void setFloatReg(int, unw_fpreg_t) { |
445 | _LIBUNWIND_ABORT("setFloatReg not implemented" ); |
446 | } |
447 | virtual int step(bool = false) { _LIBUNWIND_ABORT("step not implemented" ); } |
448 | virtual void getInfo(unw_proc_info_t *) { |
449 | _LIBUNWIND_ABORT("getInfo not implemented" ); |
450 | } |
451 | virtual void jumpto() { _LIBUNWIND_ABORT("jumpto not implemented" ); } |
452 | virtual bool isSignalFrame() { |
453 | _LIBUNWIND_ABORT("isSignalFrame not implemented" ); |
454 | } |
455 | virtual bool getFunctionName(char *, size_t, unw_word_t *) { |
456 | _LIBUNWIND_ABORT("getFunctionName not implemented" ); |
457 | } |
458 | virtual void setInfoBasedOnIPRegister(bool = false) { |
459 | _LIBUNWIND_ABORT("setInfoBasedOnIPRegister not implemented" ); |
460 | } |
461 | virtual const char *getRegisterName(int) { |
462 | _LIBUNWIND_ABORT("getRegisterName not implemented" ); |
463 | } |
464 | #ifdef __arm__ |
465 | virtual void saveVFPAsX() { _LIBUNWIND_ABORT("saveVFPAsX not implemented" ); } |
466 | #endif |
467 | |
468 | #ifdef _AIX |
469 | virtual uintptr_t getDataRelBase() { |
470 | _LIBUNWIND_ABORT("getDataRelBase not implemented" ); |
471 | } |
472 | #endif |
473 | |
474 | #if defined(_LIBUNWIND_USE_CET) || defined(_LIBUNWIND_USE_GCS) |
475 | virtual void *get_registers() { |
476 | _LIBUNWIND_ABORT("get_registers not implemented" ); |
477 | } |
478 | #endif |
479 | }; |
480 | |
481 | #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) && defined(_WIN32) |
482 | |
483 | /// \c UnwindCursor contains all state (including all register values) during |
484 | /// an unwind. This is normally stack-allocated inside a unw_cursor_t. |
485 | template <typename A, typename R> |
486 | class UnwindCursor : public AbstractUnwindCursor { |
487 | typedef typename A::pint_t pint_t; |
488 | public: |
489 | UnwindCursor(unw_context_t *context, A &as); |
490 | UnwindCursor(CONTEXT *context, A &as); |
491 | UnwindCursor(A &as, void *threadArg); |
492 | virtual ~UnwindCursor() {} |
493 | virtual bool validReg(int); |
494 | virtual unw_word_t getReg(int); |
495 | virtual void setReg(int, unw_word_t); |
496 | virtual bool validFloatReg(int); |
497 | virtual unw_fpreg_t getFloatReg(int); |
498 | virtual void setFloatReg(int, unw_fpreg_t); |
499 | virtual int step(bool = false); |
500 | virtual void getInfo(unw_proc_info_t *); |
501 | virtual void jumpto(); |
502 | virtual bool isSignalFrame(); |
503 | virtual bool getFunctionName(char *buf, size_t len, unw_word_t *off); |
504 | virtual void setInfoBasedOnIPRegister(bool isReturnAddress = false); |
505 | virtual const char *getRegisterName(int num); |
506 | #ifdef __arm__ |
507 | virtual void saveVFPAsX(); |
508 | #endif |
509 | |
510 | DISPATCHER_CONTEXT *getDispatcherContext() { return &_dispContext; } |
511 | void setDispatcherContext(DISPATCHER_CONTEXT *disp) { |
512 | _dispContext = *disp; |
513 | _info.lsda = reinterpret_cast<unw_word_t>(_dispContext.HandlerData); |
514 | if (_dispContext.LanguageHandler) { |
515 | _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality); |
516 | } else |
517 | _info.handler = 0; |
518 | } |
519 | |
520 | // libunwind does not and should not depend on C++ library which means that we |
521 | // need our own definition of inline placement new. |
522 | static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; } |
523 | |
524 | private: |
525 | |
526 | pint_t getLastPC() const { return _dispContext.ControlPc; } |
527 | void setLastPC(pint_t pc) { _dispContext.ControlPc = pc; } |
528 | RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) { |
529 | #ifdef __arm__ |
530 | // Remove the thumb bit; FunctionEntry ranges don't include the thumb bit. |
531 | pc &= ~1U; |
532 | #endif |
533 | // If pc points exactly at the end of the range, we might resolve the |
534 | // next function instead. Decrement pc by 1 to fit inside the current |
535 | // function. |
536 | pc -= 1; |
537 | _dispContext.FunctionEntry = RtlLookupFunctionEntry(pc, |
538 | &_dispContext.ImageBase, |
539 | _dispContext.HistoryTable); |
540 | *base = _dispContext.ImageBase; |
541 | return _dispContext.FunctionEntry; |
542 | } |
543 | bool getInfoFromSEH(pint_t pc); |
544 | int stepWithSEHData() { |
545 | _dispContext.LanguageHandler = RtlVirtualUnwind(UNW_FLAG_UHANDLER, |
546 | _dispContext.ImageBase, |
547 | _dispContext.ControlPc, |
548 | _dispContext.FunctionEntry, |
549 | _dispContext.ContextRecord, |
550 | &_dispContext.HandlerData, |
551 | &_dispContext.EstablisherFrame, |
552 | NULL); |
553 | // Update some fields of the unwind info now, since we have them. |
554 | _info.lsda = reinterpret_cast<unw_word_t>(_dispContext.HandlerData); |
555 | if (_dispContext.LanguageHandler) { |
556 | _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality); |
557 | } else |
558 | _info.handler = 0; |
559 | return UNW_STEP_SUCCESS; |
560 | } |
561 | |
562 | A &_addressSpace; |
563 | unw_proc_info_t _info; |
564 | DISPATCHER_CONTEXT _dispContext; |
565 | CONTEXT _msContext; |
566 | UNWIND_HISTORY_TABLE _histTable; |
567 | bool _unwindInfoMissing; |
568 | }; |
569 | |
570 | |
571 | template <typename A, typename R> |
572 | UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as) |
573 | : _addressSpace(as), _unwindInfoMissing(false) { |
574 | static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit), |
575 | "UnwindCursor<> does not fit in unw_cursor_t" ); |
576 | static_assert((alignof(UnwindCursor<A, R>) <= alignof(unw_cursor_t)), |
577 | "UnwindCursor<> requires more alignment than unw_cursor_t" ); |
578 | memset(&_info, 0, sizeof(_info)); |
579 | memset(&_histTable, 0, sizeof(_histTable)); |
580 | memset(&_dispContext, 0, sizeof(_dispContext)); |
581 | _dispContext.ContextRecord = &_msContext; |
582 | _dispContext.HistoryTable = &_histTable; |
583 | // Initialize MS context from ours. |
584 | R r(context); |
585 | RtlCaptureContext(&_msContext); |
586 | _msContext.ContextFlags = CONTEXT_CONTROL|CONTEXT_INTEGER|CONTEXT_FLOATING_POINT; |
587 | #if defined(_LIBUNWIND_TARGET_X86_64) |
588 | _msContext.Rax = r.getRegister(UNW_X86_64_RAX); |
589 | _msContext.Rcx = r.getRegister(UNW_X86_64_RCX); |
590 | _msContext.Rdx = r.getRegister(UNW_X86_64_RDX); |
591 | _msContext.Rbx = r.getRegister(UNW_X86_64_RBX); |
592 | _msContext.Rsp = r.getRegister(UNW_X86_64_RSP); |
593 | _msContext.Rbp = r.getRegister(UNW_X86_64_RBP); |
594 | _msContext.Rsi = r.getRegister(UNW_X86_64_RSI); |
595 | _msContext.Rdi = r.getRegister(UNW_X86_64_RDI); |
596 | _msContext.R8 = r.getRegister(UNW_X86_64_R8); |
597 | _msContext.R9 = r.getRegister(UNW_X86_64_R9); |
598 | _msContext.R10 = r.getRegister(UNW_X86_64_R10); |
599 | _msContext.R11 = r.getRegister(UNW_X86_64_R11); |
600 | _msContext.R12 = r.getRegister(UNW_X86_64_R12); |
601 | _msContext.R13 = r.getRegister(UNW_X86_64_R13); |
602 | _msContext.R14 = r.getRegister(UNW_X86_64_R14); |
603 | _msContext.R15 = r.getRegister(UNW_X86_64_R15); |
604 | _msContext.Rip = r.getRegister(UNW_REG_IP); |
605 | union { |
606 | v128 v; |
607 | M128A m; |
608 | } t; |
609 | t.v = r.getVectorRegister(UNW_X86_64_XMM0); |
610 | _msContext.Xmm0 = t.m; |
611 | t.v = r.getVectorRegister(UNW_X86_64_XMM1); |
612 | _msContext.Xmm1 = t.m; |
613 | t.v = r.getVectorRegister(UNW_X86_64_XMM2); |
614 | _msContext.Xmm2 = t.m; |
615 | t.v = r.getVectorRegister(UNW_X86_64_XMM3); |
616 | _msContext.Xmm3 = t.m; |
617 | t.v = r.getVectorRegister(UNW_X86_64_XMM4); |
618 | _msContext.Xmm4 = t.m; |
619 | t.v = r.getVectorRegister(UNW_X86_64_XMM5); |
620 | _msContext.Xmm5 = t.m; |
621 | t.v = r.getVectorRegister(UNW_X86_64_XMM6); |
622 | _msContext.Xmm6 = t.m; |
623 | t.v = r.getVectorRegister(UNW_X86_64_XMM7); |
624 | _msContext.Xmm7 = t.m; |
625 | t.v = r.getVectorRegister(UNW_X86_64_XMM8); |
626 | _msContext.Xmm8 = t.m; |
627 | t.v = r.getVectorRegister(UNW_X86_64_XMM9); |
628 | _msContext.Xmm9 = t.m; |
629 | t.v = r.getVectorRegister(UNW_X86_64_XMM10); |
630 | _msContext.Xmm10 = t.m; |
631 | t.v = r.getVectorRegister(UNW_X86_64_XMM11); |
632 | _msContext.Xmm11 = t.m; |
633 | t.v = r.getVectorRegister(UNW_X86_64_XMM12); |
634 | _msContext.Xmm12 = t.m; |
635 | t.v = r.getVectorRegister(UNW_X86_64_XMM13); |
636 | _msContext.Xmm13 = t.m; |
637 | t.v = r.getVectorRegister(UNW_X86_64_XMM14); |
638 | _msContext.Xmm14 = t.m; |
639 | t.v = r.getVectorRegister(UNW_X86_64_XMM15); |
640 | _msContext.Xmm15 = t.m; |
641 | #elif defined(_LIBUNWIND_TARGET_ARM) |
642 | _msContext.R0 = r.getRegister(UNW_ARM_R0); |
643 | _msContext.R1 = r.getRegister(UNW_ARM_R1); |
644 | _msContext.R2 = r.getRegister(UNW_ARM_R2); |
645 | _msContext.R3 = r.getRegister(UNW_ARM_R3); |
646 | _msContext.R4 = r.getRegister(UNW_ARM_R4); |
647 | _msContext.R5 = r.getRegister(UNW_ARM_R5); |
648 | _msContext.R6 = r.getRegister(UNW_ARM_R6); |
649 | _msContext.R7 = r.getRegister(UNW_ARM_R7); |
650 | _msContext.R8 = r.getRegister(UNW_ARM_R8); |
651 | _msContext.R9 = r.getRegister(UNW_ARM_R9); |
652 | _msContext.R10 = r.getRegister(UNW_ARM_R10); |
653 | _msContext.R11 = r.getRegister(UNW_ARM_R11); |
654 | _msContext.R12 = r.getRegister(UNW_ARM_R12); |
655 | _msContext.Sp = r.getRegister(UNW_ARM_SP); |
656 | _msContext.Lr = r.getRegister(UNW_ARM_LR); |
657 | _msContext.Pc = r.getRegister(UNW_ARM_IP); |
658 | for (int i = UNW_ARM_D0; i <= UNW_ARM_D31; ++i) { |
659 | union { |
660 | uint64_t w; |
661 | double d; |
662 | } d; |
663 | d.d = r.getFloatRegister(i); |
664 | _msContext.D[i - UNW_ARM_D0] = d.w; |
665 | } |
666 | #elif defined(_LIBUNWIND_TARGET_AARCH64) |
667 | for (int i = UNW_AARCH64_X0; i <= UNW_ARM64_X30; ++i) |
668 | _msContext.X[i - UNW_AARCH64_X0] = r.getRegister(i); |
669 | _msContext.Sp = r.getRegister(UNW_REG_SP); |
670 | _msContext.Pc = r.getRegister(UNW_REG_IP); |
671 | for (int i = UNW_AARCH64_V0; i <= UNW_ARM64_D31; ++i) |
672 | _msContext.V[i - UNW_AARCH64_V0].D[0] = r.getFloatRegister(i); |
673 | #endif |
674 | } |
675 | |
676 | template <typename A, typename R> |
677 | UnwindCursor<A, R>::UnwindCursor(CONTEXT *context, A &as) |
678 | : _addressSpace(as), _unwindInfoMissing(false) { |
679 | static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit), |
680 | "UnwindCursor<> does not fit in unw_cursor_t" ); |
681 | memset(&_info, 0, sizeof(_info)); |
682 | memset(&_histTable, 0, sizeof(_histTable)); |
683 | memset(&_dispContext, 0, sizeof(_dispContext)); |
684 | _dispContext.ContextRecord = &_msContext; |
685 | _dispContext.HistoryTable = &_histTable; |
686 | _msContext = *context; |
687 | } |
688 | |
689 | |
690 | template <typename A, typename R> |
691 | bool UnwindCursor<A, R>::validReg(int regNum) { |
692 | if (regNum == UNW_REG_IP || regNum == UNW_REG_SP) return true; |
693 | #if defined(_LIBUNWIND_TARGET_X86_64) |
694 | if (regNum >= UNW_X86_64_RAX && regNum <= UNW_X86_64_RIP) return true; |
695 | #elif defined(_LIBUNWIND_TARGET_ARM) |
696 | if ((regNum >= UNW_ARM_R0 && regNum <= UNW_ARM_R15) || |
697 | regNum == UNW_ARM_RA_AUTH_CODE) |
698 | return true; |
699 | #elif defined(_LIBUNWIND_TARGET_AARCH64) |
700 | if (regNum >= UNW_AARCH64_X0 && regNum <= UNW_ARM64_X30) return true; |
701 | #endif |
702 | return false; |
703 | } |
704 | |
705 | template <typename A, typename R> |
706 | unw_word_t UnwindCursor<A, R>::getReg(int regNum) { |
707 | switch (regNum) { |
708 | #if defined(_LIBUNWIND_TARGET_X86_64) |
709 | case UNW_X86_64_RIP: |
710 | case UNW_REG_IP: return _msContext.Rip; |
711 | case UNW_X86_64_RAX: return _msContext.Rax; |
712 | case UNW_X86_64_RDX: return _msContext.Rdx; |
713 | case UNW_X86_64_RCX: return _msContext.Rcx; |
714 | case UNW_X86_64_RBX: return _msContext.Rbx; |
715 | case UNW_REG_SP: |
716 | case UNW_X86_64_RSP: return _msContext.Rsp; |
717 | case UNW_X86_64_RBP: return _msContext.Rbp; |
718 | case UNW_X86_64_RSI: return _msContext.Rsi; |
719 | case UNW_X86_64_RDI: return _msContext.Rdi; |
720 | case UNW_X86_64_R8: return _msContext.R8; |
721 | case UNW_X86_64_R9: return _msContext.R9; |
722 | case UNW_X86_64_R10: return _msContext.R10; |
723 | case UNW_X86_64_R11: return _msContext.R11; |
724 | case UNW_X86_64_R12: return _msContext.R12; |
725 | case UNW_X86_64_R13: return _msContext.R13; |
726 | case UNW_X86_64_R14: return _msContext.R14; |
727 | case UNW_X86_64_R15: return _msContext.R15; |
728 | #elif defined(_LIBUNWIND_TARGET_ARM) |
729 | case UNW_ARM_R0: return _msContext.R0; |
730 | case UNW_ARM_R1: return _msContext.R1; |
731 | case UNW_ARM_R2: return _msContext.R2; |
732 | case UNW_ARM_R3: return _msContext.R3; |
733 | case UNW_ARM_R4: return _msContext.R4; |
734 | case UNW_ARM_R5: return _msContext.R5; |
735 | case UNW_ARM_R6: return _msContext.R6; |
736 | case UNW_ARM_R7: return _msContext.R7; |
737 | case UNW_ARM_R8: return _msContext.R8; |
738 | case UNW_ARM_R9: return _msContext.R9; |
739 | case UNW_ARM_R10: return _msContext.R10; |
740 | case UNW_ARM_R11: return _msContext.R11; |
741 | case UNW_ARM_R12: return _msContext.R12; |
742 | case UNW_REG_SP: |
743 | case UNW_ARM_SP: return _msContext.Sp; |
744 | case UNW_ARM_LR: return _msContext.Lr; |
745 | case UNW_REG_IP: |
746 | case UNW_ARM_IP: return _msContext.Pc; |
747 | #elif defined(_LIBUNWIND_TARGET_AARCH64) |
748 | case UNW_REG_SP: return _msContext.Sp; |
749 | case UNW_REG_IP: return _msContext.Pc; |
750 | default: return _msContext.X[regNum - UNW_AARCH64_X0]; |
751 | #endif |
752 | } |
753 | _LIBUNWIND_ABORT("unsupported register" ); |
754 | } |
755 | |
756 | template <typename A, typename R> |
757 | void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) { |
758 | switch (regNum) { |
759 | #if defined(_LIBUNWIND_TARGET_X86_64) |
760 | case UNW_X86_64_RIP: |
761 | case UNW_REG_IP: _msContext.Rip = value; break; |
762 | case UNW_X86_64_RAX: _msContext.Rax = value; break; |
763 | case UNW_X86_64_RDX: _msContext.Rdx = value; break; |
764 | case UNW_X86_64_RCX: _msContext.Rcx = value; break; |
765 | case UNW_X86_64_RBX: _msContext.Rbx = value; break; |
766 | case UNW_REG_SP: |
767 | case UNW_X86_64_RSP: _msContext.Rsp = value; break; |
768 | case UNW_X86_64_RBP: _msContext.Rbp = value; break; |
769 | case UNW_X86_64_RSI: _msContext.Rsi = value; break; |
770 | case UNW_X86_64_RDI: _msContext.Rdi = value; break; |
771 | case UNW_X86_64_R8: _msContext.R8 = value; break; |
772 | case UNW_X86_64_R9: _msContext.R9 = value; break; |
773 | case UNW_X86_64_R10: _msContext.R10 = value; break; |
774 | case UNW_X86_64_R11: _msContext.R11 = value; break; |
775 | case UNW_X86_64_R12: _msContext.R12 = value; break; |
776 | case UNW_X86_64_R13: _msContext.R13 = value; break; |
777 | case UNW_X86_64_R14: _msContext.R14 = value; break; |
778 | case UNW_X86_64_R15: _msContext.R15 = value; break; |
779 | #elif defined(_LIBUNWIND_TARGET_ARM) |
780 | case UNW_ARM_R0: _msContext.R0 = value; break; |
781 | case UNW_ARM_R1: _msContext.R1 = value; break; |
782 | case UNW_ARM_R2: _msContext.R2 = value; break; |
783 | case UNW_ARM_R3: _msContext.R3 = value; break; |
784 | case UNW_ARM_R4: _msContext.R4 = value; break; |
785 | case UNW_ARM_R5: _msContext.R5 = value; break; |
786 | case UNW_ARM_R6: _msContext.R6 = value; break; |
787 | case UNW_ARM_R7: _msContext.R7 = value; break; |
788 | case UNW_ARM_R8: _msContext.R8 = value; break; |
789 | case UNW_ARM_R9: _msContext.R9 = value; break; |
790 | case UNW_ARM_R10: _msContext.R10 = value; break; |
791 | case UNW_ARM_R11: _msContext.R11 = value; break; |
792 | case UNW_ARM_R12: _msContext.R12 = value; break; |
793 | case UNW_REG_SP: |
794 | case UNW_ARM_SP: _msContext.Sp = value; break; |
795 | case UNW_ARM_LR: _msContext.Lr = value; break; |
796 | case UNW_REG_IP: |
797 | case UNW_ARM_IP: _msContext.Pc = value; break; |
798 | #elif defined(_LIBUNWIND_TARGET_AARCH64) |
799 | case UNW_REG_SP: _msContext.Sp = value; break; |
800 | case UNW_REG_IP: _msContext.Pc = value; break; |
801 | case UNW_AARCH64_X0: |
802 | case UNW_AARCH64_X1: |
803 | case UNW_AARCH64_X2: |
804 | case UNW_AARCH64_X3: |
805 | case UNW_AARCH64_X4: |
806 | case UNW_AARCH64_X5: |
807 | case UNW_AARCH64_X6: |
808 | case UNW_AARCH64_X7: |
809 | case UNW_AARCH64_X8: |
810 | case UNW_AARCH64_X9: |
811 | case UNW_AARCH64_X10: |
812 | case UNW_AARCH64_X11: |
813 | case UNW_AARCH64_X12: |
814 | case UNW_AARCH64_X13: |
815 | case UNW_AARCH64_X14: |
816 | case UNW_AARCH64_X15: |
817 | case UNW_AARCH64_X16: |
818 | case UNW_AARCH64_X17: |
819 | case UNW_AARCH64_X18: |
820 | case UNW_AARCH64_X19: |
821 | case UNW_AARCH64_X20: |
822 | case UNW_AARCH64_X21: |
823 | case UNW_AARCH64_X22: |
824 | case UNW_AARCH64_X23: |
825 | case UNW_AARCH64_X24: |
826 | case UNW_AARCH64_X25: |
827 | case UNW_AARCH64_X26: |
828 | case UNW_AARCH64_X27: |
829 | case UNW_AARCH64_X28: |
830 | case UNW_AARCH64_FP: |
831 | case UNW_AARCH64_LR: _msContext.X[regNum - UNW_ARM64_X0] = value; break; |
832 | #endif |
833 | default: |
834 | _LIBUNWIND_ABORT("unsupported register" ); |
835 | } |
836 | } |
837 | |
838 | template <typename A, typename R> |
839 | bool UnwindCursor<A, R>::validFloatReg(int regNum) { |
840 | #if defined(_LIBUNWIND_TARGET_ARM) |
841 | if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) return true; |
842 | if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) return true; |
843 | #elif defined(_LIBUNWIND_TARGET_AARCH64) |
844 | if (regNum >= UNW_AARCH64_V0 && regNum <= UNW_ARM64_D31) return true; |
845 | #else |
846 | (void)regNum; |
847 | #endif |
848 | return false; |
849 | } |
850 | |
851 | template <typename A, typename R> |
852 | unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) { |
853 | #if defined(_LIBUNWIND_TARGET_ARM) |
854 | if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) { |
855 | union { |
856 | uint32_t w; |
857 | float f; |
858 | } d; |
859 | d.w = _msContext.S[regNum - UNW_ARM_S0]; |
860 | return d.f; |
861 | } |
862 | if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) { |
863 | union { |
864 | uint64_t w; |
865 | double d; |
866 | } d; |
867 | d.w = _msContext.D[regNum - UNW_ARM_D0]; |
868 | return d.d; |
869 | } |
870 | _LIBUNWIND_ABORT("unsupported float register" ); |
871 | #elif defined(_LIBUNWIND_TARGET_AARCH64) |
872 | return _msContext.V[regNum - UNW_AARCH64_V0].D[0]; |
873 | #else |
874 | (void)regNum; |
875 | _LIBUNWIND_ABORT("float registers unimplemented" ); |
876 | #endif |
877 | } |
878 | |
879 | template <typename A, typename R> |
880 | void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) { |
881 | #if defined(_LIBUNWIND_TARGET_ARM) |
882 | if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) { |
883 | union { |
884 | uint32_t w; |
885 | float f; |
886 | } d; |
887 | d.f = (float)value; |
888 | _msContext.S[regNum - UNW_ARM_S0] = d.w; |
889 | } |
890 | if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) { |
891 | union { |
892 | uint64_t w; |
893 | double d; |
894 | } d; |
895 | d.d = value; |
896 | _msContext.D[regNum - UNW_ARM_D0] = d.w; |
897 | } |
898 | _LIBUNWIND_ABORT("unsupported float register" ); |
899 | #elif defined(_LIBUNWIND_TARGET_AARCH64) |
900 | _msContext.V[regNum - UNW_AARCH64_V0].D[0] = value; |
901 | #else |
902 | (void)regNum; |
903 | (void)value; |
904 | _LIBUNWIND_ABORT("float registers unimplemented" ); |
905 | #endif |
906 | } |
907 | |
908 | template <typename A, typename R> void UnwindCursor<A, R>::jumpto() { |
909 | RtlRestoreContext(&_msContext, nullptr); |
910 | } |
911 | |
912 | #ifdef __arm__ |
913 | template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() {} |
914 | #endif |
915 | |
916 | template <typename A, typename R> |
917 | const char *UnwindCursor<A, R>::getRegisterName(int regNum) { |
918 | return R::getRegisterName(regNum); |
919 | } |
920 | |
921 | template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() { |
922 | return false; |
923 | } |
924 | |
925 | #else // !defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) || !defined(_WIN32) |
926 | |
927 | /// UnwindCursor contains all state (including all register values) during |
928 | /// an unwind. This is normally stack allocated inside a unw_cursor_t. |
929 | template <typename A, typename R> |
930 | class UnwindCursor : public AbstractUnwindCursor{ |
931 | typedef typename A::pint_t pint_t; |
932 | public: |
933 | UnwindCursor(unw_context_t *context, A &as); |
934 | UnwindCursor(A &as, void *threadArg); |
935 | virtual ~UnwindCursor() {} |
936 | virtual bool validReg(int); |
937 | virtual unw_word_t getReg(int); |
938 | virtual void setReg(int, unw_word_t); |
939 | virtual bool validFloatReg(int); |
940 | virtual unw_fpreg_t getFloatReg(int); |
941 | virtual void setFloatReg(int, unw_fpreg_t); |
942 | virtual int step(bool stage2 = false); |
943 | virtual void getInfo(unw_proc_info_t *); |
944 | virtual void jumpto(); |
945 | virtual bool isSignalFrame(); |
946 | virtual bool getFunctionName(char *buf, size_t len, unw_word_t *off); |
947 | virtual void setInfoBasedOnIPRegister(bool isReturnAddress = false); |
948 | virtual const char *getRegisterName(int num); |
949 | #ifdef __arm__ |
950 | virtual void saveVFPAsX(); |
951 | #endif |
952 | |
953 | #ifdef _AIX |
954 | virtual uintptr_t getDataRelBase(); |
955 | #endif |
956 | |
957 | #if defined(_LIBUNWIND_USE_CET) || defined(_LIBUNWIND_USE_GCS) |
958 | virtual void *get_registers() { return &_registers; } |
959 | #endif |
960 | |
961 | // libunwind does not and should not depend on C++ library which means that we |
962 | // need our own definition of inline placement new. |
963 | static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; } |
964 | |
965 | private: |
966 | |
967 | #if defined(_LIBUNWIND_ARM_EHABI) |
968 | bool getInfoFromEHABISection(pint_t pc, const UnwindInfoSections §s); |
969 | |
970 | int stepWithEHABI() { |
971 | size_t len = 0; |
972 | size_t off = 0; |
973 | // FIXME: Calling decode_eht_entry() here is violating the libunwind |
974 | // abstraction layer. |
975 | const uint32_t *ehtp = |
976 | decode_eht_entry(reinterpret_cast<const uint32_t *>(_info.unwind_info), |
977 | &off, &len); |
978 | if (_Unwind_VRS_Interpret((_Unwind_Context *)this, ehtp, off, len) != |
979 | _URC_CONTINUE_UNWIND) |
980 | return UNW_STEP_END; |
981 | return UNW_STEP_SUCCESS; |
982 | } |
983 | #endif |
984 | |
985 | #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) |
986 | bool setInfoForSigReturn() { |
987 | R dummy; |
988 | return setInfoForSigReturn(dummy); |
989 | } |
990 | int stepThroughSigReturn() { |
991 | R dummy; |
992 | return stepThroughSigReturn(dummy); |
993 | } |
994 | bool isReadableAddr(const pint_t addr) const; |
995 | #if defined(_LIBUNWIND_TARGET_AARCH64) |
996 | bool setInfoForSigReturn(Registers_arm64 &); |
997 | int stepThroughSigReturn(Registers_arm64 &); |
998 | #endif |
999 | #if defined(_LIBUNWIND_TARGET_RISCV) |
1000 | bool setInfoForSigReturn(Registers_riscv &); |
1001 | int stepThroughSigReturn(Registers_riscv &); |
1002 | #endif |
1003 | #if defined(_LIBUNWIND_TARGET_S390X) |
1004 | bool setInfoForSigReturn(Registers_s390x &); |
1005 | int stepThroughSigReturn(Registers_s390x &); |
1006 | #endif |
1007 | template <typename Registers> bool setInfoForSigReturn(Registers &) { |
1008 | return false; |
1009 | } |
1010 | template <typename Registers> int stepThroughSigReturn(Registers &) { |
1011 | return UNW_STEP_END; |
1012 | } |
1013 | #endif |
1014 | |
1015 | #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
1016 | bool getInfoFromFdeCie(const typename CFI_Parser<A>::FDE_Info &fdeInfo, |
1017 | const typename CFI_Parser<A>::CIE_Info &cieInfo, |
1018 | pint_t pc, uintptr_t dso_base); |
1019 | bool getInfoFromDwarfSection(pint_t pc, const UnwindInfoSections §s, |
1020 | uint32_t fdeSectionOffsetHint=0); |
1021 | int stepWithDwarfFDE(bool stage2) { |
1022 | return DwarfInstructions<A, R>::stepWithDwarf( |
1023 | _addressSpace, (pint_t)this->getReg(UNW_REG_IP), |
1024 | (pint_t)_info.unwind_info, _registers, _isSignalFrame, stage2); |
1025 | } |
1026 | #endif |
1027 | |
1028 | #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
1029 | bool getInfoFromCompactEncodingSection(pint_t pc, |
1030 | const UnwindInfoSections §s); |
1031 | int stepWithCompactEncoding(bool stage2 = false) { |
1032 | #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
1033 | if ( compactSaysUseDwarf() ) |
1034 | return stepWithDwarfFDE(stage2); |
1035 | #endif |
1036 | R dummy; |
1037 | return stepWithCompactEncoding(dummy); |
1038 | } |
1039 | |
1040 | #if defined(_LIBUNWIND_TARGET_X86_64) |
1041 | int stepWithCompactEncoding(Registers_x86_64 &) { |
1042 | return CompactUnwinder_x86_64<A>::stepWithCompactEncoding( |
1043 | _info.format, _info.start_ip, _addressSpace, _registers); |
1044 | } |
1045 | #endif |
1046 | |
1047 | #if defined(_LIBUNWIND_TARGET_I386) |
1048 | int stepWithCompactEncoding(Registers_x86 &) { |
1049 | return CompactUnwinder_x86<A>::stepWithCompactEncoding( |
1050 | _info.format, (uint32_t)_info.start_ip, _addressSpace, _registers); |
1051 | } |
1052 | #endif |
1053 | |
1054 | #if defined(_LIBUNWIND_TARGET_PPC) |
1055 | int stepWithCompactEncoding(Registers_ppc &) { |
1056 | return UNW_EINVAL; |
1057 | } |
1058 | #endif |
1059 | |
1060 | #if defined(_LIBUNWIND_TARGET_PPC64) |
1061 | int stepWithCompactEncoding(Registers_ppc64 &) { |
1062 | return UNW_EINVAL; |
1063 | } |
1064 | #endif |
1065 | |
1066 | |
1067 | #if defined(_LIBUNWIND_TARGET_AARCH64) |
1068 | int stepWithCompactEncoding(Registers_arm64 &) { |
1069 | return CompactUnwinder_arm64<A>::stepWithCompactEncoding( |
1070 | _info.format, _info.start_ip, _addressSpace, _registers); |
1071 | } |
1072 | #endif |
1073 | |
1074 | #if defined(_LIBUNWIND_TARGET_MIPS_O32) |
1075 | int stepWithCompactEncoding(Registers_mips_o32 &) { |
1076 | return UNW_EINVAL; |
1077 | } |
1078 | #endif |
1079 | |
1080 | #if defined(_LIBUNWIND_TARGET_MIPS_NEWABI) |
1081 | int stepWithCompactEncoding(Registers_mips_newabi &) { |
1082 | return UNW_EINVAL; |
1083 | } |
1084 | #endif |
1085 | |
1086 | #if defined(_LIBUNWIND_TARGET_LOONGARCH) |
1087 | int stepWithCompactEncoding(Registers_loongarch &) { return UNW_EINVAL; } |
1088 | #endif |
1089 | |
1090 | #if defined(_LIBUNWIND_TARGET_SPARC) |
1091 | int stepWithCompactEncoding(Registers_sparc &) { return UNW_EINVAL; } |
1092 | #endif |
1093 | |
1094 | #if defined(_LIBUNWIND_TARGET_SPARC64) |
1095 | int stepWithCompactEncoding(Registers_sparc64 &) { return UNW_EINVAL; } |
1096 | #endif |
1097 | |
1098 | #if defined (_LIBUNWIND_TARGET_RISCV) |
1099 | int stepWithCompactEncoding(Registers_riscv &) { |
1100 | return UNW_EINVAL; |
1101 | } |
1102 | #endif |
1103 | |
1104 | bool compactSaysUseDwarf(uint32_t *offset=NULL) const { |
1105 | R dummy; |
1106 | return compactSaysUseDwarf(dummy, offset); |
1107 | } |
1108 | |
1109 | #if defined(_LIBUNWIND_TARGET_X86_64) |
1110 | bool compactSaysUseDwarf(Registers_x86_64 &, uint32_t *offset) const { |
1111 | if ((_info.format & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF) { |
1112 | if (offset) |
1113 | *offset = (_info.format & UNWIND_X86_64_DWARF_SECTION_OFFSET); |
1114 | return true; |
1115 | } |
1116 | return false; |
1117 | } |
1118 | #endif |
1119 | |
1120 | #if defined(_LIBUNWIND_TARGET_I386) |
1121 | bool compactSaysUseDwarf(Registers_x86 &, uint32_t *offset) const { |
1122 | if ((_info.format & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF) { |
1123 | if (offset) |
1124 | *offset = (_info.format & UNWIND_X86_DWARF_SECTION_OFFSET); |
1125 | return true; |
1126 | } |
1127 | return false; |
1128 | } |
1129 | #endif |
1130 | |
1131 | #if defined(_LIBUNWIND_TARGET_PPC) |
1132 | bool compactSaysUseDwarf(Registers_ppc &, uint32_t *) const { |
1133 | return true; |
1134 | } |
1135 | #endif |
1136 | |
1137 | #if defined(_LIBUNWIND_TARGET_PPC64) |
1138 | bool compactSaysUseDwarf(Registers_ppc64 &, uint32_t *) const { |
1139 | return true; |
1140 | } |
1141 | #endif |
1142 | |
1143 | #if defined(_LIBUNWIND_TARGET_AARCH64) |
1144 | bool compactSaysUseDwarf(Registers_arm64 &, uint32_t *offset) const { |
1145 | if ((_info.format & UNWIND_ARM64_MODE_MASK) == UNWIND_ARM64_MODE_DWARF) { |
1146 | if (offset) |
1147 | *offset = (_info.format & UNWIND_ARM64_DWARF_SECTION_OFFSET); |
1148 | return true; |
1149 | } |
1150 | return false; |
1151 | } |
1152 | #endif |
1153 | |
1154 | #if defined(_LIBUNWIND_TARGET_MIPS_O32) |
1155 | bool compactSaysUseDwarf(Registers_mips_o32 &, uint32_t *) const { |
1156 | return true; |
1157 | } |
1158 | #endif |
1159 | |
1160 | #if defined(_LIBUNWIND_TARGET_MIPS_NEWABI) |
1161 | bool compactSaysUseDwarf(Registers_mips_newabi &, uint32_t *) const { |
1162 | return true; |
1163 | } |
1164 | #endif |
1165 | |
1166 | #if defined(_LIBUNWIND_TARGET_LOONGARCH) |
1167 | bool compactSaysUseDwarf(Registers_loongarch &, uint32_t *) const { |
1168 | return true; |
1169 | } |
1170 | #endif |
1171 | |
1172 | #if defined(_LIBUNWIND_TARGET_SPARC) |
1173 | bool compactSaysUseDwarf(Registers_sparc &, uint32_t *) const { return true; } |
1174 | #endif |
1175 | |
1176 | #if defined(_LIBUNWIND_TARGET_SPARC64) |
1177 | bool compactSaysUseDwarf(Registers_sparc64 &, uint32_t *) const { |
1178 | return true; |
1179 | } |
1180 | #endif |
1181 | |
1182 | #if defined (_LIBUNWIND_TARGET_RISCV) |
1183 | bool compactSaysUseDwarf(Registers_riscv &, uint32_t *) const { |
1184 | return true; |
1185 | } |
1186 | #endif |
1187 | |
1188 | #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
1189 | |
1190 | #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
1191 | compact_unwind_encoding_t dwarfEncoding() const { |
1192 | R dummy; |
1193 | return dwarfEncoding(dummy); |
1194 | } |
1195 | |
1196 | #if defined(_LIBUNWIND_TARGET_X86_64) |
1197 | compact_unwind_encoding_t dwarfEncoding(Registers_x86_64 &) const { |
1198 | return UNWIND_X86_64_MODE_DWARF; |
1199 | } |
1200 | #endif |
1201 | |
1202 | #if defined(_LIBUNWIND_TARGET_I386) |
1203 | compact_unwind_encoding_t dwarfEncoding(Registers_x86 &) const { |
1204 | return UNWIND_X86_MODE_DWARF; |
1205 | } |
1206 | #endif |
1207 | |
1208 | #if defined(_LIBUNWIND_TARGET_PPC) |
1209 | compact_unwind_encoding_t dwarfEncoding(Registers_ppc &) const { |
1210 | return 0; |
1211 | } |
1212 | #endif |
1213 | |
1214 | #if defined(_LIBUNWIND_TARGET_PPC64) |
1215 | compact_unwind_encoding_t dwarfEncoding(Registers_ppc64 &) const { |
1216 | return 0; |
1217 | } |
1218 | #endif |
1219 | |
1220 | #if defined(_LIBUNWIND_TARGET_AARCH64) |
1221 | compact_unwind_encoding_t dwarfEncoding(Registers_arm64 &) const { |
1222 | return UNWIND_ARM64_MODE_DWARF; |
1223 | } |
1224 | #endif |
1225 | |
1226 | #if defined(_LIBUNWIND_TARGET_ARM) |
1227 | compact_unwind_encoding_t dwarfEncoding(Registers_arm &) const { |
1228 | return 0; |
1229 | } |
1230 | #endif |
1231 | |
1232 | #if defined (_LIBUNWIND_TARGET_OR1K) |
1233 | compact_unwind_encoding_t dwarfEncoding(Registers_or1k &) const { |
1234 | return 0; |
1235 | } |
1236 | #endif |
1237 | |
1238 | #if defined (_LIBUNWIND_TARGET_HEXAGON) |
1239 | compact_unwind_encoding_t dwarfEncoding(Registers_hexagon &) const { |
1240 | return 0; |
1241 | } |
1242 | #endif |
1243 | |
1244 | #if defined (_LIBUNWIND_TARGET_MIPS_O32) |
1245 | compact_unwind_encoding_t dwarfEncoding(Registers_mips_o32 &) const { |
1246 | return 0; |
1247 | } |
1248 | #endif |
1249 | |
1250 | #if defined (_LIBUNWIND_TARGET_MIPS_NEWABI) |
1251 | compact_unwind_encoding_t dwarfEncoding(Registers_mips_newabi &) const { |
1252 | return 0; |
1253 | } |
1254 | #endif |
1255 | |
1256 | #if defined(_LIBUNWIND_TARGET_LOONGARCH) |
1257 | compact_unwind_encoding_t dwarfEncoding(Registers_loongarch &) const { |
1258 | return 0; |
1259 | } |
1260 | #endif |
1261 | |
1262 | #if defined(_LIBUNWIND_TARGET_SPARC) |
1263 | compact_unwind_encoding_t dwarfEncoding(Registers_sparc &) const { return 0; } |
1264 | #endif |
1265 | |
1266 | #if defined(_LIBUNWIND_TARGET_SPARC64) |
1267 | compact_unwind_encoding_t dwarfEncoding(Registers_sparc64 &) const { |
1268 | return 0; |
1269 | } |
1270 | #endif |
1271 | |
1272 | #if defined (_LIBUNWIND_TARGET_RISCV) |
1273 | compact_unwind_encoding_t dwarfEncoding(Registers_riscv &) const { |
1274 | return 0; |
1275 | } |
1276 | #endif |
1277 | |
1278 | #if defined (_LIBUNWIND_TARGET_S390X) |
1279 | compact_unwind_encoding_t dwarfEncoding(Registers_s390x &) const { |
1280 | return 0; |
1281 | } |
1282 | #endif |
1283 | |
1284 | #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
1285 | |
1286 | #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) |
1287 | // For runtime environments using SEH unwind data without Windows runtime |
1288 | // support. |
1289 | pint_t getLastPC() const { /* FIXME: Implement */ return 0; } |
1290 | void setLastPC(pint_t pc) { /* FIXME: Implement */ } |
1291 | RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) { |
1292 | /* FIXME: Implement */ |
1293 | *base = 0; |
1294 | return nullptr; |
1295 | } |
1296 | bool getInfoFromSEH(pint_t pc); |
1297 | int stepWithSEHData() { /* FIXME: Implement */ return 0; } |
1298 | #endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) |
1299 | |
1300 | #if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) |
1301 | bool getInfoFromTBTable(pint_t pc, R ®isters); |
1302 | int stepWithTBTable(pint_t pc, tbtable *TBTable, R ®isters, |
1303 | bool &isSignalFrame); |
1304 | int stepWithTBTableData() { |
1305 | return stepWithTBTable(reinterpret_cast<pint_t>(this->getReg(UNW_REG_IP)), |
1306 | reinterpret_cast<tbtable *>(_info.unwind_info), |
1307 | _registers, _isSignalFrame); |
1308 | } |
1309 | #endif // defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) |
1310 | |
1311 | A &_addressSpace; |
1312 | R _registers; |
1313 | unw_proc_info_t _info; |
1314 | bool _unwindInfoMissing; |
1315 | bool _isSignalFrame; |
1316 | #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) |
1317 | bool _isSigReturn = false; |
1318 | #endif |
1319 | }; |
1320 | |
1321 | |
1322 | template <typename A, typename R> |
1323 | UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as) |
1324 | : _addressSpace(as), _registers(context), _unwindInfoMissing(false), |
1325 | _isSignalFrame(false) { |
1326 | static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit), |
1327 | "UnwindCursor<> does not fit in unw_cursor_t" ); |
1328 | static_assert((alignof(UnwindCursor<A, R>) <= alignof(unw_cursor_t)), |
1329 | "UnwindCursor<> requires more alignment than unw_cursor_t" ); |
1330 | memset(s: &_info, c: 0, n: sizeof(_info)); |
1331 | } |
1332 | |
1333 | template <typename A, typename R> |
1334 | UnwindCursor<A, R>::UnwindCursor(A &as, void *) |
1335 | : _addressSpace(as), _unwindInfoMissing(false), _isSignalFrame(false) { |
1336 | memset(s: &_info, c: 0, n: sizeof(_info)); |
1337 | // FIXME |
1338 | // fill in _registers from thread arg |
1339 | } |
1340 | |
1341 | |
1342 | template <typename A, typename R> |
1343 | bool UnwindCursor<A, R>::validReg(int regNum) { |
1344 | return _registers.validRegister(regNum); |
1345 | } |
1346 | |
1347 | template <typename A, typename R> |
1348 | unw_word_t UnwindCursor<A, R>::getReg(int regNum) { |
1349 | return _registers.getRegister(regNum); |
1350 | } |
1351 | |
1352 | template <typename A, typename R> |
1353 | void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) { |
1354 | _registers.setRegister(regNum, (typename A::pint_t)value); |
1355 | } |
1356 | |
1357 | template <typename A, typename R> |
1358 | bool UnwindCursor<A, R>::validFloatReg(int regNum) { |
1359 | return _registers.validFloatRegister(regNum); |
1360 | } |
1361 | |
1362 | template <typename A, typename R> |
1363 | unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) { |
1364 | return _registers.getFloatRegister(regNum); |
1365 | } |
1366 | |
1367 | template <typename A, typename R> |
1368 | void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) { |
1369 | _registers.setFloatRegister(regNum, value); |
1370 | } |
1371 | |
1372 | template <typename A, typename R> void UnwindCursor<A, R>::jumpto() { |
1373 | _registers.jumpto(); |
1374 | } |
1375 | |
1376 | #ifdef __arm__ |
1377 | template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() { |
1378 | _registers.saveVFPAsX(); |
1379 | } |
1380 | #endif |
1381 | |
1382 | #ifdef _AIX |
1383 | template <typename A, typename R> |
1384 | uintptr_t UnwindCursor<A, R>::getDataRelBase() { |
1385 | return reinterpret_cast<uintptr_t>(_info.extra); |
1386 | } |
1387 | #endif |
1388 | |
1389 | template <typename A, typename R> |
1390 | const char *UnwindCursor<A, R>::getRegisterName(int regNum) { |
1391 | return _registers.getRegisterName(regNum); |
1392 | } |
1393 | |
1394 | template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() { |
1395 | return _isSignalFrame; |
1396 | } |
1397 | |
1398 | #endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) |
1399 | |
1400 | #if defined(_LIBUNWIND_ARM_EHABI) |
1401 | template<typename A> |
1402 | struct EHABISectionIterator { |
1403 | typedef EHABISectionIterator _Self; |
1404 | |
1405 | typedef typename A::pint_t value_type; |
1406 | typedef typename A::pint_t* pointer; |
1407 | typedef typename A::pint_t& reference; |
1408 | typedef size_t size_type; |
1409 | typedef size_t difference_type; |
1410 | |
1411 | static _Self begin(A& addressSpace, const UnwindInfoSections& sects) { |
1412 | return _Self(addressSpace, sects, 0); |
1413 | } |
1414 | static _Self end(A& addressSpace, const UnwindInfoSections& sects) { |
1415 | return _Self(addressSpace, sects, |
1416 | sects.arm_section_length / sizeof(EHABIIndexEntry)); |
1417 | } |
1418 | |
1419 | EHABISectionIterator(A& addressSpace, const UnwindInfoSections& sects, size_t i) |
1420 | : _i(i), _addressSpace(&addressSpace), _sects(§s) {} |
1421 | |
1422 | _Self& operator++() { ++_i; return *this; } |
1423 | _Self& operator+=(size_t a) { _i += a; return *this; } |
1424 | _Self& operator--() { assert(_i > 0); --_i; return *this; } |
1425 | _Self& operator-=(size_t a) { assert(_i >= a); _i -= a; return *this; } |
1426 | |
1427 | _Self operator+(size_t a) { _Self out = *this; out._i += a; return out; } |
1428 | _Self operator-(size_t a) { assert(_i >= a); _Self out = *this; out._i -= a; return out; } |
1429 | |
1430 | size_t operator-(const _Self& other) const { return _i - other._i; } |
1431 | |
1432 | bool operator==(const _Self& other) const { |
1433 | assert(_addressSpace == other._addressSpace); |
1434 | assert(_sects == other._sects); |
1435 | return _i == other._i; |
1436 | } |
1437 | |
1438 | bool operator!=(const _Self& other) const { |
1439 | assert(_addressSpace == other._addressSpace); |
1440 | assert(_sects == other._sects); |
1441 | return _i != other._i; |
1442 | } |
1443 | |
1444 | typename A::pint_t operator*() const { return functionAddress(); } |
1445 | |
1446 | typename A::pint_t functionAddress() const { |
1447 | typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof( |
1448 | EHABIIndexEntry, _i, functionOffset); |
1449 | return indexAddr + signExtendPrel31(_addressSpace->get32(indexAddr)); |
1450 | } |
1451 | |
1452 | typename A::pint_t dataAddress() { |
1453 | typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof( |
1454 | EHABIIndexEntry, _i, data); |
1455 | return indexAddr; |
1456 | } |
1457 | |
1458 | private: |
1459 | size_t _i; |
1460 | A* _addressSpace; |
1461 | const UnwindInfoSections* _sects; |
1462 | }; |
1463 | |
1464 | namespace { |
1465 | |
1466 | template <typename A> |
1467 | EHABISectionIterator<A> EHABISectionUpperBound( |
1468 | EHABISectionIterator<A> first, |
1469 | EHABISectionIterator<A> last, |
1470 | typename A::pint_t value) { |
1471 | size_t len = last - first; |
1472 | while (len > 0) { |
1473 | size_t l2 = len / 2; |
1474 | EHABISectionIterator<A> m = first + l2; |
1475 | if (value < *m) { |
1476 | len = l2; |
1477 | } else { |
1478 | first = ++m; |
1479 | len -= l2 + 1; |
1480 | } |
1481 | } |
1482 | return first; |
1483 | } |
1484 | |
1485 | } |
1486 | |
1487 | template <typename A, typename R> |
1488 | bool UnwindCursor<A, R>::getInfoFromEHABISection( |
1489 | pint_t pc, |
1490 | const UnwindInfoSections §s) { |
1491 | EHABISectionIterator<A> begin = |
1492 | EHABISectionIterator<A>::begin(_addressSpace, sects); |
1493 | EHABISectionIterator<A> end = |
1494 | EHABISectionIterator<A>::end(_addressSpace, sects); |
1495 | if (begin == end) |
1496 | return false; |
1497 | |
1498 | EHABISectionIterator<A> itNextPC = EHABISectionUpperBound(begin, end, pc); |
1499 | if (itNextPC == begin) |
1500 | return false; |
1501 | EHABISectionIterator<A> itThisPC = itNextPC - 1; |
1502 | |
1503 | pint_t thisPC = itThisPC.functionAddress(); |
1504 | // If an exception is thrown from a function, corresponding to the last entry |
1505 | // in the table, we don't really know the function extent and have to choose a |
1506 | // value for nextPC. Choosing max() will allow the range check during trace to |
1507 | // succeed. |
1508 | pint_t nextPC = (itNextPC == end) ? UINTPTR_MAX : itNextPC.functionAddress(); |
1509 | pint_t indexDataAddr = itThisPC.dataAddress(); |
1510 | |
1511 | if (indexDataAddr == 0) |
1512 | return false; |
1513 | |
1514 | uint32_t indexData = _addressSpace.get32(indexDataAddr); |
1515 | if (indexData == UNW_EXIDX_CANTUNWIND) |
1516 | return false; |
1517 | |
1518 | // If the high bit is set, the exception handling table entry is inline inside |
1519 | // the index table entry on the second word (aka |indexDataAddr|). Otherwise, |
1520 | // the table points at an offset in the exception handling table (section 5 |
1521 | // EHABI). |
1522 | pint_t exceptionTableAddr; |
1523 | uint32_t exceptionTableData; |
1524 | bool isSingleWordEHT; |
1525 | if (indexData & 0x80000000) { |
1526 | exceptionTableAddr = indexDataAddr; |
1527 | // TODO(ajwong): Should this data be 0? |
1528 | exceptionTableData = indexData; |
1529 | isSingleWordEHT = true; |
1530 | } else { |
1531 | exceptionTableAddr = indexDataAddr + signExtendPrel31(indexData); |
1532 | exceptionTableData = _addressSpace.get32(exceptionTableAddr); |
1533 | isSingleWordEHT = false; |
1534 | } |
1535 | |
1536 | // Now we know the 3 things: |
1537 | // exceptionTableAddr -- exception handler table entry. |
1538 | // exceptionTableData -- the data inside the first word of the eht entry. |
1539 | // isSingleWordEHT -- whether the entry is in the index. |
1540 | unw_word_t personalityRoutine = 0xbadf00d; |
1541 | bool scope32 = false; |
1542 | uintptr_t lsda; |
1543 | |
1544 | // If the high bit in the exception handling table entry is set, the entry is |
1545 | // in compact form (section 6.3 EHABI). |
1546 | if (exceptionTableData & 0x80000000) { |
1547 | // Grab the index of the personality routine from the compact form. |
1548 | uint32_t choice = (exceptionTableData & 0x0f000000) >> 24; |
1549 | uint32_t extraWords = 0; |
1550 | switch (choice) { |
1551 | case 0: |
1552 | personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr0; |
1553 | extraWords = 0; |
1554 | scope32 = false; |
1555 | lsda = isSingleWordEHT ? 0 : (exceptionTableAddr + 4); |
1556 | break; |
1557 | case 1: |
1558 | personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr1; |
1559 | extraWords = (exceptionTableData & 0x00ff0000) >> 16; |
1560 | scope32 = false; |
1561 | lsda = exceptionTableAddr + (extraWords + 1) * 4; |
1562 | break; |
1563 | case 2: |
1564 | personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr2; |
1565 | extraWords = (exceptionTableData & 0x00ff0000) >> 16; |
1566 | scope32 = true; |
1567 | lsda = exceptionTableAddr + (extraWords + 1) * 4; |
1568 | break; |
1569 | default: |
1570 | _LIBUNWIND_ABORT("unknown personality routine" ); |
1571 | return false; |
1572 | } |
1573 | |
1574 | if (isSingleWordEHT) { |
1575 | if (extraWords != 0) { |
1576 | _LIBUNWIND_ABORT("index inlined table detected but pr function " |
1577 | "requires extra words" ); |
1578 | return false; |
1579 | } |
1580 | } |
1581 | } else { |
1582 | pint_t personalityAddr = |
1583 | exceptionTableAddr + signExtendPrel31(exceptionTableData); |
1584 | personalityRoutine = personalityAddr; |
1585 | |
1586 | // ARM EHABI # 6.2, # 9.2 |
1587 | // |
1588 | // +---- ehtp |
1589 | // v |
1590 | // +--------------------------------------+ |
1591 | // | +--------+--------+--------+-------+ | |
1592 | // | |0| prel31 to personalityRoutine | | |
1593 | // | +--------+--------+--------+-------+ | |
1594 | // | | N | unwind opcodes | | <-- UnwindData |
1595 | // | +--------+--------+--------+-------+ | |
1596 | // | | Word 2 unwind opcodes | | |
1597 | // | +--------+--------+--------+-------+ | |
1598 | // | ... | |
1599 | // | +--------+--------+--------+-------+ | |
1600 | // | | Word N unwind opcodes | | |
1601 | // | +--------+--------+--------+-------+ | |
1602 | // | | LSDA | | <-- lsda |
1603 | // | | ... | | |
1604 | // | +--------+--------+--------+-------+ | |
1605 | // +--------------------------------------+ |
1606 | |
1607 | uint32_t *UnwindData = reinterpret_cast<uint32_t*>(exceptionTableAddr) + 1; |
1608 | uint32_t FirstDataWord = *UnwindData; |
1609 | size_t N = ((FirstDataWord >> 24) & 0xff); |
1610 | size_t NDataWords = N + 1; |
1611 | lsda = reinterpret_cast<uintptr_t>(UnwindData + NDataWords); |
1612 | } |
1613 | |
1614 | _info.start_ip = thisPC; |
1615 | _info.end_ip = nextPC; |
1616 | _info.handler = personalityRoutine; |
1617 | _info.unwind_info = exceptionTableAddr; |
1618 | _info.lsda = lsda; |
1619 | // flags is pr_cache.additional. See EHABI #7.2 for definition of bit 0. |
1620 | _info.flags = (isSingleWordEHT ? 1 : 0) | (scope32 ? 0x2 : 0); // Use enum? |
1621 | |
1622 | return true; |
1623 | } |
1624 | #endif |
1625 | |
1626 | #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
1627 | template <typename A, typename R> |
1628 | bool UnwindCursor<A, R>::getInfoFromFdeCie( |
1629 | const typename CFI_Parser<A>::FDE_Info &fdeInfo, |
1630 | const typename CFI_Parser<A>::CIE_Info &cieInfo, pint_t pc, |
1631 | uintptr_t dso_base) { |
1632 | typename CFI_Parser<A>::PrologInfo prolog; |
1633 | if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, pc, |
1634 | R::getArch(), &prolog)) { |
1635 | // Save off parsed FDE info |
1636 | _info.start_ip = fdeInfo.pcStart; |
1637 | _info.end_ip = fdeInfo.pcEnd; |
1638 | _info.lsda = fdeInfo.lsda; |
1639 | _info.handler = cieInfo.personality; |
1640 | // Some frameless functions need SP altered when resuming in function, so |
1641 | // propagate spExtraArgSize. |
1642 | _info.gp = prolog.spExtraArgSize; |
1643 | _info.flags = 0; |
1644 | _info.format = dwarfEncoding(); |
1645 | _info.unwind_info = fdeInfo.fdeStart; |
1646 | _info.unwind_info_size = static_cast<uint32_t>(fdeInfo.fdeLength); |
1647 | _info.extra = static_cast<unw_word_t>(dso_base); |
1648 | return true; |
1649 | } |
1650 | return false; |
1651 | } |
1652 | |
1653 | template <typename A, typename R> |
1654 | bool UnwindCursor<A, R>::getInfoFromDwarfSection(pint_t pc, |
1655 | const UnwindInfoSections §s, |
1656 | uint32_t fdeSectionOffsetHint) { |
1657 | typename CFI_Parser<A>::FDE_Info fdeInfo; |
1658 | typename CFI_Parser<A>::CIE_Info cieInfo; |
1659 | bool foundFDE = false; |
1660 | bool foundInCache = false; |
1661 | // If compact encoding table gave offset into dwarf section, go directly there |
1662 | if (fdeSectionOffsetHint != 0) { |
1663 | foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, |
1664 | sects.dwarf_section_length, |
1665 | sects.dwarf_section + fdeSectionOffsetHint, |
1666 | &fdeInfo, &cieInfo); |
1667 | } |
1668 | #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX) |
1669 | if (!foundFDE && (sects.dwarf_index_section != 0)) { |
1670 | foundFDE = EHHeaderParser<A>::findFDE( |
1671 | _addressSpace, pc, sects.dwarf_index_section, |
1672 | (uint32_t)sects.dwarf_index_section_length, &fdeInfo, &cieInfo); |
1673 | } |
1674 | #endif |
1675 | if (!foundFDE) { |
1676 | // otherwise, search cache of previously found FDEs. |
1677 | pint_t cachedFDE = DwarfFDECache<A>::findFDE(sects.dso_base, pc); |
1678 | if (cachedFDE != 0) { |
1679 | foundFDE = |
1680 | CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, |
1681 | sects.dwarf_section_length, |
1682 | cachedFDE, &fdeInfo, &cieInfo); |
1683 | foundInCache = foundFDE; |
1684 | } |
1685 | } |
1686 | if (!foundFDE) { |
1687 | // Still not found, do full scan of __eh_frame section. |
1688 | foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, |
1689 | sects.dwarf_section_length, 0, |
1690 | &fdeInfo, &cieInfo); |
1691 | } |
1692 | if (foundFDE) { |
1693 | if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, dso_base: sects.dso_base)) { |
1694 | // Add to cache (to make next lookup faster) if we had no hint |
1695 | // and there was no index. |
1696 | if (!foundInCache && (fdeSectionOffsetHint == 0)) { |
1697 | #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX) |
1698 | if (sects.dwarf_index_section == 0) |
1699 | #endif |
1700 | DwarfFDECache<A>::add(sects.dso_base, fdeInfo.pcStart, fdeInfo.pcEnd, |
1701 | fdeInfo.fdeStart); |
1702 | } |
1703 | return true; |
1704 | } |
1705 | } |
1706 | //_LIBUNWIND_DEBUG_LOG("can't find/use FDE for pc=0x%llX", (uint64_t)pc); |
1707 | return false; |
1708 | } |
1709 | #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
1710 | |
1711 | |
1712 | #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
1713 | template <typename A, typename R> |
1714 | bool UnwindCursor<A, R>::getInfoFromCompactEncodingSection(pint_t pc, |
1715 | const UnwindInfoSections §s) { |
1716 | const bool log = false; |
1717 | if (log) |
1718 | fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX, mh=0x%llX)\n" , |
1719 | (uint64_t)pc, (uint64_t)sects.dso_base); |
1720 | |
1721 | const UnwindSectionHeader<A> sectionHeader(_addressSpace, |
1722 | sects.compact_unwind_section); |
1723 | if (sectionHeader.version() != UNWIND_SECTION_VERSION) |
1724 | return false; |
1725 | |
1726 | // do a binary search of top level index to find page with unwind info |
1727 | pint_t targetFunctionOffset = pc - sects.dso_base; |
1728 | const UnwindSectionIndexArray<A> topIndex(_addressSpace, |
1729 | sects.compact_unwind_section |
1730 | + sectionHeader.indexSectionOffset()); |
1731 | uint32_t low = 0; |
1732 | uint32_t high = sectionHeader.indexCount(); |
1733 | uint32_t last = high - 1; |
1734 | while (low < high) { |
1735 | uint32_t mid = (low + high) / 2; |
1736 | //if ( log ) fprintf(stderr, "\tmid=%d, low=%d, high=%d, *mid=0x%08X\n", |
1737 | //mid, low, high, topIndex.functionOffset(mid)); |
1738 | if (topIndex.functionOffset(mid) <= targetFunctionOffset) { |
1739 | if ((mid == last) || |
1740 | (topIndex.functionOffset(mid + 1) > targetFunctionOffset)) { |
1741 | low = mid; |
1742 | break; |
1743 | } else { |
1744 | low = mid + 1; |
1745 | } |
1746 | } else { |
1747 | high = mid; |
1748 | } |
1749 | } |
1750 | const uint32_t firstLevelFunctionOffset = topIndex.functionOffset(low); |
1751 | const uint32_t firstLevelNextPageFunctionOffset = |
1752 | topIndex.functionOffset(low + 1); |
1753 | const pint_t secondLevelAddr = |
1754 | sects.compact_unwind_section + topIndex.secondLevelPagesSectionOffset(low); |
1755 | const pint_t lsdaArrayStartAddr = |
1756 | sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low); |
1757 | const pint_t lsdaArrayEndAddr = |
1758 | sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low+1); |
1759 | if (log) |
1760 | fprintf(stderr, "\tfirst level search for result index=%d " |
1761 | "to secondLevelAddr=0x%llX\n" , |
1762 | low, (uint64_t) secondLevelAddr); |
1763 | // do a binary search of second level page index |
1764 | uint32_t encoding = 0; |
1765 | pint_t funcStart = 0; |
1766 | pint_t funcEnd = 0; |
1767 | pint_t lsda = 0; |
1768 | pint_t personality = 0; |
1769 | uint32_t pageKind = _addressSpace.get32(secondLevelAddr); |
1770 | if (pageKind == UNWIND_SECOND_LEVEL_REGULAR) { |
1771 | // regular page |
1772 | UnwindSectionRegularPageHeader<A> pageHeader(_addressSpace, |
1773 | secondLevelAddr); |
1774 | UnwindSectionRegularArray<A> pageIndex( |
1775 | _addressSpace, secondLevelAddr + pageHeader.entryPageOffset()); |
1776 | // binary search looks for entry with e where index[e].offset <= pc < |
1777 | // index[e+1].offset |
1778 | if (log) |
1779 | fprintf(stderr, "\tbinary search for targetFunctionOffset=0x%08llX in " |
1780 | "regular page starting at secondLevelAddr=0x%llX\n" , |
1781 | (uint64_t) targetFunctionOffset, (uint64_t) secondLevelAddr); |
1782 | low = 0; |
1783 | high = pageHeader.entryCount(); |
1784 | while (low < high) { |
1785 | uint32_t mid = (low + high) / 2; |
1786 | if (pageIndex.functionOffset(mid) <= targetFunctionOffset) { |
1787 | if (mid == (uint32_t)(pageHeader.entryCount() - 1)) { |
1788 | // at end of table |
1789 | low = mid; |
1790 | funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base; |
1791 | break; |
1792 | } else if (pageIndex.functionOffset(mid + 1) > targetFunctionOffset) { |
1793 | // next is too big, so we found it |
1794 | low = mid; |
1795 | funcEnd = pageIndex.functionOffset(low + 1) + sects.dso_base; |
1796 | break; |
1797 | } else { |
1798 | low = mid + 1; |
1799 | } |
1800 | } else { |
1801 | high = mid; |
1802 | } |
1803 | } |
1804 | encoding = pageIndex.encoding(low); |
1805 | funcStart = pageIndex.functionOffset(low) + sects.dso_base; |
1806 | if (pc < funcStart) { |
1807 | if (log) |
1808 | fprintf( |
1809 | stderr, |
1810 | "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n" , |
1811 | (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd); |
1812 | return false; |
1813 | } |
1814 | if (pc > funcEnd) { |
1815 | if (log) |
1816 | fprintf( |
1817 | stderr, |
1818 | "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n" , |
1819 | (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd); |
1820 | return false; |
1821 | } |
1822 | } else if (pageKind == UNWIND_SECOND_LEVEL_COMPRESSED) { |
1823 | // compressed page |
1824 | UnwindSectionCompressedPageHeader<A> pageHeader(_addressSpace, |
1825 | secondLevelAddr); |
1826 | UnwindSectionCompressedArray<A> pageIndex( |
1827 | _addressSpace, secondLevelAddr + pageHeader.entryPageOffset()); |
1828 | const uint32_t targetFunctionPageOffset = |
1829 | (uint32_t)(targetFunctionOffset - firstLevelFunctionOffset); |
1830 | // binary search looks for entry with e where index[e].offset <= pc < |
1831 | // index[e+1].offset |
1832 | if (log) |
1833 | fprintf(stderr, "\tbinary search of compressed page starting at " |
1834 | "secondLevelAddr=0x%llX\n" , |
1835 | (uint64_t) secondLevelAddr); |
1836 | low = 0; |
1837 | last = pageHeader.entryCount() - 1; |
1838 | high = pageHeader.entryCount(); |
1839 | while (low < high) { |
1840 | uint32_t mid = (low + high) / 2; |
1841 | if (pageIndex.functionOffset(mid) <= targetFunctionPageOffset) { |
1842 | if ((mid == last) || |
1843 | (pageIndex.functionOffset(mid + 1) > targetFunctionPageOffset)) { |
1844 | low = mid; |
1845 | break; |
1846 | } else { |
1847 | low = mid + 1; |
1848 | } |
1849 | } else { |
1850 | high = mid; |
1851 | } |
1852 | } |
1853 | funcStart = pageIndex.functionOffset(low) + firstLevelFunctionOffset |
1854 | + sects.dso_base; |
1855 | if (low < last) |
1856 | funcEnd = |
1857 | pageIndex.functionOffset(low + 1) + firstLevelFunctionOffset |
1858 | + sects.dso_base; |
1859 | else |
1860 | funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base; |
1861 | if (pc < funcStart) { |
1862 | _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX " |
1863 | "not in second level compressed unwind table. " |
1864 | "funcStart=0x%llX" , |
1865 | (uint64_t) pc, (uint64_t) funcStart); |
1866 | return false; |
1867 | } |
1868 | if (pc > funcEnd) { |
1869 | _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX " |
1870 | "not in second level compressed unwind table. " |
1871 | "funcEnd=0x%llX" , |
1872 | (uint64_t) pc, (uint64_t) funcEnd); |
1873 | return false; |
1874 | } |
1875 | uint16_t encodingIndex = pageIndex.encodingIndex(low); |
1876 | if (encodingIndex < sectionHeader.commonEncodingsArrayCount()) { |
1877 | // encoding is in common table in section header |
1878 | encoding = _addressSpace.get32( |
1879 | sects.compact_unwind_section + |
1880 | sectionHeader.commonEncodingsArraySectionOffset() + |
1881 | encodingIndex * sizeof(uint32_t)); |
1882 | } else { |
1883 | // encoding is in page specific table |
1884 | uint16_t pageEncodingIndex = |
1885 | encodingIndex - (uint16_t)sectionHeader.commonEncodingsArrayCount(); |
1886 | encoding = _addressSpace.get32(secondLevelAddr + |
1887 | pageHeader.encodingsPageOffset() + |
1888 | pageEncodingIndex * sizeof(uint32_t)); |
1889 | } |
1890 | } else { |
1891 | _LIBUNWIND_DEBUG_LOG( |
1892 | "malformed __unwind_info at 0x%0llX bad second level page" , |
1893 | (uint64_t)sects.compact_unwind_section); |
1894 | return false; |
1895 | } |
1896 | |
1897 | // look up LSDA, if encoding says function has one |
1898 | if (encoding & UNWIND_HAS_LSDA) { |
1899 | UnwindSectionLsdaArray<A> lsdaIndex(_addressSpace, lsdaArrayStartAddr); |
1900 | uint32_t funcStartOffset = (uint32_t)(funcStart - sects.dso_base); |
1901 | low = 0; |
1902 | high = (uint32_t)(lsdaArrayEndAddr - lsdaArrayStartAddr) / |
1903 | sizeof(unwind_info_section_header_lsda_index_entry); |
1904 | // binary search looks for entry with exact match for functionOffset |
1905 | if (log) |
1906 | fprintf(stderr, |
1907 | "\tbinary search of lsda table for targetFunctionOffset=0x%08X\n" , |
1908 | funcStartOffset); |
1909 | while (low < high) { |
1910 | uint32_t mid = (low + high) / 2; |
1911 | if (lsdaIndex.functionOffset(mid) == funcStartOffset) { |
1912 | lsda = lsdaIndex.lsdaOffset(mid) + sects.dso_base; |
1913 | break; |
1914 | } else if (lsdaIndex.functionOffset(mid) < funcStartOffset) { |
1915 | low = mid + 1; |
1916 | } else { |
1917 | high = mid; |
1918 | } |
1919 | } |
1920 | if (lsda == 0) { |
1921 | _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with HAS_LSDA bit set for " |
1922 | "pc=0x%0llX, but lsda table has no entry" , |
1923 | encoding, (uint64_t) pc); |
1924 | return false; |
1925 | } |
1926 | } |
1927 | |
1928 | // extract personality routine, if encoding says function has one |
1929 | uint32_t personalityIndex = (encoding & UNWIND_PERSONALITY_MASK) >> |
1930 | (__builtin_ctz(UNWIND_PERSONALITY_MASK)); |
1931 | if (personalityIndex != 0) { |
1932 | --personalityIndex; // change 1-based to zero-based index |
1933 | if (personalityIndex >= sectionHeader.personalityArrayCount()) { |
1934 | _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with personality index %d, " |
1935 | "but personality table has only %d entries" , |
1936 | encoding, personalityIndex, |
1937 | sectionHeader.personalityArrayCount()); |
1938 | return false; |
1939 | } |
1940 | int32_t personalityDelta = (int32_t)_addressSpace.get32( |
1941 | sects.compact_unwind_section + |
1942 | sectionHeader.personalityArraySectionOffset() + |
1943 | personalityIndex * sizeof(uint32_t)); |
1944 | pint_t personalityPointer = sects.dso_base + (pint_t)personalityDelta; |
1945 | personality = _addressSpace.getP(personalityPointer); |
1946 | if (log) |
1947 | fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), " |
1948 | "personalityDelta=0x%08X, personality=0x%08llX\n" , |
1949 | (uint64_t) pc, personalityDelta, (uint64_t) personality); |
1950 | } |
1951 | |
1952 | if (log) |
1953 | fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), " |
1954 | "encoding=0x%08X, lsda=0x%08llX for funcStart=0x%llX\n" , |
1955 | (uint64_t) pc, encoding, (uint64_t) lsda, (uint64_t) funcStart); |
1956 | _info.start_ip = funcStart; |
1957 | _info.end_ip = funcEnd; |
1958 | _info.lsda = lsda; |
1959 | _info.handler = personality; |
1960 | _info.gp = 0; |
1961 | _info.flags = 0; |
1962 | _info.format = encoding; |
1963 | _info.unwind_info = 0; |
1964 | _info.unwind_info_size = 0; |
1965 | _info.extra = sects.dso_base; |
1966 | return true; |
1967 | } |
1968 | #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
1969 | |
1970 | |
1971 | #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) |
1972 | template <typename A, typename R> |
1973 | bool UnwindCursor<A, R>::getInfoFromSEH(pint_t pc) { |
1974 | pint_t base; |
1975 | RUNTIME_FUNCTION *unwindEntry = lookUpSEHUnwindInfo(pc, &base); |
1976 | if (!unwindEntry) { |
1977 | _LIBUNWIND_DEBUG_LOG("\tpc not in table, pc=0x%llX" , (uint64_t) pc); |
1978 | return false; |
1979 | } |
1980 | _info.gp = 0; |
1981 | _info.flags = 0; |
1982 | _info.format = 0; |
1983 | _info.unwind_info_size = sizeof(RUNTIME_FUNCTION); |
1984 | _info.unwind_info = reinterpret_cast<unw_word_t>(unwindEntry); |
1985 | _info.extra = base; |
1986 | _info.start_ip = base + unwindEntry->BeginAddress; |
1987 | #ifdef _LIBUNWIND_TARGET_X86_64 |
1988 | _info.end_ip = base + unwindEntry->EndAddress; |
1989 | // Only fill in the handler and LSDA if they're stale. |
1990 | if (pc != getLastPC()) { |
1991 | UNWIND_INFO *xdata = reinterpret_cast<UNWIND_INFO *>(base + unwindEntry->UnwindData); |
1992 | if (xdata->Flags & (UNW_FLAG_EHANDLER|UNW_FLAG_UHANDLER)) { |
1993 | // The personality is given in the UNWIND_INFO itself. The LSDA immediately |
1994 | // follows the UNWIND_INFO. (This follows how both Clang and MSVC emit |
1995 | // these structures.) |
1996 | // N.B. UNWIND_INFO structs are DWORD-aligned. |
1997 | uint32_t lastcode = (xdata->CountOfCodes + 1) & ~1; |
1998 | const uint32_t *handler = reinterpret_cast<uint32_t *>(&xdata->UnwindCodes[lastcode]); |
1999 | _info.lsda = reinterpret_cast<unw_word_t>(handler+1); |
2000 | _dispContext.HandlerData = reinterpret_cast<void *>(_info.lsda); |
2001 | _dispContext.LanguageHandler = |
2002 | reinterpret_cast<EXCEPTION_ROUTINE *>(base + *handler); |
2003 | if (*handler) { |
2004 | _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality); |
2005 | } else |
2006 | _info.handler = 0; |
2007 | } else { |
2008 | _info.lsda = 0; |
2009 | _info.handler = 0; |
2010 | } |
2011 | } |
2012 | #endif |
2013 | setLastPC(pc); |
2014 | return true; |
2015 | } |
2016 | #endif |
2017 | |
2018 | #if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) |
2019 | // Masks for traceback table field xtbtable. |
2020 | enum xTBTableMask : uint8_t { |
2021 | reservedBit = 0x02, // The traceback table was incorrectly generated if set |
2022 | // (see comments in function getInfoFromTBTable(). |
2023 | ehInfoBit = 0x08 // Exception handling info is present if set |
2024 | }; |
2025 | |
2026 | enum frameType : unw_word_t { |
2027 | frameWithXLEHStateTable = 0, |
2028 | frameWithEHInfo = 1 |
2029 | }; |
2030 | |
2031 | extern "C" { |
2032 | typedef _Unwind_Reason_Code __xlcxx_personality_v0_t(int, _Unwind_Action, |
2033 | uint64_t, |
2034 | _Unwind_Exception *, |
2035 | struct _Unwind_Context *); |
2036 | __attribute__((__weak__)) __xlcxx_personality_v0_t __xlcxx_personality_v0; |
2037 | } |
2038 | |
2039 | static __xlcxx_personality_v0_t *xlcPersonalityV0; |
2040 | static RWMutex xlcPersonalityV0InitLock; |
2041 | |
2042 | template <typename A, typename R> |
2043 | bool UnwindCursor<A, R>::getInfoFromTBTable(pint_t pc, R ®isters) { |
2044 | uint32_t *p = reinterpret_cast<uint32_t *>(pc); |
2045 | |
2046 | // Keep looking forward until a word of 0 is found. The traceback |
2047 | // table starts at the following word. |
2048 | while (*p) |
2049 | ++p; |
2050 | tbtable *TBTable = reinterpret_cast<tbtable *>(p + 1); |
2051 | |
2052 | if (_LIBUNWIND_TRACING_UNWINDING) { |
2053 | char functionBuf[512]; |
2054 | const char *functionName = functionBuf; |
2055 | unw_word_t offset; |
2056 | if (!getFunctionName(functionBuf, sizeof(functionBuf), &offset)) { |
2057 | functionName = ".anonymous." ; |
2058 | } |
2059 | _LIBUNWIND_TRACE_UNWINDING("%s: Look up traceback table of func=%s at %p" , |
2060 | __func__, functionName, |
2061 | reinterpret_cast<void *>(TBTable)); |
2062 | } |
2063 | |
2064 | // If the traceback table does not contain necessary info, bypass this frame. |
2065 | if (!TBTable->tb.has_tboff) |
2066 | return false; |
2067 | |
2068 | // Structure tbtable_ext contains important data we are looking for. |
2069 | p = reinterpret_cast<uint32_t *>(&TBTable->tb_ext); |
2070 | |
2071 | // Skip field parminfo if it exists. |
2072 | if (TBTable->tb.fixedparms || TBTable->tb.floatparms) |
2073 | ++p; |
2074 | |
2075 | // p now points to tb_offset, the offset from start of function to TB table. |
2076 | unw_word_t start_ip = |
2077 | reinterpret_cast<unw_word_t>(TBTable) - *p - sizeof(uint32_t); |
2078 | unw_word_t end_ip = reinterpret_cast<unw_word_t>(TBTable); |
2079 | ++p; |
2080 | |
2081 | _LIBUNWIND_TRACE_UNWINDING("start_ip=%p, end_ip=%p\n" , |
2082 | reinterpret_cast<void *>(start_ip), |
2083 | reinterpret_cast<void *>(end_ip)); |
2084 | |
2085 | // Skip field hand_mask if it exists. |
2086 | if (TBTable->tb.int_hndl) |
2087 | ++p; |
2088 | |
2089 | unw_word_t lsda = 0; |
2090 | unw_word_t handler = 0; |
2091 | unw_word_t flags = frameType::frameWithXLEHStateTable; |
2092 | |
2093 | if (TBTable->tb.lang == TB_CPLUSPLUS && TBTable->tb.has_ctl) { |
2094 | // State table info is available. The ctl_info field indicates the |
2095 | // number of CTL anchors. There should be only one entry for the C++ |
2096 | // state table. |
2097 | assert(*p == 1 && "libunwind: there must be only one ctl_info entry" ); |
2098 | ++p; |
2099 | // p points to the offset of the state table into the stack. |
2100 | pint_t stateTableOffset = *p++; |
2101 | |
2102 | int framePointerReg; |
2103 | |
2104 | // Skip fields name_len and name if exist. |
2105 | if (TBTable->tb.name_present) { |
2106 | const uint16_t name_len = *(reinterpret_cast<uint16_t *>(p)); |
2107 | p = reinterpret_cast<uint32_t *>(reinterpret_cast<char *>(p) + name_len + |
2108 | sizeof(uint16_t)); |
2109 | } |
2110 | |
2111 | if (TBTable->tb.uses_alloca) |
2112 | framePointerReg = *(reinterpret_cast<char *>(p)); |
2113 | else |
2114 | framePointerReg = 1; // default frame pointer == SP |
2115 | |
2116 | _LIBUNWIND_TRACE_UNWINDING( |
2117 | "framePointerReg=%d, framePointer=%p, " |
2118 | "stateTableOffset=%#lx\n" , |
2119 | framePointerReg, |
2120 | reinterpret_cast<void *>(_registers.getRegister(framePointerReg)), |
2121 | stateTableOffset); |
2122 | lsda = _registers.getRegister(framePointerReg) + stateTableOffset; |
2123 | |
2124 | // Since the traceback table generated by the legacy XLC++ does not |
2125 | // provide the location of the personality for the state table, |
2126 | // function __xlcxx_personality_v0(), which is the personality for the state |
2127 | // table and is exported from libc++abi, is directly assigned as the |
2128 | // handler here. When a legacy XLC++ frame is encountered, the symbol |
2129 | // is resolved dynamically using dlopen() to avoid hard dependency from |
2130 | // libunwind on libc++abi. |
2131 | |
2132 | // Resolve the function pointer to the state table personality if it has |
2133 | // not already. |
2134 | if (xlcPersonalityV0 == NULL) { |
2135 | xlcPersonalityV0InitLock.lock(); |
2136 | if (xlcPersonalityV0 == NULL) { |
2137 | // If libc++abi is statically linked in, symbol __xlcxx_personality_v0 |
2138 | // has been resolved at the link time. |
2139 | xlcPersonalityV0 = &__xlcxx_personality_v0; |
2140 | if (xlcPersonalityV0 == NULL) { |
2141 | // libc++abi is dynamically linked. Resolve __xlcxx_personality_v0 |
2142 | // using dlopen(). |
2143 | const char libcxxabi[] = "libc++abi.a(libc++abi.so.1)" ; |
2144 | void *libHandle; |
2145 | // The AIX dlopen() sets errno to 0 when it is successful, which |
2146 | // clobbers the value of errno from the user code. This is an AIX |
2147 | // bug because according to POSIX it should not set errno to 0. To |
2148 | // workaround before AIX fixes the bug, errno is saved and restored. |
2149 | int saveErrno = errno; |
2150 | libHandle = dlopen(libcxxabi, RTLD_MEMBER | RTLD_NOW); |
2151 | if (libHandle == NULL) { |
2152 | _LIBUNWIND_TRACE_UNWINDING("dlopen() failed with errno=%d\n" , |
2153 | errno); |
2154 | assert(0 && "dlopen() failed" ); |
2155 | } |
2156 | xlcPersonalityV0 = reinterpret_cast<__xlcxx_personality_v0_t *>( |
2157 | dlsym(libHandle, "__xlcxx_personality_v0" )); |
2158 | if (xlcPersonalityV0 == NULL) { |
2159 | _LIBUNWIND_TRACE_UNWINDING("dlsym() failed with errno=%d\n" , errno); |
2160 | assert(0 && "dlsym() failed" ); |
2161 | } |
2162 | dlclose(libHandle); |
2163 | errno = saveErrno; |
2164 | } |
2165 | } |
2166 | xlcPersonalityV0InitLock.unlock(); |
2167 | } |
2168 | handler = reinterpret_cast<unw_word_t>(xlcPersonalityV0); |
2169 | _LIBUNWIND_TRACE_UNWINDING("State table: LSDA=%p, Personality=%p\n" , |
2170 | reinterpret_cast<void *>(lsda), |
2171 | reinterpret_cast<void *>(handler)); |
2172 | } else if (TBTable->tb.longtbtable) { |
2173 | // This frame has the traceback table extension. Possible cases are |
2174 | // 1) a C++ frame that has the 'eh_info' structure; 2) a C++ frame that |
2175 | // is not EH aware; or, 3) a frame of other languages. We need to figure out |
2176 | // if the traceback table extension contains the 'eh_info' structure. |
2177 | // |
2178 | // We also need to deal with the complexity arising from some XL compiler |
2179 | // versions use the wrong ordering of 'longtbtable' and 'has_vec' bits |
2180 | // where the 'longtbtable' bit is meant to be the 'has_vec' bit and vice |
2181 | // versa. For frames of code generated by those compilers, the 'longtbtable' |
2182 | // bit may be set but there isn't really a traceback table extension. |
2183 | // |
2184 | // In </usr/include/sys/debug.h>, there is the following definition of |
2185 | // 'struct tbtable_ext'. It is not really a structure but a dummy to |
2186 | // collect the description of optional parts of the traceback table. |
2187 | // |
2188 | // struct tbtable_ext { |
2189 | // ... |
2190 | // char alloca_reg; /* Register for alloca automatic storage */ |
2191 | // struct vec_ext vec_ext; /* Vector extension (if has_vec is set) */ |
2192 | // unsigned char xtbtable; /* More tbtable fields, if longtbtable is set*/ |
2193 | // }; |
2194 | // |
2195 | // Depending on how the 'has_vec'/'longtbtable' bit is interpreted, the data |
2196 | // following 'alloca_reg' can be treated either as 'struct vec_ext' or |
2197 | // 'unsigned char xtbtable'. 'xtbtable' bits are defined in |
2198 | // </usr/include/sys/debug.h> as flags. The 7th bit '0x02' is currently |
2199 | // unused and should not be set. 'struct vec_ext' is defined in |
2200 | // </usr/include/sys/debug.h> as follows: |
2201 | // |
2202 | // struct vec_ext { |
2203 | // unsigned vr_saved:6; /* Number of non-volatile vector regs saved |
2204 | // */ |
2205 | // /* first register saved is assumed to be */ |
2206 | // /* 32 - vr_saved */ |
2207 | // unsigned saves_vrsave:1; /* Set if vrsave is saved on the stack */ |
2208 | // unsigned has_varargs:1; |
2209 | // ... |
2210 | // }; |
2211 | // |
2212 | // Here, the 7th bit is used as 'saves_vrsave'. To determine whether it |
2213 | // is 'struct vec_ext' or 'xtbtable' that follows 'alloca_reg', |
2214 | // we checks if the 7th bit is set or not because 'xtbtable' should |
2215 | // never have the 7th bit set. The 7th bit of 'xtbtable' will be reserved |
2216 | // in the future to make sure the mitigation works. This mitigation |
2217 | // is not 100% bullet proof because 'struct vec_ext' may not always have |
2218 | // 'saves_vrsave' bit set. |
2219 | // |
2220 | // 'reservedBit' is defined in enum 'xTBTableMask' above as the mask for |
2221 | // checking the 7th bit. |
2222 | |
2223 | // p points to field name len. |
2224 | uint8_t *charPtr = reinterpret_cast<uint8_t *>(p); |
2225 | |
2226 | // Skip fields name_len and name if they exist. |
2227 | if (TBTable->tb.name_present) { |
2228 | const uint16_t name_len = *(reinterpret_cast<uint16_t *>(charPtr)); |
2229 | charPtr = charPtr + name_len + sizeof(uint16_t); |
2230 | } |
2231 | |
2232 | // Skip field alloc_reg if it exists. |
2233 | if (TBTable->tb.uses_alloca) |
2234 | ++charPtr; |
2235 | |
2236 | // Check traceback table bit has_vec. Skip struct vec_ext if it exists. |
2237 | if (TBTable->tb.has_vec) |
2238 | // Note struct vec_ext does exist at this point because whether the |
2239 | // ordering of longtbtable and has_vec bits is correct or not, both |
2240 | // are set. |
2241 | charPtr += sizeof(struct vec_ext); |
2242 | |
2243 | // charPtr points to field 'xtbtable'. Check if the EH info is available. |
2244 | // Also check if the reserved bit of the extended traceback table field |
2245 | // 'xtbtable' is set. If it is, the traceback table was incorrectly |
2246 | // generated by an XL compiler that uses the wrong ordering of 'longtbtable' |
2247 | // and 'has_vec' bits and this is in fact 'struct vec_ext'. So skip the |
2248 | // frame. |
2249 | if ((*charPtr & xTBTableMask::ehInfoBit) && |
2250 | !(*charPtr & xTBTableMask::reservedBit)) { |
2251 | // Mark this frame has the new EH info. |
2252 | flags = frameType::frameWithEHInfo; |
2253 | |
2254 | // eh_info is available. |
2255 | charPtr++; |
2256 | // The pointer is 4-byte aligned. |
2257 | if (reinterpret_cast<uintptr_t>(charPtr) % 4) |
2258 | charPtr += 4 - reinterpret_cast<uintptr_t>(charPtr) % 4; |
2259 | uintptr_t *ehInfo = |
2260 | reinterpret_cast<uintptr_t *>(*(reinterpret_cast<uintptr_t *>( |
2261 | registers.getRegister(2) + |
2262 | *(reinterpret_cast<uintptr_t *>(charPtr))))); |
2263 | |
2264 | // ehInfo points to structure en_info. The first member is version. |
2265 | // Only version 0 is currently supported. |
2266 | assert(*(reinterpret_cast<uint32_t *>(ehInfo)) == 0 && |
2267 | "libunwind: ehInfo version other than 0 is not supported" ); |
2268 | |
2269 | // Increment ehInfo to point to member lsda. |
2270 | ++ehInfo; |
2271 | lsda = *ehInfo++; |
2272 | |
2273 | // enInfo now points to member personality. |
2274 | handler = *ehInfo; |
2275 | |
2276 | _LIBUNWIND_TRACE_UNWINDING("Range table: LSDA=%#lx, Personality=%#lx\n" , |
2277 | lsda, handler); |
2278 | } |
2279 | } |
2280 | |
2281 | _info.start_ip = start_ip; |
2282 | _info.end_ip = end_ip; |
2283 | _info.lsda = lsda; |
2284 | _info.handler = handler; |
2285 | _info.gp = 0; |
2286 | _info.flags = flags; |
2287 | _info.format = 0; |
2288 | _info.unwind_info = reinterpret_cast<unw_word_t>(TBTable); |
2289 | _info.unwind_info_size = 0; |
2290 | _info.extra = registers.getRegister(2); |
2291 | |
2292 | return true; |
2293 | } |
2294 | |
2295 | // Step back up the stack following the frame back link. |
2296 | template <typename A, typename R> |
2297 | int UnwindCursor<A, R>::stepWithTBTable(pint_t pc, tbtable *TBTable, |
2298 | R ®isters, bool &isSignalFrame) { |
2299 | if (_LIBUNWIND_TRACING_UNWINDING) { |
2300 | char functionBuf[512]; |
2301 | const char *functionName = functionBuf; |
2302 | unw_word_t offset; |
2303 | if (!getFunctionName(functionBuf, sizeof(functionBuf), &offset)) { |
2304 | functionName = ".anonymous." ; |
2305 | } |
2306 | _LIBUNWIND_TRACE_UNWINDING( |
2307 | "%s: Look up traceback table of func=%s at %p, pc=%p, " |
2308 | "SP=%p, saves_lr=%d, stores_bc=%d" , |
2309 | __func__, functionName, reinterpret_cast<void *>(TBTable), |
2310 | reinterpret_cast<void *>(pc), |
2311 | reinterpret_cast<void *>(registers.getSP()), TBTable->tb.saves_lr, |
2312 | TBTable->tb.stores_bc); |
2313 | } |
2314 | |
2315 | #if defined(__powerpc64__) |
2316 | // Instruction to reload TOC register "ld r2,40(r1)" |
2317 | const uint32_t loadTOCRegInst = 0xe8410028; |
2318 | const int32_t unwPPCF0Index = UNW_PPC64_F0; |
2319 | const int32_t unwPPCV0Index = UNW_PPC64_V0; |
2320 | #else |
2321 | // Instruction to reload TOC register "lwz r2,20(r1)" |
2322 | const uint32_t loadTOCRegInst = 0x80410014; |
2323 | const int32_t unwPPCF0Index = UNW_PPC_F0; |
2324 | const int32_t unwPPCV0Index = UNW_PPC_V0; |
2325 | #endif |
2326 | |
2327 | // lastStack points to the stack frame of the next routine up. |
2328 | pint_t curStack = static_cast<pint_t>(registers.getSP()); |
2329 | pint_t lastStack = *reinterpret_cast<pint_t *>(curStack); |
2330 | |
2331 | if (lastStack == 0) |
2332 | return UNW_STEP_END; |
2333 | |
2334 | R newRegisters = registers; |
2335 | |
2336 | // If backchain is not stored, use the current stack frame. |
2337 | if (!TBTable->tb.stores_bc) |
2338 | lastStack = curStack; |
2339 | |
2340 | // Return address is the address after call site instruction. |
2341 | pint_t returnAddress; |
2342 | |
2343 | if (isSignalFrame) { |
2344 | _LIBUNWIND_TRACE_UNWINDING("Possible signal handler frame: lastStack=%p" , |
2345 | reinterpret_cast<void *>(lastStack)); |
2346 | |
2347 | sigcontext *sigContext = reinterpret_cast<sigcontext *>( |
2348 | reinterpret_cast<char *>(lastStack) + STKMINALIGN); |
2349 | returnAddress = sigContext->sc_jmpbuf.jmp_context.iar; |
2350 | |
2351 | bool useSTKMIN = false; |
2352 | if (returnAddress < 0x10000000) { |
2353 | // Try again using STKMIN. |
2354 | sigContext = reinterpret_cast<sigcontext *>( |
2355 | reinterpret_cast<char *>(lastStack) + STKMIN); |
2356 | returnAddress = sigContext->sc_jmpbuf.jmp_context.iar; |
2357 | if (returnAddress < 0x10000000) { |
2358 | _LIBUNWIND_TRACE_UNWINDING("Bad returnAddress=%p from sigcontext=%p" , |
2359 | reinterpret_cast<void *>(returnAddress), |
2360 | reinterpret_cast<void *>(sigContext)); |
2361 | return UNW_EBADFRAME; |
2362 | } |
2363 | useSTKMIN = true; |
2364 | } |
2365 | _LIBUNWIND_TRACE_UNWINDING("Returning from a signal handler %s: " |
2366 | "sigContext=%p, returnAddress=%p. " |
2367 | "Seems to be a valid address" , |
2368 | useSTKMIN ? "STKMIN" : "STKMINALIGN" , |
2369 | reinterpret_cast<void *>(sigContext), |
2370 | reinterpret_cast<void *>(returnAddress)); |
2371 | |
2372 | // Restore the condition register from sigcontext. |
2373 | newRegisters.setCR(sigContext->sc_jmpbuf.jmp_context.cr); |
2374 | |
2375 | // Save the LR in sigcontext for stepping up when the function that |
2376 | // raised the signal is a leaf function. This LR has the return address |
2377 | // to the caller of the leaf function. |
2378 | newRegisters.setLR(sigContext->sc_jmpbuf.jmp_context.lr); |
2379 | _LIBUNWIND_TRACE_UNWINDING( |
2380 | "Save LR=%p from sigcontext" , |
2381 | reinterpret_cast<void *>(sigContext->sc_jmpbuf.jmp_context.lr)); |
2382 | |
2383 | // Restore GPRs from sigcontext. |
2384 | for (int i = 0; i < 32; ++i) |
2385 | newRegisters.setRegister(i, sigContext->sc_jmpbuf.jmp_context.gpr[i]); |
2386 | |
2387 | // Restore FPRs from sigcontext. |
2388 | for (int i = 0; i < 32; ++i) |
2389 | newRegisters.setFloatRegister(i + unwPPCF0Index, |
2390 | sigContext->sc_jmpbuf.jmp_context.fpr[i]); |
2391 | |
2392 | // Restore vector registers if there is an associated extended context |
2393 | // structure. |
2394 | if (sigContext->sc_jmpbuf.jmp_context.msr & __EXTCTX) { |
2395 | ucontext_t *uContext = reinterpret_cast<ucontext_t *>(sigContext); |
2396 | if (uContext->__extctx->__extctx_magic == __EXTCTX_MAGIC) { |
2397 | for (int i = 0; i < 32; ++i) |
2398 | newRegisters.setVectorRegister( |
2399 | i + unwPPCV0Index, *(reinterpret_cast<v128 *>( |
2400 | &(uContext->__extctx->__vmx.__vr[i])))); |
2401 | } |
2402 | } |
2403 | } else { |
2404 | // Step up a normal frame. |
2405 | |
2406 | if (!TBTable->tb.saves_lr && registers.getLR()) { |
2407 | // This case should only occur if we were called from a signal handler |
2408 | // and the signal occurred in a function that doesn't save the LR. |
2409 | returnAddress = static_cast<pint_t>(registers.getLR()); |
2410 | _LIBUNWIND_TRACE_UNWINDING("Use saved LR=%p" , |
2411 | reinterpret_cast<void *>(returnAddress)); |
2412 | } else { |
2413 | // Otherwise, use the LR value in the stack link area. |
2414 | returnAddress = reinterpret_cast<pint_t *>(lastStack)[2]; |
2415 | } |
2416 | |
2417 | // Reset LR in the current context. |
2418 | newRegisters.setLR(static_cast<uintptr_t>(NULL)); |
2419 | |
2420 | _LIBUNWIND_TRACE_UNWINDING( |
2421 | "Extract info from lastStack=%p, returnAddress=%p" , |
2422 | reinterpret_cast<void *>(lastStack), |
2423 | reinterpret_cast<void *>(returnAddress)); |
2424 | _LIBUNWIND_TRACE_UNWINDING("fpr_regs=%d, gpr_regs=%d, saves_cr=%d" , |
2425 | TBTable->tb.fpr_saved, TBTable->tb.gpr_saved, |
2426 | TBTable->tb.saves_cr); |
2427 | |
2428 | // Restore FP registers. |
2429 | char *ptrToRegs = reinterpret_cast<char *>(lastStack); |
2430 | double *FPRegs = reinterpret_cast<double *>( |
2431 | ptrToRegs - (TBTable->tb.fpr_saved * sizeof(double))); |
2432 | for (int i = 0; i < TBTable->tb.fpr_saved; ++i) |
2433 | newRegisters.setFloatRegister( |
2434 | 32 - TBTable->tb.fpr_saved + i + unwPPCF0Index, FPRegs[i]); |
2435 | |
2436 | // Restore GP registers. |
2437 | ptrToRegs = reinterpret_cast<char *>(FPRegs); |
2438 | uintptr_t *GPRegs = reinterpret_cast<uintptr_t *>( |
2439 | ptrToRegs - (TBTable->tb.gpr_saved * sizeof(uintptr_t))); |
2440 | for (int i = 0; i < TBTable->tb.gpr_saved; ++i) |
2441 | newRegisters.setRegister(32 - TBTable->tb.gpr_saved + i, GPRegs[i]); |
2442 | |
2443 | // Restore Vector registers. |
2444 | ptrToRegs = reinterpret_cast<char *>(GPRegs); |
2445 | |
2446 | // Restore vector registers only if this is a Clang frame. Also |
2447 | // check if traceback table bit has_vec is set. If it is, structure |
2448 | // vec_ext is available. |
2449 | if (_info.flags == frameType::frameWithEHInfo && TBTable->tb.has_vec) { |
2450 | |
2451 | // Get to the vec_ext structure to check if vector registers are saved. |
2452 | uint32_t *p = reinterpret_cast<uint32_t *>(&TBTable->tb_ext); |
2453 | |
2454 | // Skip field parminfo if exists. |
2455 | if (TBTable->tb.fixedparms || TBTable->tb.floatparms) |
2456 | ++p; |
2457 | |
2458 | // Skip field tb_offset if exists. |
2459 | if (TBTable->tb.has_tboff) |
2460 | ++p; |
2461 | |
2462 | // Skip field hand_mask if exists. |
2463 | if (TBTable->tb.int_hndl) |
2464 | ++p; |
2465 | |
2466 | // Skip fields ctl_info and ctl_info_disp if exist. |
2467 | if (TBTable->tb.has_ctl) { |
2468 | // Skip field ctl_info. |
2469 | ++p; |
2470 | // Skip field ctl_info_disp. |
2471 | ++p; |
2472 | } |
2473 | |
2474 | // Skip fields name_len and name if exist. |
2475 | // p is supposed to point to field name_len now. |
2476 | uint8_t *charPtr = reinterpret_cast<uint8_t *>(p); |
2477 | if (TBTable->tb.name_present) { |
2478 | const uint16_t name_len = *(reinterpret_cast<uint16_t *>(charPtr)); |
2479 | charPtr = charPtr + name_len + sizeof(uint16_t); |
2480 | } |
2481 | |
2482 | // Skip field alloc_reg if it exists. |
2483 | if (TBTable->tb.uses_alloca) |
2484 | ++charPtr; |
2485 | |
2486 | struct vec_ext *vec_ext = reinterpret_cast<struct vec_ext *>(charPtr); |
2487 | |
2488 | _LIBUNWIND_TRACE_UNWINDING("vr_saved=%d" , vec_ext->vr_saved); |
2489 | |
2490 | // Restore vector register(s) if saved on the stack. |
2491 | if (vec_ext->vr_saved) { |
2492 | // Saved vector registers are 16-byte aligned. |
2493 | if (reinterpret_cast<uintptr_t>(ptrToRegs) % 16) |
2494 | ptrToRegs -= reinterpret_cast<uintptr_t>(ptrToRegs) % 16; |
2495 | v128 *VecRegs = reinterpret_cast<v128 *>(ptrToRegs - vec_ext->vr_saved * |
2496 | sizeof(v128)); |
2497 | for (int i = 0; i < vec_ext->vr_saved; ++i) { |
2498 | newRegisters.setVectorRegister( |
2499 | 32 - vec_ext->vr_saved + i + unwPPCV0Index, VecRegs[i]); |
2500 | } |
2501 | } |
2502 | } |
2503 | if (TBTable->tb.saves_cr) { |
2504 | // Get the saved condition register. The condition register is only |
2505 | // a single word. |
2506 | newRegisters.setCR( |
2507 | *(reinterpret_cast<uint32_t *>(lastStack + sizeof(uintptr_t)))); |
2508 | } |
2509 | |
2510 | // Restore the SP. |
2511 | newRegisters.setSP(lastStack); |
2512 | |
2513 | // The first instruction after return. |
2514 | uint32_t firstInstruction = *(reinterpret_cast<uint32_t *>(returnAddress)); |
2515 | |
2516 | // Do we need to set the TOC register? |
2517 | _LIBUNWIND_TRACE_UNWINDING( |
2518 | "Current gpr2=%p" , |
2519 | reinterpret_cast<void *>(newRegisters.getRegister(2))); |
2520 | if (firstInstruction == loadTOCRegInst) { |
2521 | _LIBUNWIND_TRACE_UNWINDING( |
2522 | "Set gpr2=%p from frame" , |
2523 | reinterpret_cast<void *>(reinterpret_cast<pint_t *>(lastStack)[5])); |
2524 | newRegisters.setRegister(2, reinterpret_cast<pint_t *>(lastStack)[5]); |
2525 | } |
2526 | } |
2527 | _LIBUNWIND_TRACE_UNWINDING("lastStack=%p, returnAddress=%p, pc=%p\n" , |
2528 | reinterpret_cast<void *>(lastStack), |
2529 | reinterpret_cast<void *>(returnAddress), |
2530 | reinterpret_cast<void *>(pc)); |
2531 | |
2532 | // The return address is the address after call site instruction, so |
2533 | // setting IP to that simulates a return. |
2534 | newRegisters.setIP(reinterpret_cast<uintptr_t>(returnAddress)); |
2535 | |
2536 | // Simulate the step by replacing the register set with the new ones. |
2537 | registers = newRegisters; |
2538 | |
2539 | // Check if the next frame is a signal frame. |
2540 | pint_t nextStack = *(reinterpret_cast<pint_t *>(registers.getSP())); |
2541 | |
2542 | // Return address is the address after call site instruction. |
2543 | pint_t nextReturnAddress = reinterpret_cast<pint_t *>(nextStack)[2]; |
2544 | |
2545 | if (nextReturnAddress > 0x01 && nextReturnAddress < 0x10000) { |
2546 | _LIBUNWIND_TRACE_UNWINDING("The next is a signal handler frame: " |
2547 | "nextStack=%p, next return address=%p\n" , |
2548 | reinterpret_cast<void *>(nextStack), |
2549 | reinterpret_cast<void *>(nextReturnAddress)); |
2550 | isSignalFrame = true; |
2551 | } else { |
2552 | isSignalFrame = false; |
2553 | } |
2554 | return UNW_STEP_SUCCESS; |
2555 | } |
2556 | #endif // defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) |
2557 | |
2558 | template <typename A, typename R> |
2559 | void UnwindCursor<A, R>::setInfoBasedOnIPRegister(bool isReturnAddress) { |
2560 | #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) |
2561 | _isSigReturn = false; |
2562 | #endif |
2563 | |
2564 | pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP)); |
2565 | #if defined(_LIBUNWIND_ARM_EHABI) |
2566 | // Remove the thumb bit so the IP represents the actual instruction address. |
2567 | // This matches the behaviour of _Unwind_GetIP on arm. |
2568 | pc &= (pint_t)~0x1; |
2569 | #endif |
2570 | |
2571 | // Exit early if at the top of the stack. |
2572 | if (pc == 0) { |
2573 | _unwindInfoMissing = true; |
2574 | return; |
2575 | } |
2576 | |
2577 | // If the last line of a function is a "throw" the compiler sometimes |
2578 | // emits no instructions after the call to __cxa_throw. This means |
2579 | // the return address is actually the start of the next function. |
2580 | // To disambiguate this, back up the pc when we know it is a return |
2581 | // address. |
2582 | if (isReturnAddress) |
2583 | #if defined(_AIX) |
2584 | // PC needs to be a 4-byte aligned address to be able to look for a |
2585 | // word of 0 that indicates the start of the traceback table at the end |
2586 | // of a function on AIX. |
2587 | pc -= 4; |
2588 | #else |
2589 | --pc; |
2590 | #endif |
2591 | |
2592 | #if !(defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) && defined(_WIN32)) && \ |
2593 | !defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) |
2594 | // In case of this is frame of signal handler, the IP saved in the signal |
2595 | // handler points to first non-executed instruction, while FDE/CIE expects IP |
2596 | // to be after the first non-executed instruction. |
2597 | if (_isSignalFrame) |
2598 | ++pc; |
2599 | #endif |
2600 | |
2601 | // Ask address space object to find unwind sections for this pc. |
2602 | UnwindInfoSections sects; |
2603 | if (_addressSpace.findUnwindSections(pc, sects)) { |
2604 | #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
2605 | // If there is a compact unwind encoding table, look there first. |
2606 | if (sects.compact_unwind_section != 0) { |
2607 | if (this->getInfoFromCompactEncodingSection(pc, sects)) { |
2608 | #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
2609 | // Found info in table, done unless encoding says to use dwarf. |
2610 | uint32_t dwarfOffset; |
2611 | if ((sects.dwarf_section != 0) && compactSaysUseDwarf(&dwarfOffset)) { |
2612 | if (this->getInfoFromDwarfSection(pc, sects, dwarfOffset)) { |
2613 | // found info in dwarf, done |
2614 | return; |
2615 | } |
2616 | } |
2617 | #endif |
2618 | // If unwind table has entry, but entry says there is no unwind info, |
2619 | // record that we have no unwind info. |
2620 | if (_info.format == 0) |
2621 | _unwindInfoMissing = true; |
2622 | return; |
2623 | } |
2624 | } |
2625 | #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
2626 | |
2627 | #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) |
2628 | // If there is SEH unwind info, look there next. |
2629 | if (this->getInfoFromSEH(pc)) |
2630 | return; |
2631 | #endif |
2632 | |
2633 | #if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) |
2634 | // If there is unwind info in the traceback table, look there next. |
2635 | if (this->getInfoFromTBTable(pc, _registers)) |
2636 | return; |
2637 | #endif |
2638 | |
2639 | #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
2640 | // If there is dwarf unwind info, look there next. |
2641 | if (sects.dwarf_section != 0) { |
2642 | if (this->getInfoFromDwarfSection(pc, sects)) { |
2643 | // found info in dwarf, done |
2644 | return; |
2645 | } |
2646 | } |
2647 | #endif |
2648 | |
2649 | #if defined(_LIBUNWIND_ARM_EHABI) |
2650 | // If there is ARM EHABI unwind info, look there next. |
2651 | if (sects.arm_section != 0 && this->getInfoFromEHABISection(pc, sects)) |
2652 | return; |
2653 | #endif |
2654 | } |
2655 | |
2656 | #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
2657 | // There is no static unwind info for this pc. Look to see if an FDE was |
2658 | // dynamically registered for it. |
2659 | pint_t cachedFDE = DwarfFDECache<A>::findFDE(DwarfFDECache<A>::kSearchAll, |
2660 | pc); |
2661 | if (cachedFDE != 0) { |
2662 | typename CFI_Parser<A>::FDE_Info fdeInfo; |
2663 | typename CFI_Parser<A>::CIE_Info cieInfo; |
2664 | if (!CFI_Parser<A>::decodeFDE(_addressSpace, cachedFDE, &fdeInfo, &cieInfo)) |
2665 | if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, dso_base: 0)) |
2666 | return; |
2667 | } |
2668 | |
2669 | // Lastly, ask AddressSpace object about platform specific ways to locate |
2670 | // other FDEs. |
2671 | pint_t fde; |
2672 | if (_addressSpace.findOtherFDE(pc, fde)) { |
2673 | typename CFI_Parser<A>::FDE_Info fdeInfo; |
2674 | typename CFI_Parser<A>::CIE_Info cieInfo; |
2675 | if (!CFI_Parser<A>::decodeFDE(_addressSpace, fde, &fdeInfo, &cieInfo)) { |
2676 | // Double check this FDE is for a function that includes the pc. |
2677 | if ((fdeInfo.pcStart <= pc) && (pc < fdeInfo.pcEnd)) |
2678 | if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, dso_base: 0)) |
2679 | return; |
2680 | } |
2681 | } |
2682 | #endif // #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
2683 | |
2684 | #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) |
2685 | if (setInfoForSigReturn()) |
2686 | return; |
2687 | #endif |
2688 | |
2689 | // no unwind info, flag that we can't reliably unwind |
2690 | _unwindInfoMissing = true; |
2691 | } |
2692 | |
2693 | #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && \ |
2694 | defined(_LIBUNWIND_TARGET_AARCH64) |
2695 | template <typename A, typename R> |
2696 | bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_arm64 &) { |
2697 | // Look for the sigreturn trampoline. The trampoline's body is two |
2698 | // specific instructions (see below). Typically the trampoline comes from the |
2699 | // vDSO[1] (i.e. the __kernel_rt_sigreturn function). A libc might provide its |
2700 | // own restorer function, though, or user-mode QEMU might write a trampoline |
2701 | // onto the stack. |
2702 | // |
2703 | // This special code path is a fallback that is only used if the trampoline |
2704 | // lacks proper (e.g. DWARF) unwind info. On AArch64, a new DWARF register |
2705 | // constant for the PC needs to be defined before DWARF can handle a signal |
2706 | // trampoline. This code may segfault if the target PC is unreadable, e.g.: |
2707 | // - The PC points at a function compiled without unwind info, and which is |
2708 | // part of an execute-only mapping (e.g. using -Wl,--execute-only). |
2709 | // - The PC is invalid and happens to point to unreadable or unmapped memory. |
2710 | // |
2711 | // [1] https://github.com/torvalds/linux/blob/master/arch/arm64/kernel/vdso/sigreturn.S |
2712 | const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP)); |
2713 | // The PC might contain an invalid address if the unwind info is bad, so |
2714 | // directly accessing it could cause a SIGSEGV. |
2715 | if (!isReadableAddr(pc)) |
2716 | return false; |
2717 | auto *instructions = reinterpret_cast<const uint32_t *>(pc); |
2718 | // Look for instructions: mov x8, #0x8b; svc #0x0 |
2719 | if (instructions[0] != 0xd2801168 || instructions[1] != 0xd4000001) |
2720 | return false; |
2721 | |
2722 | _info = {}; |
2723 | _info.start_ip = pc; |
2724 | _info.end_ip = pc + 4; |
2725 | _isSigReturn = true; |
2726 | return true; |
2727 | } |
2728 | |
2729 | template <typename A, typename R> |
2730 | int UnwindCursor<A, R>::stepThroughSigReturn(Registers_arm64 &) { |
2731 | // In the signal trampoline frame, sp points to an rt_sigframe[1], which is: |
2732 | // - 128-byte siginfo struct |
2733 | // - ucontext struct: |
2734 | // - 8-byte long (uc_flags) |
2735 | // - 8-byte pointer (uc_link) |
2736 | // - 24-byte stack_t |
2737 | // - 128-byte signal set |
2738 | // - 8 bytes of padding because sigcontext has 16-byte alignment |
2739 | // - sigcontext/mcontext_t |
2740 | // [1] https://github.com/torvalds/linux/blob/master/arch/arm64/kernel/signal.c |
2741 | const pint_t kOffsetSpToSigcontext = (128 + 8 + 8 + 24 + 128 + 8); // 304 |
2742 | |
2743 | // Offsets from sigcontext to each register. |
2744 | const pint_t kOffsetGprs = 8; // offset to "__u64 regs[31]" field |
2745 | const pint_t kOffsetSp = 256; // offset to "__u64 sp" field |
2746 | const pint_t kOffsetPc = 264; // offset to "__u64 pc" field |
2747 | |
2748 | pint_t sigctx = _registers.getSP() + kOffsetSpToSigcontext; |
2749 | |
2750 | for (int i = 0; i <= 30; ++i) { |
2751 | uint64_t value = _addressSpace.get64(sigctx + kOffsetGprs + |
2752 | static_cast<pint_t>(i * 8)); |
2753 | _registers.setRegister(UNW_AARCH64_X0 + i, value); |
2754 | } |
2755 | _registers.setSP(_addressSpace.get64(sigctx + kOffsetSp)); |
2756 | _registers.setIP(_addressSpace.get64(sigctx + kOffsetPc)); |
2757 | _isSignalFrame = true; |
2758 | return UNW_STEP_SUCCESS; |
2759 | } |
2760 | #endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && |
2761 | // defined(_LIBUNWIND_TARGET_AARCH64) |
2762 | |
2763 | #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && \ |
2764 | defined(_LIBUNWIND_TARGET_RISCV) |
2765 | template <typename A, typename R> |
2766 | bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_riscv &) { |
2767 | const pint_t pc = static_cast<pint_t>(getReg(UNW_REG_IP)); |
2768 | // The PC might contain an invalid address if the unwind info is bad, so |
2769 | // directly accessing it could cause a SIGSEGV. |
2770 | if (!isReadableAddr(pc)) |
2771 | return false; |
2772 | const auto *instructions = reinterpret_cast<const uint32_t *>(pc); |
2773 | // Look for the two instructions used in the sigreturn trampoline |
2774 | // __vdso_rt_sigreturn: |
2775 | // |
2776 | // 0x08b00893 li a7,0x8b |
2777 | // 0x00000073 ecall |
2778 | if (instructions[0] != 0x08b00893 || instructions[1] != 0x00000073) |
2779 | return false; |
2780 | |
2781 | _info = {}; |
2782 | _info.start_ip = pc; |
2783 | _info.end_ip = pc + 4; |
2784 | _isSigReturn = true; |
2785 | return true; |
2786 | } |
2787 | |
2788 | template <typename A, typename R> |
2789 | int UnwindCursor<A, R>::stepThroughSigReturn(Registers_riscv &) { |
2790 | // In the signal trampoline frame, sp points to an rt_sigframe[1], which is: |
2791 | // - 128-byte siginfo struct |
2792 | // - ucontext_t struct: |
2793 | // - 8-byte long (__uc_flags) |
2794 | // - 8-byte pointer (*uc_link) |
2795 | // - 24-byte uc_stack |
2796 | // - 8-byte uc_sigmask |
2797 | // - 120-byte of padding to allow sigset_t to be expanded in the future |
2798 | // - 8 bytes of padding because sigcontext has 16-byte alignment |
2799 | // - struct sigcontext uc_mcontext |
2800 | // [1] |
2801 | // https://github.com/torvalds/linux/blob/master/arch/riscv/kernel/signal.c |
2802 | const pint_t kOffsetSpToSigcontext = 128 + 8 + 8 + 24 + 8 + 128; |
2803 | |
2804 | const pint_t sigctx = _registers.getSP() + kOffsetSpToSigcontext; |
2805 | _registers.setIP(_addressSpace.get64(sigctx)); |
2806 | for (int i = UNW_RISCV_X1; i <= UNW_RISCV_X31; ++i) { |
2807 | uint64_t value = _addressSpace.get64(sigctx + static_cast<pint_t>(i * 8)); |
2808 | _registers.setRegister(i, value); |
2809 | } |
2810 | _isSignalFrame = true; |
2811 | return UNW_STEP_SUCCESS; |
2812 | } |
2813 | #endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && |
2814 | // defined(_LIBUNWIND_TARGET_RISCV) |
2815 | |
2816 | #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && \ |
2817 | defined(_LIBUNWIND_TARGET_S390X) |
2818 | template <typename A, typename R> |
2819 | bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_s390x &) { |
2820 | // Look for the sigreturn trampoline. The trampoline's body is a |
2821 | // specific instruction (see below). Typically the trampoline comes from the |
2822 | // vDSO (i.e. the __kernel_[rt_]sigreturn function). A libc might provide its |
2823 | // own restorer function, though, or user-mode QEMU might write a trampoline |
2824 | // onto the stack. |
2825 | const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP)); |
2826 | // The PC might contain an invalid address if the unwind info is bad, so |
2827 | // directly accessing it could cause a SIGSEGV. |
2828 | if (!isReadableAddr(pc)) |
2829 | return false; |
2830 | const auto inst = *reinterpret_cast<const uint16_t *>(pc); |
2831 | if (inst == 0x0a77 || inst == 0x0aad) { |
2832 | _info = {}; |
2833 | _info.start_ip = pc; |
2834 | _info.end_ip = pc + 2; |
2835 | _isSigReturn = true; |
2836 | return true; |
2837 | } |
2838 | return false; |
2839 | } |
2840 | |
2841 | template <typename A, typename R> |
2842 | int UnwindCursor<A, R>::stepThroughSigReturn(Registers_s390x &) { |
2843 | // Determine current SP. |
2844 | const pint_t sp = static_cast<pint_t>(this->getReg(UNW_REG_SP)); |
2845 | // According to the s390x ABI, the CFA is at (incoming) SP + 160. |
2846 | const pint_t cfa = sp + 160; |
2847 | |
2848 | // Determine current PC and instruction there (this must be either |
2849 | // a "svc __NR_sigreturn" or "svc __NR_rt_sigreturn"). |
2850 | const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP)); |
2851 | const uint16_t inst = _addressSpace.get16(pc); |
2852 | |
2853 | // Find the addresses of the signo and sigcontext in the frame. |
2854 | pint_t pSigctx = 0; |
2855 | pint_t pSigno = 0; |
2856 | |
2857 | // "svc __NR_sigreturn" uses a non-RT signal trampoline frame. |
2858 | if (inst == 0x0a77) { |
2859 | // Layout of a non-RT signal trampoline frame, starting at the CFA: |
2860 | // - 8-byte signal mask |
2861 | // - 8-byte pointer to sigcontext, followed by signo |
2862 | // - 4-byte signo |
2863 | pSigctx = _addressSpace.get64(cfa + 8); |
2864 | pSigno = pSigctx + 344; |
2865 | } |
2866 | |
2867 | // "svc __NR_rt_sigreturn" uses a RT signal trampoline frame. |
2868 | if (inst == 0x0aad) { |
2869 | // Layout of a RT signal trampoline frame, starting at the CFA: |
2870 | // - 8-byte retcode (+ alignment) |
2871 | // - 128-byte siginfo struct (starts with signo) |
2872 | // - ucontext struct: |
2873 | // - 8-byte long (uc_flags) |
2874 | // - 8-byte pointer (uc_link) |
2875 | // - 24-byte stack_t |
2876 | // - 8 bytes of padding because sigcontext has 16-byte alignment |
2877 | // - sigcontext/mcontext_t |
2878 | pSigctx = cfa + 8 + 128 + 8 + 8 + 24 + 8; |
2879 | pSigno = cfa + 8; |
2880 | } |
2881 | |
2882 | assert(pSigctx != 0); |
2883 | assert(pSigno != 0); |
2884 | |
2885 | // Offsets from sigcontext to each register. |
2886 | const pint_t kOffsetPc = 8; |
2887 | const pint_t kOffsetGprs = 16; |
2888 | const pint_t kOffsetFprs = 216; |
2889 | |
2890 | // Restore all registers. |
2891 | for (int i = 0; i < 16; ++i) { |
2892 | uint64_t value = _addressSpace.get64(pSigctx + kOffsetGprs + |
2893 | static_cast<pint_t>(i * 8)); |
2894 | _registers.setRegister(UNW_S390X_R0 + i, value); |
2895 | } |
2896 | for (int i = 0; i < 16; ++i) { |
2897 | static const int fpr[16] = { |
2898 | UNW_S390X_F0, UNW_S390X_F1, UNW_S390X_F2, UNW_S390X_F3, |
2899 | UNW_S390X_F4, UNW_S390X_F5, UNW_S390X_F6, UNW_S390X_F7, |
2900 | UNW_S390X_F8, UNW_S390X_F9, UNW_S390X_F10, UNW_S390X_F11, |
2901 | UNW_S390X_F12, UNW_S390X_F13, UNW_S390X_F14, UNW_S390X_F15 |
2902 | }; |
2903 | double value = _addressSpace.getDouble(pSigctx + kOffsetFprs + |
2904 | static_cast<pint_t>(i * 8)); |
2905 | _registers.setFloatRegister(fpr[i], value); |
2906 | } |
2907 | _registers.setIP(_addressSpace.get64(pSigctx + kOffsetPc)); |
2908 | |
2909 | // SIGILL, SIGFPE and SIGTRAP are delivered with psw_addr |
2910 | // after the faulting instruction rather than before it. |
2911 | // Do not set _isSignalFrame in that case. |
2912 | uint32_t signo = _addressSpace.get32(pSigno); |
2913 | _isSignalFrame = (signo != 4 && signo != 5 && signo != 8); |
2914 | |
2915 | return UNW_STEP_SUCCESS; |
2916 | } |
2917 | #endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && |
2918 | // defined(_LIBUNWIND_TARGET_S390X) |
2919 | |
2920 | template <typename A, typename R> int UnwindCursor<A, R>::step(bool stage2) { |
2921 | (void)stage2; |
2922 | // Bottom of stack is defined is when unwind info cannot be found. |
2923 | if (_unwindInfoMissing) |
2924 | return UNW_STEP_END; |
2925 | |
2926 | // Use unwinding info to modify register set as if function returned. |
2927 | int result; |
2928 | #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) |
2929 | if (_isSigReturn) { |
2930 | result = this->stepThroughSigReturn(); |
2931 | } else |
2932 | #endif |
2933 | { |
2934 | #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
2935 | result = this->stepWithCompactEncoding(stage2); |
2936 | #elif defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) |
2937 | result = this->stepWithSEHData(); |
2938 | #elif defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) |
2939 | result = this->stepWithTBTableData(); |
2940 | #elif defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
2941 | result = this->stepWithDwarfFDE(stage2); |
2942 | #elif defined(_LIBUNWIND_ARM_EHABI) |
2943 | result = this->stepWithEHABI(); |
2944 | #else |
2945 | #error Need _LIBUNWIND_SUPPORT_COMPACT_UNWIND or \ |
2946 | _LIBUNWIND_SUPPORT_SEH_UNWIND or \ |
2947 | _LIBUNWIND_SUPPORT_DWARF_UNWIND or \ |
2948 | _LIBUNWIND_ARM_EHABI |
2949 | #endif |
2950 | } |
2951 | |
2952 | // update info based on new PC |
2953 | if (result == UNW_STEP_SUCCESS) { |
2954 | this->setInfoBasedOnIPRegister(true); |
2955 | if (_unwindInfoMissing) |
2956 | return UNW_STEP_END; |
2957 | } |
2958 | |
2959 | return result; |
2960 | } |
2961 | |
2962 | template <typename A, typename R> |
2963 | void UnwindCursor<A, R>::getInfo(unw_proc_info_t *info) { |
2964 | if (_unwindInfoMissing) |
2965 | memset(s: info, c: 0, n: sizeof(*info)); |
2966 | else |
2967 | *info = _info; |
2968 | } |
2969 | |
2970 | template <typename A, typename R> |
2971 | bool UnwindCursor<A, R>::getFunctionName(char *buf, size_t bufLen, |
2972 | unw_word_t *offset) { |
2973 | return _addressSpace.findFunctionName((pint_t)this->getReg(UNW_REG_IP), |
2974 | buf, bufLen, offset); |
2975 | } |
2976 | |
2977 | #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) |
2978 | template <typename A, typename R> |
2979 | bool UnwindCursor<A, R>::isReadableAddr(const pint_t addr) const { |
2980 | // We use SYS_rt_sigprocmask, inspired by Abseil's AddressIsReadable. |
2981 | |
2982 | const auto sigsetAddr = reinterpret_cast<sigset_t *>(addr); |
2983 | // We have to check that addr is nullptr because sigprocmask allows that |
2984 | // as an argument without failure. |
2985 | if (!sigsetAddr) |
2986 | return false; |
2987 | const auto saveErrno = errno; |
2988 | // We MUST use a raw syscall here, as wrappers may try to access |
2989 | // sigsetAddr which may cause a SIGSEGV. A raw syscall however is |
2990 | // safe. Additionally, we need to pass the kernel_sigset_size, which is |
2991 | // different from libc sizeof(sigset_t). For the majority of architectures, |
2992 | // it's 64 bits (_NSIG), and libc NSIG is _NSIG + 1. |
2993 | const auto kernelSigsetSize = NSIG / 8; |
2994 | [[maybe_unused]] const int Result = syscall( |
2995 | SYS_rt_sigprocmask, /*how=*/~0, sigsetAddr, nullptr, kernelSigsetSize); |
2996 | // Because our "how" is invalid, this syscall should always fail, and our |
2997 | // errno should always be EINVAL or an EFAULT. This relies on the Linux |
2998 | // kernel to check copy_from_user before checking if the "how" argument is |
2999 | // invalid. |
3000 | assert(Result == -1); |
3001 | assert(errno == EFAULT || errno == EINVAL); |
3002 | const auto readable = errno != EFAULT; |
3003 | errno = saveErrno; |
3004 | return readable; |
3005 | } |
3006 | #endif |
3007 | |
3008 | #if defined(_LIBUNWIND_USE_CET) || defined(_LIBUNWIND_USE_GCS) |
3009 | extern "C" void *__libunwind_cet_get_registers(unw_cursor_t *cursor) { |
3010 | AbstractUnwindCursor *co = (AbstractUnwindCursor *)cursor; |
3011 | return co->get_registers(); |
3012 | } |
3013 | #endif |
3014 | } // namespace libunwind |
3015 | |
3016 | #endif // __UNWINDCURSOR_HPP__ |
3017 | |