1 | // random number generation (out of line) -*- C++ -*- |
2 | |
3 | // Copyright (C) 2009-2024 Free Software Foundation, Inc. |
4 | // |
5 | // This file is part of the GNU ISO C++ Library. This library is free |
6 | // software; you can redistribute it and/or modify it under the |
7 | // terms of the GNU General Public License as published by the |
8 | // Free Software Foundation; either version 3, or (at your option) |
9 | // any later version. |
10 | |
11 | // This library is distributed in the hope that it will be useful, |
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | // GNU General Public License for more details. |
15 | |
16 | // Under Section 7 of GPL version 3, you are granted additional |
17 | // permissions described in the GCC Runtime Library Exception, version |
18 | // 3.1, as published by the Free Software Foundation. |
19 | |
20 | // You should have received a copy of the GNU General Public License and |
21 | // a copy of the GCC Runtime Library Exception along with this program; |
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
23 | // <http://www.gnu.org/licenses/>. |
24 | |
25 | /** @file bits/random.tcc |
26 | * This is an internal header file, included by other library headers. |
27 | * Do not attempt to use it directly. @headername{random} |
28 | */ |
29 | |
30 | #ifndef _RANDOM_TCC |
31 | #define _RANDOM_TCC 1 |
32 | |
33 | #include <numeric> // std::accumulate and std::partial_sum |
34 | |
35 | namespace std _GLIBCXX_VISIBILITY(default) |
36 | { |
37 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
38 | |
39 | /// @cond undocumented |
40 | // (Further) implementation-space details. |
41 | namespace __detail |
42 | { |
43 | // General case for x = (ax + c) mod m -- use Schrage's algorithm |
44 | // to avoid integer overflow. |
45 | // |
46 | // Preconditions: a > 0, m > 0. |
47 | // |
48 | // Note: only works correctly for __m % __a < __m / __a. |
49 | template<typename _Tp, _Tp __m, _Tp __a, _Tp __c> |
50 | _Tp |
51 | _Mod<_Tp, __m, __a, __c, false, true>:: |
52 | __calc(_Tp __x) |
53 | { |
54 | if (__a == 1) |
55 | __x %= __m; |
56 | else |
57 | { |
58 | static const _Tp __q = __m / __a; |
59 | static const _Tp __r = __m % __a; |
60 | |
61 | _Tp __t1 = __a * (__x % __q); |
62 | _Tp __t2 = __r * (__x / __q); |
63 | if (__t1 >= __t2) |
64 | __x = __t1 - __t2; |
65 | else |
66 | __x = __m - __t2 + __t1; |
67 | } |
68 | |
69 | if (__c != 0) |
70 | { |
71 | const _Tp __d = __m - __x; |
72 | if (__d > __c) |
73 | __x += __c; |
74 | else |
75 | __x = __c - __d; |
76 | } |
77 | return __x; |
78 | } |
79 | |
80 | template<typename _InputIterator, typename _OutputIterator, |
81 | typename _Tp> |
82 | _OutputIterator |
83 | __normalize(_InputIterator __first, _InputIterator __last, |
84 | _OutputIterator __result, const _Tp& __factor) |
85 | { |
86 | for (; __first != __last; ++__first, ++__result) |
87 | *__result = *__first / __factor; |
88 | return __result; |
89 | } |
90 | |
91 | } // namespace __detail |
92 | /// @endcond |
93 | |
94 | #if ! __cpp_inline_variables |
95 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
96 | constexpr _UIntType |
97 | linear_congruential_engine<_UIntType, __a, __c, __m>::multiplier; |
98 | |
99 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
100 | constexpr _UIntType |
101 | linear_congruential_engine<_UIntType, __a, __c, __m>::increment; |
102 | |
103 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
104 | constexpr _UIntType |
105 | linear_congruential_engine<_UIntType, __a, __c, __m>::modulus; |
106 | |
107 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
108 | constexpr _UIntType |
109 | linear_congruential_engine<_UIntType, __a, __c, __m>::default_seed; |
110 | #endif |
111 | |
112 | /** |
113 | * Seeds the LCR with integral value @p __s, adjusted so that the |
114 | * ring identity is never a member of the convergence set. |
115 | */ |
116 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
117 | void |
118 | linear_congruential_engine<_UIntType, __a, __c, __m>:: |
119 | seed(result_type __s) |
120 | { |
121 | if ((__detail::__mod<_UIntType, __m>(__c) == 0) |
122 | && (__detail::__mod<_UIntType, __m>(__s) == 0)) |
123 | _M_x = 1; |
124 | else |
125 | _M_x = __detail::__mod<_UIntType, __m>(__s); |
126 | } |
127 | |
128 | /** |
129 | * Seeds the LCR engine with a value generated by @p __q. |
130 | */ |
131 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
132 | template<typename _Sseq> |
133 | auto |
134 | linear_congruential_engine<_UIntType, __a, __c, __m>:: |
135 | seed(_Sseq& __q) |
136 | -> _If_seed_seq<_Sseq> |
137 | { |
138 | const _UIntType __k0 = __m == 0 ? std::numeric_limits<_UIntType>::digits |
139 | : std::__lg(__m); |
140 | const _UIntType __k = (__k0 + 31) / 32; |
141 | uint_least32_t __arr[__k + 3]; |
142 | __q.generate(__arr + 0, __arr + __k + 3); |
143 | _UIntType __factor = 1u; |
144 | _UIntType __sum = 0u; |
145 | for (size_t __j = 0; __j < __k; ++__j) |
146 | { |
147 | __sum += __arr[__j + 3] * __factor; |
148 | __factor *= __detail::_Shift<_UIntType, 32>::__value; |
149 | } |
150 | seed(__sum); |
151 | } |
152 | |
153 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m, |
154 | typename _CharT, typename _Traits> |
155 | std::basic_ostream<_CharT, _Traits>& |
156 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
157 | const linear_congruential_engine<_UIntType, |
158 | __a, __c, __m>& __lcr) |
159 | { |
160 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
161 | |
162 | const typename __ios_base::fmtflags __flags = __os.flags(); |
163 | const _CharT __fill = __os.fill(); |
164 | __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
165 | __os.fill(__os.widen(' ')); |
166 | |
167 | __os << __lcr._M_x; |
168 | |
169 | __os.flags(__flags); |
170 | __os.fill(__fill); |
171 | return __os; |
172 | } |
173 | |
174 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m, |
175 | typename _CharT, typename _Traits> |
176 | std::basic_istream<_CharT, _Traits>& |
177 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
178 | linear_congruential_engine<_UIntType, __a, __c, __m>& __lcr) |
179 | { |
180 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
181 | |
182 | const typename __ios_base::fmtflags __flags = __is.flags(); |
183 | __is.flags(__ios_base::dec); |
184 | |
185 | __is >> __lcr._M_x; |
186 | |
187 | __is.flags(__flags); |
188 | return __is; |
189 | } |
190 | |
191 | #if ! __cpp_inline_variables |
192 | template<typename _UIntType, |
193 | size_t __w, size_t __n, size_t __m, size_t __r, |
194 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
195 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
196 | _UIntType __f> |
197 | constexpr size_t |
198 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
199 | __s, __b, __t, __c, __l, __f>::word_size; |
200 | |
201 | template<typename _UIntType, |
202 | size_t __w, size_t __n, size_t __m, size_t __r, |
203 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
204 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
205 | _UIntType __f> |
206 | constexpr size_t |
207 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
208 | __s, __b, __t, __c, __l, __f>::state_size; |
209 | |
210 | template<typename _UIntType, |
211 | size_t __w, size_t __n, size_t __m, size_t __r, |
212 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
213 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
214 | _UIntType __f> |
215 | constexpr size_t |
216 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
217 | __s, __b, __t, __c, __l, __f>::shift_size; |
218 | |
219 | template<typename _UIntType, |
220 | size_t __w, size_t __n, size_t __m, size_t __r, |
221 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
222 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
223 | _UIntType __f> |
224 | constexpr size_t |
225 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
226 | __s, __b, __t, __c, __l, __f>::mask_bits; |
227 | |
228 | template<typename _UIntType, |
229 | size_t __w, size_t __n, size_t __m, size_t __r, |
230 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
231 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
232 | _UIntType __f> |
233 | constexpr _UIntType |
234 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
235 | __s, __b, __t, __c, __l, __f>::xor_mask; |
236 | |
237 | template<typename _UIntType, |
238 | size_t __w, size_t __n, size_t __m, size_t __r, |
239 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
240 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
241 | _UIntType __f> |
242 | constexpr size_t |
243 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
244 | __s, __b, __t, __c, __l, __f>::tempering_u; |
245 | |
246 | template<typename _UIntType, |
247 | size_t __w, size_t __n, size_t __m, size_t __r, |
248 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
249 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
250 | _UIntType __f> |
251 | constexpr _UIntType |
252 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
253 | __s, __b, __t, __c, __l, __f>::tempering_d; |
254 | |
255 | template<typename _UIntType, |
256 | size_t __w, size_t __n, size_t __m, size_t __r, |
257 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
258 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
259 | _UIntType __f> |
260 | constexpr size_t |
261 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
262 | __s, __b, __t, __c, __l, __f>::tempering_s; |
263 | |
264 | template<typename _UIntType, |
265 | size_t __w, size_t __n, size_t __m, size_t __r, |
266 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
267 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
268 | _UIntType __f> |
269 | constexpr _UIntType |
270 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
271 | __s, __b, __t, __c, __l, __f>::tempering_b; |
272 | |
273 | template<typename _UIntType, |
274 | size_t __w, size_t __n, size_t __m, size_t __r, |
275 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
276 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
277 | _UIntType __f> |
278 | constexpr size_t |
279 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
280 | __s, __b, __t, __c, __l, __f>::tempering_t; |
281 | |
282 | template<typename _UIntType, |
283 | size_t __w, size_t __n, size_t __m, size_t __r, |
284 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
285 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
286 | _UIntType __f> |
287 | constexpr _UIntType |
288 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
289 | __s, __b, __t, __c, __l, __f>::tempering_c; |
290 | |
291 | template<typename _UIntType, |
292 | size_t __w, size_t __n, size_t __m, size_t __r, |
293 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
294 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
295 | _UIntType __f> |
296 | constexpr size_t |
297 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
298 | __s, __b, __t, __c, __l, __f>::tempering_l; |
299 | |
300 | template<typename _UIntType, |
301 | size_t __w, size_t __n, size_t __m, size_t __r, |
302 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
303 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
304 | _UIntType __f> |
305 | constexpr _UIntType |
306 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
307 | __s, __b, __t, __c, __l, __f>:: |
308 | initialization_multiplier; |
309 | |
310 | template<typename _UIntType, |
311 | size_t __w, size_t __n, size_t __m, size_t __r, |
312 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
313 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
314 | _UIntType __f> |
315 | constexpr _UIntType |
316 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
317 | __s, __b, __t, __c, __l, __f>::default_seed; |
318 | #endif |
319 | |
320 | template<typename _UIntType, |
321 | size_t __w, size_t __n, size_t __m, size_t __r, |
322 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
323 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
324 | _UIntType __f> |
325 | void |
326 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
327 | __s, __b, __t, __c, __l, __f>:: |
328 | seed(result_type __sd) |
329 | { |
330 | _M_x[0] = __detail::__mod<_UIntType, |
331 | __detail::_Shift<_UIntType, __w>::__value>(__sd); |
332 | |
333 | for (size_t __i = 1; __i < state_size; ++__i) |
334 | { |
335 | _UIntType __x = _M_x[__i - 1]; |
336 | __x ^= __x >> (__w - 2); |
337 | __x *= __f; |
338 | __x += __detail::__mod<_UIntType, __n>(__i); |
339 | _M_x[__i] = __detail::__mod<_UIntType, |
340 | __detail::_Shift<_UIntType, __w>::__value>(__x); |
341 | } |
342 | _M_p = state_size; |
343 | } |
344 | |
345 | template<typename _UIntType, |
346 | size_t __w, size_t __n, size_t __m, size_t __r, |
347 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
348 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
349 | _UIntType __f> |
350 | template<typename _Sseq> |
351 | auto |
352 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
353 | __s, __b, __t, __c, __l, __f>:: |
354 | seed(_Sseq& __q) |
355 | -> _If_seed_seq<_Sseq> |
356 | { |
357 | const _UIntType __upper_mask = (~_UIntType()) << __r; |
358 | const size_t __k = (__w + 31) / 32; |
359 | uint_least32_t __arr[__n * __k]; |
360 | __q.generate(__arr + 0, __arr + __n * __k); |
361 | |
362 | bool __zero = true; |
363 | for (size_t __i = 0; __i < state_size; ++__i) |
364 | { |
365 | _UIntType __factor = 1u; |
366 | _UIntType __sum = 0u; |
367 | for (size_t __j = 0; __j < __k; ++__j) |
368 | { |
369 | __sum += __arr[__k * __i + __j] * __factor; |
370 | __factor *= __detail::_Shift<_UIntType, 32>::__value; |
371 | } |
372 | _M_x[__i] = __detail::__mod<_UIntType, |
373 | __detail::_Shift<_UIntType, __w>::__value>(__sum); |
374 | |
375 | if (__zero) |
376 | { |
377 | if (__i == 0) |
378 | { |
379 | if ((_M_x[0] & __upper_mask) != 0u) |
380 | __zero = false; |
381 | } |
382 | else if (_M_x[__i] != 0u) |
383 | __zero = false; |
384 | } |
385 | } |
386 | if (__zero) |
387 | _M_x[0] = __detail::_Shift<_UIntType, __w - 1>::__value; |
388 | _M_p = state_size; |
389 | } |
390 | |
391 | template<typename _UIntType, size_t __w, |
392 | size_t __n, size_t __m, size_t __r, |
393 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
394 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
395 | _UIntType __f> |
396 | void |
397 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
398 | __s, __b, __t, __c, __l, __f>:: |
399 | _M_gen_rand(void) |
400 | { |
401 | const _UIntType __upper_mask = (~_UIntType()) << __r; |
402 | const _UIntType __lower_mask = ~__upper_mask; |
403 | |
404 | for (size_t __k = 0; __k < (__n - __m); ++__k) |
405 | { |
406 | _UIntType __y = ((_M_x[__k] & __upper_mask) |
407 | | (_M_x[__k + 1] & __lower_mask)); |
408 | _M_x[__k] = (_M_x[__k + __m] ^ (__y >> 1) |
409 | ^ ((__y & 0x01) ? __a : 0)); |
410 | } |
411 | |
412 | for (size_t __k = (__n - __m); __k < (__n - 1); ++__k) |
413 | { |
414 | _UIntType __y = ((_M_x[__k] & __upper_mask) |
415 | | (_M_x[__k + 1] & __lower_mask)); |
416 | _M_x[__k] = (_M_x[__k + (__m - __n)] ^ (__y >> 1) |
417 | ^ ((__y & 0x01) ? __a : 0)); |
418 | } |
419 | |
420 | _UIntType __y = ((_M_x[__n - 1] & __upper_mask) |
421 | | (_M_x[0] & __lower_mask)); |
422 | _M_x[__n - 1] = (_M_x[__m - 1] ^ (__y >> 1) |
423 | ^ ((__y & 0x01) ? __a : 0)); |
424 | _M_p = 0; |
425 | } |
426 | |
427 | template<typename _UIntType, size_t __w, |
428 | size_t __n, size_t __m, size_t __r, |
429 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
430 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
431 | _UIntType __f> |
432 | void |
433 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
434 | __s, __b, __t, __c, __l, __f>:: |
435 | discard(unsigned long long __z) |
436 | { |
437 | while (__z > state_size - _M_p) |
438 | { |
439 | __z -= state_size - _M_p; |
440 | _M_gen_rand(); |
441 | } |
442 | _M_p += __z; |
443 | } |
444 | |
445 | template<typename _UIntType, size_t __w, |
446 | size_t __n, size_t __m, size_t __r, |
447 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
448 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
449 | _UIntType __f> |
450 | typename |
451 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
452 | __s, __b, __t, __c, __l, __f>::result_type |
453 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
454 | __s, __b, __t, __c, __l, __f>:: |
455 | operator()() |
456 | { |
457 | // Reload the vector - cost is O(n) amortized over n calls. |
458 | if (_M_p >= state_size) |
459 | _M_gen_rand(); |
460 | |
461 | // Calculate o(x(i)). |
462 | result_type __z = _M_x[_M_p++]; |
463 | __z ^= (__z >> __u) & __d; |
464 | __z ^= (__z << __s) & __b; |
465 | __z ^= (__z << __t) & __c; |
466 | __z ^= (__z >> __l); |
467 | |
468 | return __z; |
469 | } |
470 | |
471 | template<typename _UIntType, size_t __w, |
472 | size_t __n, size_t __m, size_t __r, |
473 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
474 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
475 | _UIntType __f, typename _CharT, typename _Traits> |
476 | std::basic_ostream<_CharT, _Traits>& |
477 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
478 | const mersenne_twister_engine<_UIntType, __w, __n, __m, |
479 | __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x) |
480 | { |
481 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
482 | |
483 | const typename __ios_base::fmtflags __flags = __os.flags(); |
484 | const _CharT __fill = __os.fill(); |
485 | const _CharT __space = __os.widen(' '); |
486 | __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
487 | __os.fill(__space); |
488 | |
489 | for (size_t __i = 0; __i < __n; ++__i) |
490 | __os << __x._M_x[__i] << __space; |
491 | __os << __x._M_p; |
492 | |
493 | __os.flags(__flags); |
494 | __os.fill(__fill); |
495 | return __os; |
496 | } |
497 | |
498 | template<typename _UIntType, size_t __w, |
499 | size_t __n, size_t __m, size_t __r, |
500 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
501 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
502 | _UIntType __f, typename _CharT, typename _Traits> |
503 | std::basic_istream<_CharT, _Traits>& |
504 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
505 | mersenne_twister_engine<_UIntType, __w, __n, __m, |
506 | __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x) |
507 | { |
508 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
509 | |
510 | const typename __ios_base::fmtflags __flags = __is.flags(); |
511 | __is.flags(__ios_base::dec | __ios_base::skipws); |
512 | |
513 | for (size_t __i = 0; __i < __n; ++__i) |
514 | __is >> __x._M_x[__i]; |
515 | __is >> __x._M_p; |
516 | |
517 | __is.flags(__flags); |
518 | return __is; |
519 | } |
520 | |
521 | #if ! __cpp_inline_variables |
522 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
523 | constexpr size_t |
524 | subtract_with_carry_engine<_UIntType, __w, __s, __r>::word_size; |
525 | |
526 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
527 | constexpr size_t |
528 | subtract_with_carry_engine<_UIntType, __w, __s, __r>::short_lag; |
529 | |
530 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
531 | constexpr size_t |
532 | subtract_with_carry_engine<_UIntType, __w, __s, __r>::long_lag; |
533 | |
534 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
535 | constexpr uint_least32_t |
536 | subtract_with_carry_engine<_UIntType, __w, __s, __r>::default_seed; |
537 | #endif |
538 | |
539 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
540 | void |
541 | subtract_with_carry_engine<_UIntType, __w, __s, __r>:: |
542 | seed(result_type __value) |
543 | { |
544 | // _GLIBCXX_RESOLVE_LIB_DEFECTS |
545 | // 3809. Is std::subtract_with_carry_engine<uint16_t> supposed to work? |
546 | // 4014. LWG 3809 changes behavior of some existing code |
547 | std::linear_congruential_engine<uint_least32_t, 40014u, 0u, 2147483563u> |
548 | __lcg(__value == 0u ? default_seed : __value % 2147483563u); |
549 | |
550 | const size_t __n = (__w + 31) / 32; |
551 | |
552 | for (size_t __i = 0; __i < long_lag; ++__i) |
553 | { |
554 | _UIntType __sum = 0u; |
555 | _UIntType __factor = 1u; |
556 | for (size_t __j = 0; __j < __n; ++__j) |
557 | { |
558 | __sum += __detail::__mod<uint_least32_t, |
559 | __detail::_Shift<uint_least32_t, 32>::__value> |
560 | (x: __lcg()) * __factor; |
561 | __factor *= __detail::_Shift<_UIntType, 32>::__value; |
562 | } |
563 | _M_x[__i] = __detail::__mod<_UIntType, |
564 | __detail::_Shift<_UIntType, __w>::__value>(__sum); |
565 | } |
566 | _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0; |
567 | _M_p = 0; |
568 | } |
569 | |
570 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
571 | template<typename _Sseq> |
572 | auto |
573 | subtract_with_carry_engine<_UIntType, __w, __s, __r>:: |
574 | seed(_Sseq& __q) |
575 | -> _If_seed_seq<_Sseq> |
576 | { |
577 | const size_t __k = (__w + 31) / 32; |
578 | uint_least32_t __arr[__r * __k]; |
579 | __q.generate(__arr + 0, __arr + __r * __k); |
580 | |
581 | for (size_t __i = 0; __i < long_lag; ++__i) |
582 | { |
583 | _UIntType __sum = 0u; |
584 | _UIntType __factor = 1u; |
585 | for (size_t __j = 0; __j < __k; ++__j) |
586 | { |
587 | __sum += __arr[__k * __i + __j] * __factor; |
588 | __factor *= __detail::_Shift<_UIntType, 32>::__value; |
589 | } |
590 | _M_x[__i] = __detail::__mod<_UIntType, |
591 | __detail::_Shift<_UIntType, __w>::__value>(__sum); |
592 | } |
593 | _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0; |
594 | _M_p = 0; |
595 | } |
596 | |
597 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
598 | typename subtract_with_carry_engine<_UIntType, __w, __s, __r>:: |
599 | result_type |
600 | subtract_with_carry_engine<_UIntType, __w, __s, __r>:: |
601 | operator()() |
602 | { |
603 | // Derive short lag index from current index. |
604 | long __ps = _M_p - short_lag; |
605 | if (__ps < 0) |
606 | __ps += long_lag; |
607 | |
608 | // Calculate new x(i) without overflow or division. |
609 | // NB: Thanks to the requirements for _UIntType, _M_x[_M_p] + _M_carry |
610 | // cannot overflow. |
611 | _UIntType __xi; |
612 | if (_M_x[__ps] >= _M_x[_M_p] + _M_carry) |
613 | { |
614 | __xi = _M_x[__ps] - _M_x[_M_p] - _M_carry; |
615 | _M_carry = 0; |
616 | } |
617 | else |
618 | { |
619 | __xi = (__detail::_Shift<_UIntType, __w>::__value |
620 | - _M_x[_M_p] - _M_carry + _M_x[__ps]); |
621 | _M_carry = 1; |
622 | } |
623 | _M_x[_M_p] = __xi; |
624 | |
625 | // Adjust current index to loop around in ring buffer. |
626 | if (++_M_p >= long_lag) |
627 | _M_p = 0; |
628 | |
629 | return __xi; |
630 | } |
631 | |
632 | template<typename _UIntType, size_t __w, size_t __s, size_t __r, |
633 | typename _CharT, typename _Traits> |
634 | std::basic_ostream<_CharT, _Traits>& |
635 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
636 | const subtract_with_carry_engine<_UIntType, |
637 | __w, __s, __r>& __x) |
638 | { |
639 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
640 | |
641 | const typename __ios_base::fmtflags __flags = __os.flags(); |
642 | const _CharT __fill = __os.fill(); |
643 | const _CharT __space = __os.widen(' '); |
644 | __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
645 | __os.fill(__space); |
646 | |
647 | for (size_t __i = 0; __i < __r; ++__i) |
648 | __os << __x._M_x[__i] << __space; |
649 | __os << __x._M_carry << __space << __x._M_p; |
650 | |
651 | __os.flags(__flags); |
652 | __os.fill(__fill); |
653 | return __os; |
654 | } |
655 | |
656 | template<typename _UIntType, size_t __w, size_t __s, size_t __r, |
657 | typename _CharT, typename _Traits> |
658 | std::basic_istream<_CharT, _Traits>& |
659 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
660 | subtract_with_carry_engine<_UIntType, __w, __s, __r>& __x) |
661 | { |
662 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
663 | |
664 | const typename __ios_base::fmtflags __flags = __is.flags(); |
665 | __is.flags(__ios_base::dec | __ios_base::skipws); |
666 | |
667 | for (size_t __i = 0; __i < __r; ++__i) |
668 | __is >> __x._M_x[__i]; |
669 | __is >> __x._M_carry; |
670 | __is >> __x._M_p; |
671 | |
672 | __is.flags(__flags); |
673 | return __is; |
674 | } |
675 | |
676 | #if ! __cpp_inline_variables |
677 | template<typename _RandomNumberEngine, size_t __p, size_t __r> |
678 | constexpr size_t |
679 | discard_block_engine<_RandomNumberEngine, __p, __r>::block_size; |
680 | |
681 | template<typename _RandomNumberEngine, size_t __p, size_t __r> |
682 | constexpr size_t |
683 | discard_block_engine<_RandomNumberEngine, __p, __r>::used_block; |
684 | #endif |
685 | |
686 | template<typename _RandomNumberEngine, size_t __p, size_t __r> |
687 | typename discard_block_engine<_RandomNumberEngine, |
688 | __p, __r>::result_type |
689 | discard_block_engine<_RandomNumberEngine, __p, __r>:: |
690 | operator()() |
691 | { |
692 | if (_M_n >= used_block) |
693 | { |
694 | _M_b.discard(block_size - _M_n); |
695 | _M_n = 0; |
696 | } |
697 | ++_M_n; |
698 | return _M_b(); |
699 | } |
700 | |
701 | template<typename _RandomNumberEngine, size_t __p, size_t __r, |
702 | typename _CharT, typename _Traits> |
703 | std::basic_ostream<_CharT, _Traits>& |
704 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
705 | const discard_block_engine<_RandomNumberEngine, |
706 | __p, __r>& __x) |
707 | { |
708 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
709 | |
710 | const typename __ios_base::fmtflags __flags = __os.flags(); |
711 | const _CharT __fill = __os.fill(); |
712 | const _CharT __space = __os.widen(' '); |
713 | __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
714 | __os.fill(__space); |
715 | |
716 | __os << __x.base() << __space << __x._M_n; |
717 | |
718 | __os.flags(__flags); |
719 | __os.fill(__fill); |
720 | return __os; |
721 | } |
722 | |
723 | template<typename _RandomNumberEngine, size_t __p, size_t __r, |
724 | typename _CharT, typename _Traits> |
725 | std::basic_istream<_CharT, _Traits>& |
726 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
727 | discard_block_engine<_RandomNumberEngine, __p, __r>& __x) |
728 | { |
729 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
730 | |
731 | const typename __ios_base::fmtflags __flags = __is.flags(); |
732 | __is.flags(__ios_base::dec | __ios_base::skipws); |
733 | |
734 | __is >> __x._M_b >> __x._M_n; |
735 | |
736 | __is.flags(__flags); |
737 | return __is; |
738 | } |
739 | |
740 | |
741 | template<typename _RandomNumberEngine, size_t __w, typename _UIntType> |
742 | typename independent_bits_engine<_RandomNumberEngine, __w, _UIntType>:: |
743 | result_type |
744 | independent_bits_engine<_RandomNumberEngine, __w, _UIntType>:: |
745 | operator()() |
746 | { |
747 | typedef typename _RandomNumberEngine::result_type _Eresult_type; |
748 | const _Eresult_type __r |
749 | = (_M_b.max() - _M_b.min() < std::numeric_limits<_Eresult_type>::max() |
750 | ? _M_b.max() - _M_b.min() + 1 : 0); |
751 | const unsigned __edig = std::numeric_limits<_Eresult_type>::digits; |
752 | const unsigned __m = __r ? std::__lg(__r) : __edig; |
753 | |
754 | typedef typename std::common_type<_Eresult_type, result_type>::type |
755 | __ctype; |
756 | const unsigned __cdig = std::numeric_limits<__ctype>::digits; |
757 | |
758 | unsigned __n, __n0; |
759 | __ctype __s0, __s1, __y0, __y1; |
760 | |
761 | for (size_t __i = 0; __i < 2; ++__i) |
762 | { |
763 | __n = (__w + __m - 1) / __m + __i; |
764 | __n0 = __n - __w % __n; |
765 | const unsigned __w0 = __w / __n; // __w0 <= __m |
766 | |
767 | __s0 = 0; |
768 | __s1 = 0; |
769 | if (__w0 < __cdig) |
770 | { |
771 | __s0 = __ctype(1) << __w0; |
772 | __s1 = __s0 << 1; |
773 | } |
774 | |
775 | __y0 = 0; |
776 | __y1 = 0; |
777 | if (__r) |
778 | { |
779 | __y0 = __s0 * (__r / __s0); |
780 | if (__s1) |
781 | __y1 = __s1 * (__r / __s1); |
782 | |
783 | if (__r - __y0 <= __y0 / __n) |
784 | break; |
785 | } |
786 | else |
787 | break; |
788 | } |
789 | |
790 | result_type __sum = 0; |
791 | for (size_t __k = 0; __k < __n0; ++__k) |
792 | { |
793 | __ctype __u; |
794 | do |
795 | __u = _M_b() - _M_b.min(); |
796 | while (__y0 && __u >= __y0); |
797 | __sum = __s0 * __sum + (__s0 ? __u % __s0 : __u); |
798 | } |
799 | for (size_t __k = __n0; __k < __n; ++__k) |
800 | { |
801 | __ctype __u; |
802 | do |
803 | __u = _M_b() - _M_b.min(); |
804 | while (__y1 && __u >= __y1); |
805 | __sum = __s1 * __sum + (__s1 ? __u % __s1 : __u); |
806 | } |
807 | return __sum; |
808 | } |
809 | |
810 | #if ! __cpp_inline_variables |
811 | template<typename _RandomNumberEngine, size_t __k> |
812 | constexpr size_t |
813 | shuffle_order_engine<_RandomNumberEngine, __k>::table_size; |
814 | #endif |
815 | |
816 | namespace __detail |
817 | { |
818 | // Determine whether an integer is representable as double. |
819 | template<typename _Tp> |
820 | constexpr bool |
821 | __representable_as_double(_Tp __x) noexcept |
822 | { |
823 | static_assert(numeric_limits<_Tp>::is_integer, "" ); |
824 | static_assert(!numeric_limits<_Tp>::is_signed, "" ); |
825 | // All integers <= 2^53 are representable. |
826 | return (__x <= (1ull << __DBL_MANT_DIG__)) |
827 | // Between 2^53 and 2^54 only even numbers are representable. |
828 | || (!(__x & 1) && __detail::__representable_as_double(__x >> 1)); |
829 | } |
830 | |
831 | // Determine whether x+1 is representable as double. |
832 | template<typename _Tp> |
833 | constexpr bool |
834 | __p1_representable_as_double(_Tp __x) noexcept |
835 | { |
836 | static_assert(numeric_limits<_Tp>::is_integer, "" ); |
837 | static_assert(!numeric_limits<_Tp>::is_signed, "" ); |
838 | return numeric_limits<_Tp>::digits < __DBL_MANT_DIG__ |
839 | || (bool(__x + 1u) // return false if x+1 wraps around to zero |
840 | && __detail::__representable_as_double(__x + 1u)); |
841 | } |
842 | } |
843 | |
844 | template<typename _RandomNumberEngine, size_t __k> |
845 | typename shuffle_order_engine<_RandomNumberEngine, __k>::result_type |
846 | shuffle_order_engine<_RandomNumberEngine, __k>:: |
847 | operator()() |
848 | { |
849 | constexpr result_type __range = max() - min(); |
850 | size_t __j = __k; |
851 | const result_type __y = _M_y - min(); |
852 | // Avoid using slower long double arithmetic if possible. |
853 | if _GLIBCXX17_CONSTEXPR (__detail::__p1_representable_as_double(__range)) |
854 | __j *= __y / (__range + 1.0); |
855 | else |
856 | __j *= __y / (__range + 1.0L); |
857 | _M_y = _M_v[__j]; |
858 | _M_v[__j] = _M_b(); |
859 | |
860 | return _M_y; |
861 | } |
862 | |
863 | template<typename _RandomNumberEngine, size_t __k, |
864 | typename _CharT, typename _Traits> |
865 | std::basic_ostream<_CharT, _Traits>& |
866 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
867 | const shuffle_order_engine<_RandomNumberEngine, __k>& __x) |
868 | { |
869 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
870 | |
871 | const typename __ios_base::fmtflags __flags = __os.flags(); |
872 | const _CharT __fill = __os.fill(); |
873 | const _CharT __space = __os.widen(' '); |
874 | __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
875 | __os.fill(__space); |
876 | |
877 | __os << __x.base(); |
878 | for (size_t __i = 0; __i < __k; ++__i) |
879 | __os << __space << __x._M_v[__i]; |
880 | __os << __space << __x._M_y; |
881 | |
882 | __os.flags(__flags); |
883 | __os.fill(__fill); |
884 | return __os; |
885 | } |
886 | |
887 | template<typename _RandomNumberEngine, size_t __k, |
888 | typename _CharT, typename _Traits> |
889 | std::basic_istream<_CharT, _Traits>& |
890 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
891 | shuffle_order_engine<_RandomNumberEngine, __k>& __x) |
892 | { |
893 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
894 | |
895 | const typename __ios_base::fmtflags __flags = __is.flags(); |
896 | __is.flags(__ios_base::dec | __ios_base::skipws); |
897 | |
898 | __is >> __x._M_b; |
899 | for (size_t __i = 0; __i < __k; ++__i) |
900 | __is >> __x._M_v[__i]; |
901 | __is >> __x._M_y; |
902 | |
903 | __is.flags(__flags); |
904 | return __is; |
905 | } |
906 | |
907 | |
908 | template<typename _IntType, typename _CharT, typename _Traits> |
909 | std::basic_ostream<_CharT, _Traits>& |
910 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
911 | const uniform_int_distribution<_IntType>& __x) |
912 | { |
913 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
914 | |
915 | const typename __ios_base::fmtflags __flags = __os.flags(); |
916 | const _CharT __fill = __os.fill(); |
917 | const _CharT __space = __os.widen(' '); |
918 | __os.flags(__ios_base::scientific | __ios_base::left); |
919 | __os.fill(__space); |
920 | |
921 | __os << __x.a() << __space << __x.b(); |
922 | |
923 | __os.flags(__flags); |
924 | __os.fill(__fill); |
925 | return __os; |
926 | } |
927 | |
928 | template<typename _IntType, typename _CharT, typename _Traits> |
929 | std::basic_istream<_CharT, _Traits>& |
930 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
931 | uniform_int_distribution<_IntType>& __x) |
932 | { |
933 | using param_type |
934 | = typename uniform_int_distribution<_IntType>::param_type; |
935 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
936 | |
937 | const typename __ios_base::fmtflags __flags = __is.flags(); |
938 | __is.flags(__ios_base::dec | __ios_base::skipws); |
939 | |
940 | _IntType __a, __b; |
941 | if (__is >> __a >> __b) |
942 | __x.param(param_type(__a, __b)); |
943 | |
944 | __is.flags(__flags); |
945 | return __is; |
946 | } |
947 | |
948 | |
949 | template<typename _RealType> |
950 | template<typename _ForwardIterator, |
951 | typename _UniformRandomNumberGenerator> |
952 | void |
953 | uniform_real_distribution<_RealType>:: |
954 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
955 | _UniformRandomNumberGenerator& __urng, |
956 | const param_type& __p) |
957 | { |
958 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
959 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
960 | __aurng(__urng); |
961 | auto __range = __p.b() - __p.a(); |
962 | while (__f != __t) |
963 | *__f++ = __aurng() * __range + __p.a(); |
964 | } |
965 | |
966 | template<typename _RealType, typename _CharT, typename _Traits> |
967 | std::basic_ostream<_CharT, _Traits>& |
968 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
969 | const uniform_real_distribution<_RealType>& __x) |
970 | { |
971 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
972 | |
973 | const typename __ios_base::fmtflags __flags = __os.flags(); |
974 | const _CharT __fill = __os.fill(); |
975 | const std::streamsize __precision = __os.precision(); |
976 | const _CharT __space = __os.widen(' '); |
977 | __os.flags(__ios_base::scientific | __ios_base::left); |
978 | __os.fill(__space); |
979 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
980 | |
981 | __os << __x.a() << __space << __x.b(); |
982 | |
983 | __os.flags(__flags); |
984 | __os.fill(__fill); |
985 | __os.precision(__precision); |
986 | return __os; |
987 | } |
988 | |
989 | template<typename _RealType, typename _CharT, typename _Traits> |
990 | std::basic_istream<_CharT, _Traits>& |
991 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
992 | uniform_real_distribution<_RealType>& __x) |
993 | { |
994 | using param_type |
995 | = typename uniform_real_distribution<_RealType>::param_type; |
996 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
997 | |
998 | const typename __ios_base::fmtflags __flags = __is.flags(); |
999 | __is.flags(__ios_base::skipws); |
1000 | |
1001 | _RealType __a, __b; |
1002 | if (__is >> __a >> __b) |
1003 | __x.param(param_type(__a, __b)); |
1004 | |
1005 | __is.flags(__flags); |
1006 | return __is; |
1007 | } |
1008 | |
1009 | |
1010 | template<typename _ForwardIterator, |
1011 | typename _UniformRandomNumberGenerator> |
1012 | void |
1013 | std::bernoulli_distribution:: |
1014 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1015 | _UniformRandomNumberGenerator& __urng, |
1016 | const param_type& __p) |
1017 | { |
1018 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
1019 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
1020 | __aurng(__urng); |
1021 | auto __limit = __p.p() * (__aurng.max() - __aurng.min()); |
1022 | |
1023 | while (__f != __t) |
1024 | *__f++ = (__aurng() - __aurng.min()) < __limit; |
1025 | } |
1026 | |
1027 | template<typename _CharT, typename _Traits> |
1028 | std::basic_ostream<_CharT, _Traits>& |
1029 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1030 | const bernoulli_distribution& __x) |
1031 | { |
1032 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
1033 | |
1034 | const typename __ios_base::fmtflags __flags = __os.flags(); |
1035 | const _CharT __fill = __os.fill(); |
1036 | const std::streamsize __precision = __os.precision(); |
1037 | __os.flags(__ios_base::scientific | __ios_base::left); |
1038 | __os.fill(__os.widen(' ')); |
1039 | __os.precision(std::numeric_limits<double>::max_digits10); |
1040 | |
1041 | __os << __x.p(); |
1042 | |
1043 | __os.flags(__flags); |
1044 | __os.fill(__fill); |
1045 | __os.precision(__precision); |
1046 | return __os; |
1047 | } |
1048 | |
1049 | |
1050 | template<typename _IntType> |
1051 | template<typename _UniformRandomNumberGenerator> |
1052 | typename geometric_distribution<_IntType>::result_type |
1053 | geometric_distribution<_IntType>:: |
1054 | operator()(_UniformRandomNumberGenerator& __urng, |
1055 | const param_type& __param) |
1056 | { |
1057 | // About the epsilon thing see this thread: |
1058 | // http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html |
1059 | const double __naf = |
1060 | (1 - std::numeric_limits<double>::epsilon()) / 2; |
1061 | // The largest _RealType convertible to _IntType. |
1062 | const double __thr = |
1063 | std::numeric_limits<_IntType>::max() + __naf; |
1064 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
1065 | __aurng(__urng); |
1066 | |
1067 | double __cand; |
1068 | do |
1069 | __cand = std::floor(std::log(1.0 - __aurng()) / __param._M_log_1_p); |
1070 | while (__cand >= __thr); |
1071 | |
1072 | return result_type(__cand + __naf); |
1073 | } |
1074 | |
1075 | template<typename _IntType> |
1076 | template<typename _ForwardIterator, |
1077 | typename _UniformRandomNumberGenerator> |
1078 | void |
1079 | geometric_distribution<_IntType>:: |
1080 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1081 | _UniformRandomNumberGenerator& __urng, |
1082 | const param_type& __param) |
1083 | { |
1084 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
1085 | // About the epsilon thing see this thread: |
1086 | // http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html |
1087 | const double __naf = |
1088 | (1 - std::numeric_limits<double>::epsilon()) / 2; |
1089 | // The largest _RealType convertible to _IntType. |
1090 | const double __thr = |
1091 | std::numeric_limits<_IntType>::max() + __naf; |
1092 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
1093 | __aurng(__urng); |
1094 | |
1095 | while (__f != __t) |
1096 | { |
1097 | double __cand; |
1098 | do |
1099 | __cand = std::floor(std::log(1.0 - __aurng()) |
1100 | / __param._M_log_1_p); |
1101 | while (__cand >= __thr); |
1102 | |
1103 | *__f++ = __cand + __naf; |
1104 | } |
1105 | } |
1106 | |
1107 | template<typename _IntType, |
1108 | typename _CharT, typename _Traits> |
1109 | std::basic_ostream<_CharT, _Traits>& |
1110 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1111 | const geometric_distribution<_IntType>& __x) |
1112 | { |
1113 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
1114 | |
1115 | const typename __ios_base::fmtflags __flags = __os.flags(); |
1116 | const _CharT __fill = __os.fill(); |
1117 | const std::streamsize __precision = __os.precision(); |
1118 | __os.flags(__ios_base::scientific | __ios_base::left); |
1119 | __os.fill(__os.widen(' ')); |
1120 | __os.precision(std::numeric_limits<double>::max_digits10); |
1121 | |
1122 | __os << __x.p(); |
1123 | |
1124 | __os.flags(__flags); |
1125 | __os.fill(__fill); |
1126 | __os.precision(__precision); |
1127 | return __os; |
1128 | } |
1129 | |
1130 | template<typename _IntType, |
1131 | typename _CharT, typename _Traits> |
1132 | std::basic_istream<_CharT, _Traits>& |
1133 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1134 | geometric_distribution<_IntType>& __x) |
1135 | { |
1136 | using param_type = typename geometric_distribution<_IntType>::param_type; |
1137 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
1138 | |
1139 | const typename __ios_base::fmtflags __flags = __is.flags(); |
1140 | __is.flags(__ios_base::skipws); |
1141 | |
1142 | double __p; |
1143 | if (__is >> __p) |
1144 | __x.param(param_type(__p)); |
1145 | |
1146 | __is.flags(__flags); |
1147 | return __is; |
1148 | } |
1149 | |
1150 | // This is Leger's algorithm, also in Devroye, Ch. X, Example 1.5. |
1151 | template<typename _IntType> |
1152 | template<typename _UniformRandomNumberGenerator> |
1153 | typename negative_binomial_distribution<_IntType>::result_type |
1154 | negative_binomial_distribution<_IntType>:: |
1155 | operator()(_UniformRandomNumberGenerator& __urng) |
1156 | { |
1157 | const double __y = _M_gd(__urng); |
1158 | |
1159 | // XXX Is the constructor too slow? |
1160 | std::poisson_distribution<result_type> __poisson(__y); |
1161 | return __poisson(__urng); |
1162 | } |
1163 | |
1164 | template<typename _IntType> |
1165 | template<typename _UniformRandomNumberGenerator> |
1166 | typename negative_binomial_distribution<_IntType>::result_type |
1167 | negative_binomial_distribution<_IntType>:: |
1168 | operator()(_UniformRandomNumberGenerator& __urng, |
1169 | const param_type& __p) |
1170 | { |
1171 | typedef typename std::gamma_distribution<double>::param_type |
1172 | param_type; |
1173 | |
1174 | const double __y = |
1175 | _M_gd(__urng, param_type(__p.k(), (1.0 - __p.p()) / __p.p())); |
1176 | |
1177 | std::poisson_distribution<result_type> __poisson(__y); |
1178 | return __poisson(__urng); |
1179 | } |
1180 | |
1181 | template<typename _IntType> |
1182 | template<typename _ForwardIterator, |
1183 | typename _UniformRandomNumberGenerator> |
1184 | void |
1185 | negative_binomial_distribution<_IntType>:: |
1186 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1187 | _UniformRandomNumberGenerator& __urng) |
1188 | { |
1189 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
1190 | while (__f != __t) |
1191 | { |
1192 | const double __y = _M_gd(__urng); |
1193 | |
1194 | // XXX Is the constructor too slow? |
1195 | std::poisson_distribution<result_type> __poisson(__y); |
1196 | *__f++ = __poisson(__urng); |
1197 | } |
1198 | } |
1199 | |
1200 | template<typename _IntType> |
1201 | template<typename _ForwardIterator, |
1202 | typename _UniformRandomNumberGenerator> |
1203 | void |
1204 | negative_binomial_distribution<_IntType>:: |
1205 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1206 | _UniformRandomNumberGenerator& __urng, |
1207 | const param_type& __p) |
1208 | { |
1209 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
1210 | typename std::gamma_distribution<result_type>::param_type |
1211 | __p2(__p.k(), (1.0 - __p.p()) / __p.p()); |
1212 | |
1213 | while (__f != __t) |
1214 | { |
1215 | const double __y = _M_gd(__urng, __p2); |
1216 | |
1217 | std::poisson_distribution<result_type> __poisson(__y); |
1218 | *__f++ = __poisson(__urng); |
1219 | } |
1220 | } |
1221 | |
1222 | template<typename _IntType, typename _CharT, typename _Traits> |
1223 | std::basic_ostream<_CharT, _Traits>& |
1224 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1225 | const negative_binomial_distribution<_IntType>& __x) |
1226 | { |
1227 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
1228 | |
1229 | const typename __ios_base::fmtflags __flags = __os.flags(); |
1230 | const _CharT __fill = __os.fill(); |
1231 | const std::streamsize __precision = __os.precision(); |
1232 | const _CharT __space = __os.widen(' '); |
1233 | __os.flags(__ios_base::scientific | __ios_base::left); |
1234 | __os.fill(__os.widen(' ')); |
1235 | __os.precision(std::numeric_limits<double>::max_digits10); |
1236 | |
1237 | __os << __x.k() << __space << __x.p() |
1238 | << __space << __x._M_gd; |
1239 | |
1240 | __os.flags(__flags); |
1241 | __os.fill(__fill); |
1242 | __os.precision(__precision); |
1243 | return __os; |
1244 | } |
1245 | |
1246 | template<typename _IntType, typename _CharT, typename _Traits> |
1247 | std::basic_istream<_CharT, _Traits>& |
1248 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1249 | negative_binomial_distribution<_IntType>& __x) |
1250 | { |
1251 | using param_type |
1252 | = typename negative_binomial_distribution<_IntType>::param_type; |
1253 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
1254 | |
1255 | const typename __ios_base::fmtflags __flags = __is.flags(); |
1256 | __is.flags(__ios_base::skipws); |
1257 | |
1258 | _IntType __k; |
1259 | double __p; |
1260 | if (__is >> __k >> __p >> __x._M_gd) |
1261 | __x.param(param_type(__k, __p)); |
1262 | |
1263 | __is.flags(__flags); |
1264 | return __is; |
1265 | } |
1266 | |
1267 | |
1268 | template<typename _IntType> |
1269 | void |
1270 | poisson_distribution<_IntType>::param_type:: |
1271 | _M_initialize() |
1272 | { |
1273 | #if _GLIBCXX_USE_C99_MATH_FUNCS |
1274 | if (_M_mean >= 12) |
1275 | { |
1276 | const double __m = std::floor(x: _M_mean); |
1277 | _M_lm_thr = std::log(x: _M_mean); |
1278 | _M_lfm = std::lgamma(__m + 1); |
1279 | _M_sm = std::sqrt(x: __m); |
1280 | |
1281 | const double __pi_4 = 0.7853981633974483096156608458198757L; |
1282 | const double __dx = std::sqrt(x: 2 * __m * std::log(x: 32 * __m |
1283 | / __pi_4)); |
1284 | _M_d = std::round(x: std::max<double>(a: 6.0, b: std::min(a: __m, b: __dx))); |
1285 | const double __cx = 2 * __m + _M_d; |
1286 | _M_scx = std::sqrt(x: __cx / 2); |
1287 | _M_1cx = 1 / __cx; |
1288 | |
1289 | _M_c2b = std::sqrt(x: __pi_4 * __cx) * std::exp(x: _M_1cx); |
1290 | _M_cb = 2 * __cx * std::exp(x: -_M_d * _M_1cx * (1 + _M_d / 2)) |
1291 | / _M_d; |
1292 | } |
1293 | else |
1294 | #endif |
1295 | _M_lm_thr = std::exp(x: -_M_mean); |
1296 | } |
1297 | |
1298 | /** |
1299 | * A rejection algorithm when mean >= 12 and a simple method based |
1300 | * upon the multiplication of uniform random variates otherwise. |
1301 | * NB: The former is available only if _GLIBCXX_USE_C99_MATH_FUNCS |
1302 | * is defined. |
1303 | * |
1304 | * Reference: |
1305 | * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, |
1306 | * New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!). |
1307 | */ |
1308 | template<typename _IntType> |
1309 | template<typename _UniformRandomNumberGenerator> |
1310 | typename poisson_distribution<_IntType>::result_type |
1311 | poisson_distribution<_IntType>:: |
1312 | operator()(_UniformRandomNumberGenerator& __urng, |
1313 | const param_type& __param) |
1314 | { |
1315 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
1316 | __aurng(__urng); |
1317 | #if _GLIBCXX_USE_C99_MATH_FUNCS |
1318 | if (__param.mean() >= 12) |
1319 | { |
1320 | double __x; |
1321 | |
1322 | // See comments above... |
1323 | const double __naf = |
1324 | (1 - std::numeric_limits<double>::epsilon()) / 2; |
1325 | const double __thr = |
1326 | std::numeric_limits<_IntType>::max() + __naf; |
1327 | |
1328 | const double __m = std::floor(__param.mean()); |
1329 | // sqrt(pi / 2) |
1330 | const double __spi_2 = 1.2533141373155002512078826424055226L; |
1331 | const double __c1 = __param._M_sm * __spi_2; |
1332 | const double __c2 = __param._M_c2b + __c1; |
1333 | const double __c3 = __c2 + 1; |
1334 | const double __c4 = __c3 + 1; |
1335 | // 1 / 78 |
1336 | const double __178 = 0.0128205128205128205128205128205128L; |
1337 | // e^(1 / 78) |
1338 | const double __e178 = 1.0129030479320018583185514777512983L; |
1339 | const double __c5 = __c4 + __e178; |
1340 | const double __c = __param._M_cb + __c5; |
1341 | const double __2cx = 2 * (2 * __m + __param._M_d); |
1342 | |
1343 | bool __reject = true; |
1344 | do |
1345 | { |
1346 | const double __u = __c * __aurng(); |
1347 | const double __e = -std::log(1.0 - __aurng()); |
1348 | |
1349 | double __w = 0.0; |
1350 | |
1351 | if (__u <= __c1) |
1352 | { |
1353 | const double __n = _M_nd(__urng); |
1354 | const double __y = -std::abs(x: __n) * __param._M_sm - 1; |
1355 | __x = std::floor(x: __y); |
1356 | __w = -__n * __n / 2; |
1357 | if (__x < -__m) |
1358 | continue; |
1359 | } |
1360 | else if (__u <= __c2) |
1361 | { |
1362 | const double __n = _M_nd(__urng); |
1363 | const double __y = 1 + std::abs(x: __n) * __param._M_scx; |
1364 | __x = std::ceil(x: __y); |
1365 | __w = __y * (2 - __y) * __param._M_1cx; |
1366 | if (__x > __param._M_d) |
1367 | continue; |
1368 | } |
1369 | else if (__u <= __c3) |
1370 | // NB: This case not in the book, nor in the Errata, |
1371 | // but should be ok... |
1372 | __x = -1; |
1373 | else if (__u <= __c4) |
1374 | __x = 0; |
1375 | else if (__u <= __c5) |
1376 | { |
1377 | __x = 1; |
1378 | // Only in the Errata, see libstdc++/83237. |
1379 | __w = __178; |
1380 | } |
1381 | else |
1382 | { |
1383 | const double __v = -std::log(1.0 - __aurng()); |
1384 | const double __y = __param._M_d |
1385 | + __v * __2cx / __param._M_d; |
1386 | __x = std::ceil(x: __y); |
1387 | __w = -__param._M_d * __param._M_1cx * (1 + __y / 2); |
1388 | } |
1389 | |
1390 | __reject = (__w - __e - __x * __param._M_lm_thr |
1391 | > __param._M_lfm - std::lgamma(__x + __m + 1)); |
1392 | |
1393 | __reject |= __x + __m >= __thr; |
1394 | |
1395 | } while (__reject); |
1396 | |
1397 | return result_type(__x + __m + __naf); |
1398 | } |
1399 | else |
1400 | #endif |
1401 | { |
1402 | _IntType __x = 0; |
1403 | double __prod = 1.0; |
1404 | |
1405 | do |
1406 | { |
1407 | __prod *= __aurng(); |
1408 | __x += 1; |
1409 | } |
1410 | while (__prod > __param._M_lm_thr); |
1411 | |
1412 | return __x - 1; |
1413 | } |
1414 | } |
1415 | |
1416 | template<typename _IntType> |
1417 | template<typename _ForwardIterator, |
1418 | typename _UniformRandomNumberGenerator> |
1419 | void |
1420 | poisson_distribution<_IntType>:: |
1421 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1422 | _UniformRandomNumberGenerator& __urng, |
1423 | const param_type& __param) |
1424 | { |
1425 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
1426 | // We could duplicate everything from operator()... |
1427 | while (__f != __t) |
1428 | *__f++ = this->operator()(__urng, __param); |
1429 | } |
1430 | |
1431 | template<typename _IntType, |
1432 | typename _CharT, typename _Traits> |
1433 | std::basic_ostream<_CharT, _Traits>& |
1434 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1435 | const poisson_distribution<_IntType>& __x) |
1436 | { |
1437 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
1438 | |
1439 | const typename __ios_base::fmtflags __flags = __os.flags(); |
1440 | const _CharT __fill = __os.fill(); |
1441 | const std::streamsize __precision = __os.precision(); |
1442 | const _CharT __space = __os.widen(' '); |
1443 | __os.flags(__ios_base::scientific | __ios_base::left); |
1444 | __os.fill(__space); |
1445 | __os.precision(std::numeric_limits<double>::max_digits10); |
1446 | |
1447 | __os << __x.mean() << __space << __x._M_nd; |
1448 | |
1449 | __os.flags(__flags); |
1450 | __os.fill(__fill); |
1451 | __os.precision(__precision); |
1452 | return __os; |
1453 | } |
1454 | |
1455 | template<typename _IntType, |
1456 | typename _CharT, typename _Traits> |
1457 | std::basic_istream<_CharT, _Traits>& |
1458 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1459 | poisson_distribution<_IntType>& __x) |
1460 | { |
1461 | using param_type = typename poisson_distribution<_IntType>::param_type; |
1462 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
1463 | |
1464 | const typename __ios_base::fmtflags __flags = __is.flags(); |
1465 | __is.flags(__ios_base::skipws); |
1466 | |
1467 | double __mean; |
1468 | if (__is >> __mean >> __x._M_nd) |
1469 | __x.param(param_type(__mean)); |
1470 | |
1471 | __is.flags(__flags); |
1472 | return __is; |
1473 | } |
1474 | |
1475 | |
1476 | template<typename _IntType> |
1477 | void |
1478 | binomial_distribution<_IntType>::param_type:: |
1479 | _M_initialize() |
1480 | { |
1481 | const double __p12 = _M_p <= 0.5 ? _M_p : 1.0 - _M_p; |
1482 | |
1483 | _M_easy = true; |
1484 | |
1485 | #if _GLIBCXX_USE_C99_MATH_FUNCS |
1486 | if (_M_t * __p12 >= 8) |
1487 | { |
1488 | _M_easy = false; |
1489 | const double __np = std::floor(_M_t * __p12); |
1490 | const double __pa = __np / _M_t; |
1491 | const double __1p = 1 - __pa; |
1492 | |
1493 | const double __pi_4 = 0.7853981633974483096156608458198757L; |
1494 | const double __d1x = |
1495 | std::sqrt(x: __np * __1p * std::log(x: 32 * __np |
1496 | / (81 * __pi_4 * __1p))); |
1497 | _M_d1 = std::round(x: std::max<double>(a: 1.0, b: __d1x)); |
1498 | const double __d2x = |
1499 | std::sqrt(__np * __1p * std::log(32 * _M_t * __1p |
1500 | / (__pi_4 * __pa))); |
1501 | _M_d2 = std::round(x: std::max<double>(a: 1.0, b: __d2x)); |
1502 | |
1503 | // sqrt(pi / 2) |
1504 | const double __spi_2 = 1.2533141373155002512078826424055226L; |
1505 | _M_s1 = std::sqrt(x: __np * __1p) * (1 + _M_d1 / (4 * __np)); |
1506 | _M_s2 = std::sqrt(x: __np * __1p) * (1 + _M_d2 / (4 * (_M_t * __1p))); |
1507 | _M_c = 2 * _M_d1 / __np; |
1508 | _M_a1 = std::exp(x: _M_c) * _M_s1 * __spi_2; |
1509 | const double __a12 = _M_a1 + _M_s2 * __spi_2; |
1510 | const double __s1s = _M_s1 * _M_s1; |
1511 | _M_a123 = __a12 + (std::exp(_M_d1 / (_M_t * __1p)) |
1512 | * 2 * __s1s / _M_d1 |
1513 | * std::exp(x: -_M_d1 * _M_d1 / (2 * __s1s))); |
1514 | const double __s2s = _M_s2 * _M_s2; |
1515 | _M_s = (_M_a123 + 2 * __s2s / _M_d2 |
1516 | * std::exp(x: -_M_d2 * _M_d2 / (2 * __s2s))); |
1517 | _M_lf = (std::lgamma(__np + 1) |
1518 | + std::lgamma(_M_t - __np + 1)); |
1519 | _M_lp1p = std::log(x: __pa / __1p); |
1520 | |
1521 | _M_q = -std::log(x: 1 - (__p12 - __pa) / __1p); |
1522 | } |
1523 | else |
1524 | #endif |
1525 | _M_q = -std::log(x: 1 - __p12); |
1526 | } |
1527 | |
1528 | template<typename _IntType> |
1529 | template<typename _UniformRandomNumberGenerator> |
1530 | typename binomial_distribution<_IntType>::result_type |
1531 | binomial_distribution<_IntType>:: |
1532 | _M_waiting(_UniformRandomNumberGenerator& __urng, |
1533 | _IntType __t, double __q) |
1534 | { |
1535 | _IntType __x = 0; |
1536 | double __sum = 0.0; |
1537 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
1538 | __aurng(__urng); |
1539 | |
1540 | do |
1541 | { |
1542 | if (__t == __x) |
1543 | return __x; |
1544 | const double __e = -std::log(1.0 - __aurng()); |
1545 | __sum += __e / (__t - __x); |
1546 | __x += 1; |
1547 | } |
1548 | while (__sum <= __q); |
1549 | |
1550 | return __x - 1; |
1551 | } |
1552 | |
1553 | /** |
1554 | * A rejection algorithm when t * p >= 8 and a simple waiting time |
1555 | * method - the second in the referenced book - otherwise. |
1556 | * NB: The former is available only if _GLIBCXX_USE_C99_MATH_FUNCS |
1557 | * is defined. |
1558 | * |
1559 | * Reference: |
1560 | * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, |
1561 | * New York, 1986, Ch. X, Sect. 4 (+ Errata!). |
1562 | */ |
1563 | template<typename _IntType> |
1564 | template<typename _UniformRandomNumberGenerator> |
1565 | typename binomial_distribution<_IntType>::result_type |
1566 | binomial_distribution<_IntType>:: |
1567 | operator()(_UniformRandomNumberGenerator& __urng, |
1568 | const param_type& __param) |
1569 | { |
1570 | result_type __ret; |
1571 | const _IntType __t = __param.t(); |
1572 | const double __p = __param.p(); |
1573 | const double __p12 = __p <= 0.5 ? __p : 1.0 - __p; |
1574 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
1575 | __aurng(__urng); |
1576 | |
1577 | #if _GLIBCXX_USE_C99_MATH_FUNCS |
1578 | if (!__param._M_easy) |
1579 | { |
1580 | double __x; |
1581 | |
1582 | // See comments above... |
1583 | const double __naf = |
1584 | (1 - std::numeric_limits<double>::epsilon()) / 2; |
1585 | const double __thr = |
1586 | std::numeric_limits<_IntType>::max() + __naf; |
1587 | |
1588 | const double __np = std::floor(__t * __p12); |
1589 | |
1590 | // sqrt(pi / 2) |
1591 | const double __spi_2 = 1.2533141373155002512078826424055226L; |
1592 | const double __a1 = __param._M_a1; |
1593 | const double __a12 = __a1 + __param._M_s2 * __spi_2; |
1594 | const double __a123 = __param._M_a123; |
1595 | const double __s1s = __param._M_s1 * __param._M_s1; |
1596 | const double __s2s = __param._M_s2 * __param._M_s2; |
1597 | |
1598 | bool __reject; |
1599 | do |
1600 | { |
1601 | const double __u = __param._M_s * __aurng(); |
1602 | |
1603 | double __v; |
1604 | |
1605 | if (__u <= __a1) |
1606 | { |
1607 | const double __n = _M_nd(__urng); |
1608 | const double __y = __param._M_s1 * std::abs(x: __n); |
1609 | __reject = __y >= __param._M_d1; |
1610 | if (!__reject) |
1611 | { |
1612 | const double __e = -std::log(1.0 - __aurng()); |
1613 | __x = std::floor(x: __y); |
1614 | __v = -__e - __n * __n / 2 + __param._M_c; |
1615 | } |
1616 | } |
1617 | else if (__u <= __a12) |
1618 | { |
1619 | const double __n = _M_nd(__urng); |
1620 | const double __y = __param._M_s2 * std::abs(x: __n); |
1621 | __reject = __y >= __param._M_d2; |
1622 | if (!__reject) |
1623 | { |
1624 | const double __e = -std::log(1.0 - __aurng()); |
1625 | __x = std::floor(x: -__y); |
1626 | __v = -__e - __n * __n / 2; |
1627 | } |
1628 | } |
1629 | else if (__u <= __a123) |
1630 | { |
1631 | const double __e1 = -std::log(1.0 - __aurng()); |
1632 | const double __e2 = -std::log(1.0 - __aurng()); |
1633 | |
1634 | const double __y = __param._M_d1 |
1635 | + 2 * __s1s * __e1 / __param._M_d1; |
1636 | __x = std::floor(x: __y); |
1637 | __v = (-__e2 + __param._M_d1 * (1 / (__t - __np) |
1638 | -__y / (2 * __s1s))); |
1639 | __reject = false; |
1640 | } |
1641 | else |
1642 | { |
1643 | const double __e1 = -std::log(1.0 - __aurng()); |
1644 | const double __e2 = -std::log(1.0 - __aurng()); |
1645 | |
1646 | const double __y = __param._M_d2 |
1647 | + 2 * __s2s * __e1 / __param._M_d2; |
1648 | __x = std::floor(x: -__y); |
1649 | __v = -__e2 - __param._M_d2 * __y / (2 * __s2s); |
1650 | __reject = false; |
1651 | } |
1652 | |
1653 | __reject = __reject || __x < -__np || __x > __t - __np; |
1654 | if (!__reject) |
1655 | { |
1656 | const double __lfx = |
1657 | std::lgamma(__np + __x + 1) |
1658 | + std::lgamma(__t - (__np + __x) + 1); |
1659 | __reject = __v > __param._M_lf - __lfx |
1660 | + __x * __param._M_lp1p; |
1661 | } |
1662 | |
1663 | __reject |= __x + __np >= __thr; |
1664 | } |
1665 | while (__reject); |
1666 | |
1667 | __x += __np + __naf; |
1668 | |
1669 | const _IntType __z = _M_waiting(__urng, __t - _IntType(__x), |
1670 | __param._M_q); |
1671 | __ret = _IntType(__x) + __z; |
1672 | } |
1673 | else |
1674 | #endif |
1675 | __ret = _M_waiting(__urng, __t, __param._M_q); |
1676 | |
1677 | if (__p12 != __p) |
1678 | __ret = __t - __ret; |
1679 | return __ret; |
1680 | } |
1681 | |
1682 | template<typename _IntType> |
1683 | template<typename _ForwardIterator, |
1684 | typename _UniformRandomNumberGenerator> |
1685 | void |
1686 | binomial_distribution<_IntType>:: |
1687 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1688 | _UniformRandomNumberGenerator& __urng, |
1689 | const param_type& __param) |
1690 | { |
1691 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
1692 | // We could duplicate everything from operator()... |
1693 | while (__f != __t) |
1694 | *__f++ = this->operator()(__urng, __param); |
1695 | } |
1696 | |
1697 | template<typename _IntType, |
1698 | typename _CharT, typename _Traits> |
1699 | std::basic_ostream<_CharT, _Traits>& |
1700 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1701 | const binomial_distribution<_IntType>& __x) |
1702 | { |
1703 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
1704 | |
1705 | const typename __ios_base::fmtflags __flags = __os.flags(); |
1706 | const _CharT __fill = __os.fill(); |
1707 | const std::streamsize __precision = __os.precision(); |
1708 | const _CharT __space = __os.widen(' '); |
1709 | __os.flags(__ios_base::scientific | __ios_base::left); |
1710 | __os.fill(__space); |
1711 | __os.precision(std::numeric_limits<double>::max_digits10); |
1712 | |
1713 | __os << __x.t() << __space << __x.p() |
1714 | << __space << __x._M_nd; |
1715 | |
1716 | __os.flags(__flags); |
1717 | __os.fill(__fill); |
1718 | __os.precision(__precision); |
1719 | return __os; |
1720 | } |
1721 | |
1722 | template<typename _IntType, |
1723 | typename _CharT, typename _Traits> |
1724 | std::basic_istream<_CharT, _Traits>& |
1725 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1726 | binomial_distribution<_IntType>& __x) |
1727 | { |
1728 | using param_type = typename binomial_distribution<_IntType>::param_type; |
1729 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
1730 | |
1731 | const typename __ios_base::fmtflags __flags = __is.flags(); |
1732 | __is.flags(__ios_base::dec | __ios_base::skipws); |
1733 | |
1734 | _IntType __t; |
1735 | double __p; |
1736 | if (__is >> __t >> __p >> __x._M_nd) |
1737 | __x.param(param_type(__t, __p)); |
1738 | |
1739 | __is.flags(__flags); |
1740 | return __is; |
1741 | } |
1742 | |
1743 | |
1744 | template<typename _RealType> |
1745 | template<typename _ForwardIterator, |
1746 | typename _UniformRandomNumberGenerator> |
1747 | void |
1748 | std::exponential_distribution<_RealType>:: |
1749 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1750 | _UniformRandomNumberGenerator& __urng, |
1751 | const param_type& __p) |
1752 | { |
1753 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
1754 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
1755 | __aurng(__urng); |
1756 | while (__f != __t) |
1757 | *__f++ = -std::log(result_type(1) - __aurng()) / __p.lambda(); |
1758 | } |
1759 | |
1760 | template<typename _RealType, typename _CharT, typename _Traits> |
1761 | std::basic_ostream<_CharT, _Traits>& |
1762 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1763 | const exponential_distribution<_RealType>& __x) |
1764 | { |
1765 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
1766 | |
1767 | const typename __ios_base::fmtflags __flags = __os.flags(); |
1768 | const _CharT __fill = __os.fill(); |
1769 | const std::streamsize __precision = __os.precision(); |
1770 | __os.flags(__ios_base::scientific | __ios_base::left); |
1771 | __os.fill(__os.widen(' ')); |
1772 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
1773 | |
1774 | __os << __x.lambda(); |
1775 | |
1776 | __os.flags(__flags); |
1777 | __os.fill(__fill); |
1778 | __os.precision(__precision); |
1779 | return __os; |
1780 | } |
1781 | |
1782 | template<typename _RealType, typename _CharT, typename _Traits> |
1783 | std::basic_istream<_CharT, _Traits>& |
1784 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1785 | exponential_distribution<_RealType>& __x) |
1786 | { |
1787 | using param_type |
1788 | = typename exponential_distribution<_RealType>::param_type; |
1789 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
1790 | |
1791 | const typename __ios_base::fmtflags __flags = __is.flags(); |
1792 | __is.flags(__ios_base::dec | __ios_base::skipws); |
1793 | |
1794 | _RealType __lambda; |
1795 | if (__is >> __lambda) |
1796 | __x.param(param_type(__lambda)); |
1797 | |
1798 | __is.flags(__flags); |
1799 | return __is; |
1800 | } |
1801 | |
1802 | |
1803 | /** |
1804 | * Polar method due to Marsaglia. |
1805 | * |
1806 | * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, |
1807 | * New York, 1986, Ch. V, Sect. 4.4. |
1808 | */ |
1809 | template<typename _RealType> |
1810 | template<typename _UniformRandomNumberGenerator> |
1811 | typename normal_distribution<_RealType>::result_type |
1812 | normal_distribution<_RealType>:: |
1813 | operator()(_UniformRandomNumberGenerator& __urng, |
1814 | const param_type& __param) |
1815 | { |
1816 | result_type __ret; |
1817 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
1818 | __aurng(__urng); |
1819 | |
1820 | if (_M_saved_available) |
1821 | { |
1822 | _M_saved_available = false; |
1823 | __ret = _M_saved; |
1824 | } |
1825 | else |
1826 | { |
1827 | result_type __x, __y, __r2; |
1828 | do |
1829 | { |
1830 | __x = result_type(2.0) * __aurng() - 1.0; |
1831 | __y = result_type(2.0) * __aurng() - 1.0; |
1832 | __r2 = __x * __x + __y * __y; |
1833 | } |
1834 | while (__r2 > 1.0 || __r2 == 0.0); |
1835 | |
1836 | const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2); |
1837 | _M_saved = __x * __mult; |
1838 | _M_saved_available = true; |
1839 | __ret = __y * __mult; |
1840 | } |
1841 | |
1842 | __ret = __ret * __param.stddev() + __param.mean(); |
1843 | return __ret; |
1844 | } |
1845 | |
1846 | template<typename _RealType> |
1847 | template<typename _ForwardIterator, |
1848 | typename _UniformRandomNumberGenerator> |
1849 | void |
1850 | normal_distribution<_RealType>:: |
1851 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1852 | _UniformRandomNumberGenerator& __urng, |
1853 | const param_type& __param) |
1854 | { |
1855 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
1856 | |
1857 | if (__f == __t) |
1858 | return; |
1859 | |
1860 | if (_M_saved_available) |
1861 | { |
1862 | _M_saved_available = false; |
1863 | *__f++ = _M_saved * __param.stddev() + __param.mean(); |
1864 | |
1865 | if (__f == __t) |
1866 | return; |
1867 | } |
1868 | |
1869 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
1870 | __aurng(__urng); |
1871 | |
1872 | while (__f + 1 < __t) |
1873 | { |
1874 | result_type __x, __y, __r2; |
1875 | do |
1876 | { |
1877 | __x = result_type(2.0) * __aurng() - 1.0; |
1878 | __y = result_type(2.0) * __aurng() - 1.0; |
1879 | __r2 = __x * __x + __y * __y; |
1880 | } |
1881 | while (__r2 > 1.0 || __r2 == 0.0); |
1882 | |
1883 | const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2); |
1884 | *__f++ = __y * __mult * __param.stddev() + __param.mean(); |
1885 | *__f++ = __x * __mult * __param.stddev() + __param.mean(); |
1886 | } |
1887 | |
1888 | if (__f != __t) |
1889 | { |
1890 | result_type __x, __y, __r2; |
1891 | do |
1892 | { |
1893 | __x = result_type(2.0) * __aurng() - 1.0; |
1894 | __y = result_type(2.0) * __aurng() - 1.0; |
1895 | __r2 = __x * __x + __y * __y; |
1896 | } |
1897 | while (__r2 > 1.0 || __r2 == 0.0); |
1898 | |
1899 | const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2); |
1900 | _M_saved = __x * __mult; |
1901 | _M_saved_available = true; |
1902 | *__f = __y * __mult * __param.stddev() + __param.mean(); |
1903 | } |
1904 | } |
1905 | |
1906 | template<typename _RealType> |
1907 | bool |
1908 | operator==(const std::normal_distribution<_RealType>& __d1, |
1909 | const std::normal_distribution<_RealType>& __d2) |
1910 | { |
1911 | if (__d1._M_param == __d2._M_param |
1912 | && __d1._M_saved_available == __d2._M_saved_available) |
1913 | return __d1._M_saved_available ? __d1._M_saved == __d2._M_saved : true; |
1914 | else |
1915 | return false; |
1916 | } |
1917 | |
1918 | template<typename _RealType, typename _CharT, typename _Traits> |
1919 | std::basic_ostream<_CharT, _Traits>& |
1920 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1921 | const normal_distribution<_RealType>& __x) |
1922 | { |
1923 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
1924 | |
1925 | const typename __ios_base::fmtflags __flags = __os.flags(); |
1926 | const _CharT __fill = __os.fill(); |
1927 | const std::streamsize __precision = __os.precision(); |
1928 | const _CharT __space = __os.widen(' '); |
1929 | __os.flags(__ios_base::scientific | __ios_base::left); |
1930 | __os.fill(__space); |
1931 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
1932 | |
1933 | __os << __x.mean() << __space << __x.stddev() |
1934 | << __space << __x._M_saved_available; |
1935 | if (__x._M_saved_available) |
1936 | __os << __space << __x._M_saved; |
1937 | |
1938 | __os.flags(__flags); |
1939 | __os.fill(__fill); |
1940 | __os.precision(__precision); |
1941 | return __os; |
1942 | } |
1943 | |
1944 | template<typename _RealType, typename _CharT, typename _Traits> |
1945 | std::basic_istream<_CharT, _Traits>& |
1946 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1947 | normal_distribution<_RealType>& __x) |
1948 | { |
1949 | using param_type = typename normal_distribution<_RealType>::param_type; |
1950 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
1951 | |
1952 | const typename __ios_base::fmtflags __flags = __is.flags(); |
1953 | __is.flags(__ios_base::dec | __ios_base::skipws); |
1954 | |
1955 | double __mean, __stddev; |
1956 | bool __saved_avail; |
1957 | if (__is >> __mean >> __stddev >> __saved_avail) |
1958 | { |
1959 | if (!__saved_avail || (__is >> __x._M_saved)) |
1960 | { |
1961 | __x._M_saved_available = __saved_avail; |
1962 | __x.param(param_type(__mean, __stddev)); |
1963 | } |
1964 | } |
1965 | |
1966 | __is.flags(__flags); |
1967 | return __is; |
1968 | } |
1969 | |
1970 | |
1971 | template<typename _RealType> |
1972 | template<typename _ForwardIterator, |
1973 | typename _UniformRandomNumberGenerator> |
1974 | void |
1975 | lognormal_distribution<_RealType>:: |
1976 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1977 | _UniformRandomNumberGenerator& __urng, |
1978 | const param_type& __p) |
1979 | { |
1980 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
1981 | while (__f != __t) |
1982 | *__f++ = std::exp(__p.s() * _M_nd(__urng) + __p.m()); |
1983 | } |
1984 | |
1985 | template<typename _RealType, typename _CharT, typename _Traits> |
1986 | std::basic_ostream<_CharT, _Traits>& |
1987 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1988 | const lognormal_distribution<_RealType>& __x) |
1989 | { |
1990 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
1991 | |
1992 | const typename __ios_base::fmtflags __flags = __os.flags(); |
1993 | const _CharT __fill = __os.fill(); |
1994 | const std::streamsize __precision = __os.precision(); |
1995 | const _CharT __space = __os.widen(' '); |
1996 | __os.flags(__ios_base::scientific | __ios_base::left); |
1997 | __os.fill(__space); |
1998 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
1999 | |
2000 | __os << __x.m() << __space << __x.s() |
2001 | << __space << __x._M_nd; |
2002 | |
2003 | __os.flags(__flags); |
2004 | __os.fill(__fill); |
2005 | __os.precision(__precision); |
2006 | return __os; |
2007 | } |
2008 | |
2009 | template<typename _RealType, typename _CharT, typename _Traits> |
2010 | std::basic_istream<_CharT, _Traits>& |
2011 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2012 | lognormal_distribution<_RealType>& __x) |
2013 | { |
2014 | using param_type |
2015 | = typename lognormal_distribution<_RealType>::param_type; |
2016 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
2017 | |
2018 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2019 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2020 | |
2021 | _RealType __m, __s; |
2022 | if (__is >> __m >> __s >> __x._M_nd) |
2023 | __x.param(param_type(__m, __s)); |
2024 | |
2025 | __is.flags(__flags); |
2026 | return __is; |
2027 | } |
2028 | |
2029 | template<typename _RealType> |
2030 | template<typename _ForwardIterator, |
2031 | typename _UniformRandomNumberGenerator> |
2032 | void |
2033 | std::chi_squared_distribution<_RealType>:: |
2034 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2035 | _UniformRandomNumberGenerator& __urng) |
2036 | { |
2037 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2038 | while (__f != __t) |
2039 | *__f++ = 2 * _M_gd(__urng); |
2040 | } |
2041 | |
2042 | template<typename _RealType> |
2043 | template<typename _ForwardIterator, |
2044 | typename _UniformRandomNumberGenerator> |
2045 | void |
2046 | std::chi_squared_distribution<_RealType>:: |
2047 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2048 | _UniformRandomNumberGenerator& __urng, |
2049 | const typename |
2050 | std::gamma_distribution<result_type>::param_type& __p) |
2051 | { |
2052 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2053 | while (__f != __t) |
2054 | *__f++ = 2 * _M_gd(__urng, __p); |
2055 | } |
2056 | |
2057 | template<typename _RealType, typename _CharT, typename _Traits> |
2058 | std::basic_ostream<_CharT, _Traits>& |
2059 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2060 | const chi_squared_distribution<_RealType>& __x) |
2061 | { |
2062 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
2063 | |
2064 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2065 | const _CharT __fill = __os.fill(); |
2066 | const std::streamsize __precision = __os.precision(); |
2067 | const _CharT __space = __os.widen(' '); |
2068 | __os.flags(__ios_base::scientific | __ios_base::left); |
2069 | __os.fill(__space); |
2070 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
2071 | |
2072 | __os << __x.n() << __space << __x._M_gd; |
2073 | |
2074 | __os.flags(__flags); |
2075 | __os.fill(__fill); |
2076 | __os.precision(__precision); |
2077 | return __os; |
2078 | } |
2079 | |
2080 | template<typename _RealType, typename _CharT, typename _Traits> |
2081 | std::basic_istream<_CharT, _Traits>& |
2082 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2083 | chi_squared_distribution<_RealType>& __x) |
2084 | { |
2085 | using param_type |
2086 | = typename chi_squared_distribution<_RealType>::param_type; |
2087 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
2088 | |
2089 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2090 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2091 | |
2092 | _RealType __n; |
2093 | if (__is >> __n >> __x._M_gd) |
2094 | __x.param(param_type(__n)); |
2095 | |
2096 | __is.flags(__flags); |
2097 | return __is; |
2098 | } |
2099 | |
2100 | |
2101 | template<typename _RealType> |
2102 | template<typename _UniformRandomNumberGenerator> |
2103 | typename cauchy_distribution<_RealType>::result_type |
2104 | cauchy_distribution<_RealType>:: |
2105 | operator()(_UniformRandomNumberGenerator& __urng, |
2106 | const param_type& __p) |
2107 | { |
2108 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
2109 | __aurng(__urng); |
2110 | _RealType __u; |
2111 | do |
2112 | __u = __aurng(); |
2113 | while (__u == 0.5); |
2114 | |
2115 | const _RealType __pi = 3.1415926535897932384626433832795029L; |
2116 | return __p.a() + __p.b() * std::tan(__pi * __u); |
2117 | } |
2118 | |
2119 | template<typename _RealType> |
2120 | template<typename _ForwardIterator, |
2121 | typename _UniformRandomNumberGenerator> |
2122 | void |
2123 | cauchy_distribution<_RealType>:: |
2124 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2125 | _UniformRandomNumberGenerator& __urng, |
2126 | const param_type& __p) |
2127 | { |
2128 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2129 | const _RealType __pi = 3.1415926535897932384626433832795029L; |
2130 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
2131 | __aurng(__urng); |
2132 | while (__f != __t) |
2133 | { |
2134 | _RealType __u; |
2135 | do |
2136 | __u = __aurng(); |
2137 | while (__u == 0.5); |
2138 | |
2139 | *__f++ = __p.a() + __p.b() * std::tan(__pi * __u); |
2140 | } |
2141 | } |
2142 | |
2143 | template<typename _RealType, typename _CharT, typename _Traits> |
2144 | std::basic_ostream<_CharT, _Traits>& |
2145 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2146 | const cauchy_distribution<_RealType>& __x) |
2147 | { |
2148 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
2149 | |
2150 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2151 | const _CharT __fill = __os.fill(); |
2152 | const std::streamsize __precision = __os.precision(); |
2153 | const _CharT __space = __os.widen(' '); |
2154 | __os.flags(__ios_base::scientific | __ios_base::left); |
2155 | __os.fill(__space); |
2156 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
2157 | |
2158 | __os << __x.a() << __space << __x.b(); |
2159 | |
2160 | __os.flags(__flags); |
2161 | __os.fill(__fill); |
2162 | __os.precision(__precision); |
2163 | return __os; |
2164 | } |
2165 | |
2166 | template<typename _RealType, typename _CharT, typename _Traits> |
2167 | std::basic_istream<_CharT, _Traits>& |
2168 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2169 | cauchy_distribution<_RealType>& __x) |
2170 | { |
2171 | using param_type = typename cauchy_distribution<_RealType>::param_type; |
2172 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
2173 | |
2174 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2175 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2176 | |
2177 | _RealType __a, __b; |
2178 | if (__is >> __a >> __b) |
2179 | __x.param(param_type(__a, __b)); |
2180 | |
2181 | __is.flags(__flags); |
2182 | return __is; |
2183 | } |
2184 | |
2185 | |
2186 | template<typename _RealType> |
2187 | template<typename _ForwardIterator, |
2188 | typename _UniformRandomNumberGenerator> |
2189 | void |
2190 | std::fisher_f_distribution<_RealType>:: |
2191 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2192 | _UniformRandomNumberGenerator& __urng) |
2193 | { |
2194 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2195 | while (__f != __t) |
2196 | *__f++ = ((_M_gd_x(__urng) * n()) / (_M_gd_y(__urng) * m())); |
2197 | } |
2198 | |
2199 | template<typename _RealType> |
2200 | template<typename _ForwardIterator, |
2201 | typename _UniformRandomNumberGenerator> |
2202 | void |
2203 | std::fisher_f_distribution<_RealType>:: |
2204 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2205 | _UniformRandomNumberGenerator& __urng, |
2206 | const param_type& __p) |
2207 | { |
2208 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2209 | typedef typename std::gamma_distribution<result_type>::param_type |
2210 | param_type; |
2211 | param_type __p1(__p.m() / 2); |
2212 | param_type __p2(__p.n() / 2); |
2213 | while (__f != __t) |
2214 | *__f++ = ((_M_gd_x(__urng, __p1) * n()) |
2215 | / (_M_gd_y(__urng, __p2) * m())); |
2216 | } |
2217 | |
2218 | template<typename _RealType, typename _CharT, typename _Traits> |
2219 | std::basic_ostream<_CharT, _Traits>& |
2220 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2221 | const fisher_f_distribution<_RealType>& __x) |
2222 | { |
2223 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
2224 | |
2225 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2226 | const _CharT __fill = __os.fill(); |
2227 | const std::streamsize __precision = __os.precision(); |
2228 | const _CharT __space = __os.widen(' '); |
2229 | __os.flags(__ios_base::scientific | __ios_base::left); |
2230 | __os.fill(__space); |
2231 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
2232 | |
2233 | __os << __x.m() << __space << __x.n() |
2234 | << __space << __x._M_gd_x << __space << __x._M_gd_y; |
2235 | |
2236 | __os.flags(__flags); |
2237 | __os.fill(__fill); |
2238 | __os.precision(__precision); |
2239 | return __os; |
2240 | } |
2241 | |
2242 | template<typename _RealType, typename _CharT, typename _Traits> |
2243 | std::basic_istream<_CharT, _Traits>& |
2244 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2245 | fisher_f_distribution<_RealType>& __x) |
2246 | { |
2247 | using param_type |
2248 | = typename fisher_f_distribution<_RealType>::param_type; |
2249 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
2250 | |
2251 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2252 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2253 | |
2254 | _RealType __m, __n; |
2255 | if (__is >> __m >> __n >> __x._M_gd_x >> __x._M_gd_y) |
2256 | __x.param(param_type(__m, __n)); |
2257 | |
2258 | __is.flags(__flags); |
2259 | return __is; |
2260 | } |
2261 | |
2262 | |
2263 | template<typename _RealType> |
2264 | template<typename _ForwardIterator, |
2265 | typename _UniformRandomNumberGenerator> |
2266 | void |
2267 | std::student_t_distribution<_RealType>:: |
2268 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2269 | _UniformRandomNumberGenerator& __urng) |
2270 | { |
2271 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2272 | while (__f != __t) |
2273 | *__f++ = _M_nd(__urng) * std::sqrt(n() / _M_gd(__urng)); |
2274 | } |
2275 | |
2276 | template<typename _RealType> |
2277 | template<typename _ForwardIterator, |
2278 | typename _UniformRandomNumberGenerator> |
2279 | void |
2280 | std::student_t_distribution<_RealType>:: |
2281 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2282 | _UniformRandomNumberGenerator& __urng, |
2283 | const param_type& __p) |
2284 | { |
2285 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2286 | typename std::gamma_distribution<result_type>::param_type |
2287 | __p2(__p.n() / 2, 2); |
2288 | while (__f != __t) |
2289 | *__f++ = _M_nd(__urng) * std::sqrt(__p.n() / _M_gd(__urng, __p2)); |
2290 | } |
2291 | |
2292 | template<typename _RealType, typename _CharT, typename _Traits> |
2293 | std::basic_ostream<_CharT, _Traits>& |
2294 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2295 | const student_t_distribution<_RealType>& __x) |
2296 | { |
2297 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
2298 | |
2299 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2300 | const _CharT __fill = __os.fill(); |
2301 | const std::streamsize __precision = __os.precision(); |
2302 | const _CharT __space = __os.widen(' '); |
2303 | __os.flags(__ios_base::scientific | __ios_base::left); |
2304 | __os.fill(__space); |
2305 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
2306 | |
2307 | __os << __x.n() << __space << __x._M_nd << __space << __x._M_gd; |
2308 | |
2309 | __os.flags(__flags); |
2310 | __os.fill(__fill); |
2311 | __os.precision(__precision); |
2312 | return __os; |
2313 | } |
2314 | |
2315 | template<typename _RealType, typename _CharT, typename _Traits> |
2316 | std::basic_istream<_CharT, _Traits>& |
2317 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2318 | student_t_distribution<_RealType>& __x) |
2319 | { |
2320 | using param_type |
2321 | = typename student_t_distribution<_RealType>::param_type; |
2322 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
2323 | |
2324 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2325 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2326 | |
2327 | _RealType __n; |
2328 | if (__is >> __n >> __x._M_nd >> __x._M_gd) |
2329 | __x.param(param_type(__n)); |
2330 | |
2331 | __is.flags(__flags); |
2332 | return __is; |
2333 | } |
2334 | |
2335 | |
2336 | template<typename _RealType> |
2337 | void |
2338 | gamma_distribution<_RealType>::param_type:: |
2339 | _M_initialize() |
2340 | { |
2341 | _M_malpha = _M_alpha < 1.0 ? _M_alpha + _RealType(1.0) : _M_alpha; |
2342 | |
2343 | const _RealType __a1 = _M_malpha - _RealType(1.0) / _RealType(3.0); |
2344 | _M_a2 = _RealType(1.0) / std::sqrt(_RealType(9.0) * __a1); |
2345 | } |
2346 | |
2347 | /** |
2348 | * Marsaglia, G. and Tsang, W. W. |
2349 | * "A Simple Method for Generating Gamma Variables" |
2350 | * ACM Transactions on Mathematical Software, 26, 3, 363-372, 2000. |
2351 | */ |
2352 | template<typename _RealType> |
2353 | template<typename _UniformRandomNumberGenerator> |
2354 | typename gamma_distribution<_RealType>::result_type |
2355 | gamma_distribution<_RealType>:: |
2356 | operator()(_UniformRandomNumberGenerator& __urng, |
2357 | const param_type& __param) |
2358 | { |
2359 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
2360 | __aurng(__urng); |
2361 | |
2362 | result_type __u, __v, __n; |
2363 | const result_type __a1 = (__param._M_malpha |
2364 | - _RealType(1.0) / _RealType(3.0)); |
2365 | |
2366 | do |
2367 | { |
2368 | do |
2369 | { |
2370 | __n = _M_nd(__urng); |
2371 | __v = result_type(1.0) + __param._M_a2 * __n; |
2372 | } |
2373 | while (__v <= 0.0); |
2374 | |
2375 | __v = __v * __v * __v; |
2376 | __u = __aurng(); |
2377 | } |
2378 | while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n |
2379 | && (std::log(__u) > (0.5 * __n * __n + __a1 |
2380 | * (1.0 - __v + std::log(__v))))); |
2381 | |
2382 | if (__param.alpha() == __param._M_malpha) |
2383 | return __a1 * __v * __param.beta(); |
2384 | else |
2385 | { |
2386 | do |
2387 | __u = __aurng(); |
2388 | while (__u == 0.0); |
2389 | |
2390 | return (std::pow(__u, result_type(1.0) / __param.alpha()) |
2391 | * __a1 * __v * __param.beta()); |
2392 | } |
2393 | } |
2394 | |
2395 | template<typename _RealType> |
2396 | template<typename _ForwardIterator, |
2397 | typename _UniformRandomNumberGenerator> |
2398 | void |
2399 | gamma_distribution<_RealType>:: |
2400 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2401 | _UniformRandomNumberGenerator& __urng, |
2402 | const param_type& __param) |
2403 | { |
2404 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2405 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
2406 | __aurng(__urng); |
2407 | |
2408 | result_type __u, __v, __n; |
2409 | const result_type __a1 = (__param._M_malpha |
2410 | - _RealType(1.0) / _RealType(3.0)); |
2411 | |
2412 | if (__param.alpha() == __param._M_malpha) |
2413 | while (__f != __t) |
2414 | { |
2415 | do |
2416 | { |
2417 | do |
2418 | { |
2419 | __n = _M_nd(__urng); |
2420 | __v = result_type(1.0) + __param._M_a2 * __n; |
2421 | } |
2422 | while (__v <= 0.0); |
2423 | |
2424 | __v = __v * __v * __v; |
2425 | __u = __aurng(); |
2426 | } |
2427 | while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n |
2428 | && (std::log(__u) > (0.5 * __n * __n + __a1 |
2429 | * (1.0 - __v + std::log(__v))))); |
2430 | |
2431 | *__f++ = __a1 * __v * __param.beta(); |
2432 | } |
2433 | else |
2434 | while (__f != __t) |
2435 | { |
2436 | do |
2437 | { |
2438 | do |
2439 | { |
2440 | __n = _M_nd(__urng); |
2441 | __v = result_type(1.0) + __param._M_a2 * __n; |
2442 | } |
2443 | while (__v <= 0.0); |
2444 | |
2445 | __v = __v * __v * __v; |
2446 | __u = __aurng(); |
2447 | } |
2448 | while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n |
2449 | && (std::log(__u) > (0.5 * __n * __n + __a1 |
2450 | * (1.0 - __v + std::log(__v))))); |
2451 | |
2452 | do |
2453 | __u = __aurng(); |
2454 | while (__u == 0.0); |
2455 | |
2456 | *__f++ = (std::pow(__u, result_type(1.0) / __param.alpha()) |
2457 | * __a1 * __v * __param.beta()); |
2458 | } |
2459 | } |
2460 | |
2461 | template<typename _RealType, typename _CharT, typename _Traits> |
2462 | std::basic_ostream<_CharT, _Traits>& |
2463 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2464 | const gamma_distribution<_RealType>& __x) |
2465 | { |
2466 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
2467 | |
2468 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2469 | const _CharT __fill = __os.fill(); |
2470 | const std::streamsize __precision = __os.precision(); |
2471 | const _CharT __space = __os.widen(' '); |
2472 | __os.flags(__ios_base::scientific | __ios_base::left); |
2473 | __os.fill(__space); |
2474 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
2475 | |
2476 | __os << __x.alpha() << __space << __x.beta() |
2477 | << __space << __x._M_nd; |
2478 | |
2479 | __os.flags(__flags); |
2480 | __os.fill(__fill); |
2481 | __os.precision(__precision); |
2482 | return __os; |
2483 | } |
2484 | |
2485 | template<typename _RealType, typename _CharT, typename _Traits> |
2486 | std::basic_istream<_CharT, _Traits>& |
2487 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2488 | gamma_distribution<_RealType>& __x) |
2489 | { |
2490 | using param_type = typename gamma_distribution<_RealType>::param_type; |
2491 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
2492 | |
2493 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2494 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2495 | |
2496 | _RealType __alpha_val, __beta_val; |
2497 | if (__is >> __alpha_val >> __beta_val >> __x._M_nd) |
2498 | __x.param(param_type(__alpha_val, __beta_val)); |
2499 | |
2500 | __is.flags(__flags); |
2501 | return __is; |
2502 | } |
2503 | |
2504 | |
2505 | template<typename _RealType> |
2506 | template<typename _UniformRandomNumberGenerator> |
2507 | typename weibull_distribution<_RealType>::result_type |
2508 | weibull_distribution<_RealType>:: |
2509 | operator()(_UniformRandomNumberGenerator& __urng, |
2510 | const param_type& __p) |
2511 | { |
2512 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
2513 | __aurng(__urng); |
2514 | return __p.b() * std::pow(-std::log(result_type(1) - __aurng()), |
2515 | result_type(1) / __p.a()); |
2516 | } |
2517 | |
2518 | template<typename _RealType> |
2519 | template<typename _ForwardIterator, |
2520 | typename _UniformRandomNumberGenerator> |
2521 | void |
2522 | weibull_distribution<_RealType>:: |
2523 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2524 | _UniformRandomNumberGenerator& __urng, |
2525 | const param_type& __p) |
2526 | { |
2527 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2528 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
2529 | __aurng(__urng); |
2530 | auto __inv_a = result_type(1) / __p.a(); |
2531 | |
2532 | while (__f != __t) |
2533 | *__f++ = __p.b() * std::pow(-std::log(result_type(1) - __aurng()), |
2534 | __inv_a); |
2535 | } |
2536 | |
2537 | template<typename _RealType, typename _CharT, typename _Traits> |
2538 | std::basic_ostream<_CharT, _Traits>& |
2539 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2540 | const weibull_distribution<_RealType>& __x) |
2541 | { |
2542 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
2543 | |
2544 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2545 | const _CharT __fill = __os.fill(); |
2546 | const std::streamsize __precision = __os.precision(); |
2547 | const _CharT __space = __os.widen(' '); |
2548 | __os.flags(__ios_base::scientific | __ios_base::left); |
2549 | __os.fill(__space); |
2550 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
2551 | |
2552 | __os << __x.a() << __space << __x.b(); |
2553 | |
2554 | __os.flags(__flags); |
2555 | __os.fill(__fill); |
2556 | __os.precision(__precision); |
2557 | return __os; |
2558 | } |
2559 | |
2560 | template<typename _RealType, typename _CharT, typename _Traits> |
2561 | std::basic_istream<_CharT, _Traits>& |
2562 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2563 | weibull_distribution<_RealType>& __x) |
2564 | { |
2565 | using param_type = typename weibull_distribution<_RealType>::param_type; |
2566 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
2567 | |
2568 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2569 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2570 | |
2571 | _RealType __a, __b; |
2572 | if (__is >> __a >> __b) |
2573 | __x.param(param_type(__a, __b)); |
2574 | |
2575 | __is.flags(__flags); |
2576 | return __is; |
2577 | } |
2578 | |
2579 | |
2580 | template<typename _RealType> |
2581 | template<typename _UniformRandomNumberGenerator> |
2582 | typename extreme_value_distribution<_RealType>::result_type |
2583 | extreme_value_distribution<_RealType>:: |
2584 | operator()(_UniformRandomNumberGenerator& __urng, |
2585 | const param_type& __p) |
2586 | { |
2587 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
2588 | __aurng(__urng); |
2589 | return __p.a() - __p.b() * std::log(-std::log(result_type(1) |
2590 | - __aurng())); |
2591 | } |
2592 | |
2593 | template<typename _RealType> |
2594 | template<typename _ForwardIterator, |
2595 | typename _UniformRandomNumberGenerator> |
2596 | void |
2597 | extreme_value_distribution<_RealType>:: |
2598 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2599 | _UniformRandomNumberGenerator& __urng, |
2600 | const param_type& __p) |
2601 | { |
2602 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2603 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
2604 | __aurng(__urng); |
2605 | |
2606 | while (__f != __t) |
2607 | *__f++ = __p.a() - __p.b() * std::log(-std::log(result_type(1) |
2608 | - __aurng())); |
2609 | } |
2610 | |
2611 | template<typename _RealType, typename _CharT, typename _Traits> |
2612 | std::basic_ostream<_CharT, _Traits>& |
2613 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2614 | const extreme_value_distribution<_RealType>& __x) |
2615 | { |
2616 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
2617 | |
2618 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2619 | const _CharT __fill = __os.fill(); |
2620 | const std::streamsize __precision = __os.precision(); |
2621 | const _CharT __space = __os.widen(' '); |
2622 | __os.flags(__ios_base::scientific | __ios_base::left); |
2623 | __os.fill(__space); |
2624 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
2625 | |
2626 | __os << __x.a() << __space << __x.b(); |
2627 | |
2628 | __os.flags(__flags); |
2629 | __os.fill(__fill); |
2630 | __os.precision(__precision); |
2631 | return __os; |
2632 | } |
2633 | |
2634 | template<typename _RealType, typename _CharT, typename _Traits> |
2635 | std::basic_istream<_CharT, _Traits>& |
2636 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2637 | extreme_value_distribution<_RealType>& __x) |
2638 | { |
2639 | using param_type |
2640 | = typename extreme_value_distribution<_RealType>::param_type; |
2641 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
2642 | |
2643 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2644 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2645 | |
2646 | _RealType __a, __b; |
2647 | if (__is >> __a >> __b) |
2648 | __x.param(param_type(__a, __b)); |
2649 | |
2650 | __is.flags(__flags); |
2651 | return __is; |
2652 | } |
2653 | |
2654 | |
2655 | template<typename _IntType> |
2656 | void |
2657 | discrete_distribution<_IntType>::param_type:: |
2658 | _M_initialize() |
2659 | { |
2660 | if (_M_prob.size() < 2) |
2661 | { |
2662 | _M_prob.clear(); |
2663 | return; |
2664 | } |
2665 | |
2666 | const double __sum = std::accumulate(first: _M_prob.begin(), |
2667 | last: _M_prob.end(), init: 0.0); |
2668 | __glibcxx_assert(__sum > 0); |
2669 | // Now normalize the probabilites. |
2670 | __detail::__normalize(first: _M_prob.begin(), last: _M_prob.end(), result: _M_prob.begin(), |
2671 | factor: __sum); |
2672 | // Accumulate partial sums. |
2673 | _M_cp.reserve(n: _M_prob.size()); |
2674 | std::partial_sum(first: _M_prob.begin(), last: _M_prob.end(), |
2675 | result: std::back_inserter(x&: _M_cp)); |
2676 | // Make sure the last cumulative probability is one. |
2677 | _M_cp[_M_cp.size() - 1] = 1.0; |
2678 | } |
2679 | |
2680 | template<typename _IntType> |
2681 | template<typename _Func> |
2682 | discrete_distribution<_IntType>::param_type:: |
2683 | param_type(size_t __nw, double __xmin, double __xmax, _Func __fw) |
2684 | : _M_prob(), _M_cp() |
2685 | { |
2686 | const size_t __n = __nw == 0 ? 1 : __nw; |
2687 | const double __delta = (__xmax - __xmin) / __n; |
2688 | |
2689 | _M_prob.reserve(__n); |
2690 | for (size_t __k = 0; __k < __nw; ++__k) |
2691 | _M_prob.push_back(__fw(__xmin + __k * __delta + 0.5 * __delta)); |
2692 | |
2693 | _M_initialize(); |
2694 | } |
2695 | |
2696 | template<typename _IntType> |
2697 | template<typename _UniformRandomNumberGenerator> |
2698 | typename discrete_distribution<_IntType>::result_type |
2699 | discrete_distribution<_IntType>:: |
2700 | operator()(_UniformRandomNumberGenerator& __urng, |
2701 | const param_type& __param) |
2702 | { |
2703 | if (__param._M_cp.empty()) |
2704 | return result_type(0); |
2705 | |
2706 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
2707 | __aurng(__urng); |
2708 | |
2709 | const double __p = __aurng(); |
2710 | auto __pos = std::lower_bound(__param._M_cp.begin(), |
2711 | __param._M_cp.end(), __p); |
2712 | |
2713 | return __pos - __param._M_cp.begin(); |
2714 | } |
2715 | |
2716 | template<typename _IntType> |
2717 | template<typename _ForwardIterator, |
2718 | typename _UniformRandomNumberGenerator> |
2719 | void |
2720 | discrete_distribution<_IntType>:: |
2721 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2722 | _UniformRandomNumberGenerator& __urng, |
2723 | const param_type& __param) |
2724 | { |
2725 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2726 | |
2727 | if (__param._M_cp.empty()) |
2728 | { |
2729 | while (__f != __t) |
2730 | *__f++ = result_type(0); |
2731 | return; |
2732 | } |
2733 | |
2734 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
2735 | __aurng(__urng); |
2736 | |
2737 | while (__f != __t) |
2738 | { |
2739 | const double __p = __aurng(); |
2740 | auto __pos = std::lower_bound(__param._M_cp.begin(), |
2741 | __param._M_cp.end(), __p); |
2742 | |
2743 | *__f++ = __pos - __param._M_cp.begin(); |
2744 | } |
2745 | } |
2746 | |
2747 | template<typename _IntType, typename _CharT, typename _Traits> |
2748 | std::basic_ostream<_CharT, _Traits>& |
2749 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2750 | const discrete_distribution<_IntType>& __x) |
2751 | { |
2752 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
2753 | |
2754 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2755 | const _CharT __fill = __os.fill(); |
2756 | const std::streamsize __precision = __os.precision(); |
2757 | const _CharT __space = __os.widen(' '); |
2758 | __os.flags(__ios_base::scientific | __ios_base::left); |
2759 | __os.fill(__space); |
2760 | __os.precision(std::numeric_limits<double>::max_digits10); |
2761 | |
2762 | std::vector<double> __prob = __x.probabilities(); |
2763 | __os << __prob.size(); |
2764 | for (auto __dit = __prob.begin(); __dit != __prob.end(); ++__dit) |
2765 | __os << __space << *__dit; |
2766 | |
2767 | __os.flags(__flags); |
2768 | __os.fill(__fill); |
2769 | __os.precision(__precision); |
2770 | return __os; |
2771 | } |
2772 | |
2773 | namespace __detail |
2774 | { |
2775 | template<typename _ValT, typename _CharT, typename _Traits> |
2776 | basic_istream<_CharT, _Traits>& |
2777 | (basic_istream<_CharT, _Traits>& __is, |
2778 | vector<_ValT>& __vals, size_t __n) |
2779 | { |
2780 | __vals.reserve(__n); |
2781 | while (__n--) |
2782 | { |
2783 | _ValT __val; |
2784 | if (__is >> __val) |
2785 | __vals.push_back(__val); |
2786 | else |
2787 | break; |
2788 | } |
2789 | return __is; |
2790 | } |
2791 | } // namespace __detail |
2792 | |
2793 | template<typename _IntType, typename _CharT, typename _Traits> |
2794 | std::basic_istream<_CharT, _Traits>& |
2795 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2796 | discrete_distribution<_IntType>& __x) |
2797 | { |
2798 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
2799 | |
2800 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2801 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2802 | |
2803 | size_t __n; |
2804 | if (__is >> __n) |
2805 | { |
2806 | std::vector<double> __prob_vec; |
2807 | if (__detail::__extract_params(__is, __prob_vec, __n)) |
2808 | __x.param({__prob_vec.begin(), __prob_vec.end()}); |
2809 | } |
2810 | |
2811 | __is.flags(__flags); |
2812 | return __is; |
2813 | } |
2814 | |
2815 | |
2816 | template<typename _RealType> |
2817 | void |
2818 | piecewise_constant_distribution<_RealType>::param_type:: |
2819 | _M_initialize() |
2820 | { |
2821 | if (_M_int.size() < 2 |
2822 | || (_M_int.size() == 2 |
2823 | && _M_int[0] == _RealType(0) |
2824 | && _M_int[1] == _RealType(1))) |
2825 | { |
2826 | _M_int.clear(); |
2827 | _M_den.clear(); |
2828 | return; |
2829 | } |
2830 | |
2831 | const double __sum = std::accumulate(first: _M_den.begin(), |
2832 | last: _M_den.end(), init: 0.0); |
2833 | __glibcxx_assert(__sum > 0); |
2834 | |
2835 | __detail::__normalize(first: _M_den.begin(), last: _M_den.end(), result: _M_den.begin(), |
2836 | factor: __sum); |
2837 | |
2838 | _M_cp.reserve(n: _M_den.size()); |
2839 | std::partial_sum(first: _M_den.begin(), last: _M_den.end(), |
2840 | result: std::back_inserter(x&: _M_cp)); |
2841 | |
2842 | // Make sure the last cumulative probability is one. |
2843 | _M_cp[_M_cp.size() - 1] = 1.0; |
2844 | |
2845 | for (size_t __k = 0; __k < _M_den.size(); ++__k) |
2846 | _M_den[__k] /= _M_int[__k + 1] - _M_int[__k]; |
2847 | } |
2848 | |
2849 | template<typename _RealType> |
2850 | template<typename _InputIteratorB, typename _InputIteratorW> |
2851 | piecewise_constant_distribution<_RealType>::param_type:: |
2852 | param_type(_InputIteratorB __bbegin, |
2853 | _InputIteratorB __bend, |
2854 | _InputIteratorW __wbegin) |
2855 | : _M_int(), _M_den(), _M_cp() |
2856 | { |
2857 | if (__bbegin != __bend) |
2858 | { |
2859 | for (;;) |
2860 | { |
2861 | _M_int.push_back(*__bbegin); |
2862 | ++__bbegin; |
2863 | if (__bbegin == __bend) |
2864 | break; |
2865 | |
2866 | _M_den.push_back(*__wbegin); |
2867 | ++__wbegin; |
2868 | } |
2869 | } |
2870 | |
2871 | _M_initialize(); |
2872 | } |
2873 | |
2874 | template<typename _RealType> |
2875 | template<typename _Func> |
2876 | piecewise_constant_distribution<_RealType>::param_type:: |
2877 | param_type(initializer_list<_RealType> __bl, _Func __fw) |
2878 | : _M_int(), _M_den(), _M_cp() |
2879 | { |
2880 | _M_int.reserve(__bl.size()); |
2881 | for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter) |
2882 | _M_int.push_back(*__biter); |
2883 | |
2884 | _M_den.reserve(n: _M_int.size() - 1); |
2885 | for (size_t __k = 0; __k < _M_int.size() - 1; ++__k) |
2886 | _M_den.push_back(__fw(0.5 * (_M_int[__k + 1] + _M_int[__k]))); |
2887 | |
2888 | _M_initialize(); |
2889 | } |
2890 | |
2891 | template<typename _RealType> |
2892 | template<typename _Func> |
2893 | piecewise_constant_distribution<_RealType>::param_type:: |
2894 | param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw) |
2895 | : _M_int(), _M_den(), _M_cp() |
2896 | { |
2897 | const size_t __n = __nw == 0 ? 1 : __nw; |
2898 | const _RealType __delta = (__xmax - __xmin) / __n; |
2899 | |
2900 | _M_int.reserve(__n + 1); |
2901 | for (size_t __k = 0; __k <= __nw; ++__k) |
2902 | _M_int.push_back(__xmin + __k * __delta); |
2903 | |
2904 | _M_den.reserve(__n); |
2905 | for (size_t __k = 0; __k < __nw; ++__k) |
2906 | _M_den.push_back(__fw(_M_int[__k] + 0.5 * __delta)); |
2907 | |
2908 | _M_initialize(); |
2909 | } |
2910 | |
2911 | template<typename _RealType> |
2912 | template<typename _UniformRandomNumberGenerator> |
2913 | typename piecewise_constant_distribution<_RealType>::result_type |
2914 | piecewise_constant_distribution<_RealType>:: |
2915 | operator()(_UniformRandomNumberGenerator& __urng, |
2916 | const param_type& __param) |
2917 | { |
2918 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
2919 | __aurng(__urng); |
2920 | |
2921 | const double __p = __aurng(); |
2922 | if (__param._M_cp.empty()) |
2923 | return __p; |
2924 | |
2925 | auto __pos = std::lower_bound(__param._M_cp.begin(), |
2926 | __param._M_cp.end(), __p); |
2927 | const size_t __i = __pos - __param._M_cp.begin(); |
2928 | |
2929 | const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0; |
2930 | |
2931 | return __param._M_int[__i] + (__p - __pref) / __param._M_den[__i]; |
2932 | } |
2933 | |
2934 | template<typename _RealType> |
2935 | template<typename _ForwardIterator, |
2936 | typename _UniformRandomNumberGenerator> |
2937 | void |
2938 | piecewise_constant_distribution<_RealType>:: |
2939 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2940 | _UniformRandomNumberGenerator& __urng, |
2941 | const param_type& __param) |
2942 | { |
2943 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2944 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
2945 | __aurng(__urng); |
2946 | |
2947 | if (__param._M_cp.empty()) |
2948 | { |
2949 | while (__f != __t) |
2950 | *__f++ = __aurng(); |
2951 | return; |
2952 | } |
2953 | |
2954 | while (__f != __t) |
2955 | { |
2956 | const double __p = __aurng(); |
2957 | |
2958 | auto __pos = std::lower_bound(__param._M_cp.begin(), |
2959 | __param._M_cp.end(), __p); |
2960 | const size_t __i = __pos - __param._M_cp.begin(); |
2961 | |
2962 | const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0; |
2963 | |
2964 | *__f++ = (__param._M_int[__i] |
2965 | + (__p - __pref) / __param._M_den[__i]); |
2966 | } |
2967 | } |
2968 | |
2969 | template<typename _RealType, typename _CharT, typename _Traits> |
2970 | std::basic_ostream<_CharT, _Traits>& |
2971 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2972 | const piecewise_constant_distribution<_RealType>& __x) |
2973 | { |
2974 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
2975 | |
2976 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2977 | const _CharT __fill = __os.fill(); |
2978 | const std::streamsize __precision = __os.precision(); |
2979 | const _CharT __space = __os.widen(' '); |
2980 | __os.flags(__ios_base::scientific | __ios_base::left); |
2981 | __os.fill(__space); |
2982 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
2983 | |
2984 | std::vector<_RealType> __int = __x.intervals(); |
2985 | __os << __int.size() - 1; |
2986 | |
2987 | for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit) |
2988 | __os << __space << *__xit; |
2989 | |
2990 | std::vector<double> __den = __x.densities(); |
2991 | for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit) |
2992 | __os << __space << *__dit; |
2993 | |
2994 | __os.flags(__flags); |
2995 | __os.fill(__fill); |
2996 | __os.precision(__precision); |
2997 | return __os; |
2998 | } |
2999 | |
3000 | template<typename _RealType, typename _CharT, typename _Traits> |
3001 | std::basic_istream<_CharT, _Traits>& |
3002 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
3003 | piecewise_constant_distribution<_RealType>& __x) |
3004 | { |
3005 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
3006 | |
3007 | const typename __ios_base::fmtflags __flags = __is.flags(); |
3008 | __is.flags(__ios_base::dec | __ios_base::skipws); |
3009 | |
3010 | size_t __n; |
3011 | if (__is >> __n) |
3012 | { |
3013 | std::vector<_RealType> __int_vec; |
3014 | if (__detail::__extract_params(__is, __int_vec, __n + 1)) |
3015 | { |
3016 | std::vector<double> __den_vec; |
3017 | if (__detail::__extract_params(__is, __den_vec, __n)) |
3018 | { |
3019 | __x.param({ __int_vec.begin(), __int_vec.end(), |
3020 | __den_vec.begin() }); |
3021 | } |
3022 | } |
3023 | } |
3024 | |
3025 | __is.flags(__flags); |
3026 | return __is; |
3027 | } |
3028 | |
3029 | |
3030 | template<typename _RealType> |
3031 | void |
3032 | piecewise_linear_distribution<_RealType>::param_type:: |
3033 | _M_initialize() |
3034 | { |
3035 | if (_M_int.size() < 2 |
3036 | || (_M_int.size() == 2 |
3037 | && _M_int[0] == _RealType(0) |
3038 | && _M_int[1] == _RealType(1) |
3039 | && _M_den[0] == _M_den[1])) |
3040 | { |
3041 | _M_int.clear(); |
3042 | _M_den.clear(); |
3043 | return; |
3044 | } |
3045 | |
3046 | double __sum = 0.0; |
3047 | _M_cp.reserve(n: _M_int.size() - 1); |
3048 | _M_m.reserve(n: _M_int.size() - 1); |
3049 | for (size_t __k = 0; __k < _M_int.size() - 1; ++__k) |
3050 | { |
3051 | const _RealType __delta = _M_int[__k + 1] - _M_int[__k]; |
3052 | __sum += 0.5 * (_M_den[__k + 1] + _M_den[__k]) * __delta; |
3053 | _M_cp.push_back(x: __sum); |
3054 | _M_m.push_back((_M_den[__k + 1] - _M_den[__k]) / __delta); |
3055 | } |
3056 | __glibcxx_assert(__sum > 0); |
3057 | |
3058 | // Now normalize the densities... |
3059 | __detail::__normalize(first: _M_den.begin(), last: _M_den.end(), result: _M_den.begin(), |
3060 | factor: __sum); |
3061 | // ... and partial sums... |
3062 | __detail::__normalize(first: _M_cp.begin(), last: _M_cp.end(), result: _M_cp.begin(), factor: __sum); |
3063 | // ... and slopes. |
3064 | __detail::__normalize(first: _M_m.begin(), last: _M_m.end(), result: _M_m.begin(), factor: __sum); |
3065 | |
3066 | // Make sure the last cumulative probablility is one. |
3067 | _M_cp[_M_cp.size() - 1] = 1.0; |
3068 | } |
3069 | |
3070 | template<typename _RealType> |
3071 | template<typename _InputIteratorB, typename _InputIteratorW> |
3072 | piecewise_linear_distribution<_RealType>::param_type:: |
3073 | param_type(_InputIteratorB __bbegin, |
3074 | _InputIteratorB __bend, |
3075 | _InputIteratorW __wbegin) |
3076 | : _M_int(), _M_den(), _M_cp(), _M_m() |
3077 | { |
3078 | for (; __bbegin != __bend; ++__bbegin, ++__wbegin) |
3079 | { |
3080 | _M_int.push_back(*__bbegin); |
3081 | _M_den.push_back(*__wbegin); |
3082 | } |
3083 | |
3084 | _M_initialize(); |
3085 | } |
3086 | |
3087 | template<typename _RealType> |
3088 | template<typename _Func> |
3089 | piecewise_linear_distribution<_RealType>::param_type:: |
3090 | param_type(initializer_list<_RealType> __bl, _Func __fw) |
3091 | : _M_int(), _M_den(), _M_cp(), _M_m() |
3092 | { |
3093 | _M_int.reserve(__bl.size()); |
3094 | _M_den.reserve(n: __bl.size()); |
3095 | for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter) |
3096 | { |
3097 | _M_int.push_back(*__biter); |
3098 | _M_den.push_back(__fw(*__biter)); |
3099 | } |
3100 | |
3101 | _M_initialize(); |
3102 | } |
3103 | |
3104 | template<typename _RealType> |
3105 | template<typename _Func> |
3106 | piecewise_linear_distribution<_RealType>::param_type:: |
3107 | param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw) |
3108 | : _M_int(), _M_den(), _M_cp(), _M_m() |
3109 | { |
3110 | const size_t __n = __nw == 0 ? 1 : __nw; |
3111 | const _RealType __delta = (__xmax - __xmin) / __n; |
3112 | |
3113 | _M_int.reserve(__n + 1); |
3114 | _M_den.reserve(n: __n + 1); |
3115 | for (size_t __k = 0; __k <= __nw; ++__k) |
3116 | { |
3117 | _M_int.push_back(__xmin + __k * __delta); |
3118 | _M_den.push_back(__fw(_M_int[__k] + __delta)); |
3119 | } |
3120 | |
3121 | _M_initialize(); |
3122 | } |
3123 | |
3124 | template<typename _RealType> |
3125 | template<typename _UniformRandomNumberGenerator> |
3126 | typename piecewise_linear_distribution<_RealType>::result_type |
3127 | piecewise_linear_distribution<_RealType>:: |
3128 | operator()(_UniformRandomNumberGenerator& __urng, |
3129 | const param_type& __param) |
3130 | { |
3131 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
3132 | __aurng(__urng); |
3133 | |
3134 | const double __p = __aurng(); |
3135 | if (__param._M_cp.empty()) |
3136 | return __p; |
3137 | |
3138 | auto __pos = std::lower_bound(__param._M_cp.begin(), |
3139 | __param._M_cp.end(), __p); |
3140 | const size_t __i = __pos - __param._M_cp.begin(); |
3141 | |
3142 | const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0; |
3143 | |
3144 | const double __a = 0.5 * __param._M_m[__i]; |
3145 | const double __b = __param._M_den[__i]; |
3146 | const double __cm = __p - __pref; |
3147 | |
3148 | _RealType __x = __param._M_int[__i]; |
3149 | if (__a == 0) |
3150 | __x += __cm / __b; |
3151 | else |
3152 | { |
3153 | const double __d = __b * __b + 4.0 * __a * __cm; |
3154 | __x += 0.5 * (std::sqrt(x: __d) - __b) / __a; |
3155 | } |
3156 | |
3157 | return __x; |
3158 | } |
3159 | |
3160 | template<typename _RealType> |
3161 | template<typename _ForwardIterator, |
3162 | typename _UniformRandomNumberGenerator> |
3163 | void |
3164 | piecewise_linear_distribution<_RealType>:: |
3165 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
3166 | _UniformRandomNumberGenerator& __urng, |
3167 | const param_type& __param) |
3168 | { |
3169 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
3170 | // We could duplicate everything from operator()... |
3171 | while (__f != __t) |
3172 | *__f++ = this->operator()(__urng, __param); |
3173 | } |
3174 | |
3175 | template<typename _RealType, typename _CharT, typename _Traits> |
3176 | std::basic_ostream<_CharT, _Traits>& |
3177 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
3178 | const piecewise_linear_distribution<_RealType>& __x) |
3179 | { |
3180 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
3181 | |
3182 | const typename __ios_base::fmtflags __flags = __os.flags(); |
3183 | const _CharT __fill = __os.fill(); |
3184 | const std::streamsize __precision = __os.precision(); |
3185 | const _CharT __space = __os.widen(' '); |
3186 | __os.flags(__ios_base::scientific | __ios_base::left); |
3187 | __os.fill(__space); |
3188 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
3189 | |
3190 | std::vector<_RealType> __int = __x.intervals(); |
3191 | __os << __int.size() - 1; |
3192 | |
3193 | for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit) |
3194 | __os << __space << *__xit; |
3195 | |
3196 | std::vector<double> __den = __x.densities(); |
3197 | for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit) |
3198 | __os << __space << *__dit; |
3199 | |
3200 | __os.flags(__flags); |
3201 | __os.fill(__fill); |
3202 | __os.precision(__precision); |
3203 | return __os; |
3204 | } |
3205 | |
3206 | template<typename _RealType, typename _CharT, typename _Traits> |
3207 | std::basic_istream<_CharT, _Traits>& |
3208 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
3209 | piecewise_linear_distribution<_RealType>& __x) |
3210 | { |
3211 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
3212 | |
3213 | const typename __ios_base::fmtflags __flags = __is.flags(); |
3214 | __is.flags(__ios_base::dec | __ios_base::skipws); |
3215 | |
3216 | size_t __n; |
3217 | if (__is >> __n) |
3218 | { |
3219 | vector<_RealType> __int_vec; |
3220 | if (__detail::__extract_params(__is, __int_vec, __n + 1)) |
3221 | { |
3222 | vector<double> __den_vec; |
3223 | if (__detail::__extract_params(__is, __den_vec, __n + 1)) |
3224 | { |
3225 | __x.param({ __int_vec.begin(), __int_vec.end(), |
3226 | __den_vec.begin() }); |
3227 | } |
3228 | } |
3229 | } |
3230 | __is.flags(__flags); |
3231 | return __is; |
3232 | } |
3233 | |
3234 | |
3235 | template<typename _IntType, typename> |
3236 | seed_seq::seed_seq(std::initializer_list<_IntType> __il) |
3237 | { |
3238 | _M_v.reserve(n: __il.size()); |
3239 | for (auto __iter = __il.begin(); __iter != __il.end(); ++__iter) |
3240 | _M_v.push_back(__detail::__mod<result_type, |
3241 | __detail::_Shift<result_type, 32>::__value>(*__iter)); |
3242 | } |
3243 | |
3244 | template<typename _InputIterator> |
3245 | seed_seq::seed_seq(_InputIterator __begin, _InputIterator __end) |
3246 | { |
3247 | if _GLIBCXX17_CONSTEXPR (__is_random_access_iter<_InputIterator>::value) |
3248 | _M_v.reserve(n: std::distance(__begin, __end)); |
3249 | |
3250 | for (_InputIterator __iter = __begin; __iter != __end; ++__iter) |
3251 | _M_v.push_back(__detail::__mod<result_type, |
3252 | __detail::_Shift<result_type, 32>::__value>(*__iter)); |
3253 | } |
3254 | |
3255 | template<typename _RandomAccessIterator> |
3256 | void |
3257 | seed_seq::generate(_RandomAccessIterator __begin, |
3258 | _RandomAccessIterator __end) |
3259 | { |
3260 | typedef typename iterator_traits<_RandomAccessIterator>::value_type |
3261 | _Type; |
3262 | |
3263 | if (__begin == __end) |
3264 | return; |
3265 | |
3266 | std::fill(__begin, __end, _Type(0x8b8b8b8bu)); |
3267 | |
3268 | const size_t __n = __end - __begin; |
3269 | const size_t __s = _M_v.size(); |
3270 | const size_t __t = (__n >= 623) ? 11 |
3271 | : (__n >= 68) ? 7 |
3272 | : (__n >= 39) ? 5 |
3273 | : (__n >= 7) ? 3 |
3274 | : (__n - 1) / 2; |
3275 | const size_t __p = (__n - __t) / 2; |
3276 | const size_t __q = __p + __t; |
3277 | const size_t __m = std::max(a: size_t(__s + 1), b: __n); |
3278 | |
3279 | #ifndef __UINT32_TYPE__ |
3280 | struct _Up |
3281 | { |
3282 | _Up(uint_least32_t v) : _M_v(v & 0xffffffffu) { } |
3283 | |
3284 | operator uint_least32_t() const { return _M_v; } |
3285 | |
3286 | uint_least32_t _M_v; |
3287 | }; |
3288 | using uint32_t = _Up; |
3289 | #endif |
3290 | |
3291 | // k == 0, every element in [begin,end) equals 0x8b8b8b8bu |
3292 | { |
3293 | uint32_t __r1 = 1371501266u; |
3294 | uint32_t __r2 = __r1 + __s; |
3295 | __begin[__p] += __r1; |
3296 | __begin[__q] = (uint32_t)__begin[__q] + __r2; |
3297 | __begin[0] = __r2; |
3298 | } |
3299 | |
3300 | for (size_t __k = 1; __k <= __s; ++__k) |
3301 | { |
3302 | const size_t __kn = __k % __n; |
3303 | const size_t __kpn = (__k + __p) % __n; |
3304 | const size_t __kqn = (__k + __q) % __n; |
3305 | uint32_t __arg = (__begin[__kn] |
3306 | ^ __begin[__kpn] |
3307 | ^ __begin[(__k - 1) % __n]); |
3308 | uint32_t __r1 = 1664525u * (__arg ^ (__arg >> 27)); |
3309 | uint32_t __r2 = __r1 + (uint32_t)__kn + _M_v[__k - 1]; |
3310 | __begin[__kpn] = (uint32_t)__begin[__kpn] + __r1; |
3311 | __begin[__kqn] = (uint32_t)__begin[__kqn] + __r2; |
3312 | __begin[__kn] = __r2; |
3313 | } |
3314 | |
3315 | for (size_t __k = __s + 1; __k < __m; ++__k) |
3316 | { |
3317 | const size_t __kn = __k % __n; |
3318 | const size_t __kpn = (__k + __p) % __n; |
3319 | const size_t __kqn = (__k + __q) % __n; |
3320 | uint32_t __arg = (__begin[__kn] |
3321 | ^ __begin[__kpn] |
3322 | ^ __begin[(__k - 1) % __n]); |
3323 | uint32_t __r1 = 1664525u * (__arg ^ (__arg >> 27)); |
3324 | uint32_t __r2 = __r1 + (uint32_t)__kn; |
3325 | __begin[__kpn] = (uint32_t)__begin[__kpn] + __r1; |
3326 | __begin[__kqn] = (uint32_t)__begin[__kqn] + __r2; |
3327 | __begin[__kn] = __r2; |
3328 | } |
3329 | |
3330 | for (size_t __k = __m; __k < __m + __n; ++__k) |
3331 | { |
3332 | const size_t __kn = __k % __n; |
3333 | const size_t __kpn = (__k + __p) % __n; |
3334 | const size_t __kqn = (__k + __q) % __n; |
3335 | uint32_t __arg = (__begin[__kn] |
3336 | + __begin[__kpn] |
3337 | + __begin[(__k - 1) % __n]); |
3338 | uint32_t __r3 = 1566083941u * (__arg ^ (__arg >> 27)); |
3339 | uint32_t __r4 = __r3 - __kn; |
3340 | __begin[__kpn] ^= __r3; |
3341 | __begin[__kqn] ^= __r4; |
3342 | __begin[__kn] = __r4; |
3343 | } |
3344 | } |
3345 | |
3346 | template<typename _RealType, size_t __bits, |
3347 | typename _UniformRandomNumberGenerator> |
3348 | _RealType |
3349 | generate_canonical(_UniformRandomNumberGenerator& __urng) |
3350 | { |
3351 | static_assert(std::is_floating_point<_RealType>::value, |
3352 | "template argument must be a floating point type" ); |
3353 | |
3354 | const size_t __b |
3355 | = std::min(a: static_cast<size_t>(std::numeric_limits<_RealType>::digits), |
3356 | b: __bits); |
3357 | const long double __r = static_cast<long double>(__urng.max()) |
3358 | - static_cast<long double>(__urng.min()) + 1.0L; |
3359 | const size_t __log2r = std::log(x: __r) / std::log(x: 2.0L); |
3360 | const size_t __m = std::max<size_t>(a: 1UL, |
3361 | b: (__b + __log2r - 1UL) / __log2r); |
3362 | _RealType __ret; |
3363 | _RealType __sum = _RealType(0); |
3364 | _RealType __tmp = _RealType(1); |
3365 | for (size_t __k = __m; __k != 0; --__k) |
3366 | { |
3367 | __sum += _RealType(__urng() - __urng.min()) * __tmp; |
3368 | __tmp *= __r; |
3369 | } |
3370 | __ret = __sum / __tmp; |
3371 | if (__builtin_expect(__ret >= _RealType(1), 0)) |
3372 | { |
3373 | #if _GLIBCXX_USE_C99_MATH_FUNCS |
3374 | __ret = std::nextafter(_RealType(1), _RealType(0)); |
3375 | #else |
3376 | __ret = _RealType(1) |
3377 | - std::numeric_limits<_RealType>::epsilon() / _RealType(2); |
3378 | #endif |
3379 | } |
3380 | return __ret; |
3381 | } |
3382 | |
3383 | _GLIBCXX_END_NAMESPACE_VERSION |
3384 | } // namespace |
3385 | |
3386 | #endif |
3387 | |