1 | //===--- Value.h - Definition of interpreter value --------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Value is a lightweight struct that is used for carrying execution results in |
10 | // clang-repl. It's a special runtime that acts like a messager between compiled |
11 | // code and interpreted code. This makes it possible to exchange interesting |
12 | // information between the compiled & interpreted world. |
13 | // |
14 | // A typical usage is like the below: |
15 | // |
16 | // Value V; |
17 | // Interp.ParseAndExecute("int x = 42;"); |
18 | // Interp.ParseAndExecute("x", &V); |
19 | // V.getType(); // <-- Yields a clang::QualType. |
20 | // V.getInt(); // <-- Yields 42. |
21 | // |
22 | // The current design is still highly experimental and nobody should rely on the |
23 | // API being stable because we're hopefully going to make significant changes to |
24 | // it in the relatively near future. For example, Value also intends to be used |
25 | // as an exchange token for JIT support enabling remote execution on the embed |
26 | // devices where the JIT infrastructure cannot fit. To support that we will need |
27 | // to split the memory storage in a different place and perhaps add a resource |
28 | // header is similar to intrinsics headers which have stricter performance |
29 | // constraints. |
30 | // |
31 | //===----------------------------------------------------------------------===// |
32 | |
33 | #ifndef LLVM_CLANG_INTERPRETER_VALUE_H |
34 | #define LLVM_CLANG_INTERPRETER_VALUE_H |
35 | |
36 | #include "llvm/Support/Compiler.h" |
37 | #include <cstdint> |
38 | |
39 | // NOTE: Since the REPL itself could also include this runtime, extreme caution |
40 | // should be taken when MAKING CHANGES to this file, especially when INCLUDE NEW |
41 | // HEADERS, like <string>, <memory> and etc. (That pulls a large number of |
42 | // tokens and will impact the runtime performance of the REPL) |
43 | |
44 | namespace llvm { |
45 | class raw_ostream; |
46 | |
47 | } // namespace llvm |
48 | |
49 | namespace clang { |
50 | |
51 | class ASTContext; |
52 | class Interpreter; |
53 | class QualType; |
54 | |
55 | #if defined(_WIN32) |
56 | // REPL_EXTERNAL_VISIBILITY are symbols that we need to be able to locate |
57 | // at runtime. On Windows, this requires them to be exported from any of the |
58 | // modules loaded at runtime. Marking them as dllexport achieves this; both |
59 | // for DLLs (that normally export symbols as part of their interface) and for |
60 | // EXEs (that normally don't export anything). |
61 | // For a build with libclang-cpp.dll, this doesn't make any difference - the |
62 | // functions would have been exported anyway. But for cases when these are |
63 | // statically linked into an EXE, it makes sure that they're exported. |
64 | #define REPL_EXTERNAL_VISIBILITY __declspec(dllexport) |
65 | #elif __has_attribute(visibility) |
66 | #if defined(LLVM_BUILD_LLVM_DYLIB) || defined(LLVM_BUILD_SHARED_LIBS) |
67 | #define REPL_EXTERNAL_VISIBILITY __attribute__((visibility("default"))) |
68 | #else |
69 | #define REPL_EXTERNAL_VISIBILITY |
70 | #endif |
71 | #else |
72 | #define REPL_EXTERNAL_VISIBILITY |
73 | #endif |
74 | |
75 | #define REPL_BUILTIN_TYPES \ |
76 | X(bool, Bool) \ |
77 | X(char, Char_S) \ |
78 | X(signed char, SChar) \ |
79 | X(unsigned char, Char_U) \ |
80 | X(unsigned char, UChar) \ |
81 | X(short, Short) \ |
82 | X(unsigned short, UShort) \ |
83 | X(int, Int) \ |
84 | X(unsigned int, UInt) \ |
85 | X(long, Long) \ |
86 | X(unsigned long, ULong) \ |
87 | X(long long, LongLong) \ |
88 | X(unsigned long long, ULongLong) \ |
89 | X(float, Float) \ |
90 | X(double, Double) \ |
91 | X(long double, LongDouble) |
92 | |
93 | class REPL_EXTERNAL_VISIBILITY Value { |
94 | union Storage { |
95 | #define X(type, name) type m_##name; |
96 | REPL_BUILTIN_TYPES |
97 | #undef X |
98 | void *m_Ptr; |
99 | }; |
100 | |
101 | public: |
102 | enum Kind { |
103 | #define X(type, name) K_##name, |
104 | REPL_BUILTIN_TYPES |
105 | #undef X |
106 | |
107 | K_Void, |
108 | K_PtrOrObj, |
109 | K_Unspecified |
110 | }; |
111 | |
112 | Value() = default; |
113 | Value(Interpreter *In, void *Ty); |
114 | Value(const Value &RHS); |
115 | Value(Value &&RHS) noexcept; |
116 | Value &operator=(const Value &RHS); |
117 | Value &operator=(Value &&RHS) noexcept; |
118 | ~Value(); |
119 | |
120 | void printType(llvm::raw_ostream &Out) const; |
121 | void printData(llvm::raw_ostream &Out) const; |
122 | void print(llvm::raw_ostream &Out) const; |
123 | void dump() const; |
124 | void clear(); |
125 | |
126 | ASTContext &getASTContext(); |
127 | const ASTContext &getASTContext() const; |
128 | Interpreter &getInterpreter(); |
129 | const Interpreter &getInterpreter() const; |
130 | QualType getType() const; |
131 | |
132 | bool isValid() const { return ValueKind != K_Unspecified; } |
133 | bool isVoid() const { return ValueKind == K_Void; } |
134 | bool hasValue() const { return isValid() && !isVoid(); } |
135 | bool isManuallyAlloc() const { return IsManuallyAlloc; } |
136 | Kind getKind() const { return ValueKind; } |
137 | void setKind(Kind K) { ValueKind = K; } |
138 | void setOpaqueType(void *Ty) { OpaqueType = Ty; } |
139 | |
140 | void *getPtr() const; |
141 | void setPtr(void *Ptr) { Data.m_Ptr = Ptr; } |
142 | |
143 | #define X(type, name) \ |
144 | void set##name(type Val) { Data.m_##name = Val; } \ |
145 | type get##name() const { return Data.m_##name; } |
146 | REPL_BUILTIN_TYPES |
147 | #undef X |
148 | |
149 | /// \brief Get the value with cast. |
150 | // |
151 | /// Get the value cast to T. This is similar to reinterpret_cast<T>(value), |
152 | /// casting the value of builtins (except void), enums and pointers. |
153 | /// Values referencing an object are treated as pointers to the object. |
154 | template <typename T> T convertTo() const { |
155 | return convertFwd<T>::cast(*this); |
156 | } |
157 | |
158 | protected: |
159 | bool isPointerOrObjectType() const { return ValueKind == K_PtrOrObj; } |
160 | |
161 | /// \brief Get to the value with type checking casting the underlying |
162 | /// stored value to T. |
163 | template <typename T> T as() const { |
164 | switch (ValueKind) { |
165 | default: |
166 | return T(); |
167 | #define X(type, name) \ |
168 | case Value::K_##name: \ |
169 | return (T)Data.m_##name; |
170 | REPL_BUILTIN_TYPES |
171 | #undef X |
172 | } |
173 | } |
174 | |
175 | // Allow convertTo to be partially specialized. |
176 | template <typename T> struct convertFwd { |
177 | static T cast(const Value &V) { |
178 | if (V.isPointerOrObjectType()) |
179 | return (T)(uintptr_t)V.as<void *>(); |
180 | if (!V.isValid() || V.isVoid()) { |
181 | return T(); |
182 | } |
183 | return V.as<T>(); |
184 | } |
185 | }; |
186 | |
187 | template <typename T> struct convertFwd<T *> { |
188 | static T *cast(const Value &V) { |
189 | if (V.isPointerOrObjectType()) |
190 | return (T *)(uintptr_t)V.as<void *>(); |
191 | return nullptr; |
192 | } |
193 | }; |
194 | |
195 | Interpreter *Interp = nullptr; |
196 | void *OpaqueType = nullptr; |
197 | Storage Data; |
198 | Kind ValueKind = K_Unspecified; |
199 | bool IsManuallyAlloc = false; |
200 | }; |
201 | |
202 | template <> inline void *Value::as() const { |
203 | if (isPointerOrObjectType()) |
204 | return Data.m_Ptr; |
205 | return (void *)as<uintptr_t>(); |
206 | } |
207 | |
208 | } // namespace clang |
209 | #endif |
210 | |