1 | //===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This contains code dealing with generation of the layout of virtual tables. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/AST/VTableBuilder.h" |
14 | #include "clang/AST/ASTContext.h" |
15 | #include "clang/AST/ASTDiagnostic.h" |
16 | #include "clang/AST/CXXInheritance.h" |
17 | #include "clang/AST/RecordLayout.h" |
18 | #include "clang/Basic/TargetInfo.h" |
19 | #include "llvm/ADT/SetOperations.h" |
20 | #include "llvm/ADT/SetVector.h" |
21 | #include "llvm/ADT/SmallPtrSet.h" |
22 | #include "llvm/Support/Format.h" |
23 | #include "llvm/Support/raw_ostream.h" |
24 | #include <algorithm> |
25 | #include <cstdio> |
26 | |
27 | using namespace clang; |
28 | |
29 | #define DUMP_OVERRIDERS 0 |
30 | |
31 | namespace { |
32 | |
33 | /// BaseOffset - Represents an offset from a derived class to a direct or |
34 | /// indirect base class. |
35 | struct BaseOffset { |
36 | /// DerivedClass - The derived class. |
37 | const CXXRecordDecl *DerivedClass; |
38 | |
39 | /// VirtualBase - If the path from the derived class to the base class |
40 | /// involves virtual base classes, this holds the declaration of the last |
41 | /// virtual base in this path (i.e. closest to the base class). |
42 | const CXXRecordDecl *VirtualBase; |
43 | |
44 | /// NonVirtualOffset - The offset from the derived class to the base class. |
45 | /// (Or the offset from the virtual base class to the base class, if the |
46 | /// path from the derived class to the base class involves a virtual base |
47 | /// class. |
48 | CharUnits NonVirtualOffset; |
49 | |
50 | BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr), |
51 | NonVirtualOffset(CharUnits::Zero()) { } |
52 | BaseOffset(const CXXRecordDecl *DerivedClass, |
53 | const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset) |
54 | : DerivedClass(DerivedClass), VirtualBase(VirtualBase), |
55 | NonVirtualOffset(NonVirtualOffset) { } |
56 | |
57 | bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; } |
58 | }; |
59 | |
60 | /// FinalOverriders - Contains the final overrider member functions for all |
61 | /// member functions in the base subobjects of a class. |
62 | class FinalOverriders { |
63 | public: |
64 | /// OverriderInfo - Information about a final overrider. |
65 | struct OverriderInfo { |
66 | /// Method - The method decl of the overrider. |
67 | const CXXMethodDecl *Method; |
68 | |
69 | /// VirtualBase - The virtual base class subobject of this overrider. |
70 | /// Note that this records the closest derived virtual base class subobject. |
71 | const CXXRecordDecl *VirtualBase; |
72 | |
73 | /// Offset - the base offset of the overrider's parent in the layout class. |
74 | CharUnits Offset; |
75 | |
76 | OverriderInfo() : Method(nullptr), VirtualBase(nullptr), |
77 | Offset(CharUnits::Zero()) { } |
78 | }; |
79 | |
80 | private: |
81 | /// MostDerivedClass - The most derived class for which the final overriders |
82 | /// are stored. |
83 | const CXXRecordDecl *MostDerivedClass; |
84 | |
85 | /// MostDerivedClassOffset - If we're building final overriders for a |
86 | /// construction vtable, this holds the offset from the layout class to the |
87 | /// most derived class. |
88 | const CharUnits MostDerivedClassOffset; |
89 | |
90 | /// LayoutClass - The class we're using for layout information. Will be |
91 | /// different than the most derived class if the final overriders are for a |
92 | /// construction vtable. |
93 | const CXXRecordDecl *LayoutClass; |
94 | |
95 | ASTContext &Context; |
96 | |
97 | /// MostDerivedClassLayout - the AST record layout of the most derived class. |
98 | const ASTRecordLayout &MostDerivedClassLayout; |
99 | |
100 | /// MethodBaseOffsetPairTy - Uniquely identifies a member function |
101 | /// in a base subobject. |
102 | typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy; |
103 | |
104 | typedef llvm::DenseMap<MethodBaseOffsetPairTy, |
105 | OverriderInfo> OverridersMapTy; |
106 | |
107 | /// OverridersMap - The final overriders for all virtual member functions of |
108 | /// all the base subobjects of the most derived class. |
109 | OverridersMapTy OverridersMap; |
110 | |
111 | /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented |
112 | /// as a record decl and a subobject number) and its offsets in the most |
113 | /// derived class as well as the layout class. |
114 | typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>, |
115 | CharUnits> SubobjectOffsetMapTy; |
116 | |
117 | typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy; |
118 | |
119 | /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the |
120 | /// given base. |
121 | void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual, |
122 | CharUnits OffsetInLayoutClass, |
123 | SubobjectOffsetMapTy &SubobjectOffsets, |
124 | SubobjectOffsetMapTy &SubobjectLayoutClassOffsets, |
125 | SubobjectCountMapTy &SubobjectCounts); |
126 | |
127 | typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; |
128 | |
129 | /// dump - dump the final overriders for a base subobject, and all its direct |
130 | /// and indirect base subobjects. |
131 | void dump(raw_ostream &Out, BaseSubobject Base, |
132 | VisitedVirtualBasesSetTy& VisitedVirtualBases); |
133 | |
134 | public: |
135 | FinalOverriders(const CXXRecordDecl *MostDerivedClass, |
136 | CharUnits MostDerivedClassOffset, |
137 | const CXXRecordDecl *LayoutClass); |
138 | |
139 | /// getOverrider - Get the final overrider for the given method declaration in |
140 | /// the subobject with the given base offset. |
141 | OverriderInfo getOverrider(const CXXMethodDecl *MD, |
142 | CharUnits BaseOffset) const { |
143 | assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) && |
144 | "Did not find overrider!" ); |
145 | |
146 | return OverridersMap.lookup(Val: std::make_pair(x&: MD, y&: BaseOffset)); |
147 | } |
148 | |
149 | /// dump - dump the final overriders. |
150 | void dump() { |
151 | VisitedVirtualBasesSetTy VisitedVirtualBases; |
152 | dump(Out&: llvm::errs(), Base: BaseSubobject(MostDerivedClass, CharUnits::Zero()), |
153 | VisitedVirtualBases); |
154 | } |
155 | |
156 | }; |
157 | |
158 | FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass, |
159 | CharUnits MostDerivedClassOffset, |
160 | const CXXRecordDecl *LayoutClass) |
161 | : MostDerivedClass(MostDerivedClass), |
162 | MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass), |
163 | Context(MostDerivedClass->getASTContext()), |
164 | MostDerivedClassLayout(Context.getASTRecordLayout(D: MostDerivedClass)) { |
165 | |
166 | // Compute base offsets. |
167 | SubobjectOffsetMapTy SubobjectOffsets; |
168 | SubobjectOffsetMapTy SubobjectLayoutClassOffsets; |
169 | SubobjectCountMapTy SubobjectCounts; |
170 | ComputeBaseOffsets(Base: BaseSubobject(MostDerivedClass, CharUnits::Zero()), |
171 | /*IsVirtual=*/false, |
172 | OffsetInLayoutClass: MostDerivedClassOffset, |
173 | SubobjectOffsets, SubobjectLayoutClassOffsets, |
174 | SubobjectCounts); |
175 | |
176 | // Get the final overriders. |
177 | CXXFinalOverriderMap FinalOverriders; |
178 | MostDerivedClass->getFinalOverriders(FinaOverriders&: FinalOverriders); |
179 | |
180 | for (const auto &Overrider : FinalOverriders) { |
181 | const CXXMethodDecl *MD = Overrider.first; |
182 | const OverridingMethods &Methods = Overrider.second; |
183 | |
184 | for (const auto &M : Methods) { |
185 | unsigned SubobjectNumber = M.first; |
186 | assert(SubobjectOffsets.count(std::make_pair(MD->getParent(), |
187 | SubobjectNumber)) && |
188 | "Did not find subobject offset!" ); |
189 | |
190 | CharUnits BaseOffset = SubobjectOffsets[std::make_pair(x: MD->getParent(), |
191 | y&: SubobjectNumber)]; |
192 | |
193 | assert(M.second.size() == 1 && "Final overrider is not unique!" ); |
194 | const UniqueVirtualMethod &Method = M.second.front(); |
195 | |
196 | const CXXRecordDecl *OverriderRD = Method.Method->getParent(); |
197 | assert(SubobjectLayoutClassOffsets.count( |
198 | std::make_pair(OverriderRD, Method.Subobject)) |
199 | && "Did not find subobject offset!" ); |
200 | CharUnits OverriderOffset = |
201 | SubobjectLayoutClassOffsets[std::make_pair(x&: OverriderRD, |
202 | y: Method.Subobject)]; |
203 | |
204 | OverriderInfo& Overrider = OverridersMap[std::make_pair(x&: MD, y&: BaseOffset)]; |
205 | assert(!Overrider.Method && "Overrider should not exist yet!" ); |
206 | |
207 | Overrider.Offset = OverriderOffset; |
208 | Overrider.Method = Method.Method; |
209 | Overrider.VirtualBase = Method.InVirtualSubobject; |
210 | } |
211 | } |
212 | |
213 | #if DUMP_OVERRIDERS |
214 | // And dump them (for now). |
215 | dump(); |
216 | #endif |
217 | } |
218 | |
219 | static BaseOffset ComputeBaseOffset(const ASTContext &Context, |
220 | const CXXRecordDecl *DerivedRD, |
221 | const CXXBasePath &Path) { |
222 | CharUnits NonVirtualOffset = CharUnits::Zero(); |
223 | |
224 | unsigned NonVirtualStart = 0; |
225 | const CXXRecordDecl *VirtualBase = nullptr; |
226 | |
227 | // First, look for the virtual base class. |
228 | for (int I = Path.size(), E = 0; I != E; --I) { |
229 | const CXXBasePathElement &Element = Path[I - 1]; |
230 | |
231 | if (Element.Base->isVirtual()) { |
232 | NonVirtualStart = I; |
233 | QualType VBaseType = Element.Base->getType(); |
234 | VirtualBase = VBaseType->getAsCXXRecordDecl(); |
235 | break; |
236 | } |
237 | } |
238 | |
239 | // Now compute the non-virtual offset. |
240 | for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) { |
241 | const CXXBasePathElement &Element = Path[I]; |
242 | |
243 | // Check the base class offset. |
244 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: Element.Class); |
245 | |
246 | const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl(); |
247 | |
248 | NonVirtualOffset += Layout.getBaseClassOffset(Base); |
249 | } |
250 | |
251 | // FIXME: This should probably use CharUnits or something. Maybe we should |
252 | // even change the base offsets in ASTRecordLayout to be specified in |
253 | // CharUnits. |
254 | return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset); |
255 | |
256 | } |
257 | |
258 | static BaseOffset ComputeBaseOffset(const ASTContext &Context, |
259 | const CXXRecordDecl *BaseRD, |
260 | const CXXRecordDecl *DerivedRD) { |
261 | CXXBasePaths Paths(/*FindAmbiguities=*/false, |
262 | /*RecordPaths=*/true, /*DetectVirtual=*/false); |
263 | |
264 | if (!DerivedRD->isDerivedFrom(Base: BaseRD, Paths)) |
265 | llvm_unreachable("Class must be derived from the passed in base class!" ); |
266 | |
267 | return ComputeBaseOffset(Context, DerivedRD, Path: Paths.front()); |
268 | } |
269 | |
270 | static BaseOffset |
271 | ComputeReturnAdjustmentBaseOffset(ASTContext &Context, |
272 | const CXXMethodDecl *DerivedMD, |
273 | const CXXMethodDecl *BaseMD) { |
274 | const auto *BaseFT = BaseMD->getType()->castAs<FunctionType>(); |
275 | const auto *DerivedFT = DerivedMD->getType()->castAs<FunctionType>(); |
276 | |
277 | // Canonicalize the return types. |
278 | CanQualType CanDerivedReturnType = |
279 | Context.getCanonicalType(T: DerivedFT->getReturnType()); |
280 | CanQualType CanBaseReturnType = |
281 | Context.getCanonicalType(T: BaseFT->getReturnType()); |
282 | |
283 | assert(CanDerivedReturnType->getTypeClass() == |
284 | CanBaseReturnType->getTypeClass() && |
285 | "Types must have same type class!" ); |
286 | |
287 | if (CanDerivedReturnType == CanBaseReturnType) { |
288 | // No adjustment needed. |
289 | return BaseOffset(); |
290 | } |
291 | |
292 | if (isa<ReferenceType>(Val: CanDerivedReturnType)) { |
293 | CanDerivedReturnType = |
294 | CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType(); |
295 | CanBaseReturnType = |
296 | CanBaseReturnType->getAs<ReferenceType>()->getPointeeType(); |
297 | } else if (isa<PointerType>(Val: CanDerivedReturnType)) { |
298 | CanDerivedReturnType = |
299 | CanDerivedReturnType->getAs<PointerType>()->getPointeeType(); |
300 | CanBaseReturnType = |
301 | CanBaseReturnType->getAs<PointerType>()->getPointeeType(); |
302 | } else { |
303 | llvm_unreachable("Unexpected return type!" ); |
304 | } |
305 | |
306 | // We need to compare unqualified types here; consider |
307 | // const T *Base::foo(); |
308 | // T *Derived::foo(); |
309 | if (CanDerivedReturnType.getUnqualifiedType() == |
310 | CanBaseReturnType.getUnqualifiedType()) { |
311 | // No adjustment needed. |
312 | return BaseOffset(); |
313 | } |
314 | |
315 | const CXXRecordDecl *DerivedRD = |
316 | cast<CXXRecordDecl>(Val: cast<RecordType>(Val&: CanDerivedReturnType)->getDecl()); |
317 | |
318 | const CXXRecordDecl *BaseRD = |
319 | cast<CXXRecordDecl>(Val: cast<RecordType>(Val&: CanBaseReturnType)->getDecl()); |
320 | |
321 | return ComputeBaseOffset(Context, BaseRD, DerivedRD); |
322 | } |
323 | |
324 | void |
325 | FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual, |
326 | CharUnits OffsetInLayoutClass, |
327 | SubobjectOffsetMapTy &SubobjectOffsets, |
328 | SubobjectOffsetMapTy &SubobjectLayoutClassOffsets, |
329 | SubobjectCountMapTy &SubobjectCounts) { |
330 | const CXXRecordDecl *RD = Base.getBase(); |
331 | |
332 | unsigned SubobjectNumber = 0; |
333 | if (!IsVirtual) |
334 | SubobjectNumber = ++SubobjectCounts[RD]; |
335 | |
336 | // Set up the subobject to offset mapping. |
337 | assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber)) |
338 | && "Subobject offset already exists!" ); |
339 | assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber)) |
340 | && "Subobject offset already exists!" ); |
341 | |
342 | SubobjectOffsets[std::make_pair(x&: RD, y&: SubobjectNumber)] = Base.getBaseOffset(); |
343 | SubobjectLayoutClassOffsets[std::make_pair(x&: RD, y&: SubobjectNumber)] = |
344 | OffsetInLayoutClass; |
345 | |
346 | // Traverse our bases. |
347 | for (const auto &B : RD->bases()) { |
348 | const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); |
349 | |
350 | CharUnits BaseOffset; |
351 | CharUnits BaseOffsetInLayoutClass; |
352 | if (B.isVirtual()) { |
353 | // Check if we've visited this virtual base before. |
354 | if (SubobjectOffsets.count(Val: std::make_pair(x&: BaseDecl, y: 0))) |
355 | continue; |
356 | |
357 | const ASTRecordLayout &LayoutClassLayout = |
358 | Context.getASTRecordLayout(D: LayoutClass); |
359 | |
360 | BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(VBase: BaseDecl); |
361 | BaseOffsetInLayoutClass = |
362 | LayoutClassLayout.getVBaseClassOffset(VBase: BaseDecl); |
363 | } else { |
364 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD); |
365 | CharUnits Offset = Layout.getBaseClassOffset(Base: BaseDecl); |
366 | |
367 | BaseOffset = Base.getBaseOffset() + Offset; |
368 | BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset; |
369 | } |
370 | |
371 | ComputeBaseOffsets(Base: BaseSubobject(BaseDecl, BaseOffset), |
372 | IsVirtual: B.isVirtual(), OffsetInLayoutClass: BaseOffsetInLayoutClass, |
373 | SubobjectOffsets, SubobjectLayoutClassOffsets, |
374 | SubobjectCounts); |
375 | } |
376 | } |
377 | |
378 | void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base, |
379 | VisitedVirtualBasesSetTy &VisitedVirtualBases) { |
380 | const CXXRecordDecl *RD = Base.getBase(); |
381 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD); |
382 | |
383 | for (const auto &B : RD->bases()) { |
384 | const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); |
385 | |
386 | // Ignore bases that don't have any virtual member functions. |
387 | if (!BaseDecl->isPolymorphic()) |
388 | continue; |
389 | |
390 | CharUnits BaseOffset; |
391 | if (B.isVirtual()) { |
392 | if (!VisitedVirtualBases.insert(Ptr: BaseDecl).second) { |
393 | // We've visited this base before. |
394 | continue; |
395 | } |
396 | |
397 | BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(VBase: BaseDecl); |
398 | } else { |
399 | BaseOffset = Layout.getBaseClassOffset(Base: BaseDecl) + Base.getBaseOffset(); |
400 | } |
401 | |
402 | dump(Out, Base: BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases); |
403 | } |
404 | |
405 | Out << "Final overriders for (" ; |
406 | RD->printQualifiedName(OS&: Out); |
407 | Out << ", " ; |
408 | Out << Base.getBaseOffset().getQuantity() << ")\n" ; |
409 | |
410 | // Now dump the overriders for this base subobject. |
411 | for (const auto *MD : RD->methods()) { |
412 | if (!VTableContextBase::hasVtableSlot(MD)) |
413 | continue; |
414 | MD = MD->getCanonicalDecl(); |
415 | |
416 | OverriderInfo Overrider = getOverrider(MD, BaseOffset: Base.getBaseOffset()); |
417 | |
418 | Out << " " ; |
419 | MD->printQualifiedName(OS&: Out); |
420 | Out << " - (" ; |
421 | Overrider.Method->printQualifiedName(OS&: Out); |
422 | Out << ", " << Overrider.Offset.getQuantity() << ')'; |
423 | |
424 | BaseOffset Offset; |
425 | if (!Overrider.Method->isPureVirtual()) |
426 | Offset = ComputeReturnAdjustmentBaseOffset(Context, DerivedMD: Overrider.Method, BaseMD: MD); |
427 | |
428 | if (!Offset.isEmpty()) { |
429 | Out << " [ret-adj: " ; |
430 | if (Offset.VirtualBase) { |
431 | Offset.VirtualBase->printQualifiedName(OS&: Out); |
432 | Out << " vbase, " ; |
433 | } |
434 | |
435 | Out << Offset.NonVirtualOffset.getQuantity() << " nv]" ; |
436 | } |
437 | |
438 | Out << "\n" ; |
439 | } |
440 | } |
441 | |
442 | /// VCallOffsetMap - Keeps track of vcall offsets when building a vtable. |
443 | struct VCallOffsetMap { |
444 | |
445 | typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy; |
446 | |
447 | /// Offsets - Keeps track of methods and their offsets. |
448 | // FIXME: This should be a real map and not a vector. |
449 | SmallVector<MethodAndOffsetPairTy, 16> Offsets; |
450 | |
451 | /// MethodsCanShareVCallOffset - Returns whether two virtual member functions |
452 | /// can share the same vcall offset. |
453 | static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS, |
454 | const CXXMethodDecl *RHS); |
455 | |
456 | public: |
457 | /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the |
458 | /// add was successful, or false if there was already a member function with |
459 | /// the same signature in the map. |
460 | bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset); |
461 | |
462 | /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the |
463 | /// vtable address point) for the given virtual member function. |
464 | CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD); |
465 | |
466 | // empty - Return whether the offset map is empty or not. |
467 | bool empty() const { return Offsets.empty(); } |
468 | }; |
469 | |
470 | static bool HasSameVirtualSignature(const CXXMethodDecl *LHS, |
471 | const CXXMethodDecl *RHS) { |
472 | const FunctionProtoType *LT = |
473 | cast<FunctionProtoType>(Val: LHS->getType().getCanonicalType()); |
474 | const FunctionProtoType *RT = |
475 | cast<FunctionProtoType>(Val: RHS->getType().getCanonicalType()); |
476 | |
477 | // Fast-path matches in the canonical types. |
478 | if (LT == RT) return true; |
479 | |
480 | // Force the signatures to match. We can't rely on the overrides |
481 | // list here because there isn't necessarily an inheritance |
482 | // relationship between the two methods. |
483 | if (LT->getMethodQuals() != RT->getMethodQuals()) |
484 | return false; |
485 | return LT->getParamTypes() == RT->getParamTypes(); |
486 | } |
487 | |
488 | bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS, |
489 | const CXXMethodDecl *RHS) { |
490 | assert(VTableContextBase::hasVtableSlot(LHS) && "LHS must be virtual!" ); |
491 | assert(VTableContextBase::hasVtableSlot(RHS) && "RHS must be virtual!" ); |
492 | |
493 | // A destructor can share a vcall offset with another destructor. |
494 | if (isa<CXXDestructorDecl>(Val: LHS)) |
495 | return isa<CXXDestructorDecl>(Val: RHS); |
496 | |
497 | // FIXME: We need to check more things here. |
498 | |
499 | // The methods must have the same name. |
500 | DeclarationName LHSName = LHS->getDeclName(); |
501 | DeclarationName RHSName = RHS->getDeclName(); |
502 | if (LHSName != RHSName) |
503 | return false; |
504 | |
505 | // And the same signatures. |
506 | return HasSameVirtualSignature(LHS, RHS); |
507 | } |
508 | |
509 | bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD, |
510 | CharUnits OffsetOffset) { |
511 | // Check if we can reuse an offset. |
512 | for (const auto &OffsetPair : Offsets) { |
513 | if (MethodsCanShareVCallOffset(LHS: OffsetPair.first, RHS: MD)) |
514 | return false; |
515 | } |
516 | |
517 | // Add the offset. |
518 | Offsets.push_back(Elt: MethodAndOffsetPairTy(MD, OffsetOffset)); |
519 | return true; |
520 | } |
521 | |
522 | CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) { |
523 | // Look for an offset. |
524 | for (const auto &OffsetPair : Offsets) { |
525 | if (MethodsCanShareVCallOffset(LHS: OffsetPair.first, RHS: MD)) |
526 | return OffsetPair.second; |
527 | } |
528 | |
529 | llvm_unreachable("Should always find a vcall offset offset!" ); |
530 | } |
531 | |
532 | /// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets. |
533 | class VCallAndVBaseOffsetBuilder { |
534 | public: |
535 | typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> |
536 | VBaseOffsetOffsetsMapTy; |
537 | |
538 | private: |
539 | const ItaniumVTableContext &VTables; |
540 | |
541 | /// MostDerivedClass - The most derived class for which we're building vcall |
542 | /// and vbase offsets. |
543 | const CXXRecordDecl *MostDerivedClass; |
544 | |
545 | /// LayoutClass - The class we're using for layout information. Will be |
546 | /// different than the most derived class if we're building a construction |
547 | /// vtable. |
548 | const CXXRecordDecl *LayoutClass; |
549 | |
550 | /// Context - The ASTContext which we will use for layout information. |
551 | ASTContext &Context; |
552 | |
553 | /// Components - vcall and vbase offset components |
554 | typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy; |
555 | VTableComponentVectorTy Components; |
556 | |
557 | /// VisitedVirtualBases - Visited virtual bases. |
558 | llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases; |
559 | |
560 | /// VCallOffsets - Keeps track of vcall offsets. |
561 | VCallOffsetMap VCallOffsets; |
562 | |
563 | |
564 | /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets, |
565 | /// relative to the address point. |
566 | VBaseOffsetOffsetsMapTy VBaseOffsetOffsets; |
567 | |
568 | /// FinalOverriders - The final overriders of the most derived class. |
569 | /// (Can be null when we're not building a vtable of the most derived class). |
570 | const FinalOverriders *Overriders; |
571 | |
572 | /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the |
573 | /// given base subobject. |
574 | void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual, |
575 | CharUnits RealBaseOffset); |
576 | |
577 | /// AddVCallOffsets - Add vcall offsets for the given base subobject. |
578 | void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset); |
579 | |
580 | /// AddVBaseOffsets - Add vbase offsets for the given class. |
581 | void AddVBaseOffsets(const CXXRecordDecl *Base, |
582 | CharUnits OffsetInLayoutClass); |
583 | |
584 | /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in |
585 | /// chars, relative to the vtable address point. |
586 | CharUnits getCurrentOffsetOffset() const; |
587 | |
588 | public: |
589 | VCallAndVBaseOffsetBuilder(const ItaniumVTableContext &VTables, |
590 | const CXXRecordDecl *MostDerivedClass, |
591 | const CXXRecordDecl *LayoutClass, |
592 | const FinalOverriders *Overriders, |
593 | BaseSubobject Base, bool BaseIsVirtual, |
594 | CharUnits OffsetInLayoutClass) |
595 | : VTables(VTables), MostDerivedClass(MostDerivedClass), |
596 | LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()), |
597 | Overriders(Overriders) { |
598 | |
599 | // Add vcall and vbase offsets. |
600 | AddVCallAndVBaseOffsets(Base, BaseIsVirtual, RealBaseOffset: OffsetInLayoutClass); |
601 | } |
602 | |
603 | /// Methods for iterating over the components. |
604 | typedef VTableComponentVectorTy::const_reverse_iterator const_iterator; |
605 | const_iterator components_begin() const { return Components.rbegin(); } |
606 | const_iterator components_end() const { return Components.rend(); } |
607 | |
608 | const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; } |
609 | const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const { |
610 | return VBaseOffsetOffsets; |
611 | } |
612 | }; |
613 | |
614 | void |
615 | VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base, |
616 | bool BaseIsVirtual, |
617 | CharUnits RealBaseOffset) { |
618 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: Base.getBase()); |
619 | |
620 | // Itanium C++ ABI 2.5.2: |
621 | // ..in classes sharing a virtual table with a primary base class, the vcall |
622 | // and vbase offsets added by the derived class all come before the vcall |
623 | // and vbase offsets required by the base class, so that the latter may be |
624 | // laid out as required by the base class without regard to additions from |
625 | // the derived class(es). |
626 | |
627 | // (Since we're emitting the vcall and vbase offsets in reverse order, we'll |
628 | // emit them for the primary base first). |
629 | if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { |
630 | bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual(); |
631 | |
632 | CharUnits PrimaryBaseOffset; |
633 | |
634 | // Get the base offset of the primary base. |
635 | if (PrimaryBaseIsVirtual) { |
636 | assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && |
637 | "Primary vbase should have a zero offset!" ); |
638 | |
639 | const ASTRecordLayout &MostDerivedClassLayout = |
640 | Context.getASTRecordLayout(D: MostDerivedClass); |
641 | |
642 | PrimaryBaseOffset = |
643 | MostDerivedClassLayout.getVBaseClassOffset(VBase: PrimaryBase); |
644 | } else { |
645 | assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && |
646 | "Primary base should have a zero offset!" ); |
647 | |
648 | PrimaryBaseOffset = Base.getBaseOffset(); |
649 | } |
650 | |
651 | AddVCallAndVBaseOffsets( |
652 | Base: BaseSubobject(PrimaryBase,PrimaryBaseOffset), |
653 | BaseIsVirtual: PrimaryBaseIsVirtual, RealBaseOffset); |
654 | } |
655 | |
656 | AddVBaseOffsets(Base: Base.getBase(), OffsetInLayoutClass: RealBaseOffset); |
657 | |
658 | // We only want to add vcall offsets for virtual bases. |
659 | if (BaseIsVirtual) |
660 | AddVCallOffsets(Base, VBaseOffset: RealBaseOffset); |
661 | } |
662 | |
663 | CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const { |
664 | // OffsetIndex is the index of this vcall or vbase offset, relative to the |
665 | // vtable address point. (We subtract 3 to account for the information just |
666 | // above the address point, the RTTI info, the offset to top, and the |
667 | // vcall offset itself). |
668 | size_t NumComponentsAboveAddrPoint = 3; |
669 | if (Context.getLangOpts().OmitVTableRTTI) |
670 | NumComponentsAboveAddrPoint--; |
671 | int64_t OffsetIndex = |
672 | -(int64_t)(NumComponentsAboveAddrPoint + Components.size()); |
673 | |
674 | // Under the relative ABI, the offset widths are 32-bit ints instead of |
675 | // pointer widths. |
676 | CharUnits OffsetWidth = Context.toCharUnitsFromBits( |
677 | BitSize: VTables.isRelativeLayout() |
678 | ? 32 |
679 | : Context.getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default)); |
680 | CharUnits OffsetOffset = OffsetWidth * OffsetIndex; |
681 | |
682 | return OffsetOffset; |
683 | } |
684 | |
685 | void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base, |
686 | CharUnits VBaseOffset) { |
687 | const CXXRecordDecl *RD = Base.getBase(); |
688 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD); |
689 | |
690 | const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); |
691 | |
692 | // Handle the primary base first. |
693 | // We only want to add vcall offsets if the base is non-virtual; a virtual |
694 | // primary base will have its vcall and vbase offsets emitted already. |
695 | if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) { |
696 | // Get the base offset of the primary base. |
697 | assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && |
698 | "Primary base should have a zero offset!" ); |
699 | |
700 | AddVCallOffsets(Base: BaseSubobject(PrimaryBase, Base.getBaseOffset()), |
701 | VBaseOffset); |
702 | } |
703 | |
704 | // Add the vcall offsets. |
705 | for (const auto *MD : RD->methods()) { |
706 | if (!VTableContextBase::hasVtableSlot(MD)) |
707 | continue; |
708 | MD = MD->getCanonicalDecl(); |
709 | |
710 | CharUnits OffsetOffset = getCurrentOffsetOffset(); |
711 | |
712 | // Don't add a vcall offset if we already have one for this member function |
713 | // signature. |
714 | if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset)) |
715 | continue; |
716 | |
717 | CharUnits Offset = CharUnits::Zero(); |
718 | |
719 | if (Overriders) { |
720 | // Get the final overrider. |
721 | FinalOverriders::OverriderInfo Overrider = |
722 | Overriders->getOverrider(MD, BaseOffset: Base.getBaseOffset()); |
723 | |
724 | /// The vcall offset is the offset from the virtual base to the object |
725 | /// where the function was overridden. |
726 | Offset = Overrider.Offset - VBaseOffset; |
727 | } |
728 | |
729 | Components.push_back( |
730 | Elt: VTableComponent::MakeVCallOffset(Offset)); |
731 | } |
732 | |
733 | // And iterate over all non-virtual bases (ignoring the primary base). |
734 | for (const auto &B : RD->bases()) { |
735 | if (B.isVirtual()) |
736 | continue; |
737 | |
738 | const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); |
739 | if (BaseDecl == PrimaryBase) |
740 | continue; |
741 | |
742 | // Get the base offset of this base. |
743 | CharUnits BaseOffset = Base.getBaseOffset() + |
744 | Layout.getBaseClassOffset(Base: BaseDecl); |
745 | |
746 | AddVCallOffsets(Base: BaseSubobject(BaseDecl, BaseOffset), |
747 | VBaseOffset); |
748 | } |
749 | } |
750 | |
751 | void |
752 | VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD, |
753 | CharUnits OffsetInLayoutClass) { |
754 | const ASTRecordLayout &LayoutClassLayout = |
755 | Context.getASTRecordLayout(D: LayoutClass); |
756 | |
757 | // Add vbase offsets. |
758 | for (const auto &B : RD->bases()) { |
759 | const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); |
760 | |
761 | // Check if this is a virtual base that we haven't visited before. |
762 | if (B.isVirtual() && VisitedVirtualBases.insert(Ptr: BaseDecl).second) { |
763 | CharUnits Offset = |
764 | LayoutClassLayout.getVBaseClassOffset(VBase: BaseDecl) - OffsetInLayoutClass; |
765 | |
766 | // Add the vbase offset offset. |
767 | assert(!VBaseOffsetOffsets.count(BaseDecl) && |
768 | "vbase offset offset already exists!" ); |
769 | |
770 | CharUnits VBaseOffsetOffset = getCurrentOffsetOffset(); |
771 | VBaseOffsetOffsets.insert( |
772 | KV: std::make_pair(x&: BaseDecl, y&: VBaseOffsetOffset)); |
773 | |
774 | Components.push_back( |
775 | Elt: VTableComponent::MakeVBaseOffset(Offset)); |
776 | } |
777 | |
778 | // Check the base class looking for more vbase offsets. |
779 | AddVBaseOffsets(RD: BaseDecl, OffsetInLayoutClass); |
780 | } |
781 | } |
782 | |
783 | /// ItaniumVTableBuilder - Class for building vtable layout information. |
784 | class ItaniumVTableBuilder { |
785 | public: |
786 | /// PrimaryBasesSetVectorTy - A set vector of direct and indirect |
787 | /// primary bases. |
788 | typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> |
789 | PrimaryBasesSetVectorTy; |
790 | |
791 | typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> |
792 | VBaseOffsetOffsetsMapTy; |
793 | |
794 | typedef VTableLayout::AddressPointsMapTy AddressPointsMapTy; |
795 | |
796 | typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy; |
797 | |
798 | private: |
799 | /// VTables - Global vtable information. |
800 | ItaniumVTableContext &VTables; |
801 | |
802 | /// MostDerivedClass - The most derived class for which we're building this |
803 | /// vtable. |
804 | const CXXRecordDecl *MostDerivedClass; |
805 | |
806 | /// MostDerivedClassOffset - If we're building a construction vtable, this |
807 | /// holds the offset from the layout class to the most derived class. |
808 | const CharUnits MostDerivedClassOffset; |
809 | |
810 | /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual |
811 | /// base. (This only makes sense when building a construction vtable). |
812 | bool MostDerivedClassIsVirtual; |
813 | |
814 | /// LayoutClass - The class we're using for layout information. Will be |
815 | /// different than the most derived class if we're building a construction |
816 | /// vtable. |
817 | const CXXRecordDecl *LayoutClass; |
818 | |
819 | /// Context - The ASTContext which we will use for layout information. |
820 | ASTContext &Context; |
821 | |
822 | /// FinalOverriders - The final overriders of the most derived class. |
823 | const FinalOverriders Overriders; |
824 | |
825 | /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual |
826 | /// bases in this vtable. |
827 | llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases; |
828 | |
829 | /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for |
830 | /// the most derived class. |
831 | VBaseOffsetOffsetsMapTy VBaseOffsetOffsets; |
832 | |
833 | /// Components - The components of the vtable being built. |
834 | SmallVector<VTableComponent, 64> Components; |
835 | |
836 | /// AddressPoints - Address points for the vtable being built. |
837 | AddressPointsMapTy AddressPoints; |
838 | |
839 | /// MethodInfo - Contains information about a method in a vtable. |
840 | /// (Used for computing 'this' pointer adjustment thunks. |
841 | struct MethodInfo { |
842 | /// BaseOffset - The base offset of this method. |
843 | const CharUnits BaseOffset; |
844 | |
845 | /// BaseOffsetInLayoutClass - The base offset in the layout class of this |
846 | /// method. |
847 | const CharUnits BaseOffsetInLayoutClass; |
848 | |
849 | /// VTableIndex - The index in the vtable that this method has. |
850 | /// (For destructors, this is the index of the complete destructor). |
851 | const uint64_t VTableIndex; |
852 | |
853 | MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass, |
854 | uint64_t VTableIndex) |
855 | : BaseOffset(BaseOffset), |
856 | BaseOffsetInLayoutClass(BaseOffsetInLayoutClass), |
857 | VTableIndex(VTableIndex) { } |
858 | |
859 | MethodInfo() |
860 | : BaseOffset(CharUnits::Zero()), |
861 | BaseOffsetInLayoutClass(CharUnits::Zero()), |
862 | VTableIndex(0) { } |
863 | |
864 | MethodInfo(MethodInfo const&) = default; |
865 | }; |
866 | |
867 | typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy; |
868 | |
869 | /// MethodInfoMap - The information for all methods in the vtable we're |
870 | /// currently building. |
871 | MethodInfoMapTy MethodInfoMap; |
872 | |
873 | /// MethodVTableIndices - Contains the index (relative to the vtable address |
874 | /// point) where the function pointer for a virtual function is stored. |
875 | MethodVTableIndicesTy MethodVTableIndices; |
876 | |
877 | typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy; |
878 | |
879 | /// VTableThunks - The thunks by vtable index in the vtable currently being |
880 | /// built. |
881 | VTableThunksMapTy VTableThunks; |
882 | |
883 | typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy; |
884 | typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy; |
885 | |
886 | /// Thunks - A map that contains all the thunks needed for all methods in the |
887 | /// most derived class for which the vtable is currently being built. |
888 | ThunksMapTy Thunks; |
889 | |
890 | /// AddThunk - Add a thunk for the given method. |
891 | void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk); |
892 | |
893 | /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the |
894 | /// part of the vtable we're currently building. |
895 | void ComputeThisAdjustments(); |
896 | |
897 | typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; |
898 | |
899 | /// PrimaryVirtualBases - All known virtual bases who are a primary base of |
900 | /// some other base. |
901 | VisitedVirtualBasesSetTy PrimaryVirtualBases; |
902 | |
903 | /// ComputeReturnAdjustment - Compute the return adjustment given a return |
904 | /// adjustment base offset. |
905 | ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset); |
906 | |
907 | /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting |
908 | /// the 'this' pointer from the base subobject to the derived subobject. |
909 | BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base, |
910 | BaseSubobject Derived) const; |
911 | |
912 | /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the |
913 | /// given virtual member function, its offset in the layout class and its |
914 | /// final overrider. |
915 | ThisAdjustment |
916 | ComputeThisAdjustment(const CXXMethodDecl *MD, |
917 | CharUnits BaseOffsetInLayoutClass, |
918 | FinalOverriders::OverriderInfo Overrider); |
919 | |
920 | /// AddMethod - Add a single virtual member function to the vtable |
921 | /// components vector. |
922 | void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment); |
923 | |
924 | /// IsOverriderUsed - Returns whether the overrider will ever be used in this |
925 | /// part of the vtable. |
926 | /// |
927 | /// Itanium C++ ABI 2.5.2: |
928 | /// |
929 | /// struct A { virtual void f(); }; |
930 | /// struct B : virtual public A { int i; }; |
931 | /// struct C : virtual public A { int j; }; |
932 | /// struct D : public B, public C {}; |
933 | /// |
934 | /// When B and C are declared, A is a primary base in each case, so although |
935 | /// vcall offsets are allocated in the A-in-B and A-in-C vtables, no this |
936 | /// adjustment is required and no thunk is generated. However, inside D |
937 | /// objects, A is no longer a primary base of C, so if we allowed calls to |
938 | /// C::f() to use the copy of A's vtable in the C subobject, we would need |
939 | /// to adjust this from C* to B::A*, which would require a third-party |
940 | /// thunk. Since we require that a call to C::f() first convert to A*, |
941 | /// C-in-D's copy of A's vtable is never referenced, so this is not |
942 | /// necessary. |
943 | bool IsOverriderUsed(const CXXMethodDecl *Overrider, |
944 | CharUnits BaseOffsetInLayoutClass, |
945 | const CXXRecordDecl *FirstBaseInPrimaryBaseChain, |
946 | CharUnits FirstBaseOffsetInLayoutClass) const; |
947 | |
948 | |
949 | /// AddMethods - Add the methods of this base subobject and all its |
950 | /// primary bases to the vtable components vector. |
951 | void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass, |
952 | const CXXRecordDecl *FirstBaseInPrimaryBaseChain, |
953 | CharUnits FirstBaseOffsetInLayoutClass, |
954 | PrimaryBasesSetVectorTy &PrimaryBases); |
955 | |
956 | // LayoutVTable - Layout the vtable for the given base class, including its |
957 | // secondary vtables and any vtables for virtual bases. |
958 | void LayoutVTable(); |
959 | |
960 | /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the |
961 | /// given base subobject, as well as all its secondary vtables. |
962 | /// |
963 | /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base |
964 | /// or a direct or indirect base of a virtual base. |
965 | /// |
966 | /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual |
967 | /// in the layout class. |
968 | void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base, |
969 | bool BaseIsMorallyVirtual, |
970 | bool BaseIsVirtualInLayoutClass, |
971 | CharUnits OffsetInLayoutClass); |
972 | |
973 | /// LayoutSecondaryVTables - Layout the secondary vtables for the given base |
974 | /// subobject. |
975 | /// |
976 | /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base |
977 | /// or a direct or indirect base of a virtual base. |
978 | void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual, |
979 | CharUnits OffsetInLayoutClass); |
980 | |
981 | /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this |
982 | /// class hierarchy. |
983 | void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD, |
984 | CharUnits OffsetInLayoutClass, |
985 | VisitedVirtualBasesSetTy &VBases); |
986 | |
987 | /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the |
988 | /// given base (excluding any primary bases). |
989 | void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD, |
990 | VisitedVirtualBasesSetTy &VBases); |
991 | |
992 | /// isBuildingConstructionVTable - Return whether this vtable builder is |
993 | /// building a construction vtable. |
994 | bool isBuildingConstructorVTable() const { |
995 | return MostDerivedClass != LayoutClass; |
996 | } |
997 | |
998 | public: |
999 | /// Component indices of the first component of each of the vtables in the |
1000 | /// vtable group. |
1001 | SmallVector<size_t, 4> VTableIndices; |
1002 | |
1003 | ItaniumVTableBuilder(ItaniumVTableContext &VTables, |
1004 | const CXXRecordDecl *MostDerivedClass, |
1005 | CharUnits MostDerivedClassOffset, |
1006 | bool MostDerivedClassIsVirtual, |
1007 | const CXXRecordDecl *LayoutClass) |
1008 | : VTables(VTables), MostDerivedClass(MostDerivedClass), |
1009 | MostDerivedClassOffset(MostDerivedClassOffset), |
1010 | MostDerivedClassIsVirtual(MostDerivedClassIsVirtual), |
1011 | LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()), |
1012 | Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) { |
1013 | assert(!Context.getTargetInfo().getCXXABI().isMicrosoft()); |
1014 | |
1015 | LayoutVTable(); |
1016 | |
1017 | if (Context.getLangOpts().DumpVTableLayouts) |
1018 | dumpLayout(llvm::outs()); |
1019 | } |
1020 | |
1021 | uint64_t getNumThunks() const { |
1022 | return Thunks.size(); |
1023 | } |
1024 | |
1025 | ThunksMapTy::const_iterator thunks_begin() const { |
1026 | return Thunks.begin(); |
1027 | } |
1028 | |
1029 | ThunksMapTy::const_iterator thunks_end() const { |
1030 | return Thunks.end(); |
1031 | } |
1032 | |
1033 | const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const { |
1034 | return VBaseOffsetOffsets; |
1035 | } |
1036 | |
1037 | const AddressPointsMapTy &getAddressPoints() const { |
1038 | return AddressPoints; |
1039 | } |
1040 | |
1041 | MethodVTableIndicesTy::const_iterator vtable_indices_begin() const { |
1042 | return MethodVTableIndices.begin(); |
1043 | } |
1044 | |
1045 | MethodVTableIndicesTy::const_iterator vtable_indices_end() const { |
1046 | return MethodVTableIndices.end(); |
1047 | } |
1048 | |
1049 | ArrayRef<VTableComponent> vtable_components() const { return Components; } |
1050 | |
1051 | AddressPointsMapTy::const_iterator address_points_begin() const { |
1052 | return AddressPoints.begin(); |
1053 | } |
1054 | |
1055 | AddressPointsMapTy::const_iterator address_points_end() const { |
1056 | return AddressPoints.end(); |
1057 | } |
1058 | |
1059 | VTableThunksMapTy::const_iterator vtable_thunks_begin() const { |
1060 | return VTableThunks.begin(); |
1061 | } |
1062 | |
1063 | VTableThunksMapTy::const_iterator vtable_thunks_end() const { |
1064 | return VTableThunks.end(); |
1065 | } |
1066 | |
1067 | /// dumpLayout - Dump the vtable layout. |
1068 | void dumpLayout(raw_ostream&); |
1069 | }; |
1070 | |
1071 | void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD, |
1072 | const ThunkInfo &Thunk) { |
1073 | assert(!isBuildingConstructorVTable() && |
1074 | "Can't add thunks for construction vtable" ); |
1075 | |
1076 | SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD]; |
1077 | |
1078 | // Check if we have this thunk already. |
1079 | if (llvm::is_contained(Range&: ThunksVector, Element: Thunk)) |
1080 | return; |
1081 | |
1082 | ThunksVector.push_back(Elt: Thunk); |
1083 | } |
1084 | |
1085 | typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy; |
1086 | |
1087 | /// Visit all the methods overridden by the given method recursively, |
1088 | /// in a depth-first pre-order. The Visitor's visitor method returns a bool |
1089 | /// indicating whether to continue the recursion for the given overridden |
1090 | /// method (i.e. returning false stops the iteration). |
1091 | template <class VisitorTy> |
1092 | static void |
1093 | visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) { |
1094 | assert(VTableContextBase::hasVtableSlot(MD) && "Method is not virtual!" ); |
1095 | |
1096 | for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) { |
1097 | if (!Visitor(OverriddenMD)) |
1098 | continue; |
1099 | visitAllOverriddenMethods(OverriddenMD, Visitor); |
1100 | } |
1101 | } |
1102 | |
1103 | /// ComputeAllOverriddenMethods - Given a method decl, will return a set of all |
1104 | /// the overridden methods that the function decl overrides. |
1105 | static void |
1106 | ComputeAllOverriddenMethods(const CXXMethodDecl *MD, |
1107 | OverriddenMethodsSetTy& OverriddenMethods) { |
1108 | auto OverriddenMethodsCollector = [&](const CXXMethodDecl *MD) { |
1109 | // Don't recurse on this method if we've already collected it. |
1110 | return OverriddenMethods.insert(Ptr: MD).second; |
1111 | }; |
1112 | visitAllOverriddenMethods(MD, Visitor&: OverriddenMethodsCollector); |
1113 | } |
1114 | |
1115 | void ItaniumVTableBuilder::ComputeThisAdjustments() { |
1116 | // Now go through the method info map and see if any of the methods need |
1117 | // 'this' pointer adjustments. |
1118 | for (const auto &MI : MethodInfoMap) { |
1119 | const CXXMethodDecl *MD = MI.first; |
1120 | const MethodInfo &MethodInfo = MI.second; |
1121 | |
1122 | // Ignore adjustments for unused function pointers. |
1123 | uint64_t VTableIndex = MethodInfo.VTableIndex; |
1124 | if (Components[VTableIndex].getKind() == |
1125 | VTableComponent::CK_UnusedFunctionPointer) |
1126 | continue; |
1127 | |
1128 | // Get the final overrider for this method. |
1129 | FinalOverriders::OverriderInfo Overrider = |
1130 | Overriders.getOverrider(MD, BaseOffset: MethodInfo.BaseOffset); |
1131 | |
1132 | // Check if we need an adjustment at all. |
1133 | if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) { |
1134 | // When a return thunk is needed by a derived class that overrides a |
1135 | // virtual base, gcc uses a virtual 'this' adjustment as well. |
1136 | // While the thunk itself might be needed by vtables in subclasses or |
1137 | // in construction vtables, there doesn't seem to be a reason for using |
1138 | // the thunk in this vtable. Still, we do so to match gcc. |
1139 | if (VTableThunks.lookup(Val: VTableIndex).Return.isEmpty()) |
1140 | continue; |
1141 | } |
1142 | |
1143 | ThisAdjustment ThisAdjustment = |
1144 | ComputeThisAdjustment(MD, BaseOffsetInLayoutClass: MethodInfo.BaseOffsetInLayoutClass, Overrider); |
1145 | |
1146 | if (ThisAdjustment.isEmpty()) |
1147 | continue; |
1148 | |
1149 | // Add it. |
1150 | auto SetThisAdjustmentThunk = [&](uint64_t Idx) { |
1151 | // If a this pointer adjustment is required, record the method that |
1152 | // created the vtable entry. MD is not necessarily the method that |
1153 | // created the entry since derived classes overwrite base class |
1154 | // information in MethodInfoMap, hence findOriginalMethodInMap is called |
1155 | // here. |
1156 | // |
1157 | // For example, in the following class hierarchy, if MD = D1::m and |
1158 | // Overrider = D2:m, the original method that created the entry is B0:m, |
1159 | // which is what findOriginalMethodInMap(MD) returns: |
1160 | // |
1161 | // struct B0 { int a; virtual void m(); }; |
1162 | // struct D0 : B0 { int a; void m() override; }; |
1163 | // struct D1 : B0 { int a; void m() override; }; |
1164 | // struct D2 : D0, D1 { int a; void m() override; }; |
1165 | // |
1166 | // We need to record the method because we cannot |
1167 | // call findOriginalMethod to find the method that created the entry if |
1168 | // the method in the entry requires adjustment. |
1169 | // |
1170 | // Do not set ThunkInfo::Method if Idx is already in VTableThunks. This |
1171 | // can happen when covariant return adjustment is required too. |
1172 | if (!VTableThunks.count(Val: Idx)) { |
1173 | const CXXMethodDecl *Method = VTables.findOriginalMethodInMap(MD); |
1174 | VTableThunks[Idx].Method = Method; |
1175 | VTableThunks[Idx].ThisType = Method->getThisType().getTypePtr(); |
1176 | } |
1177 | VTableThunks[Idx].This = ThisAdjustment; |
1178 | }; |
1179 | |
1180 | SetThisAdjustmentThunk(VTableIndex); |
1181 | |
1182 | if (isa<CXXDestructorDecl>(Val: MD)) { |
1183 | // Add an adjustment for the deleting destructor as well. |
1184 | SetThisAdjustmentThunk(VTableIndex + 1); |
1185 | } |
1186 | } |
1187 | |
1188 | /// Clear the method info map. |
1189 | MethodInfoMap.clear(); |
1190 | |
1191 | if (isBuildingConstructorVTable()) { |
1192 | // We don't need to store thunk information for construction vtables. |
1193 | return; |
1194 | } |
1195 | |
1196 | for (const auto &TI : VTableThunks) { |
1197 | const VTableComponent &Component = Components[TI.first]; |
1198 | const ThunkInfo &Thunk = TI.second; |
1199 | const CXXMethodDecl *MD; |
1200 | |
1201 | switch (Component.getKind()) { |
1202 | default: |
1203 | llvm_unreachable("Unexpected vtable component kind!" ); |
1204 | case VTableComponent::CK_FunctionPointer: |
1205 | MD = Component.getFunctionDecl(); |
1206 | break; |
1207 | case VTableComponent::CK_CompleteDtorPointer: |
1208 | MD = Component.getDestructorDecl(); |
1209 | break; |
1210 | case VTableComponent::CK_DeletingDtorPointer: |
1211 | // We've already added the thunk when we saw the complete dtor pointer. |
1212 | continue; |
1213 | } |
1214 | |
1215 | if (MD->getParent() == MostDerivedClass) |
1216 | AddThunk(MD, Thunk); |
1217 | } |
1218 | } |
1219 | |
1220 | ReturnAdjustment |
1221 | ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) { |
1222 | ReturnAdjustment Adjustment; |
1223 | |
1224 | if (!Offset.isEmpty()) { |
1225 | if (Offset.VirtualBase) { |
1226 | // Get the virtual base offset offset. |
1227 | if (Offset.DerivedClass == MostDerivedClass) { |
1228 | // We can get the offset offset directly from our map. |
1229 | Adjustment.Virtual.Itanium.VBaseOffsetOffset = |
1230 | VBaseOffsetOffsets.lookup(Val: Offset.VirtualBase).getQuantity(); |
1231 | } else { |
1232 | Adjustment.Virtual.Itanium.VBaseOffsetOffset = |
1233 | VTables.getVirtualBaseOffsetOffset(RD: Offset.DerivedClass, |
1234 | VBase: Offset.VirtualBase).getQuantity(); |
1235 | } |
1236 | } |
1237 | |
1238 | Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity(); |
1239 | } |
1240 | |
1241 | return Adjustment; |
1242 | } |
1243 | |
1244 | BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset( |
1245 | BaseSubobject Base, BaseSubobject Derived) const { |
1246 | const CXXRecordDecl *BaseRD = Base.getBase(); |
1247 | const CXXRecordDecl *DerivedRD = Derived.getBase(); |
1248 | |
1249 | CXXBasePaths Paths(/*FindAmbiguities=*/true, |
1250 | /*RecordPaths=*/true, /*DetectVirtual=*/true); |
1251 | |
1252 | if (!DerivedRD->isDerivedFrom(Base: BaseRD, Paths)) |
1253 | llvm_unreachable("Class must be derived from the passed in base class!" ); |
1254 | |
1255 | // We have to go through all the paths, and see which one leads us to the |
1256 | // right base subobject. |
1257 | for (const CXXBasePath &Path : Paths) { |
1258 | BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, Path); |
1259 | |
1260 | CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset; |
1261 | |
1262 | if (Offset.VirtualBase) { |
1263 | // If we have a virtual base class, the non-virtual offset is relative |
1264 | // to the virtual base class offset. |
1265 | const ASTRecordLayout &LayoutClassLayout = |
1266 | Context.getASTRecordLayout(D: LayoutClass); |
1267 | |
1268 | /// Get the virtual base offset, relative to the most derived class |
1269 | /// layout. |
1270 | OffsetToBaseSubobject += |
1271 | LayoutClassLayout.getVBaseClassOffset(VBase: Offset.VirtualBase); |
1272 | } else { |
1273 | // Otherwise, the non-virtual offset is relative to the derived class |
1274 | // offset. |
1275 | OffsetToBaseSubobject += Derived.getBaseOffset(); |
1276 | } |
1277 | |
1278 | // Check if this path gives us the right base subobject. |
1279 | if (OffsetToBaseSubobject == Base.getBaseOffset()) { |
1280 | // Since we're going from the base class _to_ the derived class, we'll |
1281 | // invert the non-virtual offset here. |
1282 | Offset.NonVirtualOffset = -Offset.NonVirtualOffset; |
1283 | return Offset; |
1284 | } |
1285 | } |
1286 | |
1287 | return BaseOffset(); |
1288 | } |
1289 | |
1290 | ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment( |
1291 | const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass, |
1292 | FinalOverriders::OverriderInfo Overrider) { |
1293 | // Ignore adjustments for pure virtual member functions. |
1294 | if (Overrider.Method->isPureVirtual()) |
1295 | return ThisAdjustment(); |
1296 | |
1297 | BaseSubobject OverriddenBaseSubobject(MD->getParent(), |
1298 | BaseOffsetInLayoutClass); |
1299 | |
1300 | BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(), |
1301 | Overrider.Offset); |
1302 | |
1303 | // Compute the adjustment offset. |
1304 | BaseOffset Offset = ComputeThisAdjustmentBaseOffset(Base: OverriddenBaseSubobject, |
1305 | Derived: OverriderBaseSubobject); |
1306 | if (Offset.isEmpty()) |
1307 | return ThisAdjustment(); |
1308 | |
1309 | ThisAdjustment Adjustment; |
1310 | |
1311 | if (Offset.VirtualBase) { |
1312 | // Get the vcall offset map for this virtual base. |
1313 | VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase]; |
1314 | |
1315 | if (VCallOffsets.empty()) { |
1316 | // We don't have vcall offsets for this virtual base, go ahead and |
1317 | // build them. |
1318 | VCallAndVBaseOffsetBuilder Builder( |
1319 | VTables, MostDerivedClass, MostDerivedClass, |
1320 | /*Overriders=*/nullptr, |
1321 | BaseSubobject(Offset.VirtualBase, CharUnits::Zero()), |
1322 | /*BaseIsVirtual=*/true, |
1323 | /*OffsetInLayoutClass=*/ |
1324 | CharUnits::Zero()); |
1325 | |
1326 | VCallOffsets = Builder.getVCallOffsets(); |
1327 | } |
1328 | |
1329 | Adjustment.Virtual.Itanium.VCallOffsetOffset = |
1330 | VCallOffsets.getVCallOffsetOffset(MD).getQuantity(); |
1331 | } |
1332 | |
1333 | // Set the non-virtual part of the adjustment. |
1334 | Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity(); |
1335 | |
1336 | return Adjustment; |
1337 | } |
1338 | |
1339 | void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD, |
1340 | ReturnAdjustment ReturnAdjustment) { |
1341 | if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) { |
1342 | assert(ReturnAdjustment.isEmpty() && |
1343 | "Destructor can't have return adjustment!" ); |
1344 | |
1345 | // Add both the complete destructor and the deleting destructor. |
1346 | Components.push_back(Elt: VTableComponent::MakeCompleteDtor(DD)); |
1347 | Components.push_back(Elt: VTableComponent::MakeDeletingDtor(DD)); |
1348 | } else { |
1349 | // Add the return adjustment if necessary. |
1350 | if (!ReturnAdjustment.isEmpty()) |
1351 | VTableThunks[Components.size()].Return = ReturnAdjustment; |
1352 | |
1353 | // Add the function. |
1354 | Components.push_back(Elt: VTableComponent::MakeFunction(MD)); |
1355 | } |
1356 | } |
1357 | |
1358 | /// OverridesIndirectMethodInBase - Return whether the given member function |
1359 | /// overrides any methods in the set of given bases. |
1360 | /// Unlike OverridesMethodInBase, this checks "overriders of overriders". |
1361 | /// For example, if we have: |
1362 | /// |
1363 | /// struct A { virtual void f(); } |
1364 | /// struct B : A { virtual void f(); } |
1365 | /// struct C : B { virtual void f(); } |
1366 | /// |
1367 | /// OverridesIndirectMethodInBase will return true if given C::f as the method |
1368 | /// and { A } as the set of bases. |
1369 | static bool OverridesIndirectMethodInBases( |
1370 | const CXXMethodDecl *MD, |
1371 | ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) { |
1372 | if (Bases.count(key: MD->getParent())) |
1373 | return true; |
1374 | |
1375 | for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) { |
1376 | // Check "indirect overriders". |
1377 | if (OverridesIndirectMethodInBases(MD: OverriddenMD, Bases)) |
1378 | return true; |
1379 | } |
1380 | |
1381 | return false; |
1382 | } |
1383 | |
1384 | bool ItaniumVTableBuilder::IsOverriderUsed( |
1385 | const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass, |
1386 | const CXXRecordDecl *FirstBaseInPrimaryBaseChain, |
1387 | CharUnits FirstBaseOffsetInLayoutClass) const { |
1388 | // If the base and the first base in the primary base chain have the same |
1389 | // offsets, then this overrider will be used. |
1390 | if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass) |
1391 | return true; |
1392 | |
1393 | // We know now that Base (or a direct or indirect base of it) is a primary |
1394 | // base in part of the class hierarchy, but not a primary base in the most |
1395 | // derived class. |
1396 | |
1397 | // If the overrider is the first base in the primary base chain, we know |
1398 | // that the overrider will be used. |
1399 | if (Overrider->getParent() == FirstBaseInPrimaryBaseChain) |
1400 | return true; |
1401 | |
1402 | ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases; |
1403 | |
1404 | const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain; |
1405 | PrimaryBases.insert(X: RD); |
1406 | |
1407 | // Now traverse the base chain, starting with the first base, until we find |
1408 | // the base that is no longer a primary base. |
1409 | while (true) { |
1410 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD); |
1411 | const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); |
1412 | |
1413 | if (!PrimaryBase) |
1414 | break; |
1415 | |
1416 | if (Layout.isPrimaryBaseVirtual()) { |
1417 | assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && |
1418 | "Primary base should always be at offset 0!" ); |
1419 | |
1420 | const ASTRecordLayout &LayoutClassLayout = |
1421 | Context.getASTRecordLayout(D: LayoutClass); |
1422 | |
1423 | // Now check if this is the primary base that is not a primary base in the |
1424 | // most derived class. |
1425 | if (LayoutClassLayout.getVBaseClassOffset(VBase: PrimaryBase) != |
1426 | FirstBaseOffsetInLayoutClass) { |
1427 | // We found it, stop walking the chain. |
1428 | break; |
1429 | } |
1430 | } else { |
1431 | assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && |
1432 | "Primary base should always be at offset 0!" ); |
1433 | } |
1434 | |
1435 | if (!PrimaryBases.insert(X: PrimaryBase)) |
1436 | llvm_unreachable("Found a duplicate primary base!" ); |
1437 | |
1438 | RD = PrimaryBase; |
1439 | } |
1440 | |
1441 | // If the final overrider is an override of one of the primary bases, |
1442 | // then we know that it will be used. |
1443 | return OverridesIndirectMethodInBases(MD: Overrider, Bases&: PrimaryBases); |
1444 | } |
1445 | |
1446 | typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy; |
1447 | |
1448 | /// FindNearestOverriddenMethod - Given a method, returns the overridden method |
1449 | /// from the nearest base. Returns null if no method was found. |
1450 | /// The Bases are expected to be sorted in a base-to-derived order. |
1451 | static const CXXMethodDecl * |
1452 | FindNearestOverriddenMethod(const CXXMethodDecl *MD, |
1453 | BasesSetVectorTy &Bases) { |
1454 | OverriddenMethodsSetTy OverriddenMethods; |
1455 | ComputeAllOverriddenMethods(MD, OverriddenMethods); |
1456 | |
1457 | for (const CXXRecordDecl *PrimaryBase : llvm::reverse(C&: Bases)) { |
1458 | // Now check the overridden methods. |
1459 | for (const CXXMethodDecl *OverriddenMD : OverriddenMethods) { |
1460 | // We found our overridden method. |
1461 | if (OverriddenMD->getParent() == PrimaryBase) |
1462 | return OverriddenMD; |
1463 | } |
1464 | } |
1465 | |
1466 | return nullptr; |
1467 | } |
1468 | |
1469 | void ItaniumVTableBuilder::AddMethods( |
1470 | BaseSubobject Base, CharUnits BaseOffsetInLayoutClass, |
1471 | const CXXRecordDecl *FirstBaseInPrimaryBaseChain, |
1472 | CharUnits FirstBaseOffsetInLayoutClass, |
1473 | PrimaryBasesSetVectorTy &PrimaryBases) { |
1474 | // Itanium C++ ABI 2.5.2: |
1475 | // The order of the virtual function pointers in a virtual table is the |
1476 | // order of declaration of the corresponding member functions in the class. |
1477 | // |
1478 | // There is an entry for any virtual function declared in a class, |
1479 | // whether it is a new function or overrides a base class function, |
1480 | // unless it overrides a function from the primary base, and conversion |
1481 | // between their return types does not require an adjustment. |
1482 | |
1483 | const CXXRecordDecl *RD = Base.getBase(); |
1484 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD); |
1485 | |
1486 | if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { |
1487 | CharUnits PrimaryBaseOffset; |
1488 | CharUnits PrimaryBaseOffsetInLayoutClass; |
1489 | if (Layout.isPrimaryBaseVirtual()) { |
1490 | assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && |
1491 | "Primary vbase should have a zero offset!" ); |
1492 | |
1493 | const ASTRecordLayout &MostDerivedClassLayout = |
1494 | Context.getASTRecordLayout(D: MostDerivedClass); |
1495 | |
1496 | PrimaryBaseOffset = |
1497 | MostDerivedClassLayout.getVBaseClassOffset(VBase: PrimaryBase); |
1498 | |
1499 | const ASTRecordLayout &LayoutClassLayout = |
1500 | Context.getASTRecordLayout(D: LayoutClass); |
1501 | |
1502 | PrimaryBaseOffsetInLayoutClass = |
1503 | LayoutClassLayout.getVBaseClassOffset(VBase: PrimaryBase); |
1504 | } else { |
1505 | assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && |
1506 | "Primary base should have a zero offset!" ); |
1507 | |
1508 | PrimaryBaseOffset = Base.getBaseOffset(); |
1509 | PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass; |
1510 | } |
1511 | |
1512 | AddMethods(Base: BaseSubobject(PrimaryBase, PrimaryBaseOffset), |
1513 | BaseOffsetInLayoutClass: PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain, |
1514 | FirstBaseOffsetInLayoutClass, PrimaryBases); |
1515 | |
1516 | if (!PrimaryBases.insert(X: PrimaryBase)) |
1517 | llvm_unreachable("Found a duplicate primary base!" ); |
1518 | } |
1519 | |
1520 | typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy; |
1521 | NewVirtualFunctionsTy NewVirtualFunctions; |
1522 | |
1523 | llvm::SmallVector<const CXXMethodDecl*, 4> NewImplicitVirtualFunctions; |
1524 | |
1525 | // Now go through all virtual member functions and add them. |
1526 | for (const auto *MD : RD->methods()) { |
1527 | if (!ItaniumVTableContext::hasVtableSlot(MD)) |
1528 | continue; |
1529 | MD = MD->getCanonicalDecl(); |
1530 | |
1531 | // Get the final overrider. |
1532 | FinalOverriders::OverriderInfo Overrider = |
1533 | Overriders.getOverrider(MD, BaseOffset: Base.getBaseOffset()); |
1534 | |
1535 | // Check if this virtual member function overrides a method in a primary |
1536 | // base. If this is the case, and the return type doesn't require adjustment |
1537 | // then we can just use the member function from the primary base. |
1538 | if (const CXXMethodDecl *OverriddenMD = |
1539 | FindNearestOverriddenMethod(MD, Bases&: PrimaryBases)) { |
1540 | if (ComputeReturnAdjustmentBaseOffset(Context, DerivedMD: MD, |
1541 | BaseMD: OverriddenMD).isEmpty()) { |
1542 | VTables.setOriginalMethod(Key: MD, Val: OverriddenMD); |
1543 | |
1544 | // Replace the method info of the overridden method with our own |
1545 | // method. |
1546 | assert(MethodInfoMap.count(OverriddenMD) && |
1547 | "Did not find the overridden method!" ); |
1548 | MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD]; |
1549 | |
1550 | MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass, |
1551 | OverriddenMethodInfo.VTableIndex); |
1552 | |
1553 | assert(!MethodInfoMap.count(MD) && |
1554 | "Should not have method info for this method yet!" ); |
1555 | |
1556 | MethodInfoMap.insert(KV: std::make_pair(x&: MD, y&: MethodInfo)); |
1557 | MethodInfoMap.erase(Val: OverriddenMD); |
1558 | |
1559 | // If the overridden method exists in a virtual base class or a direct |
1560 | // or indirect base class of a virtual base class, we need to emit a |
1561 | // thunk if we ever have a class hierarchy where the base class is not |
1562 | // a primary base in the complete object. |
1563 | if (!isBuildingConstructorVTable() && OverriddenMD != MD) { |
1564 | // Compute the this adjustment. |
1565 | ThisAdjustment ThisAdjustment = |
1566 | ComputeThisAdjustment(MD: OverriddenMD, BaseOffsetInLayoutClass, |
1567 | Overrider); |
1568 | |
1569 | if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset && |
1570 | Overrider.Method->getParent() == MostDerivedClass) { |
1571 | |
1572 | // There's no return adjustment from OverriddenMD and MD, |
1573 | // but that doesn't mean there isn't one between MD and |
1574 | // the final overrider. |
1575 | BaseOffset ReturnAdjustmentOffset = |
1576 | ComputeReturnAdjustmentBaseOffset(Context, DerivedMD: Overrider.Method, BaseMD: MD); |
1577 | ReturnAdjustment ReturnAdjustment = |
1578 | ComputeReturnAdjustment(Offset: ReturnAdjustmentOffset); |
1579 | |
1580 | // This is a virtual thunk for the most derived class, add it. |
1581 | AddThunk(MD: Overrider.Method, |
1582 | Thunk: ThunkInfo(ThisAdjustment, ReturnAdjustment, |
1583 | OverriddenMD->getThisType().getTypePtr())); |
1584 | } |
1585 | } |
1586 | |
1587 | continue; |
1588 | } |
1589 | } |
1590 | |
1591 | if (MD->isImplicit()) |
1592 | NewImplicitVirtualFunctions.push_back(Elt: MD); |
1593 | else |
1594 | NewVirtualFunctions.push_back(Elt: MD); |
1595 | } |
1596 | |
1597 | std::stable_sort( |
1598 | first: NewImplicitVirtualFunctions.begin(), last: NewImplicitVirtualFunctions.end(), |
1599 | comp: [](const CXXMethodDecl *A, const CXXMethodDecl *B) { |
1600 | if (A == B) |
1601 | return false; |
1602 | if (A->isCopyAssignmentOperator() != B->isCopyAssignmentOperator()) |
1603 | return A->isCopyAssignmentOperator(); |
1604 | if (A->isMoveAssignmentOperator() != B->isMoveAssignmentOperator()) |
1605 | return A->isMoveAssignmentOperator(); |
1606 | if (isa<CXXDestructorDecl>(Val: A) != isa<CXXDestructorDecl>(Val: B)) |
1607 | return isa<CXXDestructorDecl>(Val: A); |
1608 | assert(A->getOverloadedOperator() == OO_EqualEqual && |
1609 | B->getOverloadedOperator() == OO_EqualEqual && |
1610 | "unexpected or duplicate implicit virtual function" ); |
1611 | // We rely on Sema to have declared the operator== members in the |
1612 | // same order as the corresponding operator<=> members. |
1613 | return false; |
1614 | }); |
1615 | NewVirtualFunctions.append(in_start: NewImplicitVirtualFunctions.begin(), |
1616 | in_end: NewImplicitVirtualFunctions.end()); |
1617 | |
1618 | for (const CXXMethodDecl *MD : NewVirtualFunctions) { |
1619 | // Get the final overrider. |
1620 | FinalOverriders::OverriderInfo Overrider = |
1621 | Overriders.getOverrider(MD, BaseOffset: Base.getBaseOffset()); |
1622 | |
1623 | // Insert the method info for this method. |
1624 | MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass, |
1625 | Components.size()); |
1626 | |
1627 | assert(!MethodInfoMap.count(MD) && |
1628 | "Should not have method info for this method yet!" ); |
1629 | MethodInfoMap.insert(KV: std::make_pair(x&: MD, y&: MethodInfo)); |
1630 | |
1631 | // Check if this overrider is going to be used. |
1632 | const CXXMethodDecl *OverriderMD = Overrider.Method; |
1633 | if (!IsOverriderUsed(Overrider: OverriderMD, BaseOffsetInLayoutClass, |
1634 | FirstBaseInPrimaryBaseChain, |
1635 | FirstBaseOffsetInLayoutClass)) { |
1636 | Components.push_back(Elt: VTableComponent::MakeUnusedFunction(MD: OverriderMD)); |
1637 | continue; |
1638 | } |
1639 | |
1640 | // Check if this overrider needs a return adjustment. |
1641 | // We don't want to do this for pure virtual member functions. |
1642 | BaseOffset ReturnAdjustmentOffset; |
1643 | if (!OverriderMD->isPureVirtual()) { |
1644 | ReturnAdjustmentOffset = |
1645 | ComputeReturnAdjustmentBaseOffset(Context, DerivedMD: OverriderMD, BaseMD: MD); |
1646 | } |
1647 | |
1648 | ReturnAdjustment ReturnAdjustment = |
1649 | ComputeReturnAdjustment(Offset: ReturnAdjustmentOffset); |
1650 | |
1651 | // If a return adjustment is required, record the method that created the |
1652 | // vtable entry. We need to record the method because we cannot call |
1653 | // findOriginalMethod to find the method that created the entry if the |
1654 | // method in the entry requires adjustment. |
1655 | if (!ReturnAdjustment.isEmpty()) { |
1656 | VTableThunks[Components.size()].Method = MD; |
1657 | VTableThunks[Components.size()].ThisType = MD->getThisType().getTypePtr(); |
1658 | } |
1659 | |
1660 | AddMethod(MD: Overrider.Method, ReturnAdjustment); |
1661 | } |
1662 | } |
1663 | |
1664 | void ItaniumVTableBuilder::LayoutVTable() { |
1665 | LayoutPrimaryAndSecondaryVTables(Base: BaseSubobject(MostDerivedClass, |
1666 | CharUnits::Zero()), |
1667 | /*BaseIsMorallyVirtual=*/false, |
1668 | BaseIsVirtualInLayoutClass: MostDerivedClassIsVirtual, |
1669 | OffsetInLayoutClass: MostDerivedClassOffset); |
1670 | |
1671 | VisitedVirtualBasesSetTy VBases; |
1672 | |
1673 | // Determine the primary virtual bases. |
1674 | DeterminePrimaryVirtualBases(RD: MostDerivedClass, OffsetInLayoutClass: MostDerivedClassOffset, |
1675 | VBases); |
1676 | VBases.clear(); |
1677 | |
1678 | LayoutVTablesForVirtualBases(RD: MostDerivedClass, VBases); |
1679 | |
1680 | // -fapple-kext adds an extra entry at end of vtbl. |
1681 | bool IsAppleKext = Context.getLangOpts().AppleKext; |
1682 | if (IsAppleKext) |
1683 | Components.push_back(Elt: VTableComponent::MakeVCallOffset(Offset: CharUnits::Zero())); |
1684 | } |
1685 | |
1686 | void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables( |
1687 | BaseSubobject Base, bool BaseIsMorallyVirtual, |
1688 | bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) { |
1689 | assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!" ); |
1690 | |
1691 | unsigned VTableIndex = Components.size(); |
1692 | VTableIndices.push_back(Elt: VTableIndex); |
1693 | |
1694 | // Add vcall and vbase offsets for this vtable. |
1695 | VCallAndVBaseOffsetBuilder Builder( |
1696 | VTables, MostDerivedClass, LayoutClass, &Overriders, Base, |
1697 | BaseIsVirtualInLayoutClass, OffsetInLayoutClass); |
1698 | Components.append(in_start: Builder.components_begin(), in_end: Builder.components_end()); |
1699 | |
1700 | // Check if we need to add these vcall offsets. |
1701 | if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) { |
1702 | VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()]; |
1703 | |
1704 | if (VCallOffsets.empty()) |
1705 | VCallOffsets = Builder.getVCallOffsets(); |
1706 | } |
1707 | |
1708 | // If we're laying out the most derived class we want to keep track of the |
1709 | // virtual base class offset offsets. |
1710 | if (Base.getBase() == MostDerivedClass) |
1711 | VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets(); |
1712 | |
1713 | // Add the offset to top. |
1714 | CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass; |
1715 | Components.push_back(Elt: VTableComponent::MakeOffsetToTop(Offset: OffsetToTop)); |
1716 | |
1717 | // Next, add the RTTI. |
1718 | if (!Context.getLangOpts().OmitVTableRTTI) |
1719 | Components.push_back(Elt: VTableComponent::MakeRTTI(RD: MostDerivedClass)); |
1720 | |
1721 | uint64_t AddressPoint = Components.size(); |
1722 | |
1723 | // Now go through all virtual member functions and add them. |
1724 | PrimaryBasesSetVectorTy PrimaryBases; |
1725 | AddMethods(Base, BaseOffsetInLayoutClass: OffsetInLayoutClass, |
1726 | FirstBaseInPrimaryBaseChain: Base.getBase(), FirstBaseOffsetInLayoutClass: OffsetInLayoutClass, |
1727 | PrimaryBases); |
1728 | |
1729 | const CXXRecordDecl *RD = Base.getBase(); |
1730 | if (RD == MostDerivedClass) { |
1731 | assert(MethodVTableIndices.empty()); |
1732 | for (const auto &I : MethodInfoMap) { |
1733 | const CXXMethodDecl *MD = I.first; |
1734 | const MethodInfo &MI = I.second; |
1735 | if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) { |
1736 | MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)] |
1737 | = MI.VTableIndex - AddressPoint; |
1738 | MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)] |
1739 | = MI.VTableIndex + 1 - AddressPoint; |
1740 | } else { |
1741 | MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint; |
1742 | } |
1743 | } |
1744 | } |
1745 | |
1746 | // Compute 'this' pointer adjustments. |
1747 | ComputeThisAdjustments(); |
1748 | |
1749 | // Add all address points. |
1750 | while (true) { |
1751 | AddressPoints.insert( |
1752 | KV: std::make_pair(x: BaseSubobject(RD, OffsetInLayoutClass), |
1753 | y: VTableLayout::AddressPointLocation{ |
1754 | .VTableIndex: unsigned(VTableIndices.size() - 1), |
1755 | .AddressPointIndex: unsigned(AddressPoint - VTableIndex)})); |
1756 | |
1757 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD); |
1758 | const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); |
1759 | |
1760 | if (!PrimaryBase) |
1761 | break; |
1762 | |
1763 | if (Layout.isPrimaryBaseVirtual()) { |
1764 | // Check if this virtual primary base is a primary base in the layout |
1765 | // class. If it's not, we don't want to add it. |
1766 | const ASTRecordLayout &LayoutClassLayout = |
1767 | Context.getASTRecordLayout(D: LayoutClass); |
1768 | |
1769 | if (LayoutClassLayout.getVBaseClassOffset(VBase: PrimaryBase) != |
1770 | OffsetInLayoutClass) { |
1771 | // We don't want to add this class (or any of its primary bases). |
1772 | break; |
1773 | } |
1774 | } |
1775 | |
1776 | RD = PrimaryBase; |
1777 | } |
1778 | |
1779 | // Layout secondary vtables. |
1780 | LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass); |
1781 | } |
1782 | |
1783 | void |
1784 | ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base, |
1785 | bool BaseIsMorallyVirtual, |
1786 | CharUnits OffsetInLayoutClass) { |
1787 | // Itanium C++ ABI 2.5.2: |
1788 | // Following the primary virtual table of a derived class are secondary |
1789 | // virtual tables for each of its proper base classes, except any primary |
1790 | // base(s) with which it shares its primary virtual table. |
1791 | |
1792 | const CXXRecordDecl *RD = Base.getBase(); |
1793 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD); |
1794 | const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); |
1795 | |
1796 | for (const auto &B : RD->bases()) { |
1797 | // Ignore virtual bases, we'll emit them later. |
1798 | if (B.isVirtual()) |
1799 | continue; |
1800 | |
1801 | const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); |
1802 | |
1803 | // Ignore bases that don't have a vtable. |
1804 | if (!BaseDecl->isDynamicClass()) |
1805 | continue; |
1806 | |
1807 | if (isBuildingConstructorVTable()) { |
1808 | // Itanium C++ ABI 2.6.4: |
1809 | // Some of the base class subobjects may not need construction virtual |
1810 | // tables, which will therefore not be present in the construction |
1811 | // virtual table group, even though the subobject virtual tables are |
1812 | // present in the main virtual table group for the complete object. |
1813 | if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases()) |
1814 | continue; |
1815 | } |
1816 | |
1817 | // Get the base offset of this base. |
1818 | CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(Base: BaseDecl); |
1819 | CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset; |
1820 | |
1821 | CharUnits BaseOffsetInLayoutClass = |
1822 | OffsetInLayoutClass + RelativeBaseOffset; |
1823 | |
1824 | // Don't emit a secondary vtable for a primary base. We might however want |
1825 | // to emit secondary vtables for other bases of this base. |
1826 | if (BaseDecl == PrimaryBase) { |
1827 | LayoutSecondaryVTables(Base: BaseSubobject(BaseDecl, BaseOffset), |
1828 | BaseIsMorallyVirtual, OffsetInLayoutClass: BaseOffsetInLayoutClass); |
1829 | continue; |
1830 | } |
1831 | |
1832 | // Layout the primary vtable (and any secondary vtables) for this base. |
1833 | LayoutPrimaryAndSecondaryVTables( |
1834 | Base: BaseSubobject(BaseDecl, BaseOffset), |
1835 | BaseIsMorallyVirtual, |
1836 | /*BaseIsVirtualInLayoutClass=*/false, |
1837 | OffsetInLayoutClass: BaseOffsetInLayoutClass); |
1838 | } |
1839 | } |
1840 | |
1841 | void ItaniumVTableBuilder::DeterminePrimaryVirtualBases( |
1842 | const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass, |
1843 | VisitedVirtualBasesSetTy &VBases) { |
1844 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD); |
1845 | |
1846 | // Check if this base has a primary base. |
1847 | if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { |
1848 | |
1849 | // Check if it's virtual. |
1850 | if (Layout.isPrimaryBaseVirtual()) { |
1851 | bool IsPrimaryVirtualBase = true; |
1852 | |
1853 | if (isBuildingConstructorVTable()) { |
1854 | // Check if the base is actually a primary base in the class we use for |
1855 | // layout. |
1856 | const ASTRecordLayout &LayoutClassLayout = |
1857 | Context.getASTRecordLayout(D: LayoutClass); |
1858 | |
1859 | CharUnits PrimaryBaseOffsetInLayoutClass = |
1860 | LayoutClassLayout.getVBaseClassOffset(VBase: PrimaryBase); |
1861 | |
1862 | // We know that the base is not a primary base in the layout class if |
1863 | // the base offsets are different. |
1864 | if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass) |
1865 | IsPrimaryVirtualBase = false; |
1866 | } |
1867 | |
1868 | if (IsPrimaryVirtualBase) |
1869 | PrimaryVirtualBases.insert(Ptr: PrimaryBase); |
1870 | } |
1871 | } |
1872 | |
1873 | // Traverse bases, looking for more primary virtual bases. |
1874 | for (const auto &B : RD->bases()) { |
1875 | const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); |
1876 | |
1877 | CharUnits BaseOffsetInLayoutClass; |
1878 | |
1879 | if (B.isVirtual()) { |
1880 | if (!VBases.insert(Ptr: BaseDecl).second) |
1881 | continue; |
1882 | |
1883 | const ASTRecordLayout &LayoutClassLayout = |
1884 | Context.getASTRecordLayout(D: LayoutClass); |
1885 | |
1886 | BaseOffsetInLayoutClass = |
1887 | LayoutClassLayout.getVBaseClassOffset(VBase: BaseDecl); |
1888 | } else { |
1889 | BaseOffsetInLayoutClass = |
1890 | OffsetInLayoutClass + Layout.getBaseClassOffset(Base: BaseDecl); |
1891 | } |
1892 | |
1893 | DeterminePrimaryVirtualBases(RD: BaseDecl, OffsetInLayoutClass: BaseOffsetInLayoutClass, VBases); |
1894 | } |
1895 | } |
1896 | |
1897 | void ItaniumVTableBuilder::LayoutVTablesForVirtualBases( |
1898 | const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) { |
1899 | // Itanium C++ ABI 2.5.2: |
1900 | // Then come the virtual base virtual tables, also in inheritance graph |
1901 | // order, and again excluding primary bases (which share virtual tables with |
1902 | // the classes for which they are primary). |
1903 | for (const auto &B : RD->bases()) { |
1904 | const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); |
1905 | |
1906 | // Check if this base needs a vtable. (If it's virtual, not a primary base |
1907 | // of some other class, and we haven't visited it before). |
1908 | if (B.isVirtual() && BaseDecl->isDynamicClass() && |
1909 | !PrimaryVirtualBases.count(Ptr: BaseDecl) && |
1910 | VBases.insert(Ptr: BaseDecl).second) { |
1911 | const ASTRecordLayout &MostDerivedClassLayout = |
1912 | Context.getASTRecordLayout(D: MostDerivedClass); |
1913 | CharUnits BaseOffset = |
1914 | MostDerivedClassLayout.getVBaseClassOffset(VBase: BaseDecl); |
1915 | |
1916 | const ASTRecordLayout &LayoutClassLayout = |
1917 | Context.getASTRecordLayout(D: LayoutClass); |
1918 | CharUnits BaseOffsetInLayoutClass = |
1919 | LayoutClassLayout.getVBaseClassOffset(VBase: BaseDecl); |
1920 | |
1921 | LayoutPrimaryAndSecondaryVTables( |
1922 | Base: BaseSubobject(BaseDecl, BaseOffset), |
1923 | /*BaseIsMorallyVirtual=*/true, |
1924 | /*BaseIsVirtualInLayoutClass=*/true, |
1925 | OffsetInLayoutClass: BaseOffsetInLayoutClass); |
1926 | } |
1927 | |
1928 | // We only need to check the base for virtual base vtables if it actually |
1929 | // has virtual bases. |
1930 | if (BaseDecl->getNumVBases()) |
1931 | LayoutVTablesForVirtualBases(RD: BaseDecl, VBases); |
1932 | } |
1933 | } |
1934 | |
1935 | static void printThunkMethod(const ThunkInfo &Info, raw_ostream &Out) { |
1936 | if (!Info.Method) |
1937 | return; |
1938 | std::string Str = PredefinedExpr::ComputeName( |
1939 | IK: PredefinedIdentKind::PrettyFunctionNoVirtual, CurrentDecl: Info.Method); |
1940 | Out << " method: " << Str; |
1941 | } |
1942 | |
1943 | /// dumpLayout - Dump the vtable layout. |
1944 | void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) { |
1945 | // FIXME: write more tests that actually use the dumpLayout output to prevent |
1946 | // ItaniumVTableBuilder regressions. |
1947 | |
1948 | Out << "Original map\n" ; |
1949 | |
1950 | for (const auto &P : VTables.getOriginalMethodMap()) { |
1951 | std::string Str0 = |
1952 | PredefinedExpr::ComputeName(IK: PredefinedIdentKind::PrettyFunctionNoVirtual, |
1953 | CurrentDecl: P.first); |
1954 | std::string Str1 = |
1955 | PredefinedExpr::ComputeName(IK: PredefinedIdentKind::PrettyFunctionNoVirtual, |
1956 | CurrentDecl: P.second); |
1957 | Out << " " << Str0 << " -> " << Str1 << "\n" ; |
1958 | } |
1959 | |
1960 | if (isBuildingConstructorVTable()) { |
1961 | Out << "Construction vtable for ('" ; |
1962 | MostDerivedClass->printQualifiedName(OS&: Out); |
1963 | Out << "', " ; |
1964 | Out << MostDerivedClassOffset.getQuantity() << ") in '" ; |
1965 | LayoutClass->printQualifiedName(OS&: Out); |
1966 | } else { |
1967 | Out << "Vtable for '" ; |
1968 | MostDerivedClass->printQualifiedName(OS&: Out); |
1969 | } |
1970 | Out << "' (" << Components.size() << " entries).\n" ; |
1971 | |
1972 | // Iterate through the address points and insert them into a new map where |
1973 | // they are keyed by the index and not the base object. |
1974 | // Since an address point can be shared by multiple subobjects, we use an |
1975 | // STL multimap. |
1976 | std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex; |
1977 | for (const auto &AP : AddressPoints) { |
1978 | const BaseSubobject &Base = AP.first; |
1979 | uint64_t Index = |
1980 | VTableIndices[AP.second.VTableIndex] + AP.second.AddressPointIndex; |
1981 | |
1982 | AddressPointsByIndex.insert(x: std::make_pair(x&: Index, y: Base)); |
1983 | } |
1984 | |
1985 | for (unsigned I = 0, E = Components.size(); I != E; ++I) { |
1986 | uint64_t Index = I; |
1987 | |
1988 | Out << llvm::format(Fmt: "%4d | " , Vals: I); |
1989 | |
1990 | const VTableComponent &Component = Components[I]; |
1991 | |
1992 | // Dump the component. |
1993 | switch (Component.getKind()) { |
1994 | |
1995 | case VTableComponent::CK_VCallOffset: |
1996 | Out << "vcall_offset (" |
1997 | << Component.getVCallOffset().getQuantity() |
1998 | << ")" ; |
1999 | break; |
2000 | |
2001 | case VTableComponent::CK_VBaseOffset: |
2002 | Out << "vbase_offset (" |
2003 | << Component.getVBaseOffset().getQuantity() |
2004 | << ")" ; |
2005 | break; |
2006 | |
2007 | case VTableComponent::CK_OffsetToTop: |
2008 | Out << "offset_to_top (" |
2009 | << Component.getOffsetToTop().getQuantity() |
2010 | << ")" ; |
2011 | break; |
2012 | |
2013 | case VTableComponent::CK_RTTI: |
2014 | Component.getRTTIDecl()->printQualifiedName(OS&: Out); |
2015 | Out << " RTTI" ; |
2016 | break; |
2017 | |
2018 | case VTableComponent::CK_FunctionPointer: { |
2019 | const CXXMethodDecl *MD = Component.getFunctionDecl(); |
2020 | |
2021 | std::string Str = PredefinedExpr::ComputeName( |
2022 | IK: PredefinedIdentKind::PrettyFunctionNoVirtual, CurrentDecl: MD); |
2023 | Out << Str; |
2024 | if (MD->isPureVirtual()) |
2025 | Out << " [pure]" ; |
2026 | |
2027 | if (MD->isDeleted()) |
2028 | Out << " [deleted]" ; |
2029 | |
2030 | ThunkInfo Thunk = VTableThunks.lookup(Val: I); |
2031 | if (!Thunk.isEmpty()) { |
2032 | // If this function pointer has a return adjustment, dump it. |
2033 | if (!Thunk.Return.isEmpty()) { |
2034 | Out << "\n [return adjustment: " ; |
2035 | Out << Thunk.Return.NonVirtual << " non-virtual" ; |
2036 | |
2037 | if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) { |
2038 | Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset; |
2039 | Out << " vbase offset offset" ; |
2040 | } |
2041 | |
2042 | Out << ']'; |
2043 | printThunkMethod(Info: Thunk, Out); |
2044 | } |
2045 | |
2046 | // If this function pointer has a 'this' pointer adjustment, dump it. |
2047 | if (!Thunk.This.isEmpty()) { |
2048 | Out << "\n [this adjustment: " ; |
2049 | Out << Thunk.This.NonVirtual << " non-virtual" ; |
2050 | |
2051 | if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { |
2052 | Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; |
2053 | Out << " vcall offset offset" ; |
2054 | } |
2055 | |
2056 | Out << ']'; |
2057 | printThunkMethod(Info: Thunk, Out); |
2058 | } |
2059 | } |
2060 | |
2061 | break; |
2062 | } |
2063 | |
2064 | case VTableComponent::CK_CompleteDtorPointer: |
2065 | case VTableComponent::CK_DeletingDtorPointer: { |
2066 | bool IsComplete = |
2067 | Component.getKind() == VTableComponent::CK_CompleteDtorPointer; |
2068 | |
2069 | const CXXDestructorDecl *DD = Component.getDestructorDecl(); |
2070 | |
2071 | DD->printQualifiedName(OS&: Out); |
2072 | if (IsComplete) |
2073 | Out << "() [complete]" ; |
2074 | else |
2075 | Out << "() [deleting]" ; |
2076 | |
2077 | if (DD->isPureVirtual()) |
2078 | Out << " [pure]" ; |
2079 | |
2080 | ThunkInfo Thunk = VTableThunks.lookup(Val: I); |
2081 | if (!Thunk.isEmpty()) { |
2082 | // If this destructor has a 'this' pointer adjustment, dump it. |
2083 | if (!Thunk.This.isEmpty()) { |
2084 | Out << "\n [this adjustment: " ; |
2085 | Out << Thunk.This.NonVirtual << " non-virtual" ; |
2086 | |
2087 | if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { |
2088 | Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; |
2089 | Out << " vcall offset offset" ; |
2090 | } |
2091 | |
2092 | Out << ']'; |
2093 | } |
2094 | printThunkMethod(Info: Thunk, Out); |
2095 | } |
2096 | |
2097 | break; |
2098 | } |
2099 | |
2100 | case VTableComponent::CK_UnusedFunctionPointer: { |
2101 | const CXXMethodDecl *MD = Component.getUnusedFunctionDecl(); |
2102 | |
2103 | std::string Str = PredefinedExpr::ComputeName( |
2104 | IK: PredefinedIdentKind::PrettyFunctionNoVirtual, CurrentDecl: MD); |
2105 | Out << "[unused] " << Str; |
2106 | if (MD->isPureVirtual()) |
2107 | Out << " [pure]" ; |
2108 | } |
2109 | |
2110 | } |
2111 | |
2112 | Out << '\n'; |
2113 | |
2114 | // Dump the next address point. |
2115 | uint64_t NextIndex = Index + 1; |
2116 | if (AddressPointsByIndex.count(x: NextIndex)) { |
2117 | if (AddressPointsByIndex.count(x: NextIndex) == 1) { |
2118 | const BaseSubobject &Base = |
2119 | AddressPointsByIndex.find(x: NextIndex)->second; |
2120 | |
2121 | Out << " -- (" ; |
2122 | Base.getBase()->printQualifiedName(OS&: Out); |
2123 | Out << ", " << Base.getBaseOffset().getQuantity(); |
2124 | Out << ") vtable address --\n" ; |
2125 | } else { |
2126 | CharUnits BaseOffset = |
2127 | AddressPointsByIndex.lower_bound(x: NextIndex)->second.getBaseOffset(); |
2128 | |
2129 | // We store the class names in a set to get a stable order. |
2130 | std::set<std::string> ClassNames; |
2131 | for (const auto &I : |
2132 | llvm::make_range(p: AddressPointsByIndex.equal_range(x: NextIndex))) { |
2133 | assert(I.second.getBaseOffset() == BaseOffset && |
2134 | "Invalid base offset!" ); |
2135 | const CXXRecordDecl *RD = I.second.getBase(); |
2136 | ClassNames.insert(x: RD->getQualifiedNameAsString()); |
2137 | } |
2138 | |
2139 | for (const std::string &Name : ClassNames) { |
2140 | Out << " -- (" << Name; |
2141 | Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n" ; |
2142 | } |
2143 | } |
2144 | } |
2145 | } |
2146 | |
2147 | Out << '\n'; |
2148 | |
2149 | if (isBuildingConstructorVTable()) |
2150 | return; |
2151 | |
2152 | if (MostDerivedClass->getNumVBases()) { |
2153 | // We store the virtual base class names and their offsets in a map to get |
2154 | // a stable order. |
2155 | |
2156 | std::map<std::string, CharUnits> ClassNamesAndOffsets; |
2157 | for (const auto &I : VBaseOffsetOffsets) { |
2158 | std::string ClassName = I.first->getQualifiedNameAsString(); |
2159 | CharUnits OffsetOffset = I.second; |
2160 | ClassNamesAndOffsets.insert(x: std::make_pair(x&: ClassName, y&: OffsetOffset)); |
2161 | } |
2162 | |
2163 | Out << "Virtual base offset offsets for '" ; |
2164 | MostDerivedClass->printQualifiedName(OS&: Out); |
2165 | Out << "' (" ; |
2166 | Out << ClassNamesAndOffsets.size(); |
2167 | Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries" ) << ").\n" ; |
2168 | |
2169 | for (const auto &I : ClassNamesAndOffsets) |
2170 | Out << " " << I.first << " | " << I.second.getQuantity() << '\n'; |
2171 | |
2172 | Out << "\n" ; |
2173 | } |
2174 | |
2175 | if (!Thunks.empty()) { |
2176 | // We store the method names in a map to get a stable order. |
2177 | std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls; |
2178 | |
2179 | for (const auto &I : Thunks) { |
2180 | const CXXMethodDecl *MD = I.first; |
2181 | std::string MethodName = PredefinedExpr::ComputeName( |
2182 | IK: PredefinedIdentKind::PrettyFunctionNoVirtual, CurrentDecl: MD); |
2183 | |
2184 | MethodNamesAndDecls.insert(x: std::make_pair(x&: MethodName, y&: MD)); |
2185 | } |
2186 | |
2187 | for (const auto &I : MethodNamesAndDecls) { |
2188 | const std::string &MethodName = I.first; |
2189 | const CXXMethodDecl *MD = I.second; |
2190 | |
2191 | ThunkInfoVectorTy ThunksVector = Thunks[MD]; |
2192 | llvm::sort(C&: ThunksVector, Comp: [](const ThunkInfo &LHS, const ThunkInfo &RHS) { |
2193 | return std::tie(args: LHS.This, args: LHS.Return) < std::tie(args: RHS.This, args: RHS.Return); |
2194 | }); |
2195 | |
2196 | Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size(); |
2197 | Out << (ThunksVector.size() == 1 ? " entry" : " entries" ) << ").\n" ; |
2198 | |
2199 | for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) { |
2200 | const ThunkInfo &Thunk = ThunksVector[I]; |
2201 | |
2202 | Out << llvm::format(Fmt: "%4d | " , Vals: I); |
2203 | |
2204 | // If this function pointer has a return pointer adjustment, dump it. |
2205 | if (!Thunk.Return.isEmpty()) { |
2206 | Out << "return adjustment: " << Thunk.Return.NonVirtual; |
2207 | Out << " non-virtual" ; |
2208 | if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) { |
2209 | Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset; |
2210 | Out << " vbase offset offset" ; |
2211 | } |
2212 | |
2213 | if (!Thunk.This.isEmpty()) |
2214 | Out << "\n " ; |
2215 | } |
2216 | |
2217 | // If this function pointer has a 'this' pointer adjustment, dump it. |
2218 | if (!Thunk.This.isEmpty()) { |
2219 | Out << "this adjustment: " ; |
2220 | Out << Thunk.This.NonVirtual << " non-virtual" ; |
2221 | |
2222 | if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { |
2223 | Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; |
2224 | Out << " vcall offset offset" ; |
2225 | } |
2226 | } |
2227 | |
2228 | Out << '\n'; |
2229 | } |
2230 | |
2231 | Out << '\n'; |
2232 | } |
2233 | } |
2234 | |
2235 | // Compute the vtable indices for all the member functions. |
2236 | // Store them in a map keyed by the index so we'll get a sorted table. |
2237 | std::map<uint64_t, std::string> IndicesMap; |
2238 | |
2239 | for (const auto *MD : MostDerivedClass->methods()) { |
2240 | // We only want virtual member functions. |
2241 | if (!ItaniumVTableContext::hasVtableSlot(MD)) |
2242 | continue; |
2243 | MD = MD->getCanonicalDecl(); |
2244 | |
2245 | std::string MethodName = PredefinedExpr::ComputeName( |
2246 | IK: PredefinedIdentKind::PrettyFunctionNoVirtual, CurrentDecl: MD); |
2247 | |
2248 | if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) { |
2249 | GlobalDecl GD(DD, Dtor_Complete); |
2250 | assert(MethodVTableIndices.count(GD)); |
2251 | uint64_t VTableIndex = MethodVTableIndices[GD]; |
2252 | IndicesMap[VTableIndex] = MethodName + " [complete]" ; |
2253 | IndicesMap[VTableIndex + 1] = MethodName + " [deleting]" ; |
2254 | } else { |
2255 | assert(MethodVTableIndices.count(MD)); |
2256 | IndicesMap[MethodVTableIndices[MD]] = MethodName; |
2257 | } |
2258 | } |
2259 | |
2260 | // Print the vtable indices for all the member functions. |
2261 | if (!IndicesMap.empty()) { |
2262 | Out << "VTable indices for '" ; |
2263 | MostDerivedClass->printQualifiedName(OS&: Out); |
2264 | Out << "' (" << IndicesMap.size() << " entries).\n" ; |
2265 | |
2266 | for (const auto &I : IndicesMap) { |
2267 | uint64_t VTableIndex = I.first; |
2268 | const std::string &MethodName = I.second; |
2269 | |
2270 | Out << llvm::format(Fmt: "%4" PRIu64 " | " , Vals: VTableIndex) << MethodName |
2271 | << '\n'; |
2272 | } |
2273 | } |
2274 | |
2275 | Out << '\n'; |
2276 | } |
2277 | } |
2278 | |
2279 | static VTableLayout::AddressPointsIndexMapTy |
2280 | MakeAddressPointIndices(const VTableLayout::AddressPointsMapTy &addressPoints, |
2281 | unsigned numVTables) { |
2282 | VTableLayout::AddressPointsIndexMapTy indexMap(numVTables); |
2283 | |
2284 | for (auto it = addressPoints.begin(); it != addressPoints.end(); ++it) { |
2285 | const auto &addressPointLoc = it->second; |
2286 | unsigned vtableIndex = addressPointLoc.VTableIndex; |
2287 | unsigned addressPoint = addressPointLoc.AddressPointIndex; |
2288 | if (indexMap[vtableIndex]) { |
2289 | // Multiple BaseSubobjects can map to the same AddressPointLocation, but |
2290 | // every vtable index should have a unique address point. |
2291 | assert(indexMap[vtableIndex] == addressPoint && |
2292 | "Every vtable index should have a unique address point. Found a " |
2293 | "vtable that has two different address points." ); |
2294 | } else { |
2295 | indexMap[vtableIndex] = addressPoint; |
2296 | } |
2297 | } |
2298 | |
2299 | // Note that by this point, not all the address may be initialized if the |
2300 | // AddressPoints map is empty. This is ok if the map isn't needed. See |
2301 | // MicrosoftVTableContext::computeVTableRelatedInformation() which uses an |
2302 | // emprt map. |
2303 | return indexMap; |
2304 | } |
2305 | |
2306 | VTableLayout::VTableLayout(ArrayRef<size_t> VTableIndices, |
2307 | ArrayRef<VTableComponent> VTableComponents, |
2308 | ArrayRef<VTableThunkTy> VTableThunks, |
2309 | const AddressPointsMapTy &AddressPoints) |
2310 | : VTableComponents(VTableComponents), VTableThunks(VTableThunks), |
2311 | AddressPoints(AddressPoints), AddressPointIndices(MakeAddressPointIndices( |
2312 | addressPoints: AddressPoints, numVTables: VTableIndices.size())) { |
2313 | if (VTableIndices.size() <= 1) |
2314 | assert(VTableIndices.size() == 1 && VTableIndices[0] == 0); |
2315 | else |
2316 | this->VTableIndices = OwningArrayRef<size_t>(VTableIndices); |
2317 | |
2318 | llvm::sort(C&: this->VTableThunks, Comp: [](const VTableLayout::VTableThunkTy &LHS, |
2319 | const VTableLayout::VTableThunkTy &RHS) { |
2320 | assert((LHS.first != RHS.first || LHS.second == RHS.second) && |
2321 | "Different thunks should have unique indices!" ); |
2322 | return LHS.first < RHS.first; |
2323 | }); |
2324 | } |
2325 | |
2326 | VTableLayout::~VTableLayout() { } |
2327 | |
2328 | bool VTableContextBase::hasVtableSlot(const CXXMethodDecl *MD) { |
2329 | return MD->isVirtual() && !MD->isImmediateFunction(); |
2330 | } |
2331 | |
2332 | ItaniumVTableContext::ItaniumVTableContext( |
2333 | ASTContext &Context, VTableComponentLayout ComponentLayout) |
2334 | : VTableContextBase(/*MS=*/false), ComponentLayout(ComponentLayout) {} |
2335 | |
2336 | ItaniumVTableContext::~ItaniumVTableContext() {} |
2337 | |
2338 | uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) { |
2339 | GD = GD.getCanonicalDecl(); |
2340 | MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(Val: GD); |
2341 | if (I != MethodVTableIndices.end()) |
2342 | return I->second; |
2343 | |
2344 | const CXXRecordDecl *RD = cast<CXXMethodDecl>(Val: GD.getDecl())->getParent(); |
2345 | |
2346 | computeVTableRelatedInformation(RD); |
2347 | |
2348 | I = MethodVTableIndices.find(Val: GD); |
2349 | assert(I != MethodVTableIndices.end() && "Did not find index!" ); |
2350 | return I->second; |
2351 | } |
2352 | |
2353 | CharUnits |
2354 | ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD, |
2355 | const CXXRecordDecl *VBase) { |
2356 | ClassPairTy ClassPair(RD, VBase); |
2357 | |
2358 | VirtualBaseClassOffsetOffsetsMapTy::iterator I = |
2359 | VirtualBaseClassOffsetOffsets.find(Val: ClassPair); |
2360 | if (I != VirtualBaseClassOffsetOffsets.end()) |
2361 | return I->second; |
2362 | |
2363 | VCallAndVBaseOffsetBuilder Builder(*this, RD, RD, /*Overriders=*/nullptr, |
2364 | BaseSubobject(RD, CharUnits::Zero()), |
2365 | /*BaseIsVirtual=*/false, |
2366 | /*OffsetInLayoutClass=*/CharUnits::Zero()); |
2367 | |
2368 | for (const auto &I : Builder.getVBaseOffsetOffsets()) { |
2369 | // Insert all types. |
2370 | ClassPairTy ClassPair(RD, I.first); |
2371 | |
2372 | VirtualBaseClassOffsetOffsets.insert(KV: std::make_pair(x&: ClassPair, y: I.second)); |
2373 | } |
2374 | |
2375 | I = VirtualBaseClassOffsetOffsets.find(Val: ClassPair); |
2376 | assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!" ); |
2377 | |
2378 | return I->second; |
2379 | } |
2380 | |
2381 | GlobalDecl ItaniumVTableContext::findOriginalMethod(GlobalDecl GD) { |
2382 | const auto *MD = cast<CXXMethodDecl>(Val: GD.getDecl()); |
2383 | computeVTableRelatedInformation(RD: MD->getParent()); |
2384 | const CXXMethodDecl *OriginalMD = findOriginalMethodInMap(MD); |
2385 | |
2386 | if (const auto *DD = dyn_cast<CXXDestructorDecl>(Val: OriginalMD)) |
2387 | return GlobalDecl(DD, GD.getDtorType()); |
2388 | return OriginalMD; |
2389 | } |
2390 | |
2391 | const CXXMethodDecl * |
2392 | ItaniumVTableContext::findOriginalMethodInMap(const CXXMethodDecl *MD) const { |
2393 | // Traverse the chain of virtual methods until we find the method that added |
2394 | // the v-table slot. |
2395 | while (true) { |
2396 | auto I = OriginalMethodMap.find(Val: MD); |
2397 | |
2398 | // MD doesn't exist in OriginalMethodMap, so it must be the method we are |
2399 | // looking for. |
2400 | if (I == OriginalMethodMap.end()) |
2401 | break; |
2402 | |
2403 | // Set MD to the overridden method. |
2404 | MD = I->second; |
2405 | } |
2406 | |
2407 | return MD; |
2408 | } |
2409 | |
2410 | static std::unique_ptr<VTableLayout> |
2411 | CreateVTableLayout(const ItaniumVTableBuilder &Builder) { |
2412 | SmallVector<VTableLayout::VTableThunkTy, 1> |
2413 | VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end()); |
2414 | |
2415 | return std::make_unique<VTableLayout>( |
2416 | args: Builder.VTableIndices, args: Builder.vtable_components(), args&: VTableThunks, |
2417 | args: Builder.getAddressPoints()); |
2418 | } |
2419 | |
2420 | void |
2421 | ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) { |
2422 | std::unique_ptr<const VTableLayout> &Entry = VTableLayouts[RD]; |
2423 | |
2424 | // Check if we've computed this information before. |
2425 | if (Entry) |
2426 | return; |
2427 | |
2428 | ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(), |
2429 | /*MostDerivedClassIsVirtual=*/false, RD); |
2430 | Entry = CreateVTableLayout(Builder); |
2431 | |
2432 | MethodVTableIndices.insert(I: Builder.vtable_indices_begin(), |
2433 | E: Builder.vtable_indices_end()); |
2434 | |
2435 | // Add the known thunks. |
2436 | Thunks.insert(I: Builder.thunks_begin(), E: Builder.thunks_end()); |
2437 | |
2438 | // If we don't have the vbase information for this class, insert it. |
2439 | // getVirtualBaseOffsetOffset will compute it separately without computing |
2440 | // the rest of the vtable related information. |
2441 | if (!RD->getNumVBases()) |
2442 | return; |
2443 | |
2444 | const CXXRecordDecl *VBase = |
2445 | RD->vbases_begin()->getType()->getAsCXXRecordDecl(); |
2446 | |
2447 | if (VirtualBaseClassOffsetOffsets.count(Val: std::make_pair(x&: RD, y&: VBase))) |
2448 | return; |
2449 | |
2450 | for (const auto &I : Builder.getVBaseOffsetOffsets()) { |
2451 | // Insert all types. |
2452 | ClassPairTy ClassPair(RD, I.first); |
2453 | |
2454 | VirtualBaseClassOffsetOffsets.insert(KV: std::make_pair(x&: ClassPair, y: I.second)); |
2455 | } |
2456 | } |
2457 | |
2458 | std::unique_ptr<VTableLayout> |
2459 | ItaniumVTableContext::createConstructionVTableLayout( |
2460 | const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset, |
2461 | bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) { |
2462 | ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset, |
2463 | MostDerivedClassIsVirtual, LayoutClass); |
2464 | return CreateVTableLayout(Builder); |
2465 | } |
2466 | |
2467 | namespace { |
2468 | |
2469 | // Vtables in the Microsoft ABI are different from the Itanium ABI. |
2470 | // |
2471 | // The main differences are: |
2472 | // 1. Separate vftable and vbtable. |
2473 | // |
2474 | // 2. Each subobject with a vfptr gets its own vftable rather than an address |
2475 | // point in a single vtable shared between all the subobjects. |
2476 | // Each vftable is represented by a separate section and virtual calls |
2477 | // must be done using the vftable which has a slot for the function to be |
2478 | // called. |
2479 | // |
2480 | // 3. Virtual method definitions expect their 'this' parameter to point to the |
2481 | // first vfptr whose table provides a compatible overridden method. In many |
2482 | // cases, this permits the original vf-table entry to directly call |
2483 | // the method instead of passing through a thunk. |
2484 | // See example before VFTableBuilder::ComputeThisOffset below. |
2485 | // |
2486 | // A compatible overridden method is one which does not have a non-trivial |
2487 | // covariant-return adjustment. |
2488 | // |
2489 | // The first vfptr is the one with the lowest offset in the complete-object |
2490 | // layout of the defining class, and the method definition will subtract |
2491 | // that constant offset from the parameter value to get the real 'this' |
2492 | // value. Therefore, if the offset isn't really constant (e.g. if a virtual |
2493 | // function defined in a virtual base is overridden in a more derived |
2494 | // virtual base and these bases have a reverse order in the complete |
2495 | // object), the vf-table may require a this-adjustment thunk. |
2496 | // |
2497 | // 4. vftables do not contain new entries for overrides that merely require |
2498 | // this-adjustment. Together with #3, this keeps vf-tables smaller and |
2499 | // eliminates the need for this-adjustment thunks in many cases, at the cost |
2500 | // of often requiring redundant work to adjust the "this" pointer. |
2501 | // |
2502 | // 5. Instead of VTT and constructor vtables, vbtables and vtordisps are used. |
2503 | // Vtordisps are emitted into the class layout if a class has |
2504 | // a) a user-defined ctor/dtor |
2505 | // and |
2506 | // b) a method overriding a method in a virtual base. |
2507 | // |
2508 | // To get a better understanding of this code, |
2509 | // you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp |
2510 | |
2511 | class VFTableBuilder { |
2512 | public: |
2513 | typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation> |
2514 | MethodVFTableLocationsTy; |
2515 | |
2516 | typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator> |
2517 | method_locations_range; |
2518 | |
2519 | private: |
2520 | /// VTables - Global vtable information. |
2521 | MicrosoftVTableContext &VTables; |
2522 | |
2523 | /// Context - The ASTContext which we will use for layout information. |
2524 | ASTContext &Context; |
2525 | |
2526 | /// MostDerivedClass - The most derived class for which we're building this |
2527 | /// vtable. |
2528 | const CXXRecordDecl *MostDerivedClass; |
2529 | |
2530 | const ASTRecordLayout &MostDerivedClassLayout; |
2531 | |
2532 | const VPtrInfo &WhichVFPtr; |
2533 | |
2534 | /// FinalOverriders - The final overriders of the most derived class. |
2535 | const FinalOverriders Overriders; |
2536 | |
2537 | /// Components - The components of the vftable being built. |
2538 | SmallVector<VTableComponent, 64> Components; |
2539 | |
2540 | MethodVFTableLocationsTy MethodVFTableLocations; |
2541 | |
2542 | /// Does this class have an RTTI component? |
2543 | bool HasRTTIComponent = false; |
2544 | |
2545 | /// MethodInfo - Contains information about a method in a vtable. |
2546 | /// (Used for computing 'this' pointer adjustment thunks. |
2547 | struct MethodInfo { |
2548 | /// VBTableIndex - The nonzero index in the vbtable that |
2549 | /// this method's base has, or zero. |
2550 | const uint64_t VBTableIndex; |
2551 | |
2552 | /// VFTableIndex - The index in the vftable that this method has. |
2553 | const uint64_t VFTableIndex; |
2554 | |
2555 | /// Shadowed - Indicates if this vftable slot is shadowed by |
2556 | /// a slot for a covariant-return override. If so, it shouldn't be printed |
2557 | /// or used for vcalls in the most derived class. |
2558 | bool Shadowed; |
2559 | |
2560 | /// UsesExtraSlot - Indicates if this vftable slot was created because |
2561 | /// any of the overridden slots required a return adjusting thunk. |
2562 | bool ; |
2563 | |
2564 | MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex, |
2565 | bool = false) |
2566 | : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex), |
2567 | Shadowed(false), UsesExtraSlot(UsesExtraSlot) {} |
2568 | |
2569 | MethodInfo() |
2570 | : VBTableIndex(0), VFTableIndex(0), Shadowed(false), |
2571 | UsesExtraSlot(false) {} |
2572 | }; |
2573 | |
2574 | typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy; |
2575 | |
2576 | /// MethodInfoMap - The information for all methods in the vftable we're |
2577 | /// currently building. |
2578 | MethodInfoMapTy MethodInfoMap; |
2579 | |
2580 | typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy; |
2581 | |
2582 | /// VTableThunks - The thunks by vftable index in the vftable currently being |
2583 | /// built. |
2584 | VTableThunksMapTy VTableThunks; |
2585 | |
2586 | typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy; |
2587 | typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy; |
2588 | |
2589 | /// Thunks - A map that contains all the thunks needed for all methods in the |
2590 | /// most derived class for which the vftable is currently being built. |
2591 | ThunksMapTy Thunks; |
2592 | |
2593 | /// AddThunk - Add a thunk for the given method. |
2594 | void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) { |
2595 | SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD]; |
2596 | |
2597 | // Check if we have this thunk already. |
2598 | if (llvm::is_contained(Range&: ThunksVector, Element: Thunk)) |
2599 | return; |
2600 | |
2601 | ThunksVector.push_back(Elt: Thunk); |
2602 | } |
2603 | |
2604 | /// ComputeThisOffset - Returns the 'this' argument offset for the given |
2605 | /// method, relative to the beginning of the MostDerivedClass. |
2606 | CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider); |
2607 | |
2608 | void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider, |
2609 | CharUnits ThisOffset, ThisAdjustment &TA); |
2610 | |
2611 | /// AddMethod - Add a single virtual member function to the vftable |
2612 | /// components vector. |
2613 | void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) { |
2614 | if (!TI.isEmpty()) { |
2615 | VTableThunks[Components.size()] = TI; |
2616 | AddThunk(MD, Thunk: TI); |
2617 | } |
2618 | if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) { |
2619 | assert(TI.Return.isEmpty() && |
2620 | "Destructor can't have return adjustment!" ); |
2621 | Components.push_back(Elt: VTableComponent::MakeDeletingDtor(DD)); |
2622 | } else { |
2623 | Components.push_back(Elt: VTableComponent::MakeFunction(MD)); |
2624 | } |
2625 | } |
2626 | |
2627 | /// AddMethods - Add the methods of this base subobject and the relevant |
2628 | /// subbases to the vftable we're currently laying out. |
2629 | void AddMethods(BaseSubobject Base, unsigned BaseDepth, |
2630 | const CXXRecordDecl *LastVBase, |
2631 | BasesSetVectorTy &VisitedBases); |
2632 | |
2633 | void LayoutVFTable() { |
2634 | // RTTI data goes before all other entries. |
2635 | if (HasRTTIComponent) |
2636 | Components.push_back(Elt: VTableComponent::MakeRTTI(RD: MostDerivedClass)); |
2637 | |
2638 | BasesSetVectorTy VisitedBases; |
2639 | AddMethods(Base: BaseSubobject(MostDerivedClass, CharUnits::Zero()), BaseDepth: 0, LastVBase: nullptr, |
2640 | VisitedBases); |
2641 | // Note that it is possible for the vftable to contain only an RTTI |
2642 | // pointer, if all virtual functions are constewval. |
2643 | assert(!Components.empty() && "vftable can't be empty" ); |
2644 | |
2645 | assert(MethodVFTableLocations.empty()); |
2646 | for (const auto &I : MethodInfoMap) { |
2647 | const CXXMethodDecl *MD = I.first; |
2648 | const MethodInfo &MI = I.second; |
2649 | assert(MD == MD->getCanonicalDecl()); |
2650 | |
2651 | // Skip the methods that the MostDerivedClass didn't override |
2652 | // and the entries shadowed by return adjusting thunks. |
2653 | if (MD->getParent() != MostDerivedClass || MI.Shadowed) |
2654 | continue; |
2655 | MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(), |
2656 | WhichVFPtr.NonVirtualOffset, MI.VFTableIndex); |
2657 | if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) { |
2658 | MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc; |
2659 | } else { |
2660 | MethodVFTableLocations[MD] = Loc; |
2661 | } |
2662 | } |
2663 | } |
2664 | |
2665 | public: |
2666 | VFTableBuilder(MicrosoftVTableContext &VTables, |
2667 | const CXXRecordDecl *MostDerivedClass, const VPtrInfo &Which) |
2668 | : VTables(VTables), |
2669 | Context(MostDerivedClass->getASTContext()), |
2670 | MostDerivedClass(MostDerivedClass), |
2671 | MostDerivedClassLayout(Context.getASTRecordLayout(D: MostDerivedClass)), |
2672 | WhichVFPtr(Which), |
2673 | Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) { |
2674 | // Provide the RTTI component if RTTIData is enabled. If the vftable would |
2675 | // be available externally, we should not provide the RTTI componenent. It |
2676 | // is currently impossible to get available externally vftables with either |
2677 | // dllimport or extern template instantiations, but eventually we may add a |
2678 | // flag to support additional devirtualization that needs this. |
2679 | if (Context.getLangOpts().RTTIData) |
2680 | HasRTTIComponent = true; |
2681 | |
2682 | LayoutVFTable(); |
2683 | |
2684 | if (Context.getLangOpts().DumpVTableLayouts) |
2685 | dumpLayout(llvm::outs()); |
2686 | } |
2687 | |
2688 | uint64_t getNumThunks() const { return Thunks.size(); } |
2689 | |
2690 | ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); } |
2691 | |
2692 | ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); } |
2693 | |
2694 | method_locations_range vtable_locations() const { |
2695 | return method_locations_range(MethodVFTableLocations.begin(), |
2696 | MethodVFTableLocations.end()); |
2697 | } |
2698 | |
2699 | ArrayRef<VTableComponent> vtable_components() const { return Components; } |
2700 | |
2701 | VTableThunksMapTy::const_iterator vtable_thunks_begin() const { |
2702 | return VTableThunks.begin(); |
2703 | } |
2704 | |
2705 | VTableThunksMapTy::const_iterator vtable_thunks_end() const { |
2706 | return VTableThunks.end(); |
2707 | } |
2708 | |
2709 | void dumpLayout(raw_ostream &); |
2710 | }; |
2711 | |
2712 | } // end namespace |
2713 | |
2714 | // Let's study one class hierarchy as an example: |
2715 | // struct A { |
2716 | // virtual void f(); |
2717 | // int x; |
2718 | // }; |
2719 | // |
2720 | // struct B : virtual A { |
2721 | // virtual void f(); |
2722 | // }; |
2723 | // |
2724 | // Record layouts: |
2725 | // struct A: |
2726 | // 0 | (A vftable pointer) |
2727 | // 4 | int x |
2728 | // |
2729 | // struct B: |
2730 | // 0 | (B vbtable pointer) |
2731 | // 4 | struct A (virtual base) |
2732 | // 4 | (A vftable pointer) |
2733 | // 8 | int x |
2734 | // |
2735 | // Let's assume we have a pointer to the A part of an object of dynamic type B: |
2736 | // B b; |
2737 | // A *a = (A*)&b; |
2738 | // a->f(); |
2739 | // |
2740 | // In this hierarchy, f() belongs to the vftable of A, so B::f() expects |
2741 | // "this" parameter to point at the A subobject, which is B+4. |
2742 | // In the B::f() prologue, it adjusts "this" back to B by subtracting 4, |
2743 | // performed as a *static* adjustment. |
2744 | // |
2745 | // Interesting thing happens when we alter the relative placement of A and B |
2746 | // subobjects in a class: |
2747 | // struct C : virtual B { }; |
2748 | // |
2749 | // C c; |
2750 | // A *a = (A*)&c; |
2751 | // a->f(); |
2752 | // |
2753 | // Respective record layout is: |
2754 | // 0 | (C vbtable pointer) |
2755 | // 4 | struct A (virtual base) |
2756 | // 4 | (A vftable pointer) |
2757 | // 8 | int x |
2758 | // 12 | struct B (virtual base) |
2759 | // 12 | (B vbtable pointer) |
2760 | // |
2761 | // The final overrider of f() in class C is still B::f(), so B+4 should be |
2762 | // passed as "this" to that code. However, "a" points at B-8, so the respective |
2763 | // vftable entry should hold a thunk that adds 12 to the "this" argument before |
2764 | // performing a tail call to B::f(). |
2765 | // |
2766 | // With this example in mind, we can now calculate the 'this' argument offset |
2767 | // for the given method, relative to the beginning of the MostDerivedClass. |
2768 | CharUnits |
2769 | VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) { |
2770 | BasesSetVectorTy Bases; |
2771 | |
2772 | { |
2773 | // Find the set of least derived bases that define the given method. |
2774 | OverriddenMethodsSetTy VisitedOverriddenMethods; |
2775 | auto InitialOverriddenDefinitionCollector = [&]( |
2776 | const CXXMethodDecl *OverriddenMD) { |
2777 | if (OverriddenMD->size_overridden_methods() == 0) |
2778 | Bases.insert(X: OverriddenMD->getParent()); |
2779 | // Don't recurse on this method if we've already collected it. |
2780 | return VisitedOverriddenMethods.insert(Ptr: OverriddenMD).second; |
2781 | }; |
2782 | visitAllOverriddenMethods(MD: Overrider.Method, |
2783 | Visitor&: InitialOverriddenDefinitionCollector); |
2784 | } |
2785 | |
2786 | // If there are no overrides then 'this' is located |
2787 | // in the base that defines the method. |
2788 | if (Bases.size() == 0) |
2789 | return Overrider.Offset; |
2790 | |
2791 | CXXBasePaths Paths; |
2792 | Overrider.Method->getParent()->lookupInBases( |
2793 | BaseMatches: [&Bases](const CXXBaseSpecifier *Specifier, CXXBasePath &) { |
2794 | return Bases.count(key: Specifier->getType()->getAsCXXRecordDecl()); |
2795 | }, |
2796 | Paths); |
2797 | |
2798 | // This will hold the smallest this offset among overridees of MD. |
2799 | // This implies that an offset of a non-virtual base will dominate an offset |
2800 | // of a virtual base to potentially reduce the number of thunks required |
2801 | // in the derived classes that inherit this method. |
2802 | CharUnits Ret; |
2803 | bool First = true; |
2804 | |
2805 | const ASTRecordLayout &OverriderRDLayout = |
2806 | Context.getASTRecordLayout(D: Overrider.Method->getParent()); |
2807 | for (const CXXBasePath &Path : Paths) { |
2808 | CharUnits ThisOffset = Overrider.Offset; |
2809 | CharUnits LastVBaseOffset; |
2810 | |
2811 | // For each path from the overrider to the parents of the overridden |
2812 | // methods, traverse the path, calculating the this offset in the most |
2813 | // derived class. |
2814 | for (const CXXBasePathElement &Element : Path) { |
2815 | QualType CurTy = Element.Base->getType(); |
2816 | const CXXRecordDecl *PrevRD = Element.Class, |
2817 | *CurRD = CurTy->getAsCXXRecordDecl(); |
2818 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: PrevRD); |
2819 | |
2820 | if (Element.Base->isVirtual()) { |
2821 | // The interesting things begin when you have virtual inheritance. |
2822 | // The final overrider will use a static adjustment equal to the offset |
2823 | // of the vbase in the final overrider class. |
2824 | // For example, if the final overrider is in a vbase B of the most |
2825 | // derived class and it overrides a method of the B's own vbase A, |
2826 | // it uses A* as "this". In its prologue, it can cast A* to B* with |
2827 | // a static offset. This offset is used regardless of the actual |
2828 | // offset of A from B in the most derived class, requiring an |
2829 | // this-adjusting thunk in the vftable if A and B are laid out |
2830 | // differently in the most derived class. |
2831 | LastVBaseOffset = ThisOffset = |
2832 | Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(VBase: CurRD); |
2833 | } else { |
2834 | ThisOffset += Layout.getBaseClassOffset(Base: CurRD); |
2835 | } |
2836 | } |
2837 | |
2838 | if (isa<CXXDestructorDecl>(Val: Overrider.Method)) { |
2839 | if (LastVBaseOffset.isZero()) { |
2840 | // If a "Base" class has at least one non-virtual base with a virtual |
2841 | // destructor, the "Base" virtual destructor will take the address |
2842 | // of the "Base" subobject as the "this" argument. |
2843 | ThisOffset = Overrider.Offset; |
2844 | } else { |
2845 | // A virtual destructor of a virtual base takes the address of the |
2846 | // virtual base subobject as the "this" argument. |
2847 | ThisOffset = LastVBaseOffset; |
2848 | } |
2849 | } |
2850 | |
2851 | if (Ret > ThisOffset || First) { |
2852 | First = false; |
2853 | Ret = ThisOffset; |
2854 | } |
2855 | } |
2856 | |
2857 | assert(!First && "Method not found in the given subobject?" ); |
2858 | return Ret; |
2859 | } |
2860 | |
2861 | // Things are getting even more complex when the "this" adjustment has to |
2862 | // use a dynamic offset instead of a static one, or even two dynamic offsets. |
2863 | // This is sometimes required when a virtual call happens in the middle of |
2864 | // a non-most-derived class construction or destruction. |
2865 | // |
2866 | // Let's take a look at the following example: |
2867 | // struct A { |
2868 | // virtual void f(); |
2869 | // }; |
2870 | // |
2871 | // void foo(A *a) { a->f(); } // Knows nothing about siblings of A. |
2872 | // |
2873 | // struct B : virtual A { |
2874 | // virtual void f(); |
2875 | // B() { |
2876 | // foo(this); |
2877 | // } |
2878 | // }; |
2879 | // |
2880 | // struct C : virtual B { |
2881 | // virtual void f(); |
2882 | // }; |
2883 | // |
2884 | // Record layouts for these classes are: |
2885 | // struct A |
2886 | // 0 | (A vftable pointer) |
2887 | // |
2888 | // struct B |
2889 | // 0 | (B vbtable pointer) |
2890 | // 4 | (vtordisp for vbase A) |
2891 | // 8 | struct A (virtual base) |
2892 | // 8 | (A vftable pointer) |
2893 | // |
2894 | // struct C |
2895 | // 0 | (C vbtable pointer) |
2896 | // 4 | (vtordisp for vbase A) |
2897 | // 8 | struct A (virtual base) // A precedes B! |
2898 | // 8 | (A vftable pointer) |
2899 | // 12 | struct B (virtual base) |
2900 | // 12 | (B vbtable pointer) |
2901 | // |
2902 | // When one creates an object of type C, the C constructor: |
2903 | // - initializes all the vbptrs, then |
2904 | // - calls the A subobject constructor |
2905 | // (initializes A's vfptr with an address of A vftable), then |
2906 | // - calls the B subobject constructor |
2907 | // (initializes A's vfptr with an address of B vftable and vtordisp for A), |
2908 | // that in turn calls foo(), then |
2909 | // - initializes A's vfptr with an address of C vftable and zeroes out the |
2910 | // vtordisp |
2911 | // FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable |
2912 | // without vtordisp thunks? |
2913 | // FIXME: how are vtordisp handled in the presence of nooverride/final? |
2914 | // |
2915 | // When foo() is called, an object with a layout of class C has a vftable |
2916 | // referencing B::f() that assumes a B layout, so the "this" adjustments are |
2917 | // incorrect, unless an extra adjustment is done. This adjustment is called |
2918 | // "vtordisp adjustment". Vtordisp basically holds the difference between the |
2919 | // actual location of a vbase in the layout class and the location assumed by |
2920 | // the vftable of the class being constructed/destructed. Vtordisp is only |
2921 | // needed if "this" escapes a |
2922 | // structor (or we can't prove otherwise). |
2923 | // [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an |
2924 | // estimation of a dynamic adjustment] |
2925 | // |
2926 | // foo() gets a pointer to the A vbase and doesn't know anything about B or C, |
2927 | // so it just passes that pointer as "this" in a virtual call. |
2928 | // If there was no vtordisp, that would just dispatch to B::f(). |
2929 | // However, B::f() assumes B+8 is passed as "this", |
2930 | // yet the pointer foo() passes along is B-4 (i.e. C+8). |
2931 | // An extra adjustment is needed, so we emit a thunk into the B vftable. |
2932 | // This vtordisp thunk subtracts the value of vtordisp |
2933 | // from the "this" argument (-12) before making a tailcall to B::f(). |
2934 | // |
2935 | // Let's consider an even more complex example: |
2936 | // struct D : virtual B, virtual C { |
2937 | // D() { |
2938 | // foo(this); |
2939 | // } |
2940 | // }; |
2941 | // |
2942 | // struct D |
2943 | // 0 | (D vbtable pointer) |
2944 | // 4 | (vtordisp for vbase A) |
2945 | // 8 | struct A (virtual base) // A precedes both B and C! |
2946 | // 8 | (A vftable pointer) |
2947 | // 12 | struct B (virtual base) // B precedes C! |
2948 | // 12 | (B vbtable pointer) |
2949 | // 16 | struct C (virtual base) |
2950 | // 16 | (C vbtable pointer) |
2951 | // |
2952 | // When D::D() calls foo(), we find ourselves in a thunk that should tailcall |
2953 | // to C::f(), which assumes C+8 as its "this" parameter. This time, foo() |
2954 | // passes along A, which is C-8. The A vtordisp holds |
2955 | // "D.vbptr[index_of_A] - offset_of_A_in_D" |
2956 | // and we statically know offset_of_A_in_D, so can get a pointer to D. |
2957 | // When we know it, we can make an extra vbtable lookup to locate the C vbase |
2958 | // and one extra static adjustment to calculate the expected value of C+8. |
2959 | void VFTableBuilder::CalculateVtordispAdjustment( |
2960 | FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset, |
2961 | ThisAdjustment &TA) { |
2962 | const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap = |
2963 | MostDerivedClassLayout.getVBaseOffsetsMap(); |
2964 | const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry = |
2965 | VBaseMap.find(Val: WhichVFPtr.getVBaseWithVPtr()); |
2966 | assert(VBaseMapEntry != VBaseMap.end()); |
2967 | |
2968 | // If there's no vtordisp or the final overrider is defined in the same vbase |
2969 | // as the initial declaration, we don't need any vtordisp adjustment. |
2970 | if (!VBaseMapEntry->second.hasVtorDisp() || |
2971 | Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr()) |
2972 | return; |
2973 | |
2974 | // OK, now we know we need to use a vtordisp thunk. |
2975 | // The implicit vtordisp field is located right before the vbase. |
2976 | CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset; |
2977 | TA.Virtual.Microsoft.VtordispOffset = |
2978 | (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4; |
2979 | |
2980 | // A simple vtordisp thunk will suffice if the final overrider is defined |
2981 | // in either the most derived class or its non-virtual base. |
2982 | if (Overrider.Method->getParent() == MostDerivedClass || |
2983 | !Overrider.VirtualBase) |
2984 | return; |
2985 | |
2986 | // Otherwise, we need to do use the dynamic offset of the final overrider |
2987 | // in order to get "this" adjustment right. |
2988 | TA.Virtual.Microsoft.VBPtrOffset = |
2989 | (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset - |
2990 | MostDerivedClassLayout.getVBPtrOffset()).getQuantity(); |
2991 | TA.Virtual.Microsoft.VBOffsetOffset = |
2992 | Context.getTypeSizeInChars(T: Context.IntTy).getQuantity() * |
2993 | VTables.getVBTableIndex(Derived: MostDerivedClass, VBase: Overrider.VirtualBase); |
2994 | |
2995 | TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity(); |
2996 | } |
2997 | |
2998 | static void GroupNewVirtualOverloads( |
2999 | const CXXRecordDecl *RD, |
3000 | SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) { |
3001 | // Put the virtual methods into VirtualMethods in the proper order: |
3002 | // 1) Group overloads by declaration name. New groups are added to the |
3003 | // vftable in the order of their first declarations in this class |
3004 | // (including overrides, non-virtual methods and any other named decl that |
3005 | // might be nested within the class). |
3006 | // 2) In each group, new overloads appear in the reverse order of declaration. |
3007 | typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup; |
3008 | SmallVector<MethodGroup, 10> Groups; |
3009 | typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy; |
3010 | VisitedGroupIndicesTy VisitedGroupIndices; |
3011 | for (const auto *D : RD->decls()) { |
3012 | const auto *ND = dyn_cast<NamedDecl>(Val: D); |
3013 | if (!ND) |
3014 | continue; |
3015 | VisitedGroupIndicesTy::iterator J; |
3016 | bool Inserted; |
3017 | std::tie(args&: J, args&: Inserted) = VisitedGroupIndices.insert( |
3018 | KV: std::make_pair(x: ND->getDeclName(), y: Groups.size())); |
3019 | if (Inserted) |
3020 | Groups.push_back(Elt: MethodGroup()); |
3021 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: ND)) |
3022 | if (MicrosoftVTableContext::hasVtableSlot(MD)) |
3023 | Groups[J->second].push_back(Elt: MD->getCanonicalDecl()); |
3024 | } |
3025 | |
3026 | for (const MethodGroup &Group : Groups) |
3027 | VirtualMethods.append(in_start: Group.rbegin(), in_end: Group.rend()); |
3028 | } |
3029 | |
3030 | static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) { |
3031 | for (const auto &B : RD->bases()) { |
3032 | if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base) |
3033 | return true; |
3034 | } |
3035 | return false; |
3036 | } |
3037 | |
3038 | void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth, |
3039 | const CXXRecordDecl *LastVBase, |
3040 | BasesSetVectorTy &VisitedBases) { |
3041 | const CXXRecordDecl *RD = Base.getBase(); |
3042 | if (!RD->isPolymorphic()) |
3043 | return; |
3044 | |
3045 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD); |
3046 | |
3047 | // See if this class expands a vftable of the base we look at, which is either |
3048 | // the one defined by the vfptr base path or the primary base of the current |
3049 | // class. |
3050 | const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase; |
3051 | CharUnits NextBaseOffset; |
3052 | if (BaseDepth < WhichVFPtr.PathToIntroducingObject.size()) { |
3053 | NextBase = WhichVFPtr.PathToIntroducingObject[BaseDepth]; |
3054 | if (isDirectVBase(Base: NextBase, RD)) { |
3055 | NextLastVBase = NextBase; |
3056 | NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(VBase: NextBase); |
3057 | } else { |
3058 | NextBaseOffset = |
3059 | Base.getBaseOffset() + Layout.getBaseClassOffset(Base: NextBase); |
3060 | } |
3061 | } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { |
3062 | assert(!Layout.isPrimaryBaseVirtual() && |
3063 | "No primary virtual bases in this ABI" ); |
3064 | NextBase = PrimaryBase; |
3065 | NextBaseOffset = Base.getBaseOffset(); |
3066 | } |
3067 | |
3068 | if (NextBase) { |
3069 | AddMethods(Base: BaseSubobject(NextBase, NextBaseOffset), BaseDepth: BaseDepth + 1, |
3070 | LastVBase: NextLastVBase, VisitedBases); |
3071 | if (!VisitedBases.insert(X: NextBase)) |
3072 | llvm_unreachable("Found a duplicate primary base!" ); |
3073 | } |
3074 | |
3075 | SmallVector<const CXXMethodDecl*, 10> VirtualMethods; |
3076 | // Put virtual methods in the proper order. |
3077 | GroupNewVirtualOverloads(RD, VirtualMethods); |
3078 | |
3079 | // Now go through all virtual member functions and add them to the current |
3080 | // vftable. This is done by |
3081 | // - replacing overridden methods in their existing slots, as long as they |
3082 | // don't require return adjustment; calculating This adjustment if needed. |
3083 | // - adding new slots for methods of the current base not present in any |
3084 | // sub-bases; |
3085 | // - adding new slots for methods that require Return adjustment. |
3086 | // We keep track of the methods visited in the sub-bases in MethodInfoMap. |
3087 | for (const CXXMethodDecl *MD : VirtualMethods) { |
3088 | FinalOverriders::OverriderInfo FinalOverrider = |
3089 | Overriders.getOverrider(MD, BaseOffset: Base.getBaseOffset()); |
3090 | const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method; |
3091 | const CXXMethodDecl *OverriddenMD = |
3092 | FindNearestOverriddenMethod(MD, Bases&: VisitedBases); |
3093 | |
3094 | ThisAdjustment ThisAdjustmentOffset; |
3095 | bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false; |
3096 | CharUnits ThisOffset = ComputeThisOffset(Overrider: FinalOverrider); |
3097 | ThisAdjustmentOffset.NonVirtual = |
3098 | (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity(); |
3099 | if ((OverriddenMD || FinalOverriderMD != MD) && |
3100 | WhichVFPtr.getVBaseWithVPtr()) |
3101 | CalculateVtordispAdjustment(Overrider: FinalOverrider, ThisOffset, |
3102 | TA&: ThisAdjustmentOffset); |
3103 | |
3104 | unsigned VBIndex = |
3105 | LastVBase ? VTables.getVBTableIndex(Derived: MostDerivedClass, VBase: LastVBase) : 0; |
3106 | |
3107 | if (OverriddenMD) { |
3108 | // If MD overrides anything in this vftable, we need to update the |
3109 | // entries. |
3110 | MethodInfoMapTy::iterator OverriddenMDIterator = |
3111 | MethodInfoMap.find(Val: OverriddenMD); |
3112 | |
3113 | // If the overridden method went to a different vftable, skip it. |
3114 | if (OverriddenMDIterator == MethodInfoMap.end()) |
3115 | continue; |
3116 | |
3117 | MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second; |
3118 | |
3119 | VBIndex = OverriddenMethodInfo.VBTableIndex; |
3120 | |
3121 | // Let's check if the overrider requires any return adjustments. |
3122 | // We must create a new slot if the MD's return type is not trivially |
3123 | // convertible to the OverriddenMD's one. |
3124 | // Once a chain of method overrides adds a return adjusting vftable slot, |
3125 | // all subsequent overrides will also use an extra method slot. |
3126 | ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset( |
3127 | Context, DerivedMD: MD, BaseMD: OverriddenMD).isEmpty() || |
3128 | OverriddenMethodInfo.UsesExtraSlot; |
3129 | |
3130 | if (!ReturnAdjustingThunk) { |
3131 | // No return adjustment needed - just replace the overridden method info |
3132 | // with the current info. |
3133 | MethodInfo MI(VBIndex, OverriddenMethodInfo.VFTableIndex); |
3134 | MethodInfoMap.erase(I: OverriddenMDIterator); |
3135 | |
3136 | assert(!MethodInfoMap.count(MD) && |
3137 | "Should not have method info for this method yet!" ); |
3138 | MethodInfoMap.insert(KV: std::make_pair(x&: MD, y&: MI)); |
3139 | continue; |
3140 | } |
3141 | |
3142 | // In case we need a return adjustment, we'll add a new slot for |
3143 | // the overrider. Mark the overridden method as shadowed by the new slot. |
3144 | OverriddenMethodInfo.Shadowed = true; |
3145 | |
3146 | // Force a special name mangling for a return-adjusting thunk |
3147 | // unless the method is the final overrider without this adjustment. |
3148 | ForceReturnAdjustmentMangling = |
3149 | !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty()); |
3150 | } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC || |
3151 | MD->size_overridden_methods()) { |
3152 | // Skip methods that don't belong to the vftable of the current class, |
3153 | // e.g. each method that wasn't seen in any of the visited sub-bases |
3154 | // but overrides multiple methods of other sub-bases. |
3155 | continue; |
3156 | } |
3157 | |
3158 | // If we got here, MD is a method not seen in any of the sub-bases or |
3159 | // it requires return adjustment. Insert the method info for this method. |
3160 | MethodInfo MI(VBIndex, |
3161 | HasRTTIComponent ? Components.size() - 1 : Components.size(), |
3162 | ReturnAdjustingThunk); |
3163 | |
3164 | assert(!MethodInfoMap.count(MD) && |
3165 | "Should not have method info for this method yet!" ); |
3166 | MethodInfoMap.insert(KV: std::make_pair(x&: MD, y&: MI)); |
3167 | |
3168 | // Check if this overrider needs a return adjustment. |
3169 | // We don't want to do this for pure virtual member functions. |
3170 | BaseOffset ReturnAdjustmentOffset; |
3171 | ReturnAdjustment ReturnAdjustment; |
3172 | if (!FinalOverriderMD->isPureVirtual()) { |
3173 | ReturnAdjustmentOffset = |
3174 | ComputeReturnAdjustmentBaseOffset(Context, DerivedMD: FinalOverriderMD, BaseMD: MD); |
3175 | } |
3176 | if (!ReturnAdjustmentOffset.isEmpty()) { |
3177 | ForceReturnAdjustmentMangling = true; |
3178 | ReturnAdjustment.NonVirtual = |
3179 | ReturnAdjustmentOffset.NonVirtualOffset.getQuantity(); |
3180 | if (ReturnAdjustmentOffset.VirtualBase) { |
3181 | const ASTRecordLayout &DerivedLayout = |
3182 | Context.getASTRecordLayout(D: ReturnAdjustmentOffset.DerivedClass); |
3183 | ReturnAdjustment.Virtual.Microsoft.VBPtrOffset = |
3184 | DerivedLayout.getVBPtrOffset().getQuantity(); |
3185 | ReturnAdjustment.Virtual.Microsoft.VBIndex = |
3186 | VTables.getVBTableIndex(Derived: ReturnAdjustmentOffset.DerivedClass, |
3187 | VBase: ReturnAdjustmentOffset.VirtualBase); |
3188 | } |
3189 | } |
3190 | auto ThisType = (OverriddenMD ? OverriddenMD : MD)->getThisType().getTypePtr(); |
3191 | AddMethod(MD: FinalOverriderMD, |
3192 | TI: ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment, ThisType, |
3193 | ForceReturnAdjustmentMangling ? MD : nullptr)); |
3194 | } |
3195 | } |
3196 | |
3197 | static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) { |
3198 | for (const CXXRecordDecl *Elem : llvm::reverse(C: Path)) { |
3199 | Out << "'" ; |
3200 | Elem->printQualifiedName(OS&: Out); |
3201 | Out << "' in " ; |
3202 | } |
3203 | } |
3204 | |
3205 | static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out, |
3206 | bool ContinueFirstLine) { |
3207 | const ReturnAdjustment &R = TI.Return; |
3208 | bool Multiline = false; |
3209 | const char *LinePrefix = "\n " ; |
3210 | if (!R.isEmpty() || TI.Method) { |
3211 | if (!ContinueFirstLine) |
3212 | Out << LinePrefix; |
3213 | Out << "[return adjustment (to type '" |
3214 | << TI.Method->getReturnType().getCanonicalType() << "'): " ; |
3215 | if (R.Virtual.Microsoft.VBPtrOffset) |
3216 | Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", " ; |
3217 | if (R.Virtual.Microsoft.VBIndex) |
3218 | Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", " ; |
3219 | Out << R.NonVirtual << " non-virtual]" ; |
3220 | Multiline = true; |
3221 | } |
3222 | |
3223 | const ThisAdjustment &T = TI.This; |
3224 | if (!T.isEmpty()) { |
3225 | if (Multiline || !ContinueFirstLine) |
3226 | Out << LinePrefix; |
3227 | Out << "[this adjustment: " ; |
3228 | if (!TI.This.Virtual.isEmpty()) { |
3229 | assert(T.Virtual.Microsoft.VtordispOffset < 0); |
3230 | Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", " ; |
3231 | if (T.Virtual.Microsoft.VBPtrOffset) { |
3232 | Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset |
3233 | << " to the left," ; |
3234 | assert(T.Virtual.Microsoft.VBOffsetOffset > 0); |
3235 | Out << LinePrefix << " vboffset at " |
3236 | << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, " ; |
3237 | } |
3238 | } |
3239 | Out << T.NonVirtual << " non-virtual]" ; |
3240 | } |
3241 | } |
3242 | |
3243 | void VFTableBuilder::dumpLayout(raw_ostream &Out) { |
3244 | Out << "VFTable for " ; |
3245 | PrintBasePath(Path: WhichVFPtr.PathToIntroducingObject, Out); |
3246 | Out << "'" ; |
3247 | MostDerivedClass->printQualifiedName(OS&: Out); |
3248 | Out << "' (" << Components.size() |
3249 | << (Components.size() == 1 ? " entry" : " entries" ) << ").\n" ; |
3250 | |
3251 | for (unsigned I = 0, E = Components.size(); I != E; ++I) { |
3252 | Out << llvm::format(Fmt: "%4d | " , Vals: I); |
3253 | |
3254 | const VTableComponent &Component = Components[I]; |
3255 | |
3256 | // Dump the component. |
3257 | switch (Component.getKind()) { |
3258 | case VTableComponent::CK_RTTI: |
3259 | Component.getRTTIDecl()->printQualifiedName(OS&: Out); |
3260 | Out << " RTTI" ; |
3261 | break; |
3262 | |
3263 | case VTableComponent::CK_FunctionPointer: { |
3264 | const CXXMethodDecl *MD = Component.getFunctionDecl(); |
3265 | |
3266 | // FIXME: Figure out how to print the real thunk type, since they can |
3267 | // differ in the return type. |
3268 | std::string Str = PredefinedExpr::ComputeName( |
3269 | IK: PredefinedIdentKind::PrettyFunctionNoVirtual, CurrentDecl: MD); |
3270 | Out << Str; |
3271 | if (MD->isPureVirtual()) |
3272 | Out << " [pure]" ; |
3273 | |
3274 | if (MD->isDeleted()) |
3275 | Out << " [deleted]" ; |
3276 | |
3277 | ThunkInfo Thunk = VTableThunks.lookup(Val: I); |
3278 | if (!Thunk.isEmpty()) |
3279 | dumpMicrosoftThunkAdjustment(TI: Thunk, Out, /*ContinueFirstLine=*/false); |
3280 | |
3281 | break; |
3282 | } |
3283 | |
3284 | case VTableComponent::CK_DeletingDtorPointer: { |
3285 | const CXXDestructorDecl *DD = Component.getDestructorDecl(); |
3286 | |
3287 | DD->printQualifiedName(OS&: Out); |
3288 | Out << "() [scalar deleting]" ; |
3289 | |
3290 | if (DD->isPureVirtual()) |
3291 | Out << " [pure]" ; |
3292 | |
3293 | ThunkInfo Thunk = VTableThunks.lookup(Val: I); |
3294 | if (!Thunk.isEmpty()) { |
3295 | assert(Thunk.Return.isEmpty() && |
3296 | "No return adjustment needed for destructors!" ); |
3297 | dumpMicrosoftThunkAdjustment(TI: Thunk, Out, /*ContinueFirstLine=*/false); |
3298 | } |
3299 | |
3300 | break; |
3301 | } |
3302 | |
3303 | default: |
3304 | DiagnosticsEngine &Diags = Context.getDiagnostics(); |
3305 | unsigned DiagID = Diags.getCustomDiagID( |
3306 | L: DiagnosticsEngine::Error, |
3307 | FormatString: "Unexpected vftable component type %0 for component number %1" ); |
3308 | Diags.Report(Loc: MostDerivedClass->getLocation(), DiagID) |
3309 | << I << Component.getKind(); |
3310 | } |
3311 | |
3312 | Out << '\n'; |
3313 | } |
3314 | |
3315 | Out << '\n'; |
3316 | |
3317 | if (!Thunks.empty()) { |
3318 | // We store the method names in a map to get a stable order. |
3319 | std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls; |
3320 | |
3321 | for (const auto &I : Thunks) { |
3322 | const CXXMethodDecl *MD = I.first; |
3323 | std::string MethodName = PredefinedExpr::ComputeName( |
3324 | IK: PredefinedIdentKind::PrettyFunctionNoVirtual, CurrentDecl: MD); |
3325 | |
3326 | MethodNamesAndDecls.insert(x: std::make_pair(x&: MethodName, y&: MD)); |
3327 | } |
3328 | |
3329 | for (const auto &MethodNameAndDecl : MethodNamesAndDecls) { |
3330 | const std::string &MethodName = MethodNameAndDecl.first; |
3331 | const CXXMethodDecl *MD = MethodNameAndDecl.second; |
3332 | |
3333 | ThunkInfoVectorTy ThunksVector = Thunks[MD]; |
3334 | llvm::stable_sort(Range&: ThunksVector, C: [](const ThunkInfo &LHS, |
3335 | const ThunkInfo &RHS) { |
3336 | // Keep different thunks with the same adjustments in the order they |
3337 | // were put into the vector. |
3338 | return std::tie(args: LHS.This, args: LHS.Return) < std::tie(args: RHS.This, args: RHS.Return); |
3339 | }); |
3340 | |
3341 | Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size(); |
3342 | Out << (ThunksVector.size() == 1 ? " entry" : " entries" ) << ").\n" ; |
3343 | |
3344 | for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) { |
3345 | const ThunkInfo &Thunk = ThunksVector[I]; |
3346 | |
3347 | Out << llvm::format(Fmt: "%4d | " , Vals: I); |
3348 | dumpMicrosoftThunkAdjustment(TI: Thunk, Out, /*ContinueFirstLine=*/true); |
3349 | Out << '\n'; |
3350 | } |
3351 | |
3352 | Out << '\n'; |
3353 | } |
3354 | } |
3355 | |
3356 | Out.flush(); |
3357 | } |
3358 | |
3359 | static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A, |
3360 | ArrayRef<const CXXRecordDecl *> B) { |
3361 | for (const CXXRecordDecl *Decl : B) { |
3362 | if (A.count(Ptr: Decl)) |
3363 | return true; |
3364 | } |
3365 | return false; |
3366 | } |
3367 | |
3368 | static bool rebucketPaths(VPtrInfoVector &Paths); |
3369 | |
3370 | /// Produces MSVC-compatible vbtable data. The symbols produced by this |
3371 | /// algorithm match those produced by MSVC 2012 and newer, which is different |
3372 | /// from MSVC 2010. |
3373 | /// |
3374 | /// MSVC 2012 appears to minimize the vbtable names using the following |
3375 | /// algorithm. First, walk the class hierarchy in the usual order, depth first, |
3376 | /// left to right, to find all of the subobjects which contain a vbptr field. |
3377 | /// Visiting each class node yields a list of inheritance paths to vbptrs. Each |
3378 | /// record with a vbptr creates an initially empty path. |
3379 | /// |
3380 | /// To combine paths from child nodes, the paths are compared to check for |
3381 | /// ambiguity. Paths are "ambiguous" if multiple paths have the same set of |
3382 | /// components in the same order. Each group of ambiguous paths is extended by |
3383 | /// appending the class of the base from which it came. If the current class |
3384 | /// node produced an ambiguous path, its path is extended with the current class. |
3385 | /// After extending paths, MSVC again checks for ambiguity, and extends any |
3386 | /// ambiguous path which wasn't already extended. Because each node yields an |
3387 | /// unambiguous set of paths, MSVC doesn't need to extend any path more than once |
3388 | /// to produce an unambiguous set of paths. |
3389 | /// |
3390 | /// TODO: Presumably vftables use the same algorithm. |
3391 | void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables, |
3392 | const CXXRecordDecl *RD, |
3393 | VPtrInfoVector &Paths) { |
3394 | assert(Paths.empty()); |
3395 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD); |
3396 | |
3397 | // Base case: this subobject has its own vptr. |
3398 | if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr()) |
3399 | Paths.push_back(Elt: std::make_unique<VPtrInfo>(args&: RD)); |
3400 | |
3401 | // Recursive case: get all the vbtables from our bases and remove anything |
3402 | // that shares a virtual base. |
3403 | llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen; |
3404 | for (const auto &B : RD->bases()) { |
3405 | const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl(); |
3406 | if (B.isVirtual() && VBasesSeen.count(Ptr: Base)) |
3407 | continue; |
3408 | |
3409 | if (!Base->isDynamicClass()) |
3410 | continue; |
3411 | |
3412 | const VPtrInfoVector &BasePaths = |
3413 | ForVBTables ? enumerateVBTables(RD: Base) : getVFPtrOffsets(RD: Base); |
3414 | |
3415 | for (const std::unique_ptr<VPtrInfo> &BaseInfo : BasePaths) { |
3416 | // Don't include the path if it goes through a virtual base that we've |
3417 | // already included. |
3418 | if (setsIntersect(A: VBasesSeen, B: BaseInfo->ContainingVBases)) |
3419 | continue; |
3420 | |
3421 | // Copy the path and adjust it as necessary. |
3422 | auto P = std::make_unique<VPtrInfo>(args&: *BaseInfo); |
3423 | |
3424 | // We mangle Base into the path if the path would've been ambiguous and it |
3425 | // wasn't already extended with Base. |
3426 | if (P->MangledPath.empty() || P->MangledPath.back() != Base) |
3427 | P->NextBaseToMangle = Base; |
3428 | |
3429 | // Keep track of which vtable the derived class is going to extend with |
3430 | // new methods or bases. We append to either the vftable of our primary |
3431 | // base, or the first non-virtual base that has a vbtable. |
3432 | if (P->ObjectWithVPtr == Base && |
3433 | Base == (ForVBTables ? Layout.getBaseSharingVBPtr() |
3434 | : Layout.getPrimaryBase())) |
3435 | P->ObjectWithVPtr = RD; |
3436 | |
3437 | // Keep track of the full adjustment from the MDC to this vtable. The |
3438 | // adjustment is captured by an optional vbase and a non-virtual offset. |
3439 | if (B.isVirtual()) |
3440 | P->ContainingVBases.push_back(Elt: Base); |
3441 | else if (P->ContainingVBases.empty()) |
3442 | P->NonVirtualOffset += Layout.getBaseClassOffset(Base); |
3443 | |
3444 | // Update the full offset in the MDC. |
3445 | P->FullOffsetInMDC = P->NonVirtualOffset; |
3446 | if (const CXXRecordDecl *VB = P->getVBaseWithVPtr()) |
3447 | P->FullOffsetInMDC += Layout.getVBaseClassOffset(VBase: VB); |
3448 | |
3449 | Paths.push_back(Elt: std::move(P)); |
3450 | } |
3451 | |
3452 | if (B.isVirtual()) |
3453 | VBasesSeen.insert(Ptr: Base); |
3454 | |
3455 | // After visiting any direct base, we've transitively visited all of its |
3456 | // morally virtual bases. |
3457 | for (const auto &VB : Base->vbases()) |
3458 | VBasesSeen.insert(Ptr: VB.getType()->getAsCXXRecordDecl()); |
3459 | } |
3460 | |
3461 | // Sort the paths into buckets, and if any of them are ambiguous, extend all |
3462 | // paths in ambiguous buckets. |
3463 | bool Changed = true; |
3464 | while (Changed) |
3465 | Changed = rebucketPaths(Paths); |
3466 | } |
3467 | |
3468 | static bool extendPath(VPtrInfo &P) { |
3469 | if (P.NextBaseToMangle) { |
3470 | P.MangledPath.push_back(Elt: P.NextBaseToMangle); |
3471 | P.NextBaseToMangle = nullptr;// Prevent the path from being extended twice. |
3472 | return true; |
3473 | } |
3474 | return false; |
3475 | } |
3476 | |
3477 | static bool rebucketPaths(VPtrInfoVector &Paths) { |
3478 | // What we're essentially doing here is bucketing together ambiguous paths. |
3479 | // Any bucket with more than one path in it gets extended by NextBase, which |
3480 | // is usually the direct base of the inherited the vbptr. This code uses a |
3481 | // sorted vector to implement a multiset to form the buckets. Note that the |
3482 | // ordering is based on pointers, but it doesn't change our output order. The |
3483 | // current algorithm is designed to match MSVC 2012's names. |
3484 | llvm::SmallVector<std::reference_wrapper<VPtrInfo>, 2> PathsSorted( |
3485 | llvm::make_pointee_range(Range&: Paths)); |
3486 | llvm::sort(C&: PathsSorted, Comp: [](const VPtrInfo &LHS, const VPtrInfo &RHS) { |
3487 | return LHS.MangledPath < RHS.MangledPath; |
3488 | }); |
3489 | bool Changed = false; |
3490 | for (size_t I = 0, E = PathsSorted.size(); I != E;) { |
3491 | // Scan forward to find the end of the bucket. |
3492 | size_t BucketStart = I; |
3493 | do { |
3494 | ++I; |
3495 | } while (I != E && |
3496 | PathsSorted[BucketStart].get().MangledPath == |
3497 | PathsSorted[I].get().MangledPath); |
3498 | |
3499 | // If this bucket has multiple paths, extend them all. |
3500 | if (I - BucketStart > 1) { |
3501 | for (size_t II = BucketStart; II != I; ++II) |
3502 | Changed |= extendPath(P&: PathsSorted[II]); |
3503 | assert(Changed && "no paths were extended to fix ambiguity" ); |
3504 | } |
3505 | } |
3506 | return Changed; |
3507 | } |
3508 | |
3509 | MicrosoftVTableContext::~MicrosoftVTableContext() {} |
3510 | |
3511 | namespace { |
3512 | typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>, |
3513 | llvm::DenseSet<BaseSubobject>> FullPathTy; |
3514 | } |
3515 | |
3516 | // This recursive function finds all paths from a subobject centered at |
3517 | // (RD, Offset) to the subobject located at IntroducingObject. |
3518 | static void findPathsToSubobject(ASTContext &Context, |
3519 | const ASTRecordLayout &MostDerivedLayout, |
3520 | const CXXRecordDecl *RD, CharUnits Offset, |
3521 | BaseSubobject IntroducingObject, |
3522 | FullPathTy &FullPath, |
3523 | std::list<FullPathTy> &Paths) { |
3524 | if (BaseSubobject(RD, Offset) == IntroducingObject) { |
3525 | Paths.push_back(x: FullPath); |
3526 | return; |
3527 | } |
3528 | |
3529 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD); |
3530 | |
3531 | for (const CXXBaseSpecifier &BS : RD->bases()) { |
3532 | const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl(); |
3533 | CharUnits NewOffset = BS.isVirtual() |
3534 | ? MostDerivedLayout.getVBaseClassOffset(VBase: Base) |
3535 | : Offset + Layout.getBaseClassOffset(Base); |
3536 | FullPath.insert(X: BaseSubobject(Base, NewOffset)); |
3537 | findPathsToSubobject(Context, MostDerivedLayout, RD: Base, Offset: NewOffset, |
3538 | IntroducingObject, FullPath, Paths); |
3539 | FullPath.pop_back(); |
3540 | } |
3541 | } |
3542 | |
3543 | // Return the paths which are not subsets of other paths. |
3544 | static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) { |
3545 | FullPaths.remove_if(pred: [&](const FullPathTy &SpecificPath) { |
3546 | for (const FullPathTy &OtherPath : FullPaths) { |
3547 | if (&SpecificPath == &OtherPath) |
3548 | continue; |
3549 | if (llvm::all_of(Range: SpecificPath, P: [&](const BaseSubobject &BSO) { |
3550 | return OtherPath.contains(key: BSO); |
3551 | })) { |
3552 | return true; |
3553 | } |
3554 | } |
3555 | return false; |
3556 | }); |
3557 | } |
3558 | |
3559 | static CharUnits getOffsetOfFullPath(ASTContext &Context, |
3560 | const CXXRecordDecl *RD, |
3561 | const FullPathTy &FullPath) { |
3562 | const ASTRecordLayout &MostDerivedLayout = |
3563 | Context.getASTRecordLayout(D: RD); |
3564 | CharUnits Offset = CharUnits::fromQuantity(Quantity: -1); |
3565 | for (const BaseSubobject &BSO : FullPath) { |
3566 | const CXXRecordDecl *Base = BSO.getBase(); |
3567 | // The first entry in the path is always the most derived record, skip it. |
3568 | if (Base == RD) { |
3569 | assert(Offset.getQuantity() == -1); |
3570 | Offset = CharUnits::Zero(); |
3571 | continue; |
3572 | } |
3573 | assert(Offset.getQuantity() != -1); |
3574 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD); |
3575 | // While we know which base has to be traversed, we don't know if that base |
3576 | // was a virtual base. |
3577 | const CXXBaseSpecifier *BaseBS = std::find_if( |
3578 | first: RD->bases_begin(), last: RD->bases_end(), pred: [&](const CXXBaseSpecifier &BS) { |
3579 | return BS.getType()->getAsCXXRecordDecl() == Base; |
3580 | }); |
3581 | Offset = BaseBS->isVirtual() ? MostDerivedLayout.getVBaseClassOffset(VBase: Base) |
3582 | : Offset + Layout.getBaseClassOffset(Base); |
3583 | RD = Base; |
3584 | } |
3585 | return Offset; |
3586 | } |
3587 | |
3588 | // We want to select the path which introduces the most covariant overrides. If |
3589 | // two paths introduce overrides which the other path doesn't contain, issue a |
3590 | // diagnostic. |
3591 | static const FullPathTy *selectBestPath(ASTContext &Context, |
3592 | const CXXRecordDecl *RD, |
3593 | const VPtrInfo &Info, |
3594 | std::list<FullPathTy> &FullPaths) { |
3595 | // Handle some easy cases first. |
3596 | if (FullPaths.empty()) |
3597 | return nullptr; |
3598 | if (FullPaths.size() == 1) |
3599 | return &FullPaths.front(); |
3600 | |
3601 | const FullPathTy *BestPath = nullptr; |
3602 | typedef std::set<const CXXMethodDecl *> OverriderSetTy; |
3603 | OverriderSetTy LastOverrides; |
3604 | for (const FullPathTy &SpecificPath : FullPaths) { |
3605 | assert(!SpecificPath.empty()); |
3606 | OverriderSetTy CurrentOverrides; |
3607 | const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase(); |
3608 | // Find the distance from the start of the path to the subobject with the |
3609 | // VPtr. |
3610 | CharUnits BaseOffset = |
3611 | getOffsetOfFullPath(Context, RD: TopLevelRD, FullPath: SpecificPath); |
3612 | FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD); |
3613 | for (const CXXMethodDecl *MD : Info.IntroducingObject->methods()) { |
3614 | if (!MicrosoftVTableContext::hasVtableSlot(MD)) |
3615 | continue; |
3616 | FinalOverriders::OverriderInfo OI = |
3617 | Overriders.getOverrider(MD: MD->getCanonicalDecl(), BaseOffset); |
3618 | const CXXMethodDecl *OverridingMethod = OI.Method; |
3619 | // Only overriders which have a return adjustment introduce problematic |
3620 | // thunks. |
3621 | if (ComputeReturnAdjustmentBaseOffset(Context, DerivedMD: OverridingMethod, BaseMD: MD) |
3622 | .isEmpty()) |
3623 | continue; |
3624 | // It's possible that the overrider isn't in this path. If so, skip it |
3625 | // because this path didn't introduce it. |
3626 | const CXXRecordDecl *OverridingParent = OverridingMethod->getParent(); |
3627 | if (llvm::none_of(Range: SpecificPath, P: [&](const BaseSubobject &BSO) { |
3628 | return BSO.getBase() == OverridingParent; |
3629 | })) |
3630 | continue; |
3631 | CurrentOverrides.insert(x: OverridingMethod); |
3632 | } |
3633 | OverriderSetTy NewOverrides = |
3634 | llvm::set_difference(S1: CurrentOverrides, S2: LastOverrides); |
3635 | if (NewOverrides.empty()) |
3636 | continue; |
3637 | OverriderSetTy MissingOverrides = |
3638 | llvm::set_difference(S1: LastOverrides, S2: CurrentOverrides); |
3639 | if (MissingOverrides.empty()) { |
3640 | // This path is a strict improvement over the last path, let's use it. |
3641 | BestPath = &SpecificPath; |
3642 | std::swap(x&: CurrentOverrides, y&: LastOverrides); |
3643 | } else { |
3644 | // This path introduces an overrider with a conflicting covariant thunk. |
3645 | DiagnosticsEngine &Diags = Context.getDiagnostics(); |
3646 | const CXXMethodDecl *CovariantMD = *NewOverrides.begin(); |
3647 | const CXXMethodDecl *ConflictMD = *MissingOverrides.begin(); |
3648 | Diags.Report(Loc: RD->getLocation(), DiagID: diag::err_vftable_ambiguous_component) |
3649 | << RD; |
3650 | Diags.Report(Loc: CovariantMD->getLocation(), DiagID: diag::note_covariant_thunk) |
3651 | << CovariantMD; |
3652 | Diags.Report(Loc: ConflictMD->getLocation(), DiagID: diag::note_covariant_thunk) |
3653 | << ConflictMD; |
3654 | } |
3655 | } |
3656 | // Go with the path that introduced the most covariant overrides. If there is |
3657 | // no such path, pick the first path. |
3658 | return BestPath ? BestPath : &FullPaths.front(); |
3659 | } |
3660 | |
3661 | static void computeFullPathsForVFTables(ASTContext &Context, |
3662 | const CXXRecordDecl *RD, |
3663 | VPtrInfoVector &Paths) { |
3664 | const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(D: RD); |
3665 | FullPathTy FullPath; |
3666 | std::list<FullPathTy> FullPaths; |
3667 | for (const std::unique_ptr<VPtrInfo>& Info : Paths) { |
3668 | findPathsToSubobject( |
3669 | Context, MostDerivedLayout, RD, Offset: CharUnits::Zero(), |
3670 | IntroducingObject: BaseSubobject(Info->IntroducingObject, Info->FullOffsetInMDC), FullPath, |
3671 | Paths&: FullPaths); |
3672 | FullPath.clear(); |
3673 | removeRedundantPaths(FullPaths); |
3674 | Info->PathToIntroducingObject.clear(); |
3675 | if (const FullPathTy *BestPath = |
3676 | selectBestPath(Context, RD, Info: *Info, FullPaths)) |
3677 | for (const BaseSubobject &BSO : *BestPath) |
3678 | Info->PathToIntroducingObject.push_back(Elt: BSO.getBase()); |
3679 | FullPaths.clear(); |
3680 | } |
3681 | } |
3682 | |
3683 | static bool vfptrIsEarlierInMDC(const ASTRecordLayout &Layout, |
3684 | const MethodVFTableLocation &LHS, |
3685 | const MethodVFTableLocation &RHS) { |
3686 | CharUnits L = LHS.VFPtrOffset; |
3687 | CharUnits R = RHS.VFPtrOffset; |
3688 | if (LHS.VBase) |
3689 | L += Layout.getVBaseClassOffset(VBase: LHS.VBase); |
3690 | if (RHS.VBase) |
3691 | R += Layout.getVBaseClassOffset(VBase: RHS.VBase); |
3692 | return L < R; |
3693 | } |
3694 | |
3695 | void MicrosoftVTableContext::computeVTableRelatedInformation( |
3696 | const CXXRecordDecl *RD) { |
3697 | assert(RD->isDynamicClass()); |
3698 | |
3699 | // Check if we've computed this information before. |
3700 | if (VFPtrLocations.count(Val: RD)) |
3701 | return; |
3702 | |
3703 | const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap; |
3704 | |
3705 | { |
3706 | auto VFPtrs = std::make_unique<VPtrInfoVector>(); |
3707 | computeVTablePaths(/*ForVBTables=*/false, RD, Paths&: *VFPtrs); |
3708 | computeFullPathsForVFTables(Context, RD, Paths&: *VFPtrs); |
3709 | VFPtrLocations[RD] = std::move(VFPtrs); |
3710 | } |
3711 | |
3712 | MethodVFTableLocationsTy NewMethodLocations; |
3713 | for (const std::unique_ptr<VPtrInfo> &VFPtr : *VFPtrLocations[RD]) { |
3714 | VFTableBuilder Builder(*this, RD, *VFPtr); |
3715 | |
3716 | VFTableIdTy id(RD, VFPtr->FullOffsetInMDC); |
3717 | assert(VFTableLayouts.count(id) == 0); |
3718 | SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks( |
3719 | Builder.vtable_thunks_begin(), Builder.vtable_thunks_end()); |
3720 | VFTableLayouts[id] = std::make_unique<VTableLayout>( |
3721 | args: ArrayRef<size_t>{0}, args: Builder.vtable_components(), args&: VTableThunks, |
3722 | args: EmptyAddressPointsMap); |
3723 | Thunks.insert(I: Builder.thunks_begin(), E: Builder.thunks_end()); |
3724 | |
3725 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD); |
3726 | for (const auto &Loc : Builder.vtable_locations()) { |
3727 | auto Insert = NewMethodLocations.insert(KV: Loc); |
3728 | if (!Insert.second) { |
3729 | const MethodVFTableLocation &NewLoc = Loc.second; |
3730 | MethodVFTableLocation &OldLoc = Insert.first->second; |
3731 | if (vfptrIsEarlierInMDC(Layout, LHS: NewLoc, RHS: OldLoc)) |
3732 | OldLoc = NewLoc; |
3733 | } |
3734 | } |
3735 | } |
3736 | |
3737 | MethodVFTableLocations.insert(I: NewMethodLocations.begin(), |
3738 | E: NewMethodLocations.end()); |
3739 | if (Context.getLangOpts().DumpVTableLayouts) |
3740 | dumpMethodLocations(RD, NewMethods: NewMethodLocations, llvm::outs()); |
3741 | } |
3742 | |
3743 | void MicrosoftVTableContext::dumpMethodLocations( |
3744 | const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods, |
3745 | raw_ostream &Out) { |
3746 | // Compute the vtable indices for all the member functions. |
3747 | // Store them in a map keyed by the location so we'll get a sorted table. |
3748 | std::map<MethodVFTableLocation, std::string> IndicesMap; |
3749 | bool HasNonzeroOffset = false; |
3750 | |
3751 | for (const auto &I : NewMethods) { |
3752 | const CXXMethodDecl *MD = cast<const CXXMethodDecl>(Val: I.first.getDecl()); |
3753 | assert(hasVtableSlot(MD)); |
3754 | |
3755 | std::string MethodName = PredefinedExpr::ComputeName( |
3756 | IK: PredefinedIdentKind::PrettyFunctionNoVirtual, CurrentDecl: MD); |
3757 | |
3758 | if (isa<CXXDestructorDecl>(Val: MD)) { |
3759 | IndicesMap[I.second] = MethodName + " [scalar deleting]" ; |
3760 | } else { |
3761 | IndicesMap[I.second] = MethodName; |
3762 | } |
3763 | |
3764 | if (!I.second.VFPtrOffset.isZero() || I.second.VBTableIndex != 0) |
3765 | HasNonzeroOffset = true; |
3766 | } |
3767 | |
3768 | // Print the vtable indices for all the member functions. |
3769 | if (!IndicesMap.empty()) { |
3770 | Out << "VFTable indices for " ; |
3771 | Out << "'" ; |
3772 | RD->printQualifiedName(OS&: Out); |
3773 | Out << "' (" << IndicesMap.size() |
3774 | << (IndicesMap.size() == 1 ? " entry" : " entries" ) << ").\n" ; |
3775 | |
3776 | CharUnits LastVFPtrOffset = CharUnits::fromQuantity(Quantity: -1); |
3777 | uint64_t LastVBIndex = 0; |
3778 | for (const auto &I : IndicesMap) { |
3779 | CharUnits VFPtrOffset = I.first.VFPtrOffset; |
3780 | uint64_t VBIndex = I.first.VBTableIndex; |
3781 | if (HasNonzeroOffset && |
3782 | (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) { |
3783 | assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset); |
3784 | Out << " -- accessible via " ; |
3785 | if (VBIndex) |
3786 | Out << "vbtable index " << VBIndex << ", " ; |
3787 | Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n" ; |
3788 | LastVFPtrOffset = VFPtrOffset; |
3789 | LastVBIndex = VBIndex; |
3790 | } |
3791 | |
3792 | uint64_t VTableIndex = I.first.Index; |
3793 | const std::string &MethodName = I.second; |
3794 | Out << llvm::format(Fmt: "%4" PRIu64 " | " , Vals: VTableIndex) << MethodName << '\n'; |
3795 | } |
3796 | Out << '\n'; |
3797 | } |
3798 | |
3799 | Out.flush(); |
3800 | } |
3801 | |
3802 | const VirtualBaseInfo &MicrosoftVTableContext::computeVBTableRelatedInformation( |
3803 | const CXXRecordDecl *RD) { |
3804 | VirtualBaseInfo *VBI; |
3805 | |
3806 | { |
3807 | // Get or create a VBI for RD. Don't hold a reference to the DenseMap cell, |
3808 | // as it may be modified and rehashed under us. |
3809 | std::unique_ptr<VirtualBaseInfo> &Entry = VBaseInfo[RD]; |
3810 | if (Entry) |
3811 | return *Entry; |
3812 | Entry = std::make_unique<VirtualBaseInfo>(); |
3813 | VBI = Entry.get(); |
3814 | } |
3815 | |
3816 | computeVTablePaths(/*ForVBTables=*/true, RD, Paths&: VBI->VBPtrPaths); |
3817 | |
3818 | // First, see if the Derived class shared the vbptr with a non-virtual base. |
3819 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD); |
3820 | if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) { |
3821 | // If the Derived class shares the vbptr with a non-virtual base, the shared |
3822 | // virtual bases come first so that the layout is the same. |
3823 | const VirtualBaseInfo &BaseInfo = |
3824 | computeVBTableRelatedInformation(RD: VBPtrBase); |
3825 | VBI->VBTableIndices.insert(I: BaseInfo.VBTableIndices.begin(), |
3826 | E: BaseInfo.VBTableIndices.end()); |
3827 | } |
3828 | |
3829 | // New vbases are added to the end of the vbtable. |
3830 | // Skip the self entry and vbases visited in the non-virtual base, if any. |
3831 | unsigned VBTableIndex = 1 + VBI->VBTableIndices.size(); |
3832 | for (const auto &VB : RD->vbases()) { |
3833 | const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl(); |
3834 | if (!VBI->VBTableIndices.count(Val: CurVBase)) |
3835 | VBI->VBTableIndices[CurVBase] = VBTableIndex++; |
3836 | } |
3837 | |
3838 | return *VBI; |
3839 | } |
3840 | |
3841 | unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived, |
3842 | const CXXRecordDecl *VBase) { |
3843 | const VirtualBaseInfo &VBInfo = computeVBTableRelatedInformation(RD: Derived); |
3844 | assert(VBInfo.VBTableIndices.count(VBase)); |
3845 | return VBInfo.VBTableIndices.find(Val: VBase)->second; |
3846 | } |
3847 | |
3848 | const VPtrInfoVector & |
3849 | MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) { |
3850 | return computeVBTableRelatedInformation(RD).VBPtrPaths; |
3851 | } |
3852 | |
3853 | const VPtrInfoVector & |
3854 | MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) { |
3855 | computeVTableRelatedInformation(RD); |
3856 | |
3857 | assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations" ); |
3858 | return *VFPtrLocations[RD]; |
3859 | } |
3860 | |
3861 | const VTableLayout & |
3862 | MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD, |
3863 | CharUnits VFPtrOffset) { |
3864 | computeVTableRelatedInformation(RD); |
3865 | |
3866 | VFTableIdTy id(RD, VFPtrOffset); |
3867 | assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset" ); |
3868 | return *VFTableLayouts[id]; |
3869 | } |
3870 | |
3871 | MethodVFTableLocation |
3872 | MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) { |
3873 | assert(hasVtableSlot(cast<CXXMethodDecl>(GD.getDecl())) && |
3874 | "Only use this method for virtual methods or dtors" ); |
3875 | if (isa<CXXDestructorDecl>(Val: GD.getDecl())) |
3876 | assert(GD.getDtorType() == Dtor_Deleting); |
3877 | |
3878 | GD = GD.getCanonicalDecl(); |
3879 | |
3880 | MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(Val: GD); |
3881 | if (I != MethodVFTableLocations.end()) |
3882 | return I->second; |
3883 | |
3884 | const CXXRecordDecl *RD = cast<CXXMethodDecl>(Val: GD.getDecl())->getParent(); |
3885 | |
3886 | computeVTableRelatedInformation(RD); |
3887 | |
3888 | I = MethodVFTableLocations.find(Val: GD); |
3889 | assert(I != MethodVFTableLocations.end() && "Did not find index!" ); |
3890 | return I->second; |
3891 | } |
3892 | |