1 | //===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines the abstract interface that implements execution support |
10 | // for LLVM. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #ifndef LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H |
15 | #define LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H |
16 | |
17 | #include "llvm-c/ExecutionEngine.h" |
18 | #include "llvm/ADT/ArrayRef.h" |
19 | #include "llvm/ADT/SmallVector.h" |
20 | #include "llvm/ADT/StringMap.h" |
21 | #include "llvm/ADT/StringRef.h" |
22 | #include "llvm/ExecutionEngine/JITSymbol.h" |
23 | #include "llvm/IR/DataLayout.h" |
24 | #include "llvm/IR/Module.h" |
25 | #include "llvm/Object/Binary.h" |
26 | #include "llvm/Support/CBindingWrapping.h" |
27 | #include "llvm/Support/CodeGen.h" |
28 | #include "llvm/Support/ErrorHandling.h" |
29 | #include "llvm/Support/Mutex.h" |
30 | #include "llvm/Target/TargetMachine.h" |
31 | #include "llvm/Target/TargetOptions.h" |
32 | #include <algorithm> |
33 | #include <cstdint> |
34 | #include <functional> |
35 | #include <map> |
36 | #include <memory> |
37 | #include <optional> |
38 | #include <string> |
39 | #include <vector> |
40 | |
41 | namespace llvm { |
42 | |
43 | class Constant; |
44 | class Function; |
45 | struct GenericValue; |
46 | class GlobalValue; |
47 | class GlobalVariable; |
48 | class JITEventListener; |
49 | class MCJITMemoryManager; |
50 | class ObjectCache; |
51 | class RTDyldMemoryManager; |
52 | class Triple; |
53 | class Type; |
54 | |
55 | namespace object { |
56 | |
57 | class Archive; |
58 | class ObjectFile; |
59 | |
60 | } // end namespace object |
61 | |
62 | /// Helper class for helping synchronize access to the global address map |
63 | /// table. Access to this class should be serialized under a mutex. |
64 | class ExecutionEngineState { |
65 | public: |
66 | using GlobalAddressMapTy = StringMap<uint64_t>; |
67 | |
68 | private: |
69 | /// GlobalAddressMap - A mapping between LLVM global symbol names values and |
70 | /// their actualized version... |
71 | GlobalAddressMapTy GlobalAddressMap; |
72 | |
73 | /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap, |
74 | /// used to convert raw addresses into the LLVM global value that is emitted |
75 | /// at the address. This map is not computed unless getGlobalValueAtAddress |
76 | /// is called at some point. |
77 | std::map<uint64_t, std::string> GlobalAddressReverseMap; |
78 | |
79 | public: |
80 | GlobalAddressMapTy &getGlobalAddressMap() { |
81 | return GlobalAddressMap; |
82 | } |
83 | |
84 | std::map<uint64_t, std::string> &getGlobalAddressReverseMap() { |
85 | return GlobalAddressReverseMap; |
86 | } |
87 | |
88 | /// Erase an entry from the mapping table. |
89 | /// |
90 | /// \returns The address that \p ToUnmap was mapped to. |
91 | uint64_t RemoveMapping(StringRef Name); |
92 | }; |
93 | |
94 | using FunctionCreator = std::function<void *(const std::string &)>; |
95 | |
96 | /// Abstract interface for implementation execution of LLVM modules, |
97 | /// designed to support both interpreter and just-in-time (JIT) compiler |
98 | /// implementations. |
99 | class ExecutionEngine { |
100 | /// The state object holding the global address mapping, which must be |
101 | /// accessed synchronously. |
102 | // |
103 | // FIXME: There is no particular need the entire map needs to be |
104 | // synchronized. Wouldn't a reader-writer design be better here? |
105 | ExecutionEngineState EEState; |
106 | |
107 | /// The target data for the platform for which execution is being performed. |
108 | /// |
109 | /// Note: the DataLayout is LLVMContext specific because it has an |
110 | /// internal cache based on type pointers. It makes unsafe to reuse the |
111 | /// ExecutionEngine across context, we don't enforce this rule but undefined |
112 | /// behavior can occurs if the user tries to do it. |
113 | const DataLayout DL; |
114 | |
115 | /// Whether lazy JIT compilation is enabled. |
116 | bool CompilingLazily; |
117 | |
118 | /// Whether JIT compilation of external global variables is allowed. |
119 | bool GVCompilationDisabled; |
120 | |
121 | /// Whether the JIT should perform lookups of external symbols (e.g., |
122 | /// using dlsym). |
123 | bool SymbolSearchingDisabled; |
124 | |
125 | /// Whether the JIT should verify IR modules during compilation. |
126 | bool VerifyModules; |
127 | |
128 | friend class EngineBuilder; // To allow access to JITCtor and InterpCtor. |
129 | |
130 | protected: |
131 | /// The list of Modules that we are JIT'ing from. We use a SmallVector to |
132 | /// optimize for the case where there is only one module. |
133 | SmallVector<std::unique_ptr<Module>, 1> Modules; |
134 | |
135 | /// getMemoryforGV - Allocate memory for a global variable. |
136 | virtual char *getMemoryForGV(const GlobalVariable *GV); |
137 | |
138 | static ExecutionEngine *(*MCJITCtor)( |
139 | std::unique_ptr<Module> M, std::string *ErrorStr, |
140 | std::shared_ptr<MCJITMemoryManager> MM, |
141 | std::shared_ptr<LegacyJITSymbolResolver> SR, |
142 | std::unique_ptr<TargetMachine> TM); |
143 | |
144 | static ExecutionEngine *(*InterpCtor)(std::unique_ptr<Module> M, |
145 | std::string *ErrorStr); |
146 | |
147 | /// LazyFunctionCreator - If an unknown function is needed, this function |
148 | /// pointer is invoked to create it. If this returns null, the JIT will |
149 | /// abort. |
150 | FunctionCreator LazyFunctionCreator; |
151 | |
152 | /// getMangledName - Get mangled name. |
153 | std::string getMangledName(const GlobalValue *GV); |
154 | |
155 | std::string ErrMsg; |
156 | |
157 | public: |
158 | /// lock - This lock protects the ExecutionEngine and MCJIT classes. It must |
159 | /// be held while changing the internal state of any of those classes. |
160 | sys::Mutex lock; |
161 | |
162 | //===--------------------------------------------------------------------===// |
163 | // ExecutionEngine Startup |
164 | //===--------------------------------------------------------------------===// |
165 | |
166 | virtual ~ExecutionEngine(); |
167 | |
168 | /// Add a Module to the list of modules that we can JIT from. |
169 | virtual void addModule(std::unique_ptr<Module> M) { |
170 | Modules.push_back(Elt: std::move(M)); |
171 | } |
172 | |
173 | /// addObjectFile - Add an ObjectFile to the execution engine. |
174 | /// |
175 | /// This method is only supported by MCJIT. MCJIT will immediately load the |
176 | /// object into memory and adds its symbols to the list used to resolve |
177 | /// external symbols while preparing other objects for execution. |
178 | /// |
179 | /// Objects added using this function will not be made executable until |
180 | /// needed by another object. |
181 | /// |
182 | /// MCJIT will take ownership of the ObjectFile. |
183 | virtual void addObjectFile(std::unique_ptr<object::ObjectFile> O); |
184 | virtual void addObjectFile(object::OwningBinary<object::ObjectFile> O); |
185 | |
186 | /// addArchive - Add an Archive to the execution engine. |
187 | /// |
188 | /// This method is only supported by MCJIT. MCJIT will use the archive to |
189 | /// resolve external symbols in objects it is loading. If a symbol is found |
190 | /// in the Archive the contained object file will be extracted (in memory) |
191 | /// and loaded for possible execution. |
192 | virtual void addArchive(object::OwningBinary<object::Archive> A); |
193 | |
194 | //===--------------------------------------------------------------------===// |
195 | |
196 | const DataLayout &getDataLayout() const { return DL; } |
197 | |
198 | /// removeModule - Removes a Module from the list of modules, but does not |
199 | /// free the module's memory. Returns true if M is found, in which case the |
200 | /// caller assumes responsibility for deleting the module. |
201 | // |
202 | // FIXME: This stealth ownership transfer is horrible. This will probably be |
203 | // fixed by deleting ExecutionEngine. |
204 | virtual bool removeModule(Module *M); |
205 | |
206 | /// FindFunctionNamed - Search all of the active modules to find the function that |
207 | /// defines FnName. This is very slow operation and shouldn't be used for |
208 | /// general code. |
209 | virtual Function *FindFunctionNamed(StringRef FnName); |
210 | |
211 | /// FindGlobalVariableNamed - Search all of the active modules to find the global variable |
212 | /// that defines Name. This is very slow operation and shouldn't be used for |
213 | /// general code. |
214 | virtual GlobalVariable *FindGlobalVariableNamed(StringRef Name, bool AllowInternal = false); |
215 | |
216 | /// runFunction - Execute the specified function with the specified arguments, |
217 | /// and return the result. |
218 | /// |
219 | /// For MCJIT execution engines, clients are encouraged to use the |
220 | /// "GetFunctionAddress" method (rather than runFunction) and cast the |
221 | /// returned uint64_t to the desired function pointer type. However, for |
222 | /// backwards compatibility MCJIT's implementation can execute 'main-like' |
223 | /// function (i.e. those returning void or int, and taking either no |
224 | /// arguments or (int, char*[])). |
225 | virtual GenericValue runFunction(Function *F, |
226 | ArrayRef<GenericValue> ArgValues) = 0; |
227 | |
228 | /// getPointerToNamedFunction - This method returns the address of the |
229 | /// specified function by using the dlsym function call. As such it is only |
230 | /// useful for resolving library symbols, not code generated symbols. |
231 | /// |
232 | /// If AbortOnFailure is false and no function with the given name is |
233 | /// found, this function silently returns a null pointer. Otherwise, |
234 | /// it prints a message to stderr and aborts. |
235 | /// |
236 | /// This function is deprecated for the MCJIT execution engine. |
237 | virtual void *getPointerToNamedFunction(StringRef Name, |
238 | bool AbortOnFailure = true) = 0; |
239 | |
240 | /// mapSectionAddress - map a section to its target address space value. |
241 | /// Map the address of a JIT section as returned from the memory manager |
242 | /// to the address in the target process as the running code will see it. |
243 | /// This is the address which will be used for relocation resolution. |
244 | virtual void mapSectionAddress(const void *LocalAddress, |
245 | uint64_t TargetAddress) { |
246 | llvm_unreachable("Re-mapping of section addresses not supported with this " |
247 | "EE!" ); |
248 | } |
249 | |
250 | /// generateCodeForModule - Run code generation for the specified module and |
251 | /// load it into memory. |
252 | /// |
253 | /// When this function has completed, all code and data for the specified |
254 | /// module, and any module on which this module depends, will be generated |
255 | /// and loaded into memory, but relocations will not yet have been applied |
256 | /// and all memory will be readable and writable but not executable. |
257 | /// |
258 | /// This function is primarily useful when generating code for an external |
259 | /// target, allowing the client an opportunity to remap section addresses |
260 | /// before relocations are applied. Clients that intend to execute code |
261 | /// locally can use the getFunctionAddress call, which will generate code |
262 | /// and apply final preparations all in one step. |
263 | /// |
264 | /// This method has no effect for the interpreter. |
265 | virtual void generateCodeForModule(Module *M) {} |
266 | |
267 | /// finalizeObject - ensure the module is fully processed and is usable. |
268 | /// |
269 | /// It is the user-level function for completing the process of making the |
270 | /// object usable for execution. It should be called after sections within an |
271 | /// object have been relocated using mapSectionAddress. When this method is |
272 | /// called the MCJIT execution engine will reapply relocations for a loaded |
273 | /// object. This method has no effect for the interpreter. |
274 | /// |
275 | /// Returns true on success, false on failure. Error messages can be retrieved |
276 | /// by calling getError(); |
277 | virtual void finalizeObject() {} |
278 | |
279 | /// Returns true if an error has been recorded. |
280 | bool hasError() const { return !ErrMsg.empty(); } |
281 | |
282 | /// Clear the error message. |
283 | void clearErrorMessage() { ErrMsg.clear(); } |
284 | |
285 | /// Returns the most recent error message. |
286 | const std::string &getErrorMessage() const { return ErrMsg; } |
287 | |
288 | /// runStaticConstructorsDestructors - This method is used to execute all of |
289 | /// the static constructors or destructors for a program. |
290 | /// |
291 | /// \param isDtors - Run the destructors instead of constructors. |
292 | virtual void runStaticConstructorsDestructors(bool isDtors); |
293 | |
294 | /// This method is used to execute all of the static constructors or |
295 | /// destructors for a particular module. |
296 | /// |
297 | /// \param isDtors - Run the destructors instead of constructors. |
298 | void runStaticConstructorsDestructors(Module &module, bool isDtors); |
299 | |
300 | |
301 | /// runFunctionAsMain - This is a helper function which wraps runFunction to |
302 | /// handle the common task of starting up main with the specified argc, argv, |
303 | /// and envp parameters. |
304 | int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv, |
305 | const char * const * envp); |
306 | |
307 | |
308 | /// addGlobalMapping - Tell the execution engine that the specified global is |
309 | /// at the specified location. This is used internally as functions are JIT'd |
310 | /// and as global variables are laid out in memory. It can and should also be |
311 | /// used by clients of the EE that want to have an LLVM global overlay |
312 | /// existing data in memory. Values to be mapped should be named, and have |
313 | /// external or weak linkage. Mappings are automatically removed when their |
314 | /// GlobalValue is destroyed. |
315 | void addGlobalMapping(const GlobalValue *GV, void *Addr); |
316 | void addGlobalMapping(StringRef Name, uint64_t Addr); |
317 | |
318 | /// clearAllGlobalMappings - Clear all global mappings and start over again, |
319 | /// for use in dynamic compilation scenarios to move globals. |
320 | void clearAllGlobalMappings(); |
321 | |
322 | /// clearGlobalMappingsFromModule - Clear all global mappings that came from a |
323 | /// particular module, because it has been removed from the JIT. |
324 | void clearGlobalMappingsFromModule(Module *M); |
325 | |
326 | /// updateGlobalMapping - Replace an existing mapping for GV with a new |
327 | /// address. This updates both maps as required. If "Addr" is null, the |
328 | /// entry for the global is removed from the mappings. This returns the old |
329 | /// value of the pointer, or null if it was not in the map. |
330 | uint64_t updateGlobalMapping(const GlobalValue *GV, void *Addr); |
331 | uint64_t updateGlobalMapping(StringRef Name, uint64_t Addr); |
332 | |
333 | /// getAddressToGlobalIfAvailable - This returns the address of the specified |
334 | /// global symbol. |
335 | uint64_t getAddressToGlobalIfAvailable(StringRef S); |
336 | |
337 | /// getPointerToGlobalIfAvailable - This returns the address of the specified |
338 | /// global value if it is has already been codegen'd, otherwise it returns |
339 | /// null. |
340 | void *getPointerToGlobalIfAvailable(StringRef S); |
341 | void *getPointerToGlobalIfAvailable(const GlobalValue *GV); |
342 | |
343 | /// getPointerToGlobal - This returns the address of the specified global |
344 | /// value. This may involve code generation if it's a function. |
345 | /// |
346 | /// This function is deprecated for the MCJIT execution engine. Use |
347 | /// getGlobalValueAddress instead. |
348 | void *getPointerToGlobal(const GlobalValue *GV); |
349 | |
350 | /// getPointerToFunction - The different EE's represent function bodies in |
351 | /// different ways. They should each implement this to say what a function |
352 | /// pointer should look like. When F is destroyed, the ExecutionEngine will |
353 | /// remove its global mapping and free any machine code. Be sure no threads |
354 | /// are running inside F when that happens. |
355 | /// |
356 | /// This function is deprecated for the MCJIT execution engine. Use |
357 | /// getFunctionAddress instead. |
358 | virtual void *getPointerToFunction(Function *F) = 0; |
359 | |
360 | /// getPointerToFunctionOrStub - If the specified function has been |
361 | /// code-gen'd, return a pointer to the function. If not, compile it, or use |
362 | /// a stub to implement lazy compilation if available. See |
363 | /// getPointerToFunction for the requirements on destroying F. |
364 | /// |
365 | /// This function is deprecated for the MCJIT execution engine. Use |
366 | /// getFunctionAddress instead. |
367 | virtual void *getPointerToFunctionOrStub(Function *F) { |
368 | // Default implementation, just codegen the function. |
369 | return getPointerToFunction(F); |
370 | } |
371 | |
372 | /// getGlobalValueAddress - Return the address of the specified global |
373 | /// value. This may involve code generation. |
374 | /// |
375 | /// This function should not be called with the interpreter engine. |
376 | virtual uint64_t getGlobalValueAddress(const std::string &Name) { |
377 | // Default implementation for the interpreter. MCJIT will override this. |
378 | // JIT and interpreter clients should use getPointerToGlobal instead. |
379 | return 0; |
380 | } |
381 | |
382 | /// getFunctionAddress - Return the address of the specified function. |
383 | /// This may involve code generation. |
384 | virtual uint64_t getFunctionAddress(const std::string &Name) { |
385 | // Default implementation for the interpreter. MCJIT will override this. |
386 | // Interpreter clients should use getPointerToFunction instead. |
387 | return 0; |
388 | } |
389 | |
390 | /// getGlobalValueAtAddress - Return the LLVM global value object that starts |
391 | /// at the specified address. |
392 | /// |
393 | const GlobalValue *getGlobalValueAtAddress(void *Addr); |
394 | |
395 | /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. |
396 | /// Ptr is the address of the memory at which to store Val, cast to |
397 | /// GenericValue *. It is not a pointer to a GenericValue containing the |
398 | /// address at which to store Val. |
399 | void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, |
400 | Type *Ty); |
401 | |
402 | void InitializeMemory(const Constant *Init, void *Addr); |
403 | |
404 | /// getOrEmitGlobalVariable - Return the address of the specified global |
405 | /// variable, possibly emitting it to memory if needed. This is used by the |
406 | /// Emitter. |
407 | /// |
408 | /// This function is deprecated for the MCJIT execution engine. Use |
409 | /// getGlobalValueAddress instead. |
410 | virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) { |
411 | return getPointerToGlobal(GV: (const GlobalValue *)GV); |
412 | } |
413 | |
414 | /// Registers a listener to be called back on various events within |
415 | /// the JIT. See JITEventListener.h for more details. Does not |
416 | /// take ownership of the argument. The argument may be NULL, in |
417 | /// which case these functions do nothing. |
418 | virtual void RegisterJITEventListener(JITEventListener *) {} |
419 | virtual void UnregisterJITEventListener(JITEventListener *) {} |
420 | |
421 | /// Sets the pre-compiled object cache. The ownership of the ObjectCache is |
422 | /// not changed. Supported by MCJIT but not the interpreter. |
423 | virtual void setObjectCache(ObjectCache *) { |
424 | llvm_unreachable("No support for an object cache" ); |
425 | } |
426 | |
427 | /// setProcessAllSections (MCJIT Only): By default, only sections that are |
428 | /// "required for execution" are passed to the RTDyldMemoryManager, and other |
429 | /// sections are discarded. Passing 'true' to this method will cause |
430 | /// RuntimeDyld to pass all sections to its RTDyldMemoryManager regardless |
431 | /// of whether they are "required to execute" in the usual sense. |
432 | /// |
433 | /// Rationale: Some MCJIT clients want to be able to inspect metadata |
434 | /// sections (e.g. Dwarf, Stack-maps) to enable functionality or analyze |
435 | /// performance. Passing these sections to the memory manager allows the |
436 | /// client to make policy about the relevant sections, rather than having |
437 | /// MCJIT do it. |
438 | virtual void setProcessAllSections(bool ProcessAllSections) { |
439 | llvm_unreachable("No support for ProcessAllSections option" ); |
440 | } |
441 | |
442 | /// Return the target machine (if available). |
443 | virtual TargetMachine *getTargetMachine() { return nullptr; } |
444 | |
445 | /// DisableLazyCompilation - When lazy compilation is off (the default), the |
446 | /// JIT will eagerly compile every function reachable from the argument to |
447 | /// getPointerToFunction. If lazy compilation is turned on, the JIT will only |
448 | /// compile the one function and emit stubs to compile the rest when they're |
449 | /// first called. If lazy compilation is turned off again while some lazy |
450 | /// stubs are still around, and one of those stubs is called, the program will |
451 | /// abort. |
452 | /// |
453 | /// In order to safely compile lazily in a threaded program, the user must |
454 | /// ensure that 1) only one thread at a time can call any particular lazy |
455 | /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock |
456 | /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a |
457 | /// lazy stub. See http://llvm.org/PR5184 for details. |
458 | void DisableLazyCompilation(bool Disabled = true) { |
459 | CompilingLazily = !Disabled; |
460 | } |
461 | bool isCompilingLazily() const { |
462 | return CompilingLazily; |
463 | } |
464 | |
465 | /// DisableGVCompilation - If called, the JIT will abort if it's asked to |
466 | /// allocate space and populate a GlobalVariable that is not internal to |
467 | /// the module. |
468 | void DisableGVCompilation(bool Disabled = true) { |
469 | GVCompilationDisabled = Disabled; |
470 | } |
471 | bool isGVCompilationDisabled() const { |
472 | return GVCompilationDisabled; |
473 | } |
474 | |
475 | /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown |
476 | /// symbols with dlsym. A client can still use InstallLazyFunctionCreator to |
477 | /// resolve symbols in a custom way. |
478 | void DisableSymbolSearching(bool Disabled = true) { |
479 | SymbolSearchingDisabled = Disabled; |
480 | } |
481 | bool isSymbolSearchingDisabled() const { |
482 | return SymbolSearchingDisabled; |
483 | } |
484 | |
485 | /// Enable/Disable IR module verification. |
486 | /// |
487 | /// Note: Module verification is enabled by default in Debug builds, and |
488 | /// disabled by default in Release. Use this method to override the default. |
489 | void setVerifyModules(bool Verify) { |
490 | VerifyModules = Verify; |
491 | } |
492 | bool getVerifyModules() const { |
493 | return VerifyModules; |
494 | } |
495 | |
496 | /// InstallLazyFunctionCreator - If an unknown function is needed, the |
497 | /// specified function pointer is invoked to create it. If it returns null, |
498 | /// the JIT will abort. |
499 | void InstallLazyFunctionCreator(FunctionCreator C) { |
500 | LazyFunctionCreator = std::move(C); |
501 | } |
502 | |
503 | protected: |
504 | ExecutionEngine(DataLayout DL) : DL(std::move(DL)) {} |
505 | explicit ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M); |
506 | explicit ExecutionEngine(std::unique_ptr<Module> M); |
507 | |
508 | void emitGlobals(); |
509 | |
510 | void emitGlobalVariable(const GlobalVariable *GV); |
511 | |
512 | GenericValue getConstantValue(const Constant *C); |
513 | void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr, |
514 | Type *Ty); |
515 | |
516 | private: |
517 | void Init(std::unique_ptr<Module> M); |
518 | }; |
519 | |
520 | namespace EngineKind { |
521 | |
522 | // These are actually bitmasks that get or-ed together. |
523 | enum Kind { |
524 | JIT = 0x1, |
525 | Interpreter = 0x2 |
526 | }; |
527 | const static Kind Either = (Kind)(JIT | Interpreter); |
528 | |
529 | } // end namespace EngineKind |
530 | |
531 | /// Builder class for ExecutionEngines. Use this by stack-allocating a builder, |
532 | /// chaining the various set* methods, and terminating it with a .create() |
533 | /// call. |
534 | class EngineBuilder { |
535 | private: |
536 | std::unique_ptr<Module> M; |
537 | EngineKind::Kind WhichEngine; |
538 | std::string *ErrorStr; |
539 | CodeGenOptLevel OptLevel; |
540 | std::shared_ptr<MCJITMemoryManager> MemMgr; |
541 | std::shared_ptr<LegacyJITSymbolResolver> Resolver; |
542 | TargetOptions Options; |
543 | std::optional<Reloc::Model> RelocModel; |
544 | std::optional<CodeModel::Model> CMModel; |
545 | std::string MArch; |
546 | std::string MCPU; |
547 | SmallVector<std::string, 4> MAttrs; |
548 | bool VerifyModules; |
549 | bool EmulatedTLS = true; |
550 | |
551 | public: |
552 | /// Default constructor for EngineBuilder. |
553 | EngineBuilder(); |
554 | |
555 | /// Constructor for EngineBuilder. |
556 | EngineBuilder(std::unique_ptr<Module> M); |
557 | |
558 | // Out-of-line since we don't have the def'n of RTDyldMemoryManager here. |
559 | ~EngineBuilder(); |
560 | |
561 | /// setEngineKind - Controls whether the user wants the interpreter, the JIT, |
562 | /// or whichever engine works. This option defaults to EngineKind::Either. |
563 | EngineBuilder &setEngineKind(EngineKind::Kind w) { |
564 | WhichEngine = w; |
565 | return *this; |
566 | } |
567 | |
568 | /// setMCJITMemoryManager - Sets the MCJIT memory manager to use. This allows |
569 | /// clients to customize their memory allocation policies for the MCJIT. This |
570 | /// is only appropriate for the MCJIT; setting this and configuring the builder |
571 | /// to create anything other than MCJIT will cause a runtime error. If create() |
572 | /// is called and is successful, the created engine takes ownership of the |
573 | /// memory manager. This option defaults to NULL. |
574 | EngineBuilder &setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm); |
575 | |
576 | EngineBuilder& |
577 | setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM); |
578 | |
579 | EngineBuilder &setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR); |
580 | |
581 | /// setErrorStr - Set the error string to write to on error. This option |
582 | /// defaults to NULL. |
583 | EngineBuilder &setErrorStr(std::string *e) { |
584 | ErrorStr = e; |
585 | return *this; |
586 | } |
587 | |
588 | /// setOptLevel - Set the optimization level for the JIT. This option |
589 | /// defaults to CodeGenOptLevel::Default. |
590 | EngineBuilder &setOptLevel(CodeGenOptLevel l) { |
591 | OptLevel = l; |
592 | return *this; |
593 | } |
594 | |
595 | /// setTargetOptions - Set the target options that the ExecutionEngine |
596 | /// target is using. Defaults to TargetOptions(). |
597 | EngineBuilder &setTargetOptions(const TargetOptions &Opts) { |
598 | Options = Opts; |
599 | return *this; |
600 | } |
601 | |
602 | /// setRelocationModel - Set the relocation model that the ExecutionEngine |
603 | /// target is using. Defaults to target specific default "Reloc::Default". |
604 | EngineBuilder &setRelocationModel(Reloc::Model RM) { |
605 | RelocModel = RM; |
606 | return *this; |
607 | } |
608 | |
609 | /// setCodeModel - Set the CodeModel that the ExecutionEngine target |
610 | /// data is using. Defaults to target specific default |
611 | /// "CodeModel::JITDefault". |
612 | EngineBuilder &setCodeModel(CodeModel::Model M) { |
613 | CMModel = M; |
614 | return *this; |
615 | } |
616 | |
617 | /// setMArch - Override the architecture set by the Module's triple. |
618 | EngineBuilder &setMArch(StringRef march) { |
619 | MArch.assign(first: march.begin(), last: march.end()); |
620 | return *this; |
621 | } |
622 | |
623 | /// setMCPU - Target a specific cpu type. |
624 | EngineBuilder &setMCPU(StringRef mcpu) { |
625 | MCPU.assign(first: mcpu.begin(), last: mcpu.end()); |
626 | return *this; |
627 | } |
628 | |
629 | /// setVerifyModules - Set whether the JIT implementation should verify |
630 | /// IR modules during compilation. |
631 | EngineBuilder &setVerifyModules(bool Verify) { |
632 | VerifyModules = Verify; |
633 | return *this; |
634 | } |
635 | |
636 | /// setMAttrs - Set cpu-specific attributes. |
637 | template<typename StringSequence> |
638 | EngineBuilder &setMAttrs(const StringSequence &mattrs) { |
639 | MAttrs.clear(); |
640 | MAttrs.append(mattrs.begin(), mattrs.end()); |
641 | return *this; |
642 | } |
643 | |
644 | void setEmulatedTLS(bool EmulatedTLS) { |
645 | this->EmulatedTLS = EmulatedTLS; |
646 | } |
647 | |
648 | TargetMachine *selectTarget(); |
649 | |
650 | /// selectTarget - Pick a target either via -march or by guessing the native |
651 | /// arch. Add any CPU features specified via -mcpu or -mattr. |
652 | TargetMachine *selectTarget(const Triple &TargetTriple, |
653 | StringRef MArch, |
654 | StringRef MCPU, |
655 | const SmallVectorImpl<std::string>& MAttrs); |
656 | |
657 | ExecutionEngine *create() { |
658 | return create(TM: selectTarget()); |
659 | } |
660 | |
661 | ExecutionEngine *create(TargetMachine *TM); |
662 | }; |
663 | |
664 | // Create wrappers for C Binding types (see CBindingWrapping.h). |
665 | DEFINE_SIMPLE_CONVERSION_FUNCTIONS(ExecutionEngine, LLVMExecutionEngineRef) |
666 | |
667 | } // end namespace llvm |
668 | |
669 | #endif // LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H |
670 | |