1//===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the abstract interface that implements execution support
10// for LLVM.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
15#define LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
16
17#include "llvm-c/ExecutionEngine.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringMap.h"
21#include "llvm/ADT/StringRef.h"
22#include "llvm/ExecutionEngine/JITSymbol.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/Module.h"
25#include "llvm/Object/Binary.h"
26#include "llvm/Support/CBindingWrapping.h"
27#include "llvm/Support/CodeGen.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/Mutex.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Target/TargetOptions.h"
32#include <algorithm>
33#include <cstdint>
34#include <functional>
35#include <map>
36#include <memory>
37#include <optional>
38#include <string>
39#include <vector>
40
41namespace llvm {
42
43class Constant;
44class Function;
45struct GenericValue;
46class GlobalValue;
47class GlobalVariable;
48class JITEventListener;
49class MCJITMemoryManager;
50class ObjectCache;
51class RTDyldMemoryManager;
52class Triple;
53class Type;
54
55namespace object {
56
57class Archive;
58class ObjectFile;
59
60} // end namespace object
61
62/// Helper class for helping synchronize access to the global address map
63/// table. Access to this class should be serialized under a mutex.
64class ExecutionEngineState {
65public:
66 using GlobalAddressMapTy = StringMap<uint64_t>;
67
68private:
69 /// GlobalAddressMap - A mapping between LLVM global symbol names values and
70 /// their actualized version...
71 GlobalAddressMapTy GlobalAddressMap;
72
73 /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
74 /// used to convert raw addresses into the LLVM global value that is emitted
75 /// at the address. This map is not computed unless getGlobalValueAtAddress
76 /// is called at some point.
77 std::map<uint64_t, std::string> GlobalAddressReverseMap;
78
79public:
80 GlobalAddressMapTy &getGlobalAddressMap() {
81 return GlobalAddressMap;
82 }
83
84 std::map<uint64_t, std::string> &getGlobalAddressReverseMap() {
85 return GlobalAddressReverseMap;
86 }
87
88 /// Erase an entry from the mapping table.
89 ///
90 /// \returns The address that \p ToUnmap was mapped to.
91 uint64_t RemoveMapping(StringRef Name);
92};
93
94using FunctionCreator = std::function<void *(const std::string &)>;
95
96/// Abstract interface for implementation execution of LLVM modules,
97/// designed to support both interpreter and just-in-time (JIT) compiler
98/// implementations.
99class ExecutionEngine {
100 /// The state object holding the global address mapping, which must be
101 /// accessed synchronously.
102 //
103 // FIXME: There is no particular need the entire map needs to be
104 // synchronized. Wouldn't a reader-writer design be better here?
105 ExecutionEngineState EEState;
106
107 /// The target data for the platform for which execution is being performed.
108 ///
109 /// Note: the DataLayout is LLVMContext specific because it has an
110 /// internal cache based on type pointers. It makes unsafe to reuse the
111 /// ExecutionEngine across context, we don't enforce this rule but undefined
112 /// behavior can occurs if the user tries to do it.
113 const DataLayout DL;
114
115 /// Whether lazy JIT compilation is enabled.
116 bool CompilingLazily;
117
118 /// Whether JIT compilation of external global variables is allowed.
119 bool GVCompilationDisabled;
120
121 /// Whether the JIT should perform lookups of external symbols (e.g.,
122 /// using dlsym).
123 bool SymbolSearchingDisabled;
124
125 /// Whether the JIT should verify IR modules during compilation.
126 bool VerifyModules;
127
128 friend class EngineBuilder; // To allow access to JITCtor and InterpCtor.
129
130protected:
131 /// The list of Modules that we are JIT'ing from. We use a SmallVector to
132 /// optimize for the case where there is only one module.
133 SmallVector<std::unique_ptr<Module>, 1> Modules;
134
135 /// getMemoryforGV - Allocate memory for a global variable.
136 virtual char *getMemoryForGV(const GlobalVariable *GV);
137
138 static ExecutionEngine *(*MCJITCtor)(
139 std::unique_ptr<Module> M, std::string *ErrorStr,
140 std::shared_ptr<MCJITMemoryManager> MM,
141 std::shared_ptr<LegacyJITSymbolResolver> SR,
142 std::unique_ptr<TargetMachine> TM);
143
144 static ExecutionEngine *(*InterpCtor)(std::unique_ptr<Module> M,
145 std::string *ErrorStr);
146
147 /// LazyFunctionCreator - If an unknown function is needed, this function
148 /// pointer is invoked to create it. If this returns null, the JIT will
149 /// abort.
150 FunctionCreator LazyFunctionCreator;
151
152 /// getMangledName - Get mangled name.
153 std::string getMangledName(const GlobalValue *GV);
154
155 std::string ErrMsg;
156
157public:
158 /// lock - This lock protects the ExecutionEngine and MCJIT classes. It must
159 /// be held while changing the internal state of any of those classes.
160 sys::Mutex lock;
161
162 //===--------------------------------------------------------------------===//
163 // ExecutionEngine Startup
164 //===--------------------------------------------------------------------===//
165
166 virtual ~ExecutionEngine();
167
168 /// Add a Module to the list of modules that we can JIT from.
169 virtual void addModule(std::unique_ptr<Module> M) {
170 Modules.push_back(Elt: std::move(M));
171 }
172
173 /// addObjectFile - Add an ObjectFile to the execution engine.
174 ///
175 /// This method is only supported by MCJIT. MCJIT will immediately load the
176 /// object into memory and adds its symbols to the list used to resolve
177 /// external symbols while preparing other objects for execution.
178 ///
179 /// Objects added using this function will not be made executable until
180 /// needed by another object.
181 ///
182 /// MCJIT will take ownership of the ObjectFile.
183 virtual void addObjectFile(std::unique_ptr<object::ObjectFile> O);
184 virtual void addObjectFile(object::OwningBinary<object::ObjectFile> O);
185
186 /// addArchive - Add an Archive to the execution engine.
187 ///
188 /// This method is only supported by MCJIT. MCJIT will use the archive to
189 /// resolve external symbols in objects it is loading. If a symbol is found
190 /// in the Archive the contained object file will be extracted (in memory)
191 /// and loaded for possible execution.
192 virtual void addArchive(object::OwningBinary<object::Archive> A);
193
194 //===--------------------------------------------------------------------===//
195
196 const DataLayout &getDataLayout() const { return DL; }
197
198 /// removeModule - Removes a Module from the list of modules, but does not
199 /// free the module's memory. Returns true if M is found, in which case the
200 /// caller assumes responsibility for deleting the module.
201 //
202 // FIXME: This stealth ownership transfer is horrible. This will probably be
203 // fixed by deleting ExecutionEngine.
204 virtual bool removeModule(Module *M);
205
206 /// FindFunctionNamed - Search all of the active modules to find the function that
207 /// defines FnName. This is very slow operation and shouldn't be used for
208 /// general code.
209 virtual Function *FindFunctionNamed(StringRef FnName);
210
211 /// FindGlobalVariableNamed - Search all of the active modules to find the global variable
212 /// that defines Name. This is very slow operation and shouldn't be used for
213 /// general code.
214 virtual GlobalVariable *FindGlobalVariableNamed(StringRef Name, bool AllowInternal = false);
215
216 /// runFunction - Execute the specified function with the specified arguments,
217 /// and return the result.
218 ///
219 /// For MCJIT execution engines, clients are encouraged to use the
220 /// "GetFunctionAddress" method (rather than runFunction) and cast the
221 /// returned uint64_t to the desired function pointer type. However, for
222 /// backwards compatibility MCJIT's implementation can execute 'main-like'
223 /// function (i.e. those returning void or int, and taking either no
224 /// arguments or (int, char*[])).
225 virtual GenericValue runFunction(Function *F,
226 ArrayRef<GenericValue> ArgValues) = 0;
227
228 /// getPointerToNamedFunction - This method returns the address of the
229 /// specified function by using the dlsym function call. As such it is only
230 /// useful for resolving library symbols, not code generated symbols.
231 ///
232 /// If AbortOnFailure is false and no function with the given name is
233 /// found, this function silently returns a null pointer. Otherwise,
234 /// it prints a message to stderr and aborts.
235 ///
236 /// This function is deprecated for the MCJIT execution engine.
237 virtual void *getPointerToNamedFunction(StringRef Name,
238 bool AbortOnFailure = true) = 0;
239
240 /// mapSectionAddress - map a section to its target address space value.
241 /// Map the address of a JIT section as returned from the memory manager
242 /// to the address in the target process as the running code will see it.
243 /// This is the address which will be used for relocation resolution.
244 virtual void mapSectionAddress(const void *LocalAddress,
245 uint64_t TargetAddress) {
246 llvm_unreachable("Re-mapping of section addresses not supported with this "
247 "EE!");
248 }
249
250 /// generateCodeForModule - Run code generation for the specified module and
251 /// load it into memory.
252 ///
253 /// When this function has completed, all code and data for the specified
254 /// module, and any module on which this module depends, will be generated
255 /// and loaded into memory, but relocations will not yet have been applied
256 /// and all memory will be readable and writable but not executable.
257 ///
258 /// This function is primarily useful when generating code for an external
259 /// target, allowing the client an opportunity to remap section addresses
260 /// before relocations are applied. Clients that intend to execute code
261 /// locally can use the getFunctionAddress call, which will generate code
262 /// and apply final preparations all in one step.
263 ///
264 /// This method has no effect for the interpreter.
265 virtual void generateCodeForModule(Module *M) {}
266
267 /// finalizeObject - ensure the module is fully processed and is usable.
268 ///
269 /// It is the user-level function for completing the process of making the
270 /// object usable for execution. It should be called after sections within an
271 /// object have been relocated using mapSectionAddress. When this method is
272 /// called the MCJIT execution engine will reapply relocations for a loaded
273 /// object. This method has no effect for the interpreter.
274 ///
275 /// Returns true on success, false on failure. Error messages can be retrieved
276 /// by calling getError();
277 virtual void finalizeObject() {}
278
279 /// Returns true if an error has been recorded.
280 bool hasError() const { return !ErrMsg.empty(); }
281
282 /// Clear the error message.
283 void clearErrorMessage() { ErrMsg.clear(); }
284
285 /// Returns the most recent error message.
286 const std::string &getErrorMessage() const { return ErrMsg; }
287
288 /// runStaticConstructorsDestructors - This method is used to execute all of
289 /// the static constructors or destructors for a program.
290 ///
291 /// \param isDtors - Run the destructors instead of constructors.
292 virtual void runStaticConstructorsDestructors(bool isDtors);
293
294 /// This method is used to execute all of the static constructors or
295 /// destructors for a particular module.
296 ///
297 /// \param isDtors - Run the destructors instead of constructors.
298 void runStaticConstructorsDestructors(Module &module, bool isDtors);
299
300
301 /// runFunctionAsMain - This is a helper function which wraps runFunction to
302 /// handle the common task of starting up main with the specified argc, argv,
303 /// and envp parameters.
304 int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
305 const char * const * envp);
306
307
308 /// addGlobalMapping - Tell the execution engine that the specified global is
309 /// at the specified location. This is used internally as functions are JIT'd
310 /// and as global variables are laid out in memory. It can and should also be
311 /// used by clients of the EE that want to have an LLVM global overlay
312 /// existing data in memory. Values to be mapped should be named, and have
313 /// external or weak linkage. Mappings are automatically removed when their
314 /// GlobalValue is destroyed.
315 void addGlobalMapping(const GlobalValue *GV, void *Addr);
316 void addGlobalMapping(StringRef Name, uint64_t Addr);
317
318 /// clearAllGlobalMappings - Clear all global mappings and start over again,
319 /// for use in dynamic compilation scenarios to move globals.
320 void clearAllGlobalMappings();
321
322 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
323 /// particular module, because it has been removed from the JIT.
324 void clearGlobalMappingsFromModule(Module *M);
325
326 /// updateGlobalMapping - Replace an existing mapping for GV with a new
327 /// address. This updates both maps as required. If "Addr" is null, the
328 /// entry for the global is removed from the mappings. This returns the old
329 /// value of the pointer, or null if it was not in the map.
330 uint64_t updateGlobalMapping(const GlobalValue *GV, void *Addr);
331 uint64_t updateGlobalMapping(StringRef Name, uint64_t Addr);
332
333 /// getAddressToGlobalIfAvailable - This returns the address of the specified
334 /// global symbol.
335 uint64_t getAddressToGlobalIfAvailable(StringRef S);
336
337 /// getPointerToGlobalIfAvailable - This returns the address of the specified
338 /// global value if it is has already been codegen'd, otherwise it returns
339 /// null.
340 void *getPointerToGlobalIfAvailable(StringRef S);
341 void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
342
343 /// getPointerToGlobal - This returns the address of the specified global
344 /// value. This may involve code generation if it's a function.
345 ///
346 /// This function is deprecated for the MCJIT execution engine. Use
347 /// getGlobalValueAddress instead.
348 void *getPointerToGlobal(const GlobalValue *GV);
349
350 /// getPointerToFunction - The different EE's represent function bodies in
351 /// different ways. They should each implement this to say what a function
352 /// pointer should look like. When F is destroyed, the ExecutionEngine will
353 /// remove its global mapping and free any machine code. Be sure no threads
354 /// are running inside F when that happens.
355 ///
356 /// This function is deprecated for the MCJIT execution engine. Use
357 /// getFunctionAddress instead.
358 virtual void *getPointerToFunction(Function *F) = 0;
359
360 /// getPointerToFunctionOrStub - If the specified function has been
361 /// code-gen'd, return a pointer to the function. If not, compile it, or use
362 /// a stub to implement lazy compilation if available. See
363 /// getPointerToFunction for the requirements on destroying F.
364 ///
365 /// This function is deprecated for the MCJIT execution engine. Use
366 /// getFunctionAddress instead.
367 virtual void *getPointerToFunctionOrStub(Function *F) {
368 // Default implementation, just codegen the function.
369 return getPointerToFunction(F);
370 }
371
372 /// getGlobalValueAddress - Return the address of the specified global
373 /// value. This may involve code generation.
374 ///
375 /// This function should not be called with the interpreter engine.
376 virtual uint64_t getGlobalValueAddress(const std::string &Name) {
377 // Default implementation for the interpreter. MCJIT will override this.
378 // JIT and interpreter clients should use getPointerToGlobal instead.
379 return 0;
380 }
381
382 /// getFunctionAddress - Return the address of the specified function.
383 /// This may involve code generation.
384 virtual uint64_t getFunctionAddress(const std::string &Name) {
385 // Default implementation for the interpreter. MCJIT will override this.
386 // Interpreter clients should use getPointerToFunction instead.
387 return 0;
388 }
389
390 /// getGlobalValueAtAddress - Return the LLVM global value object that starts
391 /// at the specified address.
392 ///
393 const GlobalValue *getGlobalValueAtAddress(void *Addr);
394
395 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
396 /// Ptr is the address of the memory at which to store Val, cast to
397 /// GenericValue *. It is not a pointer to a GenericValue containing the
398 /// address at which to store Val.
399 void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
400 Type *Ty);
401
402 void InitializeMemory(const Constant *Init, void *Addr);
403
404 /// getOrEmitGlobalVariable - Return the address of the specified global
405 /// variable, possibly emitting it to memory if needed. This is used by the
406 /// Emitter.
407 ///
408 /// This function is deprecated for the MCJIT execution engine. Use
409 /// getGlobalValueAddress instead.
410 virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
411 return getPointerToGlobal(GV: (const GlobalValue *)GV);
412 }
413
414 /// Registers a listener to be called back on various events within
415 /// the JIT. See JITEventListener.h for more details. Does not
416 /// take ownership of the argument. The argument may be NULL, in
417 /// which case these functions do nothing.
418 virtual void RegisterJITEventListener(JITEventListener *) {}
419 virtual void UnregisterJITEventListener(JITEventListener *) {}
420
421 /// Sets the pre-compiled object cache. The ownership of the ObjectCache is
422 /// not changed. Supported by MCJIT but not the interpreter.
423 virtual void setObjectCache(ObjectCache *) {
424 llvm_unreachable("No support for an object cache");
425 }
426
427 /// setProcessAllSections (MCJIT Only): By default, only sections that are
428 /// "required for execution" are passed to the RTDyldMemoryManager, and other
429 /// sections are discarded. Passing 'true' to this method will cause
430 /// RuntimeDyld to pass all sections to its RTDyldMemoryManager regardless
431 /// of whether they are "required to execute" in the usual sense.
432 ///
433 /// Rationale: Some MCJIT clients want to be able to inspect metadata
434 /// sections (e.g. Dwarf, Stack-maps) to enable functionality or analyze
435 /// performance. Passing these sections to the memory manager allows the
436 /// client to make policy about the relevant sections, rather than having
437 /// MCJIT do it.
438 virtual void setProcessAllSections(bool ProcessAllSections) {
439 llvm_unreachable("No support for ProcessAllSections option");
440 }
441
442 /// Return the target machine (if available).
443 virtual TargetMachine *getTargetMachine() { return nullptr; }
444
445 /// DisableLazyCompilation - When lazy compilation is off (the default), the
446 /// JIT will eagerly compile every function reachable from the argument to
447 /// getPointerToFunction. If lazy compilation is turned on, the JIT will only
448 /// compile the one function and emit stubs to compile the rest when they're
449 /// first called. If lazy compilation is turned off again while some lazy
450 /// stubs are still around, and one of those stubs is called, the program will
451 /// abort.
452 ///
453 /// In order to safely compile lazily in a threaded program, the user must
454 /// ensure that 1) only one thread at a time can call any particular lazy
455 /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
456 /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
457 /// lazy stub. See http://llvm.org/PR5184 for details.
458 void DisableLazyCompilation(bool Disabled = true) {
459 CompilingLazily = !Disabled;
460 }
461 bool isCompilingLazily() const {
462 return CompilingLazily;
463 }
464
465 /// DisableGVCompilation - If called, the JIT will abort if it's asked to
466 /// allocate space and populate a GlobalVariable that is not internal to
467 /// the module.
468 void DisableGVCompilation(bool Disabled = true) {
469 GVCompilationDisabled = Disabled;
470 }
471 bool isGVCompilationDisabled() const {
472 return GVCompilationDisabled;
473 }
474
475 /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
476 /// symbols with dlsym. A client can still use InstallLazyFunctionCreator to
477 /// resolve symbols in a custom way.
478 void DisableSymbolSearching(bool Disabled = true) {
479 SymbolSearchingDisabled = Disabled;
480 }
481 bool isSymbolSearchingDisabled() const {
482 return SymbolSearchingDisabled;
483 }
484
485 /// Enable/Disable IR module verification.
486 ///
487 /// Note: Module verification is enabled by default in Debug builds, and
488 /// disabled by default in Release. Use this method to override the default.
489 void setVerifyModules(bool Verify) {
490 VerifyModules = Verify;
491 }
492 bool getVerifyModules() const {
493 return VerifyModules;
494 }
495
496 /// InstallLazyFunctionCreator - If an unknown function is needed, the
497 /// specified function pointer is invoked to create it. If it returns null,
498 /// the JIT will abort.
499 void InstallLazyFunctionCreator(FunctionCreator C) {
500 LazyFunctionCreator = std::move(C);
501 }
502
503protected:
504 ExecutionEngine(DataLayout DL) : DL(std::move(DL)) {}
505 explicit ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M);
506 explicit ExecutionEngine(std::unique_ptr<Module> M);
507
508 void emitGlobals();
509
510 void emitGlobalVariable(const GlobalVariable *GV);
511
512 GenericValue getConstantValue(const Constant *C);
513 void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
514 Type *Ty);
515
516private:
517 void Init(std::unique_ptr<Module> M);
518};
519
520namespace EngineKind {
521
522 // These are actually bitmasks that get or-ed together.
523 enum Kind {
524 JIT = 0x1,
525 Interpreter = 0x2
526 };
527 const static Kind Either = (Kind)(JIT | Interpreter);
528
529} // end namespace EngineKind
530
531/// Builder class for ExecutionEngines. Use this by stack-allocating a builder,
532/// chaining the various set* methods, and terminating it with a .create()
533/// call.
534class EngineBuilder {
535private:
536 std::unique_ptr<Module> M;
537 EngineKind::Kind WhichEngine;
538 std::string *ErrorStr;
539 CodeGenOptLevel OptLevel;
540 std::shared_ptr<MCJITMemoryManager> MemMgr;
541 std::shared_ptr<LegacyJITSymbolResolver> Resolver;
542 TargetOptions Options;
543 std::optional<Reloc::Model> RelocModel;
544 std::optional<CodeModel::Model> CMModel;
545 std::string MArch;
546 std::string MCPU;
547 SmallVector<std::string, 4> MAttrs;
548 bool VerifyModules;
549 bool EmulatedTLS = true;
550
551public:
552 /// Default constructor for EngineBuilder.
553 EngineBuilder();
554
555 /// Constructor for EngineBuilder.
556 EngineBuilder(std::unique_ptr<Module> M);
557
558 // Out-of-line since we don't have the def'n of RTDyldMemoryManager here.
559 ~EngineBuilder();
560
561 /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
562 /// or whichever engine works. This option defaults to EngineKind::Either.
563 EngineBuilder &setEngineKind(EngineKind::Kind w) {
564 WhichEngine = w;
565 return *this;
566 }
567
568 /// setMCJITMemoryManager - Sets the MCJIT memory manager to use. This allows
569 /// clients to customize their memory allocation policies for the MCJIT. This
570 /// is only appropriate for the MCJIT; setting this and configuring the builder
571 /// to create anything other than MCJIT will cause a runtime error. If create()
572 /// is called and is successful, the created engine takes ownership of the
573 /// memory manager. This option defaults to NULL.
574 EngineBuilder &setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
575
576 EngineBuilder&
577 setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
578
579 EngineBuilder &setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR);
580
581 /// setErrorStr - Set the error string to write to on error. This option
582 /// defaults to NULL.
583 EngineBuilder &setErrorStr(std::string *e) {
584 ErrorStr = e;
585 return *this;
586 }
587
588 /// setOptLevel - Set the optimization level for the JIT. This option
589 /// defaults to CodeGenOptLevel::Default.
590 EngineBuilder &setOptLevel(CodeGenOptLevel l) {
591 OptLevel = l;
592 return *this;
593 }
594
595 /// setTargetOptions - Set the target options that the ExecutionEngine
596 /// target is using. Defaults to TargetOptions().
597 EngineBuilder &setTargetOptions(const TargetOptions &Opts) {
598 Options = Opts;
599 return *this;
600 }
601
602 /// setRelocationModel - Set the relocation model that the ExecutionEngine
603 /// target is using. Defaults to target specific default "Reloc::Default".
604 EngineBuilder &setRelocationModel(Reloc::Model RM) {
605 RelocModel = RM;
606 return *this;
607 }
608
609 /// setCodeModel - Set the CodeModel that the ExecutionEngine target
610 /// data is using. Defaults to target specific default
611 /// "CodeModel::JITDefault".
612 EngineBuilder &setCodeModel(CodeModel::Model M) {
613 CMModel = M;
614 return *this;
615 }
616
617 /// setMArch - Override the architecture set by the Module's triple.
618 EngineBuilder &setMArch(StringRef march) {
619 MArch.assign(first: march.begin(), last: march.end());
620 return *this;
621 }
622
623 /// setMCPU - Target a specific cpu type.
624 EngineBuilder &setMCPU(StringRef mcpu) {
625 MCPU.assign(first: mcpu.begin(), last: mcpu.end());
626 return *this;
627 }
628
629 /// setVerifyModules - Set whether the JIT implementation should verify
630 /// IR modules during compilation.
631 EngineBuilder &setVerifyModules(bool Verify) {
632 VerifyModules = Verify;
633 return *this;
634 }
635
636 /// setMAttrs - Set cpu-specific attributes.
637 template<typename StringSequence>
638 EngineBuilder &setMAttrs(const StringSequence &mattrs) {
639 MAttrs.clear();
640 MAttrs.append(mattrs.begin(), mattrs.end());
641 return *this;
642 }
643
644 void setEmulatedTLS(bool EmulatedTLS) {
645 this->EmulatedTLS = EmulatedTLS;
646 }
647
648 TargetMachine *selectTarget();
649
650 /// selectTarget - Pick a target either via -march or by guessing the native
651 /// arch. Add any CPU features specified via -mcpu or -mattr.
652 TargetMachine *selectTarget(const Triple &TargetTriple,
653 StringRef MArch,
654 StringRef MCPU,
655 const SmallVectorImpl<std::string>& MAttrs);
656
657 ExecutionEngine *create() {
658 return create(TM: selectTarget());
659 }
660
661 ExecutionEngine *create(TargetMachine *TM);
662};
663
664// Create wrappers for C Binding types (see CBindingWrapping.h).
665DEFINE_SIMPLE_CONVERSION_FUNCTIONS(ExecutionEngine, LLVMExecutionEngineRef)
666
667} // end namespace llvm
668
669#endif // LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
670