1 | //===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines the MCOperandInfo and MCInstrDesc classes, which |
10 | // are used to describe target instructions and their operands. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #ifndef LLVM_MC_MCINSTRDESC_H |
15 | #define LLVM_MC_MCINSTRDESC_H |
16 | |
17 | #include "llvm/ADT/ArrayRef.h" |
18 | #include "llvm/ADT/iterator_range.h" |
19 | #include "llvm/MC/MCRegister.h" |
20 | |
21 | namespace llvm { |
22 | class MCRegisterInfo; |
23 | |
24 | class MCInst; |
25 | |
26 | //===----------------------------------------------------------------------===// |
27 | // Machine Operand Flags and Description |
28 | //===----------------------------------------------------------------------===// |
29 | |
30 | namespace MCOI { |
31 | /// Operand constraints. These are encoded in 16 bits with one of the |
32 | /// low-order 3 bits specifying that a constraint is present and the |
33 | /// corresponding high-order hex digit specifying the constraint value. |
34 | /// This allows for a maximum of 3 constraints. |
35 | enum OperandConstraint { |
36 | TIED_TO = 0, // Must be allocated the same register as specified value. |
37 | EARLY_CLOBBER // If present, operand is an early clobber register. |
38 | }; |
39 | |
40 | // Define a macro to produce each constraint value. |
41 | #define MCOI_TIED_TO(op) \ |
42 | ((1 << MCOI::TIED_TO) | ((op) << (4 + MCOI::TIED_TO * 4))) |
43 | |
44 | #define MCOI_EARLY_CLOBBER \ |
45 | (1 << MCOI::EARLY_CLOBBER) |
46 | |
47 | /// These are flags set on operands, but should be considered |
48 | /// private, all access should go through the MCOperandInfo accessors. |
49 | /// See the accessors for a description of what these are. |
50 | enum OperandFlags { |
51 | LookupPtrRegClass = 0, |
52 | Predicate, |
53 | OptionalDef, |
54 | BranchTarget |
55 | }; |
56 | |
57 | /// Operands are tagged with one of the values of this enum. |
58 | enum OperandType { |
59 | OPERAND_UNKNOWN = 0, |
60 | OPERAND_IMMEDIATE = 1, |
61 | OPERAND_REGISTER = 2, |
62 | OPERAND_MEMORY = 3, |
63 | OPERAND_PCREL = 4, |
64 | |
65 | OPERAND_FIRST_GENERIC = 6, |
66 | OPERAND_GENERIC_0 = 6, |
67 | OPERAND_GENERIC_1 = 7, |
68 | OPERAND_GENERIC_2 = 8, |
69 | OPERAND_GENERIC_3 = 9, |
70 | OPERAND_GENERIC_4 = 10, |
71 | OPERAND_GENERIC_5 = 11, |
72 | OPERAND_LAST_GENERIC = 11, |
73 | |
74 | OPERAND_FIRST_GENERIC_IMM = 12, |
75 | OPERAND_GENERIC_IMM_0 = 12, |
76 | OPERAND_LAST_GENERIC_IMM = 12, |
77 | |
78 | OPERAND_FIRST_TARGET = 13, |
79 | }; |
80 | |
81 | } // namespace MCOI |
82 | |
83 | /// This holds information about one operand of a machine instruction, |
84 | /// indicating the register class for register operands, etc. |
85 | class MCOperandInfo { |
86 | public: |
87 | /// This specifies the register class enumeration of the operand |
88 | /// if the operand is a register. If isLookupPtrRegClass is set, then this is |
89 | /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to |
90 | /// get a dynamic register class. |
91 | int16_t RegClass; |
92 | |
93 | /// These are flags from the MCOI::OperandFlags enum. |
94 | uint8_t Flags; |
95 | |
96 | /// Information about the type of the operand. |
97 | uint8_t OperandType; |
98 | |
99 | /// Operand constraints (see OperandConstraint enum). |
100 | uint16_t Constraints; |
101 | |
102 | /// Set if this operand is a pointer value and it requires a callback |
103 | /// to look up its register class. |
104 | bool isLookupPtrRegClass() const { |
105 | return Flags & (1 << MCOI::LookupPtrRegClass); |
106 | } |
107 | |
108 | /// Set if this is one of the operands that made up of the predicate |
109 | /// operand that controls an isPredicable() instruction. |
110 | bool isPredicate() const { return Flags & (1 << MCOI::Predicate); } |
111 | |
112 | /// Set if this operand is a optional def. |
113 | bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); } |
114 | |
115 | /// Set if this operand is a branch target. |
116 | bool isBranchTarget() const { return Flags & (1 << MCOI::BranchTarget); } |
117 | |
118 | bool isGenericType() const { |
119 | return OperandType >= MCOI::OPERAND_FIRST_GENERIC && |
120 | OperandType <= MCOI::OPERAND_LAST_GENERIC; |
121 | } |
122 | |
123 | unsigned getGenericTypeIndex() const { |
124 | assert(isGenericType() && "non-generic types don't have an index" ); |
125 | return OperandType - MCOI::OPERAND_FIRST_GENERIC; |
126 | } |
127 | |
128 | bool isGenericImm() const { |
129 | return OperandType >= MCOI::OPERAND_FIRST_GENERIC_IMM && |
130 | OperandType <= MCOI::OPERAND_LAST_GENERIC_IMM; |
131 | } |
132 | |
133 | unsigned getGenericImmIndex() const { |
134 | assert(isGenericImm() && "non-generic immediates don't have an index" ); |
135 | return OperandType - MCOI::OPERAND_FIRST_GENERIC_IMM; |
136 | } |
137 | }; |
138 | |
139 | //===----------------------------------------------------------------------===// |
140 | // Machine Instruction Flags and Description |
141 | //===----------------------------------------------------------------------===// |
142 | |
143 | namespace MCID { |
144 | /// These should be considered private to the implementation of the |
145 | /// MCInstrDesc class. Clients should use the predicate methods on MCInstrDesc, |
146 | /// not use these directly. These all correspond to bitfields in the |
147 | /// MCInstrDesc::Flags field. |
148 | enum Flag { |
149 | PreISelOpcode = 0, |
150 | Variadic, |
151 | HasOptionalDef, |
152 | Pseudo, |
153 | Meta, |
154 | Return, |
155 | EHScopeReturn, |
156 | Call, |
157 | Barrier, |
158 | Terminator, |
159 | Branch, |
160 | IndirectBranch, |
161 | Compare, |
162 | MoveImm, |
163 | MoveReg, |
164 | Bitcast, |
165 | Select, |
166 | DelaySlot, |
167 | FoldableAsLoad, |
168 | MayLoad, |
169 | MayStore, |
170 | MayRaiseFPException, |
171 | Predicable, |
172 | NotDuplicable, |
173 | UnmodeledSideEffects, |
174 | Commutable, |
175 | ConvertibleTo3Addr, |
176 | UsesCustomInserter, |
177 | HasPostISelHook, |
178 | Rematerializable, |
179 | CheapAsAMove, |
180 | , |
181 | , |
182 | RegSequence, |
183 | , |
184 | InsertSubreg, |
185 | Convergent, |
186 | Add, |
187 | Trap, |
188 | VariadicOpsAreDefs, |
189 | Authenticated, |
190 | }; |
191 | } // namespace MCID |
192 | |
193 | /// Describe properties that are true of each instruction in the target |
194 | /// description file. This captures information about side effects, register |
195 | /// use and many other things. There is one instance of this struct for each |
196 | /// target instruction class, and the MachineInstr class points to this struct |
197 | /// directly to describe itself. |
198 | class MCInstrDesc { |
199 | public: |
200 | // FIXME: Disable copies and moves. |
201 | // Do not allow MCInstrDescs to be copied or moved. They should only exist in |
202 | // the <Target>Insts table because they rely on knowing their own address to |
203 | // find other information elsewhere in the same table. |
204 | |
205 | unsigned short Opcode; // The opcode number |
206 | unsigned short NumOperands; // Num of args (may be more if variable_ops) |
207 | unsigned char NumDefs; // Num of args that are definitions |
208 | unsigned char Size; // Number of bytes in encoding. |
209 | unsigned short SchedClass; // enum identifying instr sched class |
210 | unsigned char NumImplicitUses; // Num of regs implicitly used |
211 | unsigned char NumImplicitDefs; // Num of regs implicitly defined |
212 | unsigned short ImplicitOffset; // Offset to start of implicit op list |
213 | unsigned short OpInfoOffset; // Offset to info about operands |
214 | uint64_t Flags; // Flags identifying machine instr class |
215 | uint64_t TSFlags; // Target Specific Flag values |
216 | |
217 | /// Returns the value of the specified operand constraint if |
218 | /// it is present. Returns -1 if it is not present. |
219 | int getOperandConstraint(unsigned OpNum, |
220 | MCOI::OperandConstraint Constraint) const { |
221 | if (OpNum < NumOperands && |
222 | (operands()[OpNum].Constraints & (1 << Constraint))) { |
223 | unsigned ValuePos = 4 + Constraint * 4; |
224 | return (int)(operands()[OpNum].Constraints >> ValuePos) & 0x0f; |
225 | } |
226 | return -1; |
227 | } |
228 | |
229 | /// Return the opcode number for this descriptor. |
230 | unsigned getOpcode() const { return Opcode; } |
231 | |
232 | /// Return the number of declared MachineOperands for this |
233 | /// MachineInstruction. Note that variadic (isVariadic() returns true) |
234 | /// instructions may have additional operands at the end of the list, and note |
235 | /// that the machine instruction may include implicit register def/uses as |
236 | /// well. |
237 | unsigned getNumOperands() const { return NumOperands; } |
238 | |
239 | ArrayRef<MCOperandInfo> operands() const { |
240 | auto OpInfo = reinterpret_cast<const MCOperandInfo *>(this + Opcode + 1); |
241 | return ArrayRef(OpInfo + OpInfoOffset, NumOperands); |
242 | } |
243 | |
244 | /// Return the number of MachineOperands that are register |
245 | /// definitions. Register definitions always occur at the start of the |
246 | /// machine operand list. This is the number of "outs" in the .td file, |
247 | /// and does not include implicit defs. |
248 | unsigned getNumDefs() const { return NumDefs; } |
249 | |
250 | /// Return flags of this instruction. |
251 | uint64_t getFlags() const { return Flags; } |
252 | |
253 | /// \returns true if this instruction is emitted before instruction selection |
254 | /// and should be legalized/regbankselected/selected. |
255 | bool isPreISelOpcode() const { return Flags & (1ULL << MCID::PreISelOpcode); } |
256 | |
257 | /// Return true if this instruction can have a variable number of |
258 | /// operands. In this case, the variable operands will be after the normal |
259 | /// operands but before the implicit definitions and uses (if any are |
260 | /// present). |
261 | bool isVariadic() const { return Flags & (1ULL << MCID::Variadic); } |
262 | |
263 | /// Set if this instruction has an optional definition, e.g. |
264 | /// ARM instructions which can set condition code if 's' bit is set. |
265 | bool hasOptionalDef() const { return Flags & (1ULL << MCID::HasOptionalDef); } |
266 | |
267 | /// Return true if this is a pseudo instruction that doesn't |
268 | /// correspond to a real machine instruction. |
269 | bool isPseudo() const { return Flags & (1ULL << MCID::Pseudo); } |
270 | |
271 | /// Return true if this is a meta instruction that doesn't |
272 | /// produce any output in the form of executable instructions. |
273 | bool isMetaInstruction() const { return Flags & (1ULL << MCID::Meta); } |
274 | |
275 | /// Return true if the instruction is a return. |
276 | bool isReturn() const { return Flags & (1ULL << MCID::Return); } |
277 | |
278 | /// Return true if the instruction is an add instruction. |
279 | bool isAdd() const { return Flags & (1ULL << MCID::Add); } |
280 | |
281 | /// Return true if this instruction is a trap. |
282 | bool isTrap() const { return Flags & (1ULL << MCID::Trap); } |
283 | |
284 | /// Return true if the instruction is a register to register move. |
285 | bool isMoveReg() const { return Flags & (1ULL << MCID::MoveReg); } |
286 | |
287 | /// Return true if the instruction is a call. |
288 | bool isCall() const { return Flags & (1ULL << MCID::Call); } |
289 | |
290 | /// Returns true if the specified instruction stops control flow |
291 | /// from executing the instruction immediately following it. Examples include |
292 | /// unconditional branches and return instructions. |
293 | bool isBarrier() const { return Flags & (1ULL << MCID::Barrier); } |
294 | |
295 | /// Returns true if this instruction part of the terminator for |
296 | /// a basic block. Typically this is things like return and branch |
297 | /// instructions. |
298 | /// |
299 | /// Various passes use this to insert code into the bottom of a basic block, |
300 | /// but before control flow occurs. |
301 | bool isTerminator() const { return Flags & (1ULL << MCID::Terminator); } |
302 | |
303 | /// Returns true if this is a conditional, unconditional, or |
304 | /// indirect branch. Predicates below can be used to discriminate between |
305 | /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to |
306 | /// get more information. |
307 | bool isBranch() const { return Flags & (1ULL << MCID::Branch); } |
308 | |
309 | /// Return true if this is an indirect branch, such as a |
310 | /// branch through a register. |
311 | bool isIndirectBranch() const { return Flags & (1ULL << MCID::IndirectBranch); } |
312 | |
313 | /// Return true if this is a branch which may fall |
314 | /// through to the next instruction or may transfer control flow to some other |
315 | /// block. The TargetInstrInfo::analyzeBranch method can be used to get more |
316 | /// information about this branch. |
317 | bool isConditionalBranch() const { |
318 | return isBranch() && !isBarrier() && !isIndirectBranch(); |
319 | } |
320 | |
321 | /// Return true if this is a branch which always |
322 | /// transfers control flow to some other block. The |
323 | /// TargetInstrInfo::analyzeBranch method can be used to get more information |
324 | /// about this branch. |
325 | bool isUnconditionalBranch() const { |
326 | return isBranch() && isBarrier() && !isIndirectBranch(); |
327 | } |
328 | |
329 | /// Return true if this is a branch or an instruction which directly |
330 | /// writes to the program counter. Considered 'may' affect rather than |
331 | /// 'does' affect as things like predication are not taken into account. |
332 | bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const; |
333 | |
334 | /// Return true if this instruction has a predicate operand |
335 | /// that controls execution. It may be set to 'always', or may be set to other |
336 | /// values. There are various methods in TargetInstrInfo that can be used to |
337 | /// control and modify the predicate in this instruction. |
338 | bool isPredicable() const { return Flags & (1ULL << MCID::Predicable); } |
339 | |
340 | /// Return true if this instruction is a comparison. |
341 | bool isCompare() const { return Flags & (1ULL << MCID::Compare); } |
342 | |
343 | /// Return true if this instruction is a move immediate |
344 | /// (including conditional moves) instruction. |
345 | bool isMoveImmediate() const { return Flags & (1ULL << MCID::MoveImm); } |
346 | |
347 | /// Return true if this instruction is a bitcast instruction. |
348 | bool isBitcast() const { return Flags & (1ULL << MCID::Bitcast); } |
349 | |
350 | /// Return true if this is a select instruction. |
351 | bool isSelect() const { return Flags & (1ULL << MCID::Select); } |
352 | |
353 | /// Return true if this instruction cannot be safely |
354 | /// duplicated. For example, if the instruction has a unique labels attached |
355 | /// to it, duplicating it would cause multiple definition errors. |
356 | bool isNotDuplicable() const { return Flags & (1ULL << MCID::NotDuplicable); } |
357 | |
358 | /// Returns true if the specified instruction has a delay slot which |
359 | /// must be filled by the code generator. |
360 | bool hasDelaySlot() const { return Flags & (1ULL << MCID::DelaySlot); } |
361 | |
362 | /// Return true for instructions that can be folded as memory operands |
363 | /// in other instructions. The most common use for this is instructions that |
364 | /// are simple loads from memory that don't modify the loaded value in any |
365 | /// way, but it can also be used for instructions that can be expressed as |
366 | /// constant-pool loads, such as V_SETALLONES on x86, to allow them to be |
367 | /// folded when it is beneficial. This should only be set on instructions |
368 | /// that return a value in their only virtual register definition. |
369 | bool canFoldAsLoad() const { return Flags & (1ULL << MCID::FoldableAsLoad); } |
370 | |
371 | /// Return true if this instruction behaves |
372 | /// the same way as the generic REG_SEQUENCE instructions. |
373 | /// E.g., on ARM, |
374 | /// dX VMOVDRR rY, rZ |
375 | /// is equivalent to |
376 | /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. |
377 | /// |
378 | /// Note that for the optimizers to be able to take advantage of |
379 | /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be |
380 | /// override accordingly. |
381 | bool isRegSequenceLike() const { return Flags & (1ULL << MCID::RegSequence); } |
382 | |
383 | /// Return true if this instruction behaves |
384 | /// the same way as the generic EXTRACT_SUBREG instructions. |
385 | /// E.g., on ARM, |
386 | /// rX, rY VMOVRRD dZ |
387 | /// is equivalent to two EXTRACT_SUBREG: |
388 | /// rX = EXTRACT_SUBREG dZ, ssub_0 |
389 | /// rY = EXTRACT_SUBREG dZ, ssub_1 |
390 | /// |
391 | /// Note that for the optimizers to be able to take advantage of |
392 | /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be |
393 | /// override accordingly. |
394 | bool () const { |
395 | return Flags & (1ULL << MCID::ExtractSubreg); |
396 | } |
397 | |
398 | /// Return true if this instruction behaves |
399 | /// the same way as the generic INSERT_SUBREG instructions. |
400 | /// E.g., on ARM, |
401 | /// dX = VSETLNi32 dY, rZ, Imm |
402 | /// is equivalent to a INSERT_SUBREG: |
403 | /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) |
404 | /// |
405 | /// Note that for the optimizers to be able to take advantage of |
406 | /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be |
407 | /// override accordingly. |
408 | bool isInsertSubregLike() const { return Flags & (1ULL << MCID::InsertSubreg); } |
409 | |
410 | |
411 | /// Return true if this instruction is convergent. |
412 | /// |
413 | /// Convergent instructions may not be made control-dependent on any |
414 | /// additional values. |
415 | bool isConvergent() const { return Flags & (1ULL << MCID::Convergent); } |
416 | |
417 | /// Return true if variadic operands of this instruction are definitions. |
418 | bool variadicOpsAreDefs() const { |
419 | return Flags & (1ULL << MCID::VariadicOpsAreDefs); |
420 | } |
421 | |
422 | /// Return true if this instruction authenticates a pointer (e.g. LDRAx/BRAx |
423 | /// from ARMv8.3, which perform loads/branches with authentication). |
424 | /// |
425 | /// An authenticated instruction may fail in an ABI-defined manner when |
426 | /// operating on an invalid signed pointer. |
427 | bool isAuthenticated() const { |
428 | return Flags & (1ULL << MCID::Authenticated); |
429 | } |
430 | |
431 | //===--------------------------------------------------------------------===// |
432 | // Side Effect Analysis |
433 | //===--------------------------------------------------------------------===// |
434 | |
435 | /// Return true if this instruction could possibly read memory. |
436 | /// Instructions with this flag set are not necessarily simple load |
437 | /// instructions, they may load a value and modify it, for example. |
438 | bool mayLoad() const { return Flags & (1ULL << MCID::MayLoad); } |
439 | |
440 | /// Return true if this instruction could possibly modify memory. |
441 | /// Instructions with this flag set are not necessarily simple store |
442 | /// instructions, they may store a modified value based on their operands, or |
443 | /// may not actually modify anything, for example. |
444 | bool mayStore() const { return Flags & (1ULL << MCID::MayStore); } |
445 | |
446 | /// Return true if this instruction may raise a floating-point exception. |
447 | bool mayRaiseFPException() const { |
448 | return Flags & (1ULL << MCID::MayRaiseFPException); |
449 | } |
450 | |
451 | /// Return true if this instruction has side |
452 | /// effects that are not modeled by other flags. This does not return true |
453 | /// for instructions whose effects are captured by: |
454 | /// |
455 | /// 1. Their operand list and implicit definition/use list. Register use/def |
456 | /// info is explicit for instructions. |
457 | /// 2. Memory accesses. Use mayLoad/mayStore. |
458 | /// 3. Calling, branching, returning: use isCall/isReturn/isBranch. |
459 | /// |
460 | /// Examples of side effects would be modifying 'invisible' machine state like |
461 | /// a control register, flushing a cache, modifying a register invisible to |
462 | /// LLVM, etc. |
463 | bool hasUnmodeledSideEffects() const { |
464 | return Flags & (1ULL << MCID::UnmodeledSideEffects); |
465 | } |
466 | |
467 | //===--------------------------------------------------------------------===// |
468 | // Flags that indicate whether an instruction can be modified by a method. |
469 | //===--------------------------------------------------------------------===// |
470 | |
471 | /// Return true if this may be a 2- or 3-address instruction (of the |
472 | /// form "X = op Y, Z, ..."), which produces the same result if Y and Z are |
473 | /// exchanged. If this flag is set, then the |
474 | /// TargetInstrInfo::commuteInstruction method may be used to hack on the |
475 | /// instruction. |
476 | /// |
477 | /// Note that this flag may be set on instructions that are only commutable |
478 | /// sometimes. In these cases, the call to commuteInstruction will fail. |
479 | /// Also note that some instructions require non-trivial modification to |
480 | /// commute them. |
481 | bool isCommutable() const { return Flags & (1ULL << MCID::Commutable); } |
482 | |
483 | /// Return true if this is a 2-address instruction which can be changed |
484 | /// into a 3-address instruction if needed. Doing this transformation can be |
485 | /// profitable in the register allocator, because it means that the |
486 | /// instruction can use a 2-address form if possible, but degrade into a less |
487 | /// efficient form if the source and dest register cannot be assigned to the |
488 | /// same register. For example, this allows the x86 backend to turn a "shl |
489 | /// reg, 3" instruction into an LEA instruction, which is the same speed as |
490 | /// the shift but has bigger code size. |
491 | /// |
492 | /// If this returns true, then the target must implement the |
493 | /// TargetInstrInfo::convertToThreeAddress method for this instruction, which |
494 | /// is allowed to fail if the transformation isn't valid for this specific |
495 | /// instruction (e.g. shl reg, 4 on x86). |
496 | /// |
497 | bool isConvertibleTo3Addr() const { |
498 | return Flags & (1ULL << MCID::ConvertibleTo3Addr); |
499 | } |
500 | |
501 | /// Return true if this instruction requires custom insertion support |
502 | /// when the DAG scheduler is inserting it into a machine basic block. If |
503 | /// this is true for the instruction, it basically means that it is a pseudo |
504 | /// instruction used at SelectionDAG time that is expanded out into magic code |
505 | /// by the target when MachineInstrs are formed. |
506 | /// |
507 | /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method |
508 | /// is used to insert this into the MachineBasicBlock. |
509 | bool usesCustomInsertionHook() const { |
510 | return Flags & (1ULL << MCID::UsesCustomInserter); |
511 | } |
512 | |
513 | /// Return true if this instruction requires *adjustment* after |
514 | /// instruction selection by calling a target hook. For example, this can be |
515 | /// used to fill in ARM 's' optional operand depending on whether the |
516 | /// conditional flag register is used. |
517 | bool hasPostISelHook() const { return Flags & (1ULL << MCID::HasPostISelHook); } |
518 | |
519 | /// Returns true if this instruction is a candidate for remat. This |
520 | /// flag is only used in TargetInstrInfo method isTriviallyRematerializable. |
521 | /// |
522 | /// If this flag is set, the isReallyTriviallyReMaterializable() method is |
523 | /// called to verify the instruction is really rematerializable. |
524 | bool isRematerializable() const { |
525 | return Flags & (1ULL << MCID::Rematerializable); |
526 | } |
527 | |
528 | /// Returns true if this instruction has the same cost (or less) than a |
529 | /// move instruction. This is useful during certain types of optimizations |
530 | /// (e.g., remat during two-address conversion or machine licm) where we would |
531 | /// like to remat or hoist the instruction, but not if it costs more than |
532 | /// moving the instruction into the appropriate register. Note, we are not |
533 | /// marking copies from and to the same register class with this flag. |
534 | /// |
535 | /// This method could be called by interface TargetInstrInfo::isAsCheapAsAMove |
536 | /// for different subtargets. |
537 | bool isAsCheapAsAMove() const { return Flags & (1ULL << MCID::CheapAsAMove); } |
538 | |
539 | /// Returns true if this instruction source operands have special |
540 | /// register allocation requirements that are not captured by the operand |
541 | /// register classes. e.g. ARM::STRD's two source registers must be an even / |
542 | /// odd pair, ARM::STM registers have to be in ascending order. Post-register |
543 | /// allocation passes should not attempt to change allocations for sources of |
544 | /// instructions with this flag. |
545 | bool () const { |
546 | return Flags & (1ULL << MCID::ExtraSrcRegAllocReq); |
547 | } |
548 | |
549 | /// Returns true if this instruction def operands have special register |
550 | /// allocation requirements that are not captured by the operand register |
551 | /// classes. e.g. ARM::LDRD's two def registers must be an even / odd pair, |
552 | /// ARM::LDM registers have to be in ascending order. Post-register |
553 | /// allocation passes should not attempt to change allocations for definitions |
554 | /// of instructions with this flag. |
555 | bool () const { |
556 | return Flags & (1ULL << MCID::ExtraDefRegAllocReq); |
557 | } |
558 | |
559 | /// Return a list of registers that are potentially read by any |
560 | /// instance of this machine instruction. For example, on X86, the "adc" |
561 | /// instruction adds two register operands and adds the carry bit in from the |
562 | /// flags register. In this case, the instruction is marked as implicitly |
563 | /// reading the flags. Likewise, the variable shift instruction on X86 is |
564 | /// marked as implicitly reading the 'CL' register, which it always does. |
565 | ArrayRef<MCPhysReg> implicit_uses() const { |
566 | auto ImplicitOps = |
567 | reinterpret_cast<const MCPhysReg *>(this + Opcode + 1) + ImplicitOffset; |
568 | return {ImplicitOps, NumImplicitUses}; |
569 | } |
570 | |
571 | /// Return a list of registers that are potentially written by any |
572 | /// instance of this machine instruction. For example, on X86, many |
573 | /// instructions implicitly set the flags register. In this case, they are |
574 | /// marked as setting the FLAGS. Likewise, many instructions always deposit |
575 | /// their result in a physical register. For example, the X86 divide |
576 | /// instruction always deposits the quotient and remainder in the EAX/EDX |
577 | /// registers. For that instruction, this will return a list containing the |
578 | /// EAX/EDX/EFLAGS registers. |
579 | ArrayRef<MCPhysReg> implicit_defs() const { |
580 | auto ImplicitOps = |
581 | reinterpret_cast<const MCPhysReg *>(this + Opcode + 1) + ImplicitOffset; |
582 | return {ImplicitOps + NumImplicitUses, NumImplicitDefs}; |
583 | } |
584 | |
585 | /// Return true if this instruction implicitly |
586 | /// uses the specified physical register. |
587 | bool hasImplicitUseOfPhysReg(unsigned Reg) const { |
588 | return is_contained(Range: implicit_uses(), Element: Reg); |
589 | } |
590 | |
591 | /// Return true if this instruction implicitly |
592 | /// defines the specified physical register. |
593 | bool hasImplicitDefOfPhysReg(unsigned Reg, |
594 | const MCRegisterInfo *MRI = nullptr) const; |
595 | |
596 | /// Return the scheduling class for this instruction. The |
597 | /// scheduling class is an index into the InstrItineraryData table. This |
598 | /// returns zero if there is no known scheduling information for the |
599 | /// instruction. |
600 | unsigned getSchedClass() const { return SchedClass; } |
601 | |
602 | /// Return the number of bytes in the encoding of this instruction, |
603 | /// or zero if the encoding size cannot be known from the opcode. |
604 | unsigned getSize() const { return Size; } |
605 | |
606 | /// Find the index of the first operand in the |
607 | /// operand list that is used to represent the predicate. It returns -1 if |
608 | /// none is found. |
609 | int findFirstPredOperandIdx() const { |
610 | if (isPredicable()) { |
611 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
612 | if (operands()[i].isPredicate()) |
613 | return i; |
614 | } |
615 | return -1; |
616 | } |
617 | |
618 | /// Return true if this instruction defines the specified physical |
619 | /// register, either explicitly or implicitly. |
620 | bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg, |
621 | const MCRegisterInfo &RI) const; |
622 | }; |
623 | |
624 | } // end namespace llvm |
625 | |
626 | #endif |
627 | |