1 | //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains some functions that are useful for math stuff. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #ifndef LLVM_SUPPORT_MATHEXTRAS_H |
14 | #define |
15 | |
16 | #include "llvm/ADT/bit.h" |
17 | #include "llvm/Support/Compiler.h" |
18 | #include <cassert> |
19 | #include <climits> |
20 | #include <cstdint> |
21 | #include <cstring> |
22 | #include <limits> |
23 | #include <type_traits> |
24 | |
25 | namespace llvm { |
26 | /// Some template parameter helpers to optimize for bitwidth, for functions that |
27 | /// take multiple arguments. |
28 | |
29 | // We can't verify signedness, since callers rely on implicit coercions to |
30 | // signed/unsigned. |
31 | template <typename T, typename U> |
32 | using enableif_int = |
33 | std::enable_if_t<std::is_integral_v<T> && std::is_integral_v<U>>; |
34 | |
35 | // Use std::common_type_t to widen only up to the widest argument. |
36 | template <typename T, typename U, typename = enableif_int<T, U>> |
37 | using common_uint = |
38 | std::common_type_t<std::make_unsigned_t<T>, std::make_unsigned_t<U>>; |
39 | template <typename T, typename U, typename = enableif_int<T, U>> |
40 | using common_sint = |
41 | std::common_type_t<std::make_signed_t<T>, std::make_signed_t<U>>; |
42 | |
43 | /// Mathematical constants. |
44 | namespace numbers { |
45 | // TODO: Track C++20 std::numbers. |
46 | // TODO: Favor using the hexadecimal FP constants (requires C++17). |
47 | constexpr double e = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113 |
48 | egamma = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620 |
49 | ln2 = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162 |
50 | ln10 = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392 |
51 | log2e = 1.4426950408889634074, // (0x1.71547652b82feP+0) |
52 | log10e = .43429448190325182765, // (0x1.bcb7b1526e50eP-2) |
53 | pi = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796 |
54 | inv_pi = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541 |
55 | sqrtpi = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161 |
56 | inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197 |
57 | sqrt2 = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219 |
58 | inv_sqrt2 = .70710678118654752440, // (0x1.6a09e667f3bcdP-1) |
59 | sqrt3 = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194 |
60 | inv_sqrt3 = .57735026918962576451, // (0x1.279a74590331cP-1) |
61 | phi = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622 |
62 | constexpr float ef = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113 |
63 | egammaf = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620 |
64 | ln2f = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162 |
65 | ln10f = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392 |
66 | log2ef = 1.44269504F, // (0x1.715476P+0) |
67 | log10ef = .434294482F, // (0x1.bcb7b2P-2) |
68 | pif = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796 |
69 | inv_pif = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541 |
70 | sqrtpif = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161 |
71 | inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197 |
72 | sqrt2f = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193 |
73 | inv_sqrt2f = .707106781F, // (0x1.6a09e6P-1) |
74 | sqrt3f = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194 |
75 | inv_sqrt3f = .577350269F, // (0x1.279a74P-1) |
76 | phif = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622 |
77 | } // namespace numbers |
78 | |
79 | /// Create a bitmask with the N right-most bits set to 1, and all other |
80 | /// bits set to 0. Only unsigned types are allowed. |
81 | template <typename T> T maskTrailingOnes(unsigned N) { |
82 | static_assert(std::is_unsigned_v<T>, "Invalid type!" ); |
83 | const unsigned Bits = CHAR_BIT * sizeof(T); |
84 | assert(N <= Bits && "Invalid bit index" ); |
85 | if (N == 0) |
86 | return 0; |
87 | return T(-1) >> (Bits - N); |
88 | } |
89 | |
90 | /// Create a bitmask with the N left-most bits set to 1, and all other |
91 | /// bits set to 0. Only unsigned types are allowed. |
92 | template <typename T> T maskLeadingOnes(unsigned N) { |
93 | return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); |
94 | } |
95 | |
96 | /// Create a bitmask with the N right-most bits set to 0, and all other |
97 | /// bits set to 1. Only unsigned types are allowed. |
98 | template <typename T> T maskTrailingZeros(unsigned N) { |
99 | return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N); |
100 | } |
101 | |
102 | /// Create a bitmask with the N left-most bits set to 0, and all other |
103 | /// bits set to 1. Only unsigned types are allowed. |
104 | template <typename T> T maskLeadingZeros(unsigned N) { |
105 | return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); |
106 | } |
107 | |
108 | /// Macro compressed bit reversal table for 256 bits. |
109 | /// |
110 | /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable |
111 | static const unsigned char BitReverseTable256[256] = { |
112 | #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64 |
113 | #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16) |
114 | #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4) |
115 | R6(0), R6(2), R6(1), R6(3) |
116 | #undef R2 |
117 | #undef R4 |
118 | #undef R6 |
119 | }; |
120 | |
121 | /// Reverse the bits in \p Val. |
122 | template <typename T> T reverseBits(T Val) { |
123 | #if __has_builtin(__builtin_bitreverse8) |
124 | if constexpr (std::is_same_v<T, uint8_t>) |
125 | return __builtin_bitreverse8(Val); |
126 | #endif |
127 | #if __has_builtin(__builtin_bitreverse16) |
128 | if constexpr (std::is_same_v<T, uint16_t>) |
129 | return __builtin_bitreverse16(Val); |
130 | #endif |
131 | #if __has_builtin(__builtin_bitreverse32) |
132 | if constexpr (std::is_same_v<T, uint32_t>) |
133 | return __builtin_bitreverse32(Val); |
134 | #endif |
135 | #if __has_builtin(__builtin_bitreverse64) |
136 | if constexpr (std::is_same_v<T, uint64_t>) |
137 | return __builtin_bitreverse64(Val); |
138 | #endif |
139 | |
140 | unsigned char in[sizeof(Val)]; |
141 | unsigned char out[sizeof(Val)]; |
142 | std::memcpy(dest: in, src: &Val, n: sizeof(Val)); |
143 | for (unsigned i = 0; i < sizeof(Val); ++i) |
144 | out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]]; |
145 | std::memcpy(dest: &Val, src: out, n: sizeof(Val)); |
146 | return Val; |
147 | } |
148 | |
149 | // NOTE: The following support functions use the _32/_64 extensions instead of |
150 | // type overloading so that signed and unsigned integers can be used without |
151 | // ambiguity. |
152 | |
153 | /// Return the high 32 bits of a 64 bit value. |
154 | constexpr uint32_t Hi_32(uint64_t Value) { |
155 | return static_cast<uint32_t>(Value >> 32); |
156 | } |
157 | |
158 | /// Return the low 32 bits of a 64 bit value. |
159 | constexpr uint32_t Lo_32(uint64_t Value) { |
160 | return static_cast<uint32_t>(Value); |
161 | } |
162 | |
163 | /// Make a 64-bit integer from a high / low pair of 32-bit integers. |
164 | constexpr uint64_t Make_64(uint32_t High, uint32_t Low) { |
165 | return ((uint64_t)High << 32) | (uint64_t)Low; |
166 | } |
167 | |
168 | /// Checks if an integer fits into the given bit width. |
169 | template <unsigned N> constexpr bool isInt(int64_t x) { |
170 | if constexpr (N == 0) |
171 | return 0 == x; |
172 | if constexpr (N == 8) |
173 | return static_cast<int8_t>(x) == x; |
174 | if constexpr (N == 16) |
175 | return static_cast<int16_t>(x) == x; |
176 | if constexpr (N == 32) |
177 | return static_cast<int32_t>(x) == x; |
178 | if constexpr (N < 64) |
179 | return -(INT64_C(1) << (N - 1)) <= x && x < (INT64_C(1) << (N - 1)); |
180 | (void)x; // MSVC v19.25 warns that x is unused. |
181 | return true; |
182 | } |
183 | |
184 | /// Checks if a signed integer is an N bit number shifted left by S. |
185 | template <unsigned N, unsigned S> |
186 | constexpr bool isShiftedInt(int64_t x) { |
187 | static_assert(S < 64, "isShiftedInt<N, S> with S >= 64 is too much." ); |
188 | static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide." ); |
189 | return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); |
190 | } |
191 | |
192 | /// Checks if an unsigned integer fits into the given bit width. |
193 | template <unsigned N> constexpr bool isUInt(uint64_t x) { |
194 | if constexpr (N == 0) |
195 | return 0 == x; |
196 | if constexpr (N == 8) |
197 | return static_cast<uint8_t>(x) == x; |
198 | if constexpr (N == 16) |
199 | return static_cast<uint16_t>(x) == x; |
200 | if constexpr (N == 32) |
201 | return static_cast<uint32_t>(x) == x; |
202 | if constexpr (N < 64) |
203 | return x < (UINT64_C(1) << (N)); |
204 | (void)x; // MSVC v19.25 warns that x is unused. |
205 | return true; |
206 | } |
207 | |
208 | /// Checks if a unsigned integer is an N bit number shifted left by S. |
209 | template <unsigned N, unsigned S> |
210 | constexpr bool isShiftedUInt(uint64_t x) { |
211 | static_assert(S < 64, "isShiftedUInt<N, S> with S >= 64 is too much." ); |
212 | static_assert(N + S <= 64, |
213 | "isShiftedUInt<N, S> with N + S > 64 is too wide." ); |
214 | // S must be strictly less than 64. So 1 << S is not undefined behavior. |
215 | return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); |
216 | } |
217 | |
218 | /// Gets the maximum value for a N-bit unsigned integer. |
219 | inline uint64_t maxUIntN(uint64_t N) { |
220 | assert(N <= 64 && "integer width out of range" ); |
221 | |
222 | // uint64_t(1) << 64 is undefined behavior, so we can't do |
223 | // (uint64_t(1) << N) - 1 |
224 | // without checking first that N != 64. But this works and doesn't have a |
225 | // branch for N != 0. |
226 | // Unfortunately, shifting a uint64_t right by 64 bit is undefined |
227 | // behavior, so the condition on N == 0 is necessary. Fortunately, most |
228 | // optimizers do not emit branches for this check. |
229 | if (N == 0) |
230 | return 0; |
231 | return UINT64_MAX >> (64 - N); |
232 | } |
233 | |
234 | /// Gets the minimum value for a N-bit signed integer. |
235 | inline int64_t minIntN(int64_t N) { |
236 | assert(N <= 64 && "integer width out of range" ); |
237 | |
238 | if (N == 0) |
239 | return 0; |
240 | return UINT64_C(1) + ~(UINT64_C(1) << (N - 1)); |
241 | } |
242 | |
243 | /// Gets the maximum value for a N-bit signed integer. |
244 | inline int64_t maxIntN(int64_t N) { |
245 | assert(N <= 64 && "integer width out of range" ); |
246 | |
247 | // This relies on two's complement wraparound when N == 64, so we convert to |
248 | // int64_t only at the very end to avoid UB. |
249 | if (N == 0) |
250 | return 0; |
251 | return (UINT64_C(1) << (N - 1)) - 1; |
252 | } |
253 | |
254 | /// Checks if an unsigned integer fits into the given (dynamic) bit width. |
255 | inline bool isUIntN(unsigned N, uint64_t x) { |
256 | return N >= 64 || x <= maxUIntN(N); |
257 | } |
258 | |
259 | /// Checks if an signed integer fits into the given (dynamic) bit width. |
260 | inline bool isIntN(unsigned N, int64_t x) { |
261 | return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N)); |
262 | } |
263 | |
264 | /// Return true if the argument is a non-empty sequence of ones starting at the |
265 | /// least significant bit with the remainder zero (32 bit version). |
266 | /// Ex. isMask_32(0x0000FFFFU) == true. |
267 | constexpr bool isMask_32(uint32_t Value) { |
268 | return Value && ((Value + 1) & Value) == 0; |
269 | } |
270 | |
271 | /// Return true if the argument is a non-empty sequence of ones starting at the |
272 | /// least significant bit with the remainder zero (64 bit version). |
273 | constexpr bool isMask_64(uint64_t Value) { |
274 | return Value && ((Value + 1) & Value) == 0; |
275 | } |
276 | |
277 | /// Return true if the argument contains a non-empty sequence of ones with the |
278 | /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. |
279 | constexpr bool isShiftedMask_32(uint32_t Value) { |
280 | return Value && isMask_32(Value: (Value - 1) | Value); |
281 | } |
282 | |
283 | /// Return true if the argument contains a non-empty sequence of ones with the |
284 | /// remainder zero (64 bit version.) |
285 | constexpr bool isShiftedMask_64(uint64_t Value) { |
286 | return Value && isMask_64(Value: (Value - 1) | Value); |
287 | } |
288 | |
289 | /// Return true if the argument is a power of two > 0. |
290 | /// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) |
291 | constexpr bool isPowerOf2_32(uint32_t Value) { |
292 | return llvm::has_single_bit(Value); |
293 | } |
294 | |
295 | /// Return true if the argument is a power of two > 0 (64 bit edition.) |
296 | constexpr bool isPowerOf2_64(uint64_t Value) { |
297 | return llvm::has_single_bit(Value); |
298 | } |
299 | |
300 | /// Return true if the argument contains a non-empty sequence of ones with the |
301 | /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. |
302 | /// If true, \p MaskIdx will specify the index of the lowest set bit and \p |
303 | /// MaskLen is updated to specify the length of the mask, else neither are |
304 | /// updated. |
305 | inline bool isShiftedMask_32(uint32_t Value, unsigned &MaskIdx, |
306 | unsigned &MaskLen) { |
307 | if (!isShiftedMask_32(Value)) |
308 | return false; |
309 | MaskIdx = llvm::countr_zero(Val: Value); |
310 | MaskLen = llvm::popcount(Value); |
311 | return true; |
312 | } |
313 | |
314 | /// Return true if the argument contains a non-empty sequence of ones with the |
315 | /// remainder zero (64 bit version.) If true, \p MaskIdx will specify the index |
316 | /// of the lowest set bit and \p MaskLen is updated to specify the length of the |
317 | /// mask, else neither are updated. |
318 | inline bool isShiftedMask_64(uint64_t Value, unsigned &MaskIdx, |
319 | unsigned &MaskLen) { |
320 | if (!isShiftedMask_64(Value)) |
321 | return false; |
322 | MaskIdx = llvm::countr_zero(Val: Value); |
323 | MaskLen = llvm::popcount(Value); |
324 | return true; |
325 | } |
326 | |
327 | /// Compile time Log2. |
328 | /// Valid only for positive powers of two. |
329 | template <size_t kValue> constexpr size_t CTLog2() { |
330 | static_assert(kValue > 0 && llvm::isPowerOf2_64(Value: kValue), |
331 | "Value is not a valid power of 2" ); |
332 | return 1 + CTLog2<kValue / 2>(); |
333 | } |
334 | |
335 | template <> constexpr size_t CTLog2<1>() { return 0; } |
336 | |
337 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. |
338 | /// (32 bit edition.) |
339 | /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 |
340 | inline unsigned Log2_32(uint32_t Value) { |
341 | return 31 - llvm::countl_zero(Val: Value); |
342 | } |
343 | |
344 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. |
345 | /// (64 bit edition.) |
346 | inline unsigned Log2_64(uint64_t Value) { |
347 | return 63 - llvm::countl_zero(Val: Value); |
348 | } |
349 | |
350 | /// Return the ceil log base 2 of the specified value, 32 if the value is zero. |
351 | /// (32 bit edition). |
352 | /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 |
353 | inline unsigned Log2_32_Ceil(uint32_t Value) { |
354 | return 32 - llvm::countl_zero(Val: Value - 1); |
355 | } |
356 | |
357 | /// Return the ceil log base 2 of the specified value, 64 if the value is zero. |
358 | /// (64 bit edition.) |
359 | inline unsigned Log2_64_Ceil(uint64_t Value) { |
360 | return 64 - llvm::countl_zero(Val: Value - 1); |
361 | } |
362 | |
363 | /// A and B are either alignments or offsets. Return the minimum alignment that |
364 | /// may be assumed after adding the two together. |
365 | template <typename U, typename V, typename T = common_uint<U, V>> |
366 | constexpr T MinAlign(U A, V B) { |
367 | // The largest power of 2 that divides both A and B. |
368 | // |
369 | // Replace "-Value" by "1+~Value" in the following commented code to avoid |
370 | // MSVC warning C4146 |
371 | // return (A | B) & -(A | B); |
372 | return (A | B) & (1 + ~(A | B)); |
373 | } |
374 | |
375 | /// Fallback when arguments aren't integral. |
376 | constexpr uint64_t MinAlign(uint64_t A, uint64_t B) { |
377 | return (A | B) & (1 + ~(A | B)); |
378 | } |
379 | |
380 | /// Returns the next power of two (in 64-bits) that is strictly greater than A. |
381 | /// Returns zero on overflow. |
382 | constexpr uint64_t NextPowerOf2(uint64_t A) { |
383 | A |= (A >> 1); |
384 | A |= (A >> 2); |
385 | A |= (A >> 4); |
386 | A |= (A >> 8); |
387 | A |= (A >> 16); |
388 | A |= (A >> 32); |
389 | return A + 1; |
390 | } |
391 | |
392 | /// Returns the power of two which is greater than or equal to the given value. |
393 | /// Essentially, it is a ceil operation across the domain of powers of two. |
394 | inline uint64_t PowerOf2Ceil(uint64_t A) { |
395 | if (!A || A > UINT64_MAX / 2) |
396 | return 0; |
397 | return UINT64_C(1) << Log2_64_Ceil(Value: A); |
398 | } |
399 | |
400 | /// Returns the integer ceil(Numerator / Denominator). Unsigned version. |
401 | /// Guaranteed to never overflow. |
402 | template <typename U, typename V, typename T = common_uint<U, V>> |
403 | constexpr T divideCeil(U Numerator, V Denominator) { |
404 | assert(Denominator && "Division by zero" ); |
405 | T Bias = (Numerator != 0); |
406 | return (Numerator - Bias) / Denominator + Bias; |
407 | } |
408 | |
409 | /// Fallback when arguments aren't integral. |
410 | constexpr uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) { |
411 | assert(Denominator && "Division by zero" ); |
412 | uint64_t Bias = (Numerator != 0); |
413 | return (Numerator - Bias) / Denominator + Bias; |
414 | } |
415 | |
416 | // Check whether divideCeilSigned or divideFloorSigned would overflow. This |
417 | // happens only when Numerator = INT_MIN and Denominator = -1. |
418 | template <typename U, typename V> |
419 | constexpr bool divideSignedWouldOverflow(U Numerator, V Denominator) { |
420 | return Numerator == std::numeric_limits<U>::min() && Denominator == -1; |
421 | } |
422 | |
423 | /// Returns the integer ceil(Numerator / Denominator). Signed version. |
424 | /// Overflow is explicitly forbidden with an assert. |
425 | template <typename U, typename V, typename T = common_sint<U, V>> |
426 | constexpr T divideCeilSigned(U Numerator, V Denominator) { |
427 | assert(Denominator && "Division by zero" ); |
428 | assert(!divideSignedWouldOverflow(Numerator, Denominator) && |
429 | "Divide would overflow" ); |
430 | if (!Numerator) |
431 | return 0; |
432 | // C's integer division rounds towards 0. |
433 | T Bias = Denominator >= 0 ? 1 : -1; |
434 | bool SameSign = (Numerator >= 0) == (Denominator >= 0); |
435 | return SameSign ? (Numerator - Bias) / Denominator + 1 |
436 | : Numerator / Denominator; |
437 | } |
438 | |
439 | /// Returns the integer floor(Numerator / Denominator). Signed version. |
440 | /// Overflow is explicitly forbidden with an assert. |
441 | template <typename U, typename V, typename T = common_sint<U, V>> |
442 | constexpr T divideFloorSigned(U Numerator, V Denominator) { |
443 | assert(Denominator && "Division by zero" ); |
444 | assert(!divideSignedWouldOverflow(Numerator, Denominator) && |
445 | "Divide would overflow" ); |
446 | if (!Numerator) |
447 | return 0; |
448 | // C's integer division rounds towards 0. |
449 | T Bias = Denominator >= 0 ? -1 : 1; |
450 | bool SameSign = (Numerator >= 0) == (Denominator >= 0); |
451 | return SameSign ? Numerator / Denominator |
452 | : (Numerator - Bias) / Denominator - 1; |
453 | } |
454 | |
455 | /// Returns the remainder of the Euclidean division of LHS by RHS. Result is |
456 | /// always non-negative. |
457 | template <typename U, typename V, typename T = common_sint<U, V>> |
458 | constexpr T mod(U Numerator, V Denominator) { |
459 | assert(Denominator >= 1 && "Mod by non-positive number" ); |
460 | T Mod = Numerator % Denominator; |
461 | return Mod < 0 ? Mod + Denominator : Mod; |
462 | } |
463 | |
464 | /// Returns (Numerator / Denominator) rounded by round-half-up. Guaranteed to |
465 | /// never overflow. |
466 | template <typename U, typename V, typename T = common_uint<U, V>> |
467 | constexpr T divideNearest(U Numerator, V Denominator) { |
468 | assert(Denominator && "Division by zero" ); |
469 | T Mod = Numerator % Denominator; |
470 | return (Numerator / Denominator) + |
471 | (Mod > (static_cast<T>(Denominator) - 1) / 2); |
472 | } |
473 | |
474 | /// Returns the next integer (mod 2**nbits) that is greater than or equal to |
475 | /// \p Value and is a multiple of \p Align. \p Align must be non-zero. |
476 | /// |
477 | /// Examples: |
478 | /// \code |
479 | /// alignTo(5, 8) = 8 |
480 | /// alignTo(17, 8) = 24 |
481 | /// alignTo(~0LL, 8) = 0 |
482 | /// alignTo(321, 255) = 510 |
483 | /// \endcode |
484 | /// |
485 | /// Will overflow only if result is not representable in T. |
486 | template <typename U, typename V, typename T = common_uint<U, V>> |
487 | constexpr T alignTo(U Value, V Align) { |
488 | assert(Align != 0u && "Align can't be 0." ); |
489 | T CeilDiv = divideCeil(Value, Align); |
490 | return CeilDiv * Align; |
491 | } |
492 | |
493 | /// Fallback when arguments aren't integral. |
494 | constexpr uint64_t alignTo(uint64_t Value, uint64_t Align) { |
495 | assert(Align != 0u && "Align can't be 0." ); |
496 | uint64_t CeilDiv = divideCeil(Numerator: Value, Denominator: Align); |
497 | return CeilDiv * Align; |
498 | } |
499 | |
500 | constexpr uint64_t alignToPowerOf2(uint64_t Value, uint64_t Align) { |
501 | assert(Align != 0 && (Align & (Align - 1)) == 0 && |
502 | "Align must be a power of 2" ); |
503 | // Replace unary minus to avoid compilation error on Windows: |
504 | // "unary minus operator applied to unsigned type, result still unsigned" |
505 | uint64_t NegAlign = (~Align) + 1; |
506 | return (Value + Align - 1) & NegAlign; |
507 | } |
508 | |
509 | /// If non-zero \p Skew is specified, the return value will be a minimal integer |
510 | /// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for |
511 | /// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p |
512 | /// Skew mod \p A'. \p Align must be non-zero. |
513 | /// |
514 | /// Examples: |
515 | /// \code |
516 | /// alignTo(5, 8, 7) = 7 |
517 | /// alignTo(17, 8, 1) = 17 |
518 | /// alignTo(~0LL, 8, 3) = 3 |
519 | /// alignTo(321, 255, 42) = 552 |
520 | /// \endcode |
521 | /// |
522 | /// May overflow. |
523 | template <typename U, typename V, typename W, |
524 | typename T = common_uint<common_uint<U, V>, W>> |
525 | constexpr T alignTo(U Value, V Align, W Skew) { |
526 | assert(Align != 0u && "Align can't be 0." ); |
527 | Skew %= Align; |
528 | return alignTo(Value - Skew, Align) + Skew; |
529 | } |
530 | |
531 | /// Returns the next integer (mod 2**nbits) that is greater than or equal to |
532 | /// \p Value and is a multiple of \c Align. \c Align must be non-zero. |
533 | /// |
534 | /// Will overflow only if result is not representable in T. |
535 | template <auto Align, typename V, typename T = common_uint<decltype(Align), V>> |
536 | constexpr T alignTo(V Value) { |
537 | static_assert(Align != 0u, "Align must be non-zero" ); |
538 | T CeilDiv = divideCeil(Value, Align); |
539 | return CeilDiv * Align; |
540 | } |
541 | |
542 | /// Returns the largest unsigned integer less than or equal to \p Value and is |
543 | /// \p Skew mod \p Align. \p Align must be non-zero. Guaranteed to never |
544 | /// overflow. |
545 | template <typename U, typename V, typename W = uint8_t, |
546 | typename T = common_uint<common_uint<U, V>, W>> |
547 | constexpr T alignDown(U Value, V Align, W Skew = 0) { |
548 | assert(Align != 0u && "Align can't be 0." ); |
549 | Skew %= Align; |
550 | return (Value - Skew) / Align * Align + Skew; |
551 | } |
552 | |
553 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. |
554 | /// Requires B <= 32. |
555 | template <unsigned B> constexpr int32_t SignExtend32(uint32_t X) { |
556 | static_assert(B <= 32, "Bit width out of range." ); |
557 | if constexpr (B == 0) |
558 | return 0; |
559 | return int32_t(X << (32 - B)) >> (32 - B); |
560 | } |
561 | |
562 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. |
563 | /// Requires B <= 32. |
564 | inline int32_t SignExtend32(uint32_t X, unsigned B) { |
565 | assert(B <= 32 && "Bit width out of range." ); |
566 | if (B == 0) |
567 | return 0; |
568 | return int32_t(X << (32 - B)) >> (32 - B); |
569 | } |
570 | |
571 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. |
572 | /// Requires B <= 64. |
573 | template <unsigned B> constexpr int64_t SignExtend64(uint64_t x) { |
574 | static_assert(B <= 64, "Bit width out of range." ); |
575 | if constexpr (B == 0) |
576 | return 0; |
577 | return int64_t(x << (64 - B)) >> (64 - B); |
578 | } |
579 | |
580 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. |
581 | /// Requires B <= 64. |
582 | inline int64_t SignExtend64(uint64_t X, unsigned B) { |
583 | assert(B <= 64 && "Bit width out of range." ); |
584 | if (B == 0) |
585 | return 0; |
586 | return int64_t(X << (64 - B)) >> (64 - B); |
587 | } |
588 | |
589 | /// Subtract two unsigned integers, X and Y, of type T and return the absolute |
590 | /// value of the result. |
591 | template <typename U, typename V, typename T = common_uint<U, V>> |
592 | constexpr T AbsoluteDifference(U X, V Y) { |
593 | return X > Y ? (X - Y) : (Y - X); |
594 | } |
595 | |
596 | /// Add two unsigned integers, X and Y, of type T. Clamp the result to the |
597 | /// maximum representable value of T on overflow. ResultOverflowed indicates if |
598 | /// the result is larger than the maximum representable value of type T. |
599 | template <typename T> |
600 | std::enable_if_t<std::is_unsigned_v<T>, T> |
601 | SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) { |
602 | bool Dummy; |
603 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
604 | // Hacker's Delight, p. 29 |
605 | T Z = X + Y; |
606 | Overflowed = (Z < X || Z < Y); |
607 | if (Overflowed) |
608 | return std::numeric_limits<T>::max(); |
609 | else |
610 | return Z; |
611 | } |
612 | |
613 | /// Add multiple unsigned integers of type T. Clamp the result to the |
614 | /// maximum representable value of T on overflow. |
615 | template <class T, class... Ts> |
616 | std::enable_if_t<std::is_unsigned_v<T>, T> SaturatingAdd(T X, T Y, T Z, |
617 | Ts... Args) { |
618 | bool Overflowed = false; |
619 | T XY = SaturatingAdd(X, Y, &Overflowed); |
620 | if (Overflowed) |
621 | return SaturatingAdd(std::numeric_limits<T>::max(), T(1), Args...); |
622 | return SaturatingAdd(XY, Z, Args...); |
623 | } |
624 | |
625 | /// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the |
626 | /// maximum representable value of T on overflow. ResultOverflowed indicates if |
627 | /// the result is larger than the maximum representable value of type T. |
628 | template <typename T> |
629 | std::enable_if_t<std::is_unsigned_v<T>, T> |
630 | SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) { |
631 | bool Dummy; |
632 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
633 | |
634 | // Hacker's Delight, p. 30 has a different algorithm, but we don't use that |
635 | // because it fails for uint16_t (where multiplication can have undefined |
636 | // behavior due to promotion to int), and requires a division in addition |
637 | // to the multiplication. |
638 | |
639 | Overflowed = false; |
640 | |
641 | // Log2(Z) would be either Log2Z or Log2Z + 1. |
642 | // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z |
643 | // will necessarily be less than Log2Max as desired. |
644 | int Log2Z = Log2_64(X) + Log2_64(Y); |
645 | const T Max = std::numeric_limits<T>::max(); |
646 | int Log2Max = Log2_64(Max); |
647 | if (Log2Z < Log2Max) { |
648 | return X * Y; |
649 | } |
650 | if (Log2Z > Log2Max) { |
651 | Overflowed = true; |
652 | return Max; |
653 | } |
654 | |
655 | // We're going to use the top bit, and maybe overflow one |
656 | // bit past it. Multiply all but the bottom bit then add |
657 | // that on at the end. |
658 | T Z = (X >> 1) * Y; |
659 | if (Z & ~(Max >> 1)) { |
660 | Overflowed = true; |
661 | return Max; |
662 | } |
663 | Z <<= 1; |
664 | if (X & 1) |
665 | return SaturatingAdd(Z, Y, ResultOverflowed); |
666 | |
667 | return Z; |
668 | } |
669 | |
670 | /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to |
671 | /// the product. Clamp the result to the maximum representable value of T on |
672 | /// overflow. ResultOverflowed indicates if the result is larger than the |
673 | /// maximum representable value of type T. |
674 | template <typename T> |
675 | std::enable_if_t<std::is_unsigned_v<T>, T> |
676 | SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) { |
677 | bool Dummy; |
678 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
679 | |
680 | T Product = SaturatingMultiply(X, Y, &Overflowed); |
681 | if (Overflowed) |
682 | return Product; |
683 | |
684 | return SaturatingAdd(A, Product, &Overflowed); |
685 | } |
686 | |
687 | /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC. |
688 | extern const float huge_valf; |
689 | |
690 | /// Add two signed integers, computing the two's complement truncated result, |
691 | /// returning true if overflow occurred. |
692 | template <typename T> |
693 | std::enable_if_t<std::is_signed_v<T>, T> AddOverflow(T X, T Y, T &Result) { |
694 | #if __has_builtin(__builtin_add_overflow) |
695 | return __builtin_add_overflow(X, Y, &Result); |
696 | #else |
697 | // Perform the unsigned addition. |
698 | using U = std::make_unsigned_t<T>; |
699 | const U UX = static_cast<U>(X); |
700 | const U UY = static_cast<U>(Y); |
701 | const U UResult = UX + UY; |
702 | |
703 | // Convert to signed. |
704 | Result = static_cast<T>(UResult); |
705 | |
706 | // Adding two positive numbers should result in a positive number. |
707 | if (X > 0 && Y > 0) |
708 | return Result <= 0; |
709 | // Adding two negatives should result in a negative number. |
710 | if (X < 0 && Y < 0) |
711 | return Result >= 0; |
712 | return false; |
713 | #endif |
714 | } |
715 | |
716 | /// Subtract two signed integers, computing the two's complement truncated |
717 | /// result, returning true if an overflow ocurred. |
718 | template <typename T> |
719 | std::enable_if_t<std::is_signed_v<T>, T> SubOverflow(T X, T Y, T &Result) { |
720 | #if __has_builtin(__builtin_sub_overflow) |
721 | return __builtin_sub_overflow(X, Y, &Result); |
722 | #else |
723 | // Perform the unsigned addition. |
724 | using U = std::make_unsigned_t<T>; |
725 | const U UX = static_cast<U>(X); |
726 | const U UY = static_cast<U>(Y); |
727 | const U UResult = UX - UY; |
728 | |
729 | // Convert to signed. |
730 | Result = static_cast<T>(UResult); |
731 | |
732 | // Subtracting a positive number from a negative results in a negative number. |
733 | if (X <= 0 && Y > 0) |
734 | return Result >= 0; |
735 | // Subtracting a negative number from a positive results in a positive number. |
736 | if (X >= 0 && Y < 0) |
737 | return Result <= 0; |
738 | return false; |
739 | #endif |
740 | } |
741 | |
742 | /// Multiply two signed integers, computing the two's complement truncated |
743 | /// result, returning true if an overflow ocurred. |
744 | template <typename T> |
745 | std::enable_if_t<std::is_signed_v<T>, T> MulOverflow(T X, T Y, T &Result) { |
746 | #if __has_builtin(__builtin_mul_overflow) |
747 | return __builtin_mul_overflow(X, Y, &Result); |
748 | #else |
749 | // Perform the unsigned multiplication on absolute values. |
750 | using U = std::make_unsigned_t<T>; |
751 | const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X); |
752 | const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y); |
753 | const U UResult = UX * UY; |
754 | |
755 | // Convert to signed. |
756 | const bool IsNegative = (X < 0) ^ (Y < 0); |
757 | Result = IsNegative ? (0 - UResult) : UResult; |
758 | |
759 | // If any of the args was 0, result is 0 and no overflow occurs. |
760 | if (UX == 0 || UY == 0) |
761 | return false; |
762 | |
763 | // UX and UY are in [1, 2^n], where n is the number of digits. |
764 | // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for |
765 | // positive) divided by an argument compares to the other. |
766 | if (IsNegative) |
767 | return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY; |
768 | else |
769 | return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY; |
770 | #endif |
771 | } |
772 | |
773 | /// Type to force float point values onto the stack, so that x86 doesn't add |
774 | /// hidden precision, avoiding rounding differences on various platforms. |
775 | #if defined(__i386__) || defined(_M_IX86) |
776 | using stack_float_t = volatile float; |
777 | #else |
778 | using stack_float_t = float; |
779 | #endif |
780 | |
781 | } // namespace llvm |
782 | |
783 | #endif |
784 | |