1//===- LoopPeel.cpp -------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Loop Peeling Utilities.
10//===----------------------------------------------------------------------===//
11
12#include "llvm/Transforms/Utils/LoopPeel.h"
13#include "llvm/ADT/DenseMap.h"
14#include "llvm/ADT/SmallVector.h"
15#include "llvm/ADT/Statistic.h"
16#include "llvm/Analysis/Loads.h"
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/Analysis/LoopIterator.h"
19#include "llvm/Analysis/ScalarEvolution.h"
20#include "llvm/Analysis/ScalarEvolutionExpressions.h"
21#include "llvm/Analysis/TargetTransformInfo.h"
22#include "llvm/IR/BasicBlock.h"
23#include "llvm/IR/Dominators.h"
24#include "llvm/IR/Function.h"
25#include "llvm/IR/InstrTypes.h"
26#include "llvm/IR/Instruction.h"
27#include "llvm/IR/Instructions.h"
28#include "llvm/IR/LLVMContext.h"
29#include "llvm/IR/MDBuilder.h"
30#include "llvm/IR/PatternMatch.h"
31#include "llvm/IR/ProfDataUtils.h"
32#include "llvm/Support/Casting.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Transforms/Utils/BasicBlockUtils.h"
37#include "llvm/Transforms/Utils/Cloning.h"
38#include "llvm/Transforms/Utils/LoopSimplify.h"
39#include "llvm/Transforms/Utils/LoopUtils.h"
40#include "llvm/Transforms/Utils/ValueMapper.h"
41#include <algorithm>
42#include <cassert>
43#include <cstdint>
44#include <optional>
45
46using namespace llvm;
47using namespace llvm::PatternMatch;
48
49#define DEBUG_TYPE "loop-peel"
50
51STATISTIC(NumPeeled, "Number of loops peeled");
52
53static cl::opt<unsigned> UnrollPeelCount(
54 "unroll-peel-count", cl::Hidden,
55 cl::desc("Set the unroll peeling count, for testing purposes"));
56
57static cl::opt<bool>
58 UnrollAllowPeeling("unroll-allow-peeling", cl::init(Val: true), cl::Hidden,
59 cl::desc("Allows loops to be peeled when the dynamic "
60 "trip count is known to be low."));
61
62static cl::opt<bool>
63 UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling",
64 cl::init(Val: false), cl::Hidden,
65 cl::desc("Allows loop nests to be peeled."));
66
67static cl::opt<unsigned> UnrollPeelMaxCount(
68 "unroll-peel-max-count", cl::init(Val: 7), cl::Hidden,
69 cl::desc("Max average trip count which will cause loop peeling."));
70
71static cl::opt<unsigned> UnrollForcePeelCount(
72 "unroll-force-peel-count", cl::init(Val: 0), cl::Hidden,
73 cl::desc("Force a peel count regardless of profiling information."));
74
75static cl::opt<bool> DisableAdvancedPeeling(
76 "disable-advanced-peeling", cl::init(Val: false), cl::Hidden,
77 cl::desc(
78 "Disable advance peeling. Issues for convergent targets (D134803)."));
79
80static const char *PeeledCountMetaData = "llvm.loop.peeled.count";
81
82// Check whether we are capable of peeling this loop.
83bool llvm::canPeel(const Loop *L) {
84 // Make sure the loop is in simplified form
85 if (!L->isLoopSimplifyForm())
86 return false;
87 if (!DisableAdvancedPeeling)
88 return true;
89
90 SmallVector<BasicBlock *, 4> Exits;
91 L->getUniqueNonLatchExitBlocks(ExitBlocks&: Exits);
92 // The latch must either be the only exiting block or all non-latch exit
93 // blocks have either a deopt or unreachable terminator or compose a chain of
94 // blocks where the last one is either deopt or unreachable terminated. Both
95 // deopt and unreachable terminators are a strong indication they are not
96 // taken. Note that this is a profitability check, not a legality check. Also
97 // note that LoopPeeling currently can only update the branch weights of latch
98 // blocks and branch weights to blocks with deopt or unreachable do not need
99 // updating.
100 return llvm::all_of(Range&: Exits, P: IsBlockFollowedByDeoptOrUnreachable);
101}
102
103namespace {
104
105// As a loop is peeled, it may be the case that Phi nodes become
106// loop-invariant (ie, known because there is only one choice).
107// For example, consider the following function:
108// void g(int);
109// void binary() {
110// int x = 0;
111// int y = 0;
112// int a = 0;
113// for(int i = 0; i <100000; ++i) {
114// g(x);
115// x = y;
116// g(a);
117// y = a + 1;
118// a = 5;
119// }
120// }
121// Peeling 3 iterations is beneficial because the values for x, y and a
122// become known. The IR for this loop looks something like the following:
123//
124// %i = phi i32 [ 0, %entry ], [ %inc, %if.end ]
125// %a = phi i32 [ 0, %entry ], [ 5, %if.end ]
126// %y = phi i32 [ 0, %entry ], [ %add, %if.end ]
127// %x = phi i32 [ 0, %entry ], [ %y, %if.end ]
128// ...
129// tail call void @_Z1gi(i32 signext %x)
130// tail call void @_Z1gi(i32 signext %a)
131// %add = add nuw nsw i32 %a, 1
132// %inc = add nuw nsw i32 %i, 1
133// %exitcond = icmp eq i32 %inc, 100000
134// br i1 %exitcond, label %for.cond.cleanup, label %for.body
135//
136// The arguments for the calls to g will become known after 3 iterations
137// of the loop, because the phi nodes values become known after 3 iterations
138// of the loop (ie, they are known on the 4th iteration, so peel 3 iterations).
139// The first iteration has g(0), g(0); the second has g(0), g(5); the
140// third has g(1), g(5) and the fourth (and all subsequent) have g(6), g(5).
141// Now consider the phi nodes:
142// %a is a phi with constants so it is determined after iteration 1.
143// %y is a phi based on a constant and %a so it is determined on
144// the iteration after %a is determined, so iteration 2.
145// %x is a phi based on a constant and %y so it is determined on
146// the iteration after %y, so iteration 3.
147// %i is based on itself (and is an induction variable) so it is
148// never determined.
149// This means that peeling off 3 iterations will result in being able to
150// remove the phi nodes for %a, %y, and %x. The arguments for the
151// corresponding calls to g are determined and the code for computing
152// x, y, and a can be removed.
153//
154// The PhiAnalyzer class calculates how many times a loop should be
155// peeled based on the above analysis of the phi nodes in the loop while
156// respecting the maximum specified.
157class PhiAnalyzer {
158public:
159 PhiAnalyzer(const Loop &L, unsigned MaxIterations);
160
161 // Calculate the sufficient minimum number of iterations of the loop to peel
162 // such that phi instructions become determined (subject to allowable limits)
163 std::optional<unsigned> calculateIterationsToPeel();
164
165protected:
166 using PeelCounter = std::optional<unsigned>;
167 const PeelCounter Unknown = std::nullopt;
168
169 // Add 1 respecting Unknown and return Unknown if result over MaxIterations
170 PeelCounter addOne(PeelCounter PC) const {
171 if (PC == Unknown)
172 return Unknown;
173 return (*PC + 1 <= MaxIterations) ? PeelCounter{*PC + 1} : Unknown;
174 }
175
176 // Calculate the number of iterations after which the given value
177 // becomes an invariant.
178 PeelCounter calculate(const Value &);
179
180 const Loop &L;
181 const unsigned MaxIterations;
182
183 // Map of Values to number of iterations to invariance
184 SmallDenseMap<const Value *, PeelCounter> IterationsToInvariance;
185};
186
187PhiAnalyzer::PhiAnalyzer(const Loop &L, unsigned MaxIterations)
188 : L(L), MaxIterations(MaxIterations) {
189 assert(canPeel(&L) && "loop is not suitable for peeling");
190 assert(MaxIterations > 0 && "no peeling is allowed?");
191}
192
193// This function calculates the number of iterations after which the value
194// becomes an invariant. The pre-calculated values are memorized in a map.
195// N.B. This number will be Unknown or <= MaxIterations.
196// The function is calculated according to the following definition:
197// Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
198// F(%x) = G(%y) + 1 (N.B. [MaxIterations | Unknown] + 1 => Unknown)
199// G(%y) = 0 if %y is a loop invariant
200// G(%y) = G(%BackEdgeValue) if %y is a phi in the header block
201// G(%y) = TODO: if %y is an expression based on phis and loop invariants
202// The example looks like:
203// %x = phi(0, %a) <-- becomes invariant starting from 3rd iteration.
204// %y = phi(0, 5)
205// %a = %y + 1
206// G(%y) = Unknown otherwise (including phi not in header block)
207PhiAnalyzer::PeelCounter PhiAnalyzer::calculate(const Value &V) {
208 // If we already know the answer, take it from the map.
209 auto I = IterationsToInvariance.find(Val: &V);
210 if (I != IterationsToInvariance.end())
211 return I->second;
212
213 // Place Unknown to map to avoid infinite recursion. Such
214 // cycles can never stop on an invariant.
215 IterationsToInvariance[&V] = Unknown;
216
217 if (L.isLoopInvariant(V: &V))
218 // Loop invariant so known at start.
219 return (IterationsToInvariance[&V] = 0);
220 if (const PHINode *Phi = dyn_cast<PHINode>(Val: &V)) {
221 if (Phi->getParent() != L.getHeader()) {
222 // Phi is not in header block so Unknown.
223 assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved");
224 return Unknown;
225 }
226 // We need to analyze the input from the back edge and add 1.
227 Value *Input = Phi->getIncomingValueForBlock(BB: L.getLoopLatch());
228 PeelCounter Iterations = calculate(V: *Input);
229 assert(IterationsToInvariance[Input] == Iterations &&
230 "unexpected value saved");
231 return (IterationsToInvariance[Phi] = addOne(PC: Iterations));
232 }
233 if (const Instruction *I = dyn_cast<Instruction>(Val: &V)) {
234 if (isa<CmpInst>(Val: I) || I->isBinaryOp()) {
235 // Binary instructions get the max of the operands.
236 PeelCounter LHS = calculate(V: *I->getOperand(i: 0));
237 if (LHS == Unknown)
238 return Unknown;
239 PeelCounter RHS = calculate(V: *I->getOperand(i: 1));
240 if (RHS == Unknown)
241 return Unknown;
242 return (IterationsToInvariance[I] = {std::max(a: *LHS, b: *RHS)});
243 }
244 if (I->isCast())
245 // Cast instructions get the value of the operand.
246 return (IterationsToInvariance[I] = calculate(V: *I->getOperand(i: 0)));
247 }
248 // TODO: handle more expressions
249
250 // Everything else is Unknown.
251 assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved");
252 return Unknown;
253}
254
255std::optional<unsigned> PhiAnalyzer::calculateIterationsToPeel() {
256 unsigned Iterations = 0;
257 for (auto &PHI : L.getHeader()->phis()) {
258 PeelCounter ToInvariance = calculate(V: PHI);
259 if (ToInvariance != Unknown) {
260 assert(*ToInvariance <= MaxIterations && "bad result in phi analysis");
261 Iterations = std::max(a: Iterations, b: *ToInvariance);
262 if (Iterations == MaxIterations)
263 break;
264 }
265 }
266 assert((Iterations <= MaxIterations) && "bad result in phi analysis");
267 return Iterations ? std::optional<unsigned>(Iterations) : std::nullopt;
268}
269
270} // unnamed namespace
271
272// Try to find any invariant memory reads that will become dereferenceable in
273// the remainder loop after peeling. The load must also be used (transitively)
274// by an exit condition. Returns the number of iterations to peel off (at the
275// moment either 0 or 1).
276static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L,
277 DominatorTree &DT,
278 AssumptionCache *AC) {
279 // Skip loops with a single exiting block, because there should be no benefit
280 // for the heuristic below.
281 if (L.getExitingBlock())
282 return 0;
283
284 // All non-latch exit blocks must have an UnreachableInst terminator.
285 // Otherwise the heuristic below may not be profitable.
286 SmallVector<BasicBlock *, 4> Exits;
287 L.getUniqueNonLatchExitBlocks(ExitBlocks&: Exits);
288 if (any_of(Range&: Exits, P: [](const BasicBlock *BB) {
289 return !isa<UnreachableInst>(Val: BB->getTerminator());
290 }))
291 return 0;
292
293 // Now look for invariant loads that dominate the latch and are not known to
294 // be dereferenceable. If there are such loads and no writes, they will become
295 // dereferenceable in the loop if the first iteration is peeled off. Also
296 // collect the set of instructions controlled by such loads. Only peel if an
297 // exit condition uses (transitively) such a load.
298 BasicBlock *Header = L.getHeader();
299 BasicBlock *Latch = L.getLoopLatch();
300 SmallPtrSet<Value *, 8> LoadUsers;
301 const DataLayout &DL = L.getHeader()->getDataLayout();
302 for (BasicBlock *BB : L.blocks()) {
303 for (Instruction &I : *BB) {
304 if (I.mayWriteToMemory())
305 return 0;
306
307 auto Iter = LoadUsers.find(Ptr: &I);
308 if (Iter != LoadUsers.end()) {
309 for (Value *U : I.users())
310 LoadUsers.insert(Ptr: U);
311 }
312 // Do not look for reads in the header; they can already be hoisted
313 // without peeling.
314 if (BB == Header)
315 continue;
316 if (auto *LI = dyn_cast<LoadInst>(Val: &I)) {
317 Value *Ptr = LI->getPointerOperand();
318 if (DT.dominates(A: BB, B: Latch) && L.isLoopInvariant(V: Ptr) &&
319 !isDereferenceablePointer(V: Ptr, Ty: LI->getType(), DL, CtxI: LI, AC, DT: &DT))
320 for (Value *U : I.users())
321 LoadUsers.insert(Ptr: U);
322 }
323 }
324 }
325 SmallVector<BasicBlock *> ExitingBlocks;
326 L.getExitingBlocks(ExitingBlocks);
327 if (any_of(Range&: ExitingBlocks, P: [&LoadUsers](BasicBlock *Exiting) {
328 return LoadUsers.contains(Ptr: Exiting->getTerminator());
329 }))
330 return 1;
331 return 0;
332}
333
334// Return the number of iterations to peel off that make conditions in the
335// body true/false. For example, if we peel 2 iterations off the loop below,
336// the condition i < 2 can be evaluated at compile time.
337// for (i = 0; i < n; i++)
338// if (i < 2)
339// ..
340// else
341// ..
342// }
343static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
344 ScalarEvolution &SE) {
345 assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
346 unsigned DesiredPeelCount = 0;
347
348 // Do not peel the entire loop.
349 const SCEV *BE = SE.getConstantMaxBackedgeTakenCount(L: &L);
350 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Val: BE))
351 MaxPeelCount =
352 std::min(a: (unsigned)SC->getAPInt().getLimitedValue() - 1, b: MaxPeelCount);
353
354 // Increase PeelCount while (IterVal Pred BoundSCEV) condition is satisfied;
355 // return true if inversed condition become known before reaching the
356 // MaxPeelCount limit.
357 auto PeelWhilePredicateIsKnown =
358 [&](unsigned &PeelCount, const SCEV *&IterVal, const SCEV *BoundSCEV,
359 const SCEV *Step, ICmpInst::Predicate Pred) {
360 while (PeelCount < MaxPeelCount &&
361 SE.isKnownPredicate(Pred, LHS: IterVal, RHS: BoundSCEV)) {
362 IterVal = SE.getAddExpr(LHS: IterVal, RHS: Step);
363 ++PeelCount;
364 }
365 return SE.isKnownPredicate(Pred: ICmpInst::getInversePredicate(pred: Pred), LHS: IterVal,
366 RHS: BoundSCEV);
367 };
368
369 const unsigned MaxDepth = 4;
370 std::function<void(Value *, unsigned)> ComputePeelCount =
371 [&](Value *Condition, unsigned Depth) -> void {
372 if (!Condition->getType()->isIntegerTy() || Depth >= MaxDepth)
373 return;
374
375 Value *LeftVal, *RightVal;
376 if (match(V: Condition, P: m_And(L: m_Value(V&: LeftVal), R: m_Value(V&: RightVal))) ||
377 match(V: Condition, P: m_Or(L: m_Value(V&: LeftVal), R: m_Value(V&: RightVal)))) {
378 ComputePeelCount(LeftVal, Depth + 1);
379 ComputePeelCount(RightVal, Depth + 1);
380 return;
381 }
382
383 CmpInst::Predicate Pred;
384 if (!match(V: Condition, P: m_ICmp(Pred, L: m_Value(V&: LeftVal), R: m_Value(V&: RightVal))))
385 return;
386
387 const SCEV *LeftSCEV = SE.getSCEV(V: LeftVal);
388 const SCEV *RightSCEV = SE.getSCEV(V: RightVal);
389
390 // Do not consider predicates that are known to be true or false
391 // independently of the loop iteration.
392 if (SE.evaluatePredicate(Pred, LHS: LeftSCEV, RHS: RightSCEV))
393 return;
394
395 // Check if we have a condition with one AddRec and one non AddRec
396 // expression. Normalize LeftSCEV to be the AddRec.
397 if (!isa<SCEVAddRecExpr>(Val: LeftSCEV)) {
398 if (isa<SCEVAddRecExpr>(Val: RightSCEV)) {
399 std::swap(a&: LeftSCEV, b&: RightSCEV);
400 Pred = ICmpInst::getSwappedPredicate(pred: Pred);
401 } else
402 return;
403 }
404
405 const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(Val: LeftSCEV);
406
407 // Avoid huge SCEV computations in the loop below, make sure we only
408 // consider AddRecs of the loop we are trying to peel.
409 if (!LeftAR->isAffine() || LeftAR->getLoop() != &L)
410 return;
411 if (!(ICmpInst::isEquality(P: Pred) && LeftAR->hasNoSelfWrap()) &&
412 !SE.getMonotonicPredicateType(LHS: LeftAR, Pred))
413 return;
414
415 // Check if extending the current DesiredPeelCount lets us evaluate Pred
416 // or !Pred in the loop body statically.
417 unsigned NewPeelCount = DesiredPeelCount;
418
419 const SCEV *IterVal = LeftAR->evaluateAtIteration(
420 It: SE.getConstant(Ty: LeftSCEV->getType(), V: NewPeelCount), SE);
421
422 // If the original condition is not known, get the negated predicate
423 // (which holds on the else branch) and check if it is known. This allows
424 // us to peel of iterations that make the original condition false.
425 if (!SE.isKnownPredicate(Pred, LHS: IterVal, RHS: RightSCEV))
426 Pred = ICmpInst::getInversePredicate(pred: Pred);
427
428 const SCEV *Step = LeftAR->getStepRecurrence(SE);
429 if (!PeelWhilePredicateIsKnown(NewPeelCount, IterVal, RightSCEV, Step,
430 Pred))
431 return;
432
433 // However, for equality comparisons, that isn't always sufficient to
434 // eliminate the comparsion in loop body, we may need to peel one more
435 // iteration. See if that makes !Pred become unknown again.
436 const SCEV *NextIterVal = SE.getAddExpr(LHS: IterVal, RHS: Step);
437 if (ICmpInst::isEquality(P: Pred) &&
438 !SE.isKnownPredicate(Pred: ICmpInst::getInversePredicate(pred: Pred), LHS: NextIterVal,
439 RHS: RightSCEV) &&
440 !SE.isKnownPredicate(Pred, LHS: IterVal, RHS: RightSCEV) &&
441 SE.isKnownPredicate(Pred, LHS: NextIterVal, RHS: RightSCEV)) {
442 if (NewPeelCount >= MaxPeelCount)
443 return; // Need to peel one more iteration, but can't. Give up.
444 ++NewPeelCount; // Great!
445 }
446
447 DesiredPeelCount = std::max(a: DesiredPeelCount, b: NewPeelCount);
448 };
449
450 auto ComputePeelCountMinMax = [&](MinMaxIntrinsic *MinMax) {
451 if (!MinMax->getType()->isIntegerTy())
452 return;
453 Value *LHS = MinMax->getLHS(), *RHS = MinMax->getRHS();
454 const SCEV *BoundSCEV, *IterSCEV;
455 if (L.isLoopInvariant(V: LHS)) {
456 BoundSCEV = SE.getSCEV(V: LHS);
457 IterSCEV = SE.getSCEV(V: RHS);
458 } else if (L.isLoopInvariant(V: RHS)) {
459 BoundSCEV = SE.getSCEV(V: RHS);
460 IterSCEV = SE.getSCEV(V: LHS);
461 } else
462 return;
463 const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: IterSCEV);
464 // For simplicity, we support only affine recurrences.
465 if (!AddRec || !AddRec->isAffine() || AddRec->getLoop() != &L)
466 return;
467 const SCEV *Step = AddRec->getStepRecurrence(SE);
468 bool IsSigned = MinMax->isSigned();
469 // To minimize number of peeled iterations, we use strict relational
470 // predicates here.
471 ICmpInst::Predicate Pred;
472 if (SE.isKnownPositive(S: Step))
473 Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
474 else if (SE.isKnownNegative(S: Step))
475 Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
476 else
477 return;
478 // Check that AddRec is not wrapping.
479 if (!(IsSigned ? AddRec->hasNoSignedWrap() : AddRec->hasNoUnsignedWrap()))
480 return;
481 unsigned NewPeelCount = DesiredPeelCount;
482 const SCEV *IterVal = AddRec->evaluateAtIteration(
483 It: SE.getConstant(Ty: AddRec->getType(), V: NewPeelCount), SE);
484 if (!PeelWhilePredicateIsKnown(NewPeelCount, IterVal, BoundSCEV, Step,
485 Pred))
486 return;
487 DesiredPeelCount = NewPeelCount;
488 };
489
490 for (BasicBlock *BB : L.blocks()) {
491 for (Instruction &I : *BB) {
492 if (SelectInst *SI = dyn_cast<SelectInst>(Val: &I))
493 ComputePeelCount(SI->getCondition(), 0);
494 if (MinMaxIntrinsic *MinMax = dyn_cast<MinMaxIntrinsic>(Val: &I))
495 ComputePeelCountMinMax(MinMax);
496 }
497
498 auto *BI = dyn_cast<BranchInst>(Val: BB->getTerminator());
499 if (!BI || BI->isUnconditional())
500 continue;
501
502 // Ignore loop exit condition.
503 if (L.getLoopLatch() == BB)
504 continue;
505
506 ComputePeelCount(BI->getCondition(), 0);
507 }
508
509 return DesiredPeelCount;
510}
511
512/// This "heuristic" exactly matches implicit behavior which used to exist
513/// inside getLoopEstimatedTripCount. It was added here to keep an
514/// improvement inside that API from causing peeling to become more aggressive.
515/// This should probably be removed.
516static bool violatesLegacyMultiExitLoopCheck(Loop *L) {
517 BasicBlock *Latch = L->getLoopLatch();
518 if (!Latch)
519 return true;
520
521 BranchInst *LatchBR = dyn_cast<BranchInst>(Val: Latch->getTerminator());
522 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(BB: Latch))
523 return true;
524
525 assert((LatchBR->getSuccessor(0) == L->getHeader() ||
526 LatchBR->getSuccessor(1) == L->getHeader()) &&
527 "At least one edge out of the latch must go to the header");
528
529 SmallVector<BasicBlock *, 4> ExitBlocks;
530 L->getUniqueNonLatchExitBlocks(ExitBlocks);
531 return any_of(Range&: ExitBlocks, P: [](const BasicBlock *EB) {
532 return !EB->getTerminatingDeoptimizeCall();
533 });
534}
535
536
537// Return the number of iterations we want to peel off.
538void llvm::computePeelCount(Loop *L, unsigned LoopSize,
539 TargetTransformInfo::PeelingPreferences &PP,
540 unsigned TripCount, DominatorTree &DT,
541 ScalarEvolution &SE, AssumptionCache *AC,
542 unsigned Threshold) {
543 assert(LoopSize > 0 && "Zero loop size is not allowed!");
544 // Save the PP.PeelCount value set by the target in
545 // TTI.getPeelingPreferences or by the flag -unroll-peel-count.
546 unsigned TargetPeelCount = PP.PeelCount;
547 PP.PeelCount = 0;
548 if (!canPeel(L))
549 return;
550
551 // Only try to peel innermost loops by default.
552 // The constraint can be relaxed by the target in TTI.getPeelingPreferences
553 // or by the flag -unroll-allow-loop-nests-peeling.
554 if (!PP.AllowLoopNestsPeeling && !L->isInnermost())
555 return;
556
557 // If the user provided a peel count, use that.
558 bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
559 if (UserPeelCount) {
560 LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
561 << " iterations.\n");
562 PP.PeelCount = UnrollForcePeelCount;
563 PP.PeelProfiledIterations = true;
564 return;
565 }
566
567 // Skip peeling if it's disabled.
568 if (!PP.AllowPeeling)
569 return;
570
571 // Check that we can peel at least one iteration.
572 if (2 * LoopSize > Threshold)
573 return;
574
575 unsigned AlreadyPeeled = 0;
576 if (auto Peeled = getOptionalIntLoopAttribute(TheLoop: L, Name: PeeledCountMetaData))
577 AlreadyPeeled = *Peeled;
578 // Stop if we already peeled off the maximum number of iterations.
579 if (AlreadyPeeled >= UnrollPeelMaxCount)
580 return;
581
582 // Pay respect to limitations implied by loop size and the max peel count.
583 unsigned MaxPeelCount = UnrollPeelMaxCount;
584 MaxPeelCount = std::min(a: MaxPeelCount, b: Threshold / LoopSize - 1);
585
586 // Start the max computation with the PP.PeelCount value set by the target
587 // in TTI.getPeelingPreferences or by the flag -unroll-peel-count.
588 unsigned DesiredPeelCount = TargetPeelCount;
589
590 // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
591 // iterations of the loop. For this we compute the number for iterations after
592 // which every Phi is guaranteed to become an invariant, and try to peel the
593 // maximum number of iterations among these values, thus turning all those
594 // Phis into invariants.
595 if (MaxPeelCount > DesiredPeelCount) {
596 // Check how many iterations are useful for resolving Phis
597 auto NumPeels = PhiAnalyzer(*L, MaxPeelCount).calculateIterationsToPeel();
598 if (NumPeels)
599 DesiredPeelCount = std::max(a: DesiredPeelCount, b: *NumPeels);
600 }
601
602 DesiredPeelCount = std::max(a: DesiredPeelCount,
603 b: countToEliminateCompares(L&: *L, MaxPeelCount, SE));
604
605 if (DesiredPeelCount == 0)
606 DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(L&: *L, DT, AC);
607
608 if (DesiredPeelCount > 0) {
609 DesiredPeelCount = std::min(a: DesiredPeelCount, b: MaxPeelCount);
610 // Consider max peel count limitation.
611 assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
612 if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) {
613 LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
614 << " iteration(s) to turn"
615 << " some Phis into invariants.\n");
616 PP.PeelCount = DesiredPeelCount;
617 PP.PeelProfiledIterations = false;
618 return;
619 }
620 }
621
622 // Bail if we know the statically calculated trip count.
623 // In this case we rather prefer partial unrolling.
624 if (TripCount)
625 return;
626
627 // Do not apply profile base peeling if it is disabled.
628 if (!PP.PeelProfiledIterations)
629 return;
630 // If we don't know the trip count, but have reason to believe the average
631 // trip count is low, peeling should be beneficial, since we will usually
632 // hit the peeled section.
633 // We only do this in the presence of profile information, since otherwise
634 // our estimates of the trip count are not reliable enough.
635 if (L->getHeader()->getParent()->hasProfileData()) {
636 if (violatesLegacyMultiExitLoopCheck(L))
637 return;
638 std::optional<unsigned> EstimatedTripCount = getLoopEstimatedTripCount(L);
639 if (!EstimatedTripCount)
640 return;
641
642 LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is "
643 << *EstimatedTripCount << "\n");
644
645 if (*EstimatedTripCount) {
646 if (*EstimatedTripCount + AlreadyPeeled <= MaxPeelCount) {
647 unsigned PeelCount = *EstimatedTripCount;
648 LLVM_DEBUG(dbgs() << "Peeling first " << PeelCount << " iterations.\n");
649 PP.PeelCount = PeelCount;
650 return;
651 }
652 LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n");
653 LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
654 LLVM_DEBUG(dbgs() << "Loop cost: " << LoopSize << "\n");
655 LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n");
656 LLVM_DEBUG(dbgs() << "Max peel count by cost: "
657 << (Threshold / LoopSize - 1) << "\n");
658 }
659 }
660}
661
662struct WeightInfo {
663 // Weights for current iteration.
664 SmallVector<uint32_t> Weights;
665 // Weights to subtract after each iteration.
666 const SmallVector<uint32_t> SubWeights;
667};
668
669/// Update the branch weights of an exiting block of a peeled-off loop
670/// iteration.
671/// Let F is a weight of the edge to continue (fallthrough) into the loop.
672/// Let E is a weight of the edge to an exit.
673/// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
674/// go to exit.
675/// Then, Estimated ExitCount = F / E.
676/// For I-th (counting from 0) peeled off iteration we set the weights for
677/// the peeled exit as (EC - I, 1). It gives us reasonable distribution,
678/// The probability to go to exit 1/(EC-I) increases. At the same time
679/// the estimated exit count in the remainder loop reduces by I.
680/// To avoid dealing with division rounding we can just multiple both part
681/// of weights to E and use weight as (F - I * E, E).
682static void updateBranchWeights(Instruction *Term, WeightInfo &Info) {
683 setBranchWeights(I&: *Term, Weights: Info.Weights, /*IsExpected=*/false);
684 for (auto [Idx, SubWeight] : enumerate(First: Info.SubWeights))
685 if (SubWeight != 0)
686 // Don't set the probability of taking the edge from latch to loop header
687 // to less than 1:1 ratio (meaning Weight should not be lower than
688 // SubWeight), as this could significantly reduce the loop's hotness,
689 // which would be incorrect in the case of underestimating the trip count.
690 Info.Weights[Idx] =
691 Info.Weights[Idx] > SubWeight
692 ? std::max(a: Info.Weights[Idx] - SubWeight, b: SubWeight)
693 : SubWeight;
694}
695
696/// Initialize the weights for all exiting blocks.
697static void initBranchWeights(DenseMap<Instruction *, WeightInfo> &WeightInfos,
698 Loop *L) {
699 SmallVector<BasicBlock *> ExitingBlocks;
700 L->getExitingBlocks(ExitingBlocks);
701 for (BasicBlock *ExitingBlock : ExitingBlocks) {
702 Instruction *Term = ExitingBlock->getTerminator();
703 SmallVector<uint32_t> Weights;
704 if (!extractBranchWeights(I: *Term, Weights))
705 continue;
706
707 // See the comment on updateBranchWeights() for an explanation of what we
708 // do here.
709 uint32_t FallThroughWeights = 0;
710 uint32_t ExitWeights = 0;
711 for (auto [Succ, Weight] : zip(t: successors(I: Term), u&: Weights)) {
712 if (L->contains(BB: Succ))
713 FallThroughWeights += Weight;
714 else
715 ExitWeights += Weight;
716 }
717
718 // Don't try to update weights for degenerate case.
719 if (FallThroughWeights == 0)
720 continue;
721
722 SmallVector<uint32_t> SubWeights;
723 for (auto [Succ, Weight] : zip(t: successors(I: Term), u&: Weights)) {
724 if (!L->contains(BB: Succ)) {
725 // Exit weights stay the same.
726 SubWeights.push_back(Elt: 0);
727 continue;
728 }
729
730 // Subtract exit weights on each iteration, distributed across all
731 // fallthrough edges.
732 double W = (double)Weight / (double)FallThroughWeights;
733 SubWeights.push_back(Elt: (uint32_t)(ExitWeights * W));
734 }
735
736 WeightInfos.insert(KV: {Term, {.Weights: std::move(Weights), .SubWeights: std::move(SubWeights)}});
737 }
738}
739
740/// Clones the body of the loop L, putting it between \p InsertTop and \p
741/// InsertBot.
742/// \param IterNumber The serial number of the iteration currently being
743/// peeled off.
744/// \param ExitEdges The exit edges of the original loop.
745/// \param[out] NewBlocks A list of the blocks in the newly created clone
746/// \param[out] VMap The value map between the loop and the new clone.
747/// \param LoopBlocks A helper for DFS-traversal of the loop.
748/// \param LVMap A value-map that maps instructions from the original loop to
749/// instructions in the last peeled-off iteration.
750static void cloneLoopBlocks(
751 Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot,
752 SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges,
753 SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
754 ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT,
755 LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes,
756 ScalarEvolution &SE) {
757 BasicBlock *Header = L->getHeader();
758 BasicBlock *Latch = L->getLoopLatch();
759 BasicBlock *PreHeader = L->getLoopPreheader();
760
761 Function *F = Header->getParent();
762 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
763 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
764 Loop *ParentLoop = L->getParentLoop();
765
766 // For each block in the original loop, create a new copy,
767 // and update the value map with the newly created values.
768 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
769 BasicBlock *NewBB = CloneBasicBlock(BB: *BB, VMap, NameSuffix: ".peel", F);
770 NewBlocks.push_back(Elt: NewBB);
771
772 // If an original block is an immediate child of the loop L, its copy
773 // is a child of a ParentLoop after peeling. If a block is a child of
774 // a nested loop, it is handled in the cloneLoop() call below.
775 if (ParentLoop && LI->getLoopFor(BB: *BB) == L)
776 ParentLoop->addBasicBlockToLoop(NewBB, LI&: *LI);
777
778 VMap[*BB] = NewBB;
779
780 // If dominator tree is available, insert nodes to represent cloned blocks.
781 if (DT) {
782 if (Header == *BB)
783 DT->addNewBlock(BB: NewBB, DomBB: InsertTop);
784 else {
785 DomTreeNode *IDom = DT->getNode(BB: *BB)->getIDom();
786 // VMap must contain entry for IDom, as the iteration order is RPO.
787 DT->addNewBlock(BB: NewBB, DomBB: cast<BasicBlock>(Val&: VMap[IDom->getBlock()]));
788 }
789 }
790 }
791
792 {
793 // Identify what other metadata depends on the cloned version. After
794 // cloning, replace the metadata with the corrected version for both
795 // memory instructions and noalias intrinsics.
796 std::string Ext = (Twine("Peel") + Twine(IterNumber)).str();
797 cloneAndAdaptNoAliasScopes(NoAliasDeclScopes: LoopLocalNoAliasDeclScopes, NewBlocks,
798 Context&: Header->getContext(), Ext);
799 }
800
801 // Recursively create the new Loop objects for nested loops, if any,
802 // to preserve LoopInfo.
803 for (Loop *ChildLoop : *L) {
804 cloneLoop(L: ChildLoop, PL: ParentLoop, VM&: VMap, LI, LPM: nullptr);
805 }
806
807 // Hook-up the control flow for the newly inserted blocks.
808 // The new header is hooked up directly to the "top", which is either
809 // the original loop preheader (for the first iteration) or the previous
810 // iteration's exiting block (for every other iteration)
811 InsertTop->getTerminator()->setSuccessor(Idx: 0, BB: cast<BasicBlock>(Val&: VMap[Header]));
812
813 // Similarly, for the latch:
814 // The original exiting edge is still hooked up to the loop exit.
815 // The backedge now goes to the "bottom", which is either the loop's real
816 // header (for the last peeled iteration) or the copied header of the next
817 // iteration (for every other iteration)
818 BasicBlock *NewLatch = cast<BasicBlock>(Val&: VMap[Latch]);
819 auto *LatchTerm = cast<Instruction>(Val: NewLatch->getTerminator());
820 for (unsigned idx = 0, e = LatchTerm->getNumSuccessors(); idx < e; ++idx)
821 if (LatchTerm->getSuccessor(Idx: idx) == Header) {
822 LatchTerm->setSuccessor(Idx: idx, BB: InsertBot);
823 break;
824 }
825 if (DT)
826 DT->changeImmediateDominator(BB: InsertBot, NewBB: NewLatch);
827
828 // The new copy of the loop body starts with a bunch of PHI nodes
829 // that pick an incoming value from either the preheader, or the previous
830 // loop iteration. Since this copy is no longer part of the loop, we
831 // resolve this statically:
832 // For the first iteration, we use the value from the preheader directly.
833 // For any other iteration, we replace the phi with the value generated by
834 // the immediately preceding clone of the loop body (which represents
835 // the previous iteration).
836 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(Val: I); ++I) {
837 PHINode *NewPHI = cast<PHINode>(Val&: VMap[&*I]);
838 if (IterNumber == 0) {
839 VMap[&*I] = NewPHI->getIncomingValueForBlock(BB: PreHeader);
840 } else {
841 Value *LatchVal = NewPHI->getIncomingValueForBlock(BB: Latch);
842 Instruction *LatchInst = dyn_cast<Instruction>(Val: LatchVal);
843 if (LatchInst && L->contains(Inst: LatchInst))
844 VMap[&*I] = LVMap[LatchInst];
845 else
846 VMap[&*I] = LatchVal;
847 }
848 NewPHI->eraseFromParent();
849 }
850
851 // Fix up the outgoing values - we need to add a value for the iteration
852 // we've just created. Note that this must happen *after* the incoming
853 // values are adjusted, since the value going out of the latch may also be
854 // a value coming into the header.
855 for (auto Edge : ExitEdges)
856 for (PHINode &PHI : Edge.second->phis()) {
857 Value *LatchVal = PHI.getIncomingValueForBlock(BB: Edge.first);
858 Instruction *LatchInst = dyn_cast<Instruction>(Val: LatchVal);
859 if (LatchInst && L->contains(Inst: LatchInst))
860 LatchVal = VMap[LatchVal];
861 PHI.addIncoming(V: LatchVal, BB: cast<BasicBlock>(Val&: VMap[Edge.first]));
862 SE.forgetLcssaPhiWithNewPredecessor(L, V: &PHI);
863 }
864
865 // LastValueMap is updated with the values for the current loop
866 // which are used the next time this function is called.
867 for (auto KV : VMap)
868 LVMap[KV.first] = KV.second;
869}
870
871TargetTransformInfo::PeelingPreferences
872llvm::gatherPeelingPreferences(Loop *L, ScalarEvolution &SE,
873 const TargetTransformInfo &TTI,
874 std::optional<bool> UserAllowPeeling,
875 std::optional<bool> UserAllowProfileBasedPeeling,
876 bool UnrollingSpecficValues) {
877 TargetTransformInfo::PeelingPreferences PP;
878
879 // Set the default values.
880 PP.PeelCount = 0;
881 PP.AllowPeeling = true;
882 PP.AllowLoopNestsPeeling = false;
883 PP.PeelProfiledIterations = true;
884
885 // Get the target specifc values.
886 TTI.getPeelingPreferences(L, SE, PP);
887
888 // User specified values using cl::opt.
889 if (UnrollingSpecficValues) {
890 if (UnrollPeelCount.getNumOccurrences() > 0)
891 PP.PeelCount = UnrollPeelCount;
892 if (UnrollAllowPeeling.getNumOccurrences() > 0)
893 PP.AllowPeeling = UnrollAllowPeeling;
894 if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0)
895 PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling;
896 }
897
898 // User specifed values provided by argument.
899 if (UserAllowPeeling)
900 PP.AllowPeeling = *UserAllowPeeling;
901 if (UserAllowProfileBasedPeeling)
902 PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
903
904 return PP;
905}
906
907/// Peel off the first \p PeelCount iterations of loop \p L.
908///
909/// Note that this does not peel them off as a single straight-line block.
910/// Rather, each iteration is peeled off separately, and needs to check the
911/// exit condition.
912/// For loops that dynamically execute \p PeelCount iterations or less
913/// this provides a benefit, since the peeled off iterations, which account
914/// for the bulk of dynamic execution, can be further simplified by scalar
915/// optimizations.
916bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
917 ScalarEvolution *SE, DominatorTree &DT, AssumptionCache *AC,
918 bool PreserveLCSSA, ValueToValueMapTy &LVMap) {
919 assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
920 assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");
921
922 LoopBlocksDFS LoopBlocks(L);
923 LoopBlocks.perform(LI);
924
925 BasicBlock *Header = L->getHeader();
926 BasicBlock *PreHeader = L->getLoopPreheader();
927 BasicBlock *Latch = L->getLoopLatch();
928 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges;
929 L->getExitEdges(ExitEdges);
930
931 // Remember dominators of blocks we might reach through exits to change them
932 // later. Immediate dominator of such block might change, because we add more
933 // routes which can lead to the exit: we can reach it from the peeled
934 // iterations too.
935 DenseMap<BasicBlock *, BasicBlock *> NonLoopBlocksIDom;
936 for (auto *BB : L->blocks()) {
937 auto *BBDomNode = DT.getNode(BB);
938 SmallVector<BasicBlock *, 16> ChildrenToUpdate;
939 for (auto *ChildDomNode : BBDomNode->children()) {
940 auto *ChildBB = ChildDomNode->getBlock();
941 if (!L->contains(BB: ChildBB))
942 ChildrenToUpdate.push_back(Elt: ChildBB);
943 }
944 // The new idom of the block will be the nearest common dominator
945 // of all copies of the previous idom. This is equivalent to the
946 // nearest common dominator of the previous idom and the first latch,
947 // which dominates all copies of the previous idom.
948 BasicBlock *NewIDom = DT.findNearestCommonDominator(A: BB, B: Latch);
949 for (auto *ChildBB : ChildrenToUpdate)
950 NonLoopBlocksIDom[ChildBB] = NewIDom;
951 }
952
953 Function *F = Header->getParent();
954
955 // Set up all the necessary basic blocks. It is convenient to split the
956 // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
957 // body, and a new preheader for the "real" loop.
958
959 // Peeling the first iteration transforms.
960 //
961 // PreHeader:
962 // ...
963 // Header:
964 // LoopBody
965 // If (cond) goto Header
966 // Exit:
967 //
968 // into
969 //
970 // InsertTop:
971 // LoopBody
972 // If (!cond) goto Exit
973 // InsertBot:
974 // NewPreHeader:
975 // ...
976 // Header:
977 // LoopBody
978 // If (cond) goto Header
979 // Exit:
980 //
981 // Each following iteration will split the current bottom anchor in two,
982 // and put the new copy of the loop body between these two blocks. That is,
983 // after peeling another iteration from the example above, we'll split
984 // InsertBot, and get:
985 //
986 // InsertTop:
987 // LoopBody
988 // If (!cond) goto Exit
989 // InsertBot:
990 // LoopBody
991 // If (!cond) goto Exit
992 // InsertBot.next:
993 // NewPreHeader:
994 // ...
995 // Header:
996 // LoopBody
997 // If (cond) goto Header
998 // Exit:
999
1000 BasicBlock *InsertTop = SplitEdge(From: PreHeader, To: Header, DT: &DT, LI);
1001 BasicBlock *InsertBot =
1002 SplitBlock(Old: InsertTop, SplitPt: InsertTop->getTerminator(), DT: &DT, LI);
1003 BasicBlock *NewPreHeader =
1004 SplitBlock(Old: InsertBot, SplitPt: InsertBot->getTerminator(), DT: &DT, LI);
1005
1006 InsertTop->setName(Header->getName() + ".peel.begin");
1007 InsertBot->setName(Header->getName() + ".peel.next");
1008 NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
1009
1010 Instruction *LatchTerm =
1011 cast<Instruction>(Val: cast<BasicBlock>(Val: Latch)->getTerminator());
1012
1013 // If we have branch weight information, we'll want to update it for the
1014 // newly created branches.
1015 DenseMap<Instruction *, WeightInfo> Weights;
1016 initBranchWeights(WeightInfos&: Weights, L);
1017
1018 // Identify what noalias metadata is inside the loop: if it is inside the
1019 // loop, the associated metadata must be cloned for each iteration.
1020 SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
1021 identifyNoAliasScopesToClone(BBs: L->getBlocks(), NoAliasDeclScopes&: LoopLocalNoAliasDeclScopes);
1022
1023 // For each peeled-off iteration, make a copy of the loop.
1024 for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
1025 SmallVector<BasicBlock *, 8> NewBlocks;
1026 ValueToValueMapTy VMap;
1027
1028 cloneLoopBlocks(L, IterNumber: Iter, InsertTop, InsertBot, ExitEdges, NewBlocks,
1029 LoopBlocks, VMap, LVMap, DT: &DT, LI,
1030 LoopLocalNoAliasDeclScopes, SE&: *SE);
1031
1032 // Remap to use values from the current iteration instead of the
1033 // previous one.
1034 remapInstructionsInBlocks(Blocks: NewBlocks, VMap);
1035
1036 // Update IDoms of the blocks reachable through exits.
1037 if (Iter == 0)
1038 for (auto BBIDom : NonLoopBlocksIDom)
1039 DT.changeImmediateDominator(BB: BBIDom.first,
1040 NewBB: cast<BasicBlock>(Val&: LVMap[BBIDom.second]));
1041#ifdef EXPENSIVE_CHECKS
1042 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1043#endif
1044
1045 for (auto &[Term, Info] : Weights) {
1046 auto *TermCopy = cast<Instruction>(Val&: VMap[Term]);
1047 updateBranchWeights(Term: TermCopy, Info);
1048 }
1049
1050 // Remove Loop metadata from the latch branch instruction
1051 // because it is not the Loop's latch branch anymore.
1052 auto *LatchTermCopy = cast<Instruction>(Val&: VMap[LatchTerm]);
1053 LatchTermCopy->setMetadata(KindID: LLVMContext::MD_loop, Node: nullptr);
1054
1055 InsertTop = InsertBot;
1056 InsertBot = SplitBlock(Old: InsertBot, SplitPt: InsertBot->getTerminator(), DT: &DT, LI);
1057 InsertBot->setName(Header->getName() + ".peel.next");
1058
1059 F->splice(ToIt: InsertTop->getIterator(), FromF: F, FromBeginIt: NewBlocks[0]->getIterator(),
1060 FromEndIt: F->end());
1061 }
1062
1063 // Now adjust the phi nodes in the loop header to get their initial values
1064 // from the last peeled-off iteration instead of the preheader.
1065 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(Val: I); ++I) {
1066 PHINode *PHI = cast<PHINode>(Val&: I);
1067 Value *NewVal = PHI->getIncomingValueForBlock(BB: Latch);
1068 Instruction *LatchInst = dyn_cast<Instruction>(Val: NewVal);
1069 if (LatchInst && L->contains(Inst: LatchInst))
1070 NewVal = LVMap[LatchInst];
1071
1072 PHI->setIncomingValueForBlock(BB: NewPreHeader, V: NewVal);
1073 }
1074
1075 for (const auto &[Term, Info] : Weights) {
1076 setBranchWeights(I&: *Term, Weights: Info.Weights, /*IsExpected=*/false);
1077 }
1078
1079 // Update Metadata for count of peeled off iterations.
1080 unsigned AlreadyPeeled = 0;
1081 if (auto Peeled = getOptionalIntLoopAttribute(TheLoop: L, Name: PeeledCountMetaData))
1082 AlreadyPeeled = *Peeled;
1083 addStringMetadataToLoop(TheLoop: L, MDString: PeeledCountMetaData, V: AlreadyPeeled + PeelCount);
1084
1085 if (Loop *ParentLoop = L->getParentLoop())
1086 L = ParentLoop;
1087
1088 // We modified the loop, update SE.
1089 SE->forgetTopmostLoop(L);
1090 SE->forgetBlockAndLoopDispositions();
1091
1092#ifdef EXPENSIVE_CHECKS
1093 // Finally DomtTree must be correct.
1094 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1095#endif
1096
1097 // FIXME: Incrementally update loop-simplify
1098 simplifyLoop(L, DT: &DT, LI, SE, AC, MSSAU: nullptr, PreserveLCSSA);
1099
1100 NumPeeled++;
1101
1102 return true;
1103}
1104