1 | //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the CodeGenDAGPatterns class, which is used to read and |
10 | // represent the patterns present in a .td file for instructions. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "CodeGenDAGPatterns.h" |
15 | #include "CodeGenInstruction.h" |
16 | #include "CodeGenRegisters.h" |
17 | #include "llvm/ADT/DenseSet.h" |
18 | #include "llvm/ADT/MapVector.h" |
19 | #include "llvm/ADT/STLExtras.h" |
20 | #include "llvm/ADT/SmallSet.h" |
21 | #include "llvm/ADT/SmallString.h" |
22 | #include "llvm/ADT/StringExtras.h" |
23 | #include "llvm/ADT/StringMap.h" |
24 | #include "llvm/ADT/Twine.h" |
25 | #include "llvm/Support/Debug.h" |
26 | #include "llvm/Support/ErrorHandling.h" |
27 | #include "llvm/Support/TypeSize.h" |
28 | #include "llvm/TableGen/Error.h" |
29 | #include "llvm/TableGen/Record.h" |
30 | #include <algorithm> |
31 | #include <cstdio> |
32 | #include <iterator> |
33 | #include <set> |
34 | using namespace llvm; |
35 | |
36 | #define DEBUG_TYPE "dag-patterns" |
37 | |
38 | static inline bool isIntegerOrPtr(MVT VT) { |
39 | return VT.isInteger() || VT == MVT::iPTR; |
40 | } |
41 | static inline bool isFloatingPoint(MVT VT) { return VT.isFloatingPoint(); } |
42 | static inline bool isVector(MVT VT) { return VT.isVector(); } |
43 | static inline bool isScalar(MVT VT) { return !VT.isVector(); } |
44 | |
45 | template <typename Predicate> |
46 | static bool berase_if(MachineValueTypeSet &S, Predicate P) { |
47 | bool Erased = false; |
48 | // It is ok to iterate over MachineValueTypeSet and remove elements from it |
49 | // at the same time. |
50 | for (MVT T : S) { |
51 | if (!P(T)) |
52 | continue; |
53 | Erased = true; |
54 | S.erase(T); |
55 | } |
56 | return Erased; |
57 | } |
58 | |
59 | void MachineValueTypeSet::writeToStream(raw_ostream &OS) const { |
60 | SmallVector<MVT, 4> Types(begin(), end()); |
61 | array_pod_sort(Start: Types.begin(), End: Types.end()); |
62 | |
63 | OS << '['; |
64 | ListSeparator LS(" " ); |
65 | for (const MVT &T : Types) |
66 | OS << LS << ValueTypeByHwMode::getMVTName(T); |
67 | OS << ']'; |
68 | } |
69 | |
70 | // --- TypeSetByHwMode |
71 | |
72 | // This is a parameterized type-set class. For each mode there is a list |
73 | // of types that are currently possible for a given tree node. Type |
74 | // inference will apply to each mode separately. |
75 | |
76 | TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) { |
77 | // Take the address space from the first type in the list. |
78 | if (!VTList.empty()) |
79 | AddrSpace = VTList[0].PtrAddrSpace; |
80 | |
81 | for (const ValueTypeByHwMode &VVT : VTList) |
82 | insert(VVT); |
83 | } |
84 | |
85 | bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const { |
86 | for (const auto &I : *this) { |
87 | if (I.second.size() > 1) |
88 | return false; |
89 | if (!AllowEmpty && I.second.empty()) |
90 | return false; |
91 | } |
92 | return true; |
93 | } |
94 | |
95 | ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const { |
96 | assert(isValueTypeByHwMode(true) && |
97 | "The type set has multiple types for at least one HW mode" ); |
98 | ValueTypeByHwMode VVT; |
99 | VVT.PtrAddrSpace = AddrSpace; |
100 | |
101 | for (const auto &I : *this) { |
102 | MVT T = I.second.empty() ? MVT::Other : *I.second.begin(); |
103 | VVT.getOrCreateTypeForMode(Mode: I.first, Type: T); |
104 | } |
105 | return VVT; |
106 | } |
107 | |
108 | bool TypeSetByHwMode::isPossible() const { |
109 | for (const auto &I : *this) |
110 | if (!I.second.empty()) |
111 | return true; |
112 | return false; |
113 | } |
114 | |
115 | bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) { |
116 | bool Changed = false; |
117 | bool ContainsDefault = false; |
118 | MVT DT = MVT::Other; |
119 | |
120 | for (const auto &P : VVT) { |
121 | unsigned M = P.first; |
122 | // Make sure there exists a set for each specific mode from VVT. |
123 | Changed |= getOrCreate(Mode: M).insert(T: P.second).second; |
124 | // Cache VVT's default mode. |
125 | if (DefaultMode == M) { |
126 | ContainsDefault = true; |
127 | DT = P.second; |
128 | } |
129 | } |
130 | |
131 | // If VVT has a default mode, add the corresponding type to all |
132 | // modes in "this" that do not exist in VVT. |
133 | if (ContainsDefault) |
134 | for (auto &I : *this) |
135 | if (!VVT.hasMode(M: I.first)) |
136 | Changed |= I.second.insert(T: DT).second; |
137 | |
138 | return Changed; |
139 | } |
140 | |
141 | // Constrain the type set to be the intersection with VTS. |
142 | bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) { |
143 | bool Changed = false; |
144 | if (hasDefault()) { |
145 | for (const auto &I : VTS) { |
146 | unsigned M = I.first; |
147 | if (M == DefaultMode || hasMode(M)) |
148 | continue; |
149 | Map.insert(x: {M, Map.at(k: DefaultMode)}); |
150 | Changed = true; |
151 | } |
152 | } |
153 | |
154 | for (auto &I : *this) { |
155 | unsigned M = I.first; |
156 | SetType &S = I.second; |
157 | if (VTS.hasMode(M) || VTS.hasDefault()) { |
158 | Changed |= intersect(Out&: I.second, In: VTS.get(Mode: M)); |
159 | } else if (!S.empty()) { |
160 | S.clear(); |
161 | Changed = true; |
162 | } |
163 | } |
164 | return Changed; |
165 | } |
166 | |
167 | template <typename Predicate> bool TypeSetByHwMode::constrain(Predicate P) { |
168 | bool Changed = false; |
169 | for (auto &I : *this) |
170 | Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); }); |
171 | return Changed; |
172 | } |
173 | |
174 | template <typename Predicate> |
175 | bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) { |
176 | assert(empty()); |
177 | for (const auto &I : VTS) { |
178 | SetType &S = getOrCreate(Mode: I.first); |
179 | for (auto J : I.second) |
180 | if (P(J)) |
181 | S.insert(T: J); |
182 | } |
183 | return !empty(); |
184 | } |
185 | |
186 | void TypeSetByHwMode::writeToStream(raw_ostream &OS) const { |
187 | SmallVector<unsigned, 4> Modes; |
188 | Modes.reserve(N: Map.size()); |
189 | |
190 | for (const auto &I : *this) |
191 | Modes.push_back(Elt: I.first); |
192 | if (Modes.empty()) { |
193 | OS << "{}" ; |
194 | return; |
195 | } |
196 | array_pod_sort(Start: Modes.begin(), End: Modes.end()); |
197 | |
198 | OS << '{'; |
199 | for (unsigned M : Modes) { |
200 | OS << ' ' << getModeName(Mode: M) << ':'; |
201 | get(Mode: M).writeToStream(OS); |
202 | } |
203 | OS << " }" ; |
204 | } |
205 | |
206 | bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const { |
207 | // The isSimple call is much quicker than hasDefault - check this first. |
208 | bool IsSimple = isSimple(); |
209 | bool VTSIsSimple = VTS.isSimple(); |
210 | if (IsSimple && VTSIsSimple) |
211 | return getSimple() == VTS.getSimple(); |
212 | |
213 | // Speedup: We have a default if the set is simple. |
214 | bool HaveDefault = IsSimple || hasDefault(); |
215 | bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault(); |
216 | if (HaveDefault != VTSHaveDefault) |
217 | return false; |
218 | |
219 | SmallSet<unsigned, 4> Modes; |
220 | for (auto &I : *this) |
221 | Modes.insert(V: I.first); |
222 | for (const auto &I : VTS) |
223 | Modes.insert(V: I.first); |
224 | |
225 | if (HaveDefault) { |
226 | // Both sets have default mode. |
227 | for (unsigned M : Modes) { |
228 | if (get(Mode: M) != VTS.get(Mode: M)) |
229 | return false; |
230 | } |
231 | } else { |
232 | // Neither set has default mode. |
233 | for (unsigned M : Modes) { |
234 | // If there is no default mode, an empty set is equivalent to not having |
235 | // the corresponding mode. |
236 | bool NoModeThis = !hasMode(M) || get(Mode: M).empty(); |
237 | bool NoModeVTS = !VTS.hasMode(M) || VTS.get(Mode: M).empty(); |
238 | if (NoModeThis != NoModeVTS) |
239 | return false; |
240 | if (!NoModeThis) |
241 | if (get(Mode: M) != VTS.get(Mode: M)) |
242 | return false; |
243 | } |
244 | } |
245 | |
246 | return true; |
247 | } |
248 | |
249 | namespace llvm { |
250 | raw_ostream &operator<<(raw_ostream &OS, const MachineValueTypeSet &T) { |
251 | T.writeToStream(OS); |
252 | return OS; |
253 | } |
254 | raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) { |
255 | T.writeToStream(OS); |
256 | return OS; |
257 | } |
258 | } // namespace llvm |
259 | |
260 | LLVM_DUMP_METHOD |
261 | void TypeSetByHwMode::dump() const { dbgs() << *this << '\n'; } |
262 | |
263 | bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) { |
264 | auto IntersectP = [&](std::optional<MVT> WildVT, function_ref<bool(MVT)> P) { |
265 | // Complement of In within this partition. |
266 | auto CompIn = [&](MVT T) -> bool { return !In.count(T) && P(T); }; |
267 | |
268 | if (!WildVT) |
269 | return berase_if(S&: Out, P: CompIn); |
270 | |
271 | bool OutW = Out.count(T: *WildVT), InW = In.count(T: *WildVT); |
272 | if (OutW == InW) |
273 | return berase_if(S&: Out, P: CompIn); |
274 | |
275 | // Compute the intersection of scalars separately to account for only one |
276 | // set containing WildVT. |
277 | // The intersection of WildVT with a set of corresponding types that does |
278 | // not include WildVT will result in the most specific type: |
279 | // - WildVT is more specific than any set with two elements or more |
280 | // - WildVT is less specific than any single type. |
281 | // For example, for iPTR and scalar integer types |
282 | // { iPTR } * { i32 } -> { i32 } |
283 | // { iPTR } * { i32 i64 } -> { iPTR } |
284 | // and |
285 | // { iPTR i32 } * { i32 } -> { i32 } |
286 | // { iPTR i32 } * { i32 i64 } -> { i32 i64 } |
287 | // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 } |
288 | |
289 | // Looking at just this partition, let In' = elements only in In, |
290 | // Out' = elements only in Out, and IO = elements common to both. Normally |
291 | // IO would be returned as the result of the intersection, but we need to |
292 | // account for WildVT being a "wildcard" of sorts. Since elements in IO are |
293 | // those that match both sets exactly, they will all belong to the output. |
294 | // If any of the "leftovers" (i.e. In' or Out') contain WildVT, it means |
295 | // that the other set doesn't have it, but it could have (1) a more |
296 | // specific type, or (2) a set of types that is less specific. The |
297 | // "leftovers" from the other set is what we want to examine more closely. |
298 | |
299 | auto Leftovers = [&](const SetType &A, const SetType &B) { |
300 | SetType Diff = A; |
301 | berase_if(S&: Diff, P: [&](MVT T) { return B.count(T) || !P(T); }); |
302 | return Diff; |
303 | }; |
304 | |
305 | if (InW) { |
306 | SetType OutLeftovers = Leftovers(Out, In); |
307 | if (OutLeftovers.size() < 2) { |
308 | // WildVT not added to Out. Keep the possible single leftover. |
309 | return false; |
310 | } |
311 | // WildVT replaces the leftovers. |
312 | berase_if(S&: Out, P: CompIn); |
313 | Out.insert(T: *WildVT); |
314 | return true; |
315 | } |
316 | |
317 | // OutW == true |
318 | SetType InLeftovers = Leftovers(In, Out); |
319 | unsigned SizeOut = Out.size(); |
320 | berase_if(S&: Out, P: CompIn); // This will remove at least the WildVT. |
321 | if (InLeftovers.size() < 2) { |
322 | // WildVT deleted from Out. Add back the possible single leftover. |
323 | Out.insert(S: InLeftovers); |
324 | return true; |
325 | } |
326 | |
327 | // Keep the WildVT in Out. |
328 | Out.insert(T: *WildVT); |
329 | // If WildVT was the only element initially removed from Out, then Out |
330 | // has not changed. |
331 | return SizeOut != Out.size(); |
332 | }; |
333 | |
334 | // Note: must be non-overlapping |
335 | using WildPartT = std::pair<MVT, std::function<bool(MVT)>>; |
336 | static const WildPartT WildParts[] = { |
337 | {MVT::iPTR, [](MVT T) { return T.isScalarInteger() || T == MVT::iPTR; }}, |
338 | }; |
339 | |
340 | bool Changed = false; |
341 | for (const auto &I : WildParts) |
342 | Changed |= IntersectP(I.first, I.second); |
343 | |
344 | Changed |= IntersectP(std::nullopt, [&](MVT T) { |
345 | return !any_of(Range: WildParts, P: [=](const WildPartT &I) { return I.second(T); }); |
346 | }); |
347 | |
348 | return Changed; |
349 | } |
350 | |
351 | bool TypeSetByHwMode::validate() const { |
352 | if (empty()) |
353 | return true; |
354 | bool AllEmpty = true; |
355 | for (const auto &I : *this) |
356 | AllEmpty &= I.second.empty(); |
357 | return !AllEmpty; |
358 | } |
359 | |
360 | // --- TypeInfer |
361 | |
362 | bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out, |
363 | const TypeSetByHwMode &In) const { |
364 | ValidateOnExit _1(Out, *this); |
365 | In.validate(); |
366 | if (In.empty() || Out == In || TP.hasError()) |
367 | return false; |
368 | if (Out.empty()) { |
369 | Out = In; |
370 | return true; |
371 | } |
372 | |
373 | bool Changed = Out.constrain(VTS: In); |
374 | if (Changed && Out.empty()) |
375 | TP.error(Msg: "Type contradiction" ); |
376 | |
377 | return Changed; |
378 | } |
379 | |
380 | bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) { |
381 | ValidateOnExit _1(Out, *this); |
382 | if (TP.hasError()) |
383 | return false; |
384 | assert(!Out.empty() && "cannot pick from an empty set" ); |
385 | |
386 | bool Changed = false; |
387 | for (auto &I : Out) { |
388 | TypeSetByHwMode::SetType &S = I.second; |
389 | if (S.size() <= 1) |
390 | continue; |
391 | MVT T = *S.begin(); // Pick the first element. |
392 | S.clear(); |
393 | S.insert(T); |
394 | Changed = true; |
395 | } |
396 | return Changed; |
397 | } |
398 | |
399 | bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) { |
400 | ValidateOnExit _1(Out, *this); |
401 | if (TP.hasError()) |
402 | return false; |
403 | if (!Out.empty()) |
404 | return Out.constrain(P: isIntegerOrPtr); |
405 | |
406 | return Out.assign_if(VTS: getLegalTypes(), P: isIntegerOrPtr); |
407 | } |
408 | |
409 | bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) { |
410 | ValidateOnExit _1(Out, *this); |
411 | if (TP.hasError()) |
412 | return false; |
413 | if (!Out.empty()) |
414 | return Out.constrain(P: isFloatingPoint); |
415 | |
416 | return Out.assign_if(VTS: getLegalTypes(), P: isFloatingPoint); |
417 | } |
418 | |
419 | bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) { |
420 | ValidateOnExit _1(Out, *this); |
421 | if (TP.hasError()) |
422 | return false; |
423 | if (!Out.empty()) |
424 | return Out.constrain(P: isScalar); |
425 | |
426 | return Out.assign_if(VTS: getLegalTypes(), P: isScalar); |
427 | } |
428 | |
429 | bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) { |
430 | ValidateOnExit _1(Out, *this); |
431 | if (TP.hasError()) |
432 | return false; |
433 | if (!Out.empty()) |
434 | return Out.constrain(P: isVector); |
435 | |
436 | return Out.assign_if(VTS: getLegalTypes(), P: isVector); |
437 | } |
438 | |
439 | bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) { |
440 | ValidateOnExit _1(Out, *this); |
441 | if (TP.hasError() || !Out.empty()) |
442 | return false; |
443 | |
444 | Out = getLegalTypes(); |
445 | return true; |
446 | } |
447 | |
448 | template <typename Iter, typename Pred, typename Less> |
449 | static Iter min_if(Iter B, Iter E, Pred P, Less L) { |
450 | if (B == E) |
451 | return E; |
452 | Iter Min = E; |
453 | for (Iter I = B; I != E; ++I) { |
454 | if (!P(*I)) |
455 | continue; |
456 | if (Min == E || L(*I, *Min)) |
457 | Min = I; |
458 | } |
459 | return Min; |
460 | } |
461 | |
462 | template <typename Iter, typename Pred, typename Less> |
463 | static Iter max_if(Iter B, Iter E, Pred P, Less L) { |
464 | if (B == E) |
465 | return E; |
466 | Iter Max = E; |
467 | for (Iter I = B; I != E; ++I) { |
468 | if (!P(*I)) |
469 | continue; |
470 | if (Max == E || L(*Max, *I)) |
471 | Max = I; |
472 | } |
473 | return Max; |
474 | } |
475 | |
476 | /// Make sure that for each type in Small, there exists a larger type in Big. |
477 | bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big, |
478 | bool SmallIsVT) { |
479 | ValidateOnExit _1(Small, *this), _2(Big, *this); |
480 | if (TP.hasError()) |
481 | return false; |
482 | bool Changed = false; |
483 | |
484 | assert((!SmallIsVT || !Small.empty()) && |
485 | "Small should not be empty for SDTCisVTSmallerThanOp" ); |
486 | |
487 | if (Small.empty()) |
488 | Changed |= EnforceAny(Out&: Small); |
489 | if (Big.empty()) |
490 | Changed |= EnforceAny(Out&: Big); |
491 | |
492 | assert(Small.hasDefault() && Big.hasDefault()); |
493 | |
494 | SmallVector<unsigned, 4> Modes; |
495 | union_modes(A: Small, B: Big, Modes); |
496 | |
497 | // 1. Only allow integer or floating point types and make sure that |
498 | // both sides are both integer or both floating point. |
499 | // 2. Make sure that either both sides have vector types, or neither |
500 | // of them does. |
501 | for (unsigned M : Modes) { |
502 | TypeSetByHwMode::SetType &S = Small.get(Mode: M); |
503 | TypeSetByHwMode::SetType &B = Big.get(Mode: M); |
504 | |
505 | assert((!SmallIsVT || !S.empty()) && "Expected non-empty type" ); |
506 | |
507 | if (any_of(Range&: S, P: isIntegerOrPtr) && any_of(Range&: B, P: isIntegerOrPtr)) { |
508 | auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); }; |
509 | Changed |= berase_if(S, P: NotInt); |
510 | Changed |= berase_if(S&: B, P: NotInt); |
511 | } else if (any_of(Range&: S, P: isFloatingPoint) && any_of(Range&: B, P: isFloatingPoint)) { |
512 | auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); }; |
513 | Changed |= berase_if(S, P: NotFP); |
514 | Changed |= berase_if(S&: B, P: NotFP); |
515 | } else if (SmallIsVT && B.empty()) { |
516 | // B is empty and since S is a specific VT, it will never be empty. Don't |
517 | // report this as a change, just clear S and continue. This prevents an |
518 | // infinite loop. |
519 | S.clear(); |
520 | } else if (S.empty() || B.empty()) { |
521 | Changed = !S.empty() || !B.empty(); |
522 | S.clear(); |
523 | B.clear(); |
524 | } else { |
525 | TP.error(Msg: "Incompatible types" ); |
526 | return Changed; |
527 | } |
528 | |
529 | if (none_of(Range&: S, P: isVector) || none_of(Range&: B, P: isVector)) { |
530 | Changed |= berase_if(S, P: isVector); |
531 | Changed |= berase_if(S&: B, P: isVector); |
532 | } |
533 | } |
534 | |
535 | auto LT = [](MVT A, MVT B) -> bool { |
536 | // Always treat non-scalable MVTs as smaller than scalable MVTs for the |
537 | // purposes of ordering. |
538 | auto ASize = std::tuple(A.isScalableVector(), A.getScalarSizeInBits(), |
539 | A.getSizeInBits().getKnownMinValue()); |
540 | auto BSize = std::tuple(B.isScalableVector(), B.getScalarSizeInBits(), |
541 | B.getSizeInBits().getKnownMinValue()); |
542 | return ASize < BSize; |
543 | }; |
544 | auto SameKindLE = [](MVT A, MVT B) -> bool { |
545 | // This function is used when removing elements: when a vector is compared |
546 | // to a non-vector or a scalable vector to any non-scalable MVT, it should |
547 | // return false (to avoid removal). |
548 | if (std::tuple(A.isVector(), A.isScalableVector()) != |
549 | std::tuple(B.isVector(), B.isScalableVector())) |
550 | return false; |
551 | |
552 | return std::tuple(A.getScalarSizeInBits(), |
553 | A.getSizeInBits().getKnownMinValue()) <= |
554 | std::tuple(B.getScalarSizeInBits(), |
555 | B.getSizeInBits().getKnownMinValue()); |
556 | }; |
557 | |
558 | for (unsigned M : Modes) { |
559 | TypeSetByHwMode::SetType &S = Small.get(Mode: M); |
560 | TypeSetByHwMode::SetType &B = Big.get(Mode: M); |
561 | // MinS = min scalar in Small, remove all scalars from Big that are |
562 | // smaller-or-equal than MinS. |
563 | auto MinS = min_if(B: S.begin(), E: S.end(), P: isScalar, L: LT); |
564 | if (MinS != S.end()) |
565 | Changed |= |
566 | berase_if(S&: B, P: std::bind(f&: SameKindLE, args: std::placeholders::_1, args: *MinS)); |
567 | |
568 | // MaxS = max scalar in Big, remove all scalars from Small that are |
569 | // larger than MaxS. |
570 | auto MaxS = max_if(B: B.begin(), E: B.end(), P: isScalar, L: LT); |
571 | if (MaxS != B.end()) |
572 | Changed |= |
573 | berase_if(S, P: std::bind(f&: SameKindLE, args: *MaxS, args: std::placeholders::_1)); |
574 | |
575 | // MinV = min vector in Small, remove all vectors from Big that are |
576 | // smaller-or-equal than MinV. |
577 | auto MinV = min_if(B: S.begin(), E: S.end(), P: isVector, L: LT); |
578 | if (MinV != S.end()) |
579 | Changed |= |
580 | berase_if(S&: B, P: std::bind(f&: SameKindLE, args: std::placeholders::_1, args: *MinV)); |
581 | |
582 | // MaxV = max vector in Big, remove all vectors from Small that are |
583 | // larger than MaxV. |
584 | auto MaxV = max_if(B: B.begin(), E: B.end(), P: isVector, L: LT); |
585 | if (MaxV != B.end()) |
586 | Changed |= |
587 | berase_if(S, P: std::bind(f&: SameKindLE, args: *MaxV, args: std::placeholders::_1)); |
588 | } |
589 | |
590 | return Changed; |
591 | } |
592 | |
593 | /// 1. Ensure that for each type T in Vec, T is a vector type, and that |
594 | /// for each type U in Elem, U is a scalar type. |
595 | /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector) |
596 | /// type T in Vec, such that U is the element type of T. |
597 | bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, |
598 | TypeSetByHwMode &Elem) { |
599 | ValidateOnExit _1(Vec, *this), _2(Elem, *this); |
600 | if (TP.hasError()) |
601 | return false; |
602 | bool Changed = false; |
603 | |
604 | if (Vec.empty()) |
605 | Changed |= EnforceVector(Out&: Vec); |
606 | if (Elem.empty()) |
607 | Changed |= EnforceScalar(Out&: Elem); |
608 | |
609 | SmallVector<unsigned, 4> Modes; |
610 | union_modes(A: Vec, B: Elem, Modes); |
611 | for (unsigned M : Modes) { |
612 | TypeSetByHwMode::SetType &V = Vec.get(Mode: M); |
613 | TypeSetByHwMode::SetType &E = Elem.get(Mode: M); |
614 | |
615 | Changed |= berase_if(S&: V, P: isScalar); // Scalar = !vector |
616 | Changed |= berase_if(S&: E, P: isVector); // Vector = !scalar |
617 | assert(!V.empty() && !E.empty()); |
618 | |
619 | MachineValueTypeSet VT, ST; |
620 | // Collect element types from the "vector" set. |
621 | for (MVT T : V) |
622 | VT.insert(T: T.getVectorElementType()); |
623 | // Collect scalar types from the "element" set. |
624 | for (MVT T : E) |
625 | ST.insert(T); |
626 | |
627 | // Remove from V all (vector) types whose element type is not in S. |
628 | Changed |= berase_if(S&: V, P: [&ST](MVT T) -> bool { |
629 | return !ST.count(T: T.getVectorElementType()); |
630 | }); |
631 | // Remove from E all (scalar) types, for which there is no corresponding |
632 | // type in V. |
633 | Changed |= berase_if(S&: E, P: [&VT](MVT T) -> bool { return !VT.count(T); }); |
634 | } |
635 | |
636 | return Changed; |
637 | } |
638 | |
639 | bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, |
640 | const ValueTypeByHwMode &VVT) { |
641 | TypeSetByHwMode Tmp(VVT); |
642 | ValidateOnExit _1(Vec, *this), _2(Tmp, *this); |
643 | return EnforceVectorEltTypeIs(Vec, Elem&: Tmp); |
644 | } |
645 | |
646 | /// Ensure that for each type T in Sub, T is a vector type, and there |
647 | /// exists a type U in Vec such that U is a vector type with the same |
648 | /// element type as T and at least as many elements as T. |
649 | bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, |
650 | TypeSetByHwMode &Sub) { |
651 | ValidateOnExit _1(Vec, *this), _2(Sub, *this); |
652 | if (TP.hasError()) |
653 | return false; |
654 | |
655 | /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B. |
656 | auto IsSubVec = [](MVT B, MVT P) -> bool { |
657 | if (!B.isVector() || !P.isVector()) |
658 | return false; |
659 | // Logically a <4 x i32> is a valid subvector of <n x 4 x i32> |
660 | // but until there are obvious use-cases for this, keep the |
661 | // types separate. |
662 | if (B.isScalableVector() != P.isScalableVector()) |
663 | return false; |
664 | if (B.getVectorElementType() != P.getVectorElementType()) |
665 | return false; |
666 | return B.getVectorMinNumElements() < P.getVectorMinNumElements(); |
667 | }; |
668 | |
669 | /// Return true if S has no element (vector type) that T is a sub-vector of, |
670 | /// i.e. has the same element type as T and more elements. |
671 | auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { |
672 | for (auto I : S) |
673 | if (IsSubVec(T, I)) |
674 | return false; |
675 | return true; |
676 | }; |
677 | |
678 | /// Return true if S has no element (vector type) that T is a super-vector |
679 | /// of, i.e. has the same element type as T and fewer elements. |
680 | auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { |
681 | for (auto I : S) |
682 | if (IsSubVec(I, T)) |
683 | return false; |
684 | return true; |
685 | }; |
686 | |
687 | bool Changed = false; |
688 | |
689 | if (Vec.empty()) |
690 | Changed |= EnforceVector(Out&: Vec); |
691 | if (Sub.empty()) |
692 | Changed |= EnforceVector(Out&: Sub); |
693 | |
694 | SmallVector<unsigned, 4> Modes; |
695 | union_modes(A: Vec, B: Sub, Modes); |
696 | for (unsigned M : Modes) { |
697 | TypeSetByHwMode::SetType &S = Sub.get(Mode: M); |
698 | TypeSetByHwMode::SetType &V = Vec.get(Mode: M); |
699 | |
700 | Changed |= berase_if(S, P: isScalar); |
701 | |
702 | // Erase all types from S that are not sub-vectors of a type in V. |
703 | Changed |= berase_if(S, P: std::bind(f&: NoSubV, args&: V, args: std::placeholders::_1)); |
704 | |
705 | // Erase all types from V that are not super-vectors of a type in S. |
706 | Changed |= berase_if(S&: V, P: std::bind(f&: NoSupV, args&: S, args: std::placeholders::_1)); |
707 | } |
708 | |
709 | return Changed; |
710 | } |
711 | |
712 | /// 1. Ensure that V has a scalar type iff W has a scalar type. |
713 | /// 2. Ensure that for each vector type T in V, there exists a vector |
714 | /// type U in W, such that T and U have the same number of elements. |
715 | /// 3. Ensure that for each vector type U in W, there exists a vector |
716 | /// type T in V, such that T and U have the same number of elements |
717 | /// (reverse of 2). |
718 | bool TypeInfer::(TypeSetByHwMode &V, TypeSetByHwMode &W) { |
719 | ValidateOnExit _1(V, *this), _2(W, *this); |
720 | if (TP.hasError()) |
721 | return false; |
722 | |
723 | bool Changed = false; |
724 | if (V.empty()) |
725 | Changed |= EnforceAny(Out&: V); |
726 | if (W.empty()) |
727 | Changed |= EnforceAny(Out&: W); |
728 | |
729 | // An actual vector type cannot have 0 elements, so we can treat scalars |
730 | // as zero-length vectors. This way both vectors and scalars can be |
731 | // processed identically. |
732 | auto NoLength = [](const SmallDenseSet<ElementCount> &Lengths, |
733 | MVT T) -> bool { |
734 | return !Lengths.count(V: T.isVector() ? T.getVectorElementCount() |
735 | : ElementCount()); |
736 | }; |
737 | |
738 | SmallVector<unsigned, 4> Modes; |
739 | union_modes(A: V, B: W, Modes); |
740 | for (unsigned M : Modes) { |
741 | TypeSetByHwMode::SetType &VS = V.get(Mode: M); |
742 | TypeSetByHwMode::SetType &WS = W.get(Mode: M); |
743 | |
744 | SmallDenseSet<ElementCount> VN, WN; |
745 | for (MVT T : VS) |
746 | VN.insert(V: T.isVector() ? T.getVectorElementCount() : ElementCount()); |
747 | for (MVT T : WS) |
748 | WN.insert(V: T.isVector() ? T.getVectorElementCount() : ElementCount()); |
749 | |
750 | Changed |= berase_if(S&: VS, P: std::bind(f&: NoLength, args&: WN, args: std::placeholders::_1)); |
751 | Changed |= berase_if(S&: WS, P: std::bind(f&: NoLength, args&: VN, args: std::placeholders::_1)); |
752 | } |
753 | return Changed; |
754 | } |
755 | |
756 | namespace { |
757 | struct TypeSizeComparator { |
758 | bool operator()(const TypeSize &LHS, const TypeSize &RHS) const { |
759 | return std::tuple(LHS.isScalable(), LHS.getKnownMinValue()) < |
760 | std::tuple(RHS.isScalable(), RHS.getKnownMinValue()); |
761 | } |
762 | }; |
763 | } // end anonymous namespace |
764 | |
765 | /// 1. Ensure that for each type T in A, there exists a type U in B, |
766 | /// such that T and U have equal size in bits. |
767 | /// 2. Ensure that for each type U in B, there exists a type T in A |
768 | /// such that T and U have equal size in bits (reverse of 1). |
769 | bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) { |
770 | ValidateOnExit _1(A, *this), _2(B, *this); |
771 | if (TP.hasError()) |
772 | return false; |
773 | bool Changed = false; |
774 | if (A.empty()) |
775 | Changed |= EnforceAny(Out&: A); |
776 | if (B.empty()) |
777 | Changed |= EnforceAny(Out&: B); |
778 | |
779 | typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet; |
780 | |
781 | auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool { |
782 | return !Sizes.count(V: T.getSizeInBits()); |
783 | }; |
784 | |
785 | SmallVector<unsigned, 4> Modes; |
786 | union_modes(A, B, Modes); |
787 | for (unsigned M : Modes) { |
788 | TypeSetByHwMode::SetType &AS = A.get(Mode: M); |
789 | TypeSetByHwMode::SetType &BS = B.get(Mode: M); |
790 | TypeSizeSet AN, BN; |
791 | |
792 | for (MVT T : AS) |
793 | AN.insert(V: T.getSizeInBits()); |
794 | for (MVT T : BS) |
795 | BN.insert(V: T.getSizeInBits()); |
796 | |
797 | Changed |= berase_if(S&: AS, P: std::bind(f&: NoSize, args&: BN, args: std::placeholders::_1)); |
798 | Changed |= berase_if(S&: BS, P: std::bind(f&: NoSize, args&: AN, args: std::placeholders::_1)); |
799 | } |
800 | |
801 | return Changed; |
802 | } |
803 | |
804 | void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) const { |
805 | ValidateOnExit _1(VTS, *this); |
806 | const TypeSetByHwMode &Legal = getLegalTypes(); |
807 | assert(Legal.isSimple() && "Default-mode only expected" ); |
808 | const TypeSetByHwMode::SetType &LegalTypes = Legal.getSimple(); |
809 | |
810 | for (auto &I : VTS) |
811 | expandOverloads(Out&: I.second, Legal: LegalTypes); |
812 | } |
813 | |
814 | void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out, |
815 | const TypeSetByHwMode::SetType &Legal) const { |
816 | if (Out.count(T: MVT::iPTRAny)) { |
817 | Out.erase(T: MVT::iPTRAny); |
818 | Out.insert(T: MVT::iPTR); |
819 | } else if (Out.count(T: MVT::iAny)) { |
820 | Out.erase(T: MVT::iAny); |
821 | for (MVT T : MVT::integer_valuetypes()) |
822 | if (Legal.count(T)) |
823 | Out.insert(T); |
824 | for (MVT T : MVT::integer_fixedlen_vector_valuetypes()) |
825 | if (Legal.count(T)) |
826 | Out.insert(T); |
827 | for (MVT T : MVT::integer_scalable_vector_valuetypes()) |
828 | if (Legal.count(T)) |
829 | Out.insert(T); |
830 | } else if (Out.count(T: MVT::fAny)) { |
831 | Out.erase(T: MVT::fAny); |
832 | for (MVT T : MVT::fp_valuetypes()) |
833 | if (Legal.count(T)) |
834 | Out.insert(T); |
835 | for (MVT T : MVT::fp_fixedlen_vector_valuetypes()) |
836 | if (Legal.count(T)) |
837 | Out.insert(T); |
838 | for (MVT T : MVT::fp_scalable_vector_valuetypes()) |
839 | if (Legal.count(T)) |
840 | Out.insert(T); |
841 | } else if (Out.count(T: MVT::vAny)) { |
842 | Out.erase(T: MVT::vAny); |
843 | for (MVT T : MVT::vector_valuetypes()) |
844 | if (Legal.count(T)) |
845 | Out.insert(T); |
846 | } else if (Out.count(T: MVT::Any)) { |
847 | Out.erase(T: MVT::Any); |
848 | for (MVT T : MVT::all_valuetypes()) |
849 | if (Legal.count(T)) |
850 | Out.insert(T); |
851 | } |
852 | } |
853 | |
854 | const TypeSetByHwMode &TypeInfer::getLegalTypes() const { |
855 | if (!LegalTypesCached) { |
856 | TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(Mode: DefaultMode); |
857 | // Stuff all types from all modes into the default mode. |
858 | const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes(); |
859 | for (const auto &I : LTS) |
860 | LegalTypes.insert(S: I.second); |
861 | LegalTypesCached = true; |
862 | } |
863 | assert(LegalCache.isSimple() && "Default-mode only expected" ); |
864 | return LegalCache; |
865 | } |
866 | |
867 | TypeInfer::ValidateOnExit::~ValidateOnExit() { |
868 | if (Infer.Validate && !VTS.validate()) { |
869 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
870 | errs() << "Type set is empty for each HW mode:\n" |
871 | "possible type contradiction in the pattern below " |
872 | "(use -print-records with llvm-tblgen to see all " |
873 | "expanded records).\n" ; |
874 | Infer.TP.dump(); |
875 | errs() << "Generated from record:\n" ; |
876 | Infer.TP.getRecord()->dump(); |
877 | #endif |
878 | PrintFatalError(ErrorLoc: Infer.TP.getRecord()->getLoc(), |
879 | Msg: "Type set is empty for each HW mode in '" + |
880 | Infer.TP.getRecord()->getName() + "'" ); |
881 | } |
882 | } |
883 | |
884 | //===----------------------------------------------------------------------===// |
885 | // ScopedName Implementation |
886 | //===----------------------------------------------------------------------===// |
887 | |
888 | bool ScopedName::operator==(const ScopedName &o) const { |
889 | return Scope == o.Scope && Identifier == o.Identifier; |
890 | } |
891 | |
892 | bool ScopedName::operator!=(const ScopedName &o) const { return !(*this == o); } |
893 | |
894 | //===----------------------------------------------------------------------===// |
895 | // TreePredicateFn Implementation |
896 | //===----------------------------------------------------------------------===// |
897 | |
898 | /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. |
899 | TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { |
900 | assert( |
901 | (!hasPredCode() || !hasImmCode()) && |
902 | ".td file corrupt: can't have a node predicate *and* an imm predicate" ); |
903 | } |
904 | |
905 | bool TreePredicateFn::hasPredCode() const { |
906 | return isLoad() || isStore() || isAtomic() || hasNoUse() || hasOneUse() || |
907 | !PatFragRec->getRecord()->getValueAsString(FieldName: "PredicateCode" ).empty(); |
908 | } |
909 | |
910 | std::string TreePredicateFn::getPredCode() const { |
911 | std::string Code; |
912 | |
913 | if (!isLoad() && !isStore() && !isAtomic()) { |
914 | Record *MemoryVT = getMemoryVT(); |
915 | |
916 | if (MemoryVT) |
917 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
918 | Msg: "MemoryVT requires IsLoad or IsStore" ); |
919 | } |
920 | |
921 | if (!isLoad() && !isStore()) { |
922 | if (isUnindexed()) |
923 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
924 | Msg: "IsUnindexed requires IsLoad or IsStore" ); |
925 | |
926 | Record *ScalarMemoryVT = getScalarMemoryVT(); |
927 | |
928 | if (ScalarMemoryVT) |
929 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
930 | Msg: "ScalarMemoryVT requires IsLoad or IsStore" ); |
931 | } |
932 | |
933 | if (isLoad() + isStore() + isAtomic() > 1) |
934 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
935 | Msg: "IsLoad, IsStore, and IsAtomic are mutually exclusive" ); |
936 | |
937 | if (isLoad()) { |
938 | if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() && |
939 | !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr && |
940 | getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr && |
941 | getMinAlignment() < 1) |
942 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
943 | Msg: "IsLoad cannot be used by itself" ); |
944 | } else { |
945 | if (isNonExtLoad()) |
946 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
947 | Msg: "IsNonExtLoad requires IsLoad" ); |
948 | if (isAnyExtLoad()) |
949 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
950 | Msg: "IsAnyExtLoad requires IsLoad" ); |
951 | |
952 | if (!isAtomic()) { |
953 | if (isSignExtLoad()) |
954 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
955 | Msg: "IsSignExtLoad requires IsLoad or IsAtomic" ); |
956 | if (isZeroExtLoad()) |
957 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
958 | Msg: "IsZeroExtLoad requires IsLoad or IsAtomic" ); |
959 | } |
960 | } |
961 | |
962 | if (isStore()) { |
963 | if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() && |
964 | getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr && |
965 | getAddressSpaces() == nullptr && getMinAlignment() < 1) |
966 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
967 | Msg: "IsStore cannot be used by itself" ); |
968 | } else { |
969 | if (isNonTruncStore()) |
970 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
971 | Msg: "IsNonTruncStore requires IsStore" ); |
972 | if (isTruncStore()) |
973 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
974 | Msg: "IsTruncStore requires IsStore" ); |
975 | } |
976 | |
977 | if (isAtomic()) { |
978 | if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() && |
979 | getAddressSpaces() == nullptr && |
980 | // FIXME: Should atomic loads be IsLoad, IsAtomic, or both? |
981 | !isZeroExtLoad() && !isSignExtLoad() && !isAtomicOrderingAcquire() && |
982 | !isAtomicOrderingRelease() && !isAtomicOrderingAcquireRelease() && |
983 | !isAtomicOrderingSequentiallyConsistent() && |
984 | !isAtomicOrderingAcquireOrStronger() && |
985 | !isAtomicOrderingReleaseOrStronger() && |
986 | !isAtomicOrderingWeakerThanAcquire() && |
987 | !isAtomicOrderingWeakerThanRelease()) |
988 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
989 | Msg: "IsAtomic cannot be used by itself" ); |
990 | } else { |
991 | if (isAtomicOrderingMonotonic()) |
992 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
993 | Msg: "IsAtomicOrderingMonotonic requires IsAtomic" ); |
994 | if (isAtomicOrderingAcquire()) |
995 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
996 | Msg: "IsAtomicOrderingAcquire requires IsAtomic" ); |
997 | if (isAtomicOrderingRelease()) |
998 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
999 | Msg: "IsAtomicOrderingRelease requires IsAtomic" ); |
1000 | if (isAtomicOrderingAcquireRelease()) |
1001 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
1002 | Msg: "IsAtomicOrderingAcquireRelease requires IsAtomic" ); |
1003 | if (isAtomicOrderingSequentiallyConsistent()) |
1004 | PrintFatalError( |
1005 | ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
1006 | Msg: "IsAtomicOrderingSequentiallyConsistent requires IsAtomic" ); |
1007 | if (isAtomicOrderingAcquireOrStronger()) |
1008 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
1009 | Msg: "IsAtomicOrderingAcquireOrStronger requires IsAtomic" ); |
1010 | if (isAtomicOrderingReleaseOrStronger()) |
1011 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
1012 | Msg: "IsAtomicOrderingReleaseOrStronger requires IsAtomic" ); |
1013 | if (isAtomicOrderingWeakerThanAcquire()) |
1014 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
1015 | Msg: "IsAtomicOrderingWeakerThanAcquire requires IsAtomic" ); |
1016 | } |
1017 | |
1018 | if (isLoad() || isStore() || isAtomic()) { |
1019 | if (ListInit *AddressSpaces = getAddressSpaces()) { |
1020 | Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n" |
1021 | " if (" ; |
1022 | |
1023 | ListSeparator LS(" && " ); |
1024 | for (Init *Val : AddressSpaces->getValues()) { |
1025 | Code += LS; |
1026 | |
1027 | IntInit *IntVal = dyn_cast<IntInit>(Val); |
1028 | if (!IntVal) { |
1029 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
1030 | Msg: "AddressSpaces element must be integer" ); |
1031 | } |
1032 | |
1033 | Code += "AddrSpace != " + utostr(X: IntVal->getValue()); |
1034 | } |
1035 | |
1036 | Code += ")\nreturn false;\n" ; |
1037 | } |
1038 | |
1039 | int64_t MinAlign = getMinAlignment(); |
1040 | if (MinAlign > 0) { |
1041 | Code += "if (cast<MemSDNode>(N)->getAlign() < Align(" ; |
1042 | Code += utostr(X: MinAlign); |
1043 | Code += "))\nreturn false;\n" ; |
1044 | } |
1045 | |
1046 | Record *MemoryVT = getMemoryVT(); |
1047 | |
1048 | if (MemoryVT) |
1049 | Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" + |
1050 | MemoryVT->getName() + ") return false;\n" ) |
1051 | .str(); |
1052 | } |
1053 | |
1054 | if (isAtomic() && isAtomicOrderingMonotonic()) |
1055 | Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " |
1056 | "AtomicOrdering::Monotonic) return false;\n" ; |
1057 | if (isAtomic() && isAtomicOrderingAcquire()) |
1058 | Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " |
1059 | "AtomicOrdering::Acquire) return false;\n" ; |
1060 | if (isAtomic() && isAtomicOrderingRelease()) |
1061 | Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " |
1062 | "AtomicOrdering::Release) return false;\n" ; |
1063 | if (isAtomic() && isAtomicOrderingAcquireRelease()) |
1064 | Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " |
1065 | "AtomicOrdering::AcquireRelease) return false;\n" ; |
1066 | if (isAtomic() && isAtomicOrderingSequentiallyConsistent()) |
1067 | Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " |
1068 | "AtomicOrdering::SequentiallyConsistent) return false;\n" ; |
1069 | |
1070 | if (isAtomic() && isAtomicOrderingAcquireOrStronger()) |
1071 | Code += |
1072 | "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " |
1073 | "return false;\n" ; |
1074 | if (isAtomic() && isAtomicOrderingWeakerThanAcquire()) |
1075 | Code += |
1076 | "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " |
1077 | "return false;\n" ; |
1078 | |
1079 | if (isAtomic() && isAtomicOrderingReleaseOrStronger()) |
1080 | Code += |
1081 | "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " |
1082 | "return false;\n" ; |
1083 | if (isAtomic() && isAtomicOrderingWeakerThanRelease()) |
1084 | Code += |
1085 | "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " |
1086 | "return false;\n" ; |
1087 | |
1088 | // TODO: Handle atomic sextload/zextload normally when ATOMIC_LOAD is removed. |
1089 | if (isAtomic() && (isZeroExtLoad() || isSignExtLoad())) |
1090 | Code += "return false;\n" ; |
1091 | |
1092 | if (isLoad() || isStore()) { |
1093 | StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode" ; |
1094 | |
1095 | if (isUnindexed()) |
1096 | Code += ("if (cast<" + SDNodeName + |
1097 | ">(N)->getAddressingMode() != ISD::UNINDEXED) " |
1098 | "return false;\n" ) |
1099 | .str(); |
1100 | |
1101 | if (isLoad()) { |
1102 | if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() + |
1103 | isZeroExtLoad()) > 1) |
1104 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
1105 | Msg: "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and " |
1106 | "IsZeroExtLoad are mutually exclusive" ); |
1107 | if (isNonExtLoad()) |
1108 | Code += "if (cast<LoadSDNode>(N)->getExtensionType() != " |
1109 | "ISD::NON_EXTLOAD) return false;\n" ; |
1110 | if (isAnyExtLoad()) |
1111 | Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) " |
1112 | "return false;\n" ; |
1113 | if (isSignExtLoad()) |
1114 | Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) " |
1115 | "return false;\n" ; |
1116 | if (isZeroExtLoad()) |
1117 | Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) " |
1118 | "return false;\n" ; |
1119 | } else { |
1120 | if ((isNonTruncStore() + isTruncStore()) > 1) |
1121 | PrintFatalError( |
1122 | ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
1123 | Msg: "IsNonTruncStore, and IsTruncStore are mutually exclusive" ); |
1124 | if (isNonTruncStore()) |
1125 | Code += |
1126 | " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n" ; |
1127 | if (isTruncStore()) |
1128 | Code += |
1129 | " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n" ; |
1130 | } |
1131 | |
1132 | Record *ScalarMemoryVT = getScalarMemoryVT(); |
1133 | |
1134 | if (ScalarMemoryVT) |
1135 | Code += ("if (cast<" + SDNodeName + |
1136 | ">(N)->getMemoryVT().getScalarType() != MVT::" + |
1137 | ScalarMemoryVT->getName() + ") return false;\n" ) |
1138 | .str(); |
1139 | } |
1140 | |
1141 | if (hasNoUse()) |
1142 | Code += "if (!SDValue(N, 0).use_empty()) return false;\n" ; |
1143 | if (hasOneUse()) |
1144 | Code += "if (!SDValue(N, 0).hasOneUse()) return false;\n" ; |
1145 | |
1146 | std::string PredicateCode = |
1147 | std::string(PatFragRec->getRecord()->getValueAsString(FieldName: "PredicateCode" )); |
1148 | |
1149 | Code += PredicateCode; |
1150 | |
1151 | if (PredicateCode.empty() && !Code.empty()) |
1152 | Code += "return true;\n" ; |
1153 | |
1154 | return Code; |
1155 | } |
1156 | |
1157 | bool TreePredicateFn::hasImmCode() const { |
1158 | return !PatFragRec->getRecord()->getValueAsString(FieldName: "ImmediateCode" ).empty(); |
1159 | } |
1160 | |
1161 | std::string TreePredicateFn::getImmCode() const { |
1162 | return std::string( |
1163 | PatFragRec->getRecord()->getValueAsString(FieldName: "ImmediateCode" )); |
1164 | } |
1165 | |
1166 | bool TreePredicateFn::immCodeUsesAPInt() const { |
1167 | return getOrigPatFragRecord()->getRecord()->getValueAsBit(FieldName: "IsAPInt" ); |
1168 | } |
1169 | |
1170 | bool TreePredicateFn::immCodeUsesAPFloat() const { |
1171 | bool Unset; |
1172 | // The return value will be false when IsAPFloat is unset. |
1173 | return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(FieldName: "IsAPFloat" , |
1174 | Unset); |
1175 | } |
1176 | |
1177 | bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field, |
1178 | bool Value) const { |
1179 | bool Unset; |
1180 | bool Result = |
1181 | getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(FieldName: Field, Unset); |
1182 | if (Unset) |
1183 | return false; |
1184 | return Result == Value; |
1185 | } |
1186 | bool TreePredicateFn::usesOperands() const { |
1187 | return isPredefinedPredicateEqualTo(Field: "PredicateCodeUsesOperands" , Value: true); |
1188 | } |
1189 | bool TreePredicateFn::hasNoUse() const { |
1190 | return isPredefinedPredicateEqualTo(Field: "HasNoUse" , Value: true); |
1191 | } |
1192 | bool TreePredicateFn::hasOneUse() const { |
1193 | return isPredefinedPredicateEqualTo(Field: "HasOneUse" , Value: true); |
1194 | } |
1195 | bool TreePredicateFn::isLoad() const { |
1196 | return isPredefinedPredicateEqualTo(Field: "IsLoad" , Value: true); |
1197 | } |
1198 | bool TreePredicateFn::isStore() const { |
1199 | return isPredefinedPredicateEqualTo(Field: "IsStore" , Value: true); |
1200 | } |
1201 | bool TreePredicateFn::isAtomic() const { |
1202 | return isPredefinedPredicateEqualTo(Field: "IsAtomic" , Value: true); |
1203 | } |
1204 | bool TreePredicateFn::isUnindexed() const { |
1205 | return isPredefinedPredicateEqualTo(Field: "IsUnindexed" , Value: true); |
1206 | } |
1207 | bool TreePredicateFn::isNonExtLoad() const { |
1208 | return isPredefinedPredicateEqualTo(Field: "IsNonExtLoad" , Value: true); |
1209 | } |
1210 | bool TreePredicateFn::isAnyExtLoad() const { |
1211 | return isPredefinedPredicateEqualTo(Field: "IsAnyExtLoad" , Value: true); |
1212 | } |
1213 | bool TreePredicateFn::isSignExtLoad() const { |
1214 | return isPredefinedPredicateEqualTo(Field: "IsSignExtLoad" , Value: true); |
1215 | } |
1216 | bool TreePredicateFn::isZeroExtLoad() const { |
1217 | return isPredefinedPredicateEqualTo(Field: "IsZeroExtLoad" , Value: true); |
1218 | } |
1219 | bool TreePredicateFn::isNonTruncStore() const { |
1220 | return isPredefinedPredicateEqualTo(Field: "IsTruncStore" , Value: false); |
1221 | } |
1222 | bool TreePredicateFn::isTruncStore() const { |
1223 | return isPredefinedPredicateEqualTo(Field: "IsTruncStore" , Value: true); |
1224 | } |
1225 | bool TreePredicateFn::isAtomicOrderingMonotonic() const { |
1226 | return isPredefinedPredicateEqualTo(Field: "IsAtomicOrderingMonotonic" , Value: true); |
1227 | } |
1228 | bool TreePredicateFn::isAtomicOrderingAcquire() const { |
1229 | return isPredefinedPredicateEqualTo(Field: "IsAtomicOrderingAcquire" , Value: true); |
1230 | } |
1231 | bool TreePredicateFn::isAtomicOrderingRelease() const { |
1232 | return isPredefinedPredicateEqualTo(Field: "IsAtomicOrderingRelease" , Value: true); |
1233 | } |
1234 | bool TreePredicateFn::isAtomicOrderingAcquireRelease() const { |
1235 | return isPredefinedPredicateEqualTo(Field: "IsAtomicOrderingAcquireRelease" , Value: true); |
1236 | } |
1237 | bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const { |
1238 | return isPredefinedPredicateEqualTo(Field: "IsAtomicOrderingSequentiallyConsistent" , |
1239 | Value: true); |
1240 | } |
1241 | bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const { |
1242 | return isPredefinedPredicateEqualTo(Field: "IsAtomicOrderingAcquireOrStronger" , |
1243 | Value: true); |
1244 | } |
1245 | bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const { |
1246 | return isPredefinedPredicateEqualTo(Field: "IsAtomicOrderingAcquireOrStronger" , |
1247 | Value: false); |
1248 | } |
1249 | bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const { |
1250 | return isPredefinedPredicateEqualTo(Field: "IsAtomicOrderingReleaseOrStronger" , |
1251 | Value: true); |
1252 | } |
1253 | bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const { |
1254 | return isPredefinedPredicateEqualTo(Field: "IsAtomicOrderingReleaseOrStronger" , |
1255 | Value: false); |
1256 | } |
1257 | Record *TreePredicateFn::getMemoryVT() const { |
1258 | Record *R = getOrigPatFragRecord()->getRecord(); |
1259 | if (R->isValueUnset(FieldName: "MemoryVT" )) |
1260 | return nullptr; |
1261 | return R->getValueAsDef(FieldName: "MemoryVT" ); |
1262 | } |
1263 | |
1264 | ListInit *TreePredicateFn::getAddressSpaces() const { |
1265 | Record *R = getOrigPatFragRecord()->getRecord(); |
1266 | if (R->isValueUnset(FieldName: "AddressSpaces" )) |
1267 | return nullptr; |
1268 | return R->getValueAsListInit(FieldName: "AddressSpaces" ); |
1269 | } |
1270 | |
1271 | int64_t TreePredicateFn::getMinAlignment() const { |
1272 | Record *R = getOrigPatFragRecord()->getRecord(); |
1273 | if (R->isValueUnset(FieldName: "MinAlignment" )) |
1274 | return 0; |
1275 | return R->getValueAsInt(FieldName: "MinAlignment" ); |
1276 | } |
1277 | |
1278 | Record *TreePredicateFn::getScalarMemoryVT() const { |
1279 | Record *R = getOrigPatFragRecord()->getRecord(); |
1280 | if (R->isValueUnset(FieldName: "ScalarMemoryVT" )) |
1281 | return nullptr; |
1282 | return R->getValueAsDef(FieldName: "ScalarMemoryVT" ); |
1283 | } |
1284 | bool TreePredicateFn::hasGISelPredicateCode() const { |
1285 | return !PatFragRec->getRecord() |
1286 | ->getValueAsString(FieldName: "GISelPredicateCode" ) |
1287 | .empty(); |
1288 | } |
1289 | std::string TreePredicateFn::getGISelPredicateCode() const { |
1290 | return std::string( |
1291 | PatFragRec->getRecord()->getValueAsString(FieldName: "GISelPredicateCode" )); |
1292 | } |
1293 | |
1294 | StringRef TreePredicateFn::getImmType() const { |
1295 | if (immCodeUsesAPInt()) |
1296 | return "const APInt &" ; |
1297 | if (immCodeUsesAPFloat()) |
1298 | return "const APFloat &" ; |
1299 | return "int64_t" ; |
1300 | } |
1301 | |
1302 | StringRef TreePredicateFn::getImmTypeIdentifier() const { |
1303 | if (immCodeUsesAPInt()) |
1304 | return "APInt" ; |
1305 | if (immCodeUsesAPFloat()) |
1306 | return "APFloat" ; |
1307 | return "I64" ; |
1308 | } |
1309 | |
1310 | /// isAlwaysTrue - Return true if this is a noop predicate. |
1311 | bool TreePredicateFn::isAlwaysTrue() const { |
1312 | return !hasPredCode() && !hasImmCode(); |
1313 | } |
1314 | |
1315 | /// Return the name to use in the generated code to reference this, this is |
1316 | /// "Predicate_foo" if from a pattern fragment "foo". |
1317 | std::string TreePredicateFn::getFnName() const { |
1318 | return "Predicate_" + PatFragRec->getRecord()->getName().str(); |
1319 | } |
1320 | |
1321 | /// getCodeToRunOnSDNode - Return the code for the function body that |
1322 | /// evaluates this predicate. The argument is expected to be in "Node", |
1323 | /// not N. This handles casting and conversion to a concrete node type as |
1324 | /// appropriate. |
1325 | std::string TreePredicateFn::getCodeToRunOnSDNode() const { |
1326 | // Handle immediate predicates first. |
1327 | std::string ImmCode = getImmCode(); |
1328 | if (!ImmCode.empty()) { |
1329 | if (isLoad()) |
1330 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
1331 | Msg: "IsLoad cannot be used with ImmLeaf or its subclasses" ); |
1332 | if (isStore()) |
1333 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
1334 | Msg: "IsStore cannot be used with ImmLeaf or its subclasses" ); |
1335 | if (isUnindexed()) |
1336 | PrintFatalError( |
1337 | ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
1338 | Msg: "IsUnindexed cannot be used with ImmLeaf or its subclasses" ); |
1339 | if (isNonExtLoad()) |
1340 | PrintFatalError( |
1341 | ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
1342 | Msg: "IsNonExtLoad cannot be used with ImmLeaf or its subclasses" ); |
1343 | if (isAnyExtLoad()) |
1344 | PrintFatalError( |
1345 | ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
1346 | Msg: "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses" ); |
1347 | if (isSignExtLoad()) |
1348 | PrintFatalError( |
1349 | ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
1350 | Msg: "IsSignExtLoad cannot be used with ImmLeaf or its subclasses" ); |
1351 | if (isZeroExtLoad()) |
1352 | PrintFatalError( |
1353 | ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
1354 | Msg: "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses" ); |
1355 | if (isNonTruncStore()) |
1356 | PrintFatalError( |
1357 | ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
1358 | Msg: "IsNonTruncStore cannot be used with ImmLeaf or its subclasses" ); |
1359 | if (isTruncStore()) |
1360 | PrintFatalError( |
1361 | ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
1362 | Msg: "IsTruncStore cannot be used with ImmLeaf or its subclasses" ); |
1363 | if (getMemoryVT()) |
1364 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
1365 | Msg: "MemoryVT cannot be used with ImmLeaf or its subclasses" ); |
1366 | if (getScalarMemoryVT()) |
1367 | PrintFatalError( |
1368 | ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
1369 | Msg: "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses" ); |
1370 | |
1371 | std::string Result = (" " + getImmType() + " Imm = " ).str(); |
1372 | if (immCodeUsesAPFloat()) |
1373 | Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n" ; |
1374 | else if (immCodeUsesAPInt()) |
1375 | Result += "Node->getAsAPIntVal();\n" ; |
1376 | else |
1377 | Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n" ; |
1378 | return Result + ImmCode; |
1379 | } |
1380 | |
1381 | // Handle arbitrary node predicates. |
1382 | assert(hasPredCode() && "Don't have any predicate code!" ); |
1383 | |
1384 | // If this is using PatFrags, there are multiple trees to search. They should |
1385 | // all have the same class. FIXME: Is there a way to find a common |
1386 | // superclass? |
1387 | StringRef ClassName; |
1388 | for (const auto &Tree : PatFragRec->getTrees()) { |
1389 | StringRef TreeClassName; |
1390 | if (Tree->isLeaf()) |
1391 | TreeClassName = "SDNode" ; |
1392 | else { |
1393 | Record *Op = Tree->getOperator(); |
1394 | const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(R: Op); |
1395 | TreeClassName = Info.getSDClassName(); |
1396 | } |
1397 | |
1398 | if (ClassName.empty()) |
1399 | ClassName = TreeClassName; |
1400 | else if (ClassName != TreeClassName) { |
1401 | PrintFatalError(ErrorLoc: getOrigPatFragRecord()->getRecord()->getLoc(), |
1402 | Msg: "PatFrags trees do not have consistent class" ); |
1403 | } |
1404 | } |
1405 | |
1406 | std::string Result; |
1407 | if (ClassName == "SDNode" ) |
1408 | Result = " SDNode *N = Node;\n" ; |
1409 | else |
1410 | Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n" ; |
1411 | |
1412 | return (Twine(Result) + " (void)N;\n" + getPredCode()).str(); |
1413 | } |
1414 | |
1415 | //===----------------------------------------------------------------------===// |
1416 | // PatternToMatch implementation |
1417 | // |
1418 | |
1419 | static bool isImmAllOnesAllZerosMatch(const TreePatternNode &P) { |
1420 | if (!P.isLeaf()) |
1421 | return false; |
1422 | DefInit *DI = dyn_cast<DefInit>(Val: P.getLeafValue()); |
1423 | if (!DI) |
1424 | return false; |
1425 | |
1426 | Record *R = DI->getDef(); |
1427 | return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV" ; |
1428 | } |
1429 | |
1430 | /// getPatternSize - Return the 'size' of this pattern. We want to match large |
1431 | /// patterns before small ones. This is used to determine the size of a |
1432 | /// pattern. |
1433 | static unsigned getPatternSize(const TreePatternNode &P, |
1434 | const CodeGenDAGPatterns &CGP) { |
1435 | unsigned Size = 3; // The node itself. |
1436 | // If the root node is a ConstantSDNode, increases its size. |
1437 | // e.g. (set R32:$dst, 0). |
1438 | if (P.isLeaf() && isa<IntInit>(Val: P.getLeafValue())) |
1439 | Size += 2; |
1440 | |
1441 | if (const ComplexPattern *AM = P.getComplexPatternInfo(CGP)) { |
1442 | Size += AM->getComplexity(); |
1443 | // We don't want to count any children twice, so return early. |
1444 | return Size; |
1445 | } |
1446 | |
1447 | // If this node has some predicate function that must match, it adds to the |
1448 | // complexity of this node. |
1449 | if (!P.getPredicateCalls().empty()) |
1450 | ++Size; |
1451 | |
1452 | // Count children in the count if they are also nodes. |
1453 | for (unsigned i = 0, e = P.getNumChildren(); i != e; ++i) { |
1454 | const TreePatternNode &Child = P.getChild(N: i); |
1455 | if (!Child.isLeaf() && Child.getNumTypes()) { |
1456 | const TypeSetByHwMode &T0 = Child.getExtType(ResNo: 0); |
1457 | // At this point, all variable type sets should be simple, i.e. only |
1458 | // have a default mode. |
1459 | if (T0.getMachineValueType() != MVT::Other) { |
1460 | Size += getPatternSize(P: Child, CGP); |
1461 | continue; |
1462 | } |
1463 | } |
1464 | if (Child.isLeaf()) { |
1465 | if (isa<IntInit>(Val: Child.getLeafValue())) |
1466 | Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). |
1467 | else if (Child.getComplexPatternInfo(CGP)) |
1468 | Size += getPatternSize(P: Child, CGP); |
1469 | else if (isImmAllOnesAllZerosMatch(P: Child)) |
1470 | Size += 4; // Matches a build_vector(+3) and a predicate (+1). |
1471 | else if (!Child.getPredicateCalls().empty()) |
1472 | ++Size; |
1473 | } |
1474 | } |
1475 | |
1476 | return Size; |
1477 | } |
1478 | |
1479 | /// Compute the complexity metric for the input pattern. This roughly |
1480 | /// corresponds to the number of nodes that are covered. |
1481 | int PatternToMatch::getPatternComplexity(const CodeGenDAGPatterns &CGP) const { |
1482 | return getPatternSize(P: getSrcPattern(), CGP) + getAddedComplexity(); |
1483 | } |
1484 | |
1485 | void PatternToMatch::getPredicateRecords( |
1486 | SmallVectorImpl<Record *> &PredicateRecs) const { |
1487 | for (Init *I : Predicates->getValues()) { |
1488 | if (DefInit *Pred = dyn_cast<DefInit>(Val: I)) { |
1489 | Record *Def = Pred->getDef(); |
1490 | if (!Def->isSubClassOf(Name: "Predicate" )) { |
1491 | #ifndef NDEBUG |
1492 | Def->dump(); |
1493 | #endif |
1494 | llvm_unreachable("Unknown predicate type!" ); |
1495 | } |
1496 | PredicateRecs.push_back(Elt: Def); |
1497 | } |
1498 | } |
1499 | // Sort so that different orders get canonicalized to the same string. |
1500 | llvm::sort(C&: PredicateRecs, Comp: LessRecord()); |
1501 | // Remove duplicate predicates. |
1502 | PredicateRecs.erase(CS: llvm::unique(R&: PredicateRecs), CE: PredicateRecs.end()); |
1503 | } |
1504 | |
1505 | /// getPredicateCheck - Return a single string containing all of this |
1506 | /// pattern's predicates concatenated with "&&" operators. |
1507 | /// |
1508 | std::string PatternToMatch::getPredicateCheck() const { |
1509 | SmallVector<Record *, 4> PredicateRecs; |
1510 | getPredicateRecords(PredicateRecs); |
1511 | |
1512 | SmallString<128> PredicateCheck; |
1513 | raw_svector_ostream OS(PredicateCheck); |
1514 | ListSeparator LS(" && " ); |
1515 | for (Record *Pred : PredicateRecs) { |
1516 | StringRef CondString = Pred->getValueAsString(FieldName: "CondString" ); |
1517 | if (CondString.empty()) |
1518 | continue; |
1519 | OS << LS << '(' << CondString << ')'; |
1520 | } |
1521 | |
1522 | if (!HwModeFeatures.empty()) |
1523 | OS << LS << HwModeFeatures; |
1524 | |
1525 | return std::string(PredicateCheck); |
1526 | } |
1527 | |
1528 | //===----------------------------------------------------------------------===// |
1529 | // SDTypeConstraint implementation |
1530 | // |
1531 | |
1532 | SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) { |
1533 | OperandNo = R->getValueAsInt(FieldName: "OperandNum" ); |
1534 | |
1535 | if (R->isSubClassOf(Name: "SDTCisVT" )) { |
1536 | ConstraintType = SDTCisVT; |
1537 | VVT = getValueTypeByHwMode(Rec: R->getValueAsDef(FieldName: "VT" ), CGH); |
1538 | for (const auto &P : VVT) |
1539 | if (P.second == MVT::isVoid) |
1540 | PrintFatalError(ErrorLoc: R->getLoc(), Msg: "Cannot use 'Void' as type to SDTCisVT" ); |
1541 | } else if (R->isSubClassOf(Name: "SDTCisPtrTy" )) { |
1542 | ConstraintType = SDTCisPtrTy; |
1543 | } else if (R->isSubClassOf(Name: "SDTCisInt" )) { |
1544 | ConstraintType = SDTCisInt; |
1545 | } else if (R->isSubClassOf(Name: "SDTCisFP" )) { |
1546 | ConstraintType = SDTCisFP; |
1547 | } else if (R->isSubClassOf(Name: "SDTCisVec" )) { |
1548 | ConstraintType = SDTCisVec; |
1549 | } else if (R->isSubClassOf(Name: "SDTCisSameAs" )) { |
1550 | ConstraintType = SDTCisSameAs; |
1551 | x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt(FieldName: "OtherOperandNum" ); |
1552 | } else if (R->isSubClassOf(Name: "SDTCisVTSmallerThanOp" )) { |
1553 | ConstraintType = SDTCisVTSmallerThanOp; |
1554 | x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = |
1555 | R->getValueAsInt(FieldName: "OtherOperandNum" ); |
1556 | } else if (R->isSubClassOf(Name: "SDTCisOpSmallerThanOp" )) { |
1557 | ConstraintType = SDTCisOpSmallerThanOp; |
1558 | x.SDTCisOpSmallerThanOp_Info.BigOperandNum = |
1559 | R->getValueAsInt(FieldName: "BigOperandNum" ); |
1560 | } else if (R->isSubClassOf(Name: "SDTCisEltOfVec" )) { |
1561 | ConstraintType = SDTCisEltOfVec; |
1562 | x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt(FieldName: "OtherOpNum" ); |
1563 | } else if (R->isSubClassOf(Name: "SDTCisSubVecOfVec" )) { |
1564 | ConstraintType = SDTCisSubVecOfVec; |
1565 | x.SDTCisSubVecOfVec_Info.OtherOperandNum = R->getValueAsInt(FieldName: "OtherOpNum" ); |
1566 | } else if (R->isSubClassOf(Name: "SDTCVecEltisVT" )) { |
1567 | ConstraintType = SDTCVecEltisVT; |
1568 | VVT = getValueTypeByHwMode(Rec: R->getValueAsDef(FieldName: "VT" ), CGH); |
1569 | for (const auto &P : VVT) { |
1570 | MVT T = P.second; |
1571 | if (T.isVector()) |
1572 | PrintFatalError(ErrorLoc: R->getLoc(), |
1573 | Msg: "Cannot use vector type as SDTCVecEltisVT" ); |
1574 | if (!T.isInteger() && !T.isFloatingPoint()) |
1575 | PrintFatalError(ErrorLoc: R->getLoc(), Msg: "Must use integer or floating point type " |
1576 | "as SDTCVecEltisVT" ); |
1577 | } |
1578 | } else if (R->isSubClassOf(Name: "SDTCisSameNumEltsAs" )) { |
1579 | ConstraintType = SDTCisSameNumEltsAs; |
1580 | x.SDTCisSameNumEltsAs_Info.OtherOperandNum = |
1581 | R->getValueAsInt(FieldName: "OtherOperandNum" ); |
1582 | } else if (R->isSubClassOf(Name: "SDTCisSameSizeAs" )) { |
1583 | ConstraintType = SDTCisSameSizeAs; |
1584 | x.SDTCisSameSizeAs_Info.OtherOperandNum = |
1585 | R->getValueAsInt(FieldName: "OtherOperandNum" ); |
1586 | } else { |
1587 | PrintFatalError(ErrorLoc: R->getLoc(), |
1588 | Msg: "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n" ); |
1589 | } |
1590 | } |
1591 | |
1592 | /// getOperandNum - Return the node corresponding to operand #OpNo in tree |
1593 | /// N, and the result number in ResNo. |
1594 | static TreePatternNode &getOperandNum(unsigned OpNo, TreePatternNode &N, |
1595 | const SDNodeInfo &NodeInfo, |
1596 | unsigned &ResNo) { |
1597 | unsigned NumResults = NodeInfo.getNumResults(); |
1598 | if (OpNo < NumResults) { |
1599 | ResNo = OpNo; |
1600 | return N; |
1601 | } |
1602 | |
1603 | OpNo -= NumResults; |
1604 | |
1605 | if (OpNo >= N.getNumChildren()) { |
1606 | std::string S; |
1607 | raw_string_ostream OS(S); |
1608 | OS << "Invalid operand number in type constraint " << (OpNo + NumResults) |
1609 | << " " ; |
1610 | N.print(OS); |
1611 | PrintFatalError(Msg: S); |
1612 | } |
1613 | |
1614 | return N.getChild(N: OpNo); |
1615 | } |
1616 | |
1617 | /// ApplyTypeConstraint - Given a node in a pattern, apply this type |
1618 | /// constraint to the nodes operands. This returns true if it makes a |
1619 | /// change, false otherwise. If a type contradiction is found, flag an error. |
1620 | bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode &N, |
1621 | const SDNodeInfo &NodeInfo, |
1622 | TreePattern &TP) const { |
1623 | if (TP.hasError()) |
1624 | return false; |
1625 | |
1626 | unsigned ResNo = 0; // The result number being referenced. |
1627 | TreePatternNode &NodeToApply = getOperandNum(OpNo: OperandNo, N, NodeInfo, ResNo); |
1628 | TypeInfer &TI = TP.getInfer(); |
1629 | |
1630 | switch (ConstraintType) { |
1631 | case SDTCisVT: |
1632 | // Operand must be a particular type. |
1633 | return NodeToApply.UpdateNodeType(ResNo, InTy: VVT, TP); |
1634 | case SDTCisPtrTy: |
1635 | // Operand must be same as target pointer type. |
1636 | return NodeToApply.UpdateNodeType(ResNo, InTy: MVT::iPTR, TP); |
1637 | case SDTCisInt: |
1638 | // Require it to be one of the legal integer VTs. |
1639 | return TI.EnforceInteger(Out&: NodeToApply.getExtType(ResNo)); |
1640 | case SDTCisFP: |
1641 | // Require it to be one of the legal fp VTs. |
1642 | return TI.EnforceFloatingPoint(Out&: NodeToApply.getExtType(ResNo)); |
1643 | case SDTCisVec: |
1644 | // Require it to be one of the legal vector VTs. |
1645 | return TI.EnforceVector(Out&: NodeToApply.getExtType(ResNo)); |
1646 | case SDTCisSameAs: { |
1647 | unsigned OResNo = 0; |
1648 | TreePatternNode &OtherNode = |
1649 | getOperandNum(OpNo: x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, ResNo&: OResNo); |
1650 | return (int)NodeToApply.UpdateNodeType(ResNo, InTy: OtherNode.getExtType(ResNo: OResNo), |
1651 | TP) | |
1652 | (int)OtherNode.UpdateNodeType(ResNo: OResNo, InTy: NodeToApply.getExtType(ResNo), |
1653 | TP); |
1654 | } |
1655 | case SDTCisVTSmallerThanOp: { |
1656 | // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must |
1657 | // have an integer type that is smaller than the VT. |
1658 | if (!NodeToApply.isLeaf() || !isa<DefInit>(Val: NodeToApply.getLeafValue()) || |
1659 | !cast<DefInit>(Val: NodeToApply.getLeafValue()) |
1660 | ->getDef() |
1661 | ->isSubClassOf(Name: "ValueType" )) { |
1662 | TP.error(Msg: N.getOperator()->getName() + " expects a VT operand!" ); |
1663 | return false; |
1664 | } |
1665 | DefInit *DI = cast<DefInit>(Val: NodeToApply.getLeafValue()); |
1666 | const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); |
1667 | auto VVT = getValueTypeByHwMode(Rec: DI->getDef(), CGH: T.getHwModes()); |
1668 | TypeSetByHwMode TypeListTmp(VVT); |
1669 | |
1670 | unsigned OResNo = 0; |
1671 | TreePatternNode &OtherNode = getOperandNum( |
1672 | OpNo: x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, ResNo&: OResNo); |
1673 | |
1674 | return TI.EnforceSmallerThan(Small&: TypeListTmp, Big&: OtherNode.getExtType(ResNo: OResNo), |
1675 | /*SmallIsVT*/ true); |
1676 | } |
1677 | case SDTCisOpSmallerThanOp: { |
1678 | unsigned BResNo = 0; |
1679 | TreePatternNode &BigOperand = getOperandNum( |
1680 | OpNo: x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, ResNo&: BResNo); |
1681 | return TI.EnforceSmallerThan(Small&: NodeToApply.getExtType(ResNo), |
1682 | Big&: BigOperand.getExtType(ResNo: BResNo)); |
1683 | } |
1684 | case SDTCisEltOfVec: { |
1685 | unsigned VResNo = 0; |
1686 | TreePatternNode &VecOperand = getOperandNum( |
1687 | OpNo: x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, ResNo&: VResNo); |
1688 | // Filter vector types out of VecOperand that don't have the right element |
1689 | // type. |
1690 | return TI.EnforceVectorEltTypeIs(Vec&: VecOperand.getExtType(ResNo: VResNo), |
1691 | Elem&: NodeToApply.getExtType(ResNo)); |
1692 | } |
1693 | case SDTCisSubVecOfVec: { |
1694 | unsigned VResNo = 0; |
1695 | TreePatternNode &BigVecOperand = getOperandNum( |
1696 | OpNo: x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, ResNo&: VResNo); |
1697 | |
1698 | // Filter vector types out of BigVecOperand that don't have the |
1699 | // right subvector type. |
1700 | return TI.EnforceVectorSubVectorTypeIs(Vec&: BigVecOperand.getExtType(ResNo: VResNo), |
1701 | Sub&: NodeToApply.getExtType(ResNo)); |
1702 | } |
1703 | case SDTCVecEltisVT: { |
1704 | return TI.EnforceVectorEltTypeIs(Vec&: NodeToApply.getExtType(ResNo), VVT); |
1705 | } |
1706 | case SDTCisSameNumEltsAs: { |
1707 | unsigned OResNo = 0; |
1708 | TreePatternNode &OtherNode = getOperandNum( |
1709 | OpNo: x.SDTCisSameNumEltsAs_Info.OtherOperandNum, N, NodeInfo, ResNo&: OResNo); |
1710 | return TI.EnforceSameNumElts(V&: OtherNode.getExtType(ResNo: OResNo), |
1711 | W&: NodeToApply.getExtType(ResNo)); |
1712 | } |
1713 | case SDTCisSameSizeAs: { |
1714 | unsigned OResNo = 0; |
1715 | TreePatternNode &OtherNode = getOperandNum( |
1716 | OpNo: x.SDTCisSameSizeAs_Info.OtherOperandNum, N, NodeInfo, ResNo&: OResNo); |
1717 | return TI.EnforceSameSize(A&: OtherNode.getExtType(ResNo: OResNo), |
1718 | B&: NodeToApply.getExtType(ResNo)); |
1719 | } |
1720 | } |
1721 | llvm_unreachable("Invalid ConstraintType!" ); |
1722 | } |
1723 | |
1724 | // Update the node type to match an instruction operand or result as specified |
1725 | // in the ins or outs lists on the instruction definition. Return true if the |
1726 | // type was actually changed. |
1727 | bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, |
1728 | TreePattern &TP) { |
1729 | // The 'unknown' operand indicates that types should be inferred from the |
1730 | // context. |
1731 | if (Operand->isSubClassOf(Name: "unknown_class" )) |
1732 | return false; |
1733 | |
1734 | // The Operand class specifies a type directly. |
1735 | if (Operand->isSubClassOf(Name: "Operand" )) { |
1736 | Record *R = Operand->getValueAsDef(FieldName: "Type" ); |
1737 | const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); |
1738 | return UpdateNodeType(ResNo, InTy: getValueTypeByHwMode(Rec: R, CGH: T.getHwModes()), TP); |
1739 | } |
1740 | |
1741 | // PointerLikeRegClass has a type that is determined at runtime. |
1742 | if (Operand->isSubClassOf(Name: "PointerLikeRegClass" )) |
1743 | return UpdateNodeType(ResNo, InTy: MVT::iPTR, TP); |
1744 | |
1745 | // Both RegisterClass and RegisterOperand operands derive their types from a |
1746 | // register class def. |
1747 | Record *RC = nullptr; |
1748 | if (Operand->isSubClassOf(Name: "RegisterClass" )) |
1749 | RC = Operand; |
1750 | else if (Operand->isSubClassOf(Name: "RegisterOperand" )) |
1751 | RC = Operand->getValueAsDef(FieldName: "RegClass" ); |
1752 | |
1753 | assert(RC && "Unknown operand type" ); |
1754 | CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); |
1755 | return UpdateNodeType(ResNo, InTy: Tgt.getRegisterClass(R: RC).getValueTypes(), TP); |
1756 | } |
1757 | |
1758 | bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const { |
1759 | for (unsigned i = 0, e = Types.size(); i != e; ++i) |
1760 | if (!TP.getInfer().isConcrete(VTS: Types[i], AllowEmpty: true)) |
1761 | return true; |
1762 | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
1763 | if (getChild(N: i).ContainsUnresolvedType(TP)) |
1764 | return true; |
1765 | return false; |
1766 | } |
1767 | |
1768 | bool TreePatternNode::hasProperTypeByHwMode() const { |
1769 | for (const TypeSetByHwMode &S : Types) |
1770 | if (!S.isSimple()) |
1771 | return true; |
1772 | for (const TreePatternNodePtr &C : Children) |
1773 | if (C->hasProperTypeByHwMode()) |
1774 | return true; |
1775 | return false; |
1776 | } |
1777 | |
1778 | bool TreePatternNode::hasPossibleType() const { |
1779 | for (const TypeSetByHwMode &S : Types) |
1780 | if (!S.isPossible()) |
1781 | return false; |
1782 | for (const TreePatternNodePtr &C : Children) |
1783 | if (!C->hasPossibleType()) |
1784 | return false; |
1785 | return true; |
1786 | } |
1787 | |
1788 | bool TreePatternNode::setDefaultMode(unsigned Mode) { |
1789 | for (TypeSetByHwMode &S : Types) { |
1790 | S.makeSimple(Mode); |
1791 | // Check if the selected mode had a type conflict. |
1792 | if (S.get(Mode: DefaultMode).empty()) |
1793 | return false; |
1794 | } |
1795 | for (const TreePatternNodePtr &C : Children) |
1796 | if (!C->setDefaultMode(Mode)) |
1797 | return false; |
1798 | return true; |
1799 | } |
1800 | |
1801 | //===----------------------------------------------------------------------===// |
1802 | // SDNodeInfo implementation |
1803 | // |
1804 | SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) { |
1805 | EnumName = R->getValueAsString(FieldName: "Opcode" ); |
1806 | SDClassName = R->getValueAsString(FieldName: "SDClass" ); |
1807 | Record *TypeProfile = R->getValueAsDef(FieldName: "TypeProfile" ); |
1808 | NumResults = TypeProfile->getValueAsInt(FieldName: "NumResults" ); |
1809 | NumOperands = TypeProfile->getValueAsInt(FieldName: "NumOperands" ); |
1810 | |
1811 | // Parse the properties. |
1812 | Properties = parseSDPatternOperatorProperties(R); |
1813 | |
1814 | // Parse the type constraints. |
1815 | std::vector<Record *> ConstraintList = |
1816 | TypeProfile->getValueAsListOfDefs(FieldName: "Constraints" ); |
1817 | for (Record *R : ConstraintList) |
1818 | TypeConstraints.emplace_back(args&: R, args: CGH); |
1819 | } |
1820 | |
1821 | /// getKnownType - If the type constraints on this node imply a fixed type |
1822 | /// (e.g. all stores return void, etc), then return it as an |
1823 | /// MVT::SimpleValueType. Otherwise, return EEVT::Other. |
1824 | MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { |
1825 | unsigned NumResults = getNumResults(); |
1826 | assert(NumResults <= 1 && |
1827 | "We only work with nodes with zero or one result so far!" ); |
1828 | assert(ResNo == 0 && "Only handles single result nodes so far" ); |
1829 | |
1830 | for (const SDTypeConstraint &Constraint : TypeConstraints) { |
1831 | // Make sure that this applies to the correct node result. |
1832 | if (Constraint.OperandNo >= NumResults) // FIXME: need value # |
1833 | continue; |
1834 | |
1835 | switch (Constraint.ConstraintType) { |
1836 | default: |
1837 | break; |
1838 | case SDTypeConstraint::SDTCisVT: |
1839 | if (Constraint.VVT.isSimple()) |
1840 | return Constraint.VVT.getSimple().SimpleTy; |
1841 | break; |
1842 | case SDTypeConstraint::SDTCisPtrTy: |
1843 | return MVT::iPTR; |
1844 | } |
1845 | } |
1846 | return MVT::Other; |
1847 | } |
1848 | |
1849 | //===----------------------------------------------------------------------===// |
1850 | // TreePatternNode implementation |
1851 | // |
1852 | |
1853 | static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { |
1854 | if (Operator->getName() == "set" || Operator->getName() == "implicit" ) |
1855 | return 0; // All return nothing. |
1856 | |
1857 | if (Operator->isSubClassOf(Name: "Intrinsic" )) |
1858 | return CDP.getIntrinsic(R: Operator).IS.RetTys.size(); |
1859 | |
1860 | if (Operator->isSubClassOf(Name: "SDNode" )) |
1861 | return CDP.getSDNodeInfo(R: Operator).getNumResults(); |
1862 | |
1863 | if (Operator->isSubClassOf(Name: "PatFrags" )) { |
1864 | // If we've already parsed this pattern fragment, get it. Otherwise, handle |
1865 | // the forward reference case where one pattern fragment references another |
1866 | // before it is processed. |
1867 | if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(R: Operator)) { |
1868 | // The number of results of a fragment with alternative records is the |
1869 | // maximum number of results across all alternatives. |
1870 | unsigned NumResults = 0; |
1871 | for (const auto &T : PFRec->getTrees()) |
1872 | NumResults = std::max(a: NumResults, b: T->getNumTypes()); |
1873 | return NumResults; |
1874 | } |
1875 | |
1876 | ListInit *LI = Operator->getValueAsListInit(FieldName: "Fragments" ); |
1877 | assert(LI && "Invalid Fragment" ); |
1878 | unsigned NumResults = 0; |
1879 | for (Init *I : LI->getValues()) { |
1880 | Record *Op = nullptr; |
1881 | if (DagInit *Dag = dyn_cast<DagInit>(Val: I)) |
1882 | if (DefInit *DI = dyn_cast<DefInit>(Val: Dag->getOperator())) |
1883 | Op = DI->getDef(); |
1884 | assert(Op && "Invalid Fragment" ); |
1885 | NumResults = std::max(a: NumResults, b: GetNumNodeResults(Operator: Op, CDP)); |
1886 | } |
1887 | return NumResults; |
1888 | } |
1889 | |
1890 | if (Operator->isSubClassOf(Name: "Instruction" )) { |
1891 | CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(InstRec: Operator); |
1892 | |
1893 | unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; |
1894 | |
1895 | // Subtract any defaulted outputs. |
1896 | for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { |
1897 | Record *OperandNode = InstInfo.Operands[i].Rec; |
1898 | |
1899 | if (OperandNode->isSubClassOf(Name: "OperandWithDefaultOps" ) && |
1900 | !CDP.getDefaultOperand(R: OperandNode).DefaultOps.empty()) |
1901 | --NumDefsToAdd; |
1902 | } |
1903 | |
1904 | // Add on one implicit def if it has a resolvable type. |
1905 | if (InstInfo.HasOneImplicitDefWithKnownVT(TargetInfo: CDP.getTargetInfo()) != |
1906 | MVT::Other) |
1907 | ++NumDefsToAdd; |
1908 | return NumDefsToAdd; |
1909 | } |
1910 | |
1911 | if (Operator->isSubClassOf(Name: "SDNodeXForm" )) |
1912 | return 1; // FIXME: Generalize SDNodeXForm |
1913 | |
1914 | if (Operator->isSubClassOf(Name: "ValueType" )) |
1915 | return 1; // A type-cast of one result. |
1916 | |
1917 | if (Operator->isSubClassOf(Name: "ComplexPattern" )) |
1918 | return 1; |
1919 | |
1920 | errs() << *Operator; |
1921 | PrintFatalError(Msg: "Unhandled node in GetNumNodeResults" ); |
1922 | } |
1923 | |
1924 | void TreePatternNode::print(raw_ostream &OS) const { |
1925 | if (isLeaf()) |
1926 | OS << *getLeafValue(); |
1927 | else |
1928 | OS << '(' << getOperator()->getName(); |
1929 | |
1930 | for (unsigned i = 0, e = Types.size(); i != e; ++i) { |
1931 | OS << ':'; |
1932 | getExtType(ResNo: i).writeToStream(OS); |
1933 | } |
1934 | |
1935 | if (!isLeaf()) { |
1936 | if (getNumChildren() != 0) { |
1937 | OS << " " ; |
1938 | ListSeparator LS; |
1939 | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { |
1940 | OS << LS; |
1941 | getChild(N: i).print(OS); |
1942 | } |
1943 | } |
1944 | OS << ")" ; |
1945 | } |
1946 | |
1947 | for (const TreePredicateCall &Pred : PredicateCalls) { |
1948 | OS << "<<P:" ; |
1949 | if (Pred.Scope) |
1950 | OS << Pred.Scope << ":" ; |
1951 | OS << Pred.Fn.getFnName() << ">>" ; |
1952 | } |
1953 | if (TransformFn) |
1954 | OS << "<<X:" << TransformFn->getName() << ">>" ; |
1955 | if (!getName().empty()) |
1956 | OS << ":$" << getName(); |
1957 | |
1958 | for (const ScopedName &Name : NamesAsPredicateArg) |
1959 | OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier(); |
1960 | } |
1961 | void TreePatternNode::dump() const { print(OS&: errs()); } |
1962 | |
1963 | /// isIsomorphicTo - Return true if this node is recursively |
1964 | /// isomorphic to the specified node. For this comparison, the node's |
1965 | /// entire state is considered. The assigned name is ignored, since |
1966 | /// nodes with differing names are considered isomorphic. However, if |
1967 | /// the assigned name is present in the dependent variable set, then |
1968 | /// the assigned name is considered significant and the node is |
1969 | /// isomorphic if the names match. |
1970 | bool TreePatternNode::isIsomorphicTo(const TreePatternNode &N, |
1971 | const MultipleUseVarSet &DepVars) const { |
1972 | if (&N == this) |
1973 | return true; |
1974 | if (N.isLeaf() != isLeaf()) |
1975 | return false; |
1976 | |
1977 | // Check operator of non-leaves early since it can be cheaper than checking |
1978 | // types. |
1979 | if (!isLeaf()) |
1980 | if (N.getOperator() != getOperator() || |
1981 | N.getNumChildren() != getNumChildren()) |
1982 | return false; |
1983 | |
1984 | if (getExtTypes() != N.getExtTypes() || |
1985 | getPredicateCalls() != N.getPredicateCalls() || |
1986 | getTransformFn() != N.getTransformFn()) |
1987 | return false; |
1988 | |
1989 | if (isLeaf()) { |
1990 | if (DefInit *DI = dyn_cast<DefInit>(Val: getLeafValue())) { |
1991 | if (DefInit *NDI = dyn_cast<DefInit>(Val: N.getLeafValue())) { |
1992 | return ((DI->getDef() == NDI->getDef()) && |
1993 | (!DepVars.contains(key: getName()) || getName() == N.getName())); |
1994 | } |
1995 | } |
1996 | return getLeafValue() == N.getLeafValue(); |
1997 | } |
1998 | |
1999 | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
2000 | if (!getChild(N: i).isIsomorphicTo(N: N.getChild(N: i), DepVars)) |
2001 | return false; |
2002 | return true; |
2003 | } |
2004 | |
2005 | /// clone - Make a copy of this tree and all of its children. |
2006 | /// |
2007 | TreePatternNodePtr TreePatternNode::clone() const { |
2008 | TreePatternNodePtr New; |
2009 | if (isLeaf()) { |
2010 | New = makeIntrusiveRefCnt<TreePatternNode>(A: getLeafValue(), A: getNumTypes()); |
2011 | } else { |
2012 | std::vector<TreePatternNodePtr> CChildren; |
2013 | CChildren.reserve(n: Children.size()); |
2014 | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
2015 | CChildren.push_back(x: getChild(N: i).clone()); |
2016 | New = makeIntrusiveRefCnt<TreePatternNode>( |
2017 | A: getOperator(), A: std::move(CChildren), A: getNumTypes()); |
2018 | } |
2019 | New->setName(getName()); |
2020 | New->setNamesAsPredicateArg(getNamesAsPredicateArg()); |
2021 | New->Types = Types; |
2022 | New->setPredicateCalls(getPredicateCalls()); |
2023 | New->setGISelFlagsRecord(getGISelFlagsRecord()); |
2024 | New->setTransformFn(getTransformFn()); |
2025 | return New; |
2026 | } |
2027 | |
2028 | /// RemoveAllTypes - Recursively strip all the types of this tree. |
2029 | void TreePatternNode::RemoveAllTypes() { |
2030 | // Reset to unknown type. |
2031 | std::fill(first: Types.begin(), last: Types.end(), value: TypeSetByHwMode()); |
2032 | if (isLeaf()) |
2033 | return; |
2034 | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
2035 | getChild(N: i).RemoveAllTypes(); |
2036 | } |
2037 | |
2038 | /// SubstituteFormalArguments - Replace the formal arguments in this tree |
2039 | /// with actual values specified by ArgMap. |
2040 | void TreePatternNode::SubstituteFormalArguments( |
2041 | std::map<std::string, TreePatternNodePtr> &ArgMap) { |
2042 | if (isLeaf()) |
2043 | return; |
2044 | |
2045 | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { |
2046 | TreePatternNode &Child = getChild(N: i); |
2047 | if (Child.isLeaf()) { |
2048 | Init *Val = Child.getLeafValue(); |
2049 | // Note that, when substituting into an output pattern, Val might be an |
2050 | // UnsetInit. |
2051 | if (isa<UnsetInit>(Val) || |
2052 | (isa<DefInit>(Val) && |
2053 | cast<DefInit>(Val)->getDef()->getName() == "node" )) { |
2054 | // We found a use of a formal argument, replace it with its value. |
2055 | TreePatternNodePtr NewChild = ArgMap[Child.getName()]; |
2056 | assert(NewChild && "Couldn't find formal argument!" ); |
2057 | assert((Child.getPredicateCalls().empty() || |
2058 | NewChild->getPredicateCalls() == Child.getPredicateCalls()) && |
2059 | "Non-empty child predicate clobbered!" ); |
2060 | setChild(i, N: std::move(NewChild)); |
2061 | } |
2062 | } else { |
2063 | getChild(N: i).SubstituteFormalArguments(ArgMap); |
2064 | } |
2065 | } |
2066 | } |
2067 | |
2068 | /// InlinePatternFragments - If this pattern refers to any pattern |
2069 | /// fragments, return the set of inlined versions (this can be more than |
2070 | /// one if a PatFrags record has multiple alternatives). |
2071 | void TreePatternNode::InlinePatternFragments( |
2072 | TreePattern &TP, std::vector<TreePatternNodePtr> &OutAlternatives) { |
2073 | |
2074 | if (TP.hasError()) |
2075 | return; |
2076 | |
2077 | if (isLeaf()) { |
2078 | OutAlternatives.push_back(x: this); // nothing to do. |
2079 | return; |
2080 | } |
2081 | |
2082 | Record *Op = getOperator(); |
2083 | |
2084 | if (!Op->isSubClassOf(Name: "PatFrags" )) { |
2085 | if (getNumChildren() == 0) { |
2086 | OutAlternatives.push_back(x: this); |
2087 | return; |
2088 | } |
2089 | |
2090 | // Recursively inline children nodes. |
2091 | std::vector<std::vector<TreePatternNodePtr>> ChildAlternatives( |
2092 | getNumChildren()); |
2093 | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { |
2094 | TreePatternNodePtr Child = getChildShared(N: i); |
2095 | Child->InlinePatternFragments(TP, OutAlternatives&: ChildAlternatives[i]); |
2096 | // If there are no alternatives for any child, there are no |
2097 | // alternatives for this expression as whole. |
2098 | if (ChildAlternatives[i].empty()) |
2099 | return; |
2100 | |
2101 | assert((Child->getPredicateCalls().empty() || |
2102 | llvm::all_of(ChildAlternatives[i], |
2103 | [&](const TreePatternNodePtr &NewChild) { |
2104 | return NewChild->getPredicateCalls() == |
2105 | Child->getPredicateCalls(); |
2106 | })) && |
2107 | "Non-empty child predicate clobbered!" ); |
2108 | } |
2109 | |
2110 | // The end result is an all-pairs construction of the resultant pattern. |
2111 | std::vector<unsigned> Idxs(ChildAlternatives.size()); |
2112 | bool NotDone; |
2113 | do { |
2114 | // Create the variant and add it to the output list. |
2115 | std::vector<TreePatternNodePtr> NewChildren; |
2116 | NewChildren.reserve(n: ChildAlternatives.size()); |
2117 | for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i) |
2118 | NewChildren.push_back(x: ChildAlternatives[i][Idxs[i]]); |
2119 | TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>( |
2120 | A: getOperator(), A: std::move(NewChildren), A: getNumTypes()); |
2121 | |
2122 | // Copy over properties. |
2123 | R->setName(getName()); |
2124 | R->setNamesAsPredicateArg(getNamesAsPredicateArg()); |
2125 | R->setPredicateCalls(getPredicateCalls()); |
2126 | R->setGISelFlagsRecord(getGISelFlagsRecord()); |
2127 | R->setTransformFn(getTransformFn()); |
2128 | for (unsigned i = 0, e = getNumTypes(); i != e; ++i) |
2129 | R->setType(ResNo: i, T: getExtType(ResNo: i)); |
2130 | for (unsigned i = 0, e = getNumResults(); i != e; ++i) |
2131 | R->setResultIndex(ResNo: i, RI: getResultIndex(ResNo: i)); |
2132 | |
2133 | // Register alternative. |
2134 | OutAlternatives.push_back(x: R); |
2135 | |
2136 | // Increment indices to the next permutation by incrementing the |
2137 | // indices from last index backward, e.g., generate the sequence |
2138 | // [0, 0], [0, 1], [1, 0], [1, 1]. |
2139 | int IdxsIdx; |
2140 | for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { |
2141 | if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size()) |
2142 | Idxs[IdxsIdx] = 0; |
2143 | else |
2144 | break; |
2145 | } |
2146 | NotDone = (IdxsIdx >= 0); |
2147 | } while (NotDone); |
2148 | |
2149 | return; |
2150 | } |
2151 | |
2152 | // Otherwise, we found a reference to a fragment. First, look up its |
2153 | // TreePattern record. |
2154 | TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(R: Op); |
2155 | |
2156 | // Verify that we are passing the right number of operands. |
2157 | if (Frag->getNumArgs() != getNumChildren()) { |
2158 | TP.error(Msg: "'" + Op->getName() + "' fragment requires " + |
2159 | Twine(Frag->getNumArgs()) + " operands!" ); |
2160 | return; |
2161 | } |
2162 | |
2163 | TreePredicateFn PredFn(Frag); |
2164 | unsigned Scope = 0; |
2165 | if (TreePredicateFn(Frag).usesOperands()) |
2166 | Scope = TP.getDAGPatterns().allocateScope(); |
2167 | |
2168 | // Compute the map of formal to actual arguments. |
2169 | std::map<std::string, TreePatternNodePtr> ArgMap; |
2170 | for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) { |
2171 | TreePatternNodePtr Child = getChildShared(N: i); |
2172 | if (Scope != 0) { |
2173 | Child = Child->clone(); |
2174 | Child->addNameAsPredicateArg(N: ScopedName(Scope, Frag->getArgName(i))); |
2175 | } |
2176 | ArgMap[Frag->getArgName(i)] = Child; |
2177 | } |
2178 | |
2179 | // Loop over all fragment alternatives. |
2180 | for (const auto &Alternative : Frag->getTrees()) { |
2181 | TreePatternNodePtr FragTree = Alternative->clone(); |
2182 | |
2183 | if (!PredFn.isAlwaysTrue()) |
2184 | FragTree->addPredicateCall(Fn: PredFn, Scope); |
2185 | |
2186 | // Resolve formal arguments to their actual value. |
2187 | if (Frag->getNumArgs()) |
2188 | FragTree->SubstituteFormalArguments(ArgMap); |
2189 | |
2190 | // Transfer types. Note that the resolved alternative may have fewer |
2191 | // (but not more) results than the PatFrags node. |
2192 | FragTree->setName(getName()); |
2193 | for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i) |
2194 | FragTree->UpdateNodeType(ResNo: i, InTy: getExtType(ResNo: i), TP); |
2195 | |
2196 | if (Op->isSubClassOf(Name: "GISelFlags" )) |
2197 | FragTree->setGISelFlagsRecord(Op); |
2198 | |
2199 | // Transfer in the old predicates. |
2200 | for (const TreePredicateCall &Pred : getPredicateCalls()) |
2201 | FragTree->addPredicateCall(Call: Pred); |
2202 | |
2203 | // The fragment we inlined could have recursive inlining that is needed. See |
2204 | // if there are any pattern fragments in it and inline them as needed. |
2205 | FragTree->InlinePatternFragments(TP, OutAlternatives); |
2206 | } |
2207 | } |
2208 | |
2209 | /// getImplicitType - Check to see if the specified record has an implicit |
2210 | /// type which should be applied to it. This will infer the type of register |
2211 | /// references from the register file information, for example. |
2212 | /// |
2213 | /// When Unnamed is set, return the type of a DAG operand with no name, such as |
2214 | /// the F8RC register class argument in: |
2215 | /// |
2216 | /// (COPY_TO_REGCLASS GPR:$src, F8RC) |
2217 | /// |
2218 | /// When Unnamed is false, return the type of a named DAG operand such as the |
2219 | /// GPR:$src operand above. |
2220 | /// |
2221 | static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo, |
2222 | bool NotRegisters, bool Unnamed, |
2223 | TreePattern &TP) { |
2224 | CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); |
2225 | |
2226 | // Check to see if this is a register operand. |
2227 | if (R->isSubClassOf(Name: "RegisterOperand" )) { |
2228 | assert(ResNo == 0 && "Regoperand ref only has one result!" ); |
2229 | if (NotRegisters) |
2230 | return TypeSetByHwMode(); // Unknown. |
2231 | Record *RegClass = R->getValueAsDef(FieldName: "RegClass" ); |
2232 | const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); |
2233 | return TypeSetByHwMode(T.getRegisterClass(R: RegClass).getValueTypes()); |
2234 | } |
2235 | |
2236 | // Check to see if this is a register or a register class. |
2237 | if (R->isSubClassOf(Name: "RegisterClass" )) { |
2238 | assert(ResNo == 0 && "Regclass ref only has one result!" ); |
2239 | // An unnamed register class represents itself as an i32 immediate, for |
2240 | // example on a COPY_TO_REGCLASS instruction. |
2241 | if (Unnamed) |
2242 | return TypeSetByHwMode(MVT::i32); |
2243 | |
2244 | // In a named operand, the register class provides the possible set of |
2245 | // types. |
2246 | if (NotRegisters) |
2247 | return TypeSetByHwMode(); // Unknown. |
2248 | const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); |
2249 | return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes()); |
2250 | } |
2251 | |
2252 | if (R->isSubClassOf(Name: "PatFrags" )) { |
2253 | assert(ResNo == 0 && "FIXME: PatFrag with multiple results?" ); |
2254 | // Pattern fragment types will be resolved when they are inlined. |
2255 | return TypeSetByHwMode(); // Unknown. |
2256 | } |
2257 | |
2258 | if (R->isSubClassOf(Name: "Register" )) { |
2259 | assert(ResNo == 0 && "Registers only produce one result!" ); |
2260 | if (NotRegisters) |
2261 | return TypeSetByHwMode(); // Unknown. |
2262 | const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); |
2263 | return TypeSetByHwMode(T.getRegisterVTs(R)); |
2264 | } |
2265 | |
2266 | if (R->isSubClassOf(Name: "SubRegIndex" )) { |
2267 | assert(ResNo == 0 && "SubRegisterIndices only produce one result!" ); |
2268 | return TypeSetByHwMode(MVT::i32); |
2269 | } |
2270 | |
2271 | if (R->isSubClassOf(Name: "ValueType" )) { |
2272 | assert(ResNo == 0 && "This node only has one result!" ); |
2273 | // An unnamed VTSDNode represents itself as an MVT::Other immediate. |
2274 | // |
2275 | // (sext_inreg GPR:$src, i16) |
2276 | // ~~~ |
2277 | if (Unnamed) |
2278 | return TypeSetByHwMode(MVT::Other); |
2279 | // With a name, the ValueType simply provides the type of the named |
2280 | // variable. |
2281 | // |
2282 | // (sext_inreg i32:$src, i16) |
2283 | // ~~~~~~~~ |
2284 | if (NotRegisters) |
2285 | return TypeSetByHwMode(); // Unknown. |
2286 | const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); |
2287 | return TypeSetByHwMode(getValueTypeByHwMode(Rec: R, CGH)); |
2288 | } |
2289 | |
2290 | if (R->isSubClassOf(Name: "CondCode" )) { |
2291 | assert(ResNo == 0 && "This node only has one result!" ); |
2292 | // Using a CondCodeSDNode. |
2293 | return TypeSetByHwMode(MVT::Other); |
2294 | } |
2295 | |
2296 | if (R->isSubClassOf(Name: "ComplexPattern" )) { |
2297 | assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?" ); |
2298 | if (NotRegisters) |
2299 | return TypeSetByHwMode(); // Unknown. |
2300 | Record *T = CDP.getComplexPattern(R).getValueType(); |
2301 | const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); |
2302 | return TypeSetByHwMode(getValueTypeByHwMode(Rec: T, CGH)); |
2303 | } |
2304 | if (R->isSubClassOf(Name: "PointerLikeRegClass" )) { |
2305 | assert(ResNo == 0 && "Regclass can only have one result!" ); |
2306 | TypeSetByHwMode VTS(MVT::iPTR); |
2307 | TP.getInfer().expandOverloads(VTS); |
2308 | return VTS; |
2309 | } |
2310 | |
2311 | if (R->getName() == "node" || R->getName() == "srcvalue" || |
2312 | R->getName() == "zero_reg" || R->getName() == "immAllOnesV" || |
2313 | R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input" ) { |
2314 | // Placeholder. |
2315 | return TypeSetByHwMode(); // Unknown. |
2316 | } |
2317 | |
2318 | if (R->isSubClassOf(Name: "Operand" )) { |
2319 | const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); |
2320 | Record *T = R->getValueAsDef(FieldName: "Type" ); |
2321 | return TypeSetByHwMode(getValueTypeByHwMode(Rec: T, CGH)); |
2322 | } |
2323 | |
2324 | TP.error(Msg: "Unknown node flavor used in pattern: " + R->getName()); |
2325 | return TypeSetByHwMode(MVT::Other); |
2326 | } |
2327 | |
2328 | /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the |
2329 | /// CodeGenIntrinsic information for it, otherwise return a null pointer. |
2330 | const CodeGenIntrinsic * |
2331 | TreePatternNode::getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { |
2332 | if (getOperator() != CDP.get_intrinsic_void_sdnode() && |
2333 | getOperator() != CDP.get_intrinsic_w_chain_sdnode() && |
2334 | getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) |
2335 | return nullptr; |
2336 | |
2337 | unsigned IID = cast<IntInit>(Val: getChild(N: 0).getLeafValue())->getValue(); |
2338 | return &CDP.getIntrinsicInfo(IID); |
2339 | } |
2340 | |
2341 | /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, |
2342 | /// return the ComplexPattern information, otherwise return null. |
2343 | const ComplexPattern * |
2344 | TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { |
2345 | Record *Rec; |
2346 | if (isLeaf()) { |
2347 | DefInit *DI = dyn_cast<DefInit>(Val: getLeafValue()); |
2348 | if (!DI) |
2349 | return nullptr; |
2350 | Rec = DI->getDef(); |
2351 | } else |
2352 | Rec = getOperator(); |
2353 | |
2354 | if (!Rec->isSubClassOf(Name: "ComplexPattern" )) |
2355 | return nullptr; |
2356 | return &CGP.getComplexPattern(R: Rec); |
2357 | } |
2358 | |
2359 | unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { |
2360 | // A ComplexPattern specifically declares how many results it fills in. |
2361 | if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) |
2362 | return CP->getNumOperands(); |
2363 | |
2364 | // If MIOperandInfo is specified, that gives the count. |
2365 | if (isLeaf()) { |
2366 | DefInit *DI = dyn_cast<DefInit>(Val: getLeafValue()); |
2367 | if (DI && DI->getDef()->isSubClassOf(Name: "Operand" )) { |
2368 | DagInit *MIOps = DI->getDef()->getValueAsDag(FieldName: "MIOperandInfo" ); |
2369 | if (MIOps->getNumArgs()) |
2370 | return MIOps->getNumArgs(); |
2371 | } |
2372 | } |
2373 | |
2374 | // Otherwise there is just one result. |
2375 | return 1; |
2376 | } |
2377 | |
2378 | /// NodeHasProperty - Return true if this node has the specified property. |
2379 | bool TreePatternNode::NodeHasProperty(SDNP Property, |
2380 | const CodeGenDAGPatterns &CGP) const { |
2381 | if (isLeaf()) { |
2382 | if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) |
2383 | return CP->hasProperty(Prop: Property); |
2384 | |
2385 | return false; |
2386 | } |
2387 | |
2388 | if (Property != SDNPHasChain) { |
2389 | // The chain proprety is already present on the different intrinsic node |
2390 | // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed |
2391 | // on the intrinsic. Anything else is specific to the individual intrinsic. |
2392 | if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP: CGP)) |
2393 | return Int->hasProperty(Prop: Property); |
2394 | } |
2395 | |
2396 | if (!getOperator()->isSubClassOf(Name: "SDPatternOperator" )) |
2397 | return false; |
2398 | |
2399 | return CGP.getSDNodeInfo(R: getOperator()).hasProperty(Prop: Property); |
2400 | } |
2401 | |
2402 | /// TreeHasProperty - Return true if any node in this tree has the specified |
2403 | /// property. |
2404 | bool TreePatternNode::TreeHasProperty(SDNP Property, |
2405 | const CodeGenDAGPatterns &CGP) const { |
2406 | if (NodeHasProperty(Property, CGP)) |
2407 | return true; |
2408 | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
2409 | if (getChild(N: i).TreeHasProperty(Property, CGP)) |
2410 | return true; |
2411 | return false; |
2412 | } |
2413 | |
2414 | /// isCommutativeIntrinsic - Return true if the node corresponds to a |
2415 | /// commutative intrinsic. |
2416 | bool TreePatternNode::isCommutativeIntrinsic( |
2417 | const CodeGenDAGPatterns &CDP) const { |
2418 | if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) |
2419 | return Int->isCommutative; |
2420 | return false; |
2421 | } |
2422 | |
2423 | static bool isOperandClass(const TreePatternNode &N, StringRef Class) { |
2424 | if (!N.isLeaf()) |
2425 | return N.getOperator()->isSubClassOf(Name: Class); |
2426 | |
2427 | DefInit *DI = dyn_cast<DefInit>(Val: N.getLeafValue()); |
2428 | if (DI && DI->getDef()->isSubClassOf(Name: Class)) |
2429 | return true; |
2430 | |
2431 | return false; |
2432 | } |
2433 | |
2434 | static void emitTooManyOperandsError(TreePattern &TP, StringRef InstName, |
2435 | unsigned Expected, unsigned Actual) { |
2436 | TP.error(Msg: "Instruction '" + InstName + "' was provided " + Twine(Actual) + |
2437 | " operands but expected only " + Twine(Expected) + "!" ); |
2438 | } |
2439 | |
2440 | static void emitTooFewOperandsError(TreePattern &TP, StringRef InstName, |
2441 | unsigned Actual) { |
2442 | TP.error(Msg: "Instruction '" + InstName + "' expects more than the provided " + |
2443 | Twine(Actual) + " operands!" ); |
2444 | } |
2445 | |
2446 | /// ApplyTypeConstraints - Apply all of the type constraints relevant to |
2447 | /// this node and its children in the tree. This returns true if it makes a |
2448 | /// change, false otherwise. If a type contradiction is found, flag an error. |
2449 | bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { |
2450 | if (TP.hasError()) |
2451 | return false; |
2452 | |
2453 | CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); |
2454 | if (isLeaf()) { |
2455 | if (DefInit *DI = dyn_cast<DefInit>(Val: getLeafValue())) { |
2456 | // If it's a regclass or something else known, include the type. |
2457 | bool MadeChange = false; |
2458 | for (unsigned i = 0, e = Types.size(); i != e; ++i) |
2459 | MadeChange |= UpdateNodeType( |
2460 | ResNo: i, InTy: getImplicitType(R: DI->getDef(), ResNo: i, NotRegisters, Unnamed: !hasName(), TP), |
2461 | TP); |
2462 | return MadeChange; |
2463 | } |
2464 | |
2465 | if (IntInit *II = dyn_cast<IntInit>(Val: getLeafValue())) { |
2466 | assert(Types.size() == 1 && "Invalid IntInit" ); |
2467 | |
2468 | // Int inits are always integers. :) |
2469 | bool MadeChange = TP.getInfer().EnforceInteger(Out&: Types[0]); |
2470 | |
2471 | if (!TP.getInfer().isConcrete(VTS: Types[0], AllowEmpty: false)) |
2472 | return MadeChange; |
2473 | |
2474 | ValueTypeByHwMode VVT = TP.getInfer().getConcrete(VTS: Types[0], AllowEmpty: false); |
2475 | for (auto &P : VVT) { |
2476 | MVT::SimpleValueType VT = P.second.SimpleTy; |
2477 | if (VT == MVT::iPTR || VT == MVT::iPTRAny) |
2478 | continue; |
2479 | unsigned Size = MVT(VT).getFixedSizeInBits(); |
2480 | // Make sure that the value is representable for this type. |
2481 | if (Size >= 32) |
2482 | continue; |
2483 | // Check that the value doesn't use more bits than we have. It must |
2484 | // either be a sign- or zero-extended equivalent of the original. |
2485 | int64_t SignBitAndAbove = II->getValue() >> (Size - 1); |
2486 | if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || |
2487 | SignBitAndAbove == 1) |
2488 | continue; |
2489 | |
2490 | TP.error(Msg: "Integer value '" + Twine(II->getValue()) + |
2491 | "' is out of range for type '" + getEnumName(T: VT) + "'!" ); |
2492 | break; |
2493 | } |
2494 | return MadeChange; |
2495 | } |
2496 | |
2497 | return false; |
2498 | } |
2499 | |
2500 | if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { |
2501 | bool MadeChange = false; |
2502 | |
2503 | // Apply the result type to the node. |
2504 | unsigned NumRetVTs = Int->IS.RetTys.size(); |
2505 | unsigned NumParamVTs = Int->IS.ParamTys.size(); |
2506 | |
2507 | for (unsigned i = 0, e = NumRetVTs; i != e; ++i) |
2508 | MadeChange |= UpdateNodeType( |
2509 | ResNo: i, InTy: getValueType(Rec: Int->IS.RetTys[i]->getValueAsDef(FieldName: "VT" )), TP); |
2510 | |
2511 | if (getNumChildren() != NumParamVTs + 1) { |
2512 | TP.error(Msg: "Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) + |
2513 | " operands, not " + Twine(getNumChildren() - 1) + " operands!" ); |
2514 | return false; |
2515 | } |
2516 | |
2517 | // Apply type info to the intrinsic ID. |
2518 | MadeChange |= getChild(N: 0).UpdateNodeType(ResNo: 0, InTy: MVT::iPTR, TP); |
2519 | |
2520 | for (unsigned i = 0, e = getNumChildren() - 1; i != e; ++i) { |
2521 | MadeChange |= getChild(N: i + 1).ApplyTypeConstraints(TP, NotRegisters); |
2522 | |
2523 | MVT::SimpleValueType OpVT = |
2524 | getValueType(Rec: Int->IS.ParamTys[i]->getValueAsDef(FieldName: "VT" )); |
2525 | assert(getChild(i + 1).getNumTypes() == 1 && "Unhandled case" ); |
2526 | MadeChange |= getChild(N: i + 1).UpdateNodeType(ResNo: 0, InTy: OpVT, TP); |
2527 | } |
2528 | return MadeChange; |
2529 | } |
2530 | |
2531 | if (getOperator()->isSubClassOf(Name: "SDNode" )) { |
2532 | const SDNodeInfo &NI = CDP.getSDNodeInfo(R: getOperator()); |
2533 | |
2534 | // Check that the number of operands is sane. Negative operands -> varargs. |
2535 | if (NI.getNumOperands() >= 0 && |
2536 | getNumChildren() != (unsigned)NI.getNumOperands()) { |
2537 | TP.error(Msg: getOperator()->getName() + " node requires exactly " + |
2538 | Twine(NI.getNumOperands()) + " operands!" ); |
2539 | return false; |
2540 | } |
2541 | |
2542 | bool MadeChange = false; |
2543 | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
2544 | MadeChange |= getChild(N: i).ApplyTypeConstraints(TP, NotRegisters); |
2545 | MadeChange |= NI.ApplyTypeConstraints(N&: *this, TP); |
2546 | return MadeChange; |
2547 | } |
2548 | |
2549 | if (getOperator()->isSubClassOf(Name: "Instruction" )) { |
2550 | const DAGInstruction &Inst = CDP.getInstruction(R: getOperator()); |
2551 | CodeGenInstruction &InstInfo = |
2552 | CDP.getTargetInfo().getInstruction(InstRec: getOperator()); |
2553 | |
2554 | bool MadeChange = false; |
2555 | |
2556 | // Apply the result types to the node, these come from the things in the |
2557 | // (outs) list of the instruction. |
2558 | unsigned NumResultsToAdd = |
2559 | std::min(a: InstInfo.Operands.NumDefs, b: Inst.getNumResults()); |
2560 | for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) |
2561 | MadeChange |= UpdateNodeTypeFromInst(ResNo, Operand: Inst.getResult(RN: ResNo), TP); |
2562 | |
2563 | // If the instruction has implicit defs, we apply the first one as a result. |
2564 | // FIXME: This sucks, it should apply all implicit defs. |
2565 | if (!InstInfo.ImplicitDefs.empty()) { |
2566 | unsigned ResNo = NumResultsToAdd; |
2567 | |
2568 | // FIXME: Generalize to multiple possible types and multiple possible |
2569 | // ImplicitDefs. |
2570 | MVT::SimpleValueType VT = |
2571 | InstInfo.HasOneImplicitDefWithKnownVT(TargetInfo: CDP.getTargetInfo()); |
2572 | |
2573 | if (VT != MVT::Other) |
2574 | MadeChange |= UpdateNodeType(ResNo, InTy: VT, TP); |
2575 | } |
2576 | |
2577 | // If this is an INSERT_SUBREG, constrain the source and destination VTs to |
2578 | // be the same. |
2579 | if (getOperator()->getName() == "INSERT_SUBREG" ) { |
2580 | assert(getChild(0).getNumTypes() == 1 && "FIXME: Unhandled" ); |
2581 | MadeChange |= UpdateNodeType(ResNo: 0, InTy: getChild(N: 0).getExtType(ResNo: 0), TP); |
2582 | MadeChange |= getChild(N: 0).UpdateNodeType(ResNo: 0, InTy: getExtType(ResNo: 0), TP); |
2583 | } else if (getOperator()->getName() == "REG_SEQUENCE" ) { |
2584 | // We need to do extra, custom typechecking for REG_SEQUENCE since it is |
2585 | // variadic. |
2586 | |
2587 | unsigned NChild = getNumChildren(); |
2588 | if (NChild < 3) { |
2589 | TP.error(Msg: "REG_SEQUENCE requires at least 3 operands!" ); |
2590 | return false; |
2591 | } |
2592 | |
2593 | if (NChild % 2 == 0) { |
2594 | TP.error(Msg: "REG_SEQUENCE requires an odd number of operands!" ); |
2595 | return false; |
2596 | } |
2597 | |
2598 | if (!isOperandClass(N: getChild(N: 0), Class: "RegisterClass" )) { |
2599 | TP.error(Msg: "REG_SEQUENCE requires a RegisterClass for first operand!" ); |
2600 | return false; |
2601 | } |
2602 | |
2603 | for (unsigned I = 1; I < NChild; I += 2) { |
2604 | TreePatternNode &SubIdxChild = getChild(N: I + 1); |
2605 | if (!isOperandClass(N: SubIdxChild, Class: "SubRegIndex" )) { |
2606 | TP.error(Msg: "REG_SEQUENCE requires a SubRegIndex for operand " + |
2607 | Twine(I + 1) + "!" ); |
2608 | return false; |
2609 | } |
2610 | } |
2611 | } |
2612 | |
2613 | unsigned NumResults = Inst.getNumResults(); |
2614 | unsigned NumFixedOperands = InstInfo.Operands.size(); |
2615 | |
2616 | // If one or more operands with a default value appear at the end of the |
2617 | // formal operand list for an instruction, we allow them to be overridden |
2618 | // by optional operands provided in the pattern. |
2619 | // |
2620 | // But if an operand B without a default appears at any point after an |
2621 | // operand A with a default, then we don't allow A to be overridden, |
2622 | // because there would be no way to specify whether the next operand in |
2623 | // the pattern was intended to override A or skip it. |
2624 | unsigned NonOverridableOperands = NumFixedOperands; |
2625 | while (NonOverridableOperands > NumResults && |
2626 | CDP.operandHasDefault( |
2627 | Op: InstInfo.Operands[NonOverridableOperands - 1].Rec)) |
2628 | --NonOverridableOperands; |
2629 | |
2630 | unsigned ChildNo = 0; |
2631 | assert(NumResults <= NumFixedOperands); |
2632 | for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) { |
2633 | Record *OperandNode = InstInfo.Operands[i].Rec; |
2634 | |
2635 | // If the operand has a default value, do we use it? We must use the |
2636 | // default if we've run out of children of the pattern DAG to consume, |
2637 | // or if the operand is followed by a non-defaulted one. |
2638 | if (CDP.operandHasDefault(Op: OperandNode) && |
2639 | (i < NonOverridableOperands || ChildNo >= getNumChildren())) |
2640 | continue; |
2641 | |
2642 | // If we have run out of child nodes and there _isn't_ a default |
2643 | // value we can use for the next operand, give an error. |
2644 | if (ChildNo >= getNumChildren()) { |
2645 | emitTooFewOperandsError(TP, InstName: getOperator()->getName(), Actual: getNumChildren()); |
2646 | return false; |
2647 | } |
2648 | |
2649 | TreePatternNode *Child = &getChild(N: ChildNo++); |
2650 | unsigned ChildResNo = 0; // Instructions always use res #0 of their op. |
2651 | |
2652 | // If the operand has sub-operands, they may be provided by distinct |
2653 | // child patterns, so attempt to match each sub-operand separately. |
2654 | if (OperandNode->isSubClassOf(Name: "Operand" )) { |
2655 | DagInit *MIOpInfo = OperandNode->getValueAsDag(FieldName: "MIOperandInfo" ); |
2656 | if (unsigned NumArgs = MIOpInfo->getNumArgs()) { |
2657 | // But don't do that if the whole operand is being provided by |
2658 | // a single ComplexPattern-related Operand. |
2659 | |
2660 | if (Child->getNumMIResults(CGP: CDP) < NumArgs) { |
2661 | // Match first sub-operand against the child we already have. |
2662 | Record *SubRec = cast<DefInit>(Val: MIOpInfo->getArg(Num: 0))->getDef(); |
2663 | MadeChange |= Child->UpdateNodeTypeFromInst(ResNo: ChildResNo, Operand: SubRec, TP); |
2664 | |
2665 | // And the remaining sub-operands against subsequent children. |
2666 | for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { |
2667 | if (ChildNo >= getNumChildren()) { |
2668 | emitTooFewOperandsError(TP, InstName: getOperator()->getName(), |
2669 | Actual: getNumChildren()); |
2670 | return false; |
2671 | } |
2672 | Child = &getChild(N: ChildNo++); |
2673 | |
2674 | SubRec = cast<DefInit>(Val: MIOpInfo->getArg(Num: Arg))->getDef(); |
2675 | MadeChange |= |
2676 | Child->UpdateNodeTypeFromInst(ResNo: ChildResNo, Operand: SubRec, TP); |
2677 | } |
2678 | continue; |
2679 | } |
2680 | } |
2681 | } |
2682 | |
2683 | // If we didn't match by pieces above, attempt to match the whole |
2684 | // operand now. |
2685 | MadeChange |= Child->UpdateNodeTypeFromInst(ResNo: ChildResNo, Operand: OperandNode, TP); |
2686 | } |
2687 | |
2688 | if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { |
2689 | emitTooManyOperandsError(TP, InstName: getOperator()->getName(), Expected: ChildNo, |
2690 | Actual: getNumChildren()); |
2691 | return false; |
2692 | } |
2693 | |
2694 | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
2695 | MadeChange |= getChild(N: i).ApplyTypeConstraints(TP, NotRegisters); |
2696 | return MadeChange; |
2697 | } |
2698 | |
2699 | if (getOperator()->isSubClassOf(Name: "ComplexPattern" )) { |
2700 | bool MadeChange = false; |
2701 | |
2702 | if (!NotRegisters) { |
2703 | assert(Types.size() == 1 && "ComplexPatterns only produce one result!" ); |
2704 | Record *T = CDP.getComplexPattern(R: getOperator()).getValueType(); |
2705 | const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); |
2706 | const ValueTypeByHwMode VVT = getValueTypeByHwMode(Rec: T, CGH); |
2707 | // TODO: AArch64 and AMDGPU use ComplexPattern<untyped, ...> and then |
2708 | // exclusively use those as non-leaf nodes with explicit type casts, so |
2709 | // for backwards compatibility we do no inference in that case. This is |
2710 | // not supported when the ComplexPattern is used as a leaf value, |
2711 | // however; this inconsistency should be resolved, either by adding this |
2712 | // case there or by altering the backends to not do this (e.g. using Any |
2713 | // instead may work). |
2714 | if (!VVT.isSimple() || VVT.getSimple() != MVT::Untyped) |
2715 | MadeChange |= UpdateNodeType(ResNo: 0, InTy: VVT, TP); |
2716 | } |
2717 | |
2718 | for (unsigned i = 0; i < getNumChildren(); ++i) |
2719 | MadeChange |= getChild(N: i).ApplyTypeConstraints(TP, NotRegisters); |
2720 | |
2721 | return MadeChange; |
2722 | } |
2723 | |
2724 | assert(getOperator()->isSubClassOf("SDNodeXForm" ) && "Unknown node type!" ); |
2725 | |
2726 | // Node transforms always take one operand. |
2727 | if (getNumChildren() != 1) { |
2728 | TP.error(Msg: "Node transform '" + getOperator()->getName() + |
2729 | "' requires one operand!" ); |
2730 | return false; |
2731 | } |
2732 | |
2733 | bool MadeChange = getChild(N: 0).ApplyTypeConstraints(TP, NotRegisters); |
2734 | return MadeChange; |
2735 | } |
2736 | |
2737 | /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the |
2738 | /// RHS of a commutative operation, not the on LHS. |
2739 | static bool OnlyOnRHSOfCommutative(TreePatternNode &N) { |
2740 | if (!N.isLeaf() && N.getOperator()->getName() == "imm" ) |
2741 | return true; |
2742 | if (N.isLeaf() && isa<IntInit>(Val: N.getLeafValue())) |
2743 | return true; |
2744 | if (isImmAllOnesAllZerosMatch(P: N)) |
2745 | return true; |
2746 | return false; |
2747 | } |
2748 | |
2749 | /// canPatternMatch - If it is impossible for this pattern to match on this |
2750 | /// target, fill in Reason and return false. Otherwise, return true. This is |
2751 | /// used as a sanity check for .td files (to prevent people from writing stuff |
2752 | /// that can never possibly work), and to prevent the pattern permuter from |
2753 | /// generating stuff that is useless. |
2754 | bool TreePatternNode::canPatternMatch(std::string &Reason, |
2755 | const CodeGenDAGPatterns &CDP) { |
2756 | if (isLeaf()) |
2757 | return true; |
2758 | |
2759 | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
2760 | if (!getChild(N: i).canPatternMatch(Reason, CDP)) |
2761 | return false; |
2762 | |
2763 | // If this is an intrinsic, handle cases that would make it not match. For |
2764 | // example, if an operand is required to be an immediate. |
2765 | if (getOperator()->isSubClassOf(Name: "Intrinsic" )) { |
2766 | // TODO: |
2767 | return true; |
2768 | } |
2769 | |
2770 | if (getOperator()->isSubClassOf(Name: "ComplexPattern" )) |
2771 | return true; |
2772 | |
2773 | // If this node is a commutative operator, check that the LHS isn't an |
2774 | // immediate. |
2775 | const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(R: getOperator()); |
2776 | bool isCommIntrinsic = isCommutativeIntrinsic(CDP); |
2777 | if (NodeInfo.hasProperty(Prop: SDNPCommutative) || isCommIntrinsic) { |
2778 | // Scan all of the operands of the node and make sure that only the last one |
2779 | // is a constant node, unless the RHS also is. |
2780 | if (!OnlyOnRHSOfCommutative(N&: getChild(N: getNumChildren() - 1))) { |
2781 | unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. |
2782 | for (unsigned i = Skip, e = getNumChildren() - 1; i != e; ++i) |
2783 | if (OnlyOnRHSOfCommutative(N&: getChild(N: i))) { |
2784 | Reason = |
2785 | "Immediate value must be on the RHS of commutative operators!" ; |
2786 | return false; |
2787 | } |
2788 | } |
2789 | } |
2790 | |
2791 | return true; |
2792 | } |
2793 | |
2794 | //===----------------------------------------------------------------------===// |
2795 | // TreePattern implementation |
2796 | // |
2797 | |
2798 | TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, |
2799 | CodeGenDAGPatterns &cdp) |
2800 | : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), |
2801 | Infer(*this) { |
2802 | for (Init *I : RawPat->getValues()) |
2803 | Trees.push_back(x: ParseTreePattern(DI: I, OpName: "" )); |
2804 | } |
2805 | |
2806 | TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, |
2807 | CodeGenDAGPatterns &cdp) |
2808 | : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), |
2809 | Infer(*this) { |
2810 | Trees.push_back(x: ParseTreePattern(DI: Pat, OpName: "" )); |
2811 | } |
2812 | |
2813 | TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, |
2814 | CodeGenDAGPatterns &cdp) |
2815 | : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), |
2816 | Infer(*this) { |
2817 | Trees.push_back(x: Pat); |
2818 | } |
2819 | |
2820 | void TreePattern::error(const Twine &Msg) { |
2821 | if (HasError) |
2822 | return; |
2823 | dump(); |
2824 | PrintError(ErrorLoc: TheRecord->getLoc(), Msg: "In " + TheRecord->getName() + ": " + Msg); |
2825 | HasError = true; |
2826 | } |
2827 | |
2828 | void TreePattern::ComputeNamedNodes() { |
2829 | for (TreePatternNodePtr &Tree : Trees) |
2830 | ComputeNamedNodes(N&: *Tree); |
2831 | } |
2832 | |
2833 | void TreePattern::ComputeNamedNodes(TreePatternNode &N) { |
2834 | if (!N.getName().empty()) |
2835 | NamedNodes[N.getName()].push_back(Elt: &N); |
2836 | |
2837 | for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i) |
2838 | ComputeNamedNodes(N&: N.getChild(N: i)); |
2839 | } |
2840 | |
2841 | TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit, |
2842 | StringRef OpName) { |
2843 | RecordKeeper &RK = TheInit->getRecordKeeper(); |
2844 | if (DefInit *DI = dyn_cast<DefInit>(Val: TheInit)) { |
2845 | Record *R = DI->getDef(); |
2846 | |
2847 | // Direct reference to a leaf DagNode or PatFrag? Turn it into a |
2848 | // TreePatternNode of its own. For example: |
2849 | /// (foo GPR, imm) -> (foo GPR, (imm)) |
2850 | if (R->isSubClassOf(Name: "SDNode" ) || R->isSubClassOf(Name: "PatFrags" )) |
2851 | return ParseTreePattern( |
2852 | TheInit: DagInit::get(V: DI, VN: nullptr, |
2853 | Args: std::vector<std::pair<Init *, StringInit *>>()), |
2854 | OpName); |
2855 | |
2856 | // Input argument? |
2857 | TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(A&: DI, A: 1); |
2858 | if (R->getName() == "node" && !OpName.empty()) { |
2859 | if (OpName.empty()) |
2860 | error(Msg: "'node' argument requires a name to match with operand list" ); |
2861 | Args.push_back(x: std::string(OpName)); |
2862 | } |
2863 | |
2864 | Res->setName(OpName); |
2865 | return Res; |
2866 | } |
2867 | |
2868 | // ?:$name or just $name. |
2869 | if (isa<UnsetInit>(Val: TheInit)) { |
2870 | if (OpName.empty()) |
2871 | error(Msg: "'?' argument requires a name to match with operand list" ); |
2872 | TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(A&: TheInit, A: 1); |
2873 | Args.push_back(x: std::string(OpName)); |
2874 | Res->setName(OpName); |
2875 | return Res; |
2876 | } |
2877 | |
2878 | if (isa<IntInit>(Val: TheInit) || isa<BitInit>(Val: TheInit)) { |
2879 | if (!OpName.empty()) |
2880 | error(Msg: "Constant int or bit argument should not have a name!" ); |
2881 | if (isa<BitInit>(Val: TheInit)) |
2882 | TheInit = TheInit->convertInitializerTo(Ty: IntRecTy::get(RK)); |
2883 | return makeIntrusiveRefCnt<TreePatternNode>(A&: TheInit, A: 1); |
2884 | } |
2885 | |
2886 | if (BitsInit *BI = dyn_cast<BitsInit>(Val: TheInit)) { |
2887 | // Turn this into an IntInit. |
2888 | Init *II = BI->convertInitializerTo(Ty: IntRecTy::get(RK)); |
2889 | if (!II || !isa<IntInit>(Val: II)) |
2890 | error(Msg: "Bits value must be constants!" ); |
2891 | return II ? ParseTreePattern(TheInit: II, OpName) : nullptr; |
2892 | } |
2893 | |
2894 | DagInit *Dag = dyn_cast<DagInit>(Val: TheInit); |
2895 | if (!Dag) { |
2896 | TheInit->print(OS&: errs()); |
2897 | error(Msg: "Pattern has unexpected init kind!" ); |
2898 | return nullptr; |
2899 | } |
2900 | DefInit *OpDef = dyn_cast<DefInit>(Val: Dag->getOperator()); |
2901 | if (!OpDef) { |
2902 | error(Msg: "Pattern has unexpected operator type!" ); |
2903 | return nullptr; |
2904 | } |
2905 | Record *Operator = OpDef->getDef(); |
2906 | |
2907 | if (Operator->isSubClassOf(Name: "ValueType" )) { |
2908 | // If the operator is a ValueType, then this must be "type cast" of a leaf |
2909 | // node. |
2910 | if (Dag->getNumArgs() != 1) |
2911 | error(Msg: "Type cast only takes one operand!" ); |
2912 | |
2913 | TreePatternNodePtr New = |
2914 | ParseTreePattern(TheInit: Dag->getArg(Num: 0), OpName: Dag->getArgNameStr(Num: 0)); |
2915 | |
2916 | // Apply the type cast. |
2917 | if (New->getNumTypes() != 1) |
2918 | error(Msg: "Type cast can only have one type!" ); |
2919 | const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); |
2920 | New->UpdateNodeType(ResNo: 0, InTy: getValueTypeByHwMode(Rec: Operator, CGH), TP&: *this); |
2921 | |
2922 | if (!OpName.empty()) |
2923 | error(Msg: "ValueType cast should not have a name!" ); |
2924 | return New; |
2925 | } |
2926 | |
2927 | // Verify that this is something that makes sense for an operator. |
2928 | if (!Operator->isSubClassOf(Name: "PatFrags" ) && |
2929 | !Operator->isSubClassOf(Name: "SDNode" ) && |
2930 | !Operator->isSubClassOf(Name: "Instruction" ) && |
2931 | !Operator->isSubClassOf(Name: "SDNodeXForm" ) && |
2932 | !Operator->isSubClassOf(Name: "Intrinsic" ) && |
2933 | !Operator->isSubClassOf(Name: "ComplexPattern" ) && |
2934 | Operator->getName() != "set" && Operator->getName() != "implicit" ) |
2935 | error(Msg: "Unrecognized node '" + Operator->getName() + "'!" ); |
2936 | |
2937 | // Check to see if this is something that is illegal in an input pattern. |
2938 | if (isInputPattern) { |
2939 | if (Operator->isSubClassOf(Name: "Instruction" ) || |
2940 | Operator->isSubClassOf(Name: "SDNodeXForm" )) |
2941 | error(Msg: "Cannot use '" + Operator->getName() + "' in an input pattern!" ); |
2942 | } else { |
2943 | if (Operator->isSubClassOf(Name: "Intrinsic" )) |
2944 | error(Msg: "Cannot use '" + Operator->getName() + "' in an output pattern!" ); |
2945 | |
2946 | if (Operator->isSubClassOf(Name: "SDNode" ) && Operator->getName() != "imm" && |
2947 | Operator->getName() != "timm" && Operator->getName() != "fpimm" && |
2948 | Operator->getName() != "tglobaltlsaddr" && |
2949 | Operator->getName() != "tconstpool" && |
2950 | Operator->getName() != "tjumptable" && |
2951 | Operator->getName() != "tframeindex" && |
2952 | Operator->getName() != "texternalsym" && |
2953 | Operator->getName() != "tblockaddress" && |
2954 | Operator->getName() != "tglobaladdr" && Operator->getName() != "bb" && |
2955 | Operator->getName() != "vt" && Operator->getName() != "mcsym" ) |
2956 | error(Msg: "Cannot use '" + Operator->getName() + "' in an output pattern!" ); |
2957 | } |
2958 | |
2959 | std::vector<TreePatternNodePtr> Children; |
2960 | |
2961 | // Parse all the operands. |
2962 | for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) |
2963 | Children.push_back(x: ParseTreePattern(TheInit: Dag->getArg(Num: i), OpName: Dag->getArgNameStr(Num: i))); |
2964 | |
2965 | // Get the actual number of results before Operator is converted to an |
2966 | // intrinsic node (which is hard-coded to have either zero or one result). |
2967 | unsigned NumResults = GetNumNodeResults(Operator, CDP); |
2968 | |
2969 | // If the operator is an intrinsic, then this is just syntactic sugar for |
2970 | // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and |
2971 | // convert the intrinsic name to a number. |
2972 | if (Operator->isSubClassOf(Name: "Intrinsic" )) { |
2973 | const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(R: Operator); |
2974 | unsigned IID = getDAGPatterns().getIntrinsicID(R: Operator) + 1; |
2975 | |
2976 | // If this intrinsic returns void, it must have side-effects and thus a |
2977 | // chain. |
2978 | if (Int.IS.RetTys.empty()) |
2979 | Operator = getDAGPatterns().get_intrinsic_void_sdnode(); |
2980 | else if (!Int.ME.doesNotAccessMemory() || Int.hasSideEffects) |
2981 | // Has side-effects, requires chain. |
2982 | Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); |
2983 | else // Otherwise, no chain. |
2984 | Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); |
2985 | |
2986 | Children.insert(position: Children.begin(), x: makeIntrusiveRefCnt<TreePatternNode>( |
2987 | A: IntInit::get(RK, V: IID), A: 1)); |
2988 | } |
2989 | |
2990 | if (Operator->isSubClassOf(Name: "ComplexPattern" )) { |
2991 | for (unsigned i = 0; i < Children.size(); ++i) { |
2992 | TreePatternNodePtr Child = Children[i]; |
2993 | |
2994 | if (Child->getName().empty()) |
2995 | error(Msg: "All arguments to a ComplexPattern must be named" ); |
2996 | |
2997 | // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" |
2998 | // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; |
2999 | // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". |
3000 | auto OperandId = std::pair(Operator, i); |
3001 | auto PrevOp = ComplexPatternOperands.find(Key: Child->getName()); |
3002 | if (PrevOp != ComplexPatternOperands.end()) { |
3003 | if (PrevOp->getValue() != OperandId) |
3004 | error(Msg: "All ComplexPattern operands must appear consistently: " |
3005 | "in the same order in just one ComplexPattern instance." ); |
3006 | } else |
3007 | ComplexPatternOperands[Child->getName()] = OperandId; |
3008 | } |
3009 | } |
3010 | |
3011 | TreePatternNodePtr Result = makeIntrusiveRefCnt<TreePatternNode>( |
3012 | A&: Operator, A: std::move(Children), A&: NumResults); |
3013 | Result->setName(OpName); |
3014 | |
3015 | if (Dag->getName()) { |
3016 | assert(Result->getName().empty()); |
3017 | Result->setName(Dag->getNameStr()); |
3018 | } |
3019 | return Result; |
3020 | } |
3021 | |
3022 | /// SimplifyTree - See if we can simplify this tree to eliminate something that |
3023 | /// will never match in favor of something obvious that will. This is here |
3024 | /// strictly as a convenience to target authors because it allows them to write |
3025 | /// more type generic things and have useless type casts fold away. |
3026 | /// |
3027 | /// This returns true if any change is made. |
3028 | static bool SimplifyTree(TreePatternNodePtr &N) { |
3029 | if (N->isLeaf()) |
3030 | return false; |
3031 | |
3032 | // If we have a bitconvert with a resolved type and if the source and |
3033 | // destination types are the same, then the bitconvert is useless, remove it. |
3034 | // |
3035 | // We make an exception if the types are completely empty. This can come up |
3036 | // when the pattern being simplified is in the Fragments list of a PatFrags, |
3037 | // so that the operand is just an untyped "node". In that situation we leave |
3038 | // bitconverts unsimplified, and simplify them later once the fragment is |
3039 | // expanded into its true context. |
3040 | if (N->getOperator()->getName() == "bitconvert" && |
3041 | N->getExtType(ResNo: 0).isValueTypeByHwMode(AllowEmpty: false) && |
3042 | !N->getExtType(ResNo: 0).empty() && |
3043 | N->getExtType(ResNo: 0) == N->getChild(N: 0).getExtType(ResNo: 0) && |
3044 | N->getName().empty()) { |
3045 | N = N->getChildShared(N: 0); |
3046 | SimplifyTree(N); |
3047 | return true; |
3048 | } |
3049 | |
3050 | // Walk all children. |
3051 | bool MadeChange = false; |
3052 | for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) |
3053 | MadeChange |= SimplifyTree(N&: N->getChildSharedPtr(N: i)); |
3054 | |
3055 | return MadeChange; |
3056 | } |
3057 | |
3058 | /// InferAllTypes - Infer/propagate as many types throughout the expression |
3059 | /// patterns as possible. Return true if all types are inferred, false |
3060 | /// otherwise. Flags an error if a type contradiction is found. |
3061 | bool TreePattern::InferAllTypes( |
3062 | const StringMap<SmallVector<TreePatternNode *, 1>> *InNamedTypes) { |
3063 | if (NamedNodes.empty()) |
3064 | ComputeNamedNodes(); |
3065 | |
3066 | bool MadeChange = true; |
3067 | while (MadeChange) { |
3068 | MadeChange = false; |
3069 | for (TreePatternNodePtr &Tree : Trees) { |
3070 | MadeChange |= Tree->ApplyTypeConstraints(TP&: *this, NotRegisters: false); |
3071 | MadeChange |= SimplifyTree(N&: Tree); |
3072 | } |
3073 | |
3074 | // If there are constraints on our named nodes, apply them. |
3075 | for (auto &Entry : NamedNodes) { |
3076 | SmallVectorImpl<TreePatternNode *> &Nodes = Entry.second; |
3077 | |
3078 | // If we have input named node types, propagate their types to the named |
3079 | // values here. |
3080 | if (InNamedTypes) { |
3081 | if (!InNamedTypes->count(Key: Entry.getKey())) { |
3082 | error(Msg: "Node '" + std::string(Entry.getKey()) + |
3083 | "' in output pattern but not input pattern" ); |
3084 | return true; |
3085 | } |
3086 | |
3087 | const SmallVectorImpl<TreePatternNode *> &InNodes = |
3088 | InNamedTypes->find(Key: Entry.getKey())->second; |
3089 | |
3090 | // The input types should be fully resolved by now. |
3091 | for (TreePatternNode *Node : Nodes) { |
3092 | // If this node is a register class, and it is the root of the pattern |
3093 | // then we're mapping something onto an input register. We allow |
3094 | // changing the type of the input register in this case. This allows |
3095 | // us to match things like: |
3096 | // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; |
3097 | if (Node == Trees[0].get() && Node->isLeaf()) { |
3098 | DefInit *DI = dyn_cast<DefInit>(Val: Node->getLeafValue()); |
3099 | if (DI && (DI->getDef()->isSubClassOf(Name: "RegisterClass" ) || |
3100 | DI->getDef()->isSubClassOf(Name: "RegisterOperand" ))) |
3101 | continue; |
3102 | } |
3103 | |
3104 | assert(Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 && |
3105 | "FIXME: cannot name multiple result nodes yet" ); |
3106 | MadeChange |= |
3107 | Node->UpdateNodeType(ResNo: 0, InTy: InNodes[0]->getExtType(ResNo: 0), TP&: *this); |
3108 | } |
3109 | } |
3110 | |
3111 | // If there are multiple nodes with the same name, they must all have the |
3112 | // same type. |
3113 | if (Entry.second.size() > 1) { |
3114 | for (unsigned i = 0, e = Nodes.size() - 1; i != e; ++i) { |
3115 | TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i + 1]; |
3116 | assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && |
3117 | "FIXME: cannot name multiple result nodes yet" ); |
3118 | |
3119 | MadeChange |= N1->UpdateNodeType(ResNo: 0, InTy: N2->getExtType(ResNo: 0), TP&: *this); |
3120 | MadeChange |= N2->UpdateNodeType(ResNo: 0, InTy: N1->getExtType(ResNo: 0), TP&: *this); |
3121 | } |
3122 | } |
3123 | } |
3124 | } |
3125 | |
3126 | bool HasUnresolvedTypes = false; |
3127 | for (const TreePatternNodePtr &Tree : Trees) |
3128 | HasUnresolvedTypes |= Tree->ContainsUnresolvedType(TP&: *this); |
3129 | return !HasUnresolvedTypes; |
3130 | } |
3131 | |
3132 | void TreePattern::print(raw_ostream &OS) const { |
3133 | OS << getRecord()->getName(); |
3134 | if (!Args.empty()) { |
3135 | OS << "(" ; |
3136 | ListSeparator LS; |
3137 | for (const std::string &Arg : Args) |
3138 | OS << LS << Arg; |
3139 | OS << ")" ; |
3140 | } |
3141 | OS << ": " ; |
3142 | |
3143 | if (Trees.size() > 1) |
3144 | OS << "[\n" ; |
3145 | for (const TreePatternNodePtr &Tree : Trees) { |
3146 | OS << "\t" ; |
3147 | Tree->print(OS); |
3148 | OS << "\n" ; |
3149 | } |
3150 | |
3151 | if (Trees.size() > 1) |
3152 | OS << "]\n" ; |
3153 | } |
3154 | |
3155 | void TreePattern::dump() const { print(OS&: errs()); } |
3156 | |
3157 | //===----------------------------------------------------------------------===// |
3158 | // CodeGenDAGPatterns implementation |
3159 | // |
3160 | |
3161 | CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R, |
3162 | PatternRewriterFn PatternRewriter) |
3163 | : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()), |
3164 | PatternRewriter(PatternRewriter) { |
3165 | |
3166 | Intrinsics = CodeGenIntrinsicTable(Records); |
3167 | ParseNodeInfo(); |
3168 | ParseNodeTransforms(); |
3169 | ParseComplexPatterns(); |
3170 | ParsePatternFragments(); |
3171 | ParseDefaultOperands(); |
3172 | ParseInstructions(); |
3173 | ParsePatternFragments(/*OutFrags*/ true); |
3174 | ParsePatterns(); |
3175 | |
3176 | // Generate variants. For example, commutative patterns can match |
3177 | // multiple ways. Add them to PatternsToMatch as well. |
3178 | GenerateVariants(); |
3179 | |
3180 | // Break patterns with parameterized types into a series of patterns, |
3181 | // where each one has a fixed type and is predicated on the conditions |
3182 | // of the associated HW mode. |
3183 | ExpandHwModeBasedTypes(); |
3184 | |
3185 | // Infer instruction flags. For example, we can detect loads, |
3186 | // stores, and side effects in many cases by examining an |
3187 | // instruction's pattern. |
3188 | InferInstructionFlags(); |
3189 | |
3190 | // Verify that instruction flags match the patterns. |
3191 | VerifyInstructionFlags(); |
3192 | } |
3193 | |
3194 | Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const { |
3195 | Record *N = Records.getDef(Name); |
3196 | if (!N || !N->isSubClassOf(Name: "SDNode" )) |
3197 | PrintFatalError(Msg: "Error getting SDNode '" + Name + "'!" ); |
3198 | |
3199 | return N; |
3200 | } |
3201 | |
3202 | // Parse all of the SDNode definitions for the target, populating SDNodes. |
3203 | void CodeGenDAGPatterns::ParseNodeInfo() { |
3204 | std::vector<Record *> Nodes = Records.getAllDerivedDefinitions(ClassName: "SDNode" ); |
3205 | const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); |
3206 | |
3207 | while (!Nodes.empty()) { |
3208 | Record *R = Nodes.back(); |
3209 | SDNodes.insert(x: std::pair(R, SDNodeInfo(R, CGH))); |
3210 | Nodes.pop_back(); |
3211 | } |
3212 | |
3213 | // Get the builtin intrinsic nodes. |
3214 | intrinsic_void_sdnode = getSDNodeNamed(Name: "intrinsic_void" ); |
3215 | intrinsic_w_chain_sdnode = getSDNodeNamed(Name: "intrinsic_w_chain" ); |
3216 | intrinsic_wo_chain_sdnode = getSDNodeNamed(Name: "intrinsic_wo_chain" ); |
3217 | } |
3218 | |
3219 | /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms |
3220 | /// map, and emit them to the file as functions. |
3221 | void CodeGenDAGPatterns::ParseNodeTransforms() { |
3222 | std::vector<Record *> Xforms = |
3223 | Records.getAllDerivedDefinitions(ClassName: "SDNodeXForm" ); |
3224 | while (!Xforms.empty()) { |
3225 | Record *XFormNode = Xforms.back(); |
3226 | Record *SDNode = XFormNode->getValueAsDef(FieldName: "Opcode" ); |
3227 | StringRef Code = XFormNode->getValueAsString(FieldName: "XFormFunction" ); |
3228 | SDNodeXForms.insert( |
3229 | x: std::pair(XFormNode, NodeXForm(SDNode, std::string(Code)))); |
3230 | |
3231 | Xforms.pop_back(); |
3232 | } |
3233 | } |
3234 | |
3235 | void CodeGenDAGPatterns::ParseComplexPatterns() { |
3236 | std::vector<Record *> AMs = |
3237 | Records.getAllDerivedDefinitions(ClassName: "ComplexPattern" ); |
3238 | while (!AMs.empty()) { |
3239 | ComplexPatterns.insert(x: std::pair(AMs.back(), AMs.back())); |
3240 | AMs.pop_back(); |
3241 | } |
3242 | } |
3243 | |
3244 | /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td |
3245 | /// file, building up the PatternFragments map. After we've collected them all, |
3246 | /// inline fragments together as necessary, so that there are no references left |
3247 | /// inside a pattern fragment to a pattern fragment. |
3248 | /// |
3249 | void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { |
3250 | std::vector<Record *> Fragments = |
3251 | Records.getAllDerivedDefinitions(ClassName: "PatFrags" ); |
3252 | |
3253 | // First step, parse all of the fragments. |
3254 | for (Record *Frag : Fragments) { |
3255 | if (OutFrags != Frag->isSubClassOf(Name: "OutPatFrag" )) |
3256 | continue; |
3257 | |
3258 | ListInit *LI = Frag->getValueAsListInit(FieldName: "Fragments" ); |
3259 | TreePattern *P = (PatternFragments[Frag] = std::make_unique<TreePattern>( |
3260 | args&: Frag, args&: LI, args: !Frag->isSubClassOf(Name: "OutPatFrag" ), args&: *this)) |
3261 | .get(); |
3262 | |
3263 | // Validate the argument list, converting it to set, to discard duplicates. |
3264 | std::vector<std::string> &Args = P->getArgList(); |
3265 | // Copy the args so we can take StringRefs to them. |
3266 | auto ArgsCopy = Args; |
3267 | SmallDenseSet<StringRef, 4> OperandsSet; |
3268 | OperandsSet.insert(I: ArgsCopy.begin(), E: ArgsCopy.end()); |
3269 | |
3270 | if (OperandsSet.count(V: "" )) |
3271 | P->error(Msg: "Cannot have unnamed 'node' values in pattern fragment!" ); |
3272 | |
3273 | // Parse the operands list. |
3274 | DagInit *OpsList = Frag->getValueAsDag(FieldName: "Operands" ); |
3275 | DefInit *OpsOp = dyn_cast<DefInit>(Val: OpsList->getOperator()); |
3276 | // Special cases: ops == outs == ins. Different names are used to |
3277 | // improve readability. |
3278 | if (!OpsOp || (OpsOp->getDef()->getName() != "ops" && |
3279 | OpsOp->getDef()->getName() != "outs" && |
3280 | OpsOp->getDef()->getName() != "ins" )) |
3281 | P->error(Msg: "Operands list should start with '(ops ... '!" ); |
3282 | |
3283 | // Copy over the arguments. |
3284 | Args.clear(); |
3285 | for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { |
3286 | if (!isa<DefInit>(Val: OpsList->getArg(Num: j)) || |
3287 | cast<DefInit>(Val: OpsList->getArg(Num: j))->getDef()->getName() != "node" ) |
3288 | P->error(Msg: "Operands list should all be 'node' values." ); |
3289 | if (!OpsList->getArgName(Num: j)) |
3290 | P->error(Msg: "Operands list should have names for each operand!" ); |
3291 | StringRef ArgNameStr = OpsList->getArgNameStr(Num: j); |
3292 | if (!OperandsSet.count(V: ArgNameStr)) |
3293 | P->error(Msg: "'" + ArgNameStr + |
3294 | "' does not occur in pattern or was multiply specified!" ); |
3295 | OperandsSet.erase(V: ArgNameStr); |
3296 | Args.push_back(x: std::string(ArgNameStr)); |
3297 | } |
3298 | |
3299 | if (!OperandsSet.empty()) |
3300 | P->error(Msg: "Operands list does not contain an entry for operand '" + |
3301 | *OperandsSet.begin() + "'!" ); |
3302 | |
3303 | // If there is a node transformation corresponding to this, keep track of |
3304 | // it. |
3305 | Record *Transform = Frag->getValueAsDef(FieldName: "OperandTransform" ); |
3306 | if (!getSDNodeTransform(R: Transform).second.empty()) // not noop xform? |
3307 | for (const auto &T : P->getTrees()) |
3308 | T->setTransformFn(Transform); |
3309 | } |
3310 | |
3311 | // Now that we've parsed all of the tree fragments, do a closure on them so |
3312 | // that there are not references to PatFrags left inside of them. |
3313 | for (Record *Frag : Fragments) { |
3314 | if (OutFrags != Frag->isSubClassOf(Name: "OutPatFrag" )) |
3315 | continue; |
3316 | |
3317 | TreePattern &ThePat = *PatternFragments[Frag]; |
3318 | ThePat.InlinePatternFragments(); |
3319 | |
3320 | // Infer as many types as possible. Don't worry about it if we don't infer |
3321 | // all of them, some may depend on the inputs of the pattern. Also, don't |
3322 | // validate type sets; validation may cause spurious failures e.g. if a |
3323 | // fragment needs floating-point types but the current target does not have |
3324 | // any (this is only an error if that fragment is ever used!). |
3325 | { |
3326 | TypeInfer::SuppressValidation SV(ThePat.getInfer()); |
3327 | ThePat.InferAllTypes(); |
3328 | ThePat.resetError(); |
3329 | } |
3330 | |
3331 | // If debugging, print out the pattern fragment result. |
3332 | LLVM_DEBUG(ThePat.dump()); |
3333 | } |
3334 | } |
3335 | |
3336 | void CodeGenDAGPatterns::ParseDefaultOperands() { |
3337 | std::vector<Record *> DefaultOps; |
3338 | DefaultOps = Records.getAllDerivedDefinitions(ClassName: "OperandWithDefaultOps" ); |
3339 | |
3340 | // Find some SDNode. |
3341 | assert(!SDNodes.empty() && "No SDNodes parsed?" ); |
3342 | Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); |
3343 | |
3344 | for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { |
3345 | DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag(FieldName: "DefaultOps" ); |
3346 | |
3347 | // Clone the DefaultInfo dag node, changing the operator from 'ops' to |
3348 | // SomeSDnode so that we can parse this. |
3349 | std::vector<std::pair<Init *, StringInit *>> Ops; |
3350 | for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) |
3351 | Ops.push_back( |
3352 | x: std::pair(DefaultInfo->getArg(Num: op), DefaultInfo->getArgName(Num: op))); |
3353 | DagInit *DI = DagInit::get(V: SomeSDNode, VN: nullptr, Args: Ops); |
3354 | |
3355 | // Create a TreePattern to parse this. |
3356 | TreePattern P(DefaultOps[i], DI, false, *this); |
3357 | assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!" ); |
3358 | |
3359 | // Copy the operands over into a DAGDefaultOperand. |
3360 | DAGDefaultOperand DefaultOpInfo; |
3361 | |
3362 | const TreePatternNodePtr &T = P.getTree(i: 0); |
3363 | for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { |
3364 | TreePatternNodePtr TPN = T->getChildShared(N: op); |
3365 | while (TPN->ApplyTypeConstraints(TP&: P, NotRegisters: false)) |
3366 | /* Resolve all types */; |
3367 | |
3368 | if (TPN->ContainsUnresolvedType(TP&: P)) { |
3369 | PrintFatalError(Msg: "Value #" + Twine(i) + " of OperandWithDefaultOps '" + |
3370 | DefaultOps[i]->getName() + |
3371 | "' doesn't have a concrete type!" ); |
3372 | } |
3373 | DefaultOpInfo.DefaultOps.push_back(x: std::move(TPN)); |
3374 | } |
3375 | |
3376 | // Insert it into the DefaultOperands map so we can find it later. |
3377 | DefaultOperands[DefaultOps[i]] = DefaultOpInfo; |
3378 | } |
3379 | } |
3380 | |
3381 | /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an |
3382 | /// instruction input. Return true if this is a real use. |
3383 | static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat, |
3384 | std::map<std::string, TreePatternNodePtr> &InstInputs) { |
3385 | // No name -> not interesting. |
3386 | if (Pat->getName().empty()) { |
3387 | if (Pat->isLeaf()) { |
3388 | DefInit *DI = dyn_cast<DefInit>(Val: Pat->getLeafValue()); |
3389 | if (DI && (DI->getDef()->isSubClassOf(Name: "RegisterClass" ) || |
3390 | DI->getDef()->isSubClassOf(Name: "RegisterOperand" ))) |
3391 | I.error(Msg: "Input " + DI->getDef()->getName() + " must be named!" ); |
3392 | } |
3393 | return false; |
3394 | } |
3395 | |
3396 | Record *Rec; |
3397 | if (Pat->isLeaf()) { |
3398 | DefInit *DI = dyn_cast<DefInit>(Val: Pat->getLeafValue()); |
3399 | if (!DI) |
3400 | I.error(Msg: "Input $" + Pat->getName() + " must be an identifier!" ); |
3401 | Rec = DI->getDef(); |
3402 | } else { |
3403 | Rec = Pat->getOperator(); |
3404 | } |
3405 | |
3406 | // SRCVALUE nodes are ignored. |
3407 | if (Rec->getName() == "srcvalue" ) |
3408 | return false; |
3409 | |
3410 | TreePatternNodePtr &Slot = InstInputs[Pat->getName()]; |
3411 | if (!Slot) { |
3412 | Slot = Pat; |
3413 | return true; |
3414 | } |
3415 | Record *SlotRec; |
3416 | if (Slot->isLeaf()) { |
3417 | SlotRec = cast<DefInit>(Val: Slot->getLeafValue())->getDef(); |
3418 | } else { |
3419 | assert(Slot->getNumChildren() == 0 && "can't be a use with children!" ); |
3420 | SlotRec = Slot->getOperator(); |
3421 | } |
3422 | |
3423 | // Ensure that the inputs agree if we've already seen this input. |
3424 | if (Rec != SlotRec) |
3425 | I.error(Msg: "All $" + Pat->getName() + " inputs must agree with each other" ); |
3426 | // Ensure that the types can agree as well. |
3427 | Slot->UpdateNodeType(ResNo: 0, InTy: Pat->getExtType(ResNo: 0), TP&: I); |
3428 | Pat->UpdateNodeType(ResNo: 0, InTy: Slot->getExtType(ResNo: 0), TP&: I); |
3429 | if (Slot->getExtTypes() != Pat->getExtTypes()) |
3430 | I.error(Msg: "All $" + Pat->getName() + " inputs must agree with each other" ); |
3431 | return true; |
3432 | } |
3433 | |
3434 | /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is |
3435 | /// part of "I", the instruction), computing the set of inputs and outputs of |
3436 | /// the pattern. Report errors if we see anything naughty. |
3437 | void CodeGenDAGPatterns::FindPatternInputsAndOutputs( |
3438 | TreePattern &I, TreePatternNodePtr Pat, |
3439 | std::map<std::string, TreePatternNodePtr> &InstInputs, |
3440 | MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> |
3441 | &InstResults, |
3442 | std::vector<Record *> &InstImpResults) { |
3443 | |
3444 | // The instruction pattern still has unresolved fragments. For *named* |
3445 | // nodes we must resolve those here. This may not result in multiple |
3446 | // alternatives. |
3447 | if (!Pat->getName().empty()) { |
3448 | TreePattern SrcPattern(I.getRecord(), Pat, true, *this); |
3449 | SrcPattern.InlinePatternFragments(); |
3450 | SrcPattern.InferAllTypes(); |
3451 | Pat = SrcPattern.getOnlyTree(); |
3452 | } |
3453 | |
3454 | if (Pat->isLeaf()) { |
3455 | bool isUse = HandleUse(I, Pat, InstInputs); |
3456 | if (!isUse && Pat->getTransformFn()) |
3457 | I.error(Msg: "Cannot specify a transform function for a non-input value!" ); |
3458 | return; |
3459 | } |
3460 | |
3461 | if (Pat->getOperator()->getName() == "implicit" ) { |
3462 | for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { |
3463 | TreePatternNode &Dest = Pat->getChild(N: i); |
3464 | if (!Dest.isLeaf()) |
3465 | I.error(Msg: "implicitly defined value should be a register!" ); |
3466 | |
3467 | DefInit *Val = dyn_cast<DefInit>(Val: Dest.getLeafValue()); |
3468 | if (!Val || !Val->getDef()->isSubClassOf(Name: "Register" )) |
3469 | I.error(Msg: "implicitly defined value should be a register!" ); |
3470 | if (Val) |
3471 | InstImpResults.push_back(x: Val->getDef()); |
3472 | } |
3473 | return; |
3474 | } |
3475 | |
3476 | if (Pat->getOperator()->getName() != "set" ) { |
3477 | // If this is not a set, verify that the children nodes are not void typed, |
3478 | // and recurse. |
3479 | for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { |
3480 | if (Pat->getChild(N: i).getNumTypes() == 0) |
3481 | I.error(Msg: "Cannot have void nodes inside of patterns!" ); |
3482 | FindPatternInputsAndOutputs(I, Pat: Pat->getChildShared(N: i), InstInputs, |
3483 | InstResults, InstImpResults); |
3484 | } |
3485 | |
3486 | // If this is a non-leaf node with no children, treat it basically as if |
3487 | // it were a leaf. This handles nodes like (imm). |
3488 | bool isUse = HandleUse(I, Pat, InstInputs); |
3489 | |
3490 | if (!isUse && Pat->getTransformFn()) |
3491 | I.error(Msg: "Cannot specify a transform function for a non-input value!" ); |
3492 | return; |
3493 | } |
3494 | |
3495 | // Otherwise, this is a set, validate and collect instruction results. |
3496 | if (Pat->getNumChildren() == 0) |
3497 | I.error(Msg: "set requires operands!" ); |
3498 | |
3499 | if (Pat->getTransformFn()) |
3500 | I.error(Msg: "Cannot specify a transform function on a set node!" ); |
3501 | |
3502 | // Check the set destinations. |
3503 | unsigned NumDests = Pat->getNumChildren() - 1; |
3504 | for (unsigned i = 0; i != NumDests; ++i) { |
3505 | TreePatternNodePtr Dest = Pat->getChildShared(N: i); |
3506 | // For set destinations we also must resolve fragments here. |
3507 | TreePattern DestPattern(I.getRecord(), Dest, false, *this); |
3508 | DestPattern.InlinePatternFragments(); |
3509 | DestPattern.InferAllTypes(); |
3510 | Dest = DestPattern.getOnlyTree(); |
3511 | |
3512 | if (!Dest->isLeaf()) |
3513 | I.error(Msg: "set destination should be a register!" ); |
3514 | |
3515 | DefInit *Val = dyn_cast<DefInit>(Val: Dest->getLeafValue()); |
3516 | if (!Val) { |
3517 | I.error(Msg: "set destination should be a register!" ); |
3518 | continue; |
3519 | } |
3520 | |
3521 | if (Val->getDef()->isSubClassOf(Name: "RegisterClass" ) || |
3522 | Val->getDef()->isSubClassOf(Name: "ValueType" ) || |
3523 | Val->getDef()->isSubClassOf(Name: "RegisterOperand" ) || |
3524 | Val->getDef()->isSubClassOf(Name: "PointerLikeRegClass" )) { |
3525 | if (Dest->getName().empty()) |
3526 | I.error(Msg: "set destination must have a name!" ); |
3527 | if (InstResults.count(Key: Dest->getName())) |
3528 | I.error(Msg: "cannot set '" + Dest->getName() + "' multiple times" ); |
3529 | InstResults[Dest->getName()] = Dest; |
3530 | } else if (Val->getDef()->isSubClassOf(Name: "Register" )) { |
3531 | InstImpResults.push_back(x: Val->getDef()); |
3532 | } else { |
3533 | I.error(Msg: "set destination should be a register!" ); |
3534 | } |
3535 | } |
3536 | |
3537 | // Verify and collect info from the computation. |
3538 | FindPatternInputsAndOutputs(I, Pat: Pat->getChildShared(N: NumDests), InstInputs, |
3539 | InstResults, InstImpResults); |
3540 | } |
3541 | |
3542 | //===----------------------------------------------------------------------===// |
3543 | // Instruction Analysis |
3544 | //===----------------------------------------------------------------------===// |
3545 | |
3546 | class InstAnalyzer { |
3547 | const CodeGenDAGPatterns &CDP; |
3548 | |
3549 | public: |
3550 | bool hasSideEffects; |
3551 | bool mayStore; |
3552 | bool mayLoad; |
3553 | bool isBitcast; |
3554 | bool isVariadic; |
3555 | bool hasChain; |
3556 | |
3557 | InstAnalyzer(const CodeGenDAGPatterns &cdp) |
3558 | : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), |
3559 | isBitcast(false), isVariadic(false), hasChain(false) {} |
3560 | |
3561 | void Analyze(const PatternToMatch &Pat) { |
3562 | const TreePatternNode &N = Pat.getSrcPattern(); |
3563 | AnalyzeNode(N); |
3564 | // These properties are detected only on the root node. |
3565 | isBitcast = IsNodeBitcast(N); |
3566 | } |
3567 | |
3568 | private: |
3569 | bool IsNodeBitcast(const TreePatternNode &N) const { |
3570 | if (hasSideEffects || mayLoad || mayStore || isVariadic) |
3571 | return false; |
3572 | |
3573 | if (N.isLeaf()) |
3574 | return false; |
3575 | if (N.getNumChildren() != 1 || !N.getChild(N: 0).isLeaf()) |
3576 | return false; |
3577 | |
3578 | if (N.getOperator()->isSubClassOf(Name: "ComplexPattern" )) |
3579 | return false; |
3580 | |
3581 | const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(R: N.getOperator()); |
3582 | if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) |
3583 | return false; |
3584 | return OpInfo.getEnumName() == "ISD::BITCAST" ; |
3585 | } |
3586 | |
3587 | public: |
3588 | void AnalyzeNode(const TreePatternNode &N) { |
3589 | if (N.isLeaf()) { |
3590 | if (DefInit *DI = dyn_cast<DefInit>(Val: N.getLeafValue())) { |
3591 | Record *LeafRec = DI->getDef(); |
3592 | // Handle ComplexPattern leaves. |
3593 | if (LeafRec->isSubClassOf(Name: "ComplexPattern" )) { |
3594 | const ComplexPattern &CP = CDP.getComplexPattern(R: LeafRec); |
3595 | if (CP.hasProperty(Prop: SDNPMayStore)) |
3596 | mayStore = true; |
3597 | if (CP.hasProperty(Prop: SDNPMayLoad)) |
3598 | mayLoad = true; |
3599 | if (CP.hasProperty(Prop: SDNPSideEffect)) |
3600 | hasSideEffects = true; |
3601 | } |
3602 | } |
3603 | return; |
3604 | } |
3605 | |
3606 | // Analyze children. |
3607 | for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i) |
3608 | AnalyzeNode(N: N.getChild(N: i)); |
3609 | |
3610 | // Notice properties of the node. |
3611 | if (N.NodeHasProperty(Property: SDNPMayStore, CGP: CDP)) |
3612 | mayStore = true; |
3613 | if (N.NodeHasProperty(Property: SDNPMayLoad, CGP: CDP)) |
3614 | mayLoad = true; |
3615 | if (N.NodeHasProperty(Property: SDNPSideEffect, CGP: CDP)) |
3616 | hasSideEffects = true; |
3617 | if (N.NodeHasProperty(Property: SDNPVariadic, CGP: CDP)) |
3618 | isVariadic = true; |
3619 | if (N.NodeHasProperty(Property: SDNPHasChain, CGP: CDP)) |
3620 | hasChain = true; |
3621 | |
3622 | if (const CodeGenIntrinsic *IntInfo = N.getIntrinsicInfo(CDP)) { |
3623 | ModRefInfo MR = IntInfo->ME.getModRef(); |
3624 | // If this is an intrinsic, analyze it. |
3625 | if (isRefSet(MRI: MR)) |
3626 | mayLoad = true; // These may load memory. |
3627 | |
3628 | if (isModSet(MRI: MR)) |
3629 | mayStore = true; // Intrinsics that can write to memory are 'mayStore'. |
3630 | |
3631 | // Consider intrinsics that don't specify any restrictions on memory |
3632 | // effects as having a side-effect. |
3633 | if (IntInfo->ME == MemoryEffects::unknown() || IntInfo->hasSideEffects) |
3634 | hasSideEffects = true; |
3635 | } |
3636 | } |
3637 | }; |
3638 | |
3639 | static bool InferFromPattern(CodeGenInstruction &InstInfo, |
3640 | const InstAnalyzer &PatInfo, Record *PatDef) { |
3641 | bool Error = false; |
3642 | |
3643 | // Remember where InstInfo got its flags. |
3644 | if (InstInfo.hasUndefFlags()) |
3645 | InstInfo.InferredFrom = PatDef; |
3646 | |
3647 | // Check explicitly set flags for consistency. |
3648 | if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && |
3649 | !InstInfo.hasSideEffects_Unset) { |
3650 | // Allow explicitly setting hasSideEffects = 1 on instructions, even when |
3651 | // the pattern has no side effects. That could be useful for div/rem |
3652 | // instructions that may trap. |
3653 | if (!InstInfo.hasSideEffects) { |
3654 | Error = true; |
3655 | PrintError(ErrorLoc: PatDef->getLoc(), Msg: "Pattern doesn't match hasSideEffects = " + |
3656 | Twine(InstInfo.hasSideEffects)); |
3657 | } |
3658 | } |
3659 | |
3660 | if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { |
3661 | Error = true; |
3662 | PrintError(ErrorLoc: PatDef->getLoc(), |
3663 | Msg: "Pattern doesn't match mayStore = " + Twine(InstInfo.mayStore)); |
3664 | } |
3665 | |
3666 | if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { |
3667 | // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. |
3668 | // Some targets translate immediates to loads. |
3669 | if (!InstInfo.mayLoad) { |
3670 | Error = true; |
3671 | PrintError(ErrorLoc: PatDef->getLoc(), |
3672 | Msg: "Pattern doesn't match mayLoad = " + Twine(InstInfo.mayLoad)); |
3673 | } |
3674 | } |
3675 | |
3676 | // Transfer inferred flags. |
3677 | InstInfo.hasSideEffects |= PatInfo.hasSideEffects; |
3678 | InstInfo.mayStore |= PatInfo.mayStore; |
3679 | InstInfo.mayLoad |= PatInfo.mayLoad; |
3680 | |
3681 | // These flags are silently added without any verification. |
3682 | // FIXME: To match historical behavior of TableGen, for now add those flags |
3683 | // only when we're inferring from the primary instruction pattern. |
3684 | if (PatDef->isSubClassOf(Name: "Instruction" )) { |
3685 | InstInfo.isBitcast |= PatInfo.isBitcast; |
3686 | InstInfo.hasChain |= PatInfo.hasChain; |
3687 | InstInfo.hasChain_Inferred = true; |
3688 | } |
3689 | |
3690 | // Don't infer isVariadic. This flag means something different on SDNodes and |
3691 | // instructions. For example, a CALL SDNode is variadic because it has the |
3692 | // call arguments as operands, but a CALL instruction is not variadic - it |
3693 | // has argument registers as implicit, not explicit uses. |
3694 | |
3695 | return Error; |
3696 | } |
3697 | |
3698 | /// hasNullFragReference - Return true if the DAG has any reference to the |
3699 | /// null_frag operator. |
3700 | static bool hasNullFragReference(DagInit *DI) { |
3701 | DefInit *OpDef = dyn_cast<DefInit>(Val: DI->getOperator()); |
3702 | if (!OpDef) |
3703 | return false; |
3704 | Record *Operator = OpDef->getDef(); |
3705 | |
3706 | // If this is the null fragment, return true. |
3707 | if (Operator->getName() == "null_frag" ) |
3708 | return true; |
3709 | // If any of the arguments reference the null fragment, return true. |
3710 | for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { |
3711 | if (auto Arg = dyn_cast<DefInit>(Val: DI->getArg(Num: i))) |
3712 | if (Arg->getDef()->getName() == "null_frag" ) |
3713 | return true; |
3714 | DagInit *Arg = dyn_cast<DagInit>(Val: DI->getArg(Num: i)); |
3715 | if (Arg && hasNullFragReference(DI: Arg)) |
3716 | return true; |
3717 | } |
3718 | |
3719 | return false; |
3720 | } |
3721 | |
3722 | /// hasNullFragReference - Return true if any DAG in the list references |
3723 | /// the null_frag operator. |
3724 | static bool hasNullFragReference(ListInit *LI) { |
3725 | for (Init *I : LI->getValues()) { |
3726 | DagInit *DI = dyn_cast<DagInit>(Val: I); |
3727 | assert(DI && "non-dag in an instruction Pattern list?!" ); |
3728 | if (hasNullFragReference(DI)) |
3729 | return true; |
3730 | } |
3731 | return false; |
3732 | } |
3733 | |
3734 | /// Get all the instructions in a tree. |
3735 | static void getInstructionsInTree(TreePatternNode &Tree, |
3736 | SmallVectorImpl<Record *> &Instrs) { |
3737 | if (Tree.isLeaf()) |
3738 | return; |
3739 | if (Tree.getOperator()->isSubClassOf(Name: "Instruction" )) |
3740 | Instrs.push_back(Elt: Tree.getOperator()); |
3741 | for (unsigned i = 0, e = Tree.getNumChildren(); i != e; ++i) |
3742 | getInstructionsInTree(Tree&: Tree.getChild(N: i), Instrs); |
3743 | } |
3744 | |
3745 | /// Check the class of a pattern leaf node against the instruction operand it |
3746 | /// represents. |
3747 | static bool checkOperandClass(CGIOperandList::OperandInfo &OI, Record *Leaf) { |
3748 | if (OI.Rec == Leaf) |
3749 | return true; |
3750 | |
3751 | // Allow direct value types to be used in instruction set patterns. |
3752 | // The type will be checked later. |
3753 | if (Leaf->isSubClassOf(Name: "ValueType" )) |
3754 | return true; |
3755 | |
3756 | // Patterns can also be ComplexPattern instances. |
3757 | if (Leaf->isSubClassOf(Name: "ComplexPattern" )) |
3758 | return true; |
3759 | |
3760 | return false; |
3761 | } |
3762 | |
3763 | void CodeGenDAGPatterns::parseInstructionPattern(CodeGenInstruction &CGI, |
3764 | ListInit *Pat, |
3765 | DAGInstMap &DAGInsts) { |
3766 | |
3767 | assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!" ); |
3768 | |
3769 | // Parse the instruction. |
3770 | TreePattern I(CGI.TheDef, Pat, true, *this); |
3771 | |
3772 | // InstInputs - Keep track of all of the inputs of the instruction, along |
3773 | // with the record they are declared as. |
3774 | std::map<std::string, TreePatternNodePtr> InstInputs; |
3775 | |
3776 | // InstResults - Keep track of all the virtual registers that are 'set' |
3777 | // in the instruction, including what reg class they are. |
3778 | MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> |
3779 | InstResults; |
3780 | |
3781 | std::vector<Record *> InstImpResults; |
3782 | |
3783 | // Verify that the top-level forms in the instruction are of void type, and |
3784 | // fill in the InstResults map. |
3785 | SmallString<32> TypesString; |
3786 | for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) { |
3787 | TypesString.clear(); |
3788 | TreePatternNodePtr Pat = I.getTree(i: j); |
3789 | if (Pat->getNumTypes() != 0) { |
3790 | raw_svector_ostream OS(TypesString); |
3791 | ListSeparator LS; |
3792 | for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { |
3793 | OS << LS; |
3794 | Pat->getExtType(ResNo: k).writeToStream(OS); |
3795 | } |
3796 | I.error(Msg: "Top-level forms in instruction pattern should have" |
3797 | " void types, has types " + |
3798 | OS.str()); |
3799 | } |
3800 | |
3801 | // Find inputs and outputs, and verify the structure of the uses/defs. |
3802 | FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, |
3803 | InstImpResults); |
3804 | } |
3805 | |
3806 | // Now that we have inputs and outputs of the pattern, inspect the operands |
3807 | // list for the instruction. This determines the order that operands are |
3808 | // added to the machine instruction the node corresponds to. |
3809 | unsigned NumResults = InstResults.size(); |
3810 | |
3811 | // Parse the operands list from the (ops) list, validating it. |
3812 | assert(I.getArgList().empty() && "Args list should still be empty here!" ); |
3813 | |
3814 | // Check that all of the results occur first in the list. |
3815 | std::vector<Record *> Results; |
3816 | std::vector<unsigned> ResultIndices; |
3817 | SmallVector<TreePatternNodePtr, 2> ResNodes; |
3818 | for (unsigned i = 0; i != NumResults; ++i) { |
3819 | if (i == CGI.Operands.size()) { |
3820 | const std::string &OpName = |
3821 | llvm::find_if( |
3822 | Range&: InstResults, |
3823 | P: [](const std::pair<std::string, TreePatternNodePtr> &P) { |
3824 | return P.second; |
3825 | }) |
3826 | ->first; |
3827 | |
3828 | I.error(Msg: "'" + OpName + "' set but does not appear in operand list!" ); |
3829 | } |
3830 | |
3831 | const std::string &OpName = CGI.Operands[i].Name; |
3832 | |
3833 | // Check that it exists in InstResults. |
3834 | auto InstResultIter = InstResults.find(Key: OpName); |
3835 | if (InstResultIter == InstResults.end() || !InstResultIter->second) |
3836 | I.error(Msg: "Operand $" + OpName + " does not exist in operand list!" ); |
3837 | |
3838 | TreePatternNodePtr RNode = InstResultIter->second; |
3839 | Record *R = cast<DefInit>(Val: RNode->getLeafValue())->getDef(); |
3840 | ResNodes.push_back(Elt: std::move(RNode)); |
3841 | if (!R) |
3842 | I.error(Msg: "Operand $" + OpName + |
3843 | " should be a set destination: all " |
3844 | "outputs must occur before inputs in operand list!" ); |
3845 | |
3846 | if (!checkOperandClass(OI&: CGI.Operands[i], Leaf: R)) |
3847 | I.error(Msg: "Operand $" + OpName + " class mismatch!" ); |
3848 | |
3849 | // Remember the return type. |
3850 | Results.push_back(x: CGI.Operands[i].Rec); |
3851 | |
3852 | // Remember the result index. |
3853 | ResultIndices.push_back(x: std::distance(first: InstResults.begin(), last: InstResultIter)); |
3854 | |
3855 | // Okay, this one checks out. |
3856 | InstResultIter->second = nullptr; |
3857 | } |
3858 | |
3859 | // Loop over the inputs next. |
3860 | std::vector<TreePatternNodePtr> ResultNodeOperands; |
3861 | std::vector<Record *> Operands; |
3862 | for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { |
3863 | CGIOperandList::OperandInfo &Op = CGI.Operands[i]; |
3864 | const std::string &OpName = Op.Name; |
3865 | if (OpName.empty()) { |
3866 | I.error(Msg: "Operand #" + Twine(i) + " in operands list has no name!" ); |
3867 | continue; |
3868 | } |
3869 | |
3870 | if (!InstInputs.count(x: OpName)) { |
3871 | // If this is an operand with a DefaultOps set filled in, we can ignore |
3872 | // this. When we codegen it, we will do so as always executed. |
3873 | if (Op.Rec->isSubClassOf(Name: "OperandWithDefaultOps" )) { |
3874 | // Does it have a non-empty DefaultOps field? If so, ignore this |
3875 | // operand. |
3876 | if (!getDefaultOperand(R: Op.Rec).DefaultOps.empty()) |
3877 | continue; |
3878 | } |
3879 | I.error(Msg: "Operand $" + OpName + |
3880 | " does not appear in the instruction pattern" ); |
3881 | continue; |
3882 | } |
3883 | TreePatternNodePtr InVal = InstInputs[OpName]; |
3884 | InstInputs.erase(x: OpName); // It occurred, remove from map. |
3885 | |
3886 | if (InVal->isLeaf() && isa<DefInit>(Val: InVal->getLeafValue())) { |
3887 | Record *InRec = cast<DefInit>(Val: InVal->getLeafValue())->getDef(); |
3888 | if (!checkOperandClass(OI&: Op, Leaf: InRec)) { |
3889 | I.error(Msg: "Operand $" + OpName + |
3890 | "'s register class disagrees" |
3891 | " between the operand and pattern" ); |
3892 | continue; |
3893 | } |
3894 | } |
3895 | Operands.push_back(x: Op.Rec); |
3896 | |
3897 | // Construct the result for the dest-pattern operand list. |
3898 | TreePatternNodePtr OpNode = InVal->clone(); |
3899 | |
3900 | // No predicate is useful on the result. |
3901 | OpNode->clearPredicateCalls(); |
3902 | |
3903 | // Promote the xform function to be an explicit node if set. |
3904 | if (Record *Xform = OpNode->getTransformFn()) { |
3905 | OpNode->setTransformFn(nullptr); |
3906 | std::vector<TreePatternNodePtr> Children; |
3907 | Children.push_back(x: OpNode); |
3908 | OpNode = makeIntrusiveRefCnt<TreePatternNode>(A&: Xform, A: std::move(Children), |
3909 | A: OpNode->getNumTypes()); |
3910 | } |
3911 | |
3912 | ResultNodeOperands.push_back(x: std::move(OpNode)); |
3913 | } |
3914 | |
3915 | if (!InstInputs.empty()) |
3916 | I.error(Msg: "Input operand $" + InstInputs.begin()->first + |
3917 | " occurs in pattern but not in operands list!" ); |
3918 | |
3919 | TreePatternNodePtr ResultPattern = makeIntrusiveRefCnt<TreePatternNode>( |
3920 | A: I.getRecord(), A: std::move(ResultNodeOperands), |
3921 | A: GetNumNodeResults(Operator: I.getRecord(), CDP&: *this)); |
3922 | // Copy fully inferred output node types to instruction result pattern. |
3923 | for (unsigned i = 0; i != NumResults; ++i) { |
3924 | assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled" ); |
3925 | ResultPattern->setType(ResNo: i, T: ResNodes[i]->getExtType(ResNo: 0)); |
3926 | ResultPattern->setResultIndex(ResNo: i, RI: ResultIndices[i]); |
3927 | } |
3928 | |
3929 | // FIXME: Assume only the first tree is the pattern. The others are clobber |
3930 | // nodes. |
3931 | TreePatternNodePtr Pattern = I.getTree(i: 0); |
3932 | TreePatternNodePtr SrcPattern; |
3933 | if (Pattern->getOperator()->getName() == "set" ) { |
3934 | SrcPattern = Pattern->getChild(N: Pattern->getNumChildren() - 1).clone(); |
3935 | } else { |
3936 | // Not a set (store or something?) |
3937 | SrcPattern = Pattern; |
3938 | } |
3939 | |
3940 | // Create and insert the instruction. |
3941 | // FIXME: InstImpResults should not be part of DAGInstruction. |
3942 | Record *R = I.getRecord(); |
3943 | DAGInsts.try_emplace(k: R, args: std::move(Results), args: std::move(Operands), |
3944 | args: std::move(InstImpResults), args&: SrcPattern, args&: ResultPattern); |
3945 | |
3946 | LLVM_DEBUG(I.dump()); |
3947 | } |
3948 | |
3949 | /// ParseInstructions - Parse all of the instructions, inlining and resolving |
3950 | /// any fragments involved. This populates the Instructions list with fully |
3951 | /// resolved instructions. |
3952 | void CodeGenDAGPatterns::ParseInstructions() { |
3953 | std::vector<Record *> Instrs = |
3954 | Records.getAllDerivedDefinitions(ClassName: "Instruction" ); |
3955 | |
3956 | for (Record *Instr : Instrs) { |
3957 | ListInit *LI = nullptr; |
3958 | |
3959 | if (isa<ListInit>(Val: Instr->getValueInit(FieldName: "Pattern" ))) |
3960 | LI = Instr->getValueAsListInit(FieldName: "Pattern" ); |
3961 | |
3962 | // If there is no pattern, only collect minimal information about the |
3963 | // instruction for its operand list. We have to assume that there is one |
3964 | // result, as we have no detailed info. A pattern which references the |
3965 | // null_frag operator is as-if no pattern were specified. Normally this |
3966 | // is from a multiclass expansion w/ a SDPatternOperator passed in as |
3967 | // null_frag. |
3968 | if (!LI || LI->empty() || hasNullFragReference(LI)) { |
3969 | std::vector<Record *> Results; |
3970 | std::vector<Record *> Operands; |
3971 | |
3972 | CodeGenInstruction &InstInfo = Target.getInstruction(InstRec: Instr); |
3973 | |
3974 | if (InstInfo.Operands.size() != 0) { |
3975 | for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) |
3976 | Results.push_back(x: InstInfo.Operands[j].Rec); |
3977 | |
3978 | // The rest are inputs. |
3979 | for (unsigned j = InstInfo.Operands.NumDefs, |
3980 | e = InstInfo.Operands.size(); |
3981 | j < e; ++j) |
3982 | Operands.push_back(x: InstInfo.Operands[j].Rec); |
3983 | } |
3984 | |
3985 | // Create and insert the instruction. |
3986 | Instructions.try_emplace(k: Instr, args: std::move(Results), args: std::move(Operands), |
3987 | args: std::vector<Record *>()); |
3988 | continue; // no pattern. |
3989 | } |
3990 | |
3991 | CodeGenInstruction &CGI = Target.getInstruction(InstRec: Instr); |
3992 | parseInstructionPattern(CGI, Pat: LI, DAGInsts&: Instructions); |
3993 | } |
3994 | |
3995 | // If we can, convert the instructions to be patterns that are matched! |
3996 | for (auto &Entry : Instructions) { |
3997 | Record *Instr = Entry.first; |
3998 | DAGInstruction &TheInst = Entry.second; |
3999 | TreePatternNodePtr SrcPattern = TheInst.getSrcPattern(); |
4000 | TreePatternNodePtr ResultPattern = TheInst.getResultPattern(); |
4001 | |
4002 | if (SrcPattern && ResultPattern) { |
4003 | TreePattern Pattern(Instr, SrcPattern, true, *this); |
4004 | TreePattern Result(Instr, ResultPattern, false, *this); |
4005 | ParseOnePattern(TheDef: Instr, Pattern, Result, InstImpResults: TheInst.getImpResults()); |
4006 | } |
4007 | } |
4008 | } |
4009 | |
4010 | typedef std::pair<TreePatternNode *, unsigned> NameRecord; |
4011 | |
4012 | static void FindNames(TreePatternNode &P, |
4013 | std::map<std::string, NameRecord> &Names, |
4014 | TreePattern *PatternTop) { |
4015 | if (!P.getName().empty()) { |
4016 | NameRecord &Rec = Names[P.getName()]; |
4017 | // If this is the first instance of the name, remember the node. |
4018 | if (Rec.second++ == 0) |
4019 | Rec.first = &P; |
4020 | else if (Rec.first->getExtTypes() != P.getExtTypes()) |
4021 | PatternTop->error(Msg: "repetition of value: $" + P.getName() + |
4022 | " where different uses have different types!" ); |
4023 | } |
4024 | |
4025 | if (!P.isLeaf()) { |
4026 | for (unsigned i = 0, e = P.getNumChildren(); i != e; ++i) |
4027 | FindNames(P&: P.getChild(N: i), Names, PatternTop); |
4028 | } |
4029 | } |
4030 | |
4031 | void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, |
4032 | PatternToMatch &&PTM) { |
4033 | // Do some sanity checking on the pattern we're about to match. |
4034 | std::string Reason; |
4035 | if (!PTM.getSrcPattern().canPatternMatch(Reason, CDP: *this)) { |
4036 | PrintWarning(WarningLoc: Pattern->getRecord()->getLoc(), |
4037 | Msg: Twine("Pattern can never match: " ) + Reason); |
4038 | return; |
4039 | } |
4040 | |
4041 | // If the source pattern's root is a complex pattern, that complex pattern |
4042 | // must specify the nodes it can potentially match. |
4043 | if (const ComplexPattern *CP = |
4044 | PTM.getSrcPattern().getComplexPatternInfo(CGP: *this)) |
4045 | if (CP->getRootNodes().empty()) |
4046 | Pattern->error(Msg: "ComplexPattern at root must specify list of opcodes it" |
4047 | " could match" ); |
4048 | |
4049 | // Find all of the named values in the input and output, ensure they have the |
4050 | // same type. |
4051 | std::map<std::string, NameRecord> SrcNames, DstNames; |
4052 | FindNames(P&: PTM.getSrcPattern(), Names&: SrcNames, PatternTop: Pattern); |
4053 | FindNames(P&: PTM.getDstPattern(), Names&: DstNames, PatternTop: Pattern); |
4054 | |
4055 | // Scan all of the named values in the destination pattern, rejecting them if |
4056 | // they don't exist in the input pattern. |
4057 | for (const auto &Entry : DstNames) { |
4058 | if (SrcNames[Entry.first].first == nullptr) |
4059 | Pattern->error(Msg: "Pattern has input without matching name in output: $" + |
4060 | Entry.first); |
4061 | } |
4062 | |
4063 | // Scan all of the named values in the source pattern, rejecting them if the |
4064 | // name isn't used in the dest, and isn't used to tie two values together. |
4065 | for (const auto &Entry : SrcNames) |
4066 | if (DstNames[Entry.first].first == nullptr && |
4067 | SrcNames[Entry.first].second == 1) |
4068 | Pattern->error(Msg: "Pattern has dead named input: $" + Entry.first); |
4069 | |
4070 | PatternsToMatch.push_back(x: std::move(PTM)); |
4071 | } |
4072 | |
4073 | void CodeGenDAGPatterns::InferInstructionFlags() { |
4074 | ArrayRef<const CodeGenInstruction *> Instructions = |
4075 | Target.getInstructionsByEnumValue(); |
4076 | |
4077 | unsigned Errors = 0; |
4078 | |
4079 | // Try to infer flags from all patterns in PatternToMatch. These include |
4080 | // both the primary instruction patterns (which always come first) and |
4081 | // patterns defined outside the instruction. |
4082 | for (const PatternToMatch &PTM : ptms()) { |
4083 | // We can only infer from single-instruction patterns, otherwise we won't |
4084 | // know which instruction should get the flags. |
4085 | SmallVector<Record *, 8> PatInstrs; |
4086 | getInstructionsInTree(Tree&: PTM.getDstPattern(), Instrs&: PatInstrs); |
4087 | if (PatInstrs.size() != 1) |
4088 | continue; |
4089 | |
4090 | // Get the single instruction. |
4091 | CodeGenInstruction &InstInfo = Target.getInstruction(InstRec: PatInstrs.front()); |
4092 | |
4093 | // Only infer properties from the first pattern. We'll verify the others. |
4094 | if (InstInfo.InferredFrom) |
4095 | continue; |
4096 | |
4097 | InstAnalyzer PatInfo(*this); |
4098 | PatInfo.Analyze(Pat: PTM); |
4099 | Errors += InferFromPattern(InstInfo, PatInfo, PatDef: PTM.getSrcRecord()); |
4100 | } |
4101 | |
4102 | if (Errors) |
4103 | PrintFatalError(Msg: "pattern conflicts" ); |
4104 | |
4105 | // If requested by the target, guess any undefined properties. |
4106 | if (Target.guessInstructionProperties()) { |
4107 | for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { |
4108 | CodeGenInstruction *InstInfo = |
4109 | const_cast<CodeGenInstruction *>(Instructions[i]); |
4110 | if (InstInfo->InferredFrom) |
4111 | continue; |
4112 | // The mayLoad and mayStore flags default to false. |
4113 | // Conservatively assume hasSideEffects if it wasn't explicit. |
4114 | if (InstInfo->hasSideEffects_Unset) |
4115 | InstInfo->hasSideEffects = true; |
4116 | } |
4117 | return; |
4118 | } |
4119 | |
4120 | // Complain about any flags that are still undefined. |
4121 | for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { |
4122 | CodeGenInstruction *InstInfo = |
4123 | const_cast<CodeGenInstruction *>(Instructions[i]); |
4124 | if (InstInfo->InferredFrom) |
4125 | continue; |
4126 | if (InstInfo->hasSideEffects_Unset) |
4127 | PrintError(ErrorLoc: InstInfo->TheDef->getLoc(), |
4128 | Msg: "Can't infer hasSideEffects from patterns" ); |
4129 | if (InstInfo->mayStore_Unset) |
4130 | PrintError(ErrorLoc: InstInfo->TheDef->getLoc(), |
4131 | Msg: "Can't infer mayStore from patterns" ); |
4132 | if (InstInfo->mayLoad_Unset) |
4133 | PrintError(ErrorLoc: InstInfo->TheDef->getLoc(), |
4134 | Msg: "Can't infer mayLoad from patterns" ); |
4135 | } |
4136 | } |
4137 | |
4138 | /// Verify instruction flags against pattern node properties. |
4139 | void CodeGenDAGPatterns::VerifyInstructionFlags() { |
4140 | unsigned Errors = 0; |
4141 | for (const PatternToMatch &PTM : ptms()) { |
4142 | SmallVector<Record *, 8> Instrs; |
4143 | getInstructionsInTree(Tree&: PTM.getDstPattern(), Instrs); |
4144 | if (Instrs.empty()) |
4145 | continue; |
4146 | |
4147 | // Count the number of instructions with each flag set. |
4148 | unsigned NumSideEffects = 0; |
4149 | unsigned NumStores = 0; |
4150 | unsigned NumLoads = 0; |
4151 | for (const Record *Instr : Instrs) { |
4152 | const CodeGenInstruction &InstInfo = Target.getInstruction(InstRec: Instr); |
4153 | NumSideEffects += InstInfo.hasSideEffects; |
4154 | NumStores += InstInfo.mayStore; |
4155 | NumLoads += InstInfo.mayLoad; |
4156 | } |
4157 | |
4158 | // Analyze the source pattern. |
4159 | InstAnalyzer PatInfo(*this); |
4160 | PatInfo.Analyze(Pat: PTM); |
4161 | |
4162 | // Collect error messages. |
4163 | SmallVector<std::string, 4> Msgs; |
4164 | |
4165 | // Check for missing flags in the output. |
4166 | // Permit extra flags for now at least. |
4167 | if (PatInfo.hasSideEffects && !NumSideEffects) |
4168 | Msgs.push_back(Elt: "pattern has side effects, but hasSideEffects isn't set" ); |
4169 | |
4170 | // Don't verify store flags on instructions with side effects. At least for |
4171 | // intrinsics, side effects implies mayStore. |
4172 | if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) |
4173 | Msgs.push_back(Elt: "pattern may store, but mayStore isn't set" ); |
4174 | |
4175 | // Similarly, mayStore implies mayLoad on intrinsics. |
4176 | if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) |
4177 | Msgs.push_back(Elt: "pattern may load, but mayLoad isn't set" ); |
4178 | |
4179 | // Print error messages. |
4180 | if (Msgs.empty()) |
4181 | continue; |
4182 | ++Errors; |
4183 | |
4184 | for (const std::string &Msg : Msgs) |
4185 | PrintError( |
4186 | ErrorLoc: PTM.getSrcRecord()->getLoc(), |
4187 | Msg: Twine(Msg) + " on the " + |
4188 | (Instrs.size() == 1 ? "instruction" : "output instructions" )); |
4189 | // Provide the location of the relevant instruction definitions. |
4190 | for (const Record *Instr : Instrs) { |
4191 | if (Instr != PTM.getSrcRecord()) |
4192 | PrintError(ErrorLoc: Instr->getLoc(), Msg: "defined here" ); |
4193 | const CodeGenInstruction &InstInfo = Target.getInstruction(InstRec: Instr); |
4194 | if (InstInfo.InferredFrom && InstInfo.InferredFrom != InstInfo.TheDef && |
4195 | InstInfo.InferredFrom != PTM.getSrcRecord()) |
4196 | PrintError(ErrorLoc: InstInfo.InferredFrom->getLoc(), Msg: "inferred from pattern" ); |
4197 | } |
4198 | } |
4199 | if (Errors) |
4200 | PrintFatalError(Msg: "Errors in DAG patterns" ); |
4201 | } |
4202 | |
4203 | /// Given a pattern result with an unresolved type, see if we can find one |
4204 | /// instruction with an unresolved result type. Force this result type to an |
4205 | /// arbitrary element if it's possible types to converge results. |
4206 | static bool ForceArbitraryInstResultType(TreePatternNode &N, TreePattern &TP) { |
4207 | if (N.isLeaf()) |
4208 | return false; |
4209 | |
4210 | // Analyze children. |
4211 | for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i) |
4212 | if (ForceArbitraryInstResultType(N&: N.getChild(N: i), TP)) |
4213 | return true; |
4214 | |
4215 | if (!N.getOperator()->isSubClassOf(Name: "Instruction" )) |
4216 | return false; |
4217 | |
4218 | // If this type is already concrete or completely unknown we can't do |
4219 | // anything. |
4220 | TypeInfer &TI = TP.getInfer(); |
4221 | for (unsigned i = 0, e = N.getNumTypes(); i != e; ++i) { |
4222 | if (N.getExtType(ResNo: i).empty() || TI.isConcrete(VTS: N.getExtType(ResNo: i), AllowEmpty: false)) |
4223 | continue; |
4224 | |
4225 | // Otherwise, force its type to an arbitrary choice. |
4226 | if (TI.forceArbitrary(Out&: N.getExtType(ResNo: i))) |
4227 | return true; |
4228 | } |
4229 | |
4230 | return false; |
4231 | } |
4232 | |
4233 | // Promote xform function to be an explicit node wherever set. |
4234 | static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) { |
4235 | if (Record *Xform = N->getTransformFn()) { |
4236 | N->setTransformFn(nullptr); |
4237 | std::vector<TreePatternNodePtr> Children; |
4238 | Children.push_back(x: PromoteXForms(N)); |
4239 | return makeIntrusiveRefCnt<TreePatternNode>(A&: Xform, A: std::move(Children), |
4240 | A: N->getNumTypes()); |
4241 | } |
4242 | |
4243 | if (!N->isLeaf()) |
4244 | for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { |
4245 | TreePatternNodePtr Child = N->getChildShared(N: i); |
4246 | N->setChild(i, N: PromoteXForms(N: Child)); |
4247 | } |
4248 | return N; |
4249 | } |
4250 | |
4251 | void CodeGenDAGPatterns::ParseOnePattern( |
4252 | Record *TheDef, TreePattern &Pattern, TreePattern &Result, |
4253 | const std::vector<Record *> &InstImpResults, bool ShouldIgnore) { |
4254 | |
4255 | // Inline pattern fragments and expand multiple alternatives. |
4256 | Pattern.InlinePatternFragments(); |
4257 | Result.InlinePatternFragments(); |
4258 | |
4259 | if (Result.getNumTrees() != 1) |
4260 | Result.error(Msg: "Cannot use multi-alternative fragments in result pattern!" ); |
4261 | |
4262 | // Infer types. |
4263 | bool IterateInference; |
4264 | bool InferredAllPatternTypes, InferredAllResultTypes; |
4265 | do { |
4266 | // Infer as many types as possible. If we cannot infer all of them, we |
4267 | // can never do anything with this pattern: report it to the user. |
4268 | InferredAllPatternTypes = |
4269 | Pattern.InferAllTypes(InNamedTypes: &Pattern.getNamedNodesMap()); |
4270 | |
4271 | // Infer as many types as possible. If we cannot infer all of them, we |
4272 | // can never do anything with this pattern: report it to the user. |
4273 | InferredAllResultTypes = Result.InferAllTypes(InNamedTypes: &Pattern.getNamedNodesMap()); |
4274 | |
4275 | IterateInference = false; |
4276 | |
4277 | // Apply the type of the result to the source pattern. This helps us |
4278 | // resolve cases where the input type is known to be a pointer type (which |
4279 | // is considered resolved), but the result knows it needs to be 32- or |
4280 | // 64-bits. Infer the other way for good measure. |
4281 | for (const auto &T : Pattern.getTrees()) |
4282 | for (unsigned i = 0, e = std::min(a: Result.getOnlyTree()->getNumTypes(), |
4283 | b: T->getNumTypes()); |
4284 | i != e; ++i) { |
4285 | IterateInference |= |
4286 | T->UpdateNodeType(ResNo: i, InTy: Result.getOnlyTree()->getExtType(ResNo: i), TP&: Result); |
4287 | IterateInference |= |
4288 | Result.getOnlyTree()->UpdateNodeType(ResNo: i, InTy: T->getExtType(ResNo: i), TP&: Result); |
4289 | } |
4290 | |
4291 | // If our iteration has converged and the input pattern's types are fully |
4292 | // resolved but the result pattern is not fully resolved, we may have a |
4293 | // situation where we have two instructions in the result pattern and |
4294 | // the instructions require a common register class, but don't care about |
4295 | // what actual MVT is used. This is actually a bug in our modelling: |
4296 | // output patterns should have register classes, not MVTs. |
4297 | // |
4298 | // In any case, to handle this, we just go through and disambiguate some |
4299 | // arbitrary types to the result pattern's nodes. |
4300 | if (!IterateInference && InferredAllPatternTypes && !InferredAllResultTypes) |
4301 | IterateInference = |
4302 | ForceArbitraryInstResultType(N&: *Result.getTree(i: 0), TP&: Result); |
4303 | } while (IterateInference); |
4304 | |
4305 | // Verify that we inferred enough types that we can do something with the |
4306 | // pattern and result. If these fire the user has to add type casts. |
4307 | if (!InferredAllPatternTypes) |
4308 | Pattern.error(Msg: "Could not infer all types in pattern!" ); |
4309 | if (!InferredAllResultTypes) { |
4310 | Pattern.dump(); |
4311 | Result.error(Msg: "Could not infer all types in pattern result!" ); |
4312 | } |
4313 | |
4314 | // Promote xform function to be an explicit node wherever set. |
4315 | TreePatternNodePtr DstShared = PromoteXForms(N: Result.getOnlyTree()); |
4316 | |
4317 | TreePattern Temp(Result.getRecord(), DstShared, false, *this); |
4318 | Temp.InferAllTypes(); |
4319 | |
4320 | ListInit *Preds = TheDef->getValueAsListInit(FieldName: "Predicates" ); |
4321 | int Complexity = TheDef->getValueAsInt(FieldName: "AddedComplexity" ); |
4322 | |
4323 | if (PatternRewriter) |
4324 | PatternRewriter(&Pattern); |
4325 | |
4326 | // A pattern may end up with an "impossible" type, i.e. a situation |
4327 | // where all types have been eliminated for some node in this pattern. |
4328 | // This could occur for intrinsics that only make sense for a specific |
4329 | // value type, and use a specific register class. If, for some mode, |
4330 | // that register class does not accept that type, the type inference |
4331 | // will lead to a contradiction, which is not an error however, but |
4332 | // a sign that this pattern will simply never match. |
4333 | if (Temp.getOnlyTree()->hasPossibleType()) { |
4334 | for (const auto &T : Pattern.getTrees()) { |
4335 | if (T->hasPossibleType()) |
4336 | AddPatternToMatch(Pattern: &Pattern, |
4337 | PTM: PatternToMatch(TheDef, Preds, T, Temp.getOnlyTree(), |
4338 | InstImpResults, Complexity, |
4339 | TheDef->getID(), ShouldIgnore)); |
4340 | } |
4341 | } else { |
4342 | // Show a message about a dropped pattern with some info to make it |
4343 | // easier to identify it in the .td files. |
4344 | LLVM_DEBUG({ |
4345 | dbgs() << "Dropping: " ; |
4346 | Pattern.dump(); |
4347 | Temp.getOnlyTree()->dump(); |
4348 | dbgs() << "\n" ; |
4349 | }); |
4350 | } |
4351 | } |
4352 | |
4353 | void CodeGenDAGPatterns::ParsePatterns() { |
4354 | std::vector<Record *> Patterns = Records.getAllDerivedDefinitions(ClassName: "Pattern" ); |
4355 | |
4356 | for (Record *CurPattern : Patterns) { |
4357 | DagInit *Tree = CurPattern->getValueAsDag(FieldName: "PatternToMatch" ); |
4358 | |
4359 | // If the pattern references the null_frag, there's nothing to do. |
4360 | if (hasNullFragReference(DI: Tree)) |
4361 | continue; |
4362 | |
4363 | TreePattern Pattern(CurPattern, Tree, true, *this); |
4364 | |
4365 | ListInit *LI = CurPattern->getValueAsListInit(FieldName: "ResultInstrs" ); |
4366 | if (LI->empty()) |
4367 | continue; // no pattern. |
4368 | |
4369 | // Parse the instruction. |
4370 | TreePattern Result(CurPattern, LI, false, *this); |
4371 | |
4372 | if (Result.getNumTrees() != 1) |
4373 | Result.error(Msg: "Cannot handle instructions producing instructions " |
4374 | "with temporaries yet!" ); |
4375 | |
4376 | // Validate that the input pattern is correct. |
4377 | std::map<std::string, TreePatternNodePtr> InstInputs; |
4378 | MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> |
4379 | InstResults; |
4380 | std::vector<Record *> InstImpResults; |
4381 | for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j) |
4382 | FindPatternInputsAndOutputs(I&: Pattern, Pat: Pattern.getTree(i: j), InstInputs, |
4383 | InstResults, InstImpResults); |
4384 | |
4385 | ParseOnePattern(TheDef: CurPattern, Pattern, Result, InstImpResults, |
4386 | ShouldIgnore: CurPattern->getValueAsBit(FieldName: "GISelShouldIgnore" )); |
4387 | } |
4388 | } |
4389 | |
4390 | static void collectModes(std::set<unsigned> &Modes, const TreePatternNode &N) { |
4391 | for (const TypeSetByHwMode &VTS : N.getExtTypes()) |
4392 | for (const auto &I : VTS) |
4393 | Modes.insert(x: I.first); |
4394 | |
4395 | for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i) |
4396 | collectModes(Modes, N: N.getChild(N: i)); |
4397 | } |
4398 | |
4399 | void CodeGenDAGPatterns::ExpandHwModeBasedTypes() { |
4400 | const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); |
4401 | if (CGH.getNumModeIds() == 1) |
4402 | return; |
4403 | |
4404 | std::vector<PatternToMatch> Copy; |
4405 | PatternsToMatch.swap(x&: Copy); |
4406 | |
4407 | auto AppendPattern = [this](PatternToMatch &P, unsigned Mode, |
4408 | StringRef Check) { |
4409 | TreePatternNodePtr NewSrc = P.getSrcPattern().clone(); |
4410 | TreePatternNodePtr NewDst = P.getDstPattern().clone(); |
4411 | if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) { |
4412 | return; |
4413 | } |
4414 | |
4415 | PatternsToMatch.emplace_back( |
4416 | args: P.getSrcRecord(), args: P.getPredicates(), args: std::move(NewSrc), |
4417 | args: std::move(NewDst), args: P.getDstRegs(), args: P.getAddedComplexity(), |
4418 | args: Record::getNewUID(RK&: Records), args: P.getGISelShouldIgnore(), args&: Check); |
4419 | }; |
4420 | |
4421 | for (PatternToMatch &P : Copy) { |
4422 | const TreePatternNode *SrcP = nullptr, *DstP = nullptr; |
4423 | if (P.getSrcPattern().hasProperTypeByHwMode()) |
4424 | SrcP = &P.getSrcPattern(); |
4425 | if (P.getDstPattern().hasProperTypeByHwMode()) |
4426 | DstP = &P.getDstPattern(); |
4427 | if (!SrcP && !DstP) { |
4428 | PatternsToMatch.push_back(x: P); |
4429 | continue; |
4430 | } |
4431 | |
4432 | std::set<unsigned> Modes; |
4433 | if (SrcP) |
4434 | collectModes(Modes, N: *SrcP); |
4435 | if (DstP) |
4436 | collectModes(Modes, N: *DstP); |
4437 | |
4438 | // The predicate for the default mode needs to be constructed for each |
4439 | // pattern separately. |
4440 | // Since not all modes must be present in each pattern, if a mode m is |
4441 | // absent, then there is no point in constructing a check for m. If such |
4442 | // a check was created, it would be equivalent to checking the default |
4443 | // mode, except not all modes' predicates would be a part of the checking |
4444 | // code. The subsequently generated check for the default mode would then |
4445 | // have the exact same patterns, but a different predicate code. To avoid |
4446 | // duplicated patterns with different predicate checks, construct the |
4447 | // default check as a negation of all predicates that are actually present |
4448 | // in the source/destination patterns. |
4449 | SmallString<128> DefaultCheck; |
4450 | |
4451 | for (unsigned M : Modes) { |
4452 | if (M == DefaultMode) |
4453 | continue; |
4454 | |
4455 | // Fill the map entry for this mode. |
4456 | const HwMode &HM = CGH.getMode(Id: M); |
4457 | AppendPattern(P, M, HM.Predicates); |
4458 | |
4459 | // Add negations of the HM's predicates to the default predicate. |
4460 | if (!DefaultCheck.empty()) |
4461 | DefaultCheck += " && " ; |
4462 | DefaultCheck += "!(" ; |
4463 | DefaultCheck += HM.Predicates; |
4464 | DefaultCheck += ")" ; |
4465 | } |
4466 | |
4467 | bool HasDefault = Modes.count(x: DefaultMode); |
4468 | if (HasDefault) |
4469 | AppendPattern(P, DefaultMode, DefaultCheck); |
4470 | } |
4471 | } |
4472 | |
4473 | /// Dependent variable map for CodeGenDAGPattern variant generation |
4474 | typedef StringMap<int> DepVarMap; |
4475 | |
4476 | static void FindDepVarsOf(TreePatternNode &N, DepVarMap &DepMap) { |
4477 | if (N.isLeaf()) { |
4478 | if (N.hasName() && isa<DefInit>(Val: N.getLeafValue())) |
4479 | DepMap[N.getName()]++; |
4480 | } else { |
4481 | for (size_t i = 0, e = N.getNumChildren(); i != e; ++i) |
4482 | FindDepVarsOf(N&: N.getChild(N: i), DepMap); |
4483 | } |
4484 | } |
4485 | |
4486 | /// Find dependent variables within child patterns |
4487 | static void FindDepVars(TreePatternNode &N, MultipleUseVarSet &DepVars) { |
4488 | DepVarMap depcounts; |
4489 | FindDepVarsOf(N, DepMap&: depcounts); |
4490 | for (const auto &Pair : depcounts) { |
4491 | if (Pair.getValue() > 1) |
4492 | DepVars.insert(key: Pair.getKey()); |
4493 | } |
4494 | } |
4495 | |
4496 | #ifndef NDEBUG |
4497 | /// Dump the dependent variable set: |
4498 | static void DumpDepVars(MultipleUseVarSet &DepVars) { |
4499 | if (DepVars.empty()) { |
4500 | LLVM_DEBUG(errs() << "<empty set>" ); |
4501 | } else { |
4502 | LLVM_DEBUG(errs() << "[ " ); |
4503 | for (const auto &DepVar : DepVars) { |
4504 | LLVM_DEBUG(errs() << DepVar.getKey() << " " ); |
4505 | } |
4506 | LLVM_DEBUG(errs() << "]" ); |
4507 | } |
4508 | } |
4509 | #endif |
4510 | |
4511 | /// CombineChildVariants - Given a bunch of permutations of each child of the |
4512 | /// 'operator' node, put them together in all possible ways. |
4513 | static void CombineChildVariants( |
4514 | TreePatternNodePtr Orig, |
4515 | const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants, |
4516 | std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP, |
4517 | const MultipleUseVarSet &DepVars) { |
4518 | // Make sure that each operand has at least one variant to choose from. |
4519 | for (const auto &Variants : ChildVariants) |
4520 | if (Variants.empty()) |
4521 | return; |
4522 | |
4523 | // The end result is an all-pairs construction of the resultant pattern. |
4524 | std::vector<unsigned> Idxs(ChildVariants.size()); |
4525 | bool NotDone; |
4526 | do { |
4527 | #ifndef NDEBUG |
4528 | LLVM_DEBUG(if (!Idxs.empty()) { |
4529 | errs() << Orig->getOperator()->getName() << ": Idxs = [ " ; |
4530 | for (unsigned Idx : Idxs) { |
4531 | errs() << Idx << " " ; |
4532 | } |
4533 | errs() << "]\n" ; |
4534 | }); |
4535 | #endif |
4536 | // Create the variant and add it to the output list. |
4537 | std::vector<TreePatternNodePtr> NewChildren; |
4538 | NewChildren.reserve(n: ChildVariants.size()); |
4539 | for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) |
4540 | NewChildren.push_back(x: ChildVariants[i][Idxs[i]]); |
4541 | TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>( |
4542 | A: Orig->getOperator(), A: std::move(NewChildren), A: Orig->getNumTypes()); |
4543 | |
4544 | // Copy over properties. |
4545 | R->setName(Orig->getName()); |
4546 | R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg()); |
4547 | R->setPredicateCalls(Orig->getPredicateCalls()); |
4548 | R->setGISelFlagsRecord(Orig->getGISelFlagsRecord()); |
4549 | R->setTransformFn(Orig->getTransformFn()); |
4550 | for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) |
4551 | R->setType(ResNo: i, T: Orig->getExtType(ResNo: i)); |
4552 | |
4553 | // If this pattern cannot match, do not include it as a variant. |
4554 | std::string ErrString; |
4555 | // Scan to see if this pattern has already been emitted. We can get |
4556 | // duplication due to things like commuting: |
4557 | // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) |
4558 | // which are the same pattern. Ignore the dups. |
4559 | if (R->canPatternMatch(Reason&: ErrString, CDP) && |
4560 | none_of(Range&: OutVariants, P: [&](TreePatternNodePtr Variant) { |
4561 | return R->isIsomorphicTo(N: *Variant, DepVars); |
4562 | })) |
4563 | OutVariants.push_back(x: R); |
4564 | |
4565 | // Increment indices to the next permutation by incrementing the |
4566 | // indices from last index backward, e.g., generate the sequence |
4567 | // [0, 0], [0, 1], [1, 0], [1, 1]. |
4568 | int IdxsIdx; |
4569 | for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { |
4570 | if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) |
4571 | Idxs[IdxsIdx] = 0; |
4572 | else |
4573 | break; |
4574 | } |
4575 | NotDone = (IdxsIdx >= 0); |
4576 | } while (NotDone); |
4577 | } |
4578 | |
4579 | /// CombineChildVariants - A helper function for binary operators. |
4580 | /// |
4581 | static void CombineChildVariants(TreePatternNodePtr Orig, |
4582 | const std::vector<TreePatternNodePtr> &LHS, |
4583 | const std::vector<TreePatternNodePtr> &RHS, |
4584 | std::vector<TreePatternNodePtr> &OutVariants, |
4585 | CodeGenDAGPatterns &CDP, |
4586 | const MultipleUseVarSet &DepVars) { |
4587 | std::vector<std::vector<TreePatternNodePtr>> ChildVariants; |
4588 | ChildVariants.push_back(x: LHS); |
4589 | ChildVariants.push_back(x: RHS); |
4590 | CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); |
4591 | } |
4592 | |
4593 | static void |
4594 | GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N, |
4595 | std::vector<TreePatternNodePtr> &Children) { |
4596 | assert(N->getNumChildren() == 2 && |
4597 | "Associative but doesn't have 2 children!" ); |
4598 | Record *Operator = N->getOperator(); |
4599 | |
4600 | // Only permit raw nodes. |
4601 | if (!N->getName().empty() || !N->getPredicateCalls().empty() || |
4602 | N->getTransformFn()) { |
4603 | Children.push_back(x: N); |
4604 | return; |
4605 | } |
4606 | |
4607 | if (N->getChild(N: 0).isLeaf() || N->getChild(N: 0).getOperator() != Operator) |
4608 | Children.push_back(x: N->getChildShared(N: 0)); |
4609 | else |
4610 | GatherChildrenOfAssociativeOpcode(N: N->getChildShared(N: 0), Children); |
4611 | |
4612 | if (N->getChild(N: 1).isLeaf() || N->getChild(N: 1).getOperator() != Operator) |
4613 | Children.push_back(x: N->getChildShared(N: 1)); |
4614 | else |
4615 | GatherChildrenOfAssociativeOpcode(N: N->getChildShared(N: 1), Children); |
4616 | } |
4617 | |
4618 | /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of |
4619 | /// the (potentially recursive) pattern by using algebraic laws. |
4620 | /// |
4621 | static void GenerateVariantsOf(TreePatternNodePtr N, |
4622 | std::vector<TreePatternNodePtr> &OutVariants, |
4623 | CodeGenDAGPatterns &CDP, |
4624 | const MultipleUseVarSet &DepVars) { |
4625 | // We cannot permute leaves or ComplexPattern uses. |
4626 | if (N->isLeaf() || N->getOperator()->isSubClassOf(Name: "ComplexPattern" )) { |
4627 | OutVariants.push_back(x: N); |
4628 | return; |
4629 | } |
4630 | |
4631 | // Look up interesting info about the node. |
4632 | const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(R: N->getOperator()); |
4633 | |
4634 | // If this node is associative, re-associate. |
4635 | if (NodeInfo.hasProperty(Prop: SDNPAssociative)) { |
4636 | // Re-associate by pulling together all of the linked operators |
4637 | std::vector<TreePatternNodePtr> MaximalChildren; |
4638 | GatherChildrenOfAssociativeOpcode(N, Children&: MaximalChildren); |
4639 | |
4640 | // Only handle child sizes of 3. Otherwise we'll end up trying too many |
4641 | // permutations. |
4642 | if (MaximalChildren.size() == 3) { |
4643 | // Find the variants of all of our maximal children. |
4644 | std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants; |
4645 | GenerateVariantsOf(N: MaximalChildren[0], OutVariants&: AVariants, CDP, DepVars); |
4646 | GenerateVariantsOf(N: MaximalChildren[1], OutVariants&: BVariants, CDP, DepVars); |
4647 | GenerateVariantsOf(N: MaximalChildren[2], OutVariants&: CVariants, CDP, DepVars); |
4648 | |
4649 | // There are only two ways we can permute the tree: |
4650 | // (A op B) op C and A op (B op C) |
4651 | // Within these forms, we can also permute A/B/C. |
4652 | |
4653 | // Generate legal pair permutations of A/B/C. |
4654 | std::vector<TreePatternNodePtr> ABVariants; |
4655 | std::vector<TreePatternNodePtr> BAVariants; |
4656 | std::vector<TreePatternNodePtr> ACVariants; |
4657 | std::vector<TreePatternNodePtr> CAVariants; |
4658 | std::vector<TreePatternNodePtr> BCVariants; |
4659 | std::vector<TreePatternNodePtr> CBVariants; |
4660 | CombineChildVariants(Orig: N, LHS: AVariants, RHS: BVariants, OutVariants&: ABVariants, CDP, DepVars); |
4661 | CombineChildVariants(Orig: N, LHS: BVariants, RHS: AVariants, OutVariants&: BAVariants, CDP, DepVars); |
4662 | CombineChildVariants(Orig: N, LHS: AVariants, RHS: CVariants, OutVariants&: ACVariants, CDP, DepVars); |
4663 | CombineChildVariants(Orig: N, LHS: CVariants, RHS: AVariants, OutVariants&: CAVariants, CDP, DepVars); |
4664 | CombineChildVariants(Orig: N, LHS: BVariants, RHS: CVariants, OutVariants&: BCVariants, CDP, DepVars); |
4665 | CombineChildVariants(Orig: N, LHS: CVariants, RHS: BVariants, OutVariants&: CBVariants, CDP, DepVars); |
4666 | |
4667 | // Combine those into the result: (x op x) op x |
4668 | CombineChildVariants(Orig: N, LHS: ABVariants, RHS: CVariants, OutVariants, CDP, DepVars); |
4669 | CombineChildVariants(Orig: N, LHS: BAVariants, RHS: CVariants, OutVariants, CDP, DepVars); |
4670 | CombineChildVariants(Orig: N, LHS: ACVariants, RHS: BVariants, OutVariants, CDP, DepVars); |
4671 | CombineChildVariants(Orig: N, LHS: CAVariants, RHS: BVariants, OutVariants, CDP, DepVars); |
4672 | CombineChildVariants(Orig: N, LHS: BCVariants, RHS: AVariants, OutVariants, CDP, DepVars); |
4673 | CombineChildVariants(Orig: N, LHS: CBVariants, RHS: AVariants, OutVariants, CDP, DepVars); |
4674 | |
4675 | // Combine those into the result: x op (x op x) |
4676 | CombineChildVariants(Orig: N, LHS: CVariants, RHS: ABVariants, OutVariants, CDP, DepVars); |
4677 | CombineChildVariants(Orig: N, LHS: CVariants, RHS: BAVariants, OutVariants, CDP, DepVars); |
4678 | CombineChildVariants(Orig: N, LHS: BVariants, RHS: ACVariants, OutVariants, CDP, DepVars); |
4679 | CombineChildVariants(Orig: N, LHS: BVariants, RHS: CAVariants, OutVariants, CDP, DepVars); |
4680 | CombineChildVariants(Orig: N, LHS: AVariants, RHS: BCVariants, OutVariants, CDP, DepVars); |
4681 | CombineChildVariants(Orig: N, LHS: AVariants, RHS: CBVariants, OutVariants, CDP, DepVars); |
4682 | return; |
4683 | } |
4684 | } |
4685 | |
4686 | // Compute permutations of all children. |
4687 | std::vector<std::vector<TreePatternNodePtr>> ChildVariants( |
4688 | N->getNumChildren()); |
4689 | for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) |
4690 | GenerateVariantsOf(N: N->getChildShared(N: i), OutVariants&: ChildVariants[i], CDP, DepVars); |
4691 | |
4692 | // Build all permutations based on how the children were formed. |
4693 | CombineChildVariants(Orig: N, ChildVariants, OutVariants, CDP, DepVars); |
4694 | |
4695 | // If this node is commutative, consider the commuted order. |
4696 | bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); |
4697 | if (NodeInfo.hasProperty(Prop: SDNPCommutative) || isCommIntrinsic) { |
4698 | unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. |
4699 | assert(N->getNumChildren() >= (2 + Skip) && |
4700 | "Commutative but doesn't have 2 children!" ); |
4701 | // Don't allow commuting children which are actually register references. |
4702 | bool NoRegisters = true; |
4703 | unsigned i = 0 + Skip; |
4704 | unsigned e = 2 + Skip; |
4705 | for (; i != e; ++i) { |
4706 | TreePatternNode &Child = N->getChild(N: i); |
4707 | if (Child.isLeaf()) |
4708 | if (DefInit *DI = dyn_cast<DefInit>(Val: Child.getLeafValue())) { |
4709 | Record *RR = DI->getDef(); |
4710 | if (RR->isSubClassOf(Name: "Register" )) |
4711 | NoRegisters = false; |
4712 | } |
4713 | } |
4714 | // Consider the commuted order. |
4715 | if (NoRegisters) { |
4716 | // Swap the first two operands after the intrinsic id, if present. |
4717 | unsigned i = isCommIntrinsic ? 1 : 0; |
4718 | std::swap(x&: ChildVariants[i], y&: ChildVariants[i + 1]); |
4719 | CombineChildVariants(Orig: N, ChildVariants, OutVariants, CDP, DepVars); |
4720 | } |
4721 | } |
4722 | } |
4723 | |
4724 | // GenerateVariants - Generate variants. For example, commutative patterns can |
4725 | // match multiple ways. Add them to PatternsToMatch as well. |
4726 | void CodeGenDAGPatterns::GenerateVariants() { |
4727 | LLVM_DEBUG(errs() << "Generating instruction variants.\n" ); |
4728 | |
4729 | // Loop over all of the patterns we've collected, checking to see if we can |
4730 | // generate variants of the instruction, through the exploitation of |
4731 | // identities. This permits the target to provide aggressive matching without |
4732 | // the .td file having to contain tons of variants of instructions. |
4733 | // |
4734 | // Note that this loop adds new patterns to the PatternsToMatch list, but we |
4735 | // intentionally do not reconsider these. Any variants of added patterns have |
4736 | // already been added. |
4737 | // |
4738 | for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { |
4739 | MultipleUseVarSet DepVars; |
4740 | std::vector<TreePatternNodePtr> Variants; |
4741 | FindDepVars(N&: PatternsToMatch[i].getSrcPattern(), DepVars); |
4742 | LLVM_DEBUG(errs() << "Dependent/multiply used variables: " ); |
4743 | LLVM_DEBUG(DumpDepVars(DepVars)); |
4744 | LLVM_DEBUG(errs() << "\n" ); |
4745 | GenerateVariantsOf(N: PatternsToMatch[i].getSrcPatternShared(), OutVariants&: Variants, |
4746 | CDP&: *this, DepVars); |
4747 | |
4748 | assert(PatternsToMatch[i].getHwModeFeatures().empty() && |
4749 | "HwModes should not have been expanded yet!" ); |
4750 | |
4751 | assert(!Variants.empty() && "Must create at least original variant!" ); |
4752 | if (Variants.size() == 1) // No additional variants for this pattern. |
4753 | continue; |
4754 | |
4755 | LLVM_DEBUG(errs() << "FOUND VARIANTS OF: " ; |
4756 | PatternsToMatch[i].getSrcPattern().dump(); errs() << "\n" ); |
4757 | |
4758 | for (unsigned v = 0, e = Variants.size(); v != e; ++v) { |
4759 | TreePatternNodePtr Variant = Variants[v]; |
4760 | |
4761 | LLVM_DEBUG(errs() << " VAR#" << v << ": " ; Variant->dump(); |
4762 | errs() << "\n" ); |
4763 | |
4764 | // Scan to see if an instruction or explicit pattern already matches this. |
4765 | bool AlreadyExists = false; |
4766 | for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { |
4767 | // Skip if the top level predicates do not match. |
4768 | if ((i != p) && (PatternsToMatch[i].getPredicates() != |
4769 | PatternsToMatch[p].getPredicates())) |
4770 | continue; |
4771 | // Check to see if this variant already exists. |
4772 | if (Variant->isIsomorphicTo(N: PatternsToMatch[p].getSrcPattern(), |
4773 | DepVars)) { |
4774 | LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n" ); |
4775 | AlreadyExists = true; |
4776 | break; |
4777 | } |
4778 | } |
4779 | // If we already have it, ignore the variant. |
4780 | if (AlreadyExists) |
4781 | continue; |
4782 | |
4783 | // Otherwise, add it to the list of patterns we have. |
4784 | PatternsToMatch.emplace_back( |
4785 | args: PatternsToMatch[i].getSrcRecord(), args: PatternsToMatch[i].getPredicates(), |
4786 | args&: Variant, args: PatternsToMatch[i].getDstPatternShared(), |
4787 | args: PatternsToMatch[i].getDstRegs(), |
4788 | args: PatternsToMatch[i].getAddedComplexity(), args: Record::getNewUID(RK&: Records), |
4789 | args: PatternsToMatch[i].getGISelShouldIgnore(), |
4790 | args: PatternsToMatch[i].getHwModeFeatures()); |
4791 | } |
4792 | |
4793 | LLVM_DEBUG(errs() << "\n" ); |
4794 | } |
4795 | } |
4796 | |