1 | //===----------------------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #ifndef _LIBCPP___RANDOM_BINOMIAL_DISTRIBUTION_H |
10 | #define _LIBCPP___RANDOM_BINOMIAL_DISTRIBUTION_H |
11 | |
12 | #include <__config> |
13 | #include <__random/is_valid.h> |
14 | #include <__random/uniform_real_distribution.h> |
15 | #include <cmath> |
16 | #include <iosfwd> |
17 | |
18 | #if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER) |
19 | # pragma GCC system_header |
20 | #endif |
21 | |
22 | _LIBCPP_PUSH_MACROS |
23 | #include <__undef_macros> |
24 | |
25 | _LIBCPP_BEGIN_NAMESPACE_STD |
26 | |
27 | template <class _IntType = int> |
28 | class _LIBCPP_TEMPLATE_VIS binomial_distribution { |
29 | static_assert(__libcpp_random_is_valid_inttype<_IntType>::value, "IntType must be a supported integer type" ); |
30 | |
31 | public: |
32 | // types |
33 | typedef _IntType result_type; |
34 | |
35 | class _LIBCPP_TEMPLATE_VIS param_type { |
36 | result_type __t_; |
37 | double __p_; |
38 | double __pr_; |
39 | double __odds_ratio_; |
40 | result_type __r0_; |
41 | |
42 | public: |
43 | typedef binomial_distribution distribution_type; |
44 | |
45 | _LIBCPP_HIDE_FROM_ABI explicit param_type(result_type __t = 1, double __p = 0.5); |
46 | |
47 | _LIBCPP_HIDE_FROM_ABI result_type t() const { return __t_; } |
48 | _LIBCPP_HIDE_FROM_ABI double p() const { return __p_; } |
49 | |
50 | friend _LIBCPP_HIDE_FROM_ABI bool operator==(const param_type& __x, const param_type& __y) { |
51 | return __x.__t_ == __y.__t_ && __x.__p_ == __y.__p_; |
52 | } |
53 | friend _LIBCPP_HIDE_FROM_ABI bool operator!=(const param_type& __x, const param_type& __y) { return !(__x == __y); } |
54 | |
55 | friend class binomial_distribution; |
56 | }; |
57 | |
58 | private: |
59 | param_type __p_; |
60 | |
61 | public: |
62 | // constructors and reset functions |
63 | #ifndef _LIBCPP_CXX03_LANG |
64 | _LIBCPP_HIDE_FROM_ABI binomial_distribution() : binomial_distribution(1) {} |
65 | _LIBCPP_HIDE_FROM_ABI explicit binomial_distribution(result_type __t, double __p = 0.5) |
66 | : __p_(param_type(__t, __p)) {} |
67 | #else |
68 | _LIBCPP_HIDE_FROM_ABI explicit binomial_distribution(result_type __t = 1, double __p = 0.5) |
69 | : __p_(param_type(__t, __p)) {} |
70 | #endif |
71 | _LIBCPP_HIDE_FROM_ABI explicit binomial_distribution(const param_type& __p) : __p_(__p) {} |
72 | _LIBCPP_HIDE_FROM_ABI void reset() {} |
73 | |
74 | // generating functions |
75 | template <class _URNG> |
76 | _LIBCPP_HIDE_FROM_ABI result_type operator()(_URNG& __g) { |
77 | return (*this)(__g, __p_); |
78 | } |
79 | template <class _URNG> |
80 | _LIBCPP_HIDE_FROM_ABI result_type operator()(_URNG& __g, const param_type& __p); |
81 | |
82 | // property functions |
83 | _LIBCPP_HIDE_FROM_ABI result_type t() const { return __p_.t(); } |
84 | _LIBCPP_HIDE_FROM_ABI double p() const { return __p_.p(); } |
85 | |
86 | _LIBCPP_HIDE_FROM_ABI param_type param() const { return __p_; } |
87 | _LIBCPP_HIDE_FROM_ABI void param(const param_type& __p) { __p_ = __p; } |
88 | |
89 | _LIBCPP_HIDE_FROM_ABI result_type min() const { return 0; } |
90 | _LIBCPP_HIDE_FROM_ABI result_type max() const { return t(); } |
91 | |
92 | friend _LIBCPP_HIDE_FROM_ABI bool operator==(const binomial_distribution& __x, const binomial_distribution& __y) { |
93 | return __x.__p_ == __y.__p_; |
94 | } |
95 | friend _LIBCPP_HIDE_FROM_ABI bool operator!=(const binomial_distribution& __x, const binomial_distribution& __y) { |
96 | return !(__x == __y); |
97 | } |
98 | }; |
99 | |
100 | #ifndef _LIBCPP_MSVCRT_LIKE |
101 | extern "C" double lgamma_r(double, int*); |
102 | #endif |
103 | |
104 | inline _LIBCPP_HIDE_FROM_ABI double __libcpp_lgamma(double __d) { |
105 | #if defined(_LIBCPP_MSVCRT_LIKE) |
106 | return lgamma(__d); |
107 | #else |
108 | int __sign; |
109 | return lgamma_r(__d, &__sign); |
110 | #endif |
111 | } |
112 | |
113 | template <class _IntType> |
114 | binomial_distribution<_IntType>::param_type::param_type(result_type __t, double __p) : __t_(__t), __p_(__p) { |
115 | if (0 < __p_ && __p_ < 1) { |
116 | __r0_ = static_cast<result_type>((__t_ + 1) * __p_); |
117 | __pr_ = std::exp( |
118 | std::__libcpp_lgamma(d: __t_ + 1.) - std::__libcpp_lgamma(d: __r0_ + 1.) - std::__libcpp_lgamma(d: __t_ - __r0_ + 1.) + |
119 | __r0_ * std::log(x: __p_) + (__t_ - __r0_) * std::log(x: 1 - __p_)); |
120 | __odds_ratio_ = __p_ / (1 - __p_); |
121 | } |
122 | } |
123 | |
124 | // Reference: Kemp, C.D. (1986). `A modal method for generating binomial |
125 | // variables', Commun. Statist. - Theor. Meth. 15(3), 805-813. |
126 | template <class _IntType> |
127 | template <class _URNG> |
128 | _IntType binomial_distribution<_IntType>::operator()(_URNG& __g, const param_type& __pr) { |
129 | static_assert(__libcpp_random_is_valid_urng<_URNG>::value, "" ); |
130 | if (__pr.__t_ == 0 || __pr.__p_ == 0) |
131 | return 0; |
132 | if (__pr.__p_ == 1) |
133 | return __pr.__t_; |
134 | uniform_real_distribution<double> __gen; |
135 | double __u = __gen(__g) - __pr.__pr_; |
136 | if (__u < 0) |
137 | return __pr.__r0_; |
138 | double __pu = __pr.__pr_; |
139 | double __pd = __pu; |
140 | result_type __ru = __pr.__r0_; |
141 | result_type __rd = __ru; |
142 | while (true) { |
143 | bool __break = true; |
144 | if (__rd >= 1) { |
145 | __pd *= __rd / (__pr.__odds_ratio_ * (__pr.__t_ - __rd + 1)); |
146 | __u -= __pd; |
147 | __break = false; |
148 | if (__u < 0) |
149 | return __rd - 1; |
150 | } |
151 | if (__rd != 0) |
152 | --__rd; |
153 | ++__ru; |
154 | if (__ru <= __pr.__t_) { |
155 | __pu *= (__pr.__t_ - __ru + 1) * __pr.__odds_ratio_ / __ru; |
156 | __u -= __pu; |
157 | __break = false; |
158 | if (__u < 0) |
159 | return __ru; |
160 | } |
161 | if (__break) |
162 | return 0; |
163 | } |
164 | } |
165 | |
166 | template <class _CharT, class _Traits, class _IntType> |
167 | _LIBCPP_HIDE_FROM_ABI basic_ostream<_CharT, _Traits>& |
168 | operator<<(basic_ostream<_CharT, _Traits>& __os, const binomial_distribution<_IntType>& __x) { |
169 | __save_flags<_CharT, _Traits> __lx(__os); |
170 | typedef basic_ostream<_CharT, _Traits> _OStream; |
171 | __os.flags(_OStream::dec | _OStream::left | _OStream::fixed | _OStream::scientific); |
172 | _CharT __sp = __os.widen(' '); |
173 | __os.fill(__sp); |
174 | return __os << __x.t() << __sp << __x.p(); |
175 | } |
176 | |
177 | template <class _CharT, class _Traits, class _IntType> |
178 | _LIBCPP_HIDE_FROM_ABI basic_istream<_CharT, _Traits>& |
179 | operator>>(basic_istream<_CharT, _Traits>& __is, binomial_distribution<_IntType>& __x) { |
180 | typedef binomial_distribution<_IntType> _Eng; |
181 | typedef typename _Eng::result_type result_type; |
182 | typedef typename _Eng::param_type param_type; |
183 | __save_flags<_CharT, _Traits> __lx(__is); |
184 | typedef basic_istream<_CharT, _Traits> _Istream; |
185 | __is.flags(_Istream::dec | _Istream::skipws); |
186 | result_type __t; |
187 | double __p; |
188 | __is >> __t >> __p; |
189 | if (!__is.fail()) |
190 | __x.param(param_type(__t, __p)); |
191 | return __is; |
192 | } |
193 | |
194 | _LIBCPP_END_NAMESPACE_STD |
195 | |
196 | _LIBCPP_POP_MACROS |
197 | |
198 | #endif // _LIBCPP___RANDOM_BINOMIAL_DISTRIBUTION_H |
199 | |